Science.gov

Sample records for abnormal autonomic function

  1. Bilateral paramedian thalamic syndrome: abnormal circadian wake-sleep and autonomic functions

    PubMed Central

    Montagna, P; Provini, F; Plazzi, G; Vetrugno, R; Gallassi, R; Pierangeli, G; Ragno, M; Cortelli, P; Perani, D

    2002-01-01

    Methods: Patients underwent (18F)FDG PET scans and 24 hour polygraphic recordings of wake-sleep and t°. Results: PET showed bilateral thalamic hypometabolism in both patients with additional basal ganglia or mesiolateral frontal and cingular hypometabolism. Wake-sleep studies showed abnormal sleep organisation and in the case with frontal and limbic PET hypometabolism, pre-sleep behaviour associated with "subwakefulness" EEG activities, lack of EEG spindles and K complexes, and features of status dissociatus. The t° rhythms showed increased mesor in both (37.4°C and 37.75°C) and inverted rhythm in one patient. Conclusions: Paramedian thalamic structures and interconnected, especially frontal and cingular, areas play a part in the organisation of the wake-sleep cycle and attendant autonomic functions. PMID:12438490

  2. Malicious Hubs: Detecting Abnormally Malicious Autonomous Systems

    SciTech Connect

    Kalafut, Andrew J.; Shue, Craig A; Gupta, Prof. Minaxi

    2010-01-01

    While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using 12 popular blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted and others account for large fractions of blacklisted IPs. Overall, we conclude that examining malicious activity at the AS granularity can unearth networks with lax security or those that harbor cybercrime.

  3. Evaluation of autonomic functions in subclinical hypothyroid and hypothyroid patients

    PubMed Central

    Mahajan, Aarti S.; Lal, Ram; Dhanwal, Dinesh K.; Jain, Ajay K.; Chowdhury, Veena

    2013-01-01

    Background: Autonomic dysfunction may contribute to cardiovascular morbidity in subclinical hypothyroid patients. It is controversial whether the abnormality exists in sympathetic or the parasympathetic function. It is also not known whether the severity of autonomic dysfunction is related to the degree of thyroid deficiency. Design of Study: Prospective case control. Materials and Methods: Autonomic functions based on heart rate (HR) and blood pressure (BP) responses to various maneuvers were evaluated and scored in twenty two subclinical hypothyroid patients, 30-50 years and compared with twenty hypothyroid patients. Biochemical estimation of TSH, fT3, fT4, TPO antibody was done. Result: Sympathetic function abnormalities were seen in 82% subclinical hypothyroid patients and 85%hypothyroid patients when one test was abnormal. Parasympathetic dysfunction was also recorded in eight patients in both groups. When two abnormal tests were used as the selection criteria sympathetic function abnormality was observed in about 41% subclinical hypothyroid and 65% hypothyroid patients. There were no intergroup differences in autonomic functions, score and TPO levels. The TSH levels were not related to type or degree of autonomic dysfunction. Systolic BP in both groups and diastolic BP in hypothyroid patients were higher with lower thyroxine levels but the patients were normotensive. Conclusion: Autonomic dysfunction of comparable degree was seen in subclinical hypothyroid and hypothyroid patients. Sympathetic function abnormality was more common although decreased parasympathetic function reactivity was also present. These abnormalities were unrelated to TSH levels. PMID:23869303

  4. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome.

    PubMed

    Barnden, Leighton R; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions.

  5. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    PubMed Central

    Barnden, Leighton R.; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  6. Normal and abnormal lid function.

    PubMed

    Rucker, Janet C

    2011-01-01

    This chapter on lid function is comprised of two primary sections, the first on normal eyelid anatomy, neurological innervation, and physiology, and the second on abnormal eyelid function in disease states. The eyelids serve several important ocular functions, the primary objectives of which are protection of the anterior globe from injury and maintenance of the ocular tear film. Typical eyelid behaviors to perform these functions include blinking (voluntary, spontaneous, or reflexive), voluntary eye closure (gentle or forced), partial lid lowering during squinting, normal lid retraction during emotional states such as surprise or fear (startle reflex), and coordination of lid movements with vertical eye movements for maximal eye protection. Detailed description of the neurological innervation patterns and neurophysiology of each of these lid behaviors is provided. Abnormal lid function is divided by conditions resulting in excessive lid closure (cerebral ptosis, apraxia of lid opening, blepharospasm, oculomotor palsy, Horner's syndrome, myasthenia gravis, and mechanical) and those resulting in excessive lid opening (midbrain lid retraction, facial nerve palsy, and lid retraction due to orbital disease).

  7. Autonomic function in manganese alloy workers.

    PubMed

    Barrington, W W; Angle, C R; Willcockson, N K; Padula, M A; Korn, T

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a "frog shop" for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6-10 years before and 1.2-3.4 years after the diagnosis of the index case exceeded 1.0 mg/m3 in 29% and 0.2 mg/m3 in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR' interval) and the rates of change at low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz). MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used. The five frog shop workers had abnormal sympathovagal balance with decreased high frequency variability (increased ln LF/ln HF). Seven of the eight workers had symptoms of autonomic dysfunction and significantly decreased heart rate variability (rMSSD) but these did not distinguish the relative exposure. Mood or affect was disturbed in all with associated changes in short-term memory and attention in four of the subjects. There were no significant correlations with serum or urine manganese. Power spectrum analysis of 24-h ambulatory ECG indicating a decrease in parasympathetic high frequency activation of heart rate variability may provide a sensitive index of central autonomic dysfunction reflecting increased exposure to manganese, although the contribution of exposures to solvents and other metals cannot be excluded. Neurotoxicity due to the gouging

  8. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  9. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    PubMed Central

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  10. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder.

    PubMed

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R; Fan, Jin

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition.

  11. The Functioning of Autonomous Colleges

    ERIC Educational Resources Information Center

    Rao, V. Pala Prasada; Rao, Digumarti Bhaskara

    2012-01-01

    The college gets separated from the university, though not completely, when it is an autonomous college, which is practice in India. Academic package will become flexible and the decision-making is internalized, changes and updating could be easily carried out, depending on the need as reflected from the feedback taken from alumni, user sectors,…

  12. Abnormal left ventricular torsion and cardiac autonomic dysfunction in subjects with type 1 diabetes mellitus

    PubMed Central

    Piya, Milan K.; Shivu, Ganesh Nallur; Tahrani, Abd; Dubb, Kiran; Abozguia, Khalid; Phan, T.T.; Narendran, Parth; Pop-Busui, Rodica; Frenneaux, Michael; Stevens, Martin J.

    2011-01-01

    Left ventricular torsion is increased and cardiac energetics are reduced in uncomplicated type 1 diabetes mellitus (T1DM). Our aim was to determine the relationships of these abnormalities to cardiovascular autonomic neuropathy (CAN) in subjects with T1DM. A cross-sectional study was conducted in 20 subjects with T1DM free of known coronary heart disease attending an outpatient clinic. Cardiovascular autonomic neuropathy was assessed using heart rate variability studies and the continuous wavelet transform method. Left ventricular function was determined by speckle tracking echocardiography. Magnetic resonance spectroscopy and stress magnetic resonance imaging were used to measure cardiac energetics and myocardial perfusion reserve index, respectively. Twenty subjects (age, 35 ± 8 years; diabetes duration, 16 ± 9 years; hemoglobin A1c, 8.0% ± 1.1%) were recruited. Forty percent of the subjects exhibited definite or borderline CAN. Log peak radial strain was significantly increased in subjects with CAN compared with those without (1.56 ± 0.06 vs 1.43 ± 0.14, respectively; P = .011). Data were adjusted for log duration of diabetes, and log left ventricular torsion correlated (r = 0.593, P = .01) with log low-frequency to high-frequency ratio during the Valsalva maneuver. Log isovolumic relaxation time correlated significantly with log Valsalva ratio and log proportion of differences in consecutive RR intervals of normal beats greater than 50 milliseconds during deep breathing. However, CAN did not correlate with cardiac energetics or myocardial perfusion reserve index. Spectral analysis of low-frequency to high-frequency ratio power during the Valsalva maneuver is associated with altered left ventricular torsion in subjects with T1DM. Parasympathetic dysfunction is closely associated with diastolic deficits. Cardiovascular autonomic neuropathy is not however the principal cause of impaired cardiac energetics. The role of CAN in the development of cardiomyopathy

  13. Abnormally Malicious Autonomous Systems and their Internet Connectivity

    SciTech Connect

    Shue, Craig A; Kalafut, Prof. Andrew; Gupta, Prof. Minaxi

    2011-01-01

    While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using ten popular blacklists, plus local spam data, and extensive DNS resolutions based on the contents of the blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted. Yet others account for large fractions of blacklisted IP addresses. Several ASes regularly peer with ASes associated with significant malicious activity. We also find that malicious ASes as a whole differ from benign ones in other properties not obviously related to their malicious activities, such as more frequent connectivity changes with their BGP peers. Overall, we conclude that examining malicious activity at AS granularity can unearth networks with lax security or those that harbor cybercrime.

  14. Abnormal autonomic control of the cardiovascular system in syndrome X.

    PubMed

    Rosano, G M; Ponikowski, P; Adamopoulos, S; Collins, P; Poole-Wilson, P A; Coats, A J; Kaski, J C

    1994-06-15

    Anomalies of autonomic control of the coronary circulation may play a role in the development of syndrome X (angina pectoris, ischemic-appearing results on exercise test, and normal coronary arteriograms). Twenty-six patients with syndrome X and 20 healthy sex- and age-matched control subjects were studied by means of analysis of heart rate variability during 24-hour Holter monitoring. Spectral and nonspectral parameters of heart rate variability were investigated. Mean heart rate was similar in patients with syndrome X and in control subjects. Patients with syndrome X had significantly lower standard deviation of all normal RR intervals, a lower percentage of adjacent normal RR intervals > 50 ms in difference (126.4 +/- 22 vs 149 +/- 43 ms, p < 0.05; 6.3 +/- 4 vs 11.2 +/- 7%, p < 0.05; respectively), and a trend toward lower values of time-domain parameters. Lower values of total power and low frequency were also observed in patients with syndrome X (1273 +/- 693 vs 1790 +/- 989 ms2, p < 0.05; 406 +/- 176 vs 729 +/- 455 ms2, p < 0.01, respectively). An inverse correlation between heart rate and measures of heart rate variability was found in syndrome X but not in control subjects. High- and low-frequency power showed a similar circadian pattern in syndrome X patients and control subjects. Patients and control subjects were then allocated into 2 groups according to the median RR duration: syndrome X1 and control 1 with high mean heart rate, and syndrome X2 and control 2 with low mean heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Abnormalities of lung function in hay fever.

    PubMed Central

    Morgan, E J; Hall, D R

    1976-01-01

    Twenty subjects with symptoms of hay fever were studied to see whether abnormalities could be detected in the function of small airways. The investigations included dynamic compliance at varying respiratory frequencies, closing capacity, residual volume, transfer factor, and maximal expiratory flow-volume curves. The tests were repeated in the winter when symptoms had resolved. Frequency dependence of compliance was found in eight subjects with symptoms (40%), closing capacities being abnormal in only two instances. Conventional pulmonary function tests, including expiratory flow rates at mid vital capacity, were within the predicted range of all subjects. When tests were repeated in the winter, frequency dependence of compliance was no longer present in subjects whose symptoms had resolved. The study suggests that reversible small airway abnormalities are present in a significant proportion of subjects with symptoms of hay fever and that such abnormalities are best detected by the measurement of dynamic compliance at varying respiratory frequencies. PMID:769243

  16. Clinical and electrophysiologic attributes as predictors of results of autonomic function tests

    NASA Technical Reports Server (NTRS)

    Wu, C. L.; Denq, J. C.; Harper, C. M.; O'Brien, P. C.; Low, P. A.

    1998-01-01

    Autonomic dysfunction is a feature of some neuropathies and not others. It has been suggested that some clinical and electrophysiologic attributes are predictable of autonomic impairment detected using laboratory testing; however, dear guidelines are unavailable. We evaluated 138 relatively unselected patients with peripheral neuropathy who underwent neurologic evaluation, electromyography (EMG), nerve conduction studies, and autonomic function tests to determine which variables were predictive of laboratory findings of autonomic failure. The variables evaluated were 1) clinical somatic neuropathic findings, 2) clinical autonomic symptoms, and 3) electrophysiologic findings. Autonomic symptoms were strongly predictive (Rs = 0.40, p < 0.001) of autonomic failure. Among the non-autonomic indices, absent ankle reflexes were mildly predictive (Rs = 0.19, p = 0.022) of autonomic impairment, but all others were not (duration, clinical pattern, severity, weakness, sensory loss). Electrophysiologic changes of an axonal neuropathy predicted autonomic impairment while demyelinating neuropathy did not. We conclude that autonomic studies will most likely be abnormal in patients who have symptoms of autonomic involvement and those who have an axonal neuropathy.

  17. Abnormalities of the QT interval in primary disorders of autonomic failure

    NASA Technical Reports Server (NTRS)

    Choy, A. M.; Lang, C. C.; Roden, D. M.; Robertson, D.; Wood, A. J.; Robertson, R. M.; Biaggioni, I.

    1998-01-01

    BACKGROUND: Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. SUBJECTS AND METHODS: Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. RESULTS: Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. CONCLUSIONS: Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not

  18. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  19. Autonomic nervous system abnormalities in spinocerebellar ataxia type 2: a cardiovascular neurophysiologic study.

    PubMed

    De Joanna, G; De Rosa, A; Salvatore, E; Castaldo, I; De Luca, N; Izzo, R; Manzo, V; Filla, A; De Michele, G

    2008-12-15

    Autonomic nervous system dysfunction is part of the spinocerebellar ataxia (SCA) clinical picture, but few data are available on this topic. The present study is aimed to report a detailed investigation of autonomic nervous system in patients with molecular diagnosis of SCA type 2, one of the most frequent forms and the commonest in Italy. Nine patients with a mild to moderate form of SCA2 underwent a questionnaire about dysautonomic symptoms and a complete cardiovascular neurophysiologic evaluation of both sympathetic and parasympathetic system, comprising head-up tilt, standing, isometric hand grip, cold pressure, mental arithmetic, Valsalva manoeuvre, deep breathing, and hyperventilation tests. An echocardiographic study and Holter-ECG recording were also performed. All patients complained dysautonomic problems regarding urinary tract, cardiovascular system, or gastrointestinal dysfunction. The neurophysiologic study showed both sympathetic and parasympathetic involvement, with highly variable degree and pattern of dysautonomia. The present study results show that the autonomic dysfunction is common in SCA2 representing a significant component of the complex picture of the disease. We found a wide spectrum of cardiovascular autonomic abnormalities, without a typical pattern of dysfunction and without correlation with clinical variables.

  20. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis

    PubMed Central

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-01-01

    Abstract Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS. The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G). Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0–0.5 Hz) and high-frequency power (HF, 0.15–0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04–0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters. AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients. PMID:27227940

  1. The association between anger-related personality trait and cardiac autonomic response abnormalities in elderly subjects.

    PubMed

    Narita, Kosuke; Murata, Tetsuhito; Takahashi, Tetsuya; Hamada, Toshihiko; Kosaka, Hirotaka; Yoshida, Haruyoshi; Wada, Yuji

    2007-09-01

    Cardiac autonomic response abnormality associated with trait anger has been recognized to elevate blood pressure in daily life, leading to atherosclerotic progression and cardiovascular disease. To clarify the relationship between anger-related personality traits and cardiac autonomic response in healthy elderly subjects, 54 volunteers consisting of 30 male (mean age 62.2+/-5.4) and 24 female (mean age 58.4+/-4.6) subjects underwent testing of heart rate variability (HRV) with head-up tilt. For the evaluation of trait anger, we used a questionnaire corresponding to the trait anger score taken from the State and Trait Anger Expression Inventory. Furthermore, we measured carotid intima-medial thickness (IMT) to evaluate atherosclerotic progression in subjects with anger trait. In female subjects, higher trait anger was positively associated with elevated carotid IMT and the suppression of HRV vagal attenuation from the supine to head-up position, and negatively associated with the HRV sympathetic activity in the head-up position and also with the HRV sympathetic response from the supine to head-up position. In male subjects, trait anger was not significantly associated with carotid IMT or any HRV component with or without head-up tilt testing. We conclude that a simple noninvasive measure, short-term HRV with head-up tilt testing, could be a useful method to investigate the association between cardiac autonomic imbalance and increased risk of atherosclerosis associated with trait anger in healthy elderly subjects.

  2. Altered cardiac autonomic nervous function in depression

    PubMed Central

    2013-01-01

    Background Depression is an independent risk factor for coronary artery disease. Autonomic instability may play a mediating or moderating role in this relationship; however this is not well understood. The objective of this study was to explore cardiac autonomic function and cardiac arrhythmia in depression, the correlation between depression severity and Heart Rate Variability (HRV) related indices, and the prevalence of arrhythmia. Methods Individuals (n = 53) with major depression as assessed by the Diagnostic and Statistical Manual of Mental Disorders, who had a Hamilton Rating Scale for Depression (HAMD) score ≥20 and a Zung Self-Rating Depression Scale score > 53 were compared to 53 healthy individuals, matched for age and gender. Multichannel Electrocardiograph ECG-92C data were collected over 24 hours. Long-term changes in HRV were used to assess the following vagally mediated changes in autonomic tone, expressed as time domain indices: Standard deviation of the NN intervals (SDNN), standard deviation of 5 min averaged NN intervals (SDANN), Root Mean Square of the Successive Differences (RMSSD) and percentage of NN intervals > 50 ms different from preceding interval (pNN50). Pearson’s correlations were conducted to explore the strength of the association between depression severity (using the SDS and HRV related indices, specifically SDNN and low frequency domain / high frequency domain (LF/HF)). Results The values of SDNN, SDANN, RMSSD, PNN50 and HF were lower in the depression group compared to the control group (P<.05). The mean value of the LF in the depression group was higher than the in control group (P<.05). Furthermore the ratio of LF/HF was higher among the depression group than the control group (P<.05). A linear relationship was shown to exist between the severity of the depression and HRV indices. In the depression group, the prevalence of arrhythmia was significantly higher than in the control group (P<.05), particularly

  3. Autonomic function in manganese alloy workers

    SciTech Connect

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A.; Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  4. Autonomic function, as self-reported on the SCOPA-autonomic questionnaire, is normal in essential tremor but not in Parkinson’s disease

    PubMed Central

    Damian, Anne; Adler, Charles H.; Hentz, Joseph G.; Shill, Holly A.; Caviness, John N.; Sabbagh, Marwan N.; Evidente, Virgilio G.H.; Beach, Thomas G.; Driver-Dunckley, Erika

    2013-01-01

    Objective To compare autonomic function of subjects with Parkinson’s disease (PD) and essential tremor (ET) relative to controls. Background It has been reported that patients with PD have autonomic dysfunction while no literature exists regarding autonomic function in ET. Methods Subjects with PD, ET, and controls had autonomic function measured using the SCOPA-Autonomic questionnaire, with the total and domain scores transformed to a scale of 0–100 points. Results 62 subjects with PD, 84 with ET, and 291 controls were included. Women were more prevalent in control (69%) compared to PD (44%) and ET (44%) groups, and mean age was significantly younger in PD (73 yrs) and older in ET (83) compared to controls (81). The mean SCOPA-Aut Total score in PD was significantly higher than controls, with no difference in ET. No autonomic dysfunction was found in any domain in ET but in PD there were significant abnormalities in gastrointestinal, cardiovascular, urinary, and thermoregulatory domains. Individual question data revealed a significantly higher percentage of subjects with dysfunction on 11/23 questions in the PD group but only 1 question (sialorrhea) in the ET group compared with controls. Conclusion Autonomic scores, particularly gastrointestinal, cardiovascular, urinary, and thermoregulatory were increased in patients with PD, as assessed by SCOPA-Aut. Patients with ET did not exhibit autonomic dysfunction, with the exception of sialorrhea. PMID:22771283

  5. Structural and Functional Small Fiber Abnormalities in the Neuropathic Postural Tachycardia Syndrome

    PubMed Central

    Gibbons, Christopher H.; Bonyhay, Istvan; Benson, Adam; Wang, Ningshan; Freeman, Roy

    2013-01-01

    Objective To define the neuropathology, clinical phenotype, autonomic physiology and differentiating features in individuals with neuropathic and non-neuropathic postural tachycardia syndrome (POTS). Methods Twenty-four subjects with POTS and 10 healthy control subjects had skin biopsy analysis of intra-epidermal nerve fiber density (IENFD), quantitative sensory testing (QST) and autonomic testing. Subjects completed quality of life, fatigue and disability questionnaires. Subjects were divided into neuropathic and non-neuropathic POTS, defined by abnormal IENFD and abnormal small fiber and sudomotor function. Results Nine of 24 subjects had neuropathic POTS and had significantly lower resting and tilted heart rates; reduced parasympathetic function; and lower phase 4 valsalva maneuver overshoot compared with those with non-neuropathic POTS (P<0.05). Neuropathic POTS subjects also had less anxiety and depression and greater overall self-perceived health-related quality of life scores than non-neuropathic POTS subjects. A sub-group of POTS patients (cholinergic POTS) had abnormal proximal sudomotor function and symptoms that suggest gastrointestinal and genitourinary parasympathetic nervous system dysfunction. Conclusions and Relevance POTS subtypes may be distinguished using small fiber and autonomic structural and functional criteria. Patients with non-neuropathic POTS have greater anxiety, greater depression and lower health-related quality of life scores compared to those with neuropathic POTS. These findings suggest different pathophysiological processes underlie the postural tachycardia in neuropathic and non-neuropathic POTS patients. The findings have implications for the therapeutic interventions to treat this disorder. PMID:24386408

  6. Autonomic and endocrine control of cardiovascular function

    PubMed Central

    Gordan, Richard; Gwathmey, Judith K; Xie, Lai-Hua

    2015-01-01

    The function of the heart is to contract and pump oxygenated blood to the body and deoxygenated blood to the lungs. To achieve this goal, a normal human heart must beat regularly and continuously for one’s entire life. Heartbeats originate from the rhythmic pacing discharge from the sinoatrial (SA) node within the heart itself. In the absence of extrinsic neural or hormonal influences, the SA node pacing rate would be about 100 beats per minute. Heart rate and cardiac output, however, must vary in response to the needs of the body’s cells for oxygen and nutrients under varying conditions. In order to respond rapidly to the changing requirements of the body’s tissues, the heart rate and contractility are regulated by the nervous system, hormones, and other factors. Here we review how the cardiovascular system is controlled and influenced by not only a unique intrinsic system, but is also heavily influenced by the autonomic nervous system as well as the endocrine system. PMID:25914789

  7. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    PubMed Central

    Macey, Paul M.; Ogren, Jennifer A.; Kumar, Rajesh; Harper, Ronald M.

    2016-01-01

    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain

  8. The Autonomic Brain: An Activation Likelihood Estimation Meta-Analysis for Central Processing of Autonomic Function

    PubMed Central

    Meissner, Karin; Bär, Karl-Jürgen; Napadow, Vitaly

    2013-01-01

    The autonomic nervous system (ANS) is of paramount importance for daily life. Its regulatory action on respiratory, cardiovascular, digestive, endocrine, and many other systems is controlled by a number of structures in the CNS. While the majority of these nuclei and cortices have been identified in animal models, neuroimaging studies have recently begun to shed light on central autonomic processing in humans. In this study, we used activation likelihood estimation to conduct a meta-analysis of human neuroimaging experiments evaluating central autonomic processing to localize (1) cortical and subcortical areas involved in autonomic processing, (2) potential subsystems for the sympathetic and parasympathetic divisions of the ANS, and (3) potential subsystems for specific ANS responses to different stimuli/tasks. Across all tasks, we identified a set of consistently activated brain regions, comprising left amygdala, right anterior and left posterior insula and midcingulate cortices that form the core of the central autonomic network. While sympathetic-associated regions predominate in executive- and salience-processing networks, parasympathetic regions predominate in the default mode network. Hence, central processing of autonomic function does not simply involve a monolithic network of brain regions, instead showing elements of task and division specificity. PMID:23785162

  9. Unusual Structural Autonomic Disorders Presenting in Pediatrics: Disorders Associated with Hypoventilation and Autonomic Neuropathies.

    PubMed

    Chelimsky, Gisela; Chelimsky, Thomas

    2017-02-01

    Structural autonomic disorders (producing structural damage to the autonomic nervous system or autonomic centers) are far less common than functional autonomic disorders (reflected in abnormal function of a fundamentally normal autonomic nervous system) in children and teenagers. This article focuses on this uncommon first group in the pediatric clinic. These disorders are grouped into 2 main categories: those characterized by hypoventilation and those that feature an autonomic neuropathy.

  10. Disorder of autonomic nervous system and its vulnerability to external stimulation in functional dyspepsia

    PubMed Central

    Tominaga, Kazunari; Fujikawa, Yoshiko; Tsumoto, Chikako; Kadouchi, Kaori; Tanaka, Fumio; Kamata, Noriko; Yamagami, Hirokazu; Tanigawa, Tetsuya; Watanabe, Toshio; Fujiwara, Yasuhiro; Arakawa, Tetsuo

    2016-01-01

    To elucidate the role of autonomic nervous system in functional dyspepsia patients, we examined 24-h heart rate variability: the basal levels, responses after lunch, cold pressor and mental arithmetic tests, and the efficacy of an autonomic drug (tofisopam). The high-frequency component (HF: 0.15–0.40 Hz) and the ratio of HF to the low-frequency component (LF: 0.04–0.15 Hz; LF/HF ratio) were used as indicators of parasympathetic and sympathetic autonomic nervous system function. The HF component in the 24-h, daytime, and nighttime was low in 86.7%, 97.8%, and 66.7% of patients (n = 45) and the LF/HF ratio was high in 51.1%, 73.3%, and 26.6% of patients. Gastrointestinal symptom tended to be severe in patients with autonomic nervous system disorder (p = 0.085). The abnormal response in HF component after lunch occurred in 38.2% (13/34) of patients who revealed a greater tendency towards in indigestion score (p = 0.061). Delays in recovery to the basal autonomic nervous system level after stimulus of the cold pressor and the mental arithmetic tests occurred in parts of patients. Tofisopam partially improved autonomic nervous system dysfunction and abdominal pain/indigestion. Imbalanced autonomic nervous system function and vulnerability for recovery from external stimuli were observed in functional dyspepsia patients, which was associated with dyspeptic symptoms. PMID:27013784

  11. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

    PubMed

    Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E

    2011-03-15

    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.

  12. Clinical and autonomic functions: a study of childhood anxiety disorders

    PubMed Central

    Sharma, Rajiv Kumar; Sagar, Rajesh; Deepak, K. K.; Mehta, Manju; Balhara, Yatan Pal Singh

    2011-01-01

    BACKGROUND AND OBJECTIVES: Childhood and adolescent anxiety is generally associated with a varied somatic symptom pattern thought to reflect autonomic system activity. Few studies have examined the autonomic characteristics of generalized anxiety disorder (GAD). This omission is at odds with contemporary models of autonomic cardiovascular control. The current study aimed to find differences in autonomic functions between children with a diagnosis of childhood anxiety disorder and a control group using a case-control design. DESIGN AND SETTING: A cross sectional experimental study conducted in the years 2004-2005 in the psycho-physiology lab of a tertiary care multi-speciality teaching hospital. METHODS: Assessments were carried out using a semistructured interview, K-SADS (Schedule for Affective Disorders and Schizophrenia for Children and Adolescents); STAIC (State and Trait Anxiety Inventory for Children); CDRS (Childhood Depression Rating Scales); SCARED (Self-Report for Childhood Anxiety–Related Disorders). Autonomic reactivity was tested using the standard battery of tests. RESULTS: There were differences between 34 children and adolescents (age range, 8-18 years) with a diagnosis of childhood anxiety disorder and a control group of 30 age- and sex-matched subjects from a nearby school in autonomic activity and reactivity between individuals with anxiety disorder and non-anxious control subjects. Our finding is suggestive of autonomic rigidity or diminished physiologic flexibility in children with anxiety disorder CONCLUSIONS: The study is probably the first of its kind to look into the issue in detail using a detailed battery of the autonomic function tests, and the results are of help in better understanding the condition. The result of the present experiment supports differences in autonomic activity and reactivity between individuals with anxiety disorder and non-anxious control subjects. PMID:21623053

  13. Cardiac Autonomic Functions in Obese Children

    PubMed Central

    Taşçılar, Mehmet Emre; Yokuşoğlu, Mehmet; Boyraz, Mehmet; Baysan, Oben; Köz, Cem; Dündaröz, Ruşen

    2011-01-01

    Objective: The autonomic nervous system is assumed to have a role in the pathophysiology of obesity. In this study, we evaluated the autonomic system by measuring heart rate variability (HRV) in obese children. Methods: Thirty-two obese and 30 healthy children (mean ages: 11.6±2.0 years and 11.0±2.9 years, respectively) were enrolled in the study. Obesity was defined as a body mass index higher than 97th percentile for age- and gender-specific reference values. All participants were free of any disease and none of them was receiving any medication. Twenty-four-hour ambulatory electrocardiographic recordings were obtained and the time-domain and frequency-domain indices of HRV were analyzed. The study group was evaluated with respect to insulin resistance by HOMA-IR values. Results: A significant decrease in calculated HRV variables was observed in obese children as compared to controls. The HRV alteration was found in both time-domain and frequency-domain parameters. The subgroup analysis of the study group revealed a significant decrease in all investigated HRV parameters in the insulin-resistant obese children compared to the non-insulin-resistant obese ones. Conclusions: Our results indicate that HRV is decreased in obese children, which implies parasympathetic withdrawal and sympathetic predominance. A marked decrease in HRV was observed in insulin-resistant obese children compared to their non-insulin-resistant counterparts. We propose that autonomic imbalance pertaining especially to insulin resistance may be involved in the pathogenesis of obesity in pediatric patients Conflict of interest:None declared. PMID:21750633

  14. A functional system architecture for fully autonomous robot

    NASA Astrophysics Data System (ADS)

    Kalaycioglu, S.

    The Mobile Servicing System (MSS) Autonomous Robotics Program intends to define and plan the development of technologies required to provide a supervised autonomous operation capability for the Special Purpose Dexterous Manipulator (SPDM) on the MSS. The operational functions for the SPDM to perform the required tasks, both in fully autonomous or supervised modes, are identified. Functional decomposition is performed using a graphics oriented methodology called Structural Analysis Design Technique. This process defines the functional architecture of the system, the types of data required to support its functionality, and the control processes that need to be emplaced. On the basis of the functional decomposition, a technology breakdown structure is also developed. A preliminary estimate of the status and maturity of each relevant technology is made, based on this technology breakdown. The developed functional hierarchy is found to be very effective for a robotic system with any level of autonomy. Moreover, this hierarchy can easily be applied to an existing very low level autonomous system and can provide a smooth transition towards a higher degree of autonomy. The effectiveness of the developed functional hierarchy will also play a very significant role both in the system design as well as in the development of the control hierarchy.

  15. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses.

    PubMed

    Toth, Mate; Mikics, Eva; Tulogdi, Aron; Aliczki, Mano; Haller, Jozsef

    2011-06-01

    We showed earlier that social isolation from weaning (a paradigm frequently used to model social neglect in children) induces abnormal forms of attack in rats, and assumed that these are associated with hyperarousal. To investigate this hypothesis, we deprived rats of social contacts from weaning and studied their behavior, glucocorticoid and autonomic stress responses in the resident-intruder paradigm at the age of 82 days. Social isolation resulted in abnormal attack patterns characterized by attacks on vulnerable targets, deficient social communication and increased defensive behaviors (defensive upright, flight, freezing). During aggressive encounters, socially deprived rats rapidly switched from one behavior to another, i.e. showed an increased number of behavioral transitions as compared to controls. We tentatively term this behavioral feature "behavioral fragmentation" and considered it a form of behavioral arousal. Basal levels of plasma corticosterone regularly assessed by radioimmunoassay between 27 and 78 days of age were not affected. In contrast, aggression-induced glucocorticoid responses were approximately doubled by socially isolation. Diurnal oscillations in heart rate assessed by in vivo biotelemetry were not affected by social isolation. In contrast, the aggression-induced increase in heart rate was higher in socially isolated than in socially housed rats. Thus, post-weaning social isolation induced abnormal forms of aggression that developed on the background of increased behavioral, endocrine and autonomic arousal. We suggest that this paradigm may be used to model aggression-related psychopathologies associated with hyperarousal, particularly those that are triggered by adverse rearing conditions.

  16. Monitoring fetal maturation - objectives, techniques and indices of autonomic function.

    PubMed

    Hoyer, Dirk; Zebrowski, Jan; Cysarz, Dirk; Goncalves, Hernani; Pytlik, Adelina; Amorim-Costa, Celia; Bernardes, Joao; Ayres-de-Campos, Diogo; Witte, Otto; Schleussner, Ekkehard; Stroux, Lisa; Redman, Christopher; Georgieva, Antoniya; Payne, Stephen; Clifford, Gari; Signorini, Maria; Magenes, Giovanni; Andreotti, Fernando; Malberg, Hagen; Zaunseder, Sebastian; Lakhno, Igor; Schneider, Uwe

    2017-02-10

    Monitoring the fetal behavior does not only have implications for acute care but also for identifying developmental disturbances that burden the entire later life. The concept, of "fetal programming", also known as "developmental origins of adult disease hypothesis", e.g. applies for cardiovascular, metabolic, hyperkinetic, cognitive disorders. Since the autonomic nervous system is involved in all of those systems, cardiac autonomic control may provide relevant functional diagnostic and prognostic information. The fetal heart rate patterns (HRP) are one of the few functional signals in the prenatal period that relate to autonomic control and, therefore, is predestinated for its evaluation. The development of sensitive markers of fetal maturation and its disturbances requires the consideration of physiological fundamentals, recording technology and HRP parameters of autonomic control. Based on the ESGCO2016 special session on monitoring the fetal maturation we herein report the most recent results on: (i) functional fetal autonomic brain age score (fABAS), Recurrence Quantitative Analysis and Binary Symbolic Dynamics of complex HRP resolve specific maturation periods, (ii) magnetocardiography (MCG) based fABAS was validated for cardiotocography (CTG), (iii) 30 min recordings are sufficient for obtaining episodes of high variability, important for intrauterine growth restriction (IUGR) detection in handheld Doppler, (iv) novel parameters from PRSA to identify Intra IUGR fetuses, (v) Electrocardiographic (ECG) recordings allowed a stable heart beat detection in the maturation periods between 20 to 28 weeks of gestation only, (vi) correlation between maternal and fetal HRV is disturbed in pre-eclampsia. The reported novel developments significantly extend the possibilities for the established CTG methodology. Novel HRP indices improve the accuracy of assessment due to their more appropriate consideration of complex autonomic processes across the recording technologies

  17. Autonomic function testing aboard the ISS using “PNEUMOCARD”

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Funtova, I. I.; Diedrich, A.; Chernikova, A. G.; Drescher, J.; Baranov, V. M.; Tank, J.

    2009-10-01

    Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the "ISS" have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device "Pneumocard" was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex "Pneumocard" was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates. HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight. Our results demonstrate that autonomic function testing aboard the ISS using "Pneumocard" is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut. Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant

  18. Effects of Deep Brain Stimulation on Autonomic Function

    PubMed Central

    Basiago, Adam; Binder, Devin K.

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  19. Distribution of Diseases Causing Liver Function Test Abnormality in Children and Natural Recovery Time of the Abnormal Liver Function

    PubMed Central

    2016-01-01

    Although liver function test abnormality is frequently noted in children, there is no report about the distribution of the etiology and natural recovery time of the abnormal liver function. From March 2005 to February 2014, clinical information was retrospectively collected from 559 children who had abnormal liver function and were hospitalized or visited the outpatient clinic at the Jeju National University Hospital. The etiology of abnormal liver function was classified into groups and the natural recovery time of abnormal liver function was analyzed. The etiological groups of 559 patients included ‘nonspecific hepatitis’ in 42 (7.5%), ‘infection’ in 323 (57.8%), ‘rheumatologic and autoimmune’ in 66 (11.8%), ‘nonalcoholic fatty liver disease’ in 57 (10.2%), ‘anatomic’ in 12 (2.1%), ‘toxic’ in 13 (2.1%), ‘metabolic’ in 8 (1.4%), ‘hematologic’ in 7 (1.3%), ‘hemodynamic’ in 4 (0.7%), and ‘others’ in 27 (4.8%). Among the ‘infection’ group (57.8%), the ‘viral infection in the respiratory tract’ subgroup, which had 111 patients (19.8%), was the most common. The natural recovery time of the abnormal liver function was 27 days (median) in ‘nonspecific hepatitis’, 13 days (median) in ‘viral respiratory tract disease’, 16 days (median) in ‘viral gastroenteritis’, 42 days (median) in ‘viral febrile illness”, and 7 days (median) in “Kawasaki disease”. The information on the natural recovery time of abnormal liver function may help the physician to perform good clinical consultation for patients and their parents. PMID:27709857

  20. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  1. Identifying functional thermodynamics in autonomous Maxwellian ratchets

    NASA Astrophysics Data System (ADS)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2016-02-01

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly—for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system.

  2. Assessment of vascular autonomic function using peripheral arterial tonometry.

    PubMed

    Hamada, Satomi; Oono, Ai; Ishihara, Yuri; Hasegawa, Yuki; Akaza, Miho; Sumi, Yuki; Inoue, Yoshinori; Izumiyama, Hajime; Hirao, Kenzo; Isobe, Mitsuaki; Sasano, Tetsuo

    2017-03-01

    Peripheral autonomic function is impaired in diabetic polyneuropathy. However, it is difficult to evaluate it due to the lack of non-invasive quantitative assessment. We aimed to establish a novel index to evaluate vascular autonomic function using reactive hyperemia peripheral arterial tonometry (RH-PAT), a widely performed endothelial function test. Sixty-five subjects were enrolled, including healthy subjects, cases with sympathetic nerve blockers, and diabetic patients. RH-PAT was performed with 5-min blood flow occlusion in unilateral arm. We calculated the reduction ratio of the post-occlusion pulse amplitude to the baseline in the non-occluded arm (RPN), with 1-min sliding window. In healthy subjects, RPN gradually increased with time-dependent manner. However, this phenomenon was eliminated in cases with sympathetic nerve blockers. Plasma concentration of norepinephrine was measured before and after the blood flow occlusion, which showed a significant increase. We then compared RPNs with the change in heart rate variability (HRV) parameters. RPN calculated at 5 min after the reperfusion had the highest correlation with the change in sympathetic HRV parameter, and thus, we named sympathetic hypoemia index (SHI). Finally, we studied the relationship between SHI and diabetes. SHI was significantly lower in diabetic patients than matched controls. SHI, a novel index derived from RH-PAT, represented the peripheral sympathetic activity. SHI may be useful for assessing the vascular autonomic activity in diabetic patients.

  3. Association between Birth Characteristics and Cardiovascular Autonomic Function at Mid-Life

    PubMed Central

    Perkiömäki, Nelli; Auvinen, Juha; Tulppo, Mikko P.; Hautala, Arto J.; Perkiömäki, Juha; Karhunen, Ville; Keinänen-Kiukaanniemi, Sirkka; Puukka, Katri; Ruokonen, Aimo; Järvelin, Marjo-Riitta; Huikuri, Heikki V.

    2016-01-01

    Background Low birth weight is associated with an increased risk of cardiovascular diseases in adulthood. As abnormal cardiac autonomic function is a common feature in cardiovascular diseases, we tested the hypothesis that low birth weight may also be associated with poorer cardiac autonomic function in middle-aged subjects. Methods At the age of 46, the subjects of the Northern Finland Birth Cohort 1966 were invited to examinations including questionnaires about health status and life style and measurement of vagally-mediated heart rate variability (rMSSD) from R-R intervals (RRi) and spontaneous baroreflex sensitivity (BRS) in both seated and standing positions. Maternal parameters had been collected in 1965–1966 since the 16th gestational week and birth variables immediately after delivery. For rMSSD, 1,799 men and 2,279 women without cardiorespiratory diseases and diabetes were included and 902 men and 1,020 women for BRS. The analyses were adjusted for maternal (age, anthropometry, socioeconomics, parity, gestational smoking) and adult variables (life style, anthropometry, blood pressure, glycemic and lipid status) potentially confounding the relationship between birth weight and autonomic function. Results In men, birth weight correlated negatively with seated (r = -0.058, p = 0.014) and standing rMSSD (r = -0.090, p<0.001), as well as with standing BRS (r = -0.092, p = 0.006). These observations were verified using relevant birth weight categories (<2,500 g; 2,500–3,999 g; ≥4,000 g). In women, birth weight was positively correlated with seated BRS (r = 0.081, p = 0.010), but none of the other measures of cardiovascular autonomic function. These correlations remained significant after adjustment for potential confounders (p<0.05 for all). Conclusions In men, higher birth weight was independently associated with poorer cardiac autonomic function at mid-life. Same association was not observed in women. Our findings suggest that higher, not lower, birth

  4. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

    PubMed

    Kahr, Walter H A; Lo, Richard W; Li, Ling; Pluthero, Fred G; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E; Weyrich, Andrew S; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L

    2013-11-07

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

  5. A Controlled Study of Autonomic Nervous System Function in Adults with Attention-Deficit/Hyperactivity Disorder Treated with Stimulant Medications: Results of a Pilot Study

    ERIC Educational Resources Information Center

    Schubiner, Howard; Hassunizadeh, Bischan; Kaczynski, Richard

    2006-01-01

    Objective: Despite the fact that autonomic nervous system (ANS) abnormalities are commonly found in adults and predict increased cardiovascular mortality, no studies have assessed ANS function in adults with attention-deficit/hyperactivity disorder (ADHD) taking stimulants. Method: This pilot study evaluated ANS function in adults with ADHD in…

  6. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  7. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  8. Generating functionals for autonomous latching dynamics in attractor relict networks

    PubMed Central

    Linkerhand, Mathias; Gros, Claudius

    2013-01-01

    Coupling local, slowly adapting variables to an attractor network allows to destabilize all attractors, turning them into attractor ruins. The resulting attractor relict network may show ongoing autonomous latching dynamics. We propose to use two generating functionals for the construction of attractor relict networks, a Hopfield energy functional generating a neural attractor network and a functional based on information-theoretical principles, encoding the information content of the neural firing statistics, which induces latching transition from one transiently stable attractor ruin to the next. We investigate the influence of stress, in terms of conflicting optimization targets, on the resulting dynamics. Objective function stress is absent when the target level for the mean of neural activities is identical for the two generating functionals and the resulting latching dynamics is then found to be regular. Objective function stress is present when the respective target activity levels differ, inducing intermittent bursting latching dynamics. PMID:23784373

  9. Functional validation of a constitutive autonomous silencer element.

    PubMed

    Qi, Heyuan; Liu, Mingdong; Emery, David W; Stamatoyannopoulos, George

    2015-01-01

    Sequences of the genome that are capable of silencing gene expression are thought to play a key role in gene regulation. However, very few silencer elements capable of functioning in mammalian cells have been described, and only a fraction of these have been tested for the ability to function in an autonomous fashion. We report here the characterization and functional validation of a constitutive autonomous silencer element from the human genome called T39, and the comparison of T39 to three other putative silencer elements previously described by others. Functional analysis included one assay for enhancer-blocking insulator activity and two independent assays for silencer activity, all based on stable transfection and comparison to a neutral spacer control. In erythroid K562 cells, T39 exhibited potent silencer activity, the previously described element PRE2-S5 exhibited modest silencer activity, and the two other previously described elements exhibited no silencer activity. T39 was further found to be capable of silencing three disparate promoters, of silencing gene expression in three disparate cell lines, and of functioning as a single copy in a topology-independent manner. Of the four elements analyzed, only T39 exhibits a constitutive pattern of DNase hypersensitivity and binding by CTCF. In its native location the T39 element also exhibits a unique interaction profile with a subset of distal putative regulatory elements. Taken together, these studies validate T39 as a constitutive autonomous silencer, identify T39 as a defined control for future studies of other regulatory elements such as insulators, and provide a basic chromatin profile for one highly potent silencer element.

  10. Leader-follower function for autonomous military convoys

    NASA Astrophysics Data System (ADS)

    Vasseur, Laurent; Lecointe, Olivier; Dento, Jerome; Cherfaoui, Nourrdine; Marion, Vincent; Morillon, Joel G.

    2004-09-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales Airborne Systems as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational added value." The paper details the "robotic convoy" theme (named TEL1), which main purpose is to develop a robotic leader-follower function so that several unmanned vehicles can autonomously follow teleoperated, autonomous or on-board driven leader. Two modes have been implemented: Perceptive follower: each autonomous follower anticipates the trajectory of the vehicle in front of it, thanks to a dedicated perception equipment. This mode is mainly based on the use of perceptive data, without any communication link between leader and follower (to lower the cost of future mass development and extend the operational capabilities). Delayed follower: the leader records its path and transmits it to the follower; the follower is able to follow the recorded trajectory again at any delayed time. This mode uses localization data got from inertial measurements. The paper presents both modes with detailed algorithms and the results got from the military acceptance tests performed on wheeled 4x4 vehicles (DARDS French ATD).

  11. Cell Non-autonomous Function of Ceramidase in Photoreceptor Homeostasis

    PubMed Central

    Acharya, Jairaj K.; Dasgupta, Ujjaini; Rawat, Satinder S.; Yuan, Changqing; Sanxaridis, Parthena D.; Yonamine, Ikuko; Karim, Pusha; Nagashima, Kunio; Brodsky, Michael H.; Tsunoda, Susan; Acharya, Usha

    2008-01-01

    SUMMARY Neutral Ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila Ceramidase. We show that secreted Ceramidase functions in a cell non-autonomous manner to maintain photoreceptor homeostasis. In the absence of Ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of Rhodopsin, and do not respond to light stimulus. Consistent with a cell non-autonomous function, our studies show that over expression of Ceramidase in a tissue distant from the photoreceptors can suppress photoreceptor degeneration in an Arrestin mutant and facilitate membrane turnover in a Rhodopsin null mutant. Furthermore, our results show that secreted CDase is internalized and localizes to endosomes. Our findings are the first to establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function. PMID:18184565

  12. Cholinergic stimulation with pyridostigmine improves autonomic function in infarcted rats.

    PubMed

    de La Fuente, Raquel N; Rodrigues, Bruno; Moraes-Silva, Ivana C; Souza, Leandro E; Sirvente, Raquel; Mostarda, Cristiano; De Angelis, Kátia; Soares, Pedro P; Lacchini, Silvia; Consolim-Colombo, Fernanda; Irigoyen, Maria-Cláudia

    2013-09-01

    In the present study we evaluated the effects of short-term pyridostigmine bromide (0.14 mg/mL) treatment started early after myocardial infarction (MI) on left ventricular (LV) and autonomic functions in rats. Male Wistar rats were divided into control, pyridostigmine, infarcted and infarcted + pyridostigmine-treated groups. Pyridostigmine was administered in the drinking water, starting immediately after MI or sham operation, for 11 days. Left ventricular function was evaluated indirectly by echocardiography and directly by LV catheterization. Cardiovascular autonomic control was evaluated by baroreflex sensitivity (BRS), heart rate variability (HRV) and pharmacological blockade. All evaluations started after 7 days pyridostigmine treatment and were finalized after 11 days treatment. Pyridostigmine prevented the impairment of +dP/dT and reduced the MI area in infarcted + pyridostigmine compared with infarcted rats (7 ± 3% vs 17 ± 4%, respectively). Mean blood pressure was restored in infarcted + pyridostigmine compared with infarcted rats (103 ± 3 vs 94 ± 3 mmHg, respectively). In addition, compared with the infarcted group, pyridostigmine improved BRS, as evaluated by tachycardic (1.6 ± 0.2 vs 2.5 ± 0.2 b.p.m./mmHg, respectively) and bradycardic (-0.42 ± 0.01 vs -1.9 ± 0.1 b.p.m./mmHg) responses, and reduced the low frequency/high frequency ratio of HRV (0.81 ± 0.11 vs 0.24 ± 0.14, respectively). These improvements are probably associated with increased vagal tone and reduced sympathetic tone in infarcted + pyridostigmine compared with infarcted rats. In conclusion, the data suggest that short-term pyridostigmine treatment started early after MI can improve BRS, HRV and parasympathetic and sympathetic tone in experimental rats. These data may have potential clinical implications because autonomic markers have prognostic significance after MI.

  13. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  14. Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder

    PubMed Central

    Chen, Shuo; Xing, Yishi; Kang, Jian

    2017-01-01

    Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD. PMID:28377688

  15. Association between respiratory mechanics and autonomic function in morbid obesity.

    PubMed

    Sant' Anna, M; Carvalhal, R F; Carneiro, J R I; Lapa, M S; Zin, W A; Lugon, J R; Guimarães, F S

    2014-01-01

    This study aimed to investigate the association between respiratory mechanics and autonomic modulation in morbidly obese patients. We evaluated 10 morbidly obese subjects (BMI=52.9±11.2kg/m(2)), aged 23-58 years. Assessment of respiratory mechanics was done by the forced oscillation technique (FOT), and cardiovascular autonomic function was recorded by heart rate variability analysis (HRV). The Pearson correlation coefficient was used to test the associations between respiratory mechanics and HRV variables. There were associations between the standard deviation of all RR intervals (SDNN) and airway resistance (Rm) (r=-0.82; p=0.004), SDNN and respiratory system resistance (R0) (r=-0.79; p=0.006), root mean square of successive differences between adjacent normal RR intervals (rMSSD) and respiratory system resistance (R5) (r=-0.643; p=0.0451), rMSSD and R0 (r=-0.64; p=0.047), and rMSSD and Rm (r=-0.658; p=0.039). We concluded that the airway and respiratory system resistances are negatively associated with parasympathetic activity in patients with morbid obesity.

  16. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  17. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation

    PubMed Central

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals’ capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects. PMID:27375536

  18. Auditory abnormalities in autism: toward functional distinctions among findings.

    PubMed

    Kellerman, Gabriella R; Fan, Jin; Gorman, Jack M

    2005-09-01

    Recently, findings on a wide range of auditory abnormalities among individuals with autism have been reported. To date, functional distinctions among these varied findings are poorly established. Such distinctions should be of interest to clinicians and researchers alike given their potential therapeutic and experimental applications. This review suggests three general trends among these findings as a starting point for future analyses. First, studies of auditory perception of linguistic and social auditory stimuli among individuals with autism generally have found impaired perception versus normal controls. Such findings may correlate with impaired language and communication skills and social isolation observed among individuals with autism. Second, studies of auditory perception of pitch and music among individuals with autism generally have found enhanced perception versus normal controls. These findings may correlate with the restrictive and highly focused behaviors observed among individuals with autism. Third, findings on the auditory perception of non-linguistic, non-musical stimuli among autism patients resist any generalized conclusions. Ultimately, as some researchers have already suggested, the distinction between impaired global processing and enhanced local processing may prove useful in making sense of apparently discordant findings on auditory abnormalities among individuals with autism.

  19. Validation of a questionnaire measuring the regulation of autonomic function

    PubMed Central

    Kröz, M; Feder, G; von Laue, HB; Zerm, R; Reif, M; Girke, M; Matthes, H; Gutenbrunner, C; Heckmann, C

    2008-01-01

    Background To broaden the range of outcomes that we can measure for patients undergoing treatment for oncological and other chronic conditions, we aimed to validate a questionnaire measuring self-reported autonomic regulation (aR), i.e. to characterise a subject's autonomic functioning by questions on sleeping and waking, vertigo, morningness-eveningness, thermoregulation, perspiration, bowel movements and digestion. Methods We administered the questionnaire to 440 participants (♀: N = 316, ♂: N = 124): 95 patients with breast cancer, 49 with colorectal cancer, 60 with diabetes mellitus, 39 with coronary heart disease, 28 with rheumatological conditions, 32 with Hashimoto's disease, 22 with multiple morbidities and 115 healthy people. We administered the questionnaire a second time to 50.2% of the participants. External convergence criteria included the German version of the Hospital Anxiety and Depression Scale (HADS-D), a short questionnaire on morningness-eveningness, the Herdecke Quality of Life Questionnaire (HLQ) and a short version questionnaire on self-regulation. Results A principal component analysis yielded a three dimensional 18-item inventory of aR. The subscales orthostatic-circulatory, rest/activity and digestive regulation had internal consistency (Cronbach-α: rα = 0.65 – 0.75) and test-retest reliability (rrt = 0.70 – 85). AR was negatively associated with anxiety, depression, and dysmenorrhoea but positively correlated to HLQ, self-regulation and in part to morningness (except digestive aR) (0.49 – 0.13, all p < 0.05). Conclusion An internal validation of the long-version scale of aR yielded consistent relationships with health versus illness, quality of life and personality. Further studies are required to clarify the issues of external validity, clinical and physiological relevance. PMID:18533043

  20. Neuralized functions cell autonomously to regulate Drosophila sense organ development.

    PubMed

    Yeh, E; Zhou, L; Rudzik, N; Boulianne, G L

    2000-09-01

    Neurogenic genes, including Notch and Delta, are thought to play important roles in regulating cell-cell interactions required for Drosophila sense organ development. To define the requirement of the neurogenic gene neuralized (neu) in this process, two independent neu alleles were used to generate mutant clones. We find that neu is required for determination of cell fates within the proneural cluster and that cells mutant for neu autonomously adopt neural fates when adjacent to wild-type cells. Furthermore, neu is required within the sense organ lineage to determine the fates of daughter cells and accessory cells. To gain insight into the mechanism by which neu functions, we used the GAL4/UAS system to express wild-type and epitope-tagged neu constructs. We show that Neu protein is localized primarily at the plasma membrane. We propose that the function of neu in sense organ development is to affect the ability of cells to receive Notch-Delta signals and thus modulate neurogenic activity that allows for the specification of non-neuronal cell fates in the sense organ.

  1. Autonomic function testing: an important diagnostic test for patients with syncope.

    PubMed

    Jones, Pearl K; Gibbons, Christopher H

    2015-10-01

    Syncope is a common problem with a large differential diagnosis. The initial history and physical examination often provide initial clues; however, some cases warrant further testing to determine the underlying cause. Autonomic function testing is a safe way to evaluate patients with syncope further, and to assess their parasympathetic and sympathetic nervous systems. Autonomic testing can help to diagnose several conditions, including orthostatic hypotension, delayed orthostatic hypotension, postural tachycardia syndrome and neutrally mediated syncope. Thus, when the cause of syncope is unclear, autonomic testing can help to assess the autonomic nervous system, stratify the risk of future episodes and to guide treatment decisions.

  2. Autonomously functioning thyroid nodules in childhood and adolescence

    SciTech Connect

    Croom, R.D. III; Thomas, C.G. Jr.; Reddick, R.L.; Tawil, M.T.

    1987-12-01

    Autonomously functioning thyroid nodules (AFTNs) in children and adolescents (under age 18) are unusual but are not as rare as earlier reports suggested. These lesions have a significantly different biologic potential than similar lesions in older patients. In the younger age group there is a more rapid progression toward toxicity and a higher incidence of thyroid carcinoma. Our experience with 12 patients is combined with those previously reported for identification of a total of 61 children and adolescents with AFTNs, of whom 53 have undergone operation. Hyperthyroidism was present in 15 patients (24.6%), and in six patients (11.3%) the AFTN was due to a well-differentiated thyroid carcinoma. Surgical treatment is advisable for all children and adolescents with AFTNs because of the risks of hyperthyroidism and thyroid carcinoma. Surgical excision (lobectomy is preferred) results in rapid restoration of a euthyroid state for the toxic AFTN and allows histopathologic diagnosis. Therapy with radioiodine is not advisable for treatment of AFTNs in this age group. Thyroid-stimulating hormone suppression should be used for all patients with a diagnosis of thyroid carcinoma.

  3. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions

    NASA Astrophysics Data System (ADS)

    Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.

    2016-05-01

    The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.

  4. Biochemical and functional abnormalities in hypercholesterolemic rabbit platelets

    SciTech Connect

    Dalal, K.B.; Ebbe, S.; Mazoyer, E.; Carpenter, D.; Yee, T. )

    1990-02-01

    This study was designed to elucidate changes in rabbit platelet lipids induced by a cholesterol rich diet and to explore the possible correlation of these lipid changes with platelet abnormalities. Pronounced biochemical alterations were observed when serum cholesterol levels of 700-1000 mg% were reached. Hypercholesterolemic (HC) platelets contained 37% more neutral lipids and 16% less phospholipids than the controls. Lysolecithin, cholesterol esters and phosphatidylinositol (PI) levels were increased in HC platelets, and the levels of phosphatidylcholine (PC) were decreased. The cholesterol/phospholipid molar ratio of lipidemic platelets increased from 0.55 +/- 0.011 to 0.89 +/- 0.016 (P less than 0.01) in eight weeks. HC platelets had 90% more arachidonic acid (AA) in the PI than normal platelets. No significant changes in AA of PC were observed. Platelet function was monitored by the uptake and release of (14C)serotonin in platelet rich plasma (PRP), using varying concentrations of collagen as an aggregating agent. The uptake of (14C)serotonin in HC and normal platelets ranged from 78-94%. The percent of (14C)serotonin released from normal and HC platelets was proportional to the concentration of collagen. However, lipidemic platelets were hyperreactive to low concentrations of collagen. Incorporation of 50 microM acetylsalicylic acid into the aggregating medium suppressed the release of (14C)serotonin in normal PRP by more than 90%, but had only a partial effect on lipidemic PRP.

  5. Acute effects of tai chi exercise on cardiac autonomic function in healthy adults with tai chi experience.

    PubMed

    Kalsaria, Pratik; Li, Hongtao; Waite, Gabi N; Moga, Margaret M; Kingsley, Derek J; Geib, Roy W

    2012-01-01

    About 1 in 3 American adults have cardiovascular disease associated with risk factors such as physical inactivity, obesity, and stress. Heart rate variability (HRV) analysis is considered a non-invasive procedure for analyzing cardiovascular autonomic influence. Depressed HRV has been linked to abnormal cardiovascular autonomic modulation.

  6. Autonomous Control of Space Reactor Systems

    SciTech Connect

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  7. Abnormal regional brain function in Parkinson's disease: truth or fiction?

    PubMed

    Ma, Yilong; Tang, Chengke; Moeller, James R; Eidelberg, David

    2009-04-01

    Normalization of regional measurements by the global mean is commonly employed to minimize inter-subject variability in functional imaging studies. This practice is based on the assumption that global values do not substantially differ between patient and control groups. In this issue of NeuroImage, Borghammer and colleagues challenge the validity of this assumption. They focus on Parkinson's disease (PD) and use computer simulations to show that lower global values can produce spurious increases in subcortical brain regions. The authors speculate that the increased signal observed in these areas in PD is artefactual and unrelated to localized changes in brain function. In this commentary, we summarize what is currently known of the relationship between regional and global metabolic activity in PD and experimental parkinsonism. We found that early stage PD patients exhibit global values that are virtually identical to those of age-matched healthy subjects. SPM analysis revealed increased normalized metabolic activity in a discrete set of biologically relevant subcortical brain regions. Because of their higher variability, the corresponding absolute regional measures did not differ across the two groups. Longitudinal imaging studies in this population showed that the subcortical elevations in normalized metabolism appeared earlier and progressed faster than did focal cortical or global metabolic reductions. The observed increases in subcortical activity, but not the global changes, correlated with independent clinical measures of disease progression. Multivariate analysis with SSM/PCA further confirmed that the abnormal spatial covariance structure of early PD is dominated by these subcortical increases as opposed to network-related reductions in cortical metabolic activity or global changes. Thus, increased subcortical activity in PD cannot be regarded as a simple artefact of global normalization. Moreover, stability of the normalized measurements, particularly at

  8. Prefrontal dopaminergic receptor abnormalities and executive functions in Parkinson's disease.

    PubMed

    Ko, Ji Hyun; Antonelli, Francesca; Monchi, Oury; Ray, Nicola; Rusjan, Pablo; Houle, Sylvain; Lang, Anthony E; Christopher, Leigh; Strafella, Antonio P

    2013-07-01

    The main pattern of cognitive impairments seen in early to moderate stages of Parkinson's disease (PD) includes deficits of executive functions. These nonmotor complications have a significant impact on the quality of life and day-to-day activities of PD patients and are not effectively managed by current therapies, a problem which is almost certainly due to the fact that the disease extends beyond the nigrostriatal system. To investigate the role of extrastriatal dopamine in executive function in PD, PD patients and a control group were studied with positron-emission-tomography using a high-affinity dopamine D2/D3 receptor tracer, [(11) C]FLB-457. All participants were scanned twice while performing an executive task and a control task. Patients were off medication for at least 12 h. The imaging analysis revealed that parkinsonian patients had lower [(11) C]FLB-457 binding than control group independently of task conditions across different brain regions. Cognitive assessment measures were positively correlated with [(11) C]FLB-457 binding in the bilateral dorsolateral prefrontal cortex and anterior cingulate cortex only in control group, but not in PD patients. Within the control group, during the executive task (as compared to control task), there was evidence of reduced [(11) C]FLB-457 binding (indicative of increased dopamine release) in the right orbitofrontal cortex. In contrast, PD patients did not show any reduction in binding during the executive task (as compared with control task). These findings suggest that PD patients present significant abnormalities in extrastriatal dopamine associated with executive processing. These observations provide important insights on the pathophysiology of cognitive dysfunction in PD.

  9. Ocular and cardiovascular autonomic function in diabetic patients with varying severity of retinopathy.

    PubMed

    Datta, Shivaji; Biswas, N R; Saxena, Rohit; Deepak, K K; Menon, Vimla; Garg, S P; Tandon, Radhika

    2005-04-01

    The study was conducted to assess the ocular and cardiovascular autonomic function in diabetic patients with varying severity of diabetic retinopathy. Ocular and cardiovascular autonomic function tests were performed in 30 patients with type 2 Diabetes Mellitus (10 in each group of proliferative retinopathy, non-proliferative retinopathy and no retinopathy) of more than 5 years duration and 10 normal controls. Ocular autonomic function tests were done by measuring pupil cycle time and denervation hypersensitivity with 0.125% pilocarpine and 0.5% phenylephrine. Cardiovascular autonomic function was measured by a battery of standard tests. Denervation hypersensitivity to 0.125% pilocarpine and to 0.5% phenylephrine and pupil cycle time showed statistically significant differences (P value < 0.001) between controls and patients with proliferative retinopathy (PDR) and also between no retinopathy and PDR (P < 0.001). Systemic autonomic function tests namely expiration--inspiration ratio, difference in heart rate, 30th beat and 15th beat ratio in head up tilt and difference in diastolic blood pressure in head up tilt test also showed significant difference (P < 0.01) between controls and all 3 groups of diabetics. There was statistically significant difference found in para-sympathetic ocular autonomic dysfunction between NPDR and controls. Ocular and systemic autonomic dysfunctions are related to the severity of diabetic retinopathy.

  10. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    PubMed

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease.

  11. Music and Autonomic Nervous System (Dys)function

    PubMed Central

    Ellis, Robert J.; Thayer, Julian F.

    2010-01-01

    Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136

  12. Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis.

    PubMed

    Yoda, Masaki; Kimura, Tokuhiro; Tohmonda, Takahide; Uchikawa, Shinichi; Koba, Takeshi; Takito, Jiro; Morioka, Hideo; Matsumoto, Morio; Link, Daniel C; Chiba, Kazuhiro; Okada, Yasunori; Toyama, Yoshiaki; Horiuchi, Keisuke

    2011-12-22

    Previous studies have revealed various extrinsic stimuli and factors involved in the regulation of hematopoiesis. Among these, Notch-mediated signaling has been suggested to be critically involved in this process. Herein, we show that conditional inactivation of ADAM10, a membrane-bound protease with a crucial role in Notch signaling (S2 cleavage), results in myeloproliferative disorder (MPD) highlighted by severe splenomegaly and increased populations of myeloid cells and hematopoietic stem cells. Reciprocal transfer of bone marrow cells between wild-type and ADAM10 mutant mice revealed that ADAM10 activity in both hematopoietic and nonhematopoietic cells is involved in the development of MPD. Notably, we found that MPD caused by lack of ADAM10 in nonhematopoietic cells was mediated by G-CSF, whereas MPD caused by ADAM10-deficient hematopoietic cells was not. Taken together, the present findings reveal previously undescribed nonredundant roles of cell-autonomous and non-cell-autonomous ADAM10 activity in the maintenance of hematopoiesis.

  13. The Therapeutic Function of the Instructor in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  14. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology

    PubMed Central

    Grice, Stuart J.; Sleigh, James N.; Motley, William W.; Liu, Ji-Long; Burgess, Robert W.; Talbot, Kevin; Cader, M. Zameel

    2015-01-01

    Charcot–Marie–Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene. PMID:25972375

  15. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  16. Cardioprotection afforded by exercise training prior to myocardial infarction is associated with autonomic function improvement

    PubMed Central

    2014-01-01

    Background It has been suggested that exercise training (ET) protects against the pathological remodeling and ventricular dysfunction induced by myocardial infarction (MI). However, it remains unclear whether the positive adjustments on baroreflex and cardiac autonomic modulations promoted by ET may afford a cardioprotective mechanism. The aim of this study was to evaluate the effects of aerobic ET, prior to MI, on cardiac remodeling and function, as well as on baroreflex sensitivity and autonomic modulation in rats. Methods Male Wistar rats were divided into 4 groups: sedentary rats submitted to Sham surgery (C); trained rats submitted to Sham surgery (TC); sedentary rats submitted to MI (I), trained rats submitted to MI (TI). Sham and MI were performed after ET period. After surgeries, echocardiographic, hemodynamic and autonomic (baroreflex sensitivity, cardiovascular autonomic modulation) evaluations were conducted. Results Prior ET prevented an additional decline in exercise capacity in TI group in comparison with I. MI area was not modified by previous ET. ET was able to increase the survival and prevent additional left ventricle dysfunction in TI rats. Although changes in hemodynamic evaluations were not observed, ET prevented the decrease of baroreflex sensitivity, and autonomic dysfunction in TI animals when compared with I animals. Importantly, cardiac improvement was associated with the prevention of cardiac autonomic impairment in studied groups. Conclusions Prior ET was effective in changing aerobic capacity, left ventricular morphology and function in rats undergoing MI. Furthermore, these cardioprotective effects were associated with attenuated cardiac autonomic dysfunction observed in trained rats. Although these cause-effect relationships can only be inferred, rather than confirmed, our study suggests that positive adaptations of autonomic function by ET can play a vital role in preventing changes associated with cardiovascular disease

  17. Diminished autonomic neurocardiac function in patients with generalized anxiety disorder

    PubMed Central

    Kim, Kyungwook; Lee, Seul; Kim, Jong-Hoon

    2016-01-01

    Background Generalized anxiety disorder (GAD) is a chronic and highly prevalent disorder that is characterized by a number of autonomic nervous system symptoms. The purpose of this study was to investigate the linear and nonlinear complexity measures of heart rate variability (HRV), measuring autonomic regulation, and to evaluate the relationship between HRV parameters and the severity of anxiety, in medication-free patients with GAD. Methods Assessments of linear and nonlinear complexity measures of HRV were performed in 42 medication-free patients with GAD and 50 healthy control subjects. In addition, the severity of anxiety symptoms was assessed using the State-Trait Anxiety Inventory and Beck Anxiety Inventory. The values of the HRV measures of the groups were compared, and the correlations between the HRV measures and the severity of anxiety symptoms were assessed. Results The GAD group showed significantly lower standard deviation of RR intervals and the square root of the mean squared differences of successive normal sinus intervals values compared to the control group (P<0.01). The approximate entropy value, which is a nonlinear complexity indicator, was also significantly lower in the patient group than in the control group (P<0.01). In correlation analysis, there were no significant correlations between HRV parameters and the severity of anxiety symptoms. Conclusion The present study indicates that GAD is significantly associated with reduced HRV, suggesting that autonomic neurocardiac integrity is substantially impaired in patients with GAD. Future prospective studies are required to investigate the effects of pharmacological or non-pharmacological treatment on neuroautonomic modulation in patients with GAD. PMID:27994467

  18. Diabetic autonomic neuropathy.

    PubMed

    Vinik, Aaron I; Erbas, Tomris

    2013-01-01

    Autonomic neuropathy, once considered to be the Cinderella of diabetes complications, has come of age. The autonomic nervous system innervates the entire human body, and is involved in the regulation of every single organ in the body. Thus, perturbations in autonomic function account for everything from abnormalities in pupillary function to gastroparesis, intestinal dysmotility, diabetic diarrhea, genitourinary dysfunction, amongst others. "Know autonomic function and one knows the whole of medicine!" It is now becoming apparent that before the advent of severe pathological damage to the autonomic nervous system there may be an imbalance between the two major arms, namely the sympathetic and parasympathetic nerve fibers that innervate the heart and blood vessels, resulting in abnormalities in heart rate control and vascular dynamics. Cardiac autonomic neuropathy (CAN) has been linked to resting tachycardia, postural hypotension, orthostatic bradycardia and orthostatic tachycardia (POTTS), exercise intolerance, decreased hypoxia-induced respiratory drive, loss of baroreceptor sensitivity, enhanced intraoperative or perioperative cardiovascular lability, increased incidence of asymptomatic ischemia, myocardial infarction, and decreased rate of survival after myocardial infarction and congestive heart failure. Autonomic dysfunction can affect daily activities of individuals with diabetes and may invoke potentially life-threatening outcomes. Intensification of glycemic control in the presence of autonomic dysfunction (more so if combined with peripheral neuropathy) increases the likelihood of sudden death and is a caveat for aggressive glycemic control. Advances in technology, built on decades of research and clinical testing, now make it possible to objectively identify early stages of CAN with the use of careful measurement of time and frequency domain analyses of autonomic function. Fifteen studies using different end points report prevalence rates of 1% to 90

  19. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin.

    PubMed

    Kim, Seok-Hyung; Speirs, Christina K; Solnica-Krezel, Lilianna; Ess, Kevin C

    2011-03-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin) or TSC2 (encodes tuberin) genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242) in the tsc2 gene. This tsc2(vu242) allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2(vu242) is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2(vu242/vu242) homozygous zebrafish, and is moderately increased in tsc2(vu242/+) heterozygotes. Forebrain neurons are poorly organized in tsc2(vu242/vu242) homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2(vu242/vu242) mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  20. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    PubMed Central

    Jyotsna, Viveka P.; Ambekar, Smita; Singla, Rajiv; Joshi, Ansumali; Dhawan, Anju; Kumar, Neeta; Deepak, K. K.; Sreenivas, V.

    2013-01-01

    Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam) had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04). The change in sympathetic functions in the standard therapy group was not significant (P 0.75). Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06). In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99). Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone. PMID:23869306

  1. The role of autonomic function on sport performance in athletes with spinal cord injury.

    PubMed

    Krassioukov, Andrei; West, Christopher

    2014-08-01

    Devastating paralysis, autonomic dysfunction, and abnormal cardiovascular control present significant hemodynamic challenges to individuals with spinal cord injury (SCI), especially during exercise. In general, resting arterial pressure after SCI is lower than with able-bodied individuals and is commonly associated with persistent orthostatic intolerance along with transient episodes of life-threatening hypertension, known as "autonomic dysreflexia." During exercise, the loss of central and reflexive cardiovascular control attenuates maximal heart rate and impairs blood pressure regulation and blood redistribution, which ultimately reduces venous return, stroke volume, and cardiac output. Thermoregulation also is severely compromised in high-lesion SCI, a problem that is compounded when competing in hot and humid conditions. There is some evidence that enhancing venous return via lower body positive pressure or abdominal binding improves exercise performance, as do cooling strategies. Athletes with SCI also have been documented to self-induce autonomic dysreflexia before competition with a view of increasing blood pressure and improving their performance, a technique known as "boosting." For health safety reasons, boosting is officially banned by the International Paralympics Committee. This article addresses the complex issue of how the autonomic nervous system affects sports performance in athletes with SCI, with a specific focus on the potential debilitating effects of deranged cardiovascular control.

  2. Effects of work stress and home stress on autonomic nervous function in Japanese male workers

    PubMed Central

    MAEDA, Eri; IWATA, Toyoto; MURATA, Katsuyuki

    2014-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the electrocardiogram along with blood pressure and heart rate. Participants provided self-reported information about the presence/absence of work/home stress and the possible confounders affecting QT indicators. Home stress was related positively to QT index (p=0.040) after adjusting for the possible confounders, though work stress did not show a significant relation to QTc interval or QT index. The odds ratio of home stress to elevated QT index (≥105) was 2.677 (95% CI, 1.050 to 6.822). Work/home stress showed no significant relation to blood pressure or heart rate. These findings suggest that autonomic imbalance, readily assessed by QT indicators, can be induced by home stress in Japanese workers. Additional research is needed to identify different types of home stress that are strongly associated with autonomic imbalance. PMID:25382383

  3. Dysregulation of cardiac autonomic function in offspring exposed to alcohol during antenatal period.

    PubMed

    Chandran, Sajish; Abhishekh, Hulegar A; Murthy, Pratima; Raju, Trichur R; Sathyaprabha, Talakad N

    2015-10-01

    Several lines of investigations have shown the deleterious effect of an alcohol on the autonomic nervous system. Recent evidence shows that infants exposed to alcohol during the antenatal period displayed aberration in the cardiac autonomic function after the birth. However, there is dearth of literature on the long term influence of antenatal alcohol exposure. In this study we measured the cardiac autonomic functions in children who were exposed to alcohol in the antenatal period and compared them with non-exposed control children. Twenty eight children (age: 9±2 years) in the antenatal alcohol exposed group and age, gender matched 30 non exposed healthy volunteers as a control (age: 10±2 years) were recruited. Electrocardiogram was recorded in all subjects at rest in the supine position. HRV parameters were analyzed in the time and frequency domains using customized software. The average heart rate was similar between both the groups. There was no statistical significant difference in the time domain measures between the groups. However, the low frequency power, normalized units and low frequency to high frequency ratio were significantly higher in the antenatal alcohol exposed children compared to the controls. This suggests sympathetic predominance in children who were exposed to alcohol in the antenatal period. In this study we provide evidence for the deleterious long lasting effect of antenatal exposure of alcohol on cardiac autonomic regulation. Further prospective studies are needed to confirm the causal relationship between antenatal alcohol exposure and autonomic dysregulation.

  4. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  5. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury.

    PubMed

    Stevens, Michael C; Lovejoy, David; Kim, Jinsuh; Oakes, Howard; Kureshi, Inam; Witt, Suzanne T

    2012-06-01

    Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.

  6. Autonomic disturbances in narcolepsy.

    PubMed

    Plazzi, Giuseppe; Moghadam, Keivan Kaveh; Maggi, Leonardo Serra; Donadio, Vincenzo; Vetrugno, Roberto; Liguori, Rocco; Zoccoli, Giovanna; Poli, Francesca; Pizza, Fabio; Pagotto, Uberto; Ferri, Raffaele

    2011-06-01

    Narcolepsy is a clinical condition characterized mainly by excessive sleepiness and cataplexy. Hypnagogic hallucinations and sleep paralysis complete the narcoleptic tetrad; disrupted night sleep, automatic behaviors and weight gain are also usual complaints. Different studies focus on autonomic changes or dysfunctions among narcoleptic patients, such as pupillary abnormalities, fainting spells, erectile dysfunction, night sweats, gastric problems, low body temperature, systemic hypotension, dry mouth, heart palpitations, headache and extremities dysthermia. Even if many studies lack sufficient standardization or their results have not been replicated, a non-secondary involvement of the autonomic nervous system in narcolepsy is strongly suggested, mainly by metabolic and cardiovascular findings. Furthermore, the recent discovery of a high risk for overweight and for metabolic syndrome in narcoleptic patients represents an important warning for clinicians in order to monitor and follow them up for their autonomic functions. We review here studies on autonomic functions and clinical disturbances in narcoleptic patients, trying to shed light on the possible contribute of alterations of the hypocretin system in autonomic pathophysiology.

  7. Comparison of pramipexole and modafinil on arousal, autonomic, and endocrine functions in healthy volunteers.

    PubMed

    Samuels, E R; Hou, R H; Langley, R W; Szabadi, E; Bradshaw, C M

    2006-11-01

    The noradrenergic locus coeruleus is a major wakefulness-promoting nucleus of the brain, which is also involved in the regulation of autonomic and endocrine functions. The activity of the locus coeruleus is believed to be tonically enhanced by a mesocoerulear dopaminergic pathway arising from the ventral tegmental area of the midbrain. Both modafinil, a wakefulness-promoting drug, and pramipexole, a D(2)/D(3)receptor agonist with sedative properties, may act on this pathway, with modafinil increasing and pramipexole decreasing locus coeruleus activity. The aim of this study was to compare the two drugs on alertness, autonomic and endocrine functions in healthy volunteers. Pramipexole (0.5mg), modafinil (200mg), and their combination were administered to 16 healthy males in a double-blind, placebo-controlled design. Methods included tests of alertness (pupillographic sleepiness test, critical flicker fusion frequency, visual analogue scales), autonomic functions (resting pupil diameter, light and darkness reflex responses, heart rate, blood pressure, salivation, core temperature), and endocrine functions (blood concentrations of prolactin, growth hormone, and thyroid stimulating hormone). Data were analysed by ANOVA. Pramipexole reduced alertness, caused pupil dilatation, increased heart rate, reduced prolactin and thyroid stimulating hormone, and increased growth hormone level. Modafinil caused small increases in blood pressure and core temperature, and reduced prolactin levels. The sedative effect of pramipexole and the autonomic effects of modafinil are consistent with altered activity in the mesocoerulear pathway; the pupil dilatation following pramipexole suggests reduced dopaminergic excitation of the Edinger-Westphal nucleus.

  8. A Double-Blind Atropine Trial for Active Learning of Autonomic Function

    ERIC Educational Resources Information Center

    Fry, Jeffrey R.; Burr, Steven A.

    2011-01-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…

  9. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    ERIC Educational Resources Information Center

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  10. Changes of Pain Perception, Autonomic Function, and Endocrine Parameters during Treatment of Anorectic Adolescents

    ERIC Educational Resources Information Center

    Bar, Karl-Jurgen; Boettger, Silke; Wagner, Gerd; Wilsdorf, Christine; Gerhard, Uwe Jens; Boettger, Michael K.; Blanz, Bernhard; Sauer, Heinrich

    2006-01-01

    Objectives: The underlying mechanisms of reduced pain perception in anorexia nervosa (AN) are unknown. To gain more insight into the pathology, the authors investigated pain perception, autonomic function, and endocrine parameters before and during successful treatment of adolescent AN patients. Method: Heat pain perception was assessed in 15…

  11. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  12. Etiologic factors in long-term respiratory function abnormalities following esophageal atresia repair.

    PubMed

    LeSouëf, P N; Myers, N A; Landau, L I

    1987-10-01

    Recurrent respiratory illnesses are frequent in infants following repair of esophageal atresia and functional abnormalities of respiratory and esophageal function are often seen in older children. Recurrent aspiration is a potential cause of these respiratory abnormalities, but a relationship between abnormalities of gastrointestinal and respiratory mechanics has not been adequately investigated. We sought an association between lower esophageal sphincter (LES) incompetence, gastroesophageal reflux (GER), and respiratory function abnormalities in 18 subjects (age 12 to 21 years) following repair of esophageal atresia (Vogt type 111B). In each subject, measurements were made of spirometry, lung volumes assessed by plethysmography, esophageal manometry recorded using a constantly infused fluid-filled trilumen catheter to assess LES pressure and esophageal motility, and esophageal pH monitoring to detect GER. Subjects were grouped according to the presence or absence of a radiologically supported diagnosis of pneumonia in the first 4 years of life. Lung volumes were mildly but significantly decreased in the "pneumonia" group compared with the "nonpneumonia" group. There was no association between abnormalities of respiratory function and abnormal LES pressure or the presence of GER. These data suggest that pneumonia in esophageal atresia infants is associated with mild long-term lung damage. LES dysfunction and GER do not appear to play a major role in this process.

  13. [Sleep and autonomic function: sleep related breathing disorders in Parkinson's disease and related disorders].

    PubMed

    Suzuki, Keisuke; Miyamoto, Masayuki; Miyamoto, Tomoyuki; Hirata, Koichi

    2014-01-01

    In patients with multiple system atrophy (MSA), sleep related breathing disorders (SRBD), including obstructive and central sleep apnea, vocal cord abductor paralysis and dysrhythmic breathing pattern, are frequently observed. SRBD may have a considerable impact on variation of autonomic nervous activity during sleep. The previous studies correlated upper airway muscle dysfunction related parkinsonism with increased prevalence of SRBD in patients with Parkinson's disease (PD). However, recently, the clinical significance of SRBD and its impact on sleepiness and disease severity have been debated. In this review, we discuss sleep and autonomic function, especially, SRBD in PD and related disorders, including the previous studies from our department.

  14. Exploring the Relationship of Autonomic and Endocrine Activity with Social Functioning in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Smeekens, I.; Didden, R.; Verhoeven, E. W. M.

    2015-01-01

    Several studies indicate that autonomic and endocrine activity may be related to social functioning in individuals with autism spectrum disorder (ASD), although the number of studies in adults is limited. The present study explored the relationship of autonomic and endocrine activity with social functioning in young adult males with ASD compared…

  15. Naltrexone ameliorates functional network abnormalities in alcohol-dependent individuals.

    PubMed

    Morris, Laurel S; Baek, Kwangyeol; Tait, Roger; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy; McGonigle, John; Murphy, Anna; Nestor, Liam J; Orban, Csaba; Passetti, Filippo; Paterson, Louise M; Rabiner, Ilan; Reed, Laurence; Smith, Dana; Suckling, John; Taylor, Eleanor M; Bullmore, Edward T; Lingford-Hughes, Anne R; Deakin, Bill; Nutt, David J; Sahakian, Barbara J; Robbins, Trevor W; Voon, Valerie

    2017-02-28

    Naltrexone, an opioid receptor antagonist, is commonly used as a relapse prevention medication in alcohol and opiate addiction, but its efficacy and the mechanisms underpinning its clinical usefulness are not well characterized. In the current study, we examined the effects of 50-mg naltrexone compared with placebo on neural network changes associated with substance dependence in 21 alcohol and 36 poly-drug-dependent individuals compared with 36 healthy volunteers. Graph theoretic and network-based statistical analysis of resting-state functional magnetic resonance imaging (MRI) data revealed that alcohol-dependent subjects had reduced functional connectivity of a dispersed network compared with both poly-drug-dependent and healthy subjects. Higher local efficiency was observed in both patient groups, indicating clustered and segregated network topology and information processing. Naltrexone normalized heightened local efficiency of the neural network in alcohol-dependent individuals, to the same levels as healthy volunteers. Naltrexone failed to have an effect on the local efficiency in abstinent poly-substance-dependent individuals. Across groups, local efficiency was associated with substance, but no alcohol exposure implicating local efficiency as a potential premorbid risk factor in alcohol use disorders that can be ameliorated by naltrexone. These findings suggest one possible mechanism for the clinical effects of naltrexone, namely, the amelioration of disrupted network topology.

  16. Abnormal Amygdala Resting-State Functional Connectivity in Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Westlund, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A.; Houri, Alaa; Eberly, Lynn E.; Lim, Kelvin O.

    2015-01-01

    Importance Major depressive disorder (MDD) frequently emerges during adolescence and can lead to persistent illness, disability and suicide. The maturational changes that take place in the brain during adolescence underscore the importance of examining neurobiological mechanisms during this time period of early illness. However, neural mechanisms of depression in adolescents have been understudied. Prior research has implicated the amygdala in emotion processing in mood disorders, and adult depression studies have suggested amygdala-frontal connectivity deficits. Resting-state functional magnetic resonance imaging (rsfMRI) is an advanced tool that can be used to probe neural networks and identify brain-behavior relationships. Objective To examine amygdala resting-state functional connectivity (RSFC) in adolescents with and without MDD using rsfMRI, and to examine how amygdala RSFC relates to a broad range of symptom dimensions. Design Cross-sectional rsfMRI study. Setting Depression research program at an academic medical center. Participants 41 girls and boys aged 12–19 years with MDD and 29 healthy adolescents (frequency matched on age and sex) with no psychiatric diagnoses. Main Outcome Measure Using a whole-brain functional connectivity approach, we examined correlation of spontaneous fluctuation of blood-oxygen-level-dependent (BOLD) signal of each voxel in the whole brain with that of the amygdala. Results Adolescents with MDD showed lower positive RSFC between amygdala and hippocampus, parahippocampus and brain stem; this connectivity was inversely correlated with general depression, dysphoria, and lassitude, and positively correlated with well-being. Patients also showed greater (positive) amygdala-precuneus RSFC (in contrast to negative amygdala-precuneus RSFC in controls.) Conclusion Impaired amygdala-hippocampal/brainstem and amygdala-precuneus RSFC has not previously been highlighted in depression and may be unique to adolescent MDD. These circuits

  17. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome

    PubMed Central

    Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Harper, Rebecca K.; Ogren, Jennifer A.

    2015-01-01

    Congenital central hypoventilation syndrome (CCHS) patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover, or hypoxic exposure

  18. Abnormal GABAergic function and negative affect in schizophrenia.

    PubMed

    Taylor, Stephan F; Demeter, Elise; Phan, K Luan; Tso, Ivy F; Welsh, Robert C

    2014-03-01

    Deficits in the γ-aminobutyric acid (GABA) system have been reported in postmortem studies of schizophrenia, and therapeutic interventions in schizophrenia often involve potentiation of GABA receptors (GABAR) to augment antipsychotic therapy and treat negative affect such as anxiety. To map GABAergic mechanisms associated with processing affect, we used a benzodiazepine challenge while subjects viewed salient visual stimuli. Fourteen stable, medicated schizophrenia/schizoaffective patients and 13 healthy comparison subjects underwent functional magnetic resonance imaging using the blood oxygenation level-dependent (BOLD) technique while they viewed salient emotional images. Subjects received intravenous lorazepam (LRZ; 0.01 mg/kg) or saline in a single-blinded, cross-over design (two sessions separated by 1-3 weeks). A predicted group by drug interaction was noted in the dorsal medial prefrontal cortex (dmPFC) as well as right superior frontal gyrus and left and right occipital regions, such that psychosis patients showed an increased BOLD signal to LRZ challenge, rather than the decreased signal exhibited by the comparison group. A main effect of reduced BOLD signal in bilateral occipital areas was noted across groups. Consistent with the role of the dmPFC in processing emotion, state negative affect positively correlated with the response to the LRZ challenge in the dmPFC for the patients and comparison subjects. The altered response to LRZ challenge is consistent with altered inhibition predicted by postmortem findings of altered GABAR in schizophrenia. These results also suggest that negative affect in schizophrenia/schizoaffective disorder is associated-directly or indirectly-with GABAergic function on a continuum with normal behavior.

  19. Viewing nature scenes positively affects recovery of autonomic function following acute-mental stress.

    PubMed

    Brown, Daniel K; Barton, Jo L; Gladwell, Valerie F

    2013-06-04

    A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor.

  20. Evidence for vestibular regulation of autonomic functions in a mouse genetic model

    NASA Technical Reports Server (NTRS)

    Murakami, Dean M.; Erkman, Linda; Hermanson, Ola; Rosenfeld, Michael G.; Fuller, Charles A.

    2002-01-01

    Physiological responses to changes in the gravitational field and body position, as well as symptoms of patients with anxiety-related disorders, have indicated an interrelationship between vestibular function and stress responses. However, the relative significance of cochlear and vestibular information in autonomic regulation remains unresolved because of the difficulties in distinguishing the relative contributions of other proprioceptive and interoceptive inputs, including vagal and somatic information. To investigate the role of cochlear and vestibular function in central and physiological responses, we have examined the effects of increased gravity in wild-type mice and mice lacking the POU homeodomain transcription factor Brn-3.1 (Brn-3bPou4f3). The only known phenotype of the Brn-3.1(-/-) mouse is related to hearing and balance functions, owing to the failure of cochlear and vestibular hair cells to differentiate properly. Here, we show that normal physiological responses to increased gravity (2G exposure), such as a dramatic drop in body temperature and concomitant circadian adjustment, were completely absent in Brn-3.1(-/-) mice. In line with the lack of autonomic responses, the massive increase in neuronal activity after 2G exposure normally detected in wild-type mice was virtually abolished in Brn-3.1(-/-) mice. Our results suggest that cochlear and vestibular hair cells are the primary regulators of autonomic responses to altered gravity and provide genetic evidence that these cells are sufficient to alter neural activity in regions involved in autonomic and neuroendocrine control.

  1. Abnormalities of thyroid function tests in hospital inpatients.

    PubMed Central

    Sheppard, M. C.; Ramsden, D. B.

    1985-01-01

    Results of thyroid function tests were analysed in 199 clinically euthyroid inpatients with normal serum thyroid stimulating hormone values. Serum total triiodothyronine was less than 1.25 nmol/l in 61.8% of samples, free triiodothyronine less than 3.9 pmol/l in 57.8%, total thyroxine less than 63 nmol/l in 21.1% and free thyroxine less than 9.5 pmol/l in 17.6%. In contrast, thyroxine binding globulin ratio was below normal (less than 5) in only 5 samples. A significant positive correlation (P less than 0.001) of serum free thyroxine with total thyroxine, thyroxine/thyroxine binding globulin ratio and free triiodothyronine was present as well as a significant negative correlation (P less than 0.001) with serum thyroid stimulating hormone. There was no correlation of free thyroxine measurements with serum albumin or non-esterified fatty acid concentrations. Although serum free thyroxine is low in a number of patients with non-thyroidal illnesses, this does not appear to be due to a rise in non-esterified fatty acids or a fall in albumin as has been proposed. Serum thyroid stimulating hormone measurements are essential to confirm the diagnosis of hypothyroidism in such subjects. PMID:4070117

  2. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  3. Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.

    2002-01-01

    Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.

  4. Sensory and autonomic function and structure in footpads of a diabetic mouse model

    PubMed Central

    Liu, Ying; Sebastian, Blessan; Liu, Ben; Zhang, Yiyue; Fissel, John A.; Pan, Baohan; Polydefkis, Michael; Farah, Mohamed H.

    2017-01-01

    Sensory and autonomic neuropathy affects the majority of type II diabetic patients. Clinically, autonomic evaluation often focuses on sudomotor function yet this is rarely assessed in animal models. We undertook morphological and functional studies to assess large myelinated and small unmyelinated axons in the db/db type II diabetes mouse model. We observed that autonomic innervation of sweat glands in the footpads was significantly reduced in db/db mice compared to control db/+ mice and this deficit was greater compared to reductions in intraepidermal sensory innervation of adjacent epidermis. Additionally, db/db mice formed significantly fewer sweat droplets compared to controls as early as 6 weeks of age, a time when no statistical differences were observed electrophysiologically between db/db and db/+ mice studies of large myelinated sensory and motor nerves. The rate of sweat droplet formation was significantly slower and the sweat droplet size larger and more variable in db/db mice compared to controls. Whereas pilocarpine and glycopyrrolate increased and decreased sweating, respectively, in 6 month-old controls, db/db mice did not respond to pharmacologic manipulations. Our findings indicate autonomic neuropathy is an early and prominent deficit in the db/db model and have implications for the development of therapies for peripheral diabetic neuropathy. PMID:28128284

  5. Autonomic response to approachability characteristics, approach behavior, and social functioning in Williams syndrome

    PubMed Central

    Järvinen, Anna; Ng, Rowena; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) is a neurogenetic disorder that is saliently characterized by a unique social phenotype, most notably associated with a dramatically increased affinity and approachability toward unfamiliar people. Despite a recent proliferation of studies into the social profile of WS, the underpinnings of the pro-social predisposition are poorly understood. To this end, the present study was aimed at elucidating approach behavior of individuals with WS contrasted with typical development (TD) by employing a multidimensional design combining measures of autonomic arousal, social functioning, and two levels of approach evaluations. Given previous evidence suggesting that approach behaviors of individuals with WS are driven by a desire for social closeness, approachability tendencies were probed across two levels of social interaction: talking versus befriending. The main results indicated that while overall level of approachability did not differ between groups, an important qualitative between-group difference emerged across the two social interaction contexts: whereas individuals with WS demonstrated a similar willingness to approach strangers across both experimental conditions, TD individuals were significantly more willing to talk to than to befriend strangers. In WS, high approachability to positive faces across both social interaction levels was further associated with more normal social functioning. A novel finding linked autonomic responses with willingness to befriend negative faces in the WS group: elevated autonomic responsivity was associated with increased affiliation to negative face stimuli, which may represent an autonomic correlate of approach behavior in WS. Implications for underlying organization of the social brain are discussed. PMID:26459097

  6. Abnormal platelet von Willebrand factor (vWF) as a marker of abnormal function in megakaryocytic dysplasia.

    PubMed

    de Cataldo, F; Baudo, F; Redaelli, R; Corno, A R

    1995-03-01

    The myelodysplastic syndromes (MDS) are neoplastic disorders of the hemopoietic system; multilineage involvement is also evidenced by specific cellular dysfunctions. The von Willebrand factor (vWF), synthesized and processed in the megakaryocytes (MK), is stored in the alpha granules of the platelets. The platelet vWF multimeric pattern was studied in 18 patients with MDS, and in 4 with pernicious anemia (PA), to investigate whether the processing of vWF is abnormal in the megakaryocytic dysplasia. An abnormal multimeric pattern was observed in 10/18 MDS and 4/4 PA patients. The abnormality of this specific protein is the discrete expression of the basic disorder, and is reversible when hemopoiesis is normalized. Although the data do not allow any conclusion, abnormal synthesis is the likely explantation of the abnormality.

  7. Effect of Moderate Aerobic Exercise Training on Autonomic Functions and its Correlation with the Antioxidant Status.

    PubMed

    Gupt, Anju Madan; Kumar, Mukesh; Sharma, Rajesh Kumar; Misra, Rajesh; Gupt, Anadi

    2015-01-01

    Aerobic exercise is a proven measure to enhance the cardio-respiratory efficiency. This improvement isprimarily due to improvement in autonomic function where in there is increase in the parasympathetic function and decrease in sympathetic function. Exercise also affects many metabolic activities in our body and may be one of the factors which reduce the oxidative stress. The aim of the present study was to see the effect of moderate aerobic exercise training on autonomic function and its correlation with antioxidant status. 30 healthy volunteers in the age group of 18-22 years were screened. Autonomic function tests included activity (tone) and reactivity parameters. Antioxidant status was assessed by the level of malondialdehyde in plasma. We observed a significant change in SBP, DBP, LF nu, HF nu, delta value of DBP in CPT and MDA. Our findings are consistent with earlier findings that short duration physical training is known to reduce blood pressure and that there is a relationship between HF (in HRV) and training response Physical exercise also provides a favorable change in the biochemical parameters such as MDA.

  8. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    PubMed

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  9. Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment

    PubMed Central

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-01-01

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902

  10. Detection of Cardiac Function Abnormality from MRI Images Using Normalized Wall Thickness Temporal Patterns.

    PubMed

    Wael, Mai; Ibrahim, El-Sayed H; Fahmy, Ahmed S

    2016-01-01

    Purpose. To develop a method for identifying abnormal myocardial function based on studying the normalized wall motion pattern during the cardiac cycle. Methods. The temporal pattern of the normalized myocardial wall thickness is used as a feature vector to assess the cardiac wall motion abnormality. Principal component analysis is used to reduce the feature dimensionality and the maximum likelihood method is used to differentiate between normal and abnormal features. The proposed method was applied on a dataset of 27 cases from normal subjects and patients. Results. The developed method achieved 81.5%, 85%, and 88.5% accuracy for identifying abnormal contractility in the basal, midventricular, and apical slices, respectively. Conclusions. A novel feature vector, namely, the normalized wall thickness, has been introduced for detecting myocardial regional wall motion abnormality. The proposed method provides assessment of the regional myocardial contractility for each cardiac segment and slice; therefore, it could be a valuable tool for automatic and fast determination of regional wall motion abnormality from conventional cine MRI images.

  11. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    SciTech Connect

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-11-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis.

  12. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults

    PubMed Central

    Stenfors, Cecilia U. D.; Hanson, Linda M.; Theorell, Töres; Osika, Walter S.

    2016-01-01

    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive

  13. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults.

    PubMed

    Stenfors, Cecilia U D; Hanson, Linda M; Theorell, Töres; Osika, Walter S

    2016-01-01

    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive

  14. Docosahexaenoic acid and cognitive function: Is the link mediated by the autonomic nervous system?

    PubMed Central

    Gustafson, Kathleen M.; Colombo, John; Carlson, Susan E.

    2013-01-01

    Docosahexaenoic acid is a long-chain polyunsaturated fatty acid that is found in large quantity in the brain and which has repeatedly been observed to be related in positive ways to both cognitive function and cardiovascular health. The mechanisms through which docosahexaenoic acid affects cognition are not well understood, but in this article, we propose a hypothesis that integrates the positive effects of docosahexaenoic acid in the cognitive and cardiovascular realms through the autonomic nervous system. The autonomic nervous system is known to regulate vital functions such as heart rate and respiration, and has also been linked to basic cognitive components related to arousal and attention. We review the literature from this perspective, and delineate the predictions generated by the hypothesis. In addition, we provide new data showing a link between docosahexaenoic acid and fetal heart rate that is consistent with the hypothesis. PMID:18930644

  15. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  16. Differences in autonomic nerve function in patients with silent and symptomatic myocardial ischaemia.

    PubMed Central

    Shakespeare, C. F.; Katritsis, D.; Crowther, A.; Cooper, I. C.; Coltart, J. D.; Webb-Peploe, M. W.

    1994-01-01

    BACKGROUND--Autonomic neuropathy provides a mechanism for the absence of symptoms in silent myocardial ischaemia, but characterisation of the type of neuropathy is lacking. AIM--To characterise and compare autonomic nerve function in patients with silent and symptomatic myocardial ischaemia. METHODS AND RESULTS--The Valsalva manoeuvre, heart rate variation (HRV) in response to deep breathing and standing, lower body negative pressure, isometric handgrip, and the cold pressor test were performed by patients with silent (n = 25) and symptomatic (n = 25) ambulatory ischaemia and by controls (n = 21). No difference in parasympathetic efferent function between patients with silent and symptomatic ischaemia was recorded, but both had significantly less HRV in response to standing than the controls (p < 0.005 for silent and p < 0.01 for symptomatic). Patients with silent ischaemia showed an increased propensity for peripheral vasodilatation compared with symptomatic patients (p < 0.02) and controls (p < 0.04). Impaired sympathetic function was found in patients with pure silent ischaemia (n = 4) compared with the remaining patients with silent ischaemia whose pain pathways were presumed to be intact. CONCLUSIONS--Patients with silent ischaemia and pain pathways presumed to be intact have an enhanced peripheral vasodilator response, and if this applied to the coronary vasculature it could provide a mechanism for limiting ischaemia to below the pain threshold. Patients with pure silent ischaemia have evidence of sympathetic autonomic dysfunction. Images PMID:8297687

  17. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  18. Abnormal lateralization of functional connectivity between language and default mode regions in autism

    PubMed Central

    2014-01-01

    Background Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke areas. Methods Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke area and the posterior cingulate cortex associates with more severe autism. Conclusions Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain. PMID:24502324

  19. Effects of cacao liquor polyphenols on cardiovascular and autonomic nervous functions in hypercholesterolaemic rabbits.

    PubMed

    Akita, Megumi; Kuwahara, Masayoshi; Itoh, Fumi; Nakano, Yoshihisa; Osakabe, Naomi; Kurosawa, Tohru; Tsubone, Hirokazu

    2008-12-01

    Many epidemiological studies have shown that polyphenols can reduce the risk of mortality from cardiovascular diseases. This study tested the hypothesis that cacao liquor polyphenols have the properties to restore the cardiovascular and autonomic nervous function in an animal model of familial hypercholesterolaemia. Male Kurosawa and Kusanagi-hypercholesterolaemic rabbits were housed in individual cages in a room where a 12-hr light:dark cycle (lights-on at 8:00 and lights-off at 20:00) was maintained. At 3 months of age, they were divided into two groups (standard diet and cacao liquor polyphenol) and the animals received 100 g of the respective diets per day and were provided with tap water ad libitum. Heart rate and blood pressure were measured by a telemetry system. To clarify the autonomic nervous function, power spectral analysis of heart rate variability, baroreflex sensitivity and autonomic nervous tone were measured. After 6 months of dietary administration of cacao liquor polyphenols, heart rate and blood pressure were lowered but plasma lipid concentrations were unchanged. The area of atherosclerotic lesions in the aorta in the cacao liquor polyphenol group was significantly smaller than that in the standard diet group. The high-frequency power of heart rate variability in the rabbits in the standard diet group was significantly decreased with ageing, but that in the cacao liquor polyphenol group was not different between short-term and long-term treatment. Moreover, cacao liquor polyphenols preserved parasympathetic nervous tone, although that in the standard diet group was significantly decreased with ageing. We conclude that cacao liquor polyphenols may play an important role to protect cardiovascular and autonomic nervous functions.

  20. Searching for the most effective thyrotropin (TSH) threshold to rule-out autonomously functioning thyroid nodules in iodine deficient regions.

    PubMed

    Giovanella, Luca; D'Aurizio, Federica; Campenni', Alfredo; Ruggeri, Rosaria Maddalena; Baldari, Sergio; Verburg, Frederik Anton; Trimboli, Pierpaolo; Ceriani, Luca

    2016-12-01

    The purpose of this study is to evaluate the distribution of thyrotropin (TSH) values in patients with autonomously functioning thyroid nodules and to set a TSH threshold above which thyroid scintigraphy would be obviated. Four hundred fifty one patients were included in the present study. Inclusion criteria were age > 18 years, TSH levels between 0.40 and 4.0 mIU/L, detection of a single solid or predominantly solid thyroid nodule >10 mm in the longest diameter. Thyroid ultrasound and thyroid scintigraphy with (99m)Tc-pertechnetate were performed concurrently in all patients. Among 451 enrolled patients, 173 (38 %) had an autonomously functioning thyroid nodules, of which 137 (79 %) with a normal TSH level. Demographic data and nodules' volume were not significantly different in patients with autonomously functioning thyroid nodules and non-functioning nodules, respectively. However, TSH levels were nonetheless significantly lower in patients with autonomously functioning thyroid nodules compared to those with non-functioning nodules (p < 0.001). Adopting a TSH cutoff level at 2.38 mUI/L, all autonomously functioning thyroid nodules were correctly identified (i.e., 100 % sensitivity) with a 100 % negative predictive value. Our study showed a very high prevalence of autonomously functioning thyroid nodules in mildly iodine-deficient regions and confirmed that serum TSH is not an effective screening test to diagnose an autonomously functioning thyroid nodules. Our data add arguments in favor of the first-line use of thyroid scintigraphy to assess thyroid nodules, at least in iodine deficient areas. As all scintigraphically detected autonomously functioning thyroid nodules had a TSH level below 2.38 mUI/L, a thyroid scintigraphy should be omitted when higher TSH values are found in patients carrying a thyroid nodule.

  1. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  2. Autonomic function assessment in Parkinson's disease patients using the kernel method and entrainment techniques.

    PubMed

    Kamal, Ahmed K

    2007-01-01

    The experimental procedure of lowering and raising a leg while the subject is in the supine position is considered to stimulate and entrain the autonomic nervous system of fifteen untreated patients with Parkinson's disease and fifteen age and sex matched control subjects. The assessment of autonomic function for each group is achieved using an algorithm based on Volterra kernel estimation. By applying this algorithm and considering the process of lowering and raising a leg as stimulus input and the Heart Rate Variability signal (HRV) as output for system identification, a mathematical model is expressed as integral equations. The integral equations are considered and fixed for control subjects and Parkinson's disease patients so that the identification method reduced to the determination of the values within the integral called kernels, resulting in an integral equations whose input-output behavior is nearly identical to that of the system in both healthy subjects and Parkinson's disease patients. The model for each group contains the linear part (first order kernel) and quadratic part (second order kernel). A difference equation model was employed to represent the system for both control subjects and patients with Parkinson's disease. The results show significant difference in first order kernel(impulse response) and second order kernel (mesh diagram) for each group. Using first order kernel and second order kernel, it is possible to assess autonomic function qualitatively and quantitatively in both groups.

  3. Teaching cardiac autonomic function dynamics employing the Valsalva (Valsalva-Weber) maneuver.

    PubMed

    Junqueira, Luiz Fernando

    2008-03-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated, and some guidelines are established for simple application of the maneuver in a teaching or research laboratory setting. These include the hemodynamic and cardiac autonomic mechanisms involved, technical aspects such as the intensity and duration of the expiratory straining, frequency of maneuver sessions, training and posture of the individuals tested, different time- and grade change-dependent indexes of heart interval variation, and clinical application of the maneuver.

  4. Autonomic management of multiple non-functional concerns in behavioural skeletons

    NASA Astrophysics Data System (ADS)

    Aldinucci, Marco; Danelutto, Marco; Kilpatrick, Peter

    We introduce and address the problem of concurrent autonomic management of different non-functional concerns in parallel applications build as a hierarchical composition of behavioural skeletons. We first define the problems arising when multiple concerns are dealt with by independent managers, then we propose a methodology supporting coordinated management, and finally we discuss how autonomic management of multiple concerns may be implemented in a typical use case. Being based on the behavioural skeleton concept proposed in the CoreGRID GCM, it is anticipated that the methodology will be readily integrated into the current reference implementation of GCM based on Java ProActive and running on top of major grid middleware systems.

  5. Autonomic neuropathy

    MedlinePlus

    ... page, please enable JavaScript. Autonomic neuropathy is a group of symptoms that occur when there is damage to the nerves that manage every day body functions such as blood pressure, heart rate, sweating, bowel and bladder emptying, and ...

  6. An NAD+ biosynthetic pathway enzyme functions cell non-autonomously in C. elegans development

    PubMed Central

    Crook, Matt; McReynolds, Melanie R.; Wang, Wenqing; Hanna-Rose, Wendy

    2017-01-01

    Background Disruption of cellular metabolite levels can adversely impact development. Specifically, loss-of-function of the C. elegans NAD+ salvage biosynthesis gene PNC-1 results in an array of developmental phenotypes. Intriguingly, PNC-1 and its functional equivalent in vertebrates are secreted, but the contributions of the extracellular enzymes are poorly understood. We sought to study the tissue-specific requirements for PNC-1 expression and to examine the role of the secreted isoform. Results A thorough analysis of PNC-1 expression did not detect expression in tissues that require PNC-1 function. Limited expression of both the secreted and intracellular PNC-1 isoforms provided function at a distance from the tissues with phenotypes. We also find that the secreted isoform contributes to in vivo PNC-1 activity. Furthermore, uv1 cell survival has the most stringent requirements in terms of PNC-1 expression pattern or level. Conclusion Using careful promoter analysis and a restricted expression approach we have shown that both the secreted and the intracellular PNC-1 isoforms function cell non-autonomously, and that the PNC-1a isoform is functionally relevant in vivo. Our work suggests a model where PNC-1 function is provided cell non-autonomously by a mix of intra and extracellular activity, most likely requiring NAD+ salvage metabolite transport between tissues. PMID:24753121

  7. Effect of 30-min +3 Gz centrifugation on vestibular and autonomic cardiovascular function

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Harm, Deborah L.; Rupert, A. H.

    2003-01-01

    INTRODUCTION: Repeated exposure to increased +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, it is not known whether such enhancements might also result from a single, more prolonged exposure to increased +Gz. Our study was designed to investigate whether baroreflex function and orthostatic tolerance are acutely improved by a single prolonged exposure to +3 Gz, and moreover, whether changes in autonomic cardiovascular function resulting from exposure to increased +Gz are correlated with changes in otolith function. METHODS: We exposed 15 healthy human subjects to +3 Gz centrifugation for up to 30 min or until symptoms of incipient G-induced loss of consciousness (G-LOC) ensued. Tests of autonomic cardiovascular function both before and after centrifugation included: 1) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; 2) carotid-cardiac baroreflex tests; 3) Valsalva tests; and 4) 30-min head-up tilt tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: Of the 15 subjects who underwent prolonged +3 Gz, 4 were intolerant to 30 min of head-up tilt before centrifugation but became tolerant to such tilt after centrifugation. The Valsalva-related baroreflex as well as a measure of the carotid-cardiac baroreflex were also enhanced after centrifugation. No significant vestibular-autonomic relationships were detected beyond a vestibular-cerebrovascular interaction reported earlier in a subset of seven participants. CONCLUSIONS: A single prolonged exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance.

  8. Transfer function analysis of the autonomic response to respiratory activity during random interval breathing

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.

    1987-01-01

    We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.

  9. Cardiac autonomic denervation and functional response to neurotoxins during acute experimental Chagas' disease in rats.

    PubMed

    Teixeira, A L; Fontoura, B F; Freire-Maia, L; Chiari, E; Machado, C R; Teixeira, M M; Camargos, E R

    2001-06-20

    Severe cardiac autonomic denervation occurs in the acute Chagas' disease in rats. The present study aims at verifying whether this denervation was accompanied by impairment of heart function. Scorpionic (Tityus serrulatus) crude venom was used for neurotransmitter release in isolated hearts (Langendorff's preparation). In control hearts, the venom induced significant bradycardia followed by tachycardia. In infected animals, despite the severe (sympathetic) or moderate (parasympathetic) cardiac denervation, the venom provoked similar bradycardia but the tachycardia was higher. The hearts of infected animals beat at significantly lower rate. Atropine prevented this lower rate. Our results demonstrated sympathetic dysfunction during the acute phase of Trypanosoma cruzi infection in rats, the parasympathetic function being spared.

  10. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  11. Abnormal whole-brain functional connectivity in patients with primary insomnia

    PubMed Central

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson’s correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia. PMID:28243094

  12. Abnormal whole-brain functional connectivity in patients with primary insomnia.

    PubMed

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson's correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia.

  13. Adrenergic receptor polymorphisms and autonomic nervous system function in human obesity.

    PubMed

    Yasuda, Koichiro; Matsunaga, Tetsuro; Adachi, Tetsuya; Aoki, Norihiko; Tsujimoto, Gozoh; Tsuda, Kinsuke

    2006-09-01

    Adrenergic receptors (ARs) are cell-surface G-protein-coupled receptors for catecholamines. They are essential components of the sympathetic nervous system, organized within the autonomic nervous system (ANS), which controls various physiological functions, including energy homeostasis and metabolism of glucose and lipids. An impairment of ANS function in metabolism is considered to be one of the pathological states associated with human obesity and related metabolic diseases; thus, alterations in AR function might be implicated in the pathophysiology of these diseases. Several studies have suggested an association between obesity phenotypes and some AR polymorphisms. In vitro and human clinical studies indicate that some of these polymorphisms have functional and pathophysiological significance, including the linkage to ANS function. This review summarizes present knowledge of AR polymorphisms related to human obesity, and their association with ANS function.

  14. Assessment of Autonomic Function by Phase Rectification of RRInterval Histogram Analysis in Chagas Disease

    PubMed Central

    Nasari-Junior, Olivassé; Benchimol-Barbosa, Paulo Roberto; Pedrosa, Roberto Coury; Nadal, Jurandir

    2015-01-01

    Background In chronic Chagas disease (ChD), impairment of cardiac autonomic function bears prognostic implications. Phase‑rectification of RR-interval series isolates the sympathetic, acceleration phase (AC) and parasympathetic, deceleration phase (DC) influences on cardiac autonomic modulation. Objective This study investigated heart rate variability (HRV) as a function of RR-interval to assess autonomic function in healthy and ChD subjects. Methods Control (n = 20) and ChD (n = 20) groups were studied. All underwent 60-min head-up tilt table test under ECG recording. Histogram of RR-interval series was calculated, with 100 ms class, ranging from 600–1100 ms. In each class, mean RR-intervals (MNN) and root-mean-squared difference (RMSNN) of consecutive normal RR-intervals that suited a particular class were calculated. Average of all RMSNN values in each class was analyzed as function of MNN, in the whole series (RMSNNT), and in AC (RMSNNAC) and DC (RMSNNDC) phases. Slopes of linear regression lines were compared between groups using Student t-test. Correlation coefficients were tested before comparisons. RMSNN was log-transformed. (α < 0.05). Results Correlation coefficient was significant in all regressions (p < 0.05). In the control group, RMSNNT, RMSNNAC, and RMSNNDC significantly increased linearly with MNN (p < 0.05). In ChD, only RMSNNAC showed significant increase as a function of MNN, whereas RMSNNT and RMSNNDC did not. Conclusion HRV increases in proportion with the RR-interval in healthy subjects. This behavior is lost in ChD, particularly in the DC phase, indicating cardiac vagal incompetence. PMID:26131700

  15. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    PubMed

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  16. The role of autonomic testing in syncope.

    PubMed

    Jones, Pearl K; Gibbons, Christopher H

    2014-09-01

    Syncope is a common presenting complaint in both the inpatient and outpatient settings. The main goals in the clinical evaluation of syncope are to identify an underlying etiology, to stratify risk and to guide plans for therapeutic intervention. Testing begins with an initial electrocardiogram to screen for any cardiac rhythm abnormalities. Heart rate variability to paced breathing provides a standard measure of cardiac parasympathetic function and offers clues towards an autonomic cause of syncope. A Valsalva maneuver is used to evaluate for parasympathetic dysfunction through the Valsalva ratio. In addition, sympathetic adrenergic function is assessed through evaluation of blood pressure response during the Valsalva maneuver. Abnormalities to the Valsalva maneuver can suggest clues towards an autonomic cause of syncope. Head-up tilt table testing is an important part of the autonomic evaluation of patients with syncope, and can be diagnostic for many disorders that result in syncope including orthostatic hypotension, neurally mediated syncope, postural tachycardia syndrome or delayed orthostatic hypotension. Autonomic function testing provides a safe and controlled environment for evaluation of patients, and plays a pivotal role in the diagnosis of syncope, particularly in challenging cases. While the initial clinical evaluation of syncope involves a detailed history and physical examination; in situations where the diagnosis is unknown, the addition of autonomic testing is complementary and can lead to identification of autonomic causes of syncope.

  17. Abnormal functional brain asymmetry in depression: evidence of biologic commonality between major depression and dysthymia.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; Hellerstein, David; Alvarenga, Jorge E; Alschuler, Daniel; McGrath, Patrick J

    2012-04-30

    Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having "pure" dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or "pure" dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening.

  18. Adverse Impact of Sleep Restriction and Circadian Misalignment on Autonomic Function in Healthy Young Adults.

    PubMed

    Grimaldi, Daniela; Carter, Jason R; Van Cauter, Eve; Leproult, Rachel

    2016-07-01

    Insufficient sleep and circadian rhythm disturbances have been each associated with adverse cardiovascular outcomes in epidemiological studies, but experimental evidence for a causal link is scarce. The present study compares the impact of circadian misalignment (CM) to circadian alignment (CA) on human autonomic function using a nonrandomized parallel group design to achieve the same total sleep time in both conditions. After baseline assessments (3 days with 10-hour bedtimes), 26 healthy young adults were assigned to sleep restriction (SR; eight 5-hour bedtimes) with either fixed nocturnal bedtimes (CA; n=13) or bedtimes delayed by 8.5 hours on 4 of the 8 days (CM; n=13). Daytime ambulatory blood pressure and heart rate (HR; CA, n=11; CM, n=10) and 24-hour urinary norepinephrine levels (CA, n=13; CM, n=13) were assessed at baseline and the end of SR. Nocturnal HR and HR variability were analyzed during sleep at baseline and during the fourth and seventh nights of SR (CA, n=8; CM, n=12). SR resulted in a significant increase in daytime HR in both groups, without changes in blood pressure. SR increased 24-hour urinary norepinephrine in the CM group (30±4 versus 21±2 μg), but not in the circadian alignment group (group×condition, P=0.005). In contrast to the lack of detectable impact of CM on daytime autonomic function, SR with CM elicited greater increases in nocturnal HR, as well as greater reductions in vagal indices of HR variability, than SR without CM (group×condition, P<0.05). In conclusion, SR and CM both result in impaired autonomic function that could lead, under chronic conditions, to enhanced cardiovascular risk.

  19. Comparison of diphenhydramine and modafinil on arousal and autonomic functions in healthy volunteers.

    PubMed

    Hou, R H; Langley, R W; Szabadi, E; Bradshaw, C M

    2007-08-01

    Arousal is regulated by the interplay between wakefulness- and sleep-promoting nuclei. Major wakefulness-promoting nuclei are the histaminergic tuberomamillary nucleus (TMN) of the hypothalamus and the noradrenergic locus coeruleus (LC) of the pons, which also play a role in autonomic regulation. First generation antihistamines, such as diphenhydramine, are likely to cause sedation by blocking excitatory H1 histamine receptors in the cerebral cortex, and the anti-narcolepsy drug modafinil may promote wakefulness by activating the locus coeruleus. We compared the effects of single doses of diphenhydramine (75 mg) and modafinil (200 mg) on arousal and autonomic functions in 16 healthy male volunteers, using a placebo-controlled, balanced, double-blind design. Arousal was assessed by critical flicker fusion frequency (CFFF), visual analogue scales (VAS) and pupillary fatigue waves (Pupillographic Sleepiness Test (PST)). Autonomic functions measured included resting pupil diameter, light and darkness reflex responses, blood pressure, heart rate and salivation. Data were analysed with ANOVA, with multiple comparisons. Diphenhydramine had sedative effects as shown by reductions in CFFF, VAS alertness ratings and increases of the indices of pupillary fatigue. Modafinil had alerting effects as indicated by reductions in the measures of pupillary fatigue. Comparison of pre-post medication changes in pupil diameter showed a decrease after diphenhydramine and an increase after modafinil. Diphenhydramine reduced salivation, and modafinil increased systolic blood pressure. In conclusion, diphenhydramine and modafinil evoked opposite effects on arousal and sympathetic functions, which are likely to reflect their interaction with the central histaminergic and noradrenergic systems. Hyposalivation by diphenhydramine is likely to be due to its additional anticholinergic property.

  20. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Diabetic autonomic neuropathy.

    PubMed

    Vinik, Aaron I; Maser, Raelene E; Mitchell, Braxton D; Freeman, Roy

    2003-05-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes. Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of DAN has not been fully appreciated. The reported prevalence of DAN varies widely depending on the cohort studied and the methods of assessment. In randomly selected cohorts of asymptomatic individuals with diabetes, approximately 20% had abnormal cardiovascular autonomic function. DAN frequently coexists with other peripheral neuropathies and other diabetic complications, but DAN may be isolated, frequently preceding the detection of other complications. Major clinical manifestations of DAN include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, "brittle diabetes," and hypoglycemic autonomic failure. DAN may affect many organ systems throughout the body (e.g., gastrointestinal [GI], genitourinary, and cardiovascular). GI disturbances (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, and fecal incontinence) are common, and any section of the GI tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control. Upper-GI symptoms should lead to consideration of all possible causes, including autonomic dysfunction. Whereas a radiographic gastric emptying study can definitively establish the diagnosis of gastroparesis, a reasonable approach is to exclude autonomic dysfunction and other known causes of these upper-GI symptoms. Constipation is the most common lower-GI symptom but can alternate with episodes of diarrhea. Diagnostic approaches should rule out autonomic dysfunction and the well-known causes such as neoplasia. Occasionally, anorectal manometry and other specialized tests typically performed by the gastroenterologist may be helpful. DAN is also

  2. Abnormal Profiles of Local Functional Connectivity Proximal to Focal Cortical Dysplasias

    PubMed Central

    Besseling, René M. H.; Jansen, Jacobus F. A.; de Louw, Anton J. A.; Vlooswijk, Mariëlle C. G.; Hoeberigs, M. Christianne; Aldenkamp, Albert P.; Backes, Walter H.

    2016-01-01

    Introduction Focal cortical dysplasia (FCD) is a congenital malformation of cortical development that often leads to medically refractory epilepsy. Focal resection can be an effective treatment, but is challenging as the surgically relevant abnormality may exceed the MR-visible lesion. The aim of the current study is to develop methodology to characterize the profile of functional connectivity around FCDs using resting-state functional MRI and in the individual patient. The detection of aberrant connectivity may provide a means to more completely delineate the clinically relevant lesion. Materials and Methods Fifteen FCD patients (age, mean±SD: 31±11 years; 11 males) and 16 matched healthy controls (35±9 years; 7 males) underwent structural and functional imaging at 3 Tesla. The cortical surface was reconstructed from the T1-weighted scan and the registered functional MRI data was spatially normalized to a common anatomical standard space employing the gyral pattern. Seed-based functional connectivity was determined in all subjects for all dysplasia locations. A single patient was excluded based on an aberrant FCD seed time series. Functional connectivity as a function of geodesic distance (along the cortical surface) was compared between the individual patients and the homotopic normative connectivity profiles derived from the controls. Results In 12/14 patients, aberrant profiles of functional connectivity were found, which demonstrated both hyper- and hypoconnectivity as well as combinations. Abnormal functional connectivity was typically found (also) beyond the lesion visible on structural MRI, while functional connectivity profiles not related to a lesion appeared normal in patients. Conclusion This novel functional MRI technique has potential for delineating functionally aberrant from normal cortex beyond the structural lesion in FCD, which remains to be confirmed in future research. PMID:27861502

  3. Subclinical Cardiac Abnormalities and Kidney Function Decline: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Shlipak, Michael G.; Katz, Ronit; Agarwal, Subhashish; Ix, Joachim H.; Hsu, Chi-yuan; Peralta, Carmen A.

    2012-01-01

    Summary Background and objectives Clinical heart failure (HF) is associated with CKD and faster rates of kidney function decline. Whether subclinical abnormalities of cardiac structure are associated with faster kidney function decline is not known. The association between cardiac concentricity and kidney function decline was evaluated. Design, setting, participants, & measurements This is a longitudinal study of 3866 individuals from the Multi-Ethnic Study of Atherosclerosis (2000–2007) who were free of clinical cardiovascular disease, with an estimated GFR (eGFR) ≥60 ml/min per 1.73 m2 at baseline and 5 years of follow-up. Concentricity, a measurement of abnormal cardiac size, was assessed by magnetic resonance imaging and evaluated as a continuous measurement and in quartiles. GFR was estimated by creatinine (eGFRcr) and cystatin C (eGFRcys). The association of concentricity with annual eGFR decline, incident CKD, and rapid kidney function decline (>5% per year) was investigated using linear mixed models as well as Poisson and logistic regression, respectively. Analyses adjusted for demographics, BP, diabetes, and inflammatory markers. Results Median decline was −0.8 (interquartile range, −3.1, −0.5) by eGFRcr. Compared with the lowest quartile of concentricity, persons in the highest quartile had an additional 21% (9%–32%) decline in mean eGFRcr in fully adjusted models. Concentricity was also associated with incident CKD and with rapid kidney function decline after adjustment. Conclusions Subclinical abnormalities in cardiac structure are associated with longitudinal kidney function decline independent of diabetes and hypertension. Future studies should examine mechanisms to explain these associations. PMID:22580783

  4. Abnormalities in personal space and parietal–frontal function in schizophrenia

    PubMed Central

    Holt, Daphne J.; Boeke, Emily A.; Coombs, Garth; DeCross, Stephanie N.; Cassidy, Brittany S.; Stufflebeam, Steven; Rauch, Scott L.; Tootell, Roger B.H.

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  5. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.

  6. Functional abnormalities of the default network during self- and other-reflection in autism

    PubMed Central

    Courchesne, Eric

    2008-01-01

    Recent studies of autism have identified functional abnormalities of the default network during a passive resting state. Since the default network is also typically engaged during social, emotional and introspective processing, dysfunction of this network may underlie some of the difficulties individuals with autism exhibit in these broad domains. In the present experiment, we attempted to further delineate the nature of default network abnormality in autism using experimentally constrained social and introspective tasks. Thirteen autism and 12 control participants were scanned while making true/false judgments for various statements about themselves (SELF condition) or a close other person (OTHER), and pertaining to either psychological personality traits (INTERNAL) or observable characteristics and behaviors (EXTERNAL). In the ventral medial prefrontal cortex/ventral anterior cingulate cortex, activity was reduced in the autism group across all judgment conditions and also during a resting condition, suggestive of task-independent dysfunction of this region. In other default network regions, overall levels of activity were not different between groups. Furthermore, in several of these regions, we found group by condition interactions only for INTERNAL/EXTERNAL judgments, and not SELF/OTHER judgments, suggestive of task-specific dysfunction. Overall, these results provide a more detailed view of default network functionality and abnormality in autism. PMID:19015108

  7. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone

    PubMed Central

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2015-01-01

    Objective To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. Material and methods 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. Results In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Conclusions Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity. PMID:26793436

  8. Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats.

    PubMed

    Nishida, Yasuhiro; Maruyama, Satoshi; Shouji, Ichiro; Kemuriyama, Takehito; Tashiro, Akimasa; Ohta, Hiroyuki; Hagisawa, Kohsue; Hiruma, Megumi; Yokoe, Hidetake

    2016-11-01

    The effects of gravitational loading (G load) on humans have been studied ever since the early 20th century. After the dangers of G load in the vertical head-to-leg direction (+Gz load) became evident, many animal experiments were performed between 1920 and 1945 in an effort to identify the origins of high G-force-induced loss of consciousness (G-LOC), which led to development of the anti-G suit. The establishment of norms and training for G-LOC prevention resulted in a gradual decline in reports of animal experiments on G load, a decline that steepened with the establishment of anti-G techniques in humans, such as special breathing methods and skeletal muscle contraction, called an anti-G straining maneuver, which are voluntary physiological functions. Because the issue involves humans during flight, the effects on humans themselves are clearly of great importance, but ethical considerations largely preclude any research on the human body that probes to any depth the endogenous physiological states and functions. The decline in reports on animal experiments may therefore signify a general decline in research into the changes seen in the various involuntary, autonomic functions. The declining number of related reports on investigations of physiological autonomic systems other than the circulatory system seems to bear this out. In this review, we therefore describe our findings on the effects of G load on the autonomic nervous system, cardiac function, cerebral blood flow, tissue oxygen level, and other physiological autonomic functions as measured in animal experiments, including denervation or pharmacological blocking, in an effort to present the limits and the mechanisms of G-load response extending physiologically. We demonstrate previously unrecognized risks due to G load, and also describe fundamental research aimed at countering these effects and development of a scientific training measure devised for actively enhancing +Gz tolerance in involuntary

  9. A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference

    PubMed Central

    Anticevic, Alan; Repovs, Grega; Krystal, John H.; Barch, Deanna M.

    2013-01-01

    Characterizing working memory (WM) abnormalities represents a fundamental challenge in schizophrenia research given the impact of cognitive deficits on life outcome in patients. In prior work we demonstrated that dorsolateral prefrontal cortex (DLPFC) activation was related to successful distracter resistance during WM in healthy controls, but not in schizophrenia. Although understanding the impact of regional functional deficits is critical, functional connectivity abnormalities among nodes within WM networks may constitute a final common pathway for WM impairment. Therefore, this study tested the hypothesis that schizophrenia is associated with functional connectivity abnormalities within DLPFC networks during distraction conditions in WM. 28 patients and 24 controls completed a delayed non-verbal WM task that included transient visual distraction during the WM maintenance phase. We computed DLPFC whole-brain task-based functional connectivity (tb-fcMRI) specifically during the maintenance phase in the presence or absence of distraction. Results revealed that patients failed to modulate tb-fcMRI during distracter presentation in both cortical and sub-cortical regions. Specifically, controls demonstrated reductions in tb-fcMRI between DLPFC and the extended amygdala when distraction was present. Conversely, patients failed to demonstrate a change in coupling with the amygdala, but showed greater connectivity with medio-dorsal thalamus. While controls showed more positive coupling between DLPFC and other prefrontal cortical regions during distracter presentation, patients failed to exhibit such a modulation. Taken together, these findings support the notion that observed distracter resistance deficit involves a breakdown in coupling between DLPFC and distributed regions, encompassing both subcortical (thalamic/limbic) and control region connectivity. PMID:22863548

  10. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    PubMed Central

    Sujan, M. U.; Rao, M. Raghavendra; Kisan, Ravikiran; Abhishekh, Hulegar A.; Nalini, Atchayaram; Raju, Trichur R.; Sathyaprabha, T. N.

    2016-01-01

    Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head) in migraine patients. Methods: Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20) or conventional medication only (n = 20). Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F) and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT), visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV) before and after intervention period. Results: There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017), increase in high frequency (HF) (P = 0.014) and decrease in low frequency/HF ratio (P = 0.004) in add on hydrotherapy group. Conclusion: Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients. PMID:26933356

  11. Heart rate variability and autonomic function tests in HIV positive individuals in India.

    PubMed

    Sakhuja, Ankit; Goyal, Ankur; Jaryal, Ashok Kumar; Wig, Naveet; Vajpayee, Madhu; Kumar, Ajay; Deepak, Kishore Kumar

    2007-06-01

    Supine heart rate variability (HRV) and autonomic tests were carried to determine whether autonomic activity was affected in HIV positive patients. The pressor response following handgrip and cold pressor test was blunted in HIV+ patients, and the degree of dysfunction correlated with CD4 cell counts. The extent of autonomic impairment was mild and subclinical.

  12. Abnormal functional MRI BOLD contrast in the vegetative state after severe traumatic brain injury.

    PubMed

    Heelmann, Volker; Lippert-Grüner, Marcela; Rommel, Thomas; Wedekind, Christoph

    2010-06-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal consciousness close to the vegetative state were studied clinically, electrophysiologically, and by means of functional magnetic resonance imaging. Visual, sensory, and acoustic paradigms were used for stimulation. In three patients examined less than 2 months after trauma, a consistent decrease in blood oxygen level dependent (BOLD) signal ('negative activation') was observed for visual stimulation; one case even showed a decrease in BOLD activation for all three activation paradigms. In the remaining three cases examined more than 6 months after trauma, visual stimulation yielded positive BOLD contrast or no activation. In all cases, sensory stimulation was followed by a decrease in BOLD signal or no activation, whereas auditory stimulation failed to elicit any activation with the exception of one case. Functional magnetic resonance imaging in the vegetative state indicates retained yet abnormal brain function; this abnormality can be attributed to the impairment of cerebral vascular autoregulation or an increase in the energy consumption of activated neocortex in severe traumatic brain injury.

  13. Electrophysiological consequences of KATP Gain-of-function in the heart: Conduction abnormalities in Cantu Syndrome

    PubMed Central

    Levin, Mark D.; Zhang, Haixia; Uchida, Keita; Grange, Dorothy K.; Singh, Gautam K.; Nichols, Colin G.

    2015-01-01

    Background Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities. Objective To better understand the electrophysiological consequences of such GOF mutations in the heart. Methods We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and carried out patch-clamp experiments on isolated ventricular myocytes, invasive electrophysiology on anesthetized mice. Results In Kir6.1-GOF ventricular myocytes, KATP channels show decreased ATP sensitivity, but there is no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice reveal AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiological analyses reveal slowing of conduction and conduction failure through the AV node, but no increase in susceptibility to atrial or ventricular ectopic activity. Surface electrocardiograms recorded from CS patients also demonstrate first degree AV block, and fascicular block. Conclusions The primary electrophysiological consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients, who carry KATP GOF mutations. PMID:26142302

  14. Abnormal function of the corpus luteum in some ewes with phyto-oestrogenic infertility.

    PubMed

    Adams, N R; Hearnshaw, H; Oldham, C M

    1981-01-01

    Ewes with permanent phyto-estrogenic infertility show oestrus less regularly than normal ewes, and the present study examines the extent to which this results from abnormal ovarian function. Forty-nine affected ewes and 53 controls were run with rams fitted with marking crayons and harnesses, and crayon marks were recorded and laparoscopy performed at weekly intervals for 3 weeks. Fewer affected ewes showed oestrus accompanied by ovulation (28 v. 49, P less than 0.001), and four of these affected ewes had a second ovulation during the experiment. More of the ovulations observed in affected ewes were unaccompanied by behavioural oestrus than in controls (8 out of 38 v. 2 out of 50; P less than 0.05). Six affected ewes had no corpus luteum or oestrus, and five of these had adhesions over the genitalia. Hydrops uteri in five other affected ewes was accompanied by prolonged maintenance of the corpus luteum. Some other abnormalities were also observed. In a second study, plasma progesterone concentrations were measured twice daily in 12 affected ewes which were run with rams. Five ewes had oestrous cycles of abnormal duration (two of more than 23 days, two of 21 days, and one of 11 days), and these were accompanied by plasma progesterone patterns different from those of the ewes with an oestrous cycle duration of 16-18 days. It is concluded that the irregular oestrous cycles in affected ewes are due mainly to abnormal life span and progesterone secretion by the corpus luteum, which in turn largely result from changes in the uterus.

  15. The anatomical and functional relationship between the P3 and autonomic components of the orienting response

    PubMed Central

    Nieuwenhuis, Sander; de Geus, Eco J.; Aston-Jones, Gary

    2013-01-01

    Many psychophysiologists have noted the striking similarities between the antecedent conditions for the P3 component of the event-related potential and the orienting response: both are typically elicited by salient, unexpected, novel, task-relevant, and other motivationally significant stimuli. Although the close coupling of the P3 and orienting response has been well documented, the neural basis and functional role of this relationship is still poorly understood. Here we propose that the simultaneous occurrence of the P3 and autonomic components of the orienting response reflects the co-activation of the locus coeruleus-norepinephrine system and the peripheral sympathetic nervous system by their common major afferent: the rostral ventrolateral medulla, a key sympathoexcitatory region. A comparison of the functional significance of the locus coeruleus-norepinephrine system and the peripheral sympathetic nervous system suggests that the P3 and orienting response reflect complementary cognitive and physical contributions to the mobilization for action following motivationally significant stimuli. PMID:20557480

  16. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia.

    PubMed

    Pu, Weidan; Li, Li; Zhang, Huiran; Ouyang, Xuan; Liu, Haihong; Zhao, Jingping; Li, Lingjiang; Xue, Zhimin; Xu, Ke; Tang, Haibo; Shan, Baoci; Liu, Zhening; Wang, Fei

    2012-10-01

    A salience network (SN), mainly composed of the anterior insula (AI) and anterior cingulate cortex (ACC), has been suggested to play an important role in salience attribution which has been proposed as central to the pathology of paranoid schizophrenia. The role of this SN in the pathophysiology of paranoid schizophrenia, however, still remains unclear. In the present study, voxel-based morphometry and resting-state functional connectivity analyses were combined to identify morphological and functional abnormalities in the proposed SN in the early-stage of paranoid schizophrenia (ESPS). Voxel-based morphometry and resting-state functional connectivity analyses were applied to 90 ESPS patients and 90 age- and sex-matched healthy controls (HC). Correlation analyses were performed to examine the relationships between various clinical variables and both gray matter morphology and functional connectivity within the SN in ESPS. Compared to the HC group, the ESPS group showed significantly reduced gray matter volume (GMV) in both bilateral AI and ACC. Moreover, significantly reduced functional connectivity within the SN sub-networks was identified in the ESPS group. These convergent morphological and functional deficits in SN were significantly associated with hallucinations. Additionally, illness duration correlated with reduced GMV in the left AI in ESPS. In conclusion, these findings provide convergent evidence for the morphological and functional abnormalities of the SN in ESPS. Moreover, the association of illness duration with the reduced GMV in the left AI suggests that the SN and the AI, in particular, may manifest progressive morphological changes that are especially important in the emergence of ESPS.

  17. [Diagnosis of small-fiber neuropathy using various autonomic function tests].

    PubMed

    Obayashi, Konen; Ando, Yukio

    2014-01-01

    It is well known that transthyretin-related familial amyloidotic polyneuropathy (TTR-FAP) and diabetic peripheral neuropathy are characterized by early selective involvement of small nerve fibers. However, early diagnosis of these diseases is not easy because prominent early diagnostic markers for small fiber neuropathies have not established. Thus, we adopted several methods to evaluate autonomic function accurately for detecting the onset of small-fiber neuropathy, such as laser-Doppler flowmetry, sweating tests using capsule type sweating ratemeter, morphological check of sweat gland, electrogastrography, density check of small-fiber and gastrointestinal interstitial cells of Cajal, R-R interval study, (123)I-MIBG myocardial scintigraphy, and head-up tilt test to check the overshoot phenomenon. These tests may indicate very early stage of small-fiber neuropathies in asymptomatic mutated TTR carriers or impaired glucose tolerance patients. Moreover, assessment of the pain thresholds by preferential stimulation of C and Aδ fibers are particularly useful tools for diagnosing the onset of small-fiber neuropathies in addition to the autonomic testing.

  18. Impaired Cardiac Autonomic Nervous System Function is Associated with Pediatric Hypertension Independent of Adiposity

    PubMed Central

    Ryder, Justin R.; O’Connell, Michael; Bosch, Tyler A.; Chow, Lisa; Rudser, Kyle D.; Dengel, Donald R.; Fox, Claudia K.; Steinberger, Julia; Kelly, Aaron S.

    2015-01-01

    Background We examined whether sympathetic nervous system activity influences hypertension status and systolic blood pressure (SBP) independent of adiposity in youth ranging from normal-weight to severe obesity. Methods We examined the association of heart rate variability (HRV) with hypertension status and SBP among youth (6-18 years old; n = 188; 103 female). Seated SBP was measured using an automated cuff. Pre-hypertension (SBP percentile≤90th-<95th) and hypertension (SBP percentile≤95th) were defined by age-, sex-, and height-norms. Autonomic nervous system activity was measured using HRV via SphygmoCorTM MM3 system and analyzed for time- and frequency-domains. Total body fat was measured via dual-energy X-ray absorptiometry. Results Logistic regression models demonstrated lower values in each time-domain HRV measure and larger LF:HF ratio to be significantly associated with higher odds of being pre-hypertensive/hypertensive (11-47% higher odds) independent of total body fat (p<0.05). In linear regression analysis, lower time-domain, but not frequency-domain, HRV measures were significantly associated with higher SBP independent of total body fat (p<0.05). Conclusion These data suggest that impaired cardiac autonomic nervous system function, at rest, is associated with higher odds of being pre-hypertensive/hypertensive and higher SBP which may be independent of adiposity in youth. PMID:26389821

  19. Assessment of the peripheral, central, and autonomic nervous system function in styrene workers

    SciTech Connect

    Murata, K.; Araki, S.; Yokoyama, K. )

    1991-01-01

    To investigate the effects of styrene exposure on peripheral, central, and autonomic nervous system functions in man, we measured the distribution of nerve conduction velocities (DCV), short-latency somatosensory evoked potentials (SSEP), and variability in electrocardiographic R-R interval (CVRR) as well as conventional sensory and motor median nerve conduction velocities (SCV and MCV) in eleven styrene-exposed workers. The styrene workers' urinary phenylglyoxylic acid levels ranged from 31 to 419 (mean 169) mg/g creatinine at the end of the work shift on the examination day (estimated exposure to styrene of 22 ppm in air). Control subjects, matched to each styrene worker by sex and age, were selected from healthy adults without cardiovascular, neurologic and other potentially confounding disorders. In the styrene workers, we found that the V80 velocity of the DCV, below which 80% of active nerve fibers lie, and the SCV were both significantly slowed; the CVRR was also significantly reduced. There were no significant differences in SSEP latencies, MCV, or heart rate between the exposed workers and controls. These data, despite the small sample size, suggest that styrene affects the faster myelinated fibers of the peripheral sensory nerves, and that it also affects autonomic nervous activity.

  20. [Axon-reflex based nerve fiber function assessment in the detection of autonomic neuropathy].

    PubMed

    Siepmann, T; Illigens, B M-W; Reichmann, H; Ziemssen, T

    2014-10-01

    Axon-reflex-based tests of peripheral small nerve fiber function including techniques to quantify vasomotor and sudomotor responses following acetylcholine iontophoresis are used in the assessment of autonomic neuropathy. However, the established axon-reflex-based techniques, laser Doppler flowmetry (LDF) to assess vasomotor function and quantitative sudomotor axon-reflex test (QSART) to measure sudomotor function, are limited by technically demanding settings as well as interindividual variability and are therefore restricted to specialized clinical centers. New axon-reflex tests are characterized by quantification of axon responses with both temporal and spatial resolution and include "laser Doppler imaging (LDI) axon-reflex flare area test" to assess vasomotor function, the quantitative direct and indirect test of sudomotor function (QDIRT) to quantify sudomotor function, as well as the quantitative pilomotor axon-reflex test (QPART), a technique to measure pilomotor nerve fiber function using adrenergic cutaneous stimulation through phenylephrine iontophoresis. The effectiveness of new axon-reflex tests in the assessment of neuropathy is currently being investigated in clinical studies.

  1. Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.

    PubMed

    Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F

    2015-10-01

    The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia.

  2. Abnormal functional connectivity in focal hand dystonia: mutual information analysis in EEG.

    PubMed

    Jin, Seung-Hyun; Lin, Peter; Auh, Sungyoung; Hallett, Mark

    2011-06-01

    The aim of the present study was to investigate functional connectivity in focal hand dystonia patients to understand the pathophysiology underlying their abnormality in movement. We recorded EEGs from 58 electrodes in 15 focal hand dystonia patients and 15 healthy volunteers during rest and a simple finger-tapping task that did not induce any dystonic symptoms. We investigated mutual information, which provides a quantitative measure of linear and nonlinear coupling, in the alpha, beta, and gamma bands. Mean mutual information of all 58 channels and mean of the channels of interest representative of regional functional connectivity over sensorimotor areas (C3, CP3, C4, CP4, FCz, and Cz) were evaluated. For both groups, we found enhanced mutual information during the task compared with the rest condition, specifically in the beta and gamma bands for mean mutual information of all channels, and in all bands for mean mutual information of channels of interest. Comparing the focal hand dystonia patients with the healthy volunteers for both rest and task, there was reduced mutual information in the beta band for both mean mutual information of all channels and mean mutual information of channels of interest. Regarding the properties of the connectivity in the beta band, we found that the majority of the mutual information differences were from linear connectivity. The abnormal beta-band functional connectivity in focal hand dystonia patients suggests deficient brain connectivity.

  3. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  4. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  5. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.

    PubMed

    Martin, Caroline; Dubouchaud, Hervé; Mosoni, Laurent; Chardigny, Jean-Michel; Oudot, Alexandra; Fontaine, Eric; Vergely, Catherine; Keriel, Christiane; Rochette, Luc; Leverve, Xavier; Demaison, Luc

    2007-04-01

    Aging triggers several abnormalities in muscle glycolytic fibers including increased proteolysis, reactive oxygen species (ROS) production and apoptosis. Since the mitochondria are the main site of substrate oxidation, ROS production and programmed cell death, we tried to know whether the cellular disorders encountered in sarcopenia are due to abnormal mitochondrial functioning. Gastrocnemius mitochondria were extracted from adult (6 months) and aged (21 months) male Wistar rats. Respiration parameters, opening of the permeability transition pore and ROS production, with either glutamate (amino acid metabolism) or pyruvate (glucose metabolism) as a respiration substrate, were evaluated at different matrix calcium concentrations. Pyruvate dehydrogenase and respiratory complex activities as well as their contents measured by Western blotting analysis were determined. Furthermore, the fatty acid profile of mitochondrial phospholipids was also measured. At physiological calcium concentration, state III respiration rate was lowered by aging in pyruvate conditions (-22%), but not with glutamate. The reduction of pyruvate oxidation resulted from a calcium-dependent inactivation of the pyruvate dehydrogenase system and could provide for the well-known proteolysis encountered during sarcopenia. Matrix calcium loading and aging increased ROS production. They also reduced the oxidative phosphorylation. This was associated with lower calcium retention capacities, suggesting that sarcopenic fibers are more prone to programmed cell death. Aging was also associated with a reduced mitochondrial superoxide dismutase activity, which does not intervene in toxic ROS overproduction but could explain the lower calcium retention capacities. Despite a lower content, cytochrome c oxidase displayed an increased activity associated with an increased n-6/n-3 polyunsaturated fatty acid ratio of mitochondrial phospholipids. In conclusion, we propose that mitochondria obtained from aged muscle

  6. Functional evaluation of an inherited abnormal fibrinogen: fibrinogen “Baltimore”

    PubMed Central

    Beck, Eugene A.; Shainoff, John R.; Vogel, Alfred; Jackson, Dudley P.

    1971-01-01

    The rate of clotting and the rate of development and degree of turbidity after addition of thrombin to plasma or purified fibrinogen from a patient with fibrinogen Baltimore was delayed when compared with normal, especially in the presence of low concentrations of thrombin. Optimal coagulation and development of translucent, rather than opaque, clots occurred at a lower pH with the abnormal fibrinogen than with normal. Development of turbidity during clotting of the abnormal plasma or fibrinogen was less than normal at each pH tested, but was maximal in both at approximately pH 6.4. The physical quality of clots formed from fibrinogen Baltimore was abnormal, as demonstrated by a decreased amplitude on thromboelastography. The morphologic appearance of fibrin strands formed from fibrinogen Baltimore by thrombin at pH 7.4 was abnormal when examined by phase contrast or electron microscopy, but those formed by thrombin at pH 6.4 or by thrombin and calcium chloride were similar to, though less compact, than normal fibrin. The periodicity of fibrin formed from fibrinogen Baltimore was similar to normal and was 231-233 Å. A study of the release of the fibrinopeptides from the patient's fibrinogen and its chromatographic subfractions verified the existence of both a normally behaving and a defective form of fibrinogen in the patient's plasma. The defective form differed from normal in three functionally different ways: (a) the rate of release of fibrinopeptides A and AP was slower than normal; (b) no visible clot formation accompanied either partial or complete release of the fibrinopeptides from the defective form in 0.3 M NaCl at pH 7.4; and (c) the defective component possessed a high proportion of phosphorylated, relative to nonphosphorylated, fibrinopeptide A, while the coagulable component contained very little of the phosphorylated peptide (AP). The high phosphate content of the defective component did not appear to be the cause of the abnormality, but may be the

  7. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.

    PubMed

    Becker, Henrike; Renner, Simone; Technau, Gerhard M; Berger, Christian

    2016-03-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  8. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila

    PubMed Central

    Becker, Henrike; Renner, Simone; Technau, Gerhard M.; Berger, Christian

    2016-01-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  9. Exercise tolerance, lung function abnormalities, anemia, and cardiothoracic ratio in sickle cell patients.

    PubMed

    van Beers, Eduard J; van der Plas, Mart N; Nur, Erfan; Bogaard, Harm-Jan; van Steenwijk, Reindert P; Biemond, Bart J; Bresser, Paul

    2014-08-01

    Many patients with sickle cell disease (SCD) have a reduced exercise capacity and abnormal lung function. Cardiopulmonary exercise testing (CPET) can identify causes of exercise limitation. Forty-four consecutive SCD patients (27 HbSS, 11 HbSC, and 6 HbS-beta thalassemia) with a median age (interquartile range) of 26 (21-41) years underwent pulmonary function tests, CPET, chest x-ray, and echocardiography to further characterize exercise limitation in SCD. Peak oxygen uptake (V'O2 -peak), expressing maximum exercise capacity, was decreased in 83% of the studied patients. V'O2 -peak correlated with hemoglobin levels (R = 0.440, P = 0.005), forced vital capacity (FVC) (R = 0.717, P < 0.0001). Cardiothoracic ratio on chest x-ray inversely correlated with FVC (R = -0.637, P < 0.001). According to criteria for exercise limitation, the patients were limited in exercise capacity due to anemia (n = 17), cardiovascular dysfunction (n = 2), musculoskeletal function (n = 10), pulmonary ventilatory abnormalities (n = 1), pulmonary vascular exercise limitation (n = 1), and poor effort (n = 3). In the present study we demonstrate that anemia is the most important determinant of reduced exercise tolerance observed in SCD patients without signs of pulmonary hypertension. We found a strong correlation between various parameters of lung volume and cardiothoracic ratio and we hypothesize that cardiomegaly and relative small chest size may be important causes of the impairment in pulmonary function, that is, reduced long volumes and diffusion capacity, in SCD. Taking into account anthropomorphic differences between SCD patients and controls could help to interpret lung function studies in SCD better.

  10. Presynaptic Inhibitory Terminals Are Functionally Abnormal in a Rat Model of Posttraumatic Epilepsy

    PubMed Central

    Faria, Leonardo C.

    2010-01-01

    Partially isolated “undercut” neocortex with intact pial circulation is a well-established model of posttraumatic epileptogenesis. Results of previous experiments showed a decreased frequency of miniature inhibitory postsynaptic currents (mIPSCs) in layer V pyramidal (Pyr) neurons of undercuts. We further examined possible functional abnormalities in GABAergic inhibition in rat epileptogenic neocortical slices in vitro by recording whole cell monosynaptic IPSCs in layer V Pyr cells and fast-spiking (FS) GABAergic interneurons using a paired pulse paradigm. Compared with controls, IPSCs in Pyr neurons of injured slices showed increased threshold and decreased peak amplitude at threshold, decreased input/output slopes, increased failure rates, and a shift from paired pulse depression toward paired pulse facilitation (increased paired pulse ratio or PPR). Increasing [Ca2+]o from 2 to 4 mM partially reversed these abnormalities in Pyr cells of the epileptogenic tissue. IPSCs onto FS cells also had an increased PPR and failures. Blockade of GABAB receptors did not affect the paired results. These findings suggest that there are functional alterations in GABAergic presynaptic terminals onto both Pyr and FS cells in this model of posttraumatic epileptogenesis. PMID:20484536

  11. Abnormalities in itch sensation and skin barrier function in atopic NC/Tnd mice.

    PubMed

    Amagai, Yosuke; Matsuda, Hiroshi; Tanaka, Akane

    2013-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by dryness and itchy skin. Genetic factors as well as other factors, including abnormality in skin barrier function, hypersensitivity of itch sensory nerves, and dysfunction of the immune system, strongly affect the onset and exacerbation of AD. Recently, it has become clear that itch sensation is closely related to pain sensation. By using NC/Tnd mice, a unique spontaneous animal model for human AD, we found abnormalities in sensitivity against external stimuli as compared to two standard strains, BALB/c and B6 mice. Particularly, in conventional NC/Tnd mice with AD, stimulation against transient receptor potential (TRP) V1 reduced the scratching behavior, suggesting the possibility of a TRPV1 modulator in the treatment of atopic itch. The review outlines observations regarding itch sensation and skin barrier function in NC/Tnd mice by using a novel itch quantification system for the laboratory animals, which may bring great progress in the future study of itch.

  12. Examining the Roles of Work Autonomous and Controlled Motivations on Satisfaction and Anxiety as a Function of Role Ambiguity.

    PubMed

    Gillet, Nicolas; Fouquereau, Evelyne; Lafrenière, Marc-André K; Huyghebaert, Tiphaine

    2016-07-03

    Past research in the self-determination theory has shown that autonomous motivation is associated with positive outcomes (e.g., work satisfaction), whereas controlled motivation is related to negative outcomes (e.g., anxiety). The purpose of the present research was to examine the moderating function of role ambiguity on the relationships between work autonomous and controlled motivations on the one hand, and work satisfaction and anxiety on the other. Six hundred and ninety-eight workers (449 men and 249 women) participated in this study. Results revealed that autonomous motivation was most strongly related to satisfaction when ambiguity was low. In addition, controlled motivation was most strongly related to anxiety when ambiguity was high. In other words, the present findings suggest that the outcomes associated with each form of motivation may vary as a function of role ambiguity. The present study thus offers meaningful insights for organizations, managers, and employees.

  13. Current Approaches to Quantifying Tonic and Reflex Autonomic Outflows Controlling Cardiovascular Function in Humans and Experimental Animals.

    PubMed

    Salman, Ibrahim M

    2015-11-01

    The role of the autonomic nervous system in the pathophysiology of human and experimental models of cardiovascular disease is well established. In the recent years, there have been some rapid developments in the diagnostic approaches used to assess and monitor autonomic functions. Although most of these methods are devoted for research purposes in laboratory animals, many have still found their way to routine clinical practice. To name a few, direct long-term telemetry recording of sympathetic nerve activity (SNA) in rodents, single-unit SNA recording using microneurography in human subjects and spectral analysis of blood pressure and heart rate in both humans and animals have recently received an overwhelming attention. In this article, we therefore provide an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and experimental animals, highlighting current advances available and procedure description, limitations and usefulness for diagnostic purposes.

  14. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.

    PubMed

    Chung, Cheng-Shiu; Wang, Hongwu; Cooper, Rory A

    2013-06-01

    Autonomous functions for wheelchair-mounted robotic manipulators (WMRMs) allow a user to focus more on the outcome from the task - for example, eating or drinking, instead of moving robot joints through user interfaces. In this paper, we introduce a novel personal assistive robotic system based on a position-based visual servoing (PBVS) approach. The system was evaluated with a complete drinking task, which included recognizing the location of the drink, picking up the drink from a start location, conveying the drink to the proximity of the user's mouth without spilling, and placing the drink back on the table. For a drink located in front of the wheelchair, the success rate was nearly 100%. Overall, the total time of completing drinking task is within 40 seconds.

  15. Perception system and functions for autonomous navigation in a natural environment

    NASA Technical Reports Server (NTRS)

    Chatila, Raja; Devy, Michel; Lacroix, Simon; Herrb, Matthieu

    1994-01-01

    This paper presents the approach, algorithms, and processes we developed for the perception system of a cross-country autonomous robot. After a presentation of the tele-programming context we favor for intervention robots, we introduce an adaptive navigation approach, well suited for the characteristics of complex natural environments. This approach lead us to develop a heterogeneous perception system that manages several different terrain representatives. The perception functionalities required during navigation are listed, along with the corresponding representations we consider. The main perception processes we developed are presented. They are integrated within an on-board control architecture we developed. First results of an ambitious experiment currently underway at LAAS are then presented.

  16. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis*

    PubMed Central

    Yin, Yan; Liu, Liren; Yang, Chenyi; Lin, Congxing; Veith, George Michael; Wang, Caihong; Sutovsky, Peter; Zhou, Pengbo; Ma, Liang

    2016-01-01

    CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation of Cul4a in mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4b germ cell-specific conditional knock-out (Cul4bVasa),as well as Cul4b global knock-out (Cul4bSox2) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4b led to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore, Cul4bVasa spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless, Cul4b global knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis. PMID:26846852

  17. Potential benefits of mindfulness during pregnancy on maternal autonomic nervous system function and infant development.

    PubMed

    Braeken, Marijke A K A; Jones, Alexander; Otte, Renée A; Nyklíček, Ivan; Van den Bergh, Bea R H

    2017-02-01

    Mindfulness is known to decrease psychological distress. Possible benefits in pregnancy have rarely been explored. Our aim was to examine the prospective association of mindfulness with autonomic nervous system function during pregnancy and with later infant social-emotional development. Pregnant women (N = 156) completed self-report mindfulness and emotional distress questionnaires, and had their autonomic function assessed in their first and third trimesters, including heart rate (HR), indices of heart rate variability (HRV), preejection period (PEP), and systolic (SBP) and diastolic blood pressure (DBP). The social-emotional development of 109 infants was assessed at 4 months of age. More mindful pregnant women had less prenatal and postnatal emotional distress (p < .001) and higher cardiac parasympathetic activity: root mean square of successive differences (RMSSD: p = .03) and high-frequency (HF) HRV (p = .02). Between the first and third trimesters, women's overall HR increased (p < .001), and HRV (RMSSD, HF HRV, and low-frequency (LF) HRV: p < .001) and PEP decreased (p < .001). In more mindful mothers, parasympathetic activity decreased less (RMSSD: p = .01; HF HRV: p = .03) and sympathetic activity (inversely related to PEP) increased less (PEP: p = .02) between trimesters. Their offspring displayed less negative social-emotional behavior (p = .03) compared to offspring of less mindful mothers. Mindfulness in pregnancy was associated with ANS changes likely to be adaptive and with better social-emotional offspring development. Interventions to increase mindfulness during pregnancy might improve maternal and offspring health, but randomized trials are needed to demonstrate this.

  18. Age-related decline in cardiac autonomic function is not attenuated with increased physical activity

    PubMed Central

    Njemanze, Hugo; Warren, Charlotte; Eggett, Christopher; MacGowan, Guy A.; Bates, Matthew G D; Siervo, Mario; Ivkovic, Srdjan; Trenell, Michael I.; Jakovljevic, Djordje G.

    2016-01-01

    Age and physical inactivity are important risk factors for cardiovascular mortality. Heart rate response to exercise (HRRE) and heart rate recovery (HRR), measures of cardiac autonomic function, are strong predictors of mortality. The present study defined the effect of age and physical activity on HRRE and HRR. Healthy women (N=72) grouped according to age (young, 20-30 years; middle, 40-50 years; and older, 65-81 years) and daily physical activity (low active <7500, high active >12,500 steps/day) performed a maximal cardiopulmonary exercise test. The HRRE was defined as an increase in heart rate from rest to 1, 3 and 5 minutes of exercise and at 1/3 of total exercise time, and HRR as the difference in heart rate between peak exercise and 1, 2, and 3 minutes later. Age was associated with a significant decline in HRRE at 1 min and 1/3 of exercise time (r= − 0.27, p=0.04, and r=−0.39, p=0.02) and HRR at 2 min and 3 min (r=−0.35, p=0.01, and r=−0.31, p=0.02). There was no significant difference in HRRE and HRR between high and low-active middle-age and older women (p>0.05). Increased level of habitual physical activity level appears to have a limited effect on age-related decline in cardiac autonomic function in women. PMID:27705949

  19. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis.

    PubMed

    Yin, Yan; Liu, Liren; Yang, Chenyi; Lin, Congxing; Veith, George Michael; Wang, Caihong; Sutovsky, Peter; Zhou, Pengbo; Ma, Liang

    2016-03-25

    CUL4B ubiquitin ligase belongs to the cullin-RING ubiquitin ligase family. Although sharing many sequence and structural similarities, CUL4B plays distinct roles in spermatogenesis from its homologous protein CUL4A. We previously reported that genetic ablation ofCul4ain mice led to male infertility because of aberrant meiotic progression. In the present study, we generated Cul4bgerm cell-specific conditional knock-out (Cul4b(Vasa)),as well asCul4bglobal knock-out (Cul4b(Sox2)) mouse, to investigate its roles in spermatogenesis. Germ cell-specific deletion of Cul4bled to male infertility, despite normal testicular morphology and comparable numbers of spermatozoa. Notably, significantly impaired sperm mobility caused by reduced mitochondrial activity and glycolysis level were observed in the majority of the mutant spermatozoa, manifested by low, if any, sperm ATP production. Furthermore,Cul4b(Vasa)spermatozoa exhibited defective arrangement of axonemal microtubules and flagella outer dense fibers. Our mass spectrometry analysis identified INSL6 as a novel CUL4B substrate in male germ cells, evidenced by its direct polyubiquination and degradation by CUL4B E3 ligase. Nevertheless,Cul4bglobal knock-out males lost their germ cells in an age-dependent manner, implying failure of maintaining the spermatogonial stem cell niche in somatic cells. Taken together, our results show that CUL4B is indispensable to spermatogenesis, and it functions cell autonomously in male germ cells to ensure spermatozoa motility, whereas it functions non-cell-autonomously in somatic cells to maintain spermatogonial stemness. Thus, CUL4B links two distinct spermatogenetic processes to a single E3 ligase, highlighting the significance of ubiquitin modification during spermatogenesis.

  20. Abnormalities of sodium excretion and other disorders of renal function in fulminant hepatic failure.

    PubMed Central

    Wilkinson, S P; Arroyo, V A; Moodie, H; Blendis, L M; Williams, R

    1976-01-01

    Renal function was evaluated in 40 patients with fulminant hepatic failure, They were divided into two groups on the basis of glomerular filtration rates greater than 40 ml/min or less than 25 ml/min. A number of patients in group 1 had markedly abnormal renal retention of sodium together with a reduced free water clearance and low potassium excretion which could be explained by increased proximal tubular reabsorption of sodium. The patients in group 2 had evidence that renal tubular integrity was maintained when the glomerular filtration rate was greater than or equal ml/min (functional renal failure), but evidence of tubular damage was present when this was less than 3 ml/min (acute tubular necrosis). PMID:964682

  1. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  2. Effect of Mindfulness Meditation on Perceived Stress Scores and Autonomic Function Tests of Pregnant Indian Women

    PubMed Central

    Jain, Reena; Kohli, Sangeeta; Batra, Swaraj

    2016-01-01

    Introduction Various pregnancy complications like hypertension, preeclampsia have been strongly correlated with maternal stress. One of the connecting links between pregnancy complications and maternal stress is mind-body intervention which can be part of Complementary and Alternative Medicine (CAM). Biologic measures of stress during pregnancy may get reduced by such interventions. Aim To evaluate the effect of Mindfulness meditation on perceived stress scores and autonomic function tests of pregnant Indian women. Materials and Methods Pregnant Indian women of 12 weeks gestation were randomised to two treatment groups: Test group with Mindfulness meditation and control group with their usual obstetric care. The effect of Mindfulness meditation on perceived stress scores and cardiac sympathetic functions and parasympathetic functions (Heart rate variation with respiration, lying to standing ratio, standing to lying ratio and respiratory rate) were evaluated on pregnant Indian women. Results There was a significant decrease in perceived stress scores, a significant decrease of blood pressure response to cold pressor test and a significant increase in heart rate variability in the test group (p< 0.05, significant) which indicates that mindfulness meditation is a powerful modulator of the sympathetic nervous system and can thereby reduce the day-to-day perceived stress in pregnant women. Conclusion The results of this study suggest that mindfulness meditation improves parasympathetic functions in pregnant women and is a powerful modulator of the sympathetic nervous system during pregnancy. PMID:27190795

  3. Pulmonary function tests in type 1 diabetes adolescents with diabetic cardiovascular autonomic neuropathy.

    PubMed

    Ďurdík, Peter; Vojtková, Jarmila; Michnová, Zuzana; Turčan, Tomáš; Šujanská, Anna; Kuchta, Milan; Čiljaková, Miriam

    2016-01-01

    Chronic diabetic complications may afflict all organ tissues including cardiovascular and respiratory system. The aim of the study was to establish if the presence of cardiovascular autonomic neuropathy (CAN) was associated with impaired pulmonary function tests in adolescents with type 1 diabetes (T1D). 46 adolescents with T1D and 25 healthy subjects at the age 15-19years were enrolled to the study. Basic anthropometric data, diabetes onset and duration, plasma glucose and A1c were established. Pulmonary function tests were measured by spirometry and the presence of CAN was examined by heart rate variability. Adolescents with T1D had significantly lower pulmonary function test parameters - FVC (p<0.01), FEV1 (p<0.01), MMEF (p<0.05) and PEFR (p<0.05) compared to the control subjects. In diabetic group, patients with CAN (CAN+, n=19) had significantly lower FVC (p<0.05), FEV1 (p<0.05) and PEFR (p<0.05) compared to patients without CAN (CAN-, n=27). All spirometric parameters were significantly lower in CAN+ subjects compared to healthy controls; however, no significant difference was found in these parameters between CAN- subjects and healthy controls. Spirometric parameters (FVC, FEV1) significantly positively correlated with diabetes onset and body mass index; and negatively correlated with diabetes duration and resting heart rate. Our results indicate that CAN may be associated with reduced pulmonary functions in adolescents with T1D.

  4. Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans

    PubMed Central

    Farmer, Adam D; Ban, Vin F; Coen, Steven J; Sanger, Gareth J; Barker, Gareth J; Gresty, Michael A; Giampietro, Vincent P; Williams, Steven C; Webb, Dominic L; Hellström, Per M; Andrews, Paul L R; Aziz, Qasim

    2015-01-01

    Abstract An integrated understanding of the physiological mechanisms involved in the genesis of nausea remains lacking. We aimed to describe the psychophysiological changes accompanying visually induced motion sickness, using a motion video, hypothesizing that differences would be evident between subjects who developed nausea in comparison to those who did not. A motion, or a control, stimulus was presented to 98 healthy subjects in a randomized crossover design. Validated questionnaires and a visual analogue scale (VAS) were used for the assessment of anxiety and nausea. Autonomic and electrogastrographic activity were measured at baseline and continuously thereafter. Plasma vasopressin and ghrelin were measured in response to the motion video. Subjects were stratified into quartiles based on VAS nausea scores, with the upper and lower quartiles considered to be nausea sensitive and resistant, respectively. Twenty-eight subjects were exposed to the motion video during functional neuroimaging. During the motion video, nausea-sensitive subjects had lower normogastria/tachygastria ratio and cardiac vagal tone but higher cardiac sympathetic index in comparison to the control video. Furthermore, nausea-sensitive subjects had decreased plasma ghrelin and demonstrated increased activity of the left anterior cingulate cortex. Nausea VAS scores correlated positively with plasma vasopressin and left inferior frontal and middle occipital gyri activity and correlated negatively with plasma ghrelin and brain activity in the right cerebellar tonsil, declive, culmen, lingual gyrus and cuneus. This study demonstrates that the subjective sensation of nausea is associated with objective changes in autonomic, endocrine and brain networks, and thus identifies potential objective biomarkers and targets for therapeutic interventions. Key points Nausea is a highly individual and variable experience. The reasons for this variability are incompletely understood although

  5. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging.

    PubMed

    Kiehl, Kent A; Smith, Andra M; Mendrek, Adrianna; Forster, Bruce B; Hare, Robert D; Liddle, Peter F

    2004-04-30

    We tested the hypothesis that psychopathy is associated with abnormalities in semantic processing of linguistic information. Functional magnetic resonance imaging (fMRI) was used to elucidate and characterize the neural architecture underlying lexico-semantic processes in criminal psychopathic individuals and in a group of matched control participants. Participants performed a lexical decision task in which blocks of linguistic stimuli alternated with a resting baseline condition. In each lexical decision block, the stimuli were either concrete words and pseudowords or abstract words and pseudowords. Consistent with our hypothesis, psychopathic individuals, relative to controls, showed poorer behavioral performance for processing abstract words. Analysis of the fMRI data for both groups indicated that processing of word stimuli, compared with the resting baseline condition, was associated with neural activation in bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. Analyses confirmed our prediction that psychopathic individuals would fail to show the appropriate neural differentiation between abstract and concrete stimuli in the right anterior temporal gyrus and surrounding cortex. The results are consistent with other studies of semantic processing in psychopathy and support the theory that psychopathy is associated with right hemisphere abnormalities for processing conceptually abstract material.

  6. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging.

    PubMed

    Kiehl, Kent A; Smith, Andra M; Mendrek, Adrianna; Forster, Bruce B; Hare, Robert D; Liddle, Peter F

    2004-01-15

    We tested the hypothesis that psychopathy is associated with abnormalities in semantic processing of linguistic information. Functional magnetic resonance imaging (fMRI) was used to elucidate and characterize the neural architecture underlying lexico-semantic processes in criminal psychopathic individuals and in a group of matched control participants. Participants performed a lexical decision task in which blocks of linguistic stimuli alternated with a resting baseline condition. In each lexical decision block, the stimuli were either concrete words and pseudowords or abstract words and pseudowords. Consistent with our hypothesis, psychopathic individuals, relative to controls, showed poorer behavioral performance for processing abstract words. Analysis of the fMRI data for both groups indicated that processing of word stimuli, compared with the resting baseline condition, was associated with neural activation in bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. Analyses confirmed our prediction that psychopathic individuals would fail to show the appropriate neural differentiation between abstract and concrete stimuli in the right anterior temporal gyrus and surrounding cortex. The results are consistent with other studies of semantic processing in psychopathy and support the theory that psychopathy is associated with right hemisphere abnormalities for processing conceptually abstract material.

  7. Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II

    PubMed Central

    Kudo, Takashi; Matsuoka, Kiwamu; Yamamoto, Akihide; Takahashi, Masato; Nakagawara, Jyoji; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi

    2016-01-01

    Background A significantly lower fractional anisotropy (FA) value has been shown in anterior parts of the corpus callosum in patients with bipolar disorder. Aims We investigated the association between abnormal corpus callosum integrity and interhemispheric functional connectivity (IFC) in patients with bipolar disorder. Methods We examined the association between FA values in the corpus callosum (CC-FA) and the IFC between homotopic regions in the anterior cortical structures of bipolar disorder (n=16) and major depressive disorder (n=22) patients with depressed or euthymic states. Results We found a positive correlation between the CC-FA and IFC values between homotopic regions of the ventral prefrontal cortex and insula cortex, and significantly lower IFC between these regions in bipolar disorder patients. Conclusions The abnormal corpus callosum integrity in bipolar disorder patients is relevant to the IFC between homotopic regions, possibly disturbing the exchange of emotional information between the cerebral hemispheres resulting in emotional dysregulation. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:27847590

  8. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis

    PubMed Central

    Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R.

    2015-01-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = −6.336, p <0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = −0.355; p <0.001) but faster gait velocity (estimate = 14.855; p <0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  9. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  10. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula

    PubMed Central

    Avery, Jason; Drevets, Wayne C.; Moseman, Scott; Bodurka, Jerzy; Barcalow, Joel; Simmons, W. Kyle

    2014-01-01

    Background Somatic complaints and altered interoceptive awareness are common features in the clinical presentation of major depressive disorder (MDD). Recently, neurobiological evidence has accumulated demonstrating that the insula is one of the primary cortical structures underlying interoceptive awareness. Abnormal interoceptive representation within the insula may thus contribute to the pathophysiology and symptomatology of MDD. Methods We compared fMRI blood oxygenation level-dependent (BOLD) responses between twenty unmedicated adults with MDD and twenty healthy control participants during a task requiring attention to visceral interoceptive sensations and also assessed the relationship of this BOLD response to depression severity, as rated using the Hamilton Depression Rating Scale (HDRS). Additionally, we examined between-group differences in insula resting-state functional connectivity, and its relationship to HDRS ratings of depression severity. Results Relative to the healthy controls, unmedicated MDD subjects exhibited decreased activity bilaterally in the dorsal mid-insula cortex (dmIC) during interoception, as well as within a network of brain regions implicated previously in emotion and visceral control. Activity within the insula during the interoceptive attention task was negatively correlated with both depression severity and somatic symptom severity in depressed subjects. MDD also was associated with greater resting-state functional connectivity between the dmIC and limbic brain regions implicated previously in MDD, including the amygdala, subgenual prefrontal cortex, and orbitofrontal cortex. Moreover, functional connectivity between these regions and the dmIC was positively correlated with depression severity. Conclusions MDD and the somatic symptoms of depression are associated with abnormal interoceptive representation within the insula. PMID:24387823

  11. Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts

    PubMed Central

    Conway de Macario, Everly; Robb, Frank T.; Macario, Alberto J. L.

    2017-01-01

    All archaea have a chaperonin of Group II (thermosome) in their cytoplasm and some have also a chaperonin of Group I (GroEL; Cpn60; Hsp60). Conversely, all bacteria have GroEL, some in various copies, but only a few have, in addition, a chaperonin (tentatively designated Group III chaperonin) very similar to that occurring in all archaea, i.e., the thermosome subunit, and in the cytosol of eukaryotic cells, named CCT. Thus, nature offers a range of prokaryotic organisms that are potentially useful as experimental models to study the human CCT and its abnormalities. This is important because many diseases, the chaperonopathies, have been identified in which abnormal chaperones, including mutant CCT, are determinant etiologic-pathogenic factors and, therefore, research is needed to elucidate their pathologic features at the molecular level. Such research should lead to the clarification of the molecular mechanisms underlying the pathologic lesions observed in the tissues and organs of patients with chaperonopathies. Information on these key issues is necessary to make progress in diagnosis and treatment. Some of the archaeal organisms as well as some of the bacterial models suitable for studying molecular aspects pertinent to human mutant chaperones are discussed here, focusing on CCT. Results obtained with the archaeon Pyrococcus furiosus model to investigate the impact of a pathogenic CCT5 mutation on molecular properties and chaperoning functions are reviewed. The pathogenic mutation examined weakens the ability of the chaperonin subunit to form stable hexadecamers and as a consequence, the chaperoning functions of the complex are impaired. The future prospect is to find means for stabilizing the hexadecamer, which should lead to a recovering of chaperone function and the improving of lesions and clinical condition. PMID:28119916

  12. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function

    PubMed Central

    Jiang, Li; Tam, Beatrice M.; Ying, Guoxing; Wu, Sen; Hauswirth, William W.; Frederick, Jeanne M.; Moritz, Orson L.; Baehr, Wolfgang

    2015-01-01

    In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3.—Jiang, L., Tam, B. M., Ying, G., Wu, S., Hauswirth, W. W., Frederick, J. M., Moritz, O. L., Baehr, W. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. PMID:26229057

  13. Emotional Responses to Odors in Children with High-Functioning Autism: Autonomic Arousal, Facial Behavior and Self-Report

    ERIC Educational Resources Information Center

    Legisa, Jasna; Messinger, Daniel S.; Kermol, Enzo; Marlier, Luc

    2013-01-01

    Although emotional functioning is impaired in children with autism, it is unclear if this impairment is due to difficulties with facial expression, autonomic responsiveness, or the verbal description of emotional states. To shed light on this issue, we examined responses to pleasant and unpleasant odors in eight children (8-14 years) with…

  14. Autonomic function at rest and in response to emotional and rectal stimuli in women with irritable bowel syndrome.

    PubMed

    Spetalen, Signe; Sandvik, Leiv; Blomhoff, Svein; Jacobsen, Morten B

    2008-06-01

    Our aim was to study autonomic function in patients with Irritable bowel syndrome (IBS) without constipation and psychiatric comorbidity. Respiratory sinus arrhythmia (RSA) (representing cardiac vagal activity), skin conductance (representing sympathetic activity) and heart rate were measured at baseline and as a response to emotional stress and rectal discomfort in 33 women with IBS and 21 healthy women. Baseline heart rate was higher in the patients than in the healthy volunteers. Both groups had decreased RSA and increased heart rate and skin conductance level when exposed to emotional stress, but the autonomic responses did not differ significantly between the groups. At discomfort threshold the patients had increased heart rate response and skin conductance amplitude when compared to the healthy volunteers. Correlations between autonomic responses and the depression subscale of the Hospital Anxiety and Depression (HAD) score differed markedly between the diarrhea-predominant IBS patients and the IBS patients with alternating stool habits.

  15. Autonomic Nervous System Function in Infants with Transposition of the Great Arteries

    PubMed Central

    Harrison, Tondi M.; Brown, Roger L.

    2011-01-01

    The ability to maintain homeostasis and respond to challenges to homeostasis is primarily a function of the autonomic nervous system (ANS) and may be impaired in infants with complex congenital heart defects. This study described change in ANS function before and after surgical correction in infants with transposition of the great arteries (TGA) and in healthy infants. Fifteen newborn infants with TGA were matched with 16 healthy infants on age, gender, and feeding type. ANS function was measured using heart rate variability (HRV). Data were collected pre-operatively in the first week of life and post-operatively before, during, and after feeding at two weeks and two months of age. At baseline, infants with TGA demonstrated significantly lower high frequency and low frequency HRV pre-operatively (p <.001) when compared with healthy infants. At two weeks, infants with TGA were less likely than healthy infants to demonstrate adaptive changes in high frequency HRV during-feeding (Wald Z = 2.002, p = .045), and at two months, 40% of TGA infants exhibited delayed post-feeding recovery. Further research is needed to more thoroughly describe mechanisms of a physiologically adaptive response to feeding and to develop nursing interventions supportive of these high risk infants. PMID:21613339

  16. Quantitative autonomic testing in the management of botulism.

    PubMed

    Topakian, Raffi; Heibl, Christoph; Stieglbauer, Karl; Dreer, Bettina; Nagl, Markus; Knoflach, Peter; Aichner, Franz Thaddäus

    2009-05-01

    Even with mild neurological signs, patients with botulism frequently complain of autonomic symptoms. This study aimed at the evaluation of sudomotor and cardiovascular reflex functions by quantitative autonomic testing (QAT), which may identify patients with autonomic involvement but otherwise benign clinical presentation. Five patients with food-borne botulism were subjected to a structured questionnaire on autonomic symptoms, cardiac and neurological examination, and QAT after a median of 2 weeks (baseline) and 12 weeks (follow-up) post intoxication. For calculation of haemodynamic and cardiovascular autonomic parameters, we used the Task Force((R)) Monitor (Version 2.1, CNSystems, Graz, Austria). Cardiovagal function was assessed by Ewing's test battery. Autonomic complaints were more pronounced than neurological symptoms. Baseline tests revealed widely abnormal sudomotor function and marked impairment of heart rate variation and blood pressure response to standing. Prominent features of cardiovascular failure were high resting heart rate, supine hypertension, orthostatic hypotension, and impaired baroreflex function. Three patients reported inability to keep up with their routine amount of physical work. Based on the baseline QAT results, these three patients were instructed to engage in physical activity but avoid physical strain until there was considerable improvement. On follow-up, fatigue was the most frequent residual complaint, sympathetic skin responses were present, and cardiovascular QAT results were significantly improved and did not differ from those of ten control subjects. QAT identified autonomic involvement in botulism patients with otherwise benign neurological presentation. Comprehensive evaluation of autonomic failure may provide useful information for the management of botulism.

  17. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

    PubMed Central

    Price, Joseph L.; Furey, Maura L.

    2008-01-01

    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger “default system” of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies. PMID:18704495

  18. ABNORMAL STRIATAL RESTING-STATE FUNCTIONAL CONNECTIVITY IN ADOLESCENTS WITH OBSESSIVE-COMPULSIVE DISORDER

    PubMed Central

    Bernstein, Gail A.; Mueller, Bryon A.; Schreiner, Melinda Westlund; Campbell, Sarah M.; Regan, Emily K.; Nelson, Peter M.; Houri, Alaa K.; Lee, Susanne S.; Zagoloff, Alexandra D.; Lim, Kelvin O.; Yacoub, Essa S.; Cullen, Kathryn R.

    2015-01-01

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-minute scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed. PMID:26674413

  19. Resting state functional MRI reveals abnormal network connectivity in Neurofibromatosis 1

    PubMed Central

    Tomson, S.N.; Schreiner, M.; Narayan, M.; Rosser, Tena; Enrique, Nicole; Silva, Alcino J.; Allen, G.I.; Bookheimer, S.Y.; Bearden, C.E.

    2015-01-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. PMID:26304096

  20. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers

    PubMed Central

    Bu, Limei; Yu, Dahua; Su, Shaoping; Ma, Yao; von Deneen, Karen M.; Luo, Lin; Zhai, Jinquan; Liu, Bo; Cheng, Jiadong; Guan, Yanyan; Li, Yangding; Bi, Yanzhi; Xue, Ting; Lu, Xiaoqi; Yuan, Kai

    2016-01-01

    Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking. PMID:27757078

  1. Abnormalities in Parentally Rated Executive Function in Methamphetamine/Polysubstance Exposed Children

    PubMed Central

    Piper, Brian J.; Acevedo, Summer F.; Kolchugina, Galena K.; Butler, Robert W.; Corbett, Selena M.; Honeycutt, Elizabeth B.; Craytor, Michael J.; Raber, Jacob

    2011-01-01

    Methamphetamine/polysubstance abuse in women of childbearing age is a major concern because of the potential long-term detrimental effects on the brain function of the fetus following in utero exposure. A battery of established tests, including the Wechsler Abbreviated Scale of Intelligence, Conners’ Continuous Performance Test II, Behavioral Rating Inventory of Executive Function, the CMS Family Pictures and Dot Location tests, the Spatial Span test from the WISC-IV-Integrated, and a recently developed spatial learning and memory measure (Memory Island), was used to assess the effects of prenatal drug exposure on neurobehavioral performance. Participants were 7 to 9 year old children from similar socioeconomic backgrounds who either had (N = 31) or had not (N = 35) been exposed to methamphetamine/polysubstance during pregnancy. Compared to unexposed children, exposed children showed pronounced elevations (i.e. more problems) in parental ratings of executive function, including behavioral regulation and metacognition. Exposed children also exhibited subtle reductions in spatial performance in the Memory Island test. In contrast, IQ, Spatial Span, Family Pictures, Dot Location, and vigilance performance was unaffected by prenatal drug exposure history. Thus, children of women who reported using methamphetamine and other recreational drugs during pregnancy showed a selective profile of abnormalities in parentally rated executive function. PMID:21334365

  2. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    PubMed

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted.

  3. Abnormal striatal resting-state functional connectivity in adolescents with obsessive-compulsive disorder.

    PubMed

    Bernstein, Gail A; Mueller, Bryon A; Schreiner, Melinda Westlund; Campbell, Sarah M; Regan, Emily K; Nelson, Peter M; Houri, Alaa K; Lee, Susanne S; Zagoloff, Alexandra D; Lim, Kelvin O; Yacoub, Essa S; Cullen, Kathryn R

    2016-01-30

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC circuitry in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-min scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including parts of the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed.

  4. Autonomous gathering of livestock using a multi-functional sensor network platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper we develop algorithms and hardware for the autonomous gathering of cattle. We present a comparison of three different autonomous gathering algorithms that employ sound and/or electric stimuli to guide the cattle. We evaluate these algorithms in simulation by extending previous behavior...

  5. Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference.

    PubMed

    Melcher, Tobias; Falkai, Peter; Gruber, Oliver

    2008-11-01

    In the present article, we review functional neuroimaging studies on interference processing and performance monitoring in three groups of psychiatric disorders, (1) mood disorders, (2) schizophrenia, and (3) obsessive-compulsive disorder (OCD). Ad (1) Behavioral performance measures suggest an impaired interference resolution capability in symptomatic bipolar disorder patients. A series of neuroimaging analyses found alterations in the ACC-DLPFC system in mood disorder (unipolar depressed and bipolar) patients, putatively reflective of an abnormal interplay of monitoring and executive neurocognitive functions. Other studies of euthymic bipolar patients showed relatively decreased interference-related activation in rostroventral PFC which conceivably underlies defective inhibitory control. Ad (2) Behavioral Stroop studies revealed a specific performance pattern of schizophrenia patients (normal RT interference but increased error interference and RT facilitation) suggestive of a deficit in ignoring irrelevant (word) information. Moreover, reduced/absent behavioral post-error and post-conflict adaptation effects suggest alterations in performance monitoring and/or adjustment capability in these patients. Neuroimaging findings converge to suggest a disorder-related abnormal neurophysiology in ACC which consistently showed conflict- and error-related hypoactivation that, however, appeared to be modulated by different factors. Moreover, studies suggest a specific deficit in context processing in schizophrenia, evidently related to activation reduction in DLPFC. Ad (3) Behavioral findings provide evidence for impaired interference resolution in OCD. Neuroimaging results consistently showed conflict- and error-related ACC hyperactivation which--conforming OCD pathogenesis models--can be conclusively interpreted as reflecting overactive performance monitoring. Taken together, interference resolution and performance monitoring appeared to be fruitful concepts in the

  6. Abnormalities of Dorsolateral Prefrontal Function in Women With Premenstrual Dysphoric Disorder: A Multimodal Neuroimaging Study

    PubMed Central

    Baller, Erica B.; Wei, Shau-Ming; Kohn, Philip D.; Rubinow, David R.; Alarcón, Gabriela; Schmidt, Peter J.; Berman, Karen F.

    2014-01-01

    Objective To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. Method PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. Results In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Conclusions Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The

  7. Ventilatory defect in coal workers with simple pneumoconiosis: early detection of functional abnormalities.

    PubMed

    Lin, L C; Yang, S C; Lu, K W

    2001-05-01

    Airway obstruction is a prominent feature in coal workers' pneumoconiosis (CWP). However, many patients with CWP have even demonstrated a normal forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1). The purpose of this study was to evaluate the ventilatory defect by spirometry and search for parameters, other than FVC and FEV1, suitable for early detection of pulmonary impairment in CWP. A sample of 227 coal miners was selected from the medical clinics of two teaching hospitals. Maximal expiratory flow volume measurement and determination of functional residual capacity (FRC) and residual volume (RV) were carried out with an automated plethysmograph. The prevalence of airway obstruction (FEV1/FVC < 70%) in this sample of miners was 52.9% (120/227). There was a progression of functional impairment with the transition from category 0 to categories 2 and 3, no matter what the miners smoking habits. All of the 107 non-obstructed miners had a normal FVC and FEV1. However, the mean values for FEF25-75% (mean forced expiratory flow during the middle half of FVC) and Vmax50 (maximal expiratory flow rate at 50% FVC) were abnormally low, and RV was already elevated, in those non-obstructed subjects with category 1 simple pneumoconiosis. A borderline abnormally elevated FRC in the miners with radiological category 3 of CWP was also noted. We conclude that the Vmax50, FEF25-75%, and RV appeared to be the discriminative indices for detecting early ventilatory defect in non-obstructed patients with simple CWP. Further studies is still needed to clarify the cause of small airway dysfunction.

  8. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance

    PubMed Central

    Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  9. Functional and structural abnormalities of the kidney and urinary tract in severely malnourished children - A hospital based study

    PubMed Central

    Anjum, Misbah; Moorani, Khemchand N; Sameen, Ifra; Mustufa, Muhammad Ayaz; Kulsoom, Shazia

    2016-01-01

    Objectives: The association of malnutrition and systemic diseases like chronic kidney disease (CKD) is well known. Various urinary tract abnormalities may be associated with malnutrition. So objective of current study was to determine the frequency of functional and structural urinary tract abnormalities in severely malnourished children admitted in Nutritional Rehabilitation Unit (NRU) of a tertiary care facility, Karachi. Methods: This descriptive cases series of 78 children was conducted in NRU from October 2014 - March 2015. All newly admitted children aged 2-60 months, diagnosed as Severe Acute Malnutrition (SAM) were studied and children with known kidney and urinary tract disorders were excluded. Detailed history, examination and investigations like serum creatinine, ultrasound kidney and urinary tract in addition to routine tests for SAM, were done. A proforma was used to collect demographic data, clinical history, physical findings, and radio-imaging and biochemical investigations. Glomerular filtration rate (GFR) was calculated using Schwartz equation. Data was analyzed using descriptive statistics. Results: Among 78 children, male to female ratio was equal. Mean age was 18±15.53 months and majority (79.48%) of children were below 24 months. Majority (82%) of children with SAM had marasmus whereas 18% had edematous malnutrition. Out of 78, 57 (73%) children had either functional (80.7%) and or structural (19.3%) abnormalities whereas 21(36.84%) had normal functional and structural status. Most common functional abnormality was subnormal GFR (<90ml/min/1.73 m2) found in all 46 children. Functional abnormities were more common in children below 24 months. Other functional disorders were Bartter syndrome, renal tubular acidosis and urinary tract infection (UTI) found in two cases each. Common structural abnormalities were echogenic kidneys (n=4, 36%), hydronephrosis (n=3, 27%), hypoplastic kidneys (n=3, 27%) and calculi (n=1, 9%). Subnormal GFR was also

  10. Cardiovascular and autonomic nervous functions during acclimatization to hypoxia in conscious rats.

    PubMed

    Kawaguchi, Tomohiro; Tsubone, Hirokazu; Hori, Masatoshi; Ozaki, Hiroshi; Kuwahara, Masayoshi

    2005-02-07

    The time courses of changes in cardiovascular and autonomic nervous functions during acclimatization to hypoxia were studied in conscious Sprague-Dawley rats. The animals were kept under a 12:12-h light-dark cycle and exposed to hypoxia (1 atm, 10% O2). Implanted telemetry transmitters were used to record blood pressure (BP). Changes in heart rate (HR) and BP were monitored over a 21-day period, and variations before and during hypoxia were analyzed using the wavelet transform method. The HR, high-frequency power of HR variability (HR-HF) and low-frequency power of BP variability (BP-LF) were all significantly increased after 1 h of hypoxia, whereas the LF/HF ratio of HR variability did not change. After this initial increase, both HR and the BP-LF were found to decrease. On the first day of hypoxia, HR and BP-LF values were significantly lower than those of the control rats, whereas the HR-HF was higher. Subsequently, these values altered so that they were similar to the control after 14 days of hypoxia. In addition, the amplitude of diurnal variation in HR was reduced during hypoxia. These results suggest that a sequence of dynamic interactions between sympathetic and parasympathetic nervous activities might have important roles in the regulation of cardiovascular function during acclimatization to hypoxia.

  11. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    NASA Astrophysics Data System (ADS)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  12. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    SciTech Connect

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  13. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    DOE PAGES

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP)more » chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.« less

  14. Validation of functional fetal autonomic brain age score fABAS in 5 min short recordings.

    PubMed

    Hoyer, Dirk; Schneider, Uwe; Kowalski, Eva-Maria; Schmidt, Alexander; Witte, Otto W; Schleußner, Ekkehard; Hatzmann, Wolfgang; Grönemeyer, Dietrich Hw; van Leeuwen, Peter

    2015-11-01

    With the objective of evaluating the functional maturation age and developmental disturbances we have previously introduced the fetal autonomic brain age score (fABAS) using 30 min fetal magnetocardiographic recordings (fMCG, Jena). The score is based on heart rate pattern indices that are related to universal principles of developmental biology. The present work aims at the validation of the fABAS methodology on 5 min recordings from an independent database (fMCG, Bochum).We found high agreement of fABAS obtained from Jena normal fetuses (5 min subsets, n =  364) and Bochum recordings (n =  322, normal fetuses). fABAS of 48 recordings from fetuses with intra-uterine growth restriction (IUGR, Bochum) was reduced in most of the cases, a result consistent with IUGR fetuses from Jena previously reported. fABAS calculated from 5 min snapshots only partly covers the accuracy when compared to fABAS from 30 min recordings. More precise diagnosis requires longer recordings.fABAS obtained from fMCG recordings is a strong candidate for standardized assessment of functional maturation age and developmental disturbances. Even 5 min recordings seem to be valuable for screening for maturation problems.

  15. Left Temporal Lobe Structural and Functional Abnormality Underlying Auditory Hallucinations in Schizophrenia

    PubMed Central

    Hugdahl, Kenneth; Løberg, Else-Marie; Nygård, Merethe

    2008-01-01

    In this article, we have reviewed recent findings from our laboratory, originally presented in Hugdahl et al. (2008). These findings reveal that auditory hallucinations in schizophrenia should best be conceptualized as internally generated speech mis-representations lateralized to the left superior temporal gyrus and sulcus, not cognitively suppressed due to enhanced attention to the ‘voices’ and failure of fronto-parietal executive control functions. An overview of diagnostic questionnaires for scoring of symptoms is presented together with a review of behavioral, structural, and functional MRI data. Functional imaging data have either shown increased or decreased activation depending on whether patients have been presented an external stimulus during scanning. Structural imaging data have shown reduction of grey matter density and volume in the same areas in the temporal lobe. We have proposed a model for the understanding of auditory hallucinations that trace the origin of auditory hallucinations to neuronal abnormality in the speech areas in the left temporal lobe, which is not suppressed by volitional cognitive control processes, due to dysfunctional fronto-parietal executive cortical networks. PMID:19753095

  16. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  17. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients.

    PubMed

    Wang, Zewei; Yang, Qing; Chen, Li Min

    2017-02-01

    The goals of this study are to characterize the temporal dynamics of inter-regional connectivity of the brain in chronic headache (CH) patients versus their age/gender matched controls (CONCH, n=28 pairs), and to determine whether dynamic measures reveal additional features to static functional connectivity and correlate with psychometric scores. Cortical thickness and inter-regional resting state fMRI connectivity were quantified and compared between CH and CONCH groups. Six cortical regions of interest (ROI) pairs that exhibited correlated cortical thickness and static functional connectivity abnormalities were selected for temporal dynamic analysis. Two methods were used: temporal sliding-window (SW) and wavelet transformation coherence (WTC). SW analyses using three temporal windows of 30, 60, 120s revealed that all six ROI pairs of CH exhibited higher percentage of strong connectivity (high r values), and smaller fast Fourier transform (FFT) amplitudes at a very low frequency range (i.e., 0.002-0.01Hz), compared to those of CONCH. These features were particularly prevalent in the 120s window analysis. Less variable dynamic fluctuation (i.e., smaller standard deviation of r values) was identified in two out of six ROI pairs in CH. WTC analysis revealed that time-averaged coherence was generally greater in CH than CONCH between wavelet decomposition scales 20 to 55 (0.018-0.05Hz), and was statistically significant in three out of six ROI pairs. Together, the most robust and significant differences in temporal dynamics between CH and CONCH were detected in two ROI pairs: left medial-orbitofrontal-left posterior-cingulate and left medial-orbitofrontal-left inferior-temporal. The high degrees of sleep disturbance (high PSQI score), depression (high HRSD score) and fatigue (low SF-36 score) were associated with high degree of inter-regional temporal coherence in CH. In summary, these dynamic functional connectivity (dFC) measures uncovered a temporal "lock

  18. Effects of sleep deprivation on autonomic and endocrine functions throughout the day and on exercise tolerance in the evening.

    PubMed

    Konishi, Masayuki; Takahashi, Masaki; Endo, Naoya; Numao, Shigeharu; Takagi, Shun; Miyashita, Masashi; Midorikawa, Taishi; Suzuki, Katsuhiko; Sakamoto, Shizuo

    2013-01-01

    The aim of this study was to investigate the effects of sleep deprivation on autonomic and endocrine functions during the day and on exercise tolerance in the evening. Ten healthy young males completed two, 2-day control and sleep deprivation trials. For the control trial, participants were allowed normal sleep from 23:00 to 07:00 h. For the sleep deprivation trial, participants did not sleep for 34 h. Autonomic activity was measured from 19:00 h on day 1 to 16:00 h on day 2 by frequency-domain measures of heart rate variability. Endocrine function was examined by measuring adrenocorticotropic hormone and cortisol from venous blood samples collected on day 2 at 09:00, 13:00, and 17:00 h and immediately after an exercise tolerance testing. Autonomic regulation, particularly parasympathetic regulation estimated from the high-frequency component of heart rate variability analysis, was significantly higher in the sleep deprivation trial than in the control trial in the morning and afternoon of day 2. Plasma adrenocorticotropic hormone concentrations were significantly higher at 09:00 and 13:00 h of day 2 under sleep deprivation. Heart rate during exercise was significantly lower following sleep deprivation. Therefore, the effects of sleep deprivation on autonomic regulation depend on the time of the day.

  19. Abnormal Resting-State Connectivity at Functional MRI in Women with Premenstrual Syndrome

    PubMed Central

    Liu, Qing; Li, Rui; Zhou, Renlai; Li, Juan; Gu, Quan

    2015-01-01

    Objectives Premenstrual syndrome (PMS) refers to a series of cycling and relapsing physical, emotion and behavior syndromes that occur in the luteal phase and resolve soon after the onset of menses. Although PMS is widely recognized, its neural mechanism is still unclear. Design To address this question, we measured brain activity for women with PMS and women without PMS (control group) using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, the participants should complete the emotion scales (Beck Anxiety Inventory, BAI; Beck Depression Inventory, BDI, before the scanning) as well as the stress perception scale (Visual analog scale for stress, VAS, before and after the scanning). Results The results showed that compared with the control group, the PMS group had decreased connectivity in the middle frontal gyrus (MFG) and theparahippocampalgyrus (PHG), as well as increased connectivity in the left medial/superior temporal gyri (MTG/STG) and precentralgyrus within the default mode network (DMN); in addition, the PMS group had higher anxiety and depression scale scores, together with lower stress perception scores. Finally, there were significantly positive correlations between the stress perception scores and functional connectivity in the MFG and cuneus. The BDI scores in the PMS group were correlated negatively with the functional connectivity in the MFG and precuneus and correlated positively with the functional connectivity in the MTG. Conclusion These findings suggest that compared with normal women, women with PMS displayed abnormal stress sensitivity, which was reflected in the decreased and increased functional connectivity within the DMN, blunted stress perception and higher depression. PMID:26325510

  20. Changes of autonomic nervous system function in patients with breath-holding spells treated with iron.

    PubMed

    Orii, Kenji E; Kato, Zenichiro; Osamu, Fukutomi; Funato, Michinori; Kubodera, Uniko; Inoue, Ryosuke; Shimozawa, Nobuyuki; Kondo, Naomi

    2002-05-01

    To evaluate the autonomic nervous system of patients with breath-holding spells after iron treatment, we attempted to determine whether a dysregulation of the autonomic nervous system reflexes exists in children with severe cyanotic breathholding spells. An electrocardiogram for each subject was recorded for 24 hours in the subject's home and parasympathetic activity was investigated by the fast Fourier transform method. Hematologic data and clinical symptoms of all three patients treated with iron improved and attacks of severe breath-holding spells disappeared. After iron treatment was started, the heart rate variability increased during sleep. It appears that supplementation of iron is effective in improving the dysregulation of autonomic nervous system reflexes.

  1. Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment.

    PubMed

    Xie, Chunming; Bai, Feng; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Chen, Gang; Li, Wenjun; Chen, Guangyu; Zhang, Zhijun; Li, Shi-Jiang

    2012-10-15

    Abnormalities of functional connectivity in the default mode network (DMN) recently have been reported in patients with amnestic mild cognitive impairment (aMCI), Alzheimer's disease (AD) or other psychiatric diseases. As such, these abnormalities may be epiphenomena instead of playing a causal role in AD progression. To date, few studies have investigated specific brain networks, which extend beyond the DMN involved in the early AD stages, especially in aMCI. The insula is one site affected by early pathological changes in AD and is a crucial hub of the human brain networks. Currently, we explored the contribution of the insula networks to cognitive performance in aMCI patients. Thirty aMCI and 26 cognitively normal (CN) subjects participated in this study. Intrinsic connectivity of the insula networks was measured, using the resting-state functional connectivity fMRI approach. We examined the differential connectivity of insula networks between groups, and the neural correlation between the altered insula networks connectivity and the cognitive performance in aMCI patients and CN subjects, respectively. Insula subregional volumes were also investigated. AMCI subjects, when compared to CN subjects, showed significantly reduced right posterior insula volumes, cognitive deficits and disrupted intrinsic connectivity of the insula networks. Specifically, decreased intrinsic connectivity was primarily located in the frontal-parietal network and the cingulo-opercular network, including the anterior prefrontal cortex (aPFC), anterior cingulate cortex, operculum, inferior parietal cortex and precuneus. Increased intrinsic connectivity was primarily situated in the visual-auditory pathway, which included the posterior superior temporal gyrus and middle occipital gyrus. Conjunction analysis was performed; and significantly decreased intrinsic connectivity in the overlapping regions of the anterior and posterior insula networks, including the bilateral aPFC, left

  2. mGluR5 Exerts Cell-Autonomous Influences on the Functional and Anatomical Development of Layer IV Cortical Neurons in the Mouse Primary Somatosensory Cortex

    PubMed Central

    Ballester-Rosado, Carlos J.; Sun, Hao; Huang, Jui-Yen

    2016-01-01

    etiology of many neurological diseases. Here we conducted mosaic analysis to reveal the cell-autonomous role of the metabotropic glutamate receptor 5 (mGluR5). We found that mGluR5 is required for several key steps in wiring up the thalamocortical connections to form the cortical somatosensory map. mGluR5-dependent processes during early postnatal brain development affect the following: (1) placement of activity-directed cortical neurons; (2) regulation of polarized dendritic outgrowth toward thalamocortical axons relaying sensory information, (3) synaptogenesis; and (4) development of functional connectivity in spiny stellate neurons. Perturbing mGluR5 expression could lead to abnormal neuronal circuits, which may contribute to neurological and psychiatric disease. PMID:27559164

  3. Reward Abnormalities Among Women with Full and Subthreshold Bulimia Nervosa: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Bohon, Cara; Stice, Eric

    2010-01-01

    Objective To test the hypothesis that women with full and subthreshold bulimia nervosa show abnormal neural activation in response to food intake and anticipated food intake relative to healthy control women. Method Females with and without full/subthreshold bulimia nervosa recruited from the community (N = 26) underwent functional magnetic resonance imaging (fMRI) during receipt and anticipated receipt of chocolate milkshake and a tasteless control solution. Results Women with bulimia nervosa showed trends for less activation than healthy controls in the right anterior insula in response to anticipated receipt of chocolate milkshake (versus tasteless solution) and in the left middle frontal gyrus, right posterior insula, right precentral gyrus, and right mid dorsal insula in response to consumptions of milkshake (versus tasteless solution). Discussion Bulimia nervosa may be related to potential hypo-functioning of the brain reward system, which may lead these individuals to binge eat to compensate for this reward deficit, though the hypo-responsivity might be a result of a history of binge eating highly palatable foods. PMID:21997421

  4. Functional abnormalities of sinusoidal endothelial cells in rats with acute liver rejection.

    PubMed

    Yokoi, Y; Nakamura, S; Muro, H; Baba, S

    1994-01-01

    The purpose of this study was to determine the changes of hepatic sinusoidal endothelial cell (SEC) function in acute liver rejection with respect to receptor-mediated endocytosis. Orthotopic rat liver transplantation was performed in Lewis rats grafted with DA livers and in Lewis rats grafted with Lewis livers as rejectors and controls, respectively. Animals were killed at 1, 3, 5, 7, and 10 days after the operation. Fc receptors (FcRs) were histochemically stained on frozen liver sections by applying peroxidase-antiperoxidase IgG complex as a ligand, and the FcR activity, i.e., capacity of binding the ligands represented by the FcR staining intensity, was semiquantitatively analyzed as an indicator of SEC function. The serum level of hyaluronic acid, which is specifically cleared from the circulation by receptor-mediated SEC endocytosis, was also assayed, along with the total serum bilirubin. Three days after the operation, the SECs of rejectors showed a significantly weaker FcR staining intensity of about half the value of that seen in the controls (P < 0.05), and staining disappeared after 5 days (P < 0.01). The decrease of FcR staining intensity, i.e., FcR activity, showed a correlation with elevation of the serum hyaluronic acid level (r = -0.77; P < 0.001). Histological evidence of endothelialitis and a significant elevation of total serum bilirubin (P < 0.01) were also present at 3 and 5 days, respectively. These results suggest that impairment of the endocytic function of SECs occurs at an earlier phase of acute liver rejection when compared with development of abnormalities of traditional indicators. Determination of receptor-mediated SEC endocytic functions may thus provide useful information for the early diagnosis of acute rejection.

  5. Race Differences in Age-Trends of Autonomic Nervous System Functioning

    PubMed Central

    Fuller-Rowell, Thomas E.; Williams, David R.; Love, Gayle D.; McKinley, Paula S.; Sloan, Richard P.; Ryff, Carol D.

    2013-01-01

    Objective The objective of this study was to consider race differences in age-trends of autonomic nervous system functioning, using a national dataset with a broad age range. Methods Measures of baseline heart rate variability (HRV) and HRV reactivity were derived from electrocardiograph (ECG) recordings taken at rest and during cognitive stress tasks. Age-trends in HRV and HRV reactivity were compared among 204 African Americans and 833 Whites ages 34 to 83 years (M=53.7, SD=11.4), before and after controlling for socioeconomic status (SES). Results For HRV-reactivity, age-trends were steeper among African Americans and lower-SES participants than Whites and higher-SES participants. For baseline HRV, age-trends varied by SES but not race. Discussion Results relating to HRV-reactivity (but not baseline HRV) were consistent with hypotheses suggesting that African Americans are exposed to higher levels of stress and experience accelerated declines in health across the life span. The relevance of the findings to research on social stress and health disparities is discussed. PMID:23781017

  6. Autonomic nervous functions in fetal type Minamata disease patients: assessment of heart rate variability.

    PubMed

    Oka, Tomoko; Matsukura, Makoto; Okamoto, Miwako; Harada, Noriaki; Kitano, Takao; Miike, Teruhisa; Futatsuka, Makoto

    2002-12-01

    In order to assess the cardiovascular autonomic nervous functions in patients with fetal type Minamata disease (FMD), we investigated blood pressure (BP), and conducted time and frequency domain analysis of heart rate variability (HRV). Subjects were 9 patients in Meisuien recognized as FMD, and 13 healthy age matched control subjects. HRV and BP were assessed after subjects rested in a supine position for 10 minutes. Electrocardiographic (ECG) data were collected for 3 minutes during natural breathing. Time domain analysis (the average of R-R intervals [Mean RR], standard deviation of R-R intervals [SD RR], coefficient of variation [CV]), and frequency domain analysis by fast Fourier transformation (FFT) (power of low frequency [LF] and high frequency [HF] component, expressed in normalized units[nu]) were then conducted. In the time domain analysis, the mean RR of the FMD group was significantly lower than that of the control group. Neither SD RR nor CV showed significant differences between the two groups, but both tended to be lower in the FMD group. In the frequency domain analysis, the HF component of the FMD group was significantly lower than that of the control group. Pulse pressure (PP) was significantly lower in the FMD subjects. These findings suggest that parasympathetic nervous dysfunction might exist in FMD patients, who were exposed to high doses of methylmercury (MeHg) during the prenatal period. Decrease of PP might be due to degenerative changes of blood vessels driven by exposure to high doses of MeHg.

  7. A double-blind atropine trial for active learning of autonomic function.

    PubMed

    Fry, Jeffrey R; Burr, Steven A

    2011-12-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to concomitantly convey the importance of bias in experimentation by adopting a double-blind placebo-controlled approach. We have used this class effectively in various forms with ∼600 students receiving atropine over the last 16 yr. This class has received favorable feedback from staff and students of medicine, pharmacy, and neuroscience, and we recommend it for such undergraduates. The learning objectives that students are expected to achieve are to be able to 1) know the ethical, safety, and hygiene requirements for using human volunteers as subjects; 2) implement and explain a double-blind placebo-controlled trial; 3) design, agree, and execute a protocol for making (and accurately recording) precise reproducible measurements of pulse rate, pupil diameter, and salivary flow; 4) evaluate the importance of predose periods and measurement consistency to detect effects (including any reversibility) after an intervention; 5) experience direct cause-and-effect relationships integrating physiology with pharmacology in people; 6) calculate appropriate summary statistics to describe the data and determine the data's statistical significance; 7) recognize normal variability both within and between subjects in baseline physiological parameters and also recognize normal variability in response to pharmacological treatment; 8) infer the distribution and role of muscarinic receptors in the autonomic nervous system with respect to the heart, eye, and mouth; 9) identify and explain the clinical significance of differences in effect due to the route and formulation of atropine; 10) produce and deliver a concise oral presentation of

  8. Plasma obestatin and autonomic function are altered in orexin-deficient narcolepsy, but ghrelin is unchanged.

    PubMed

    Huda, M S B; Mani, H; Durham, B H; Dovey, T M; Halford, J C G; Aditya, B S; Pinkney, J H; Wilding, J P; Hart, I K

    2013-06-01

    Narcolepsy-cataplexy is characterised by orexin deficiency, sleep disturbance, obesity and dysautonomia. Ghrelin and obestatin affect both energy intake and sleep. Our aim was to investigate ghrelin, obestatin and metabolic/autonomic function in narcolepsy-cataplexy. Eight narcolepsy-cataplexy patients (seven CSF orexin-deficient) and eight matched controls were studied. The subjects had a fixed energy meal with serial blood samples and measurement of heart rate variability (HRV). Fasting plasma obestatin was more than threefold higher in narcolepsy subjects (narcolepsy 89.6 ± 16 pg/ml vs. control 24.9 ± 3 pg/ml, p < 0.001). There was no change in HRV total power, but post-prandial low-frequency (LF) power and high-frequency (HF) power were lower in the narcolepsy group [area under the curve (AUC): HF power narcolepsy 1.4 × 10(5) ± 0.2 × 10(5) vs. control 3.3 × 10(5) ± 0.6 × 10(5 )ms(2)/h, p < 0.001]. On multiple regression analyses, the only significant predictor of plasma obestatin was HF power, which was inversely correlated with obestatin (β = -0.65 R (2) = 38 %, p = 0.009). Fasting and post-prandial plasma ghrelin were similar in both groups (narcolepsy 589.5 ± 88 pg/ml vs. control 686.9 ± 81 pg/ml, p = 0.5; post-prandial AUC-narcolepsy 161.3 ± 22 ng/ml/min vs. control 188.6 ± 62 ng/ml/min, p = 0.4). Only the narcolepsy group had significant suppression of plasma ghrelin after the meal (ANOVA, p = 0.004). In orexin-deficient narcolepsy, fasting plasma ghrelin is unaltered, and post-prandial suppression is preserved. Fasting plasma obestatin is increased and correlates with autonomic dysfunction. As obestatin affects NREM sleep, we suggest that increased plasma levels contribute to the disrupted sleep-state control in narcolepsy.

  9. Validation of Spectral Analysis as a Noninvasive Tool to Assess Autonomic Regulation of Cardiovascular Function

    NASA Technical Reports Server (NTRS)

    Knapp, Charles F.; Evans, Joyce M.

    1996-01-01

    A major focus of our program has been to develop a sensitive noninvasive procedure to quantify early weightlessness-induced changes in cardiovascular function or potential dysfunction. Forty studies of healthy young volunteers (10 men and 10 women, each studied twice) were conducted to determine changes in the sympatho-vagal balance of autonomic control of cardiovascular regulation during graded headward and footward blood volume shifts. Changes in sympatho-vagal balance were classified by changes in the mean levels and spectral content of cardiovascular variables and verified by changes in circulating levels of catecholamines and pancreatic polypeptide. Possible shifts in intra/extravascular fluid were assessed from changes in hematocrit and plasma mass density while changes in the stimulus to regulate plasma volume were determined from Plasma Renin Activity (PRA). Autonomic blockade was used to unmask the relative contribution of sympathetic and parasympathetic efferent influences in response to 10 min each of 0, 20 and 40 mmHg Lower Body Negative Pressure (LBNP) and 15 and 30 mmHg Positive Pressure (LBPP). The combination of muscarinic blockade with graded LBNP and LBPP was used to evoke graded increases and decreases in sympathetic activity without parasympathetic contributions. The combination of beta blockade with graded LBNP and LBPP was used to produce graded increases and decreases in parasympathetic activity without beta sympathetic contributions. Finally, a combination of both beta and muscarinic blockades with LBNP and LBPP was used to determine the contribution from other, primarily alpha adrenergic, sources. Mean values, spectral analyses and time frequency analysis of R-R interval (HR), Arterial Pressure (AP), peripheral blood flow (RF), Stroke Volume (SV) and peripheral resistance (TPR) were performed for all phases of the study. Skin blood Flow (SF) was also measured in other studies and similarly analyzed. Spectra were examined for changes in

  10. A novel cause for abnormal liver function tests in pregnancy and the puerperium: non-alcoholic fatty liver disease.

    PubMed

    Page, L M; Girling, J C

    2011-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the commonest liver disease in the western world, but has never been reported in pregnancy before. We suggest that NAFLD should also be considered as a cause for abnormal liver function tests during pregnancy. As NAFLD is driven by insulin resistance, it is biologically plausible that pregnancy may reveal previously subclinical disease. Obstetricians have a vital role in optimising maternal health during and after pregnancy and therefore we need to include NAFLD in the differential diagnosis for abnormal liver function tests and recommend lifestyle modifications that may prevent progression to cirrhosis and hepatocellular carcinoma.

  11. Physiologic assessment before video thoracoscopic resection for lung cancer in patients with abnormal pulmonary function

    PubMed Central

    Benattia, Amira; Debeaumont, David; Guyader, Vincent; Tardif, Catherine; Peillon, Christophe; Cuvelier, Antoine

    2016-01-01

    Background Impaired respiratory function may prevent curative surgery for patients with non-small cell lung cancer (NSCLC). Video-assisted thoracoscopic surgery (VATS) reduces postoperative morbility-mortality and could change preoperative assessment practices and therapeutic decisions. We evaluated the relation between preoperative pulmonary function tests and the occurrence of postoperative complications after VATS pulmonary resection in patients with abnormal pulmonary function. Methods We included 106 consecutive patients with ≤80% predicted value of presurgical expiratory volume in one second (FEV1) and/or diffusing capacity of carbon monoxide (DLCO) and who underwent VATS pulmonary resection for NSCLC from a prospective surgical database. Results Patients (64±9.5 years) had lobectomy (n=91), segmentectomy (n=7), bilobectomy (n=4), or pneumonectomy (n=4). FEV1 and DLCO preoperative averages were 68%±21% and 60%±18%. Operative mortality was 1.89%. Only FEV1 was predictive of postoperative complications [odds ratio (OR), 0.96; 95% confidence interval (CI), 0.926–0.991, P=0.016], but there was no determinable threshold. Twenty-five patients underwent incremental exercise testing. Desaturations during exercise (OR, 0.462; 95% CI, 0.191–0.878, P=0.039) and heart rate (HR) response (OR, 0.953; 95% CI, 0.895–0.993, P=0.05) were associated with postoperative complications. Conclusions FEV1 but not DLCO was a significant predictor of pulmonary complications after VATS pulmonary resection despite a low rate of severe morbidity. Incremental exercise testing seems more discriminating. Further investigation is required in a larger patient population to change current pre-operative threshold in a new era of minimally invasive surgery. PMID:27293834

  12. Relation with preoperative fructosamine and autonomic nerve function and blood pressure during anesthesia in diabetics: a retrospective study.

    PubMed

    Goto, Y; Sugiura, Y; Yanagimoto, M; Yasuda, Y; Suzuki, H; Hasegawa, K

    1999-01-01

    Many diabetics may have a high risk involving the cardiovascular system. In an attempt to predict the intraoperative risks of diabetics during anesthesia, we evaluated retrospectively the relationship among the biochemical assay or autonomic nerve function obtained as parts of the preoperative examination, and the blood pressure changes relating to the stimulation of intubation and extubation for anesthesia. In 40 diabetic surgical patients examined the biochemical assay (HbA1c, fructosamine level and blood glucose level) beforehand, the autonomic nerve function was quantified preoperatively by analysis of ECG R-R variability recorded in supine and subsequent standing position using an HRV analyzer, and some parameters of autonomic nerve function especially responsive sympathetic nerve activities were obtained. We assessed the correlation with systolic blood pressure changes in these cases at intubation for general anesthesia comparing to similar conditioned 40 non-diabetics. A diabetics with low vagal activity became larger systolic blood pressure afterdrop at tracheal intubation for anesthesia (r=0.513, p<0.001). Otherwise the blood pressure afterdrop at extubation became larger in a non-diabetics with high sympathetic activity (r=0.502, p<0.001). The preoperative fructosamine concentration in diabetics correlated positively with the responsive sympathetic nerve irritability index; "mRR(sup)-RRmin(std)" (r=0.432, p<0.05) and the responsive sympathetic nerve excitability index; "mRR(sup-std)" (r=0.448, p<0.05). However HbA1c had no correlation with these parameters of autonomic nerve function and blood pressure rise at tracheal intubation. Because of above correlation with blood pressure rise at intubation for anesthesia induction, the preoperative fructosamine examination and the responsive sympathetic nerve function test must be useful preoperative examination for detection of the unexpected heart events of diabetic patients during operation.

  13. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters.

    PubMed

    Solianik, Rima; Sujeta, Artūras; Terentjevienė, Asta; Skurvydas, Albertas

    2016-01-01

    Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased (p < 0.05) weight, heart rate, and systolic blood pressure, whereas no changes were evident regarding any of the measured heart rate variability indices. Fasting decreased (p < 0.05) the concentration of oxygenated hemoglobin and improved (p < 0.05) mental flexibility and shifting set, whereas no changes were observed in working memory, visuospatial discrimination, and spatial orientation ability. Fasting also increased (p < 0.05) anger, whereas other mood states were not affected by it. Conclusions. 48 h fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it.

  14. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters

    PubMed Central

    Skurvydas, Albertas

    2016-01-01

    Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased (p < 0.05) weight, heart rate, and systolic blood pressure, whereas no changes were evident regarding any of the measured heart rate variability indices. Fasting decreased (p < 0.05) the concentration of oxygenated hemoglobin and improved (p < 0.05) mental flexibility and shifting set, whereas no changes were observed in working memory, visuospatial discrimination, and spatial orientation ability. Fasting also increased (p < 0.05) anger, whereas other mood states were not affected by it. Conclusions. 48 h fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it. PMID:28025637

  15. Maternal-infant interaction and autonomic function in healthy infants and infants with transposition of the great arteries.

    PubMed

    Harrison, Tondi M; Ferree, Allison

    2014-12-01

    The quality of maternal-infant interaction is a critical factor in the development of infants' autonomic function and social engagement skills. In this secondary data analysis, relationships among infant and maternal affect and behavior and quality of dyadic interaction, as measured by the Parent-Child Early Relational Assessment, and infant autonomic function, as measured by heart rate variability, were examined during feeding at 2 weeks and 2 months of age in 16 healthy infants and in 15 infants with transposition of the great arteries (TGA). Contrary to previous research, at 2 weeks infant age, mothers of infants with TGA had significantly higher scores in affect and behavior than did mothers of healthy infants. The affect and behavior and quality of dyadic interaction of infants with TGA also did not differ from that of healthy infants. Although infants' social engagement skills did not differ by health condition (TGA or healthy), these skills did differ by parasympathetic nervous system function: infants better able to suppress vagal activity with challenge had more positive and less dysregulated affect and behavior, regardless of health status. These findings suggest that maternal-infant interactions for some cardiac disease subgroups may not differ from healthy dyads. Additional research is required to identify both healthy and ill infants with delayed autonomic maturation and to develop and test interventions to enhance critical interactive functions.

  16. Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner.

    PubMed

    Kazmierczak, Marcin; Kazmierczak, Piotr; Peng, Anthony W; Harris, Suzan L; Shah, Prahar; Puel, Jean-Luc; Lenoir, Marc; Franco, Santos J; Schwander, Martin

    2017-03-29

    Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants.

  17. Timing of obstetrical assistance affects peripartal cardiac autonomic function and early maternal behavior of dairy cows.

    PubMed

    Kovács, Levente; Kézér, Fruzsina Luca; Ruff, Ferenc; Szenci, Ottó

    2016-10-15

    Peripartal autonomic nervous system function and early maternal behavior were investigated in 79 multiparous Holstein-Friesian cows. Animals were allocated into four groups based on the technology of calving management: 1) unassisted calving in a group pen (UCG; N=19), 2) unassisted calving in an individual pen (UCI; N=21), 3) assisted calving with appropriately timed obstetrical assistance (ACA; N=20), and 4) assisted calving with premature obstetrical assistance (ACP; N=19). Heart rate, the high frequency (HF) component of heart rate variability (HRV) as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated. Heart rate and HRV parameters were presented as areas under the curves (AUC) for the following periods: 1) prepartum period (between 96h before the onset of calving restlessness and the onset of restlessness), 2) parturition (between the onset calving restlessness and delivery), and 3) postpartum period (during a 48-h period after delivery). Pain-related behaviors were recorded during parturition (i.e., the occurrence of vocalization and stretching the neck towards the abdomen) and during a 2-h observation period after calving (i.e., the occurrence of vocalization, stretching the neck towards the abdomen and the duration of standing with an arched back). Early maternal behavior was observed during the first 2h following calving as follows: 1) latency and duration of sniffing calf's head/body, and 2) latency and duration of licking calf's head/body. No difference was found across groups in autonomic function before the onset of calving restlessness. Area under the heart rate curve was higher in ACP cows during parturition (39.6±2.5beats/min×h) compared to UCG, UCI and ACA animals (AUC=13.1±0.9beats/min×h, AUC=22.3±1.4beats/min×h and AUC=25.0±2.1beats/min×h, respectively). Area under the heart rate curve did not differ across the UCG

  18. High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing

    NASA Astrophysics Data System (ADS)

    Plazotta, Simon; Zinsl, Jonathan

    2016-12-01

    We study the high-frequency limit of non-autonomous gradient flows in metric spaces of energy functionals comprising an explicitly time-dependent perturbation term which might oscillate in a rapid way. On grounds of the existence results by Ferreira and Guevara (2015) on non-autonomous gradient flows (which we also extend to a broader range of energy functionals), we prove that the associated solution curves converge to a solution of the time-averaged evolution equation in the limit of infinite frequency. Under additional assumptions on the energy, we obtain an explicit rate of convergence. Furthermore, we specifically investigate nonlinear drift-diffusion equations with time-dependent drift which formally are gradient flows with respect to the L2-Wasserstein distance. We prove that a family of weak solutions obtained as a limit of the Minimizing Movements scheme exhibits the above-mentioned behavior in the high-frequency limit.

  19. Neonatal lupus manifests as isolated neutropenia and mildly abnormal liver functions.

    PubMed

    Kanagasegar, Sivalingam; Cimaz, Rolando; Kurien, Biji T; Brucato, Antonio; Scofield, R Hal

    2002-01-01

    Neonatal lupus is characterized by typical clinical features and the presence of maternal autoantibodies. Mothers can have systemic lupus erythematosus (SLE) or Sjögren's syndrome, but are commonly not affected with any clinical disease. The major clinical manifestations in the infants are cardiac, dermatological and hepatic with rare instances of hemolytic anemia, thrombocytopenia or neutropenia. We describe an infant born to a mother with anti-Ro and anti-La, who had neutropenia and mildly abnormal liver functions without other major clinical features of neonatal lupus such as cardiac or dermatological manifestations. Neutropenia improved as maternal antibody was metabolized. Antibodies from both the infant and mother bound intact neutrophils, and this binding was inhibited by 60 kDa Ro. These data imply neutropenia may be an isolated manifestation of neonatal lupus. We studied the anti-Ro antibodies of 2 other mothers who gave birth to infants with complete congenital heart block and neutropenia. Their sera also bound neutrophils. Because healthy infants do not commonly undergo complete blood counts, the incidence of neutropenia among infants of anti-Ro-positive mothers may be much higher than previously recognized. Furthermore, although other factors may contribute, these data suggest that anti-60 kDa Ro is directly involved in the pathogenesis of neutropenia.

  20. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  1. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  2. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  3. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

    PubMed

    Lu, Wei; Bushong, Eric A; Shih, Tiffany P; Ellisman, Mark H; Nicoll, Roger A

    2013-05-08

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.

  4. Differential changes and interactions of autonomic functioning and sleep architecture before and after 50 years of age.

    PubMed

    Kuo, T B J; Li, Jia-Yi; Kuo, Hsu-Ko; Chern, Chang-Ming; Yang, C C H

    2016-02-01

    We hypothesize that the time when age-related changes in autonomic functioning and in sleep structure occur are different and that autonomic functioning modulates sleep architecture differently before and after 50 years of age. Sixty-eight healthy subjects (aged 20 to 79 years old, 49 of them women) were enrolled. Correlation analysis revealed that wake after sleep onset, the absolute and relative value of stage 1 (S1; S1%), and relative value of stage 2 (S2) were positively correlated with age; however, sleep efficiency, stage 3 (S3), S3%, and rapid-eye-movement latency (REML) were negatively correlated with age. Significant degenerations of sleep during normal aging were occurred after 50 years of age; however, significant declines of autonomic activity were showed before 50 years of age. Before 50 years of age, vagal function during sleep was negatively correlated with arousal index; however, after 50 years of age, it was positively correlated with S1 and S1%. In addition, sympathetic activity during wake stage was positively related to S2% only after 50 years of age. Our results imply that the age-related changes in autonomic functioning decline promptly as individuals leave the younger part of their adult life span and that age-related changes in sleep slowly develop as individuals enter the older part of their adult life span. Furthermore, while various aspects of sleep architecture are modulated by both the sympathetic and vagal nervous systems during adult life span, the sleep quality is mainly correlated with the sympathetic division after 50 years of age.

  5. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  6. Cholinesterase inhibitors modulate autonomic function in patients with Alzheimer´s disease and mixed dementia.

    PubMed

    da Costa Dias, Filipi Leles; Ferreira Lisboa da Silva, Rose Mary; de Moraes, Edgar Nunes; Caramelli, Paulo

    2013-06-01

    Cholinesterase inhibitors (ChEIs), the mainstay treatment for dementia, have systemic actions that can affect cardiovascular and autonomic nervous system (ANS). Thirty-nine patients with Alzheimer´s disease or mixed dementia underwent a comprehensive clinical evaluation, prior to and during ChEIs therapy, including orthostatic challenge, electrocardiogram (EKG) and heart rate variability (HRV) spectral analysis through Holter recordings. ChEIs therapy determined a decrease in supine diastolic blood pressure (BP) and in both diastolic and systolic BP in orthostatic position (79.8 ± 9.0 vs. 76.4 ± 9.3 mmHg, p=0.012; 79.9 ± 11.6 vs. 75.3 ± 9.9, p=0.005 and 144.6 ± 25.8 vs. 137.6 ± 21.1, p=0.020, respectively). Spectral analysis revealed no difference on static HRV components, but, during orthostatic challenge, an increase in LF/HF ratio (2.2±2.4 vs. 4.6±5.9, p=0.011) and a reduction in HF component emerged (1604.3 ± 5610.1 vs. 266.1 ± 525.5, p=0.010). ChEIs showed no influence on EKG parameters or on the occurrence of orthostatic hypotension. Treatment with ChEIs was associated with functional improvement of the ANS behavior and to a decrease in supine DBP and in both orthostatic SBP and DBP.

  7. Cerebrospinal Fluid Orexin A Levels and Autonomic Function in Kleine-Levin Syndrome

    PubMed Central

    Wang, Jing Yu; Han, Fang; Dong, Song X.; Li, Jing; An, Pei; Zhang, Xiao Zhe; Chang, Yuan; Zhao, Long; Zhang, Xue Li; Liu, Ya Nan; Yan, Han; Li, Qing Hua; Hu, Yan; Lv, Chang Jun; Gao, Zhan Cheng; Strohl, Kingman P.

    2016-01-01

    Study Objectives: Kleine-Levin syndrome (KLS) is a rare disorder of relapsing sleepiness. The hypothesis was that the syndrome is related to a change in the vigilance peptide orexin A. Methods: From 2002 to 2013, 57 patients with relapsing hypersomnolence were clinically assessed in a referral academic center in Beijing, China, and 44 (28 males and 16 females; mean age 18.3 ± 8.9 y (mean ± standard deviation, range 9–57 y) were determined to have clinical and behavioral criteria consistent with KLS. Cerebrospinal fluid orexin A levels and diurnal blood pressure were measured in relapse versus remission in a subgroup of patients. Results: Presenting symptoms included relapsing or remitting excessive sleepiness–associated parallel complaints of cognitive changes (82%), eating disorders (84%); depression (45%); irritability (36%); hypersexuality (18%); and compulsions (11%). Episodes were 8.2 ± 3.3 days in duration. In relapse, diurnal values for blood pressure and heart rate were lower (P < 0.001). In a subgroup (n = 34), cerebrospinal fluid orexin A levels were ∼31% lower in a relapse versus remission (215.7 ± 81.5 versus 319.2 ± 95.92 pg/ml, P < 0.001); in three patients a pattern of lower levels during subsequent relapses was documented. Conclusions: There are lower orexin A levels in the symptomatic phase than in remission and a fall and rise in blood pressure and heart rate, suggesting a role for orexin dysregulation in KLS pathophysiology. Citation: Wang JY, Han F, Dong SX, Li J, An P, Zhang XZ, Chang Y, Zhao L, Zhang XL, Liu YN, Yan H, Li QH, Hu Y, Lv CJ, Gao ZC, Strohl KP. Cerebrospinal fluid orexin A levels and autonomic function in Kleine-Levin syndrome. SLEEP 2016;39(4):855–860. PMID:26943469

  8. A Submaximal Running Test With Postexercise Cardiac Autonomic and Neuromuscular Function in Monitoring Endurance Training Adaptation.

    PubMed

    Vesterinen, Ville; Nummela, Ari; Laine, Tanja; Hynynen, Esa; Mikkola, Jussi; Häkkinen, Keijo

    2017-01-01

    Vesterinen, V, Nummela, A, Laine, T, Hynynen, E, Mikkola, J, and Häkkinen, K. A submaximal running test with postexercise cardiac autonomic and neuromuscular function in monitoring endurance training adaptation. J Strength Cond Res 31(1): 233-243, 2017-The aim of this study was to investigate whether a submaximal running test (SRT) with postexercise heart rate recovery (HRR), heart rate variability (HRV), and countermovement jump (CMJ) measurements could be used to monitor endurance training adaptation. Thirty-five endurance-trained men and women completed an 18-week endurance training. Maximal endurance performance and maximal oxygen uptake were measured every 8 weeks. In addition, SRTs with postexercise HRR, HRV, and CMJ measurements were carried out every 4 weeks. Submaximal running test consisted of two 6-minute stages at 70 and 80% of maximum heart rate (HRmax) and a 3-minute stage at 90% HRmax, followed by a 2-minute recovery stage for measuring postexercise HRR, HRV, and CMJ test. The highest responders according to the change of maximal endurance performance showed a significant improvement in running speeds during stages 2 and 3 in SRT, whereas no changes were observed in the lowest responders. The strongest correlation was found between the change of maximal endurance performance and running speed during stage 3, whereas no significant relationships were found between the change of maximal endurance performance and the changes of postexercise HRR, HRV, and CMJ. Running speed at 90% HRmax intensity was the most sensitive variable to monitor adaptation to endurance training. The present submaximal test showed potential to monitor endurance training adaptation. Furthermore, it may serve as a practical tool for athletes and coaches to evaluate weekly the effectiveness of training program without interfering in the normal training habits.

  9. Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders☆

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Feingold, Kenneth R.

    2013-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a “best attempt” by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  10. Functional networks in motor sequence learning: abnormal topographies in Parkinson's disease.

    PubMed

    Nakamura, T; Ghilardi, M F; Mentis, M; Dhawan, V; Fukuda, M; Hacking, A; Moeller, J R; Ghez, C; Eidelberg, D

    2001-01-01

    activation compensating for abnormalities in basal ganglia function.

  11. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia

    PubMed Central

    Ruiz, Marta; Perez-Garcia, Georgina; Ortiz-Virumbrales, Maitane; Méneret, Aurelie; Morant, Andrika; Kottwitz, Jessica; Fuchs, Tania; Bonet, Justine; Gonzalez-Alegre, Pedro; Hof, Patrick R.; Ozelius, Laurie J.; Ehrlich, Michelle E.

    2015-01-01

    DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations. PMID:26376866

  12. Abnormal distribution of pulmonary blood flow in aortic valve disease. Relation between pulmonary function and chest radiograph.

    PubMed

    Goodenday, L S; Simon, G; Craig, H; Dalby, L

    1970-05-01

    Wasted ventilatory volume (V(D)) and its ratio to tidal volume (V(D)/V(T)) were measured at rest and during exertion in 17 patients with aortic valve disease. We considered V(D)/V(T) to indicate abnormal ventilation: perfusion relations if it did not decrease on exertion, or if the exercising value was greater than 40 per cent. Plain chest radiographs were independently examined for evidence of diversion of pulmonary blood to the upper lobes. There was significant agreement (p<0.05) between radiographic and pulmonary function estimations of abnormality. This suggests that the raised pulmonary venous pressure associated with left ventricular failure creates an abnormal pattern of blood flow through the lung, which is responsible for causing inadequate perfusion with respect to ventilation.

  13. Autonomous and in trans functions for the two halves of Srv2/CAP in promoting actin turnover.

    PubMed

    Chaudhry, Faisal; Jansen, Silvia; Little, Kristin; Suarez, Cristian; Boujemaa-Paterski, Rajaa; Blanchoin, Laurent; Goode, Bruce L

    2014-06-01

    Recent evidence has suggested that Srv2/CAP (cyclase-associated protein) has two distinct functional roles in regulating actin turnover, with its N-terminus enhancing cofilin-mediated severing of actin filaments and its C-terminus catalyzing actin monomer recycling. However, it has remained unclear to what degree these two activities are coordinated by being linked in one molecule, or whether they can function autonomously. To address this, we physically divided the protein into two separate halves, N-Srv2 and C-Srv2, and asked whether they are able to function in trans both in living cells and in reconstituted assays for F-actin turnover and actin-based motility. Remarkably, in F-actin turnover assays the stimulatory effects of N-Srv2 and C-Srv2 functioning in trans were quantitatively similar to those of intact full-length Srv2. Further, in bead motility assays and in vivo, the fragments again functioned in trans, although not with the full effectiveness of intact Srv2. From these data, we conclude that the functions of the two halves of Srv2/CAP are largely autonomous, although their linkage improves coordination of the two functions in specific settings, possibly explaining why the linkage is conserved across distant plant, animal, and fungal species.

  14. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  15. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  16. Pulmonary Function Abnormalities in Never Smoking Flight Attendants Exposed to Secondhand Tobacco Smoke in the Aircraft Cabin

    PubMed Central

    Arjomandi, Mehrdad; Haight, Thaddeus; Redberg, Rita; Gold, Warren M

    2009-01-01

    Objective To determine whether the flight attendants who were exposed to secondhand tobacco smoke (SHS) in the aircraft cabin have abnormal pulmonary function. Methods We administered questionnaires and performed pulmonary function testing in 61 never-smoking female flight attendants who worked in active air crews before the smoking ban on commercial aircraft (pre-ban). Results While the pre-ban flight attendants had normal FVC, FEV1, and FEV1/FVC ratio, they had significantly decreased flow at mid- and low-lung volumes, curvilinear flow-volume curves, and evidence of air trapping. Furthermore, the flight attendants had significantly decreased diffusing capacity (77.5±11.2 %predicted normal) with 51% having a diffusing capacity below their 95% normal prediction limit. Conclusions This cohort of healthy never-smoking flight attendants who were exposed to SHS in the aircraft cabin showed pulmonary function abnormalities suggestive of airway obstruction and impaired diffusion. PMID:19448573

  17. Intelligent Mobile Autonomous System

    DTIC Science & Technology

    1987-01-01

    jerk application. (c) Negative jerk application. Group (a). Application of positve jerk. Force is increased from initial value to force of resistance...fundamentals of the new emerging area of autonomous robotics . The goal of this research is to develop a theory of design and functioning of Intelligent...scientific research. This report contributes to a new rapidly developing area of autonomous robotics . Actual experience of dealing with autonomous robots (or

  18. Congenital hypothyroidism in a kitten resulting in decreased IGF-I concentration and abnormal liver function tests.

    PubMed

    Quante, Saskia; Fracassi, Federico; Gorgas, Daniela; Kircher, Patrick R; Boretti, Felicitas S; Ohlerth, Stefanie; Reusch, Claudia E

    2010-06-01

    A 7-month-old male kitten was presented with chronic constipation and retarded growth. Clinical examination revealed disproportional dwarfism with mild skeletal abnormalities and a palpable thyroid gland. The presumptive diagnosis of congenital hypothyroidism was confirmed by low serum total thyroxine (tT(4)) concentration prior to and after the administration of thyroid stimulation hormone (TSH), increased endogenous TSH concentration and abnormal thyroid scintigraphic scan. The kitten had abnormal liver function tests and decreased insulin-like growth factor 1 (IGF-1) concentration, both of which returned to normal in correspondence with an improvement of the clinical signs after 6 weeks of thyroxine therapy. Congenital hypothyroidism is a rare disease that may present with considerable variation in clinical manifestation. In cases in which clinical signs are ambiguous, disorders such as portosystemic shunt and hyposomatotropism have to be taken into account as differential diagnosis. As hypothyroidism may be associated with abnormal liver function tests and low IGF-1 concentrations, test results have to be interpreted carefully.

  19. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals.

  20. Abelson Family Tyrosine Kinases Regulate the Function of Nicotinic Acetylcholine Receptors and Nicotinic Synapses on Autonomic NeuronsS⃞

    PubMed Central

    Jayakar, Selwyn S.

    2011-01-01

    Abelson family kinases (AFKs; Abl1, Abl2) are non-receptor tyrosine kinases (NRTKs) implicated in cancer, but they also have important physiological roles that include regulating synaptic structure and function. Recent studies using Abl-deficient mice and the antileukemia drug STI571 [imatinib mesylate (Gleevec); Novartis], which potently and selectively blocks Abl kinase activity, implicate AFKs in regulating presynaptic neurotransmitter release in hippocampus and postsynaptic clustering of nicotinic acetylcholine receptors (nAChRs) in muscle. Here, we tested whether AFKs are relevant for regulating nAChRs and nAChR-mediated synapses on autonomic neurons. AFK immunoreactivity was detected in ciliary ganglion (CG) lysates and neurons, and STI571 application blocked endogenous Abl tyrosine kinase activity. With similar potency, STI571 specifically reduced whole-cell current responses generated by both nicotinic receptor subtypes present on CG neurons (α3*- and α7-nAChRs) and lowered the frequency and amplitude of α3*-nAChR-mediated excitatory postsynaptic currents. Quantal analysis indicated that the synaptic perturbations were postsynaptic in origin, and confocal imaging experiments revealed they were unaccompanied by changes in nAChR clustering or alignment with presynaptic terminals. The results indicate that in autonomic neurons, Abl kinase activity normally supports postsynaptic nAChR function to sustain nAChR-mediated neurotransmission. Such consequences contrast with the influence of Abl kinase activity on presynaptic function and synaptic structure in hippocampus and muscle, respectively, demonstrating a cell-specific mechanism of action. Finally, because STI571 potently inhibits Abl kinase activity, the autonomic dysfunction side effects associated with its use as a chemotherapeutic agent may result from perturbed α3*- and/or α7-nAChR function. PMID:21502378

  1. Autonomic activity during human sleep as a function of time and sleep stage.

    PubMed

    Trinder, J; Kleiman, J; Carrington, M; Smith, S; Breen, S; Tan, N; Kim, Y

    2001-12-01

    While there is a developing understanding of the influence of sleep on cardiovascular autonomic activity in humans, there remain unresolved issues. In particular, the effect of time within the sleep period, independent of sleep stage, has not been investigated. Further, the influence of sleep on central sympathetic nervous system (SNS) activity is uncertain because results using the major method applicable to humans, the low frequency (LF) component of heart rate variability (HRV), have been contradictory, and because the method itself is open to criticism. Sleep and cardiac activity were measured in 14 young healthy subjects on three nights. Data was analysed in 2-min epochs. All epochs meeting specified criteria were identified, beginning 2 h before, until 7 h after, sleep onset. Epoch values were allocated to 30-min bins and during sleep were also classified into stage 2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The measures of cardiac activity were heart rate (HR), blood pressure (BP), high frequency (HF) and LF components of HRV and pre-ejection period (PEP). During non-rapid eye movement (NREM) sleep autonomic balance shifted from sympathetic to parasympathetic dominance, although this appeared to be more because of a shift in parasympathetic nervous system (PNS) activity. Autonomic balance during REM was in general similar to wakefulness. For BP and the HF and LF components the change occurred abruptly at sleep onset and was then constant over time within each stage of sleep, indicating that any change in autonomic balance over the sleep period is a consequence of the changing distribution of sleep stages. Two variables, HR and PEP, did show time effects reflecting a circadian influence over HR and perhaps time asleep affecting PEP. While both the LF component and PEP showed changes consistent with reduced sympathetic tone during sleep, their pattern of change over time differed.

  2. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4

  3. Assessment of cardiac autonomic functions by heart rate recovery, heart rate variability and QT dynamicity parameters in patients with acromegaly.

    PubMed

    Dural, Muhammet; Kabakcı, Giray; Cınar, Neşe; Erbaş, Tomris; Canpolat, Uğur; Gürses, Kadri Murat; Tokgözoğlu, Lale; Oto, Ali; Kaya, Ergün Barış; Yorgun, Hikmet; Sahiner, Levent; Dağdelen, Selçuk; Aytemir, Kudret

    2014-04-01

    Cardiovascular complications are the most common causes of morbidity and mortality in acromegaly. However, there is little data regarding cardiac autonomic functions in these patients. Herein, we aimed to investigate several parameters of cardiac autonomic functions in patients with acromegaly compared to healthy subjects. We enrolled 20 newly diagnosed acromegalic patients (55% female, age:45.7 ± 12.6 years) and 32 age- and gender-matched healthy subjects. All participants underwent 24 h Holter recording. Heart rate recovery (HRR) indices were calculated by subtracting 1st, 2nd and 3rd minute heart rates from maximal heart rate. All patients underwent heart rate variability (HRV) and QT dynamicity analysis. Baseline characteristics were similar except diabetes mellitus and hypertension among groups. Mean HRR1 (29.2 ± 12.3 vs 42.6 ± 6.5, p = 0.001), HRR2 (43.5 ± 15.6 vs 61.1 ± 10.8, p = 0.001) and HRR3 (46.4 ± 16.2 vs 65.8 ± 9.8, p = 0.001) values were significantly higher in control group. HRV parameters as, SDNN [standard deviation of all NN intervals] (p = 0.001), SDANN [SD of the 5 min mean RR intervals] (p = 0.001), RMSSD [root square of successive differences in RR interval] (p = 0.001), PNN50 [proportion of differences in successive NN intervals >50 ms] (p = 0.001) and high-frequency [HF] (p = 0.001) were significantly decreased in patients with acromegaly; but low frequency [LF] (p = 0.046) and LF/HF (p = 0.001) were significantly higher in acromegaly patients. QTec (p = 0.009), QTac/RR slope (p = 0.017) and QTec/RR slope (p = 0.01) were significantly higher in patients with acromegaly. Additionally, there were significant negative correlation of disease duration with HRR2, HRR3, SDNN, PNN50, RMSSD, variability index. Our study results suggest that cardiac autonomic functions are impaired in patients with acromegaly. Further large scale studies are needed to exhibit the prognostic significance of impaired autonomic functions in patients with

  4. [Cardiac autonomic blockade in sinus disease and indication for a pacemaker].

    PubMed

    Solórzano Martín, C J; Delgado Caro, G; Lugo Peña, P

    1990-01-01

    Functional autonomic blockade (FAB) with metoprolol (0.2 mg/kg body weight) and atropine sulphate (0.04 mg/kg) was carried out in 23 patients, 20 to 81 years old (mean age 61 years) with symptomatic sick sinus syndrome with clinical indication for permanent pacing. Several measurements were determined before and after FAB, 7 had normal intrinsic heart rate (IHR) and 16 abnormal. With normal IHR, 3 had severe autonomic regulation disturbances and in only two patients the corrected sinus nodal recovery time (SNRTC) and the sinoatrial conduction time (SACT) were prolonged after FAB. On the 16 patients with abnormal IHR only 4 had severe extrinsic autonomic influence and 15 had SACT and SNRTC prolonged after FAB. All measurements were determined by standard electrocardiographic surface tracings. Indications for permanent pacing were reduced to intrinsic sick sinus syndrome and bradycardia with severe autonomic disturbances in symptomatic patients.

  5. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans

    PubMed Central

    Haller, Jozsef; Raczkevy-Deak, Gabriella; Gyimesine, Katalin P.; Szakmary, Andras; Farkas, Istvan; Vegh, Jozsef

    2014-01-01

    Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary), who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions (“attentional myopia”) and promotes a bias toward hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e., before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness. PMID:25374519

  6. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    PubMed

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD.

  7. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    PubMed Central

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  8. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy

    PubMed Central

    Kwon, Hae-Yeon

    2017-01-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5–13 years of age in I–III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject’s guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity. PMID:28265153

  9. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy.

    PubMed

    Kwon, Hae-Yeon

    2017-02-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5-13 years of age in I-III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject's guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity.

  10. Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years.

    PubMed

    Wang, Lubin; Zou, Feng; Zhai, Tianye; Lei, Yu; Tan, Shuwen; Jin, Xiao; Ye, Enmao; Shao, Yongcong; Yang, Yihong; Yang, Zheng

    2016-05-01

    Previous studies have suggested that heroin addiction is associated with structural and functional brain abnormalities. However, it is largely unknown whether these characteristics of brain abnormalities would be persistent or restored after long periods of abstinence. Considering the very high rates of relapse, we hypothesized that there may exist some latent neural vulnerabilities in abstinent heroin users. In this study, structural and resting-state functional magnetic resonance imaging data were collected from 30 former heroin-dependent (FHD) subjects who were drug free for more than 3 years and 30 non-addicted control (CN) volunteers. Voxel-based morphometry was used to identify possible gray matter volume differences between the FHD and CN groups. Alterations in resting-state functional connectivity in FHD were examined using brain areas with gray matter deficits as seed regions. Significantly reduced gray matter volume was observed in FHD in an area surrounding the parieto-occipital sulcus, which included the precuneus and cuneus. Functional connectivity analyses revealed that the FHD subjects showed reduced positive correlation within the default mode network and visual network and decreased negative correlation between the default mode network, visual network and task positive network. Moreover, the altered functional connectivity was correlated with self-reported impulsivity scores in the FHD subjects. Our findings suggest that disruption of large-scale brain systems is present in former heroin users even after multi-year abstinence, which could serve as system-level neural underpinnings for behavioral dysfunctions associated with addiction.

  11. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect.

    PubMed

    Russo, Michael A; Hogenauer, Christoph; Coates, Stephen W; Santa Ana, Carol A; Porter, Jack L; Rosenblatt, Randall L; Emmett, Michael; Fordtran, John S

    2003-07-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF.

  12. Neural signatures of economic parameters during decision-making: a functional MRI (FMRI), electroencephalography (EEG) and autonomic monitoring study.

    PubMed

    Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D

    2012-01-01

    Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing

  13. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis

    PubMed Central

    Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Purpose Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Methods Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Results Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Conclusion Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively

  14. Correlations of smoking with cumulative total dust exposure and cumulative abnormal rate of pulmonary function in coal-mine workers

    PubMed Central

    Qian, Qing-Zeng; Cao, Xiang-Ke; Shen, Fu-Hai; Wang, Qian

    2016-01-01

    The present study aimed to investigate the correlation of smoking with cumulative total dust exposure (CTE) and cumulative abnormal rate of pulmonary function in coal-mine workers. A total of 376 coal-mine workers were recruited as the observational group, while 179 healthy workers in other industries were selected as the control group. All the workers underwent pulmonary function testing to determine their forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1) and FEV1/FVC, in order to compare the abnormal pulmonary function between the two groups. A markedly higher number of smokers was observed in the observational group (200/376, 53.19%) when compared with the control group (72/179, 40.22%). In smokers, the abnormal rate of pulmonary function in the observational group (102/200, 51.00%) was evidently higher compared with that in the control group (19/72, 26.39%), whereas no significant difference was detected between the two groups of non-smokers (P=0.077). In addition, FVC, FEV1 and FEV1/FVC of the observational group were found to be lower compared with those in the control group, in both the smoking and non-smoking subgroups. In the smoking subgroup, FVC and FEV1 in subjects working at the coal mine for different number of years showed significant differences (all P<0.05), whereas comparison of FEV1/FVC in workers with different working durations showed no significant difference (P=0.169). However, in the non-smoking subgroup, the comparison of FVC, FEV1 and FEV1/FVC in different working duration groups also showed no significant difference (all P>0.05). Furthermore, FVC, FEV1 and FEV1/FVC in smoking coal-mine workers were negatively correlated with the dust-exposure working duration (P<0.05). CTE was also positively correlated with cumulative abnormal rate of pulmonary function in the smoking and non-smoking subgroups, while FEV1 was negatively correlated with CTE in the smoking subgroup (P=0.009). In conclusion, smoking is an important

  15. Autonomous multifunctional nanobrushes-autonomous materials

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.

    2007-04-01

    In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).

  16. Treatment of Posttraumatic Abdominal Autonomic Neuropathy Manifesting as Functional Dyspepsia and Chronic Constipation: An Integrative East-West Approach

    PubMed Central

    Taw, Lawrence

    2015-01-01

    A 52-year-old male with a history of spinal cord injury and cauda equina syndrome resulting in neurogenic bladder presented with chronic constipation and functional dyspepsia that was refractory to medical management. He was treated with an integrative East-West approach including acupuncture, trigger point injections, and Tui Na massage. Both his pain and constipation improved after a series of treatments, and this improvement was largely sustained at 2-year follow-up. This patient's symptoms are consistent with damage to the visceral parasympathetic nervous system. Interestingly, many studies evaluating the mechanisms of acupuncture point to restoration of parasympathetic tone as a mechanism of action. In this article, we describe a case of complex functional gastrointestinal disorders associated with posttraumatic autonomic neuropathy that was refractory to pharmacotherapy and was successfully treated with an integrative East-West approach PMID:26331105

  17. Treatment of Posttraumatic Abdominal Autonomic Neuropathy Manifesting as Functional Dyspepsia and Chronic Constipation: An Integrative East-West Approach.

    PubMed

    Shubov, Andrew; Taw, Lawrence

    2015-07-01

    A 52-year-old male with a history of spinal cord injury and cauda equina syndrome resulting in neurogenic bladder presented with chronic constipation and functional dyspepsia that was refractory to medical management. He was treated with an integrative East-West approach including acupuncture, trigger point injections, and Tui Na massage. Both his pain and constipation improved after a series of treatments, and this improvement was largely sustained at 2-year follow-up. This patient's symptoms are consistent with damage to the visceral parasympathetic nervous system. Interestingly, many studies evaluating the mechanisms of acupuncture point to restoration of parasympathetic tone as a mechanism of action. In this article, we describe a case of complex functional gastrointestinal disorders associated with posttraumatic autonomic neuropathy that was refractory to pharmacotherapy and was successfully treated with an integrative East-West approach.

  18. Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha‐synuclein in oligodendrocytes

    PubMed Central

    Tank, Jens; da Costa‐Goncalves, Andrey C.; Kamer, Ilona; Qadri, Fatimunnisa; Ubhi, Kiren; Rockenstein, Edward; Diedrich, André; Masliah, Eliezer; Gross, Volkmar; Jordan, Jens

    2014-01-01

    Abstract Mice overexpressing human alpha‐synuclein in oligodendrocytes (MBP1‐α‐syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long‐term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1‐α‐syn mice and 11 wild‐type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross‐spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (−21 ± 8 vs. −10 ± 5 mmHg, P = 0.240) and to clonidine (−8 ± 3 vs. −5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (−188 ± 21 vs. −163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha‐synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age. PMID:25428949

  19. Liver Function Test Abnormalities in Depressed Patients Treated with Antidepressants: A Real-World Systematic Observational Study in Psychiatric Settings

    PubMed Central

    Verstuyft, Céline; Corruble, Emmanuelle; Perlemuter, Gabriel; Colle, Romain

    2016-01-01

    Background Concerning the risk of antidepressant induced liver injury, it is not clear whether psychiatrists perform a liver function test (LFT) and whether an increase in aminotransferase levels should contraindicate antidepressant treatment. Aim To evaluate LFT availability, the prevalence of LFT abnormalities and the probable cause of an altered LFT in patients with a major depressive episode (MDE) requiring an antidepressant drug. Methods We studied LFT evaluation in a real world psychiatric setting, in a sample of 321 consecutive patients with a current major depressive episode (MDE) requiring an antidepressant drug treatment, but without current alcohol or drug dependence or unstable medical disease. Results An LFT is performed in 36.1% (116/321) of depressed patients. One fifth of antidepressant-treated patients who had an LFT evaluation had abnormal results. The most frequent causes of LFT abnormalities were: NAFLD (nonalcoholic fatty liver disease) (7/321; 2.1%), acute alcohol consumption (4/321; 1.2%), antidepressant-induced liver injury (3/321; 0.9%), hepatitis C virus infection (2/321; 0.6%) and heart failure (1/321; 0.3%). The cause of LFT abnormalities was unknown in 32% of patients (8/25) due to the absence of etiological investigations. Conclusion These results demonstrate that an LFT is infrequently performed by psychiatrists in depressed patients requiring an antidepressant drug. Baseline LFT assessment and observations during the first six months of antidepressant treatment may be useful for detection of patients with pre-existing liver disease such as NAFLD, and early identification of cases of antidepressant-induced liver injury. An increase in aminotransferase levels may be related to an underlying liver disease, but does not contraindicate antidepressant treatment. PMID:27171561

  20. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis.

  1. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA.

  2. Autonomic dysfunction is common in HIV and associated with distal symmetric polyneuropathy

    PubMed Central

    Robinson-Papp, Jessica; Sharma, Sandeep; Simpson, David M.; Morgello, Susan

    2013-01-01

    Neurologic complications of HIV are well characterized in the central and peripheral nervous systems but not in the autonomic nervous system, perhaps due to the complexities of measuring autonomic function in medically ill populations. We hypothesized that autonomic dysfunction is common in HIV, can be meaningfully measured with an autonomic reflex screen, and is associated with distal symmetric polyneuropathy (DSP) but not with signs of CNS disease. We also sought to characterize immuno-virologic and medical factors associated with autonomic dysfunction. We assessed 102 HIV-infected adults for autonomic dysfunction with a laboratory-based autonomic reflex screen summarized as the Composite Autonomic Severity Score (CASS). The Total Neuropathy Score (TNS) was used to quantify DSP based on neurologic interview/examination, quantitative sensory testing, and nerve conduction studies. Autonomic dysfunction was common, with a CASS ≥ 3 in 61% of participants, of whom 86% were symptomatic. Greater CASS abnormalities demonstrated univariate association with increasing TNS, age, viral load, hypertension, and use of medications (particularly anticholinergics), but not with antiretrovirals, current/nadir CD4+ count, HIV-duration, metabolic factors, or signs of CNS disease. The TNS was the only significant predictor of the CASS in multivariate analysis; anticholinergic medications were marginally significant. This study demonstrates that autonomic dysfunction is common and frequently symptomatic in HIV, and that an autonomic reflex screen, adjusted for anticholinergic medication, is useful in its assessment. Association of autonomic dysfunction with DSP suggests common factors in their pathogenesis, and autonomic neuropathy may be part of the spectrum of HIV-associated peripheral nerve pathologies. PMID:23580249

  3. Clinical validation of software for a versatile variability analyzer: Assessment of autonomic function

    PubMed Central

    Ananthakrishnan, T. S.; Jindal, G. D.; Sinha, Vineet; Jain, Rajesh K.; Kataria, S. K.; Deshpande, Alaka K.

    2007-01-01

    Study of physiological variability is an upcoming area of research having manifold clinical applications. Considerable work has been done on heart rate variability and blood pressure variability during the past four decades. Electronics division, Bhabha Atomic Research Centre, has developed an instrument called medical analyzer, which can be used to study several variabilities simultaneously. This instrument has been used to collect data from control subjects and patients with established diagnosis. The data has been analyzed with the help of a software package developed for this purpose and has been found to be consistent with expected manifestations of the disease on the autonomic nervous system. The description of the software package and results of the study are briefly described in this paper. PMID:21157528

  4. Sleep disordered breathing and autonomic function in overweight and obese children and adolescents

    PubMed Central

    Van Hoorenbeeck, Kim; De Winter, Benedicte Y.; Van Gaal, Luc; De Backer, Wilfried; Verhulst, Stijn L.

    2016-01-01

    Obstructive sleep apnoea (OSA), common in children with obesity, is associated with cardiovascular morbidity. Autonomic dysfunction has been suggested to be a key player in the development of these complications. We investigated the relationship between obesity, OSA and sympathetic activity in children. 191 children with obesity were included and distributed into two groups: 131 controls and 60 with OSA. Beat-to-beat RR interval data were extracted from polysomnography for heart rate variability analysis. Urinary free cortisol levels were determined. Urinary free cortisol did not differ between groups and was not associated with OSA, independent of the level of obesity. Differences in heart rate variability measures were found: mean RR interval decreased with OSA, while low/high-frequency band ratio and mean heart rate increased with OSA. Heart rate variability measures correlated with OSA, independent of obesity parameters and age: oxygen desaturation index correlated with mean heart rate (r=0.19, p=0.009) and mean RR interval (r= −0.18, p=0.02), while high-frequency bands and low/high-frequency band ratio correlated with arterial oxygen saturation measured by pulse oximetry (SpO2) (r= −0.20, p=0.008 and r= −0.16, p=0.04) and SpO2 nadir (r=0.23, p=0.003 and r= −0.19, p=0.02). These results suggest that sympathetic heart activity is increased in children with obesity and OSA. Measures of hypoxia were related to increased sympathetic tone, suggesting that intermittent hypoxia is involved in autonomic dysfunction. PMID:27999786

  5. Sleep disordered breathing and autonomic function in overweight and obese children and adolescents.

    PubMed

    Van Eyck, Annelies; Van Hoorenbeeck, Kim; De Winter, Benedicte Y; Van Gaal, Luc; De Backer, Wilfried; Verhulst, Stijn L

    2016-10-01

    Obstructive sleep apnoea (OSA), common in children with obesity, is associated with cardiovascular morbidity. Autonomic dysfunction has been suggested to be a key player in the development of these complications. We investigated the relationship between obesity, OSA and sympathetic activity in children. 191 children with obesity were included and distributed into two groups: 131 controls and 60 with OSA. Beat-to-beat RR interval data were extracted from polysomnography for heart rate variability analysis. Urinary free cortisol levels were determined. Urinary free cortisol did not differ between groups and was not associated with OSA, independent of the level of obesity. Differences in heart rate variability measures were found: mean RR interval decreased with OSA, while low/high-frequency band ratio and mean heart rate increased with OSA. Heart rate variability measures correlated with OSA, independent of obesity parameters and age: oxygen desaturation index correlated with mean heart rate (r=0.19, p=0.009) and mean RR interval (r= -0.18, p=0.02), while high-frequency bands and low/high-frequency band ratio correlated with arterial oxygen saturation measured by pulse oximetry (SpO2 ) (r= -0.20, p=0.008 and r= -0.16, p=0.04) and SpO2 nadir (r=0.23, p=0.003 and r= -0.19, p=0.02). These results suggest that sympathetic heart activity is increased in children with obesity and OSA. Measures of hypoxia were related to increased sympathetic tone, suggesting that intermittent hypoxia is involved in autonomic dysfunction.

  6. Exercise and the autonomic nervous system.

    PubMed

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders.

  7. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  8. Autonomous spacecraft design methodology

    SciTech Connect

    Divita, E.L.; Turner, P.R.

    1984-08-01

    A methodology for autonomous spacecraft design blends autonomy requirements with traditional mission requirements and assesses the impact of autonomy upon the total system resources available to support faulttolerance and automation. A baseline functional design can be examined for autonomy implementation impacts, and the costs, risk, and benefits of various options can be assessed. The result of the process is a baseline design that includes autonomous control functions.

  9. Intracoronary gastrin 17 increases cardiac perfusion and function through autonomic nervous system, CCK receptors, and nitric oxide in anesthetized pigs.

    PubMed

    Grossini, Elena; Caimmi, Philippe; Molinari, Claudio; Uberti, Francesca; Mary, David; Vacca, Giovanni

    2011-01-01

    The release of gastrointestinal hormones has been reported to modulate reflex cardiovascular responses caused by gastric distension, although the role played by gastrin 17 is as yet unknown. The present study was therefore planned to determine the primary in vivo effect of gastrin 17 on coronary blood flow and cardiac function and the involvement of autonomic nervous system, CCK1/2 receptors, and nitric oxide (NO). In 40 anesthetized pigs, gastrin 17 was infused into the left anterior descending coronary artery at constant heart rate and arterial blood pressure. In 35 of the 40 pigs, the mechanisms of the observed hemodynamic responses were analyzed by repeating gastrin 17 infusion after autonomic nervous system and NO blockade, and after specific CCK receptors agonists/antagonists administration. Intracoronary gastrin 17 administration caused dose-related increases of both coronary blood flow and cardiac function. The intracoronary co-administration of CCK33/pentagastrin and gastrin 17 potentiated the coronary effects observed when the above agents were given alone (P <0.05). The potentiation of the cardiac response was observed only with the co-administration of pentagastrin and gastrin 17 (P <0.05). Moreover, blockade of muscarinic cholinoceptors (intravenous atropine) and of α-adrenoceptors (intravenous phentolamine) did not abolish the hemodynamic responses to gastrin 17. The cardiac and vascular effects of the hormone were prevented by blockade of β-adrenoceptors (intravenous atenolol and butoxamine), CCK1/2 receptors (intracoronary lorglumide and CAM-1028), and NO synthase (intracoronary Nω-nitro-l-arginine methyl ester). In conclusion, gastrin 17 primarily increased coronary blood flow and cardiac function through the involvement of CCK receptors, β-adrenoceptors, and NO release.

  10. Effects of angiotensin II receptor blockers on the relationships between ambulatory blood pressure and anti-hypertensive effects, autonomic function, and health-related quality of life.

    PubMed

    Okano, Yasuko; Tamura, Kouichi; Masuda, Shinitirou; Ozawa, Motoko; Tochikubo, Osamu; Umemura, Satoshi

    2009-11-01

    The aim of the present study was to examine the relationships between the anti-hypertensive effects, autonomic function, and health-related quality of life (HRQOL) following treatment of hypertensive subjects with angiotensin receptor blockers (ARBs) in hypertensives. Nineteen patients with hypertension were assigned randomly to daily treatment with ARBs. After 16 weeks of treatment, blood pressure (BP) and 24 h the ratio of low frequency to high frequency component (LF/HF), an index of sympathovagal balance were decreased by ARBs. The HRQOL scores improved during the study. In this study, ARB therapy was associated with an improvement in BP, autonomic function, and HRQOL.

  11. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta‐analysis of 28 functional neuroimaging studies

    PubMed Central

    Martin, Anna; Kronbichler, Martin

    2016-01-01

    Abstract We used coordinate‐based meta‐analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under‐ and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta‐analyses of the two sets of studies showed universal reading‐related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task‐negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography‐specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676–2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464

  12. Abnormal B-cell function in HTLV-I-tax transgenic mice.

    PubMed

    Peebles, R S; Maliszewski, C R; Sato, T A; Hanley-Hyde, J; Maroulakou, I G; Hunziker, R; Schneck, J P; Green, J E

    1995-03-16

    Transgenic mice that carry the HTLV-I Tax gene develop an exocrinopathy with some similarities to Sjoegren's syndrome. Our experiments reveal that these mice have lymphadenopathy and splenomegaly composed primarily of B lymphocytes, as well as abnormal levels of secreted immunoglobulins. To gain insight into whether the lymphadenopathy manifested by these transgenic mice was the result of induction of cytokines by Tax, we utilized cell lines from these mice to study in vitro B-cell responses. Conditioned media (CM) derived from the cell lines caused B-cells to proliferate when a second signal, surface Ig cross-linking, was provided. The CM also caused a marked enhancement of IgM secretion by spleen cells or by purified B-cells treated with supplemental cytokines. The B-cell proliferative response and enhanced IgM secretion have not been attributed to a known cytokine. These results suggest that the CM from the cell lines contain a factor(s) involved in novel pathways of B-cell growth and differentiation that may participate in the pathologic development of autoimmune disease.

  13. Autonomic function in hypertension: Role of genetic variation at the catecholaminestorage vesicle protein chromogranin B (CHGB)

    PubMed Central

    Zhang, Kuixing; Rao, Fangwen; Rana, Brinda K.; Gayen, Jiaur R.; Calegari, Federico; King, Angus; Rosa, Patrizia; Huttner, Wieland B.; Stridsberg, Mats; Mahata, Manjula; Vaingankar, Sucheta; Mahboubi, Vafa; Salem, Rany M.; Rodriguez-Flores, Juan L.; Fung, Maple M.; Smith, Douglas W.; Schork, Nicholas J.; Ziegler, Michael G.; Taupenot, Laurent; Mahata, Sushil K.; O’Connor, Daniel T.

    2009-01-01

    Rationale Hypertension is a complex trait with deranged autonomic control of the circulation. Chromogranin B (CHGB) is the most abundant core protein in human catecholamine secretory vesicles, playing an important role in their biogenesis. Does common inter-individual variation at the CHGB locus contribute to phenotypic variation in CHGB and catecholamine secretion, autonomic stability of the circulation, or blood pressure in the population? Methods and Results To probe inter-individual variability in CHGB, we systematically studied polymorphism across the locus by re-sequencing CHGB (~6 kbp footprint spanning the promoter, 5 exons, exon/intron borders, UTRs) in n=160 subjects (2n=320 chromosomes) of diverse biogeographic ancestries. We identified 53 SNPs, of which 22 were common. We then studied n=1182 subjects drawn from the most extreme BP values in the population (highest and lowest 5th %iles), typing 4 common polymorphisms spanning the ~14 kbp locus. Sliding-window haplotype analysis indicated BP associations peaking in the 5′/promoter region, and most prominent in men, and a peak effect in the proximal promoter at variant A-261T (A>T), accounting for ~8/~6 mmHg SBP/DBP in males. The promoter allele (A-261) that was a predictor of higher DBP and SBP was also associated with lower circulating/plasma CHGB concentration (CHGB439-451 epitope) in twin pairs. In twins, the same CHGB variants that were predictors of lower basal CHGB secretion were also associated with exaggerated catecholamine secretion and BP response to environmental (cold) stress; likewise, women displayed increased plasma CHGB439–451, but decreased catecholamine secretion as well as BP response to environmental stress. The effect of A-261T on CHGB expression was confirmed in chromaffin cells by site-directed mutagenesis on transfected CHGB promoter/luciferase reporter activity, and the allelic effects of A-261T on gene expression were directionally coordinate in cella and in vivo. To confirm

  14. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids.

    PubMed

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm.

  15. [Structure and functioning of research ethics committees in the Autonomous City of Buenos Aires and Greater Buenos Aires].

    PubMed

    Sabio, María Fernanda; Bortz, Jaime Elías

    2015-06-01

    Given the few existing studies on research ethics committees (RECs) in Argentina, this paper aims to describe the structure and functioning of institutional RECs in the Autonomous City of Buenos Aires and Greater Buenos Aires. A descriptive, qualitative and quantitative research study was carried out using a survey conducted between March and July 2012. The sample was made up of 46 RECs. Forty percent of committee members were doctors and the age and sex distribution met standards. Inadequate numbers of methodologists, community representatives, lawyers and members external to the institution were identified, as well as shortcomings regarding administrative staff, fixed locations for meetings, budgets adequate to expenditures and training in research ethics. Some of those surveyed reported problems in their relationship with the institution and with researchers, in addition to difficulties regarding the time available to perform tasks.

  16. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids

    PubMed Central

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382

  17. A COMPARISON OF IMIPRAMINE, CHLORPROMAZINE AND RELATED DRUGS IN VARIOUS TESTS INVOLVING AUTONOMIC FUNCTIONS AND ANTAGONISM OF RESERPINE.

    PubMed

    HALLIWELL, G; QUINTON, R M; WILLIAMS, F E

    1964-10-01

    Seven structurally-related compounds consisting of three antidepressant drugs (imipramine, desmethylimipramine and amitriptyline), three tranquillizing agents (promazine, chlorpromazine and chlorprothixene) and a hybrid, desmethylpromazine, have been examined in a series of tests involving autonomic functions and antagonism of reserpine. Activities of the compounds in antagonizing reserpine-induced ptosis in rabbits and prolongation of alcohol hypnosis in mice give good correlation with their clinical actions, whilst their activities in augmenting excitation of rats by amphetamine and yohimbine toxicity in mice, and in reversing reserpine-induced bradycardia in rats offer further evidence for drug-induced sensitization to adrenergic or tryptaminic mechanisms, which is not however specific for antidepressant agents. No evidence has been obtained to indicate that a central parasympatholytic action is an important component of the antidepressant activity of imipramine and related drugs.

  18. Morphometric and functional abnormalities of kidneys in the progeny of mice fed chocolate during pregnancy and lactation.

    PubMed

    Patera, Janusz; Chorostowska-Wynimko, Joanna; Słodkowska, Janina; Borowska, Adamina; Skopiński, Piotr; Sommer, Ewa; Wasiutyński, Aleksander; Skopińska-Rózewska, Ewa

    2006-01-01

    Even most commonly consumed beverages like tea, coffee, chocolate and cocoa contain methylxanthines, biogenic amines and polyphenols, among them catechins, that exhibit significant biological activity and might profoundly affect the organism homeostasis. We have previously shown that 400 mg of bitter chocolate or 6 mg of theobromine added to the daily diet of pregnant and afterwards lactating mice affected embryonic angiogenesis and caused bone mineralization disturbances as well as limb shortening in 4-weeks old offspring. The aim of the present study was the morphometric and functional evaluation of kidneys in the 4-weeks old progeny mice fed according to the protocol mentioned above. Progeny from the mice fed chocolate presented considerable morphometric abnormalities in the kidney structure, with the lower number of glomeruli per mm2 and their increased diameter. Moreover, higher serum creatinine concentration was observed in that group of offspring. No morphometric or functional irregularities were found in the progeny of mice fed theobromine. Abnormalities demonstrated in the offspring of mice fed chocolate are not related to its theobromine content. Consequently, identification of active compound(s) responsible for the observed effects is of vital importance.

  19. Cardiovascular autonomic function testing under non-standardised and standardised conditions in cardiovascular patients with type-2 diabetes mellitus.

    PubMed

    Keet, S W M; Bulte, C S E; Sivanathan, A; Verhees, L; Allaart, C P; Boer, C; Bouwman, R A

    2014-05-01

    Autonomic function tests require standardised test conditions. We compared testing under non-standardised and standardised conditions and investigated the agreement between heart and pulse rate variability in 30 subjects with diabetes mellitus. Deep breathing, Valsalva manoeuvre and quick standing tests showed non-standardised reproducibility intraclass correlations (95% CI) of 0.96 (0.82-0.99), 0.96 (0.81-0.99) and 0.75 (-0.98 to 0.94), respectively. Intraclass correlations for sustained handgrip and quick standing were poor. Heart and pulse rate variability showed high-frequency band intraclass correlations (95% CI) of 0.65 (-0.07 to 0.89) and 0.47 (-0.88 to 0.85) for the very low-frequency band, respectively, 0.68 (0.00-0.90) and 0.70 (-0.09 to 0.91) for the low-frequency band, and 0.86 (0.57-0.95) and 0.82 (0.39-0.95) for the high-frequency band. Reproducibility under standardised conditions was comparable. The mean difference (95% limits of agreement) between heart and pulse rate variability was 0.99 (0.80-1.22) for very low frequency, 1.03 (0.88-1.21) for low frequency and 1.35 (0.84-2.16) for high frequency, with a Spearman's correlation coefficient of 1.00, 0.99 and 0.98, respectively. We demonstrated a high agreement between heart and pulse rate variability and acceptable reproducibility with most autonomic function tests, heart and pulse rate variability.

  20. Influence of nutrients on cardiac autonomic function in nondiabetic overweight subjects.

    PubMed

    Valensi, Paul; Pariès, Jacques; Lormeau, Boris; Attia, Sandra; Attali, Jean-Raymond

    2005-10-01

    The current study sought to determine whether there is a link between cardiac autonomic dysfunction and food intake in overweight subjects. One hundred five nondiabetic overweight (body mass index >27 kg/m2) subjects were studied. Heart rate variations were analyzed during 3 bedside standard tests investigating mainly vagal control: deep breathing, lying-to-standing, and Valsalva tests. The resting metabolic rate and substrate oxidation rates were measured by indirect calorimetry. Dietary intake was estimated from a 3-day recall of food intake. Cardiac parasympathetic dysfunction (PSD) was found in 39 subjects. The sex ratio, age, anthropometric parameters, biochemical parameters and insulin resistance index, resting metabolic rate, and substrate oxidation rates did not differ in the subjects with or without PSD. The total 24-hour energy intake was similar, but the carbohydrate intake was significantly higher in the subjects with PSD (P = .006), and the fat and protein intakes were significantly lower (P = .026 and .045, respectively). In the logistic regression analyses, PSD correlated with carbohydrate and fat intake, independently of serum insulin levels. Glucose oxidation rate correlated negatively with fasting and postglucose serum insulin levels only in the subjects with PSD (P = .006 and .005, respectively). Cardiac parasympathetic dysfunction is associated with higher carbohydrate intake and lower fat and protein intakes in overweight subjects. A sympathetic override may contribute to reducing the glucose oxidation rate in subjects with PSD.

  1. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    PubMed

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function.

  2. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  3. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  4. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Li, Chao; Ma, Xiaofen; Dong, Mengshi; Yin, Yi; Hua, Kelei; Li, Meng; Li, Changhong; Zhan, Wenfeng; Li, Cheng; Jiang, Guihua

    2016-01-01

    Objective Investigating functional specialization is crucial for a complete understanding of the neural mechanisms of primary insomnia (PI). Resting-state functional magnetic resonance imaging (fMRI) is a useful tool to explore the functional specialization of PI. However, only a few studies have focused on the functional specialization of PI using resting-state fMRI and results of these studies were far from consistent. Thus, the current study aimed to investigate functional specialization of PI using resting-state fMRI with amplitude of low frequency fluctuations (ALFFs) algorithm. Methods In this study, 55 PI patients and 44 healthy controls were included. ALFF values were compared between the two groups using two-sample t-test. The relationship of abnormal ALFF values with clinical characteristics and duration of insomnia was investigated using Pearson’s correlation analysis. Results PI patients showed lower ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral cerebellum posterior lobes, while higher ALFF values in the right middle/inferior temporal that extended to the right occipital lobe. In addition, we found that the duration of PI negatively correlated with ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, and the Pittsburgh Sleep Quality Index score negatively correlated with ALFF values in the left inferior parietal lobule. Conclusion The present study added information to limited studies on functional specialization and provided evidence for hyperarousal hypothesis in PI. PMID:27366068

  5. Abnormal functional connectivity density in patients with ischemic white matter lesions

    PubMed Central

    Ding, Ju-Rong; Ding, Xin; Hua, Bo; Xiong, Xingzhong; Wang, Qingsong; Chen, Huafu

    2016-01-01

    Abstract White matter lesions (WMLs) are frequently detected in elderly people. Previous structural and functional studies have demonstrated that WMLs are associated with cognitive and motor decline. However, the underlying mechanism of how WMLs lead to cognitive decline and motor disturbance remains unclear. We used functional connectivity density mapping (FCDM) to investigate changes in brain functional connectivity in 16 patients with ischemic WMLs and 13 controls. Both short- and long-range FCD maps were computed, and group comparisons were performed between the 2 groups. A correlation analysis was further performed between regions with altered FCD and cognitive test scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]) in the patient group. We found that patients with ischemic WMLs showed reduced short-range FCD in the temporal cortex, primary motor cortex, and subcortical region, which may account for inadequate top-down attention, impaired motor, memory, and executive function associated with WMLs. The positive correlation between primary motor cortex and MoCA scores may provide evidence for the influences of cognitive function on behavioral performance. The inferior parietal cortex exhibited increased short-range FCD, reflecting a hyper bottom-up attention to compensate for the inadequate top-down attention for language comprehension and information retrieval in patients with WMLs. Moreover, the prefrontal and primary motor cortex showed increased long-range FCD and the former positively correlated with MoCA scores, which may suggest a strategy of cortical functional reorganization to compensate for motor and executive deficits. Our findings provide new insights into how WMLs cause cognitive and motor decline from cortical functional connectivity perspective. PMID:27603353

  6. Association of Abnormal Liver Function Parameters with HIV Serostatus and CD4 Count in Antiretroviral-Naive Rwandan Women.

    PubMed

    Dusingize, Jean Claude; Hoover, Donald R; Shi, Qiuhu; Mutimura, Eugene; Rudakemwa, Emmanuel; Ndacyayisenga, Victorien; Gakindi, Léonard; Mulvihill, Michael; Sinayobye, Jean D'Amour; Musabeyezu, Emmanuel; Anastos, Kathryn

    2015-07-01

    We determined the associations of HIV infection/CD4 count with markers of hepatocellular damage [elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] and liver synthetic function (decreased albumin) in HIV-infected (HIV(+)) antiretroviral therapy (ART)-naive and uninfected (HIV(-)) Rwandan women. In 2005, 710 HIV(+) ART-naive and 226 HIV(-) women enrolled in the Rwanda Women's Interassociation Study and Assessment. Liver enzymes were measured with abnormality defined as either AST or ALT ≥1.25 times the upper limit of normal. Low serum albumin level was defined as <3.5 g/dl. Multivariable logistic regression analysis identified independent predictors of elevated AST/ALT and low serum albumin. HIV(-) women had the lowest prevalence (6.6%) of abnormal AST/ALT, with the highest prevalence (16.4%) in HIV(+) women with CD4 <200 cells/μl (p=0.01). The odds of having serum albumin <3.5 g/dl was 5.7-fold higher in HIV(+) than HIV(-) women (OR=5.68, 95% CI: 3.32-9.71). The risk of low albumin decreased from low to high CD4 count, with OR=2.62, 95% CI: 1.66, 4.14 and OR=1.57, 95% CI: 1.01, 2.43 in HIV(+) women with a CD4 count <200 and 200-350 cells/μl, respectively vs. HIV(+) with CD4 >350 (p<0.001 and p<0.05 for all comparisons). Our findings suggest that HIV-associated liver damage may occur in ART-naive patients. Although liver abnormality prevalences in this cohort of HIV-infected Rwandan women are less than reported in developed countries, caution is needed for risk assessment measures to monitor and screen HIV-infected patients pre- and post-ART initiation in African clinical settings to curtail potential risks associated with HIV infection.

  7. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  8. Lung function and heart disease in American Indian adults with high frequency of metabolic abnormalities (from the Strong Heart Study).

    PubMed

    Yeh, Fawn; Dixon, Anne E; Best, Lyle G; Marion, Susan M; Lee, Elisa T; Ali, Tauqeer; Yeh, Jeunliang; Rhoades, Everett R; Howard, Barbara V; Devereux, Richard B

    2014-07-15

    The associations of pulmonary function with cardiovascular disease (CVD) independent of diabetes mellitus (DM) and metabolic syndrome have not been examined in a population-based setting. We examined prevalence and incidence CVD in relation to lower pulmonary function in the Strong Heart Study second examination (1993 to 1995) in 352 CVD and 2,873 non-CVD adults free of overt lung disease (mean age 60 years). Lung function was assessed by standard spirometry. Participants with metabolic syndrome or DM with or without CVD had lower pulmonary function than participants without these conditions after adjustment for hypertension, age, gender, abdominal obesity, smoking, physical activity index, and study field center. CVD participants with DM had significantly lower forced vital capacity than participants with CVD alone. Significant associations were observed between reduced pulmonary function, preclinical CVD, and prevalent CVD after adjustment for multiple CVD risk factors. During follow-up (median 13.3 years), pulmonary function did not predict CVD incidence, it predicted CVD mortality. Among 3,225 participants, 412 (298 without baseline CVD) died from CVD by the end of 2008. In models adjusted for multiple CVD risk factors, DM, metabolic syndrome, and baseline CVD, compared with highest quartile of lung function, lower lung function predicted CVD mortality (relative risk up to 1.5, 95% confidence interval 1.1 to 2.0, p<0.05). In conclusion, a population with a high prevalence of DM and metabolic syndrome and lower lung function was independently associated with prevalent clinical and preclinical CVD, and its impairment predicted CVD mortality. Additional research is needed to identify mechanisms linking metabolic abnormalities, low lung function, and CVD.

  9. Early Functional and Morphologic Abnormalities in the Diabetic Nyxnob Mouse Retina

    PubMed Central

    Tarchick, Matthew J.; Bassiri, Parastoo; Rohwer, Rebecca M.; Samuels, Ivy S.

    2016-01-01

    Purpose The electroretinogram c-wave is generated by the summation of the positive polarity hyperpolarization of the apical RPE membrane and a negative polarity slow PIII response of Müller glia cells. Therefore, the c-wave reduction noted in prior studies of mouse models of diabetes could reflect a reduction in the RPE component or an increase in slow PIII. The present study used a genetic approach to distinguish between these two alternatives. Methods Nyxnob mice lack the ERG b-wave, revealing the early phase of slow PIII. To visualize changes in slow PIII due to diabetes, Nyxnob mice were given streptozotocin (STZ) injections to induce diabetes or received vehicle as a control. After 1, 2, and 4 weeks of sustained hyperglycemia (>250 mg/dL), standard strobe flash ERG and dc-ERG testing were conducted. Histological analysis of the retina was performed. Results A reduced c-wave was noted at the 1 week time point, and persisted at later time points. In comparison, slow PIII amplitudes were unaffected after 1 week of hyperglycemia, but were significantly reduced in STZ mice at the 2-week time point. The decrease in amplitude occurred before any identifiable decrease to the a-wave. At the later time point, the a-wave became involved, although the slow PIII reductions were more pronounced. Morphological abnormalities in the RPE, including increased thickness and altered melanosome distribution, were identified in diabetic animals. Conclusions Because the c-wave and slow PIII were both reduced, these results demonstrated that diabetes-induced reductions to the c-wave cannot be attributed to an early increase in the Müller glia-derived potassium conductance. Furthermore, because the a-wave, slow PIII and c-wave reductions were not equivalent, and varied in their onset, the reductions cannot reflect the same mechanism, such as a change in membrane resistance. The presence of small changes to RPE architecture indicate that the c-wave reductions present in diabetic mice

  10. Cardiac autonomic function and vascular profile in subclinical hypothyroidism: Increased beat-to-beat QT variability

    PubMed Central

    Kalra, Pramila; Yeragani, Vikram K.; Prasanna Kumar, K. M.

    2016-01-01

    Background: Patients with subclinical hypothyroidism (SH) may have higher incidence of coronary heart disease and autonomic dysfunction. Design of the Study: Prospective case control study. Aim and Objectives: To evaluate beat-to-beat QT variability and vascular stiffness in patients with SH compared to normal controls. Materials and Methods: We compared linear and nonlinear measures of cardiac repolarization liability using beat-to-beat QT intervals derived from the surface electrocardiogram during supine posture and vascular indices including pulse wave velocity and ankle-brachial index (ABI) during supine posture between female patients with SH and age- and sex-matched normal controls. Spectral analysis was done at very low frequency (LF) (0.003–0.04 Hz), Low frequency (LF) (0.04–0.15 Hz), and high frequency (HF) (0.15–0.4 Hz). The HF represents vagal regulation (parasympathetic) and LF represents both parasympathetic and sympathetic regulation. Results: We recruited 58 women with a mean age of 31.83 ± 8.9 years and 49 controls with mean age of 32.4 ± 9.9 years (P = NS). QT variability index (QTvi) was higher in cases compared to controls (P = 0.01). The ratio of LF/HF of R-R interval which is an index of sympathovagal tone was significantly more in cases compared to controls (P = 0.02). The difference in the left minus the right ABI was significant between cases and controls (P = 0.03). Conclusions: The cases had lower parasympathetic activity as compared to controls, and there was a predominance of sympathetic activity in cases. QTvi may be an important noninvasive tool in this group of patients to study the risk of cardiovascular mortality. PMID:27730068

  11. Resting state functional MRI reveals abnormal network connectivity in orthostatic tremor.

    PubMed

    Benito-León, Julián; Louis, Elan D; Manzanedo, Eva; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan; Molina-Arjona, José Antonio; Matarazzo, Michele; Romero, Juan Pablo; Domínguez-González, Cristina; Domingo-Santos, Ángela; Sánchez-Ferro, Álvaro

    2016-07-01

    Very little is known about the pathogenesis of orthostatic tremor (OT). We have observed that OT patients might have deficits in specific aspects of neuropsychological function, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests a possible involvement of frontocerebellar circuits. We examined whether resting-state functional magnetic resonance imaging (fMRI) might provide further insights into the pathogenesis on OT. Resting-state fMRI data in 13 OT patients (11 women and 2 men) and 13 matched healthy controls were analyzed using independent component analysis, in combination with a "dual-regression" technique, to identify group differences in several resting-state networks (RSNs). All participants also underwent neuropsychological testing during the same session. Relative to healthy controls, OT patients showed increased connectivity in RSNs involved in cognitive processes (default mode network [DMN] and frontoparietal networks), and decreased connectivity in the cerebellum and sensorimotor networks. Changes in network integrity were associated not only with duration (DMN and medial visual network), but also with cognitive function. Moreover, in at least 2 networks (DMN and medial visual network), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, visual memory, and language). In this exploratory study, we observed selective impairments of RSNs in OT patients. This and other future resting-state fMRI studies might provide a novel method to understand the pathophysiological mechanisms of motor and nonmotor features of OT.

  12. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  13. Abnormalities in Resting-State Functional Connectivity in Early Human Immunodeficiency Virus Infection

    PubMed Central

    Wang, Xue; Foryt, Paul; Ochs, Renee; Chung, Jae-Hoon; Wu, Ying; Parrish, Todd

    2011-01-01

    Abstract Limited information is available concerning changes that occur in the brain early in human immunodeficiency virus (HIV) infection. This investigation evaluated resting-state functional connectivity, which is based on correlations of spontaneous blood oxygen level-dependent functional magnetic resonance imaging (fMRI) oscillations between brain regions, in 15 subjects within the first year of HIV infection and in 15 age-matched controls. Resting-state fMRI data for each session were concatenated in time across subjects to create a single 4D dataset and decomposed into 36 independent component analysis (ICA) using Multivariate Exploratory Linear Optimized Decomposition into Independent Components. ICA components were back-reconstructed for each subject's 4D data to estimate subject-specific spatial maps using the dual-regression technique. Comparison of spatial maps between HIV and controls revealed significant differences in the lateral occipital cortex (LOC) network. Reduced coactivation in left inferior parietal cortex within the LOC network was identified in the HIV subjects. Connectivity strength within this region correlated with performance on tasks involving visual-motor coordination (Grooved Pegboard and Rey Figure Copy) in the HIV group. The findings indicate prominent changes in resting-state functional connectivity of visual networks early in HIV infection. This network may sustain injury in association with the intense viremia and brain viral invasion before immune defenses can contain viral replication. Resting-state functional connectivity may have utility as a noninvasive neuroimaging biomarker for central nervous system impairment in early HIV infection. PMID:22433049

  14. Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia).

    PubMed

    de Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-10-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n = 21), to a matched group of typically developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs paediatric template, groups and between-groups analysis, and laterality indices assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus and superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke's area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas.

  15. Resting state functional MRI reveals abnormal network connectivity in orthostatic tremor

    PubMed Central

    Benito-León, Julián; Louis, Elan D.; Manzanedo, Eva; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan; Molina-Arjona, José Antonio; Matarazzo, Michele; Romero, Juan Pablo; Domínguez-González, Cristina; Domingo-Santos, Ángela; Sánchez-Ferro, Álvaro

    2016-01-01

    Abstract Very little is known about the pathogenesis of orthostatic tremor (OT). We have observed that OT patients might have deficits in specific aspects of neuropsychological function, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests a possible involvement of frontocerebellar circuits. We examined whether resting-state functional magnetic resonance imaging (fMRI) might provide further insights into the pathogenesis on OT. Resting-state fMRI data in 13 OT patients (11 women and 2 men) and 13 matched healthy controls were analyzed using independent component analysis, in combination with a “dual-regression” technique, to identify group differences in several resting-state networks (RSNs). All participants also underwent neuropsychological testing during the same session. Relative to healthy controls, OT patients showed increased connectivity in RSNs involved in cognitive processes (default mode network [DMN] and frontoparietal networks), and decreased connectivity in the cerebellum and sensorimotor networks. Changes in network integrity were associated not only with duration (DMN and medial visual network), but also with cognitive function. Moreover, in at least 2 networks (DMN and medial visual network), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, visual memory, and language). In this exploratory study, we observed selective impairments of RSNs in OT patients. This and other future resting-state fMRI studies might provide a novel method to understand the pathophysiological mechanisms of motor and nonmotor features of OT. PMID:27442678

  16. Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease.

    PubMed

    Sisková, Zuzana; Mahad, Don Joseph; Pudney, Carianne; Campbell, Graham; Cadogan, Mark; Asuni, Ayodeji; O'Connor, Vincent; Perry, Victor Hugh

    2010-09-01

    Synaptic and dendritic pathology is a well-documented component of prion disease. In common with other neurodegenerative diseases that contain an element of protein misfolding, little is known about the underlying mechanisms of synaptic degeneration. In particular, in prion disease the relationship between synaptic malfunction, degeneration, and mitochondria has been neglected. We investigated a wide range of mitochondrial parameters, including changes in mitochondrial density, inner membrane ultrastructure, functional properties and nature of mitochondrial DNA from hippocampal tissue of mice with prion disease, which have ongoing synaptic pathology. Our results indicate that despite a lack of detectable changes in either mitochondrial density or expression of the mitochondrial proteins, mitochondrial function was impaired when compared with age-matched control animals. We observed changes in mitochondrial inner membrane morphology and a reduction in the cytochrome c oxidase activity relative to a sustained level of mitochondrial proteins such as porin and individual, functionally important subunits of complex II and complex IV. These data support the idea that mitochondrial dysfunction appears to occur due to inhibition or modification of respiratory complex rather than deletions of mitochondrial DNA. Indeed, these changes were seen in the stratum radiatum where synaptic pathology is readily detected, indicating that mitochondrial function is impaired and could potentially contribute to or even initiate the synaptic pathology in prion disease.

  17. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  18. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  19. Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia)

    PubMed Central

    De Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n=21), to a matched group of typically-developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs pediatric template, groups and between-groups analysis, and laterality indexes assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this specific subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas. PMID:21719430

  20. Epidermal barrier abnormalities in exfoliative ichthyosis with a novel homozygous loss-of-function mutation in CSTA.

    PubMed

    Moosbrugger-Martinz, V; Jalili, A; Schossig, A S; Jahn-Bassler, K; Zschocke, J; Schmuth, M; Stingl, G; Eckl, K M; Hennies, H C; Gruber, R

    2015-06-01

    Autosomal recessive exfoliative ichthyosis (AREI) results from mutations in CSTA, encoding cysteine protease inhibitor A (cystatin A). We present a 25-year-old man from Iran with consanguineous parents, who presented with congenital erythroderma, hyperhidrosis and diffuse hyperkeratosis with coarse palmoplantar peeling of the skin, aggravated by exposure to water and by occlusion. Candidate gene analysis revealed a previously unknown homozygous loss-of-function mutation c.172C>T (p.Arg58Ter) in CSTA, and immunostaining showed absence of epidermal cystatin A, confirming the diagnosis of AREI. Ultrastructural analysis by transmission electron microscopy showed normal degradation of corneodesmosomes, mild intercellular oedema in the spinous layer but not in the basal layer, normal-appearing desmosomes, and prominent keratin filaments within basal keratinocytes. Thickness of cornified envelopes was reduced, lamellar lipid bilayers were disturbed, lamellar body secretion occurred prematurely and processing of secreted lamellar body contents was delayed. These barrier abnormalities were reminiscent of (albeit less severe than in) Netherton syndrome, which results from a deficiency of the serine protease inhibitor LEKTI. This work describes ultrastructural findings with evidence of epidermal barrier abnormalities in AREI.

  1. What is the best strategy for investigating abnormal liver function tests in primary care? Implications from a prospective study

    PubMed Central

    Lilford, Richard J; Bentham, Louise M; Armstrong, Matthew J; Neuberger, James; Girling, Alan J

    2013-01-01

    Objective Evaluation of predictive value of liver function tests (LFTs) for the detection of liver-related disease in primary care. Design A prospective observational study. Setting 11 UK primary care practices. Participants Patients (n=1290) with an abnormal eight-panel LFT (but no previously diagnosed liver disease). Main outcome measures Patients were investigated by recording clinical features, and repeating LFTs, specific tests for individual liver diseases, and abdominal ultrasound scan. Patients were characterised as having: hepatocellular disease; biliary disease; tumours of the hepato-biliary system and none of the above. The relationship between LFT results and disease categories was evaluated by stepwise regression and logistic discrimination, with adjustment for demographic and clinical factors. True and False Positives generated by all possible LFT combinations were compared with a view towards optimising the choice of analytes in the routine LFT panel. Results Regression methods showed that alanine aminotransferase (ALT) was associated with hepatocellular disease (32 patients), while alkaline phosphatase (ALP) was associated with biliary disease (12 patients) and tumours of the hepatobiliary system (9 patients). A restricted panel of ALT and ALP was an efficient choice of analytes, comparing favourably with the complete panel of eight analytes, provided that 48 False Positives can be tolerated to obtain one additional True Positive. Repeating a complete panel in response to an abnormal reading is not the optimal strategy. Conclusions The LFT panel can be restricted to ALT and ALP when the purpose of testing is to exclude liver disease in primary care. PMID:23794594

  2. Functional Changes after Recombinant Human Growth Hormone Replacement in Patients with Chronic Traumatic Brain Injury and Abnormal Growth Hormone Secretion.

    PubMed

    Mossberg, Kurt A; Durham, William J; Zgaljardic, Dennis J; Gilkison, Charles R; Danesi, Christopher P; Sheffield-Moore, Melinda; Masel, Brent E; Urban, Randall J

    2017-02-15

    We explored the effects of recombinant human growth hormone (rhGH) replacement on physical and cognitive functioning in subjects with a moderate-to-severe traumatic brain injury (TBI) with abnormal growth hormone (GH) secretion. Fifteen individuals who sustained a TBI at least 12 months prior to study enrollment were identified as having abnormal GH secretion by glucagon stimulation testing (maximum GH response less than 8 ng/mL). Peak cardiorespiratory capacity, body composition, and muscle force testing were assessed at baseline and one year after rhGH replacement. Additionally, standardized neuropsychological tests that assess memory, processing speed, and cognitive flexibility, as well as self-report inventories related to depression and fatigue, were administered at baseline and 1 year after rhGH replacement. Comparison tests were performed with proper post hoc analyses. All analyses were carried out at α < 0.05. Peak O2 consumption, peak oxygen pulse (estimate of cardiac stroke volume), and peak ventilation all significantly increased (p < 0.05). Maximal isometric and isokinetic force production were not altered. Skeletal muscle fatigue did not change but the perceptual rating of fatigue was reduced by ∼25% (p = 0.06). Cognitive performance did not change significantly over time, whereas self-reported symptoms related to depression and fatigue significantly improved. The observed changes suggest that rhGH replacement has a positive impact on cardiorespiratory fitness and a positive impact on perceptual fatigue in survivors of TBI with altered GH secretion.

  3. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    PubMed Central

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-01-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4±2.3years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS. PMID:20615010

  4. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  5. Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function

    PubMed Central

    Paciorkowski, Alex R; Thio, Liu Lin; Rosenfeld, Jill A; Gajecka, Marzena; Gurnett, Christina A; Kulkarni, Shashikant; Chung, Wendy K; Marsh, Eric D; Gentile, Mattia; Reggin, James D; Wheless, James W; Balasubramanian, Sandhya; Kumar, Ravinesh; Christian, Susan L; Marini, Carla; Guerrini, Renzo; Maltsev, Natalia; Shaffer, Lisa G; Dobyns, William B

    2011-01-01

    Infantile spasms (ISS) are an epilepsy disorder frequently associated with severe developmental outcome and have diverse genetic etiologies. We ascertained 11 subjects with ISS and novel copy number variants (CNVs) and combined these with a new cohort with deletion 1p36 and ISS, and additional published patients with ISS and other chromosomal abnormalities. Using bioinformatics tools, we analyzed the gene content of these CNVs for enrichment in pathways of pathogenesis. Several important findings emerged. First, the gene content was enriched for the gene regulatory network involved in ventral forebrain development. Second, genes in pathways of synaptic function were overrepresented, significantly those involved in synaptic vesicle transport. Evidence also suggested roles for GABAergic synapses and the postsynaptic density. Third, we confirm the association of ISS with duplication of 14q12 and maternally inherited duplication of 15q11q13, and report the association with duplication of 21q21. We also present a patient with ISS and deletion 7q11.3 not involving MAGI2. Finally, we provide evidence that ISS in deletion 1p36 may be associated with deletion of KLHL17 and expand the epilepsy phenotype in that syndrome to include early infantile epileptic encephalopathy. Several of the identified pathways share functional links, and abnormalities of forebrain synaptic growth and function may form a common biologic mechanism underlying both ISS and autism. This study demonstrates a novel approach to the study of gene content in subjects with ISS and copy number variation, and contributes further evidence to support specific pathways of pathogenesis. PMID:21694734

  6. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  7. Autonomic neuropathy and diabetic foot ulceration.

    PubMed

    Edmonds, M E; Nicolaides, K H; Watkins, P J

    1986-01-01

    Autonomic function was studied in three groups of insulin-dependent diabetic patients. Heart rate changes during deep breathing and on standing were significantly less in 28 patients with a recent history of foot ulceration compared with 40 patients with peripheral neuropathy but without ulceration (p less than 0.001) and 54 patients without neuropathy (p less than 0.001). Sympathetic function was assessed in 36 of these patients from peripheral arterial diastolic flow patterns obtained by Doppler ultrasound measurements and expressed as the pulsatility index (PI). Patients with a history of ulceration (n = 10) showed considerably increased diastolic flow (PI = 4.28 +/- 0.53, mean +/- S.E.M.) compared with 12 neuropathic patients with no history of ulceration (PI = 7.80 +/- 0.68, p less than 0.002) and 14 patients without neuropathy (PI = 9.55 +/- 0.89, p less than 0.002). Severely abnormal autonomic function occurs in association with neuropathic foot ulceration, but patients without ulcers have lesser degrees of autonomic neuropathy, thus a causal relationship has not been established.

  8. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population

    PubMed Central

    Tong, Zhimin; Shen, Huanxi; Yang, Dandan; Zhang, Feng; Bai, Ying; Li, Qian; Shi, Jian; Zhang, Hengdong; Zhu, Baoli

    2016-01-01

    Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m3 DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population. PMID:27463724

  9. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    PubMed Central

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  10. Von Willebrand Factor Abnormalities Studied in the Mouse Model: What We Learned about VWF Functions

    PubMed Central

    Casari, Caterina; Lenting, Peter J.; Christophe, Olivier D.; Denis, Cécile V.

    2013-01-01

    Up until recently, von Willebrand Factor (VWF) structure-function relationships have only been studied through in vitro approaches. A powerful technique known as hydrodynamic gene transfer, which allows transient expression of a transgene by mouse hepatocytes, has led to an important shift in VWF research. Indeed this approach has now enabled us to transiently express a number of VWF mutants in VWF-deficient mice in order to test the relative importance of specific residues in different aspects of VWF biology and functions in an in vivo setting. As a result, mice reproducing various types of von Willebrand disease have been generated, models that will be useful to test new therapies. This approach also allowed a more precise identification of the importance of VWF interaction with subendothelial collagens and with platelets receptors in hemostasis and thrombosis. The recent advances gathered from these studies as well as the pros and cons of the technique will be reviewed here. PMID:23936618

  11. Performance of the platelet function analyser PFA-100 in testing abnormalities of primary haemostasis.

    PubMed

    Harrison, P; Robinson, M S; Mackie, I J; Joseph, J; McDonald, S J; Liesner, R; Savidge, G F; Pasi, J; Machin, S J

    1999-01-01

    The PFA-100 device is a new instrument for the in-vitro testing of platelet function. Primary haemostasis is stimulated by recording the closure time taken for platelets to seal a 150 microm aperture in the centre of a membrane coated with collagen and either epinephrine or ADP. Patients with type 3 von Willebrand's disease (n = 4) all had infinitely prolonged closure times (> 200 s) with both types of cartridge. A patient with afibrinogenemia exhibited only slightly prolonged closure times of 111 and 166 s for the ADP and epinephrine membranes, respectively. Patients with Glanzmann's thrombasthenia (n = 6) and Bernard Soulier syndrome (n = 2) had grossly prolonged closure times (> 200 s) with both types of cartridges. These results confirmed that the PFA-100 system was highly dependent on normal von Willebrand factor, glycoprotein Ib and glycoprotein IIb/IIIa levels but not on plasma fibrinogen. Patients with storage pool disease (n = 6) and Hermansky Pudlak syndrome (n = 7) had prolonged closure times with the epinephrine cartridge. There was no evidence of enhanced platelet function in patients with antiphospholipid syndrome, in sickle-cell disease or thalassemia. However, ingestion of aspirin resulted in a near consistent and significant prolongation of the closure time for the epinephrine cartridge but not for the ADP cartridge in both normal subjects and patients. The test offers a reliable, reproducible, rapid and simple means of assessing high-shear platelet function in vitro.

  12. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics.

    PubMed

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R; Fireman, Elizabeth

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time.

  13. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics

    PubMed Central

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R.

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time. PMID:27730180

  14. Absence of Functional and Structural Abnormalities Associated with Expression of EGFP in the Retina

    PubMed Central

    Nour, May; Quiambao, Alexander B.; Al-Ubaidi, Muayyad R.; Naash, Muna I.

    2010-01-01

    Purpose The present study was undertaken to evaluate the effect of uniform EGFP expression on retinal morphology and function. Methods Electroretinography (ERG) was used to evaluate the recovery of scotopic a- and b-wave amplitudes after a single 137-cd · sec/m2 flash exposure. The cellular distribution of enhanced green fluorescent protein (EGFP) in the retina and its effect on retinal morphology were evaluated by fluorescence microscopy and histology, respectively. To evaluate its effect on retinal sensitivity to light, EGFP-expressing and control mice were exposed to constant light for 76 hours (3500 lux), and eyes were assessed functionally and structurally at 3 weeks after light exposure. Results Fluorescence microscopy showed a pronounced EGFP expression in the photoreceptor cell bodies and inner segments. ERG analysis revealed no significant differences in either a- or b-wave amplitudes or recovery between EGFP+/− and control mice under dark- or light-adapted conditions. Histologic assessment at as late as 4 months of age showed no difference in retinal morphology or photoreceptor nuclei count in EGFP+/− mice when compared with nontransgenic littermates. In addition, evaluation of animals, 3 weeks after constant light exposure, showed no difference between ERG amplitudes, recovery of the scotopic ERG response, or retinal morphology between EGFP+/− mice and control animals. Conclusions Functional and morphologic evidence shows that long-term, high, uniform levels of EGFP expression have no deleterious effect on the mouse retina. This data demonstrates the safety of EGFP use as an indicator of viral transduction in retinal gene therapy. PMID:14691148

  15. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction.

  16. Detecting abnormalities in left ventricular function during exercise by respiratory measurement

    SciTech Connect

    Koike, A.; Itoh, H.; Taniguchi, K.; Hiroe, M. )

    1989-12-01

    The degree of exercise-induced cardiac dysfunction and its relation to the anaerobic threshold were evaluated in 23 patients with chronic heart disease. A symptom-limited exercise test was performed with a cycle ergometer with work rate increased by 1 W every 6 seconds. Left ventricular function, as reflected by ejection fraction, was continuously monitored with a computerized cadmium telluride detector after the intravenous injection of technetium-labeled red blood cells. The anaerobic threshold (mean, 727 {plus minus} 166 ml/min) was determined by the noninvasive measurement of respiratory gas exchange. As work rate rose, the left ventricular ejection fraction increased but reached a peak value at the anaerobic threshold and then fell below resting levels. Ejection fraction at rest, anaerobic threshold, and peak exercise were 41.4 {plus minus} 11.3%, 46.5 {plus minus} 12.0%, and 37.2 {plus minus} 11.0%, respectively. Stroke volume also increased from rest (54.6 {plus minus} 17.0 ml/beat) to the point of the anaerobic threshold (65.0 {plus minus} 21.2 ml/beat) and then decreased at peak exercise (52.4 {plus minus} 18.7 ml/beat). The slope of the plot of cardiac output versus work rate decreased above the anaerobic threshold. The anaerobic threshold occurred at the work rate above which left ventricular function decreased during exercise. Accurate determination of the anaerobic threshold provides an objective, noninvasive measure of the oxygen uptake above which exercise-induced deterioration in left ventricular function occurs in patients with chronic heart disease.

  17. Gender, Race, and Diet Affect Platelet Function Tests in Normal Subjects Contributing to a High Rate of Abnormal Results

    PubMed Central

    Miller, Connie H.; Rice, Anne S.; Garrett, Katherine; Stein, Sidney F.

    2015-01-01

    Summary To assess sources of variability in platelet function tests in normal subjects, 64 healthy young adults were tested on 2–6 occasions at 2 week intervals using 4 methods: platelet aggregation (AGG) in platelet-rich plasma (PRP) in the Bio/Data PAP-4 Aggregometer (BD) and Chrono-Log Lumi-Aggregometer (CL); and AGG in whole blood (WB) in the CL and Multiplate Platelet Function Analyzer (MP), with ATP release (REL) in CL-PRP and CL-WB. Food and medication exposures were recorded prospectively for 2 weeks prior to each blood draw. At least one AGG abnormality was seen in 21% of 81 drug-free specimens with CL-PRP, 15% with CL-WB, 13% with BD-PRP, and 6% with MP-WB, increasing with inclusion of REL to 28% for CL-PRP and 30% for CL-WB. Epinephrine AGG and REL were significantly reduced in males (P<0.0001). Ristocetin AGG and collagen and thrombin REL were significantly reduced in Blacks (P<0.0001). One-third of specimens drawn following flavonoid-rich food exposures had aberrant results, compared to 8.5% of specimens without such exposures (P=0.0035). PRP tests had less intra-individual variation than WB tests. Gender, race, diet, and test system affected results of platelet function testing in healthy subjects, suggesting caution when interpreting the results of platelet function testing in patients. PMID:24617520

  18. Do Subjects at Clinical High Risk for Psychosis Differ from those with a Genetic High Risk? – A Systematic Review of Structural and Functional Brain Abnormalities

    PubMed Central

    Smieskova, R; Marmy, J; Schmidt, A; Bendfeldt, K; Riecher-Rössler, A; Walter, M; Lang, UE; Borgwardt, S

    2013-01-01

    Introduction: Pre-psychotic and early psychotic characteristics are investigated in the high-risk (HR) populations for psychosis. There are two different approaches based either on hereditary factors (genetic high risk, G-HR) or on the clinically manifested symptoms (clinical high risk, C-HR). Common features are an increased risk for development of psychosis and similar cognitive as well as structural and functional brain abnormalities. Methods: We reviewed the existing literature on longitudinal structural, and on functional imaging studies, which included G-HR and/or C-HR individuals for psychosis, healthy controls (HC) and/or first episode of psychosis (FEP) or schizophrenia patients (SCZ). Results: With respect to structural brain abnormalities, vulnerability to psychosis was associated with deficits in frontal, temporal, and cingulate regions in HR, with additional insular and caudate deficits in C-HR population. Furthermore, C-HR had progressive prefrontal deficits related to the transition to psychosis. With respect to functional brain abnormalities, vulnerability to psychosis was associated with prefrontal, cingulate and middle temporal abnormalities in HR, with additional parietal, superior temporal, and insular abnormalities in C-HR population. Transition-to-psychosis related differences emphasized prefrontal, hippocampal and striatal components, more often detectable in C-HR population. Multimodal studies directly associated psychotic symptoms displayed in altered prefrontal and hippocampal activations with striatal dopamine and thalamic glutamate functions. Conclusion: There is an evidence for similar structural and functional brain abnormalities within the whole HR population, with more pronounced deficits in the C-HR population. The most consistent evidence for abnormality in the prefrontal cortex reported in structural, functional and multimodal studies of HR population may underlie the complexity of higher cognitive functions that are impaired

  19. Abnormalities of quantities and functions of natural killer cells in severe aplastic anemia.

    PubMed

    Liu, Chunyan; Li, Zhishang; Sheng, Weiwei; Fu, Rong; Li, Lijuan; Zhang, Tian; Wu, Yuhong; Xing, Limin; Song, Jia; Wang, Huaquan; Shao, Zonghong

    2014-01-01

    Severe aplastic anemia (SAA) is a rare disease characterized by severe pancytopenia and bone marrow failure. Natural killer (NK) cells are large granular lymphocytes derived from hematopoietic stem cells (HSCs) or common lymphoid progenitors (CLP). They play a key role in n the innate immunity and adaptive immune. In this study, the quantitative and functional changes of natural killer (NK) cell subsets in peripheral blood of severe aplastic anemia (SAA) patients before and after immunosuppressive therapy (IST) were investigated. Results showed that the percentage of NK cells and its subsets in peripheral blood lymphocytes was decreased in SAA patients. After IST, the percentage of NK cells and their subsets increased dramatically. The median expressions of CD158a, NKG2D and NKp46 on NK cells were higher in SAA patients compared to that in normal controls, and the expressions of perforin in newly diagnosed and recovery SAA patients were higher than that in controls. Therefore, we concluded that the decrease of total NK cells, and CD56(bright), CD56(dim) NK cell subsets and the higher expressions of NKp46 and perforin on NK cells may cause the over-function of T lymphocytes and thus lead to hematopoiesis failure in SAA.

  20. Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is typically characterized by symptoms of inattention and hyperactivity/impulsivity, but there is increased recognition of a motivation deficit too. This neuropathology may reflect dysfunction of both attention and reward-motivation networks. Methods To test this hypothesis, we compared the functional connectivity density between 247 ADHD and 304 typically developing control children from a public magnetic resonance imaging database. We quantified short- and long-range functional connectivity density in the brain using an ultrafast data-driven approach. Results Children with ADHD had lower connectivity (short- and long-range) in regions of the dorsal attention (superior parietal cortex) and default-mode (precuneus) networks and in cerebellum and higher connectivity (short-range) in reward-motivation regions (ventral striatum and orbitofrontal cortex) than control subjects. In ADHD children, the orbitofrontal cortex (region involved in salience attribution) had higher connectivity with reward-motivation regions (striatum and anterior cingulate) and lower connectivity with superior parietal cortex (region involved in attention processing). Conclusions The enhanced connectivity within reward-motivation regions and their decreased connectivity with regions from the default-mode and dorsal attention networks suggest impaired interactions between control and reward pathways in ADHD that might underlie attention and motivation deficits in ADHD. PMID:22153589

  1. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    PubMed

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.

  2. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism.

  3. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors

    PubMed Central

    Sarnyai, Zoltán; Sibille, Etienne L.; Pavlides, Constantine; Fenster, Robert J.; McEwen, Bruce S.; Tóth, Miklós

    2000-01-01

    The hippocampus is a major limbic target of the brainstem serotonergic neurons that modulate fear, anxiety, and learning through postsynaptic serotonin1A receptors (5-HT1A receptors). Because chronic stress selectively down-regulates the 5-HT1A receptors in the hippocampus, we hypothesized that mice lacking these receptors may exhibit abnormalities reminiscent of symptoms of stress-related psychiatric disorders. In particular, a hippocampal deficit in the 5-HT1A receptor could contribute to the cognitive abnormalities often seen in these disorders. To test whether a deficit in 5-HT1A receptors impairs hippocampus-related functions, we studied hippocampal-dependent learning and memory, synaptic plasticity in the hippocampus, and limbic neuronal excitability in 5-HT1A-knockout (KO) mice. 5-HT1A-KO animals showed a deficit in hippocampal-dependent learning and memory tests, such as the hidden platform (spatial) version of the Morris water maze and the delayed version of the Y maze. The performance of KO mice was not impaired in nonhippocampal memory tasks such as the visible platform (nonspatial) version of the Morris water maze, the immediate version of the Y maze, and the spontaneous-alternation test of working memory. Furthermore, paired-pulse facilitation in the dentate gyrus of the hippocampus was impaired in 5-HT1A-KO mice. Finally, 5-HT1A-KO mice, as compared with wild-type animals, displayed higher limbic excitability manifested as lower seizure threshold and higher lethality in response to kainic acid administration. These results demonstrate that 5-HT1A receptors are required for maintaining normal hippocampal functions and implicate a role for the 5-HT1A receptor in hippocampal-related symptoms, such as cognitive disturbances, in stress-related disorders. PMID:11121072

  4. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4–9 Deletion Mouse Model of Autism

    PubMed Central

    Jaramillo, Thomas C.; Speed, Haley E.; Xuan, Zhong; Reimers, Jeremy M.; Liu, Shunan; Powell, Craig M.

    2016-01-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ~0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4–9, a region implicated in ASD patients. We find that homozygous deletion of exons 4–9 (Shank3e4–9 KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3e4–9 heterozygous (HET) and Shank3e4–9 KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3e4–9 KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3e4–9 KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3e4–9 HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3e4–9 KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3e4–9 mutant mouse model of autism. PMID:26559786

  5. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses

    PubMed Central

    Gay, Charles W.; Robinson, Michael E.; Lai, Song; O'Shea, Andrew; Craggs, Jason G.; Price, Donald D.

    2016-01-01

    Abstract Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue. PMID:26449441

  6. Defects in granulocyte function in various chromosome abnormalities (Down's-, Edwards'-, Cri-du-chat syndrome).

    PubMed

    Seger, R; Wildfeuer, A; Buchinger, G; Romen, W; Catty, D; Dybas, L; Haferkamp, O; Ströder, J

    1976-02-15

    In five infants with autosomal aberrations and diminished resistance to infection (in spite of intact humoral and cellular immune mechanisms) several granulocyte functions (chemotaxis, phagocytosis, intracellular killing and metabolism of killing) were measured. A serum-dependent or a cell-dependent disturbance of phagocytosis of Candida albicans was found in two infants with cat-cry syndrome and one with trisomy 18. In one of these children there was an additional serum dependent defect of the killing of Candida albicans and of Staphylococcus aureus, serum levels of opsonins (IgG, IgM, CH50 and C3) being within normal range. An infant with trisomy 21 showed, in addition to a cellular defect of chemotaxis, a reduced cellular ability of the killing of Staphylococcus aureus and of Escherichia coli in autologous and AB-pool-serum. Phagocytosis of these bacteria remained normal.

  7. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth.

  8. Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome

    PubMed Central

    Zhang, Xuan; Dai, Rongxin; Li, Wenyan; Zhao, Hongyi; Zhang, Yongjie; Zhou, Lina; Du, Hongqiang; Luo, Guangjin; Wu, Junfeng; Niu, Linlin; An, Yunfei; Zhang, Zhiyong; Ding, Yuan; Song, Wenxia; Liu, Chaohong

    2016-01-01

    Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific regulator of actin nucleation. Wiskott-Aldrich syndrome (WAS) patients show immunodeficiencies, most of which have been attributed to defective T-cell functions. T follicular helper (Tfh) cells are the major CD4+ T-cell subset with specialized B-cell helper capabilities. Aberrant Tfh cells activities are involved in immunopathologies such as autoimmunity, immunodeficiencies, and lymphomas. We found that in WAS patients, the number of circulating Tfh cells was significantly reduced due to reduced proliferation and increased apoptosis, and Tfh cells were Th2 and Th17 polarized. The expression of inducible costimulator (ICOS) in circulating Tfh cells was higher in WAS patients than in controls. BCL6 expression was decreased in total CD4+ T and Tfh cells of WAS patients. Mirroring the results in patients, the frequency of Tfh cells in WAS knockout (KO) mice was decreased, as was the frequency of BCL6+ Tfh cells, but the frequency of ICOS+ Tfh cells was increased. Using WAS chimera mice, we found that the number of ICOS+ Tfh cells was decreased in WAS chimera mice, indicating that the increase in ICOS+ Tfh cells in WAS KO mice was cell extrinsic. The data from in vivo CD4+ naive T-cell adoptive transfer mice as well as in vitro coculture of naive B and Tfh cells showed that the defective function of WASp-deficient Tfh cells was T-cell intrinsic. Consistent findings in both WAS patients and WAS KO mice suggested an essential role for WASp in the development and memory response of Tfh cells and that WASp deficiency causes a deficient differentiation defect in Tfh cells by downregulating the transcription level of BCL6. PMID:27170596

  9. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  10. Pulmonary function abnormalities associated with exposure to automobile exhaust in a diesel bus garage and roads.

    PubMed

    Chattopadhyay, B P; Alam, J; Roychowdhury, A

    2003-01-01

    In Kolkata city the road transports are maintained by private and Government organization. A major work force belonged to the State Transport Corporation (KSTC), Government of West-Bengal. The pollution caused by these vehicles affects the workers health and caused different types of respiratory problems. This study was undertaken to assess the pulmonary function status of these workers. City KSTC garage workers were investigated and categorically divided into two group: garage mechanics and the (2) those transporting the passengers (drivers and conductors). Vital capacity (VC), forced vital capacity (FVC) and peak expiratory flow rate (PEFR) were recorded by Spirovit-SP-10 (Schiller Ltd, Switzerland) and Wright's Peak Flow Meter (UK) on 236 workers. The different flow volumes, FEV(1), FEV(1%), and flow rates, FEF(02-121), FEF(25-75%), etc. were calculated. The administrative people had higher PFT than the other categories. Drivers and conductors have almost equal mean PFT values but mechanical workers had slightly higher. PFT values according to different age ranges and duration of exposure showed gradual decrement as age and duration of exposure increased. Non-smokers had higher lung volumes compared to smokers and ex-smokers. Restrictive, obstructive and combined types of impairments were noticed in 28.4%, 1.7% and 2.9%, respectively, workers. The restrictive impairment was found to be 30.4% in conductors; 28.9% in drivers, 27.9% in mechanics and 21.7% in administration people. Obstructive type of impairment was found to be 2.9% in both drivers and conductors. The effect of pollution by dust and fumes may be responsible for these pulmonary function impairments, restrictive impairments being greater.

  11. Autonomous CaMKII Activity as a Drug Target for Histological and Functional Neuroprotection after Resuscitation from Cardiac Arrest.

    PubMed

    Deng, Guiying; Orfila, James E; Dietz, Robert M; Moreno-Garcia, Myriam; Rodgers, Krista M; Coultrap, Steve J; Quillinan, Nidia; Traystman, Richard J; Bayer, K Ulrich; Herson, Paco S

    2017-01-31

    The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of physiological glutamate signaling, but its role in pathological glutamate signaling (excitotoxicity) remains less clear, with indications for both neuro-toxic and neuro-protective functions. Here, the role of CaMKII in ischemic injury is assessed utilizing our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). CaMKII inhibition (with tatCN21 or tatCN19o) at clinically relevant time points (30 min after resuscitation) greatly reduces neuronal injury. Importantly, CaMKII inhibition also works in combination with mild hypothermia, the current standard of care. The relevant drug target is specifically Ca(2+)-independent "autonomous" CaMKII activity generated by T286 autophosphorylation, as indicated by substantial reduction in injury in autonomy-incompetent T286A mutant mice. In addition to reducing cell death, tatCN19o also protects the surviving neurons from functional plasticity impairments and prevents behavioral learning deficits, even at extremely low doses (0.01 mg/kg), further highlighting the clinical potential of our findings.

  12. The inverse association between cardiorespiratory fitness and C-reactive protein is mediated by autonomic function: a possible role of the cholinergic antiinflammatory pathway.

    PubMed

    Jae, Sae Young; Heffernan, Kevin S; Yoon, Eun Sun; Lee, Moon-Kyu; Fernhall, Bo; Park, Won Hah

    2009-01-01

    Although studies have shown an inverse association between cardiorespiratory fitness (CRF) and C-reactive protein (CRP) levels, the underlying mechanisms are not fully understood. There is emerging evidence that autonomic nervous system function is related to CRP levels. Because high CRF is related to improved autonomic function, we hypothesized that the association between high CRF and low CRP levels would be affected by autonomic nervous system function. Cross-sectional analyses were conducted on 2,456 asymptomatic men who participated in a medical screening program. Fasting blood samples for cardiovascular disease risk factors were analyzed, and CRF was measured by maximal exercise treadmill test with expired gas analysis. We used an index of cardiac autonomic imbalance defined as the ratio of resting heart rate to 1 min of heart rate recovery after exercise (RHR/HRR). CRF was significantly correlated with CRP (r = -0.16, P < 0.05), and RHR/HRR (r = -0.48, P < 0.05), while RHR/HRR was significantly correlated with CRP (r = 0.25, P < 0.05). In multivariable linear regression models that adjusted for age, body mass index, smoking, disease status, medications, lipid profiles, glucose, and systolic blood pressure, CRF was inversely associated with CRP (beta = -0.09, P < 0.05). However, this relationship was no longer significant after adjusting for RHR/HRR in a multivariable linear regression model (beta = -0.03, P = 0.29). These results suggest that autonomic nervous system function significantly affects the relationship between CRF and inflammation in middle-aged men. Thus, physical activity or exercise training may favorably affect the cholinergic antiinflammatory pathway, but additional research is needed to confirm this finding.

  13. Potential Use of MEG to Understand Abnormalities in Auditory Function in Clinical Populations

    PubMed Central

    Larson, Eric; Lee, Adrian K. C.

    2014-01-01

    Magnetoencephalography (MEG) provides a direct, non-invasive view of neural activity with millisecond temporal precision. Recent developments in MEG analysis allow for improved source localization and mapping of connectivity between brain regions, expanding the possibilities for using MEG as a diagnostic tool. In this paper, we first describe inverse imaging methods (e.g., minimum-norm estimation) and functional connectivity measures, and how they can provide insights into cortical processing. We then offer a perspective on how these techniques could be used to understand and evaluate auditory pathologies that often manifest during development. Here we focus specifically on how MEG inverse imaging, by providing anatomically based interpretation of neural activity, may allow us to test which aspects of cortical processing play a role in (central) auditory processing disorder [(C)APD]. Appropriately combining auditory paradigms with MEG analysis could eventually prove useful for a hypothesis-driven understanding and diagnosis of (C)APD or other disorders, as well as the evaluation of the effectiveness of intervention strategies. PMID:24659963

  14. Abnormal pituitary-gonadal axis may be responsible for rat decreased testicular function under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tan, Xin; Zhu, Bao-an; Qi, Meng-di; Ding, Su-ling

    Space flight and simulated microgravity lead to suppression of mammalian spermatogenesis and decreased plasma testosterone level. In order to explain the mechanism behind the depression, we used rat tail-suspended model to simulate weightless conditions. To prevent cryptorchidism caused by tail-suspension, some experimental animals received inguinal canal ligation. The results showed that mass of testis decreased significantly and seminiferous tubules became atrophied in rats after tail-suspension. The levels of plasma testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in tail-suspended rats with or without inguinal canal ligation decreased significantly compared with controls, and an increased level of plasma estradiol (E) was revealed in tail-suspended rats. The results indicate that besides the direct influence of fluid shift upon testis under short-term simulated microgravity, the pituitary function is also disturbed as a result of either immobilization stress or weight loss during tail-suspension treatment, which is responsible to some extent for the decreased testosterone secretion level and the atrophia of testis. The conversion of testosterone into E under simulated microgravity is another possible cause for the decline of plasma testosterone.

  15. Hemostatic and hematological abnormalities in gain-of-function fps/fes transgenic mice are associated with the angiogenic phenotype.

    PubMed

    Sangrar, W; Senis, Y; Samis, J A; Gao, Y; Richardson, M; Lee, D H; Greer, P A

    2004-11-01

    The Fps/Fes tyrosine kinase has been implicated in the regulation of hematopoiesis and inflammation. Mice expressing an activated variant of Fps/Fes (MFps) encoded by a gain-of-function mutant transgenic fps/fes allele (fps(MF)) exhibited hematological phenotypes, which suggested that Fps/Fes can direct hematopoietic lineage output. These mice also displayed marked hypervascularity and multifocal-hemangiomas which implicated this kinase in the regulation of angiogenesis. Here we explored the potential involvement of Fps/Fes in the regulation of hemostasis through effects on blood cells and the vascular endothelium. Hematological parameters of fps(MF) mice were characterized by peripheral blood analysis, histology, and transmission electron microscopy. Hemostasis parameters and platelet functions were assessed by flow cytometry and measurements of activated partial thromboplastin time, prothrombin time, thrombin clot time, platelet aggregation, bleeding times and in vitro fibrinolytic assays. Hematological and morphological analyses showed that fps(MF) mice displayed mild thrombocytopenia, anemia, red cell abnormalities and numerous hemostatic defects, including hypofibrinogenemia, hyper-fibrinolysis, impaired whole blood aggregation and a mild bleeding diathesis. fps(MF) mice displayed a complex array of hemostatic perturbations which are reminiscent of hemostatic disorders such as disseminated intravascular coagulation (DIC) and of hemangioma-associated pathologies such as Kasabach-Merritt phenomenon (KMS). These studies suggest that Fps/Fes influences both angiogenic and hemostatic function through regulatory effects on the endothelium.

  16. Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    PubMed Central

    Cohen, Helen S.; Cox, Christopher; Springer, Gayle; Hoffman, Howard J.; Young, Mary A.; Margolick, Joseph B.; Plankey, Michael W.

    2012-01-01

    Background Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. Methods Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. Results No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. Conclusion These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions. PMID:22675462

  17. Effect of Head-Down Bed Rest and Artificial Gravity Countermeasure on Cardiac Autonomic and Advanced Electrocardiographic Function

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Platts, S.; Stenger, M.; Ribeiro, C.; Natapoff, A.; Howarth, M.; Evans, J.

    2007-01-01

    To study the effects of 21 days of head-down bed rest (HDBR), with versus without an artificial gravity (AG) countermeasure, on cardiac autonomic and advanced electrocardiographic function. Fourteen healthy men participated in the study: seven experienced 21 days of HDBR alone ("HDBR controls") and seven the same degree and duration of HDBR but with approximately 1hr daily short-arm centrifugation as an AG countermeasure ("AG-treated"). Five minute supine high-fidelity 12-lead ECGs were obtained in all subjects: 1) 4 days before HDBR; 2) on the last day of HDBR; and 3) 7 days after HDBR. Besides conventional 12-lead ECG intervals and voltages, all of the following advanced ECG parameters were studied: 1) both stochastic (time and frequency domain) and deterministic heart rate variability (HRV); 2) beat-to-beat QT interval variability (QTV); 3) T-wave morphology, including signal-averaged T-wave residua (TWR) and principal component analysis ratios; 4) other SAECG-related parameters including high frequency QRS ECG and late potentials; and 5) several advanced ECG estimates of left ventricular (LV) mass. The most important results by repeated measures ANOVA were that: 1) Heart rates, Bazett-corrected QTc intervals, TWR, LF/HF power and the alpha 1 of HRV were significantly increased in both groups (i.e., by HDBR), but with no relevant HDBR*group differences; 2) All purely "vagally-mediated" parameters of HRV (e.g., RMSSD, HF power, Poincare SD1, etc.), PR intervals, and also several parameters of LV mass (Cornell and Sokolow-Lyon voltages, spatial ventricular activation times, ventricular gradients) were all significantly decreased in both groups (i.e., by HDBR), but again with no relevant HDBR*group differences); 3) All "generalized" or "vagal plus sympathetic" parameters of stochastic HRV (i.e., SDNN, total power, LF power) were significantly more decreased in the AG-treated group than in the HDBR-only group (i.e., here there was a relevant HDBR*group difference

  18. Unique Functional Abnormalities in Youth with Combined Marijuana Use and Depression: An fMRI Study

    PubMed Central

    Ford, Kristen A.; Wammes, Michael; Neufeld, Richard W.; Mitchell, Derek; Théberge, Jean; Williamson, Peter; Osuch, Elizabeth A.

    2014-01-01

    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD + MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group × music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group × music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform

  19. Loss of Rab27 function results in abnormal lung epithelium structure in mice.

    PubMed

    Bolasco, Giulia; Tracey-White, Dhani C; Tolmachova, Tanya; Thorley, Andrew J; Tetley, Teresa D; Seabra, Miguel C; Hume, Alistair N

    2011-03-01

    Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium.

  20. Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons.

    PubMed

    Hanson, Jesse E; Deng, Lunbin; Hackos, David H; Lo, Shih-Ching; Lauffer, Benjamin E; Steiner, Pascal; Zhou, Qiang

    2013-04-03

    Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R γ2 subunit and reduced surface expression of the α2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment.

  1. Association of Abnormal Liver Function Parameters with HIV Serostatus and CD4 Count in Antiretroviral-Naive Rwandan Women

    PubMed Central

    Hoover, Donald R.; Shi, Qiuhu; Mutimura, Eugene; Rudakemwa, Emmanuel; Ndacyayisenga, Victorien; Gakindi, Léonard; Mulvihill, Michael; Sinayobye, Jean D'Amour; Musabeyezu, Emmanuel; Anastos, Kathryn

    2015-01-01

    Abstract We determined the associations of HIV infection/CD4 count with markers of hepatocellular damage [elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] and liver synthetic function (decreased albumin) in HIV-infected (HIV+) antiretroviral therapy (ART)-naive and uninfected (HIV−) Rwandan women. In 2005, 710 HIV+ ART-naive and 226 HIV− women enrolled in the Rwanda Women's Interassociation Study and Assessment. Liver enzymes were measured with abnormality defined as either AST or ALT ≥1.25 times the upper limit of normal. Low serum albumin level was defined as <3.5 g/dl. Multivariable logistic regression analysis identified independent predictors of elevated AST/ALT and low serum albumin. HIV− women had the lowest prevalence (6.6%) of abnormal AST/ALT, with the highest prevalence (16.4%) in HIV+ women with CD4 <200 cells/μl (p=0.01). The odds of having serum albumin <3.5 g/dl was 5.7-fold higher in HIV+ than HIV− women (OR=5.68, 95% CI: 3.32–9.71). The risk of low albumin decreased from low to high CD4 count, with OR=2.62, 95% CI: 1.66, 4.14 and OR=1.57, 95% CI: 1.01, 2.43 in HIV+ women with a CD4 count <200 and 200–350 cells/μl, respectively vs. HIV+ with CD4 >350 (p<0.001 and p<0.05 for all comparisons). Our findings suggest that HIV-associated liver damage may occur in ART-naive patients. Although liver abnormality prevalences in this cohort of HIV-infected Rwandan women are less than reported in developed countries, caution is needed for risk assessment measures to monitor and screen HIV-infected patients pre- and post-ART initiation in African clinical settings to curtail potential risks associated with HIV infection. PMID:25924728

  2. Abnormal Functional Specialization within Medial Prefrontal Cortex in High-Functioning Autism: A Multi-Voxel Similarity Analysis

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Meuwese, Julia D. I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in "decoding" mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males)…

  3. ABNORMAL MOTOR FUNCTION AND DOPAMINE NEUROTRANSMISSION IN DYT1 ΔGAG TRANSGENIC MICE

    PubMed Central

    Zhao, Yu; DeCuypere, Michael; LeDoux, Mark S.

    2008-01-01

    A single GAG deletion in Exon 5 of the TOR1A gene is associated with a form of early-onset primary dystonia showing less than 40% penetrance. To provide a framework for cellular and systems study of DYT1 dystonia, we characterized the genetic, behavioral, morphological and neurochemical features of transgenic mice expressing either human wild-type torsinA (hWT) or mutant torsinA (hMT1 and hMT2) and their wild-type (WT) littermates. Relative to human brain, hMT1 mice showed robust neural expression of human torsinA transcript (3.90X). In comparison with WT littermates, hMT1 mice had prolonged traversal times on both square and round raised-beam tasks and more slips on the round raised-beam task. Although there were no effects of genotype on rotarod performance and rope climbing, hMT1 mice exhibited increased hind-base widths in comparison to WT and hWT mice. In contrast to several other mouse models of DYT1 dystonia, we were unable to identify either torsinA- and ubiquitin-positive cytoplasmic inclusion bodies or nuclear bleb formation in hMT1 mice. High-performance liquid chromatography with electrochemical detection was used to determine cerebral cortical, striatal, and cerebellar levels of dopamine (DA), norepinephrine, epinephrine, serotonin, 3, 4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid. Although there were no differences in striatal DA levels between WT and hMT1 mice, DOPAC and HVA concentrations and DA turnover (DOPAC/DA and HVA/DA) were significantly higher in the mutants. Our findings in DYT1 transgenic mice are compatible with previous neuroimaging and postmortem neurochemical studies of human DYT1 dystonia. Increased striatal dopamine turnover in hMT1 mice suggests that the nigrostriatal pathway may be a site of functional neuropathology in DYT1 dystonia. PMID:18299128

  4. Comparison of pramipexole with and without domperidone co-administration on alertness, autonomic, and endocrine functions in healthy volunteers

    PubMed Central

    Samuels, Ebony R; Hou, Ruihua H; Langley, Robert W; Szabadi, Elemer; Bradshaw, Christopher M

    2007-01-01

    What is already known about this subject It is known that the dopamine receptor agonist pramipexole, used for the treatment of Parkinson's disease, often causes nausea that can be treated in patients by the co-administration of an antiemetic, for example domperidone. In experimental studies of pramipexole it may be necessary to administer domperidone alongside pramipexole to alleviate nausea, and as such it is necessary to know how the co-administration of domperidone may alter the observed effects of pramipexole. What this study adds Results from our study indicate that the co-administration of pramipexole and domperidone may reduce the likelihood of observing an effect that is present when pramipexole is administered alone. Although domperidone is mainly a peripherally acting drug, it appears that a high enough concentration of the drug crosses the blood–brain barrier to partially antagonize some of the autonomic actions of pramipexole. Therefore, this report provides a cautionary note to the use of domperidone alongside pramipexole where the results of interest are those from pramipexole alone. Aims To investigate the effects of the D2-receptor agonist pramipexole with and without the co-administration of the peripherally acting D2-receptor antagonist domperidone on measures of alertness, autonomic and endocrine function. Methods Sixteen male volunteers participated in four weekly sessions of pramipexole 0.5 mg, domperidone 40 mg, their combination, and placebo administered according to a balanced, double-blind design. Alertness (visual analogue scales (VAS), critical flicker fusion frequency, pupillographic sleepiness test), autonomic (pupil diameter, light and darkness reflexes, blood pressure, heart rate, salivation, temperature) and endocrine (prolactin, thyroid-stimulating hormone (TSH), growth hormone (GH)) functions were assessed. Data were analyzed with anova with multiple comparisons. Results The pre-post treatment changes in VAS alertness were

  5. Structural and functional abnormalities of the hippocampal formation in rats with environmentally induced reductions in prepulse inhibition of acoustic startle.

    PubMed

    Greene, J R; Kerkhoff, J E; Guiver, L; Totterdell, S

    2001-01-01

    The effects of social isolation on prepulse inhibition of acoustic startle (PPI), electrophysiology and morphology of subicular pyramidal neurons and the densities of interneuronal sub-types in the hippocampal formation were examined. Wistar rats (male weanlings) were housed socially (socials, n=8) or individually (isolates, n=7). When tested eight weeks later, PPI was lower in isolates. Rats then received terminal anaesthesia before slices of hippocampal formation were made in which the electrophysiological properties of a total of 108 subicular neurons were characterized. There were no differences in neuronal sub-types recorded in socials compared with isolates. Intrinsically burst-firing and regular spiking pyramidal neurons were examined in detail. There were no differences in resting membrane potential or input resistance in isolates compared with socials but action potential height was reduced and action potential threshold raised in isolates. A limited morphological examination of Neurobiotin-filled intrinsically burst-firing neurons did not reveal differences in cell-body area or in number of primary dendrites. Sections from the contralateral hemispheres of the same rats were stained with antibodies to calretinin, parvalbumin and the neuronal isoform of nitric oxide synthase (nNOS). In isolates, the density of calretinin positive neurons was increased in the dentate gyrus but unchanged in areas CA3, CA1 and subiculum. Parvalbumin and nNOS positive neuronal densities were unchanged. Hence in rats with environmentally induced reductions in PPI there are structural and functional abnormalities in the hippocampal formation. If the reduction in PPI stems from these abnormalities, and reduced PPI in rats is relevant to schizophrenia, then drugs that correct the reported electrophysiological changes might have antipsychotic effects.

  6. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning.

    PubMed

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  7. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.

    PubMed Central

    Sabina, R L; Swain, J L; Olanow, C W; Bradley, W G; Fishbein, W N; DiMauro, S; Holmes, E W

    1984-01-01

    To assess the role of the purine nucleotide cycle in human skeletal muscle function, we evaluated 10 patients with AMP deaminase deficiency (myoadenylate deaminase deficiency; MDD). 4 MDD and 19 non-MDD controls participated in an exercise protocol. The latter group was composed of a patient cohort (n = 8) exhibiting a constellation of symptoms similar to those of the MDD patients, i.e., postexertional aches, cramps, and pains; as well as a cohort of normal, unconditioned volunteers (n = 11). The individuals with MDD fatigued after performing only 28% as much work as their non-MDD counterparts. Muscle biopsies were obtained from the four MDD patients and the eight non-MDD patients at rest and following exercise to the point of fatigue. Creatine phosphate content fell to a comparable extent in the MDD (69%) and non-MDD (52%) patients at the onset of fatigue. Following exercise the 34% decrease in ATP content of muscle from the non-MDD subjects was significantly greater than the 6% decrease in ATP noted in muscle from the MDD patients (P = 0.048). Only one of four MDD patients had a measurable drop in ATP compared with seven of eight non-MDD patients. At end-exercise the muscle content of inosine 5'-monophosphate (IMP), a product of AMP deaminase, was 13-fold greater in the non-MDD patients than that observed in the MDD group (P = 0.008). Adenosine content of muscle from the MDD patients increased 16-fold following exercise, while there was only a twofold increase in adenosine content of muscle from the non-MDD patients (P = 0.028). Those non-MDD patients in whom the decrease in ATP content following exercise was measurable exhibited a stoichiometric increase in IMP, and total purine content of the muscle did not change significantly. The one MDD patient in whom the decrease in ATP was measurable, did not exhibit a stoichiometric increase in IMP. Although the adenosine content increased 13-fold in this patient, only 48% of the ATP catabolized could be accounted for

  8. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  9. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously

    PubMed Central

    Cho, Hongbaek; Wivagg, Carl N.; Kapoor, Mrinal; Barry, Zachary; Rohs, Patricia D.A.; Suh, Hyunsuk; Marto, Jarrod A.; Garner, Ethan C.; Bernhardt, Thomas G.

    2016-01-01

    Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, SEDS-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside of these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria. PMID:27643381

  10. Impact of simulated microgravity and caloric restriction on autonomic nervous system function in adipose tissue

    NASA Astrophysics Data System (ADS)

    Boschmann, Michael; Adams, Frauke; Tank, Jens; Schaller, Karin; Boese, Andrea; Heer, Martina; Klause, Susanne; Luft, Friedrich C.; Jordan, Jens

    2005-08-01

    Long term immobilization and reduced food intake is often associated with development of orthostatic intolerance. Blocking the norepinephrine transporter (NET) can also mimic symptoms of orthostatic intolerance. Therefore, we hypothesized that simulated microgravity (14 days bed rest at head down tilt, BR) can cause changes in postganglionic NET function and adrenoreceptor (AR) sensitivity and these changes can be aggravated by hypocaloric food intake. For testing, two microdialysis probes were inserted into subcutaneous adipose tissue of eight young healthy men at day 1 and 14 of BR and perfused with Ringer's solution and increasing doses of tyramine and isoproterenol in order to simulate NET blockade and stimulate AR, respectively. At day 14 of eucaloric diet and BR, isoproterenol induced lipolysis was greater, whereas at day 14 of hypocaloric diet and BR, tyramine induced lipolysis was greater when compared to day 1. Therefore, the nutritional state affects NET function and AR sensitivity differently during BR.

  11. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV)

    PubMed Central

    Shaikh, Samiha S.; Chen, Ya‐Chun; Halsall, Sally‐Anne; Nahorski, Michael S.; Omoto, Kiyoyuki; Young, Gareth T.

    2016-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA‐Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. PMID:27676246

  12. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    PubMed

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach.

  13. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure.

    PubMed

    Jaenisch, Rodrigo B; Hentschke, Vítor S; Quagliotto, Edson; Cavinato, Paulo R; Schmeing, Letiane A; Xavier, Léder L; Dal Lago, Pedro

    2011-12-01

    Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction.

  14. Analysis of Abnormal Intra-QRS Potentials in Signal-Averaged Electrocardiograms Using a Radial Basis Function Neural Network.

    PubMed

    Lin, Chun-Cheng

    2016-09-27

    Abnormal intra-QRS potentials (AIQPs) are commonly observed in patients at high risk for ventricular tachycardia. We present a method for approximating a measured QRS complex using a non-linear neural network with all radial basis functions having the same smoothness. We extracted the high frequency, but low amplitude intra-QRS potentials using the approximation error to identify possible ventricular tachycardia. With a specified number of neurons, we performed an orthogonal least squares algorithm to determine the center of each Gaussian radial basis function. We found that the AIQP estimation error arising from part of the normal QRS complex could cause clinicians to misjudge patients with ventricular tachycardia. Our results also show that it is possible to correct this misjudgment by combining multiple AIQP parameters estimated using various spread parameters and numbers of neurons. Clinical trials demonstrate that higher AIQP-to-QRS ratios in the X, Y and Z leads are visible in patients with ventricular tachycardia than in normal subjects. A linear combination of 60 AIQP-to-QRS ratios can achieve 100% specificity, 90% sensitivity, and 95.8% total prediction accuracy for diagnosing ventricular tachycardia.

  15. Autonomic Dysregulation in Multiple Sclerosis

    PubMed Central

    Pintér, Alexandra; Cseh, Domonkos; Sárközi, Adrienn; Illigens, Ben M.; Siepmann, Timo

    2015-01-01

    Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment. PMID:26213927

  16. Correlation between vestibular and autonomous function after 6 months of spaceflight: Data of the SPIN and GAZE-SPIN experiments.

    NASA Astrophysics Data System (ADS)

    Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre

    In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the

  17. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.

  18. Abnormal cortical functional activity in patients with ischemic white matter lesions: A resting-state functional magnetic resonance imaging study.

    PubMed

    Ding, Xin; Ding, Jurong; Hua, Bo; Xiong, Xingzhong; Xiao, Li; Peng, Fang; Chen, Lin; Pan, Xianfang; Wang, Qingsong

    2017-02-09

    There is increasing evidence that white matter lesions (WMLs) are associated with cognitive impairments. The purpose of this study was to explore the relationship of WMLs with cognitive impairments from the aspect of cortical functional activity. Briefly, Sixteen patients with ischemic WMLs and 13 controls participated in this study. A regional homogeneity (ReHo) approach was used to investigate altered neural coherence in patients with ischemic WMLs during the resting state. A correlation analysis was further performed between regions with altered ReHo and cognitive test scores, including Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), in the patient group. Finally, we found regions with altered ReHo values in patients with ischemic WMLs to be involved in default mode network (DMN), frontal-parietal control network (FPCN), dorsal attention network (DAN), motor network and right temporal cortex. Moreover, some altered regions belonging to DMN, FPCN and motor network were significantly correlated with cognitive test scores. Our results provide neuroimaging evidence for the impairments of memory, attention, executive and motor function in patients with ischemic WMLs. It is interesting to note that the decreased ReHo was mainly in the anterior brain regions, while increased ReHo in the posterior brain regions, which may indicate a failure down regulation of spontaneous activity in posterior regions. In summary, this study indicates an important role of specific cortical dysfunction in cognitive associated with WMLs.

  19. Implication of base heart rate in autonomic nervous function, blood pressure and health-related QOL.

    PubMed

    Okano, Yasuko; Hirawa, Nobuhito; Matsushita, Kei; Tamura, Kouichi; Kihara, Minoru; Toya, Yoshiyuki; Tochikubo, Osamu; Umemura, Satoshi

    2005-01-01

    Increased resting heart rate (HR) and increased sympathetic nervous activity are independent risk factors for cardiovascular disease. Recently, base heart rate (HRo: minimum stable HR during sleep) has been reported to relate to cardiac stroke volume and age. However, little is known about the relevance of HRo. The aim of our study was to evaluate how HRo is associated with HR variability (HRV), blood pressure and health-related quality of life (HRQOL) in healthy subjects. A total of 139 volunteers participated in this study that measured 24-hr HR, HRV, and blood pressure. HRo was estimated from the trendgram and the histogram of HR during the nighttime (sleep) period, and calculated as the 1% lowest value of its integral. HRQOL was assessed by Medical Outcome Study Short-Forum 36-Item Health Survey. Sympathetic nervous activity (ratio of low frequency to high frequency component: LF/HF) and parasympathetic nervous activity (high frequency component: HF) were calculated by ECG monitoring. HRo was positively correlated with 24-hr LF/HF and nighttime LF/HF. HRo was negatively correlated with 24-hr HF and nighttime HF. Moreover, HRo was positively correlated with the scores of social functioning and role-physical. Using multivariate analysis, HRo is related to LF/HF, body mass index, and the score of social functioning (HRQOL). HRo may be a useful indicator for assessing sympathetic nervous activity and HRQOL in normotensive healthy subjects.

  20. Assessing autonomic function by analysis of heart rate recovery from exercise in healthy subjects.

    PubMed

    Pierpont, Gordon L; Voth, Eric J

    2004-07-01

    Although delayed recovery of heart rate (HR) after exercise indicates poor prognosis, the relative role of parasympathetic reactivation versus sympathetic withdrawal in controlling exercise HR recovery remains controversial. Quantifying HR recovery is difficult because the rate of recovery varies with exercise level. This study develops a model of HR recovery applicable to multiple exercise levels simultaneously. Using the Levenberg-Marquardt method for nonlinear models, HR curves for 11 healthy volunteers recovering from 4 different levels of exercise were fit to equations incorporating 1 first-order time constant for parasympathetic reactivation and 1 for sympathetic withdrawal. Results provided time constants for parasympathetic reactivation of 44 +/- 37 seconds and for sympathetic withdrawal of 65 +/- 56 seconds. The model fit the HR recovery curves very closely, explaining 99.7 +/- 0.1% of the variance in the data. In conclusion, this study presents a unique method for quantitatively testing theories on the relative roles of sympathetic withdrawal and parasympathetic reactivation during recovery from exercise. It provides indexes of dynamic sympathetic and parasympathetic functions, with the parasympathetic system having a faster response time. It supports theories of coordinated interaction of parasympathetic reactivation and sympathetic withdrawal during exercise recovery and does not support using simple measures of exercise HR recovery as indexes of vagal function alone.

  1. Effects of Escitalopram on Autonomic Function in Posttraumatic Stress Disorder Among Veterans of Operations Enduring Freedom and Iraqi Freedom (OEF/OIF)

    PubMed Central

    Selvaraj, Vithyalakshmi; Driscoll, David; Madabushi, Jayakrishna S.; Bhatia, Subhash C.; Yeragani, Vikram

    2015-01-01

    Objective: Posttraumatic stress disorder is a chronic, debilitating condition that has become a growing concern among combat veterans. Previous research suggests that posttraumatic stress disorder disrupts normal autonomic responding and may increase the risk of cardiovascular disease and mortality. Measures of heart rate variability and QT interval variability have been used extensively to characterize sympathetic and parasympathetic influences on heart rate in a variety of psychiatric populations. The objective of this study was to better understand the effects of pharmacological treatment on autonomic reactivity in posttraumatic stress disorder. Design: A 12-week, Phase IV, prospective, open-label trial of escitalopram in veterans with combat-related posttraumatic stress disorder and comorbid depression. Setting: An outpatient mental health clinic at a Veterans Affairs Medical Center. Participants: Eleven male veterans of Operations Enduring Freedom and Iraqi Freedom diagnosed with posttraumatic stress disorder and comorbid depression. Measurements: Autonomic reactivity was measured by examining heart rate variability and QT interval variability. Treatment safety and efficacy were also evaluated pre- and post-treatment. Results: We observed a reduction in posttraumatic stress disorder and depression symptoms from pre- to post-treatment, and escitalopram was generally well tolerated in our sample. In addition, we observed a decrease in high frequency heart rate variability and an increase in QT variability, indicating a reduction in cardiac vagal function and heightened sympathetic activation. Conclusion: These findings suggest that escitalopram treatment in patients with posttraumatic stress disorder and depression can trigger changes in autonomic reactivity that may adversely impact cardiovascular health. PMID:26155373

  2. Maladaptive autonomic regulation in PTSD accelerates physiological aging

    PubMed Central

    Williamson, John B.; Porges, Eric C.; Lamb, Damon G.; Porges, Stephen W.

    2015-01-01

    A core manifestation of post-traumatic stress disorder (PTSD) is a disconnection between physiological state and psychological or behavioral processes necessary to adequately respond to environmental demands. Patients with PTSD experience abnormal oscillations in autonomic states supporting either fight and flight behaviors or withdrawal, immobilization, and dissociation without an intervening “calm” state that would provide opportunities for positive social interactions. This defensive autonomic disposition is adaptive in dangerous and life threatening situations, but in the context of every-day life may lead to significant psychosocial distress and deteriorating social relationships. The perpetuation of these maladaptive autonomic responses may contribute to the development of comorbid mental health issues such as depression, loneliness, and hostility that further modify the nature of cardiovascular behavior in the context of internal and external stressors. Over time, changes in autonomic, endocrine, and immune function contribute to deteriorating health, which is potently expressed in brain dysfunction and cardiovascular disease. In this theoretical review paper, we present an overview of the literature on the chronic health effects of PTSD. We discuss the brain networks underlying PTSD in the context of autonomic efferent and afferent contributions and how disruption of these networks leads to poor health outcomes. Finally, we discuss treatment approaches based on our theoretical model of PTSD. PMID:25653631

  3. Tissue-autonomous EcR functions are required for concurrent organ morphogenesis in the Drosophila embryo.

    PubMed

    Chavoshi, Tina M; Moussian, Bernard; Uv, Anne

    2010-01-01

    The insect hormone 20-hydroxy-ecdysone (20E) peaks at different stages during the life cycle. The hormone signal is commonly transmitted by a nuclear receptor consisting of the ecdysone receptor (EcR) and Ultraspiracle (Usp, orthologous to vertebrate RXR). EcR:Usp then initiate the expression of a series of gene regulators that help mediate biological responses to the hormone. Here, we investigated the embryonic ecdysone-signalling mechanism. The rise in 20E levels that occurs at mid-embryogenesis is required for major tissue movements to complete organ morphogenesis, but the functions of EcR and Usp during embryogenesis have remained unclear. We find that both EcR and Usp are essential for head involution, dorsal closure and tracheal and midgut morphogenesis, processes that also depend on 20E, arguing that embryonic 20E signals via EcR:Usp. We also show that EcR mediates the effects on organ morphogenesis in a tissue-autonomous manner and thus, that embryonic EcR functions are not fully reflected by the commonly used EcR activity assays. Finally, we show that embryonic 20E via EcR instructs the temporal and tissue-specific expression of four transcription factors that are needed for late embryogenesis and are common to the metamorphic 20E response. The results suggest that mid-embryonic EcR-activation imparts a level of gene regulation during embryonic organogenesis that has been largely overlooked, and possibly facilitates synchronized development of individual organs.

  4. The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching

    PubMed Central

    Schwieterman, Alicia A.; Steves, Alyse N.; Yee, Vivian; Donelson, Cory J.; Bentley, Melissa R.; Santorella, Elise M.; Mehlenbacher, Taylor V.; Pital, Aaron; Howard, Austin M.; Wilson, Melissa R.; Ereddia, Danielle E.; Effrein, Kelsie S.; McMurry, Jonathan L.; Ackley, Brian D.; Chisholm, Andrew D.; Hudson, Martin L.

    2016-01-01

    The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system. PMID:26645816

  5. Alterations in autonomic function in the guinea pig eye following exposure to dichlorvos vapor.

    PubMed

    Taylor, James T; Davis, Emily; Dabisch, Paul; Horsmon, Mike; Li, Ming; Mioduszewski, Robert

    2008-10-01

    The present study investigated the effect of the organophosphate, dichlorvos (DDVP), on ocular function and cholinesterase activity in guinea pigs, using a single-animal-head-only vapor exposure system. All animals exhibited signs of mild organophosphate poisoning (e.g., salivation, chewing, lacrimation, urination, defecation, and rhinorrhea) after the 20-min exposure, regardless of the DDVP exposure concentration (e.g., 35 mg/m(3), 55 mg/m(3), and 75 mg/m(3)). Pupil constriction or miosis was the most pronounced effect seen after vapor exposure. The postexposure pupil size for the 35 mg/m(3) group was 45.8 +/- 3.68% of the preexposure baseline measurement. Postexposure pupil size in the 55- (38 +/- 1.36%) and 75 mg/m(3) (38.1 +/- 1.72%) groups was significantly less than both the preexposure baseline level and the 35 mg/m(3) group. All groups exhibited enhanced an pupillary response to light after DDVP exposure. The enhanced light response remained even after recovery from miosis (approximately 1 h after exposure). Measurement of cholinesterase activity revealed that even though pupil size had recovered, acetyl- and butyrylcholinesterase remained significantly inhibited in the blood.

  6. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function.

    PubMed

    Ganong, W F

    2000-01-01

    1. The circumventricular organs (CVO) are structures that permit polypeptide hypothalamic hormones to leave the brain without disrupting the blood-brain barrier (BBB) and permit substances that do not cross the BBB to trigger changes in brain function. 2. In mammals, CVO include only the median eminence and adjacent neurohypophysis, organum vasculosum lamina terminalis, subfornical organ and the area postrema. 3. The CVO are characterized by their small size, high permeability and fenestrated capillaries. The subcommissural organ is not highly permeable and does not have fenestrated capillaries, but new evidence indicates that it may be involved in the hypertension produced by aldosterone acting on the brain. 4. Feedback control of corticotropin-releasing hormone (CRH) secretion is exerted by free steroids diffusing into the brain, but substances such as cytokines and angiotensin II act on CVO to produce increases in CRH secretion. Gonadal steroids also diffuse into the brain to regulate gonadotrophin-releasing hormone secretion. Thyrotropin-releasing hormone secretion is regulated by thyroid hormones transported across cerebral capillaries. However, CVO may be involved in the negative feedback control of growth hormone and prolactin secretion.

  7. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure

    PubMed Central

    Marcus, Noah J; Rio, Rodrigo; Schultz, Evan P; Xia, Xiao-Hong; Schultz, Harold D

    2014-01-01

    In congestive heart failure (CHF), carotid body (CB) chemoreceptor activity is enhanced and is associated with oscillatory (Cheyne–Stokes) breathing patterns, increased sympathetic nerve activity (SNA) and increased arrhythmia incidence. We hypothesized that denervation of the CB (CBD) chemoreceptors would reduce SNA, reduce apnoea and arrhythmia incidence and improve ventricular function in pacing-induced CHF rabbits. Resting breathing, renal SNA (RSNA) and arrhythmia incidence were measured in three groups of animals: (1) sham CHF/sham–CBD (sham–sham); (2) CHF/sham–CBD (CHF–sham); and (3) CHF/CBD (CHF–CBD). Chemoreflex sensitivity was measured as the RSNA and minute ventilatory () responses to hypoxia and hypercapnia. Respiratory pattern was measured by plethysmography and quantified by an apnoea–hypopnoea index, respiratory rate variability index and the coefficient of variation of tidal volume. Sympatho-respiratory coupling (SRC) was assessed using power spectral analysis and the magnitude of the peak coherence function between tidal volume and RSNA frequency spectra. Arrhythmia incidence and low frequency/high frequency ratio of heart rate variability were assessed using ECG and blood pressure waveforms, respectively. RSNA and responses to hypoxia were augmented in CHF–sham and abolished in CHF–CBD animals. Resting RSNA was greater in CHF–sham compared to sham–sham animals (43 ± 5% max vs. 23 ± 2% max, P < 0.05), and this increase was not found in CHF–CBD animals (25 ± 1% max, P < 0.05 vs. CHF–sham). Low frequency/high frequency heart rate variability ratio was similarly increased in CHF and reduced by CBD (P < 0.05). Respiratory rate variability index, coefficient of variation of tidal volume and apnoea–hypopnoea index were increased in CHF–sham animals and reduced in CHF–CBD animals (P < 0.05). SRC (peak coherence) was increased in CHF–sham animals (sham–sham 0.49 ± 0.05; CHF–sham 0.79

  8. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  9. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  10. Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism.

    PubMed

    Baskin-Sommers, Arielle R; Foti, Dan

    2015-11-01

    A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. In the current review, we (a) describe the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotypes and improve the prediction of onset and recovery of these disorders.

  11. Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle.

    PubMed Central

    Litwin, S E; Raya, T E; Anderson, P G; Daugherty, S; Goldman, S

    1990-01-01

    To provide an integrated assessment of changes in systolic and diastolic function in diabetic rats, we measured conscious hemodynamics and performed ex vivo analysis of left ventricular passive-elastic properties. Rats given streptozotocin (STZ) 65 mg/kg i.v. (n = 14) were compared with untreated age-matched controls (n = 15) and rats treated with insulin after administration of STZ (n = 11). After 7 d, diabetic rats exhibited decreases in heart rate and peak developed left ventricular (LV) pressure during aortic occlusion. After 26 d of diabetes there were significant decreases in resting LV systolic pressure, developed pressure, and maximal +dP/dt, whereas LV end-diastolic pressure increased and the time constant of LV relaxation was prolonged. The passive LV pressure-volume relationship was progressively shifted away from the pressure axis, and the overall chamber stiffness constant was decreased. However, "operating chamber stiffness" calculated at end-diastolic pressure was increased at 7 d, and unchanged at 26 d. LV cavity/wall volume and end-diastolic volume were increased after 26 d of diabetes. Myocardial stiffness was unchanged at both time intervals. All of the above abnormalities were reversed by the administration of insulin. We conclude that the hemodynamic and passive-elastic changes that occur in diabetic rats represent an early dilated cardiomyopathy which is reversible with insulin. Images PMID:2200804

  12. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy.

    PubMed

    Han, Chongyang; Hoeijmakers, Janneke G J; Liu, Shujun; Gerrits, Monique M; te Morsche, Rene H M; Lauria, Giuseppe; Dib-Hajj, Sulayman D; Drenth, Joost P H; Faber, Catharina G; Merkies, Ingemar S J; Waxman, Stephen G

    2012-09-01

    Patients with small fibre neuropathy typically manifest pain in distal extremities and severe autonomic dysfunction. However, occasionally patients present with minimal autonomic symptoms. The basis for this phenotypic difference is not understood. Sodium channel Na(v)1.7, encoded by the SCN9A gene, is preferentially expressed in the peripheral nervous system within sensory dorsal root ganglion and sympathetic ganglion neurons and their small diameter peripheral axons. We recently reported missense substitutions in SCN9A that encode functional Na(v)1.7 variants in 28% of patients with biopsy-confirmed small fibre neuropathy. Two patients with biopsy-confirmed small fibre neuropathy manifested minimal autonomic dysfunction unlike the other six patients in this series, and both of these patients carry the Na(v)1.7/R185H variant, presenting the opportunity to compare variants associated with extreme ends of a spectrum from minimal to severe autonomic dysfunction. Herein, we show by voltage-clamp that R185H variant channels enhance resurgent currents within dorsal root ganglion neurons and show by current-clamp that R185H renders dorsal root ganglion neurons hyperexcitable. We also show that in contrast, R185H variant channels do not produce detectable changes when studied by voltage-clamp within sympathetic neurons of the superior cervical ganglion, and have no effect on the excitability of these cells. As a comparator, we studied the Na(v)1.7 variant I739V, identified in three patients with small fibre neuropathy characterized by severe autonomic dysfunction as well as neuropathic pain, and show that this variant impairs channel slow inactivation within both dorsal root ganglion and superior cervical ganglion neurons, and renders dorsal root ganglion neurons hyperexcitable and superior cervical ganglion neurons hypoexcitable. Thus, we show that R185H, from patients with minimal autonomic dysfunction, does not produce detectable changes in the properties of

  13. Effect of pioglitazone on systemic inflammation is independent of metabolic control and cardiac autonomic function in patients with type 2 diabetes.

    PubMed

    Nerla, Roberto; Pitocco, Dario; Zaccardi, Francesco; Scalone, Giancarla; Coviello, Ilaria; Mollo, Roberto; Ghirlanda, Giovanni; Lanza, Gaetano A; Crea, Filippo

    2010-12-01

    The aim of this article is to investigate the relation of the anti-inflammatory effect of pioglitazone with cardiac autonomic function and metabolic control in diabetic patients. In this prospective open label trial, 36 type 2 diabetic patients (age 60 ± 10, 20 M) without overt cardiovascular disease were randomized to add pioglitazone (30 mg) to their therapy or to continue standard therapy. C-reactive protein (CRP) serum levels, metabolic parameters and cardiac autonomic function (assessed by heart rate variability [HRV] on 24-h ECG Holter monitoring) were measured at baseline and after 3 months. Clinical and laboratory variables were similar in the two groups. No significant changes were observed after 3 months for metabolic and anthropometric parameters, except for a mild increase in HDL levels in the pioglitazone group only (P = 0.04 vs. controls). CRP levels decreased significantly at follow-up in the pioglitazone group (3.2 ± 1.97 vs. 2.37 ± 1.56 mg/l) but not in the control group (3.0 ± 1.92 vs. 3.93 ± 2.14 mg/l; P = 0.003). No differences were found in basal and follow-up HRV variables between the two groups. In type 2 diabetic patients pioglitazone exerts favourable effects on inflammation even after short-term therapy. This effect precedes those on metabolic and anthropometric parameters and is not associated with changes in cardiac autonomic function.

  14. Monitoring and Correcting Autonomic Function Aboard Mir: NASA Technology Used in Space and on Earth to Facilitate Adaptation

    NASA Technical Reports Server (NTRS)

    Cowings, P.; Toscano, W.; Taylor, B.; DeRoshia, C.; Kornilova, L.; Koslovskaya, I.; Miller, N.

    1999-01-01

    The broad objective of the research was to study individual characteristics of human adaptation to long duration spaceflight and possibilities of their correction using autonomic conditioning. The changes in autonomic state during adaptation to microgravity can have profound effects on the operational efficiency of crewmembers and may result in debilitating biomedical symptoms. Ground-based and inflight experiment results showed that certain responses of autonomic nervous system were correlated with, or consistently preceded, reports of performance decrements or the symptoms. Autogenic-Feedback-Training Exercise (AFTE) is a physiological conditioning method that has been used to train people to voluntary control several of their own physiological responses. The specific objectives were: 1) To study human autonomic nervous system (ANS) responses to sustained exposure to microgravity; 2) To study human behavior/performance changes related to physiology; 3) To evaluate the effectiveness of preflight autonomic conditioning (AFTE) for facilitating adaptation to space and readaptation to Earth; and 4) To archive these data for the NASA Life Sciences Data Archive and thereby make this information available to the international scientific community.

  15. Autonomic and brain responses associated with empathy deficits in autism spectrum disorder

    PubMed Central

    Eilam‐Stock, Tehila; Zhou, Thomas; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Hof, Patrick R.; Friston, Karl J.

    2015-01-01

    Abstract Accumulating evidence suggests that autonomic signals and their cortical representations are closely linked to emotional processes, and that related abnormalities could lead to social deficits. Although socio‐emotional impairments are a defining feature of autism spectrum disorder (ASD), empirical evidence directly supporting the link between autonomic, cortical, and socio‐emotional abnormalities in ASD is still lacking. In this study, we examined autonomic arousal indexed by skin conductance responses (SCR), concurrent cortical responses measured by functional magnetic resonance imaging, and effective brain connectivity estimated by dynamic causal modeling in seventeen unmedicated high‐functioning adults with ASD and seventeen matched controls while they performed an empathy‐for‐pain task. Compared to controls, adults with ASD showed enhanced SCR related to empathetic pain, along with increased neural activity in the anterior insular cortex, although their behavioral empathetic pain discriminability was reduced and overall SCR was decreased. ASD individuals also showed enhanced correlation between SCR and neural activities in the anterior insular cortex. Importantly, significant group differences in effective brain connectivity were limited to greater reduction in the negative intrinsic connectivity of the anterior insular cortex in the ASD group, indicating a failure in attenuating anterior insular responses to empathetic pain. These results suggest that aberrant interoceptive precision, as indexed by abnormalities in autonomic activity and its central representations, may underlie empathy deficits in ASD. Hum Brain Mapp 36:3323–3338, 2015. © 2015 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:25995134

  16. Waist circumference, body mass index, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal liver function tests in the Taiwanese population.

    PubMed

    Hsieh, Meng-Hsuan; Lin, Wen-Yi; Chien, Hsu-Han; Chien, Li-Ho; Huang, Chao-Kuan; Yang, Jeng-Fu; Chang, Ning-Chia; Huang, Chung-Feng; Wang, Chao-Ling; Chuang, Wan-Long; Yu, Ming-Lung; Dai, Chia-Yen; Ho, Chi-Kung

    2012-09-01

    Several studies have found that metabolic syndrome and uric acid level are related to abnormal liver function test results. The aim of this study was to explore the associations of risk factors [including blood pressure, blood sugar, total cholesterol, triglyceride, uric acid, waist circumference and body mass index (BMI) measurements] with abnormal liver function in the Taiwanese population.In total, 11,411 Taiwanese adults were enrolled in this study. Blood pressure was assessed according to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure criteria, fasting blood sugar level according to the Bureau of Health Promotion, Department of Health, R.O.C., criteria, total cholesterol and triglyceride levels according to the Third Report of the National Cholesterol Education Program Adult Treatment Panel III criteria, BMI according to the Asia-Pacific criteria, and waist circumference according to the Revised Diagnostic Criteria of Metabolic Syndrome in Taiwan. The prevalence of a past history of hypertension and diabetes mellitus was 17.7% and 6.5%, respectively, and the rates of abnormal measurements of blood pressure, BMI, waist circumference, fasting blood sugar, triglyceride, total cholesterol, uric acid (male/female), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were 76.2%, 67.6%, 40.0%, 28.6%, 30.6%, 57.3%, 37.9%/21.9%, 14.6% and 21.3%, respectively. Multivariate analysis showed that waist circumference, BMI, serum uric acid, blood sugar, and triglyceride levels were related to abnormal AST and ALT (p<0.05), but the odds ratio for waist circumference was larger than that for BMI. In conclusion, waist circumference, BMI, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal AST and ALT readings in Taiwanese adults. Waist circumference might be a better indicator of risk of abnormal liver function than BMI.

  17. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia

    PubMed Central

    Grisé, Kenneth N.; Olver, T. Dylan; McDonald, Matthew W.; Dey, Adwitia; Jiang, Mao; Lacefield, James C.; Shoemaker, J. Kevin; Noble, Earl G.; Melling, C. W. James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9–17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531

  18. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia.

    PubMed

    Grisé, Kenneth N; Olver, T Dylan; McDonald, Matthew W; Dey, Adwitia; Jiang, Mao; Lacefield, James C; Shoemaker, J Kevin; Noble, Earl G; Melling, C W James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM.

  19. Effect of Yoga on Autonomic Functions and Psychological Status During Both Phases of Menstrual Cycle in Young Healthy Females

    PubMed Central

    Kanojia, Sarita; Sharma, Vivek Kumar; Gandhi, Asha; Kapoor, Raj; Kukreja, Ajay; Subramanian, Senthil Kumar

    2013-01-01

    SBP, DBP, sympathetic activity and blunting of parasympathetic reactivity and also, significantly higher scores of anger, depression, anxiety and decreased score of well-being in premenstrual phase as compared to postmenstrual phase in both the groups in initial cycle. There was significantly higher percentage decrease in BW, HR, SBP & DBP in yoga group as compared to control group in both the phases from initial to second and onwards between second and third menstrual cycle. Also, decrease in anger, depression and anxiety and increase in well-being score was significant in yoga group as compared to control group from initial to second and third cycle in premenstrual phase while the change was significant only in depression score in postmenstrual phase. Conclusion: Our study shows that there was significant alteration of autonomic functions and psychological status in premenstrual phase when compared with postmenstrual phase in young healthy females. Also, regular practice of yoga has beneficial effects on both phases of menstrual cycle by bringing parasympathodominance and psychological well-being probably by balancing neuro-endocrinal axis. PMID:24298457

  20. Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus.

    PubMed

    Akashi, Makoto; Hayasaka, Naoto; Yamazaki, Shin; Node, Koichi

    2008-04-30

    The suprachiasmatic nucleus (SCN) is the master circadian pacemaker driving behavioral and physiological rhythms in mammals. Circadian activation of mitogen-activated protein kinase [MAPK; also known as ERK (extracellular signal-regulated kinase)] is observed in vivo in the SCN under constant darkness, although the biological significance of this remains unclear. To elucidate this question, we first examined whether MAPK was autonomously activated in ex vivo SCN slices. Moreover, we investigated the effect of MAPK inhibition on circadian clock gene expression and neuronal firing rhythms using SCN-slice culture systems. We show herein that MAPK is autonomously activated in the SCN, and our data demonstrate that inhibition of the MAPK activity results in dampened rhythms and reduced basal levels in circadian clock gene expression at the SCN single-neuron level. Furthermore, MAPK inhibition attenuates autonomous circadian neuronal firing rhythms in the SCN. Thus, our data suggest that light-independent MAPK activity contributes to the robustness of the SCN autonomous circadian system.

  1. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  2. Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis.

    PubMed

    Hirano, Tomoko; Matsuzawa, Tomohiko; Takegawa, Kaoru; Sato, Masa H

    2011-02-01

    In eukaryotic cells, PtdIns 3,5-kinase, Fab1/PIKfyve produces PtdIns (3,5) P(2) from PtdIns 3-P, and functions in vacuole/lysosome homeostasis. Herein, we show that expression of Arabidopsis (Arabidopsis thaliana) FAB1A/B in fission yeast (Schizosaccharomyces pombe) fab1 knockout cells fully complements the vacuole morphology phenotype. Subcellular localizations of FAB1A and FAB1B fused with green fluorescent protein revealed that FAB1A/B-green fluorescent proteins localize to the endosomes in root epidermal cells of Arabidopsis. Furthermore, reduction in the expression levels of FAB1A/B by RNA interference impairs vacuolar acidification and endocytosis. These results indicate that Arabidopsis FAB1A/B functions as PtdIns 3,5-kinase in plants and in fission yeast. Conditional knockdown mutant shows various phenotypes including root growth inhibition, hyposensitivity to exogenous auxin, and disturbance of root gravitropism. These phenotypes are observed also in the overproducing mutants of FAB1A and FAB1B. The overproducing mutants reveal additional morphological phenotypes including dwarfism, male-gametophyte sterility, and abnormal floral organs. Taken together, this evidence indicates that imbalanced expression of FAB1A/B impairs endomembrane homeostasis including endocytosis, vacuole formation, and vacuolar acidification, which causes pleiotropic developmental phenotypes mostly related to the auxin signaling in Arabidopsis.

  3. Abnormalities of regional brain function in Parkinson’s disease: a meta-analysis of resting state functional magnetic resonance imaging studies

    PubMed Central

    Pan, PingLei; Zhang, Yang; Liu, Yi; Zhang, He; Guan, DeNing; Xu, Yun

    2017-01-01

    There is convincing evidence that abnormalities of regional brain function exist in Parkinson’s disease (PD). However, many resting-state functional magnetic resonance imaging (rs-fMRI) studies using amplitude of low-frequency fluctuations (ALFF) have reported inconsistent results about regional spontaneous neuronal activity in PD. Therefore, we conducted a comprehensive meta-analysis using the Seed-based d Mapping and several complementary analyses. We searched PubMed, Embase, and Web of Science databases for eligible whole-brain rs-fMRI studies that measured ALFF differences between patients with PD and healthy controls published from January 1st, 2000 until June 24, 2016. Eleven studies reporting 14 comparisons, comparing 421 patients and 381 healthy controls, were included. The most consistent and replicable findings in patients with PD compared with healthy controls were identified, including the decreased ALFFs in the bilateral supplementary motor areas, left putamen, left premotor cortex, and left inferior parietal gyrus, and increased ALFFs in the right inferior parietal gyrus. The altered ALFFs in these brain regions are related to motor deficits and compensation in PD, which contribute to understanding its neurobiological underpinnings and could serve as specific regions of interest for further studies. PMID:28079169

  4. Neurobiological substrates of cognitive rigidity and autonomic inflexibility in generalized anxiety disorder.

    PubMed

    Ottaviani, Cristina; Watson, David R; Meeten, Frances; Makovac, Elena; Garfinkel, Sarah N; Critchley, Hugo D

    2016-09-01

    Generalized anxiety disorder (GAD) is characterized by difficulties in inhibiting both perseverative thoughts (worry and rumination) and autonomic arousal. We investigated the neurobiological substrates of such abnormal inhibitory processes, hypothesizing aberrant functional coupling within 'default mode' (DMN) and autonomic brain networks. Functional imaging and heart rate variability (HRV) data were acquired from GAD patients and controls during performance of three tracking tasks interspersed with a perseverative cognition (PC) induction. After detection of infrequent target stimuli, activity within putative DMN hubs was suppressed, consistent with a redirection of attentional resources from internal to external focus. This magnitude of activity change was attenuated in patients and individuals with higher trait PC, but was predicted by individual differences in HRV. Following the induction of PC in controls, this pattern of neural reactivity became closer to that of GAD patients. Results support, at a neural level, the association between cognitive inflexibility and autonomic rigidity.

  5. Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer.

    PubMed

    Surace, Enrico Maria; Domenici, Luciano; Cortese, Katia; Cotugno, Gabriella; Di Vicino, Umberto; Venturi, Consuelo; Cellerino, Alessandro; Marigo, Valeria; Tacchetti, Carlo; Ballabio, Andrea; Auricchio, Alberto

    2005-10-01

    X-linked recessive ocular albinism type I (OA1) is due to mutations in the OA1 gene (approved gene symbol GPR143), which is expressed in the retinal pigment epithelium (RPE). The Oa1 (Gpr143) knockout mouse (Oa1(-/-)) model recapitulates many of the OA1 retinal morphological anomalies, including a lower number of melanosomes of increased size in the RPE. The Oa1(-/-) mouse also displays some of the retinal developmental abnormalities observed in albino patients such as misrouting of the optic tracts. Here, we show that these anomalies are associated with retinal electrophysiological abnormalities, including significant decrease in a- and b-wave amplitude and delayed recovery of b-wave amplitude from photoreceptor desensitization following bright light exposure. This suggests that lack of Oa1 in the RPE impacts on photoreceptor activity. More interestingly, adeno-associated viral vector-mediated Oa1 gene transfer to the retina of the Oa1(-/-) mouse model results in significant recovery of its retinal functional abnormalities. In addition, Oa1 retinal gene transfer increases the number of melanosomes in the Oa1(-/-) mouse RPE. Our data show that gene transfer to the adult retina unexpectedly rescues both functional and morphological abnormalities in a retinal developmental disorder, opening novel potential therapeutic perspectives for this and other forms of albinism.

  6. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    PubMed Central

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  7. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    PubMed

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  8. Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse.

    PubMed

    Joseph, Avenel; Shur, Barry D; Ko, CheMyong; Chambon, Pierre; Hess, Rex A

    2010-05-01

    Estrogen receptor-alpha (ESR1) is highly expressed in the efferent ductules of all species studied as well as in the epididymal epithelium in mice and other select species. Male mice lacking ESR1 (Esr1KO) are infertile, but transplantation studies demonstrated that Esr1KO germ cells are capable of fertilization when placed in a wild-type reproductive tract. These results suggest that extratesticular regions, such as the efferent ductules and epididymis, are the major source of pathological changes in Esr1KO males. Previous studies have shown alterations in ion and fluid transporters in the efferent duct and epididymal epithelia of Esr1KO males, leading to misregulation of luminal fluid pH. To determine the effect of an altered epididymal milieu on Esr1KO sperm, we assayed sperm morphology in the different regions of the epididymis. Sperm recovered from the epididymis exhibited abnormal flagellar coiling and increased incidence of spontaneous acrosome reactions, both of which are consistent with exposure to abnormal epididymal fluid. Analysis of the epididymal fluid revealed that the osmolality of the Esr1KO fluid was reduced relative to wild type, consistent with prior reports of inappropriate fluid absorption from the efferent ductules. This, along with the finding that morphological defects increased with transit through the epididymal duct, suggests that the anomalies in sperm are a consequence of the abnormal luminal environment. Consistent with this, incubating Esr1KO sperm in a more wild-type-like osmotic environment significantly rescued the abnormal flagellar coiling. This work demonstrates that Esr1KO mice exhibit an abnormal fluid environment in the lumen of the efferent ducts and epididymis, precluding normal sperm maturation and instead resulting in progressive deterioration of sperm that contributes to infertility.

  9. The hypertension of autonomic failure and its treatment

    NASA Technical Reports Server (NTRS)

    Shannon, J.; Jordan, J.; Costa, F.; Robertson, R. M.; Biaggioni, I.

    1997-01-01

    We studied the incidence and severity of supine hypertension in 117 patients with severe primary autonomic failure presenting to a referral center over a 9-year period. Patients were uniformly characterized by disabling orthostatic hypotension, lack of compensatory heart rate increase, abnormal autonomic function tests, and unresponsive plasma norepinephrine. Fifty-four patients had isolated autonomic impairment (pure autonomic failure). Sixty-three patients had central nervous system involvement in addition to autonomic impairment (multiple-system atrophy). Patients were studied off medications, in a metabolic ward, and on a controlled diet containing 150 mEq of sodium. Fifty-six percent of patients had supine diastolic blood pressure > or =90 mm Hg. The prevalence of hypertension was slightly greater in females (63%) than in males (52%). Potential mechanisms responsible for this hypertension were investigated. No correlation was found between blood volume and blood pressure. Similarly, plasma norepinephrine (92+/-15 pg/mL) and plasma renin activity (0.3+/-0.05 ng/mL per hour) were very low in the subset of patients with pure autonomic failure and supine hypertension (mean systolic/diastolic pressure, 177 +/- 6/108 +/- 2 mm Hg, range 167/97 to 219/121). Supine hypertension represents a challenge in the treatment of orthostatic hypotension. We found these patients to be particularly responsive to the hypotensive effects of transdermal nitroglycerin. Doses ranging from 0.025 to 0.1 mg/h decreased systolic blood pressure by 36+/-7 mm Hg and may effectively treat supine hypertension overnight, but the dose should be individualized and used with caution.

  10. Autonomous decision-making: a data mining approach.

    PubMed

    Kusiak, A; Kern, J A; Kernstine, K H; Tseng, B T

    2000-12-01

    The researchers and practitioners of today create models, algorithms, functions, and other constructs defined in abstract spaces. The research of the future will likely be data driven. Symbolic and numeric data that are becoming available in large volumes will define the need for new data analysis techniques and tools. Data mining is an emerging area of computational intelligence that offers new theories, techniques, and tools for analysis of large data sets. In this paper, a novel approach for autonomous decision-making is developed based on the rough set theory of data mining. The approach has been tested on a medical data set for patients with lung abnormalities referred to as solitary pulmonary nodules (SPNs). The two independent algorithms developed in this paper either generate an accurate diagnosis or make no decision. The methodolgy discussed in the paper depart from the developments in data mining as well as current medical literature, thus creating a variable approach for autonomous decision-making.

  11. Relations between social-perceptual ability in multi- and unisensory contexts, autonomic reactivity, and social functioning in individuals with Williams syndrome.

    PubMed

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Bellugi, Ursula

    2015-07-01

    Compromised social-perceptual ability has been proposed to contribute to social dysfunction in neurodevelopmental disorders. While such impairments have been identified in Williams syndrome (WS), little is known about emotion processing in auditory and multisensory contexts. Employing a multidimensional approach, individuals with WS and typical development (TD) were tested for emotion identification across fearful, happy, and angry multisensory and unisensory face and voice stimuli. Autonomic responses were monitored in response to unimodal emotion. The WS group was administered an inventory of social functioning. Behaviorally, individuals with WS relative to TD demonstrated impaired processing of unimodal vocalizations and emotionally incongruent audiovisual compounds, reflecting a generalized deficit in social-auditory processing in WS. The TD group outperformed their counterparts with WS in identifying negative (fearful and angry) emotion, with similar between-group performance with happy stimuli. Mirroring this pattern, electrodermal activity (EDA) responses to the emotional content of the stimuli indicated that whereas those with WS showed the highest arousal to happy, and lowest arousal to fearful stimuli, the TD participants demonstrated the contrasting pattern. In WS, more normal social functioning was related to higher autonomic arousal to facial expressions. Implications for underlying neural architecture and emotional functions are discussed.

  12. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    PubMed Central

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  13. [Autonomic neuropathy: a high risk complication for type 1 diabetes mellitus].

    PubMed

    Foss-Freitas, Maria Cristina; Marques Junior, Wilson; Foss, Milton Cesar

    2008-03-01

    The pathological alteration of the nervous system in diabetic patients is extensive and frequently severe. The prevalence of the diabetic neuropathy reach high levels with the evolution of the diabetes, often showing frequencies higher than 50% in several groups of patients. The neurological lesion in this pathological situation is extensive in the diabetic patient, including widely the peripheral nervous system with its components sensory, motor and autonomic: with typical symptoms and in accordance with the pathogenesis of metabolic origin and/or microvascular disease. The autonomic nervous system is a main regulator of many systems in the human body. Then its lesion can promote significant alterations in the function of the cardiovascular, respiratory, gastrointestinal, urogenital system, that can be related to increased motality. This review anlyses the abnormalities related to lesion of the autonomic nervous system, particularly in type 1 diabetic patients, trying to characterize the risk of morbidity and mortality.

  14. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  15. Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation

    ERIC Educational Resources Information Center

    Weinberg, Anna; Klonsky, E. David; Hajcak, Greg

    2009-01-01

    Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…

  16. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    PubMed

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  17. Diabetic autonomic neuropathy.

    PubMed

    Freeman, Roy

    2014-01-01

    Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.

  18. ANGIOTENSIN-DEPENDENT AUTONOMIC DYSREGULATION PRECEDES DILATED CARDIOMYOPATHY IN A MOUSE MODEL OF MUSCULAR DYSTROPHY

    PubMed Central

    Sabharwal, Rasna; Weiss, Robert M.; Zimmerman, Kathy; Domenig, Oliver; Cicha, Michael Z.; Chapleau, Mark W.

    2015-01-01

    Sarcoglycan mutations cause muscular dystrophy. Patients with muscular dystrophy develop autonomic dysregulation and dilated cardiomyopathy (DCM), but the temporal relationship and mechanism of autonomic dysregulation are not well understood. We hypothesized that activation of the renin-angiotensin system (RAS) causes autonomic dysregulation prior to development of DCM in sarcoglycan-delta (Sgcd) deficient mice, and that the severity of autonomic dysfunction at a young age predicts the severity of DCM at older ages. At 10-12 weeks of age, when left ventricular function assessed by echocardiography remained normal, Sgcd−/− mice exhibited decreases in arterial pressure, locomotor activity, baroreflex sensitivity (BRS) and cardiovagal tone, and increased sympathetic tone compared with age-matched C57BL/6 control mice (P<0.05). Systemic and skeletal muscle RAS were activated, and angiotensin II type 1 receptor (AT1R) expression, superoxide and fibrosis were increased in dystrophic skeletal muscle (P<0.05). Treatment with the AT1R blocker losartan for 7-9 weeks beginning at 3 weeks of age prevented or strongly attenuated the abnormalities in Sgcd−/− mice (P<0.05). Repeated assessment of phenotypes between 10 and 75 weeks of age demonstrated worsening of autonomic function, progressive cardiac dysfunction and DCM, and increased mortality in Sgcd−/− mice. High sympathetic tone predicted subsequent left ventricular dysfunction. We conclude that RAS activation causes severe autonomic dysregulation in young Sgcd−/− mice, which portends a worse long-term prognosis. Therapeutic targeting of RAS at a young age may improve autonomic function and slow disease progression in muscular dystrophy. PMID:25921929

  19. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    PubMed

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus.

  20. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments.

  1. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Heart failure with preserved ejection fraction (HFpEF) accounts for about 50% of heart failure cases. It has features of incomplete relaxation and increased stiffness of the left ventricle. Studies from clinical electrophysiology and animal experiments have found that HFpEF is associated with impaired calcium homeostasis, ion channel remodeling and concentric left ventricle hypertrophy (LVH). However, it is still unclear how the abnormal calcium homeostasis, ion channel and structural remodeling affect the electro-mechanical dynamics of the ventricles. In this study we have developed multiscale models of the human left ventricle from single cells to the 3D organ, which take into consideration HFpEF-induced changes in calcium handling, ion channel remodeling and concentric LVH. Our simulation results suggest that at the cellular level, HFpEF reduces the systolic calcium level resulting in a reduced systolic contractile force, but elevates the diastolic calcium level resulting in an abnormal residual diastolic force. In our simulations, these abnormal electro-mechanical features of the ventricular cells became more pronounced with the increase of the heart rate. However, at the 3D organ level, the ejection fraction of the left ventricle was maintained due to the concentric LVH. The simulation results of this study mirror clinically observed features of HFpEF and provide new insights toward the understanding of the cellular bases of impaired cardiac electromechanical functions in heart failure. PMID:25852567

  2. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  3. Exercise Reveals the Interrelation of Physical Fitness, Inflammatory Response, Psychopathology, and Autonomic Function in Patients With Schizophrenia

    PubMed Central

    Bär, Karl-Jürgen

    2013-01-01

    Maintaining and improving fitness are associated with a lower risk of premature death from cardiovascular disease. Patients with schizophrenia are known to exercise less and have poorer health behaviors than average. Physical fitness and physiological regulation during exercise tasks have not been investigated to date among patients with schizophrenia. We studied autonomic modulation in a stepwise exhaustion protocol in 23 patients with schizophrenia and in matched controls, using spirometry and lactate diagnostics. Parameters of physical capacity were determined at the aerobic, anaerobic, and vagal thresholds (VT), as well as for peak output. VT was correlated with psychopathology, as assessed by the Positive and Negative Syndrome Scale, with the inflammatory markers IL-1β, IL-6, and TNF-α and with peak output. The MANOVA for heart and breathing rates, as well as for vagal modulation and complexity behavior of heart rate, indicated a profound lack of vagal modulation at all intensity levels, even after the covariate carbon monoxide concentration was introduced as a measure of smoking behavior. Significantly decreased physical capacity was demonstrated at the aerobic, anaerobic, and VT in patients. After the exercise task, reduced vagal modulation in patients correlated negatively with positive symptoms and with levels of IL-6 and TNF-α. This study shows decreased physical capacity in patients with schizophrenia. Upcoming intervention studies need to take into account the autonomic imbalance, which might predispose patients to arrhythmias during exercise. Results of inflammatory parameters are suggestive of a reduced activity of the anti-inflammatory cholinergic pathway in patients, leading to a pro-inflammatory state. PMID:22966149

  4. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    PubMed

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans.

  5. Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit.

    PubMed

    Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi

    2017-05-01

    Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction.

  6. Relationships (II) of International Classification of High-resolution Computed Tomography for Occupational and Environmental Respiratory Diseases with ventilatory functions indices for parenchymal abnormalities

    PubMed Central

    TAMURA, Taro; SUGANUMA, Narufumi; HERING, Kurt G.; VEHMAS, Tapio; ITOH, Harumi; AKIRA, Masanori; TAKASHIMA, Yoshihiro; HIRANO, Harukazu; KUSAKA, Yukinori

    2015-01-01

    The International Classification of High-Resolution Computed Tomography (HRCT) for Occupational and Environmental Respiratory Diseases (ICOERD) is used to screen and diagnose respiratory illnesses. Using univariate and multivariate analysis, we investigated the relationship between subject characteristics and parenchymal abnormalities according to ICOERD, and the results of ventilatory function tests (VFT). Thirty-five patients with and 27 controls without mineral-dust exposure underwent VFT and HRCT. We recorded all subjects’ occupational history for mineral dust exposure and smoking history. Experts independently assessed HRCT using the ICOERD parenchymal abnormalities (Items) grades for well-defined rounded opacities (RO), linear and/or irregular opacities (IR), and emphysema (EM). High-resolution computed tomography showed that 11 patients had RO; 15 patients, IR; and 19 patients, EM. According to the multiple regression model, age and height had significant associations with many indices ventilatory functions such as vital capacity, forced vital capacity, and forced expiratory volume in 1 s (FEV1). The EM summed grades on the upper, middle, and lower zones of the right and left lungs also had significant associations with FEV1 and the maximum mid-expiratory flow rate. The results suggest the ICOERD notation is adequate based on the good and significant multiple regression modeling of ventilatory function with the EM summed grades. PMID:25810443

  7. Relationships (II) of International Classification of High-resolution Computed Tomography for Occupational and Environmental Respiratory Diseases with ventilatory functions indices for parenchymal abnormalities.

    PubMed

    Tamura, Taro; Suganuma, Narufumi; Hering, Kurt G; Vehmas, Tapio; Itoh, Harumi; Akira, Masanori; Takashima, Yoshihiro; Hirano, Harukazu; Kusaka, Yukinori

    2015-01-01

    The International Classification of High-Resolution Computed Tomography (HRCT) for Occupational and Environmental Respiratory Diseases (ICOERD) is used to screen and diagnose respiratory illnesses. Using univariate and multivariate analysis, we investigated the relationship between subject characteristics and parenchymal abnormalities according to ICOERD, and the results of ventilatory function tests (VFT). Thirty-five patients with and 27 controls without mineral-dust exposure underwent VFT and HRCT. We recorded all subjects' occupational history for mineral dust exposure and smoking history. Experts independently assessed HRCT using the ICOERD parenchymal abnormalities (Items) grades for well-defined rounded opacities (RO), linear and/or irregular opacities (IR), and emphysema (EM). High-resolution computed tomography showed that 11 patients had RO; 15 patients, IR; and 19 patients, EM. According to the multiple regression model, age and height had significant associations with many indices ventilatory functions such as vital capacity, forced vital capacity, and forced expiratory volume in 1 s (FEV1). The EM summed grades on the upper, middle, and lower zones of the right and left lungs also had significant associations with FEV1 and the maximum mid-expiratory flow rate. The results suggest the ICOERD notation is adequate based on the good and significant multiple regression modeling of ventilatory function with the EM summed grades.

  8. The prevalence of hypertension and abnormal kidney function in children with sickle cell disease –a cross sectional review

    PubMed Central

    2013-01-01

    Background Renal disease is a known contributor to mortality in adults with sickle cell disease (SCD) and renal abnormalities are evident in childhood. Hyperfiltration (evidenced by elevated glomerular filtration rate, GFR) occurs in children with SCD early in disease. However, the incidence of low GFR (<90 ml/min/1.73 m2) suggestive of chronic kidney disease (CKD), is not well established. The prevalence of hypertension is also not well known. The goal of this study was to determine the prevalence of hypertension and CKD in a cohort of children with SCD. Methods We performed a retrospective chart review of patients followed at the Rainbow Babies and Children’s Sickle Cell Disease Clinic who were seen during routine follow up visits. Inclusion criteria were all patients ages 3–18. Exclusion criteria included recent (within 2 weeks) hospitalization and/or episode of acute chest, pain crises, febrile illness or red blood cell transfusion. Data collected included serum creatinine, blood pressure and history of sickle cell complications (acute chest syndrome, stroke or stroke risk). Estimated GFR (eGFR) was calculated using the updated Schwartz creatinine-based estimating formula. Analysis examined the associations among eGFR, blood pressure and sickle cell complications. The Institutional Review Board at University Hospitals Case Medical Center approved this study. Results A total of 48 children had complete data available. Mean eGFR was 140 mL/min/1.73 m2 +/- 34.9 (range 71.9-404.2 mL/min/1.73 m2). Four patients (8.3%) had eGFRs < 90 mL/min/1.73 m2, 35 patients (72.9%) had eGFRs > 120 mL/min/1.73 m2 and 9 patients (18.8%) had eGFRs in the normal range. Eight patients (16.7%) had evidence of elevated blood pressures (pre-hypertension or hypertension). There was no correlation between eGFR and age, and no association of eGFR with acute chest or stroke risk. Conclusion In this SCD cohort, we identified abnormally low eGFR (suggestive of early CKD

  9. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans

    PubMed Central

    Samuels, E. R; Szabadi, E

    2008-01-01

    The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system. PMID:19506724

  10. Autonomic Neuropathy

    MedlinePlus

    ... functions are damaged. This may affect blood pressure, temperature control, digestion, bladder function and even sexual function. ... little, which affects the ability to regulate body temperature. Sluggish pupil reaction, making it difficult to adjust ...

  11. MCT8 Deficiency in Male Mice Mitigates the Phenotypic Abnormalities Associated With the Absence of a Functional Type 3 Deiodinase.

    PubMed

    Stohn, J Patrizia; Martinez, M Elena; Matoin, Kassey; Morte, Beatriz; Bernal, Juan; Galton, Valerie Anne; St Germain, Donald; Hernandez, Arturo

    2016-08-01

    Mice deficient in the type 3 deiodinase (D3KO mice) manifest impaired clearance of thyroid hormone (TH), leading to elevated levels of TH action during development. This alteration causes reduced neonatal viability, growth retardation, and central hypothyroidism. Here we examined how these phenotypes are affected by a deficiency in the monocarboxylate transporter 8 (MCT8), which is a major contributor to the transport of the active thyroid hormone, T3, into the cell. MCT8 deficiency eliminated the neonatal lethality of type 3 deiodinase (D3)-deficient mice and significantly ameliorated their growth retardation. Double-mutant newborn mice exhibited similar peripheral thyrotoxicosis and increased brain expression of T3-dependent genes as mice with D3 deficiency only. Later in neonatal life and adulthood, double-mutant mice manifested central and peripheral TH status similar to mice with single MCT8 deficiency, with low serum T4, elevated serum TSH and T3, and decreased T3-dependent gene expression in the hypothalamus. In double-mutant adult mice, both thyroid gland size and the hypothyroidism-induced rise in TSH were greater than those in mice with single D3 deficiency but less than those in mice with MCT8 deficiency alone. Our results demonstrate that the marked phenotypic abnormalities observed in the D3-deficient mouse, including perinatal mortality, growth retardation, and central hypothyroidism in adult animals, require expression of MCT8, confirming the interdependent relationship between the TH transport into cells and the deiodination processes.

  12. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities.

    PubMed

    Kearney, J A; Plummer, N W; Smith, M R; Kapur, J; Cummins, T R; Waxman, S G; Goldin, A L; Meisler, M H

    2001-01-01

    The GAL879-881QQQ mutation in the cytoplasmic S4-S5 linker of domain 2 of the rat brain IIA sodium channel (Na(v)1.2) results in slowed inactivation and increased persistent current when expressed in Xenopus oocytes. The neuron-specific enolase promoter was used to direct in vivo expression of the mutated channel in transgenic mice. Three transgenic lines exhibited seizures, and line Q54 was characterized in detail. The seizures in these mice began at two months of age and were accompanied by behavioral arrest and stereotyped repetitive behaviors. Continuous electroencephalogram monitoring detected focal seizure activity in the hippocampus, which in some instances generalized to involve the cortex. Hippocampal CA1 neurons isolated from presymptomatic Q54 mice exhibited increased persistent sodium current which may underlie hyperexcitability in the hippocampus. During the progression of the disorder there was extensive cell loss and gliosis within the hippocampus in areas CA1, CA2, CA3 and the hilus. The lifespan of Q54 mice was shortened and only 25% of the mice survived beyond six months of age. Four independent transgenic lines expressing the wild-type sodium channel were examined and did not exhibit any abnormalities. The transgenic Q54 mice provide a genetic model that will be useful for testing the effect of pharmacological intervention on progression of seizures caused by sodium channel dysfunction. The human ortholog, SCN2A, is a candidate gene for seizure disorders mapped to chromosome 2q22-24.

  13. Autonomic Markers of Impaired Glucose Metabolism: Effects of Sleep-Disordered Breathing

    PubMed Central

    Wang, Wenli; Redline, Susan; Khoo, Michael C. K.

    2012-01-01

    Background The association between diabetes and abnormalities in autonomic function is well-known, but it is not clear if this association can be extended to subjects with prediabetic impaired glucose metabolism (IGM). Sleep-disordered breathing (SDB), which commonly occurs in this population, is often overlooked. We sought to determine how autonomic function, monitored in an overnight sleep study setting, may be impaired in subjects with IGM and/or SDB. Methods Polysomnograms (PSGs) selected from the Cleveland Family Study database were categorized into four groups: normal, SDB (respiratory disturbance index > 5/h), IGM, and both SDB and IGM. Impaired glucose metabolism was defined as an oral glucose tolerance test (OGTT) level > 140 mg/dl. Time-domain and frequency-domain indices of heart rate variability were used to quantify autonomic impairment. Baroreflex sensitivity determined using pulse transit time (BRSPTT), an indirect measure of baroreflex sensitivity based on spontaneous pulse transit time fluctuations, was used as a surrogate measure of baroreflex sensitivity. Results Based on 31 PSGs from subjects (16 males, 15 females) ages 20.8–61.2 years, both SDNN and BRSPTT were found to be 20-25% lower in SDB and ~40% lower in IGM and SDB + IGM as compared to subjects without either condition. In analyses of continuous measures, mean standard deviation of 5 min R–R intervals (SDNN) and BRSPTT were found to be negatively correlated with OGTT following adjustment for age and body mass index. Oral glucose tolerance test and age were the two most significant factors for predicting SDNN and BRSPTT. Conclusions Our analyses suggest that cardiac autonomic control is impaired in IGM, regardless of whether SDB is present. The abnormal autonomic function involves degradation of baroreflex regulation. PMID:23063043

  14. Cell-Autonomous and Non-Cell-Autonomous Roles for Irf6 during Development of the Tongue

    PubMed Central

    Goudy, Steven; Angel, Peggi; Jacobs, Britni; Hill, Cynthia; Mainini, Veronica; Smith, Arianna L.; Kousa, Youssef A.; Caprioli, Richard; Prince, Lawrence S.; Baldwin, Scott; Schutte, Brian C.

    2013-01-01

    Interferon regulatory factor 6 (IRF6) encodes a highly conserved helix-turn-helix DNA binding protein and is a member of the interferon regulatory family of DNA transcription factors. Mutations in IRF6 lead to isolated and syndromic forms of cleft lip and palate, most notably Van der Woude syndrome (VWS) and Popliteal Ptyerigium Syndrome (PPS). Mice lacking both copies of Irf6 have severe limb, skin, palatal and esophageal abnormalities, due to significantly altered and delayed epithelial development. However, a recent report showed that MCS9.7, an enhancer near Irf6, is active in the tongue, suggesting that Irf6 may also be expressed in the tongue. Indeed, we detected Irf6 staining in the mesoderm-derived muscle during development of the tongue. Dual labeling experiments demonstrated that Irf6 was expressed only in the Myf5+ cell lineage, which originates from the segmental paraxial mesoderm and gives rise to the muscles of the tongue. Fate mapping of the segmental paraxial mesoderm cells revealed a cell-autonomous