Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi
2006-08-22
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.
Developing neurons use a putative pioneer's peripheral arbor to establish their terminal fields.
Gan, W B; Macagno, E R
1995-05-01
Pioneer neurons are known to guide later developing neurons during the initial phases of axonal outgrowth. To determine whether they are also important in the formation of terminal fields by the follower cells, we studied the role of a putative leech pioneer neuron, the pressure-sensitive (PD) neuron, in the establishment of other neurons' peripheral arbors. The PD neuron has a major axon that exits from its segmental ganglion to grow along the dorsal-posterior (DP) nerve to the dorsal body wall, where it arborizes extensively mainly in its own segment. It also has two minor axons that project to the two adjacent segments but branch to a lesser degree. We found that the peripheral projections of several later developing neurons, including the AP motor neuron and the TD sensory neuron, followed, with great precision, the major axon and peripheral arbor of the consegmental PD neuron, up to its fourth-order branches. When a PD neuron was ablated before it had grown to the body wall, the AP and TD axons grew normally toward and reached the target area, but then formed terminal arbors that were greatly reduced in size and abnormal in morphology. Further, if the ablation of a PD neuron was accompanied by the induction, in the same segment, of greater outgrowth of the minor axon of a PD neuron from the adjacent segment, the arbors of the same AP neurons grew along these novel PD neuron branches. These results demonstrate that the peripheral arbor of a PD neuron is a both necessary and sufficient template for the formation of normal terminal fields by certain later growing follower neurons.
Ka, Minhan; Kim, Woo-Yang
2016-11-01
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that microtubule-actin crosslinking factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain.
Ka, Minhan; Kim, Woo-Yang
2015-01-01
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that Microtubule-Actin Crosslinking Factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain. PMID:26526844
Liau, Ee Shan; Yen, Ya-Ping; Chen, Jun-An
2018-05-11
Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.
Three descending interneurons reporting deviation from course in the locust. I. Anatomy.
Griss, C; Rowell, C H
1986-06-01
Three descending brain interneurons (DNI, DNM, DNC) are described from Locusta migratoria. All are paired, dorsally situated neurons, with soma in the protocerebrum, input dendrites in the proto- and deuterocerebrum, and a single axon running to the metathoracic ganglion and sometimes further. In DNI the soma and all cerebral arborizations lie ipsilateral to the axon. Discrete regions of arborization lie in the ipsilateral and medial ocellar tracts, the midprotocerebrum and the deuterocerebrum. In the other ganglia the axon branches only ipsilaterally, principally laterally in the flight motor neuropil but also towards the midline. DNC is similarly organized to DNI, but the cell crosses the midline in the brain. Soma, the single projection into a lateral ocellar tract, and the midprotocerebral arborization all lie contralateral to the axon. The deuterocerebral arborization is, however, ipsilateral to the axon. The pattern of projections in the remaining ganglia resembles that of DNI. The soma and all cerebral arborizations of DNM lie ipsilateral to the axon. The arborization is only weakly subdivided into protocerebral, deuterocerebral and medial ocellar tract regions. In the remaining ganglia the arborization extends bilaterally to similar areas of both left and right flight motor neuropil. A table of synonymy is given, equating the various names used for these neurons by previous authors. The morphology correlates well with the known input and output connections. They respond physiologically to deviations from the normal flight posture mediated by ocelli, eyes and wind hairs and connect to the thoracic flight apparatus.
Kaethner, R J; Stuermer, C A
1992-08-01
In a variety of species, developing retinal axons branch initially more widely in their visual target centers and only gradually restrict their terminal arbors to smaller and defined territories. Retinotectal axons in fish, however, appeared to grow in a directed manner and to arborize only at their retinotopic target sites. To visualize the dynamics of retinal axon growth and arbor formation in fish, time-lapse recordings were made of individual retinal ganglion cell axons in the tectum in live zebrafish embryos. Axons were labeled with the fluorescent carbocyanine dyes Dil or DiO inserted as crystals into defined regions of the retina, viewed with 40x and 100x objectives with an SIT camera, and recorded, with exposure times of 200 msec at 30 or 60 sec intervals, over time periods of up to 13 hr. (1) Growth cones advanced rapidly, but the advance was punctuated by periods of rest. During the rest periods, the growth cones broadened and developed filopodia, but during extension they were more streamlined. (2) Growth cones traveled unerringly into the direction of their retinotopic targets without branching en route. At their target and only there, the axons began to form terminal arborizations, a process that involved the emission and retraction of numerous short side branches. The area that was permanently occupied or touched by transient branches of the terminal arbor--"the exploration field"--was small and almost circular and covered not more than 5.3% of the entire tectal surface area, but represented up to six times the size of the arbor at any one time. These findings are consistent with the idea that retinal axons are guided to their retinotopic target sites by sets of positional markers, with a graded distribution over the axes of the tectum.
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.
Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B
2017-09-27
Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain. Copyright © 2017 the authors 0270-6474/17/379519-15$15.00/0.
NASA Astrophysics Data System (ADS)
Nuriya, Mutsuo; Yasui, Masato
2010-03-01
The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.
Action potentials reliably invade axonal arbors of rat neocortical neurons
Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel
2000-01-01
Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon excitation laser scanning microscopy to directly image action-potential-mediated calcium influx in single varicosities of layer 2/3 pyramidal neurons in acute brain slices. Our data show that single action potentials or bursts of action potentials reliably invade axonal arbors over a range of developmental ages (postnatal 10–24 days) and temperatures (24°C-30°C). Hyperpolarizing current steps preceding action potential initiation, protocols that had previously been observed to produce failures of action potential propagation in cultured preparations, were ineffective in modulating the spread of action potentials in acute slices. Our data show that action potentials reliably invade the axonal arbors of neocortical pyramidal neurons. Failures in synaptic transmission must therefore originate downstream of action potential invasion. We also explored the function of modulators that inhibit presynaptic calcium influx. Consistent with previous studies, we find that adenosine reduces action-potential-mediated calcium influx in presynaptic terminals. This reduction was observed in all terminals tested, suggesting that some modulatory systems are expressed homogeneously in most terminals of the same neuron. PMID:10931955
Havton, L A; Kellerth, J O
2001-08-01
Permanent transection of a peripheral motor nerve induces a gradual elimination of whole axon collateral systems in the axotomized spinal motoneurons. There is also an initial concurrent decrease in the amount of recurrent inhibition exerted by these arbors in the spinal cord for up to 6 weeks after the injury, whereas the same reflex action returns to normal by the 12-week postoperative state. The aim of the present investigation was to study the fine structure of the intramedullary axonal arbors of axotomized alpha-motoneurons in the adult cat spinal cord following a permanent peripheral motor nerve lesion. For this purpose, single axotomized alpha-motoneurons were labeled intracellularly with horseradish peroxidase at 12 weeks after permanent transection of their peripheral motor nerve. The intramedullary portions of their motor axon and axon collateral arbors were first reconstructed at the light microscopic level and subsequently studied ultrastructurally. This study shows that the synaptic contacts made by the intramedullary axon collateral arbors of axotomized motoneurons have undergone a change in synaptic vesicle ultrastructure from spherical and clear vesicles to spherical and dense-cored vesicles at 12 weeks after the transection of their peripheral axons. We suggest that the present transformation in synaptic vesicle fine structure may also correspond to a change in the contents of these boutons. This may, in turn, be responsible for the strengthening and recovery of the recurrent inhibitory reflex action exerted by the axotomized spinal motoneurons following a prolonged permanent motor nerve injury.
Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.
Briggs, F; Callaway, E M
2001-05-15
Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.
Limited distal organelles and synaptic function in extensive monoaminergic innervation.
Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2017-08-01
Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.
Lilley, Brendan N.; Pan, Y. Albert; Sanes, Joshua R.
2013-01-01
SUMMARY Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex, but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short duration signals from extrinsic cues to sculpt axon arbors within the CNS. PMID:23790753
Hair cell tufts and afferent innervation of the bullfrog crista ampullaris
NASA Technical Reports Server (NTRS)
Myers, Steven F.; Lewis, Edwin R.
1990-01-01
Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.
Lilley, Brendan N; Pan, Y Albert; Sanes, Joshua R
2013-07-10
Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS. Copyright © 2013 Elsevier Inc. All rights reserved.
Nelson, Jessica C.; Colón-Ramos, Daniel A.
2013-01-01
Neurosecretory release sites lack distinct post-synaptic partners, yet target to specific circuits. This targeting specificity regulates local release of neurotransmitters and modulation of adjacent circuits. How neurosecretory release sites target to specific regions is not understood. Here we identify a molecular mechanism that governs the spatial specificity of extrasynaptic neurosecretory terminal formation in the serotonergic NSM neurons of C. elegans. We show that post-embryonic arborization and neurosecretory terminal targeting of the C. elegans NSM neuron is dependent on the Netrin receptor UNC-40/DCC. We observe that UNC-40 localizes to specific neurosecretory terminals at the time of axon arbor formation. This localization is dependent on UNC-6/Netrin, which is expressed by nerve ring neurons that act as guideposts to instruct local arbor and release site formation. We find that both UNC-34/Enabled and MIG-10/Lamellipodin are required downstream of UNC-40 to link the sites of ENT formation to nascent axon arbor extensions. Our findings provide a molecular link between release site development and axon arborization, and introduce a novel mechanism that governs the spatial specificity of serotonergic extrasynaptic neurosecretory terminals in vivo. PMID:23345213
Characterizing the Spatial Density Functions of Neural Arbors
NASA Astrophysics Data System (ADS)
Teeter, Corinne Michelle
Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within arbor type, there is evidence of different neuron classes (such as interneurons and pyramidal cells). How well different types and classes of arbors can be differentiated is quantified using the Random ForestTM supervised learning algorithm.
How the optic nerve allocates space, energy capacity, and information
Perge, Janos A.; Koch, Kristin; Miller, Robert; Sterling, Peter; Balasubramanian, Vijay
2009-01-01
Fiber tracts should use space and energy efficiently because both resources constrain neural computation. We found for a myelinated tract (optic nerve) that astrocytes use nearly 30% of the space and more than 70% of the mitochondria, establishing the significance of astrocytes for the brain’s space and energy budgets. Axons are mostly thin with a skewed distribution peaking at 0.7µm, near the lower limit set by channel noise. This distribution is matched closely by the distribution of mean firing rates measured under naturalistic conditions, suggesting that firing rate increases proportionally with axon diameter. In axons thicker than 0.7µm mitochondria occupy a constant fraction of axonal volume -- thus, mitochondrial volumes rise as the diameter squared. These results imply a law of diminishing returns: twice the information rate requires more than twice the space and energy capacity. We conclude that the optic nerve conserves space and energy by sending most information at low rates over fine axons with small terminal arbors, and sending some information at higher rates over thicker axons with larger terminal arbors – but only where more bits/s are needed for a specific purpose. Thicker axons seem to be needed, not for their greater conduction velocity (nor other intrinsic electrophysiological purpose), but instead to support larger terminal arbors and more active zones that transfer information synaptically at higher rates. PMID:19535603
Tracking individual action potentials throughout mammalian axonal arbors.
Radivojevic, Milos; Franke, Felix; Altermatt, Michael; Müller, Jan; Hierlemann, Andreas; Bakkum, Douglas J
2017-10-09
Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.
Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.
Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2016-10-01
The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.
Song, Qian; Feng, Ge; Huang, Zehua; Chen, Xiaoman; Chen, Zhaohuan; Ping, Yong
2017-10-01
Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons. The arborization is mediated in part via JNK activation and can be reversed by decreasing JNK signaling activity. Axonal arborization and impaired sleep are correlated in Aβ42 and JNK kinase hemipterous mutant flies. Image reconstruction revealed that these aberrant fibers preferentially project to pars intercerebralis (PI), a fly brain region analogous to the mammalian hypothalamus. Moreover, PDF signaling in PI neurons was found to modulate sleep/wake activities, suggesting that excessive release of PDF by these aberrant fibers may lead to the impaired sleep in Aβ42 flies. Finally, inhibition of JNK activation in Aβ42 flies restores nighttime sleep loss, decreases Aβ42 accumulation, and attenuates neurodegeneration. These data provide a new mechanism by which sleep disturbance could be induced by Aβ42 burden, a key initiator of a complex pathogenic cascade in AD.
Shi, Zhigang; Zhang, Yueping; Meek, Johannes; Qiao, Jiantian; Han, Victor Z.
2018-01-01
The distal valvula cerebelli is the most prominent part of the mormyrid cerebellum. It is organized in ridges of ganglionic and molecular layers, oriented perpendicular to the granular layer. We have combined intracellular recording and labelling techniques to reveal the cellular morphology of the valvula ridges in slice preparations. We have also locally ejected tracer in slices and in intact animals to examine its input fibers. The palisade dendrites and fine axon arbors of Purkinje cells are oriented in the horizontal plane of the ridge. The dendrites of basal efferent cells and large central cells are confined to the molecular layer, but are not planer. Basal efferent cell axons are thick, and join the basal bundle leaving the cerebellum. Large central cell axons are also thick, and traverse long distances in the transverse plane, with local collaterals in the ganglionic layer. Vertical cells and small central cells also have thick axons with local collaterals. The dendrites of Golgi cells are confined to the molecular layer, but their axon arbors are either confined to the granular layer or proliferate in both the granular and ganglionic layers. Dendrites of deep stellate cells are distributed in the molecular layer, with fine axon arbors in the ganglionic layer. Granule cell axons enter the molecular layer as parallel fibers without bifurcating. Climbing fibers run in the horizontal plane and terminate exclusively in the ganglionic layer. Our results confirm and extend previous studies and suggest a new concept of the circuitry of the mormyrid valvula cerebelli. PMID:18537139
Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L
2016-09-01
A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bucher, Dirk; Goaillard, Jean-Marc
2011-01-01
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent. PMID:21708220
Estimating neuronal connectivity from axonal and dendritic density fields
van Pelt, Jaap; van Ooyen, Arjen
2013-01-01
Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density fields. PMID:24324430
Action potential propagation recorded from single axonal arbors using multi-electrode arrays.
Tovar, Kenneth R; Bridges, Daniel C; Wu, Bian; Randall, Connor; Audouard, Morgane; Jang, Jiwon; Hansma, Paul K; Kosik, Kenneth S
2018-04-11
We report the presence of co-occurring extracellular action potentials (eAPs) from cultured mouse hippocampal neurons among groups of planar electrodes on multi-electrode arrays (MEAs). The invariant sequences of eAPs among co-active electrode groups, repeated co-occurrences and short inter-electrode latencies are consistent with action potential propagation in unmyelinated axons. Repeated eAP co-detection by multiple electrodes was widespread in all our data records. Co-detection of eAPs confirms they result from the same neuron and allows these eAPs to be isolated from all other spikes independently of spike sorting algorithms. We averaged co-occurring events and revealed additional electrodes with eAPs that would otherwise be below detection threshold. We used these eAP cohorts to explore the temperature sensitivity of action potential propagation and the relationship between voltage-gated sodium channel density and propagation velocity. The sequence of eAPs among co-active electrodes 'fingerprints' neurons giving rise to these events and identifies them within neuronal ensembles. We used this property and the non-invasive nature of extracellular recording to monitor changes in excitability at multiple points in single axonal arbors simultaneously over several hours, demonstrating independence of axonal segments. Over several weeks, we recorded changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. Our work illustrates how repeated eAP co-occurrences can be used to extract physiological data from single axons with low electrode density MEAs. However, repeated eAP co-occurrences leads to over-sampling spikes from single neurons and thus can confound traditional spike-train analysis.
Spatial distribution of neurons innervated by chandelier cells.
Blazquez-Llorca, Lidia; Woodruff, Alan; Inan, Melis; Anderson, Stewart A; Yuste, Rafael; DeFelipe, Javier; Merchan-Perez, Angel
2015-09-01
Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18-22 %. Sholl analysis showed that this percentage peaked at 22-35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion.
Pissadaki, Eleftheria K; Bolam, J Paul
2013-01-01
Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD.
Pissadaki, Eleftheria K.; Bolam, J. Paul
2013-01-01
Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD. PMID:23515615
Sethi, Sunjay; Keil, Kimberly P.
2017-01-01
PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant. PMID:29295518
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J
2017-12-23
PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant.
Harris, W A; Holt, C E; Bonhoeffer, F
1987-09-01
Time-lapse video recordings were made of individual retinal ganglion cell fibres growing to and terminating in the optic tectum of Xenopus embryos. The fibres were stained by inserting a crystal of the lipophilic fluorescent dye, DiI, into the developing retina. Growth cones were observed in the optic tract and tectum using 20 ms flashes of light to induce fluorescence approximately once every minute. Fluorescent images were captured with a SIT camera, processed and saved on a time-lapse video recorder. The main conclusions from observing normal growing fibres are as follows. (1) Axons in the optic tract grow at a steady rate directly toward their targets without retracting or branching. (2) As axons approach the tectum they slow down and their growth cones become more complex. (3) Most terminal branches in the tectum are formed by back branching rather than by bifurcation of leading growth cones. In a second experiment, labelled growing axons were separated from their cell bodies by removing the retina. Such isolated axons continued to grow for up to 3 h in vivo and were capable of recognizing the tectum and arborizing there. This result shows that growth cones must contain the machinery needed to sense and respond to their specific pathways and targets.
Karim, M Rezaul; Moore, Adrian W
2011-11-07
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).
The diffuse nervous network of Camillo Golgi: facts and fiction.
Raviola, Elio; Mazzarello, Paolo
2011-01-07
The name of Camillo Golgi is inextricably associated, in the mind of most neuroscientists, with the theory that nerve cells communicate with one another by means of an intricate network of anastomosing axonal branches contained in the neuropil intervening between cell bodies in the gray matter of the brain and spinal cord. Examination, however, of Golgi's drawings in the papers published in the decade intervening between publication of his method (1873) and the beginning of his studies on malaria (1885) shows that axonal arborization in the cerebellar cortex and olfactory bulb are depicted as independent of one other. This is in striking contrast with the drawings included by Golgi in his 1906 Nobel lecture where the entire granular layer of the cerebellar cortex is occupied by a network of branching and anastomosing nerve processes. Thus, Golgi in his original papers on the cerebellum represents nerve cells as discrete units and only later in life merges axonal arborizations in the context of a lecture in defense of the reticular theory. Copyright © 2010 Elsevier B.V. All rights reserved.
Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E
2012-01-01
Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.
Wen, Quan; Stepanyants, Armen; Elston, Guy N.; Grosberg, Alexander Y.; Chklovskii, Dmitri B.
2009-01-01
The shapes of dendritic arbors are fascinating and important, yet the principles underlying these complex and diverse structures remain unclear. Here, we analyzed basal dendritic arbors of 2,171 pyramidal neurons sampled from mammalian brains and discovered 3 statistical properties: the dendritic arbor size scales with the total dendritic length, the spatial correlation of dendritic branches within an arbor has a universal functional form, and small parts of an arbor are self-similar. We proposed that these properties result from maximizing the repertoire of possible connectivity patterns between dendrites and surrounding axons while keeping the cost of dendrites low. We solved this optimization problem by drawing an analogy with maximization of the entropy for a given energy in statistical physics. The solution is consistent with the above observations and predicts scaling relations that can be tested experimentally. In addition, our theory explains why dendritic branches of pyramidal cells are distributed more sparsely than those of Purkinje cells. Our results represent a step toward a unifying view of the relationship between neuronal morphology and function. PMID:19622738
Bayesian network classifiers for categorizing cortical GABAergic interneurons.
Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro
2015-04-01
An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons.
Ling, Changying; Hendrickson, Michael L.; Kalil, Ronald E.
2012-01-01
Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes. PMID:23144777
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-01-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540
Optimization of interneuron function by direct coupling of cell migration and axonal targeting.
Lim, Lynette; Pakan, Janelle M P; Selten, Martijn M; Marques-Smith, André; Llorca, Alfredo; Bae, Sung Eun; Rochefort, Nathalie L; Marín, Oscar
2018-06-18
Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.
Simmons, Aaron B.; Bloomsburg, Samuel J.; Sukeena, Joshua M.; Miller, Calvin J.; Ortega-Burgos, Yohaniz; Borghuis, Bart G.
2017-01-01
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam−/− OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina. PMID:29114051
SNAP-25 requirement for dendritic growth of hippocampal neurons.
Grosse, G; Grosse, J; Tapp, R; Kuchinke, J; Gorsleben, M; Fetter, I; Höhne-Zell, B; Gratzl, M; Bergmann, M
1999-06-01
Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.
Axonal abnormalities in vanishing white matter.
Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S
2018-04-01
We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.
Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.
Valverde, F; Facal-Valverde, M V
1986-01-01
The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-05-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. Copyright © 2017 by the Genetics Society of America.
Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S
2008-02-01
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.
The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity
Harrison, Benjamin J.; Venkat, Gayathri; Lamb, James L.; Hutson, Tom H.; Drury, Cassa; Rau, Kristofer K.; Bunge, Mary Barlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin E.; Rouchka, Eric C.; Moon, Lawrence D.F.
2016-01-01
Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA+/RAB5+ signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms. PMID:27076424
Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.
Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B
2017-01-01
The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.
Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung
2012-01-01
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636
Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki
2017-01-01
The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A study of axonal degeneration in the optic nerves of aging mice
NASA Technical Reports Server (NTRS)
Johnson, J. E., Jr.; Philpott, D. E.; Miquel, J.
1978-01-01
The optic nerves of C57BL/6J mice ranging from 3 to 30 months were examined by electron microscopy. At all ages investigated, optic nerve axons contained enlarged mitochondria with abnormal cristae. With increasing age, a large number of necrotic axons were observed and were in the process of being phagocytized. The abnormal mitochondria may represent preliminary changes that eventually lead to necrosis of the axon.
Active action potential propagation but not initiation in thalamic interneuron dendrites
Casale, Amanda E.; McCormick, David A.
2012-01-01
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033
Li, Dan; Li, Feng; Guttipatti, Pavithran; Song, Yuanquan
2018-05-05
The regrowth capacity of damaged neurons governs neuroregeneration and functional recovery after nervous system trauma. Over the past few decades, various intrinsic and extrinsic inhibitory factors involved in the restriction of axon regeneration have been identified. However, simply removing these inhibitory cues is insufficient for successful regeneration, indicating the existence of additional regulatory machinery. Drosophila melanogaster, the fruit fly, shares evolutionarily conserved genes and signaling pathways with vertebrates, including humans. Combining the powerful genetic toolbox of flies with two-photon laser axotomy/dendriotomy, we describe here the Drosophila sensory neuron - dendritic arborization (da) neuron injury model as a platform for systematically screening for novel regeneration regulators. Briefly, this paradigm includes a) the preparation of larvae, b) lesion induction to dendrite(s) or axon(s) using a two-photon laser, c) live confocal imaging post-injury and d) data analysis. Our model enables highly reproducible injury of single labeled neurons, axons, and dendrites of well-defined neuronal subtypes, in both the peripheral and central nervous system.
The neuronal architecture of the mushroom body provides a logic for associative learning
Aso, Yoshinori; Hattori, Daisuke; Yu, Yang; Johnston, Rebecca M; Iyer, Nirmala A; Ngo, Teri-TB; Dionne, Heather; Abbott, LF; Axel, Richard; Tanimoto, Hiromu; Rubin, Gerald M
2014-01-01
We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell–MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory. DOI: http://dx.doi.org/10.7554/eLife.04577.001 PMID:25535793
The organization of the whisker representation within the neocortex of the rat is dependent on an intact periphery during development. To further investigate how alterations in the cortical map arise the authors examined the organization of thalamocortical afferents to the whiske...
Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone.
Baden, T; Hedwig, B
2007-01-01
Concepts on neuronal signal processing and integration at a cellular and subcellular level are driven by recording techniques and model systems available. The cricket CNS with the omega-1-neurone (ON1) provides a model system for auditory pattern recognition and directional processing. Exploiting ON1's planar structure we simultaneously imaged free intracellular Ca(2+) at both input and output neurites and recorded the membrane potential in vivo during acoustic stimulation. In response to a single sound pulse the rate of Ca(2+) rise followed the onset spike rate of ON1, while the final Ca(2+) level depended on the mean spike rate. Ca(2+) rapidly increased in both dendritic and axonal arborizations and only gradually in the axon and the cell body. Ca(2+) levels were particularly high at the spike-generating zone. Through the activation of a Ca(2+)-sensitive K(+) current this may exhibit a specific control over the cell's electrical response properties. In all cellular compartments presentation of species-specific calling song caused distinct oscillations of the Ca(2+) level in the chirp rhythm, but not the faster syllable rhythm. The Ca(2+)-mediated hyperpolarization of ON1 suppressed background spike activity between chirps, acting as a noise filter. During directional auditory processing, the functional interaction of Ca(2+)-mediated inhibition and contralateral synaptic inhibition was demonstrated. Upon stimulation with different sound frequencies, the dendrites, but not the axonal arborizations, demonstrated a tonotopic response profile. This mirrored the dominance of the species-specific carrier frequency and resulted in spatial filtering of high frequency auditory inputs. (c) 2006 Wiley Periodicals, Inc.
Rhoades, R W; Mooney, R D; Szczepanik, A M; Klein, B G
1986-11-08
Intracellular recording and horseradish peroxidase (HRP) injection techniques were employed to delineate the structural and functional properties of superior collicular (SC) neurons in the hamster that were antidromically activated by electrical stimulation of the contralateral tectum. A total of 39 such cells were completely characterized, injected, and recovered. In ten of these, the axonal filling allowed us to reconstruct at least a portion of the terminal arborization in the SC contralateral to the labelled cell. Two of the recovered neurons were located in the stratum griseum superficiale (SGS), three were in the stratum opticum (SO), ten were in the stratum griseum intermediale (SGI), 11 were in the stratum album intermedium (SAI), 11 were in the stratum griseum profundum (SGP) and two were located in the stratum album profundum (SAP). The recovered cells were highly varied in both their morphological and their physiological characteristics. Somal areas ranged between 74 microns2 and 364 microns2, and the sample of recovered neurons included horizontal cells, narrow field vertical cells, and a variety of other multipolar neurons. Over one-third (38.5%) of the recovered cells were unresponsive, 2.6% were exclusively visual, 33.3% responded only to innocuous cutaneous stimuli, 10.2% were bimodal, 7.7% were specifically nociceptive, and 7.7% had complex (Rhoades, Mooney, and Jacquin: J. Neurosci. 3:1342-1354, '83) somatosensory receptive fields. We observed no clear-cut correlations between the structural and functional characteristics of these neurons. The conduction latencies of the commissural SC neurons ranged between 0.8 and 14.0 ms. The most rapidly conducting cells were located in the SGP and SAP. Conduction latency had a significant negative correlation with soma area. Labelled axons, in many cases, had at least one terminal arbor in a portion of the SC that was mirror symmetric with the location of the cell from which it originated. In several cases, however, commissural axons gave off a number of collaterals across the mediolateral extent of the tectum. commissural axonal terminations were visible only in the laminae ventral to the SO. Several commissural SC neurons also had extensive ipsilateral axon collaterals. Both the ipsilateral and commissural axon branches of these cells gave off en passant and terminal swellings.
Morgan-Smith, Meghan; Wu, Yaohong; Zhu, Xiaoqin; Pringle, Julia; Snider, William D
2014-07-29
GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins.DOI: http://dx.doi.org/10.7554/eLife.02663.001. Copyright © 2014, Morgan-Smith et al.
Larkum, M E; Zhu, J J; Sakmann, B
2001-01-01
Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204
Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin.
Schroeder, Nathan E; Androwski, Rebecca J; Rashid, Alina; Lee, Harksun; Lee, Junho; Barr, Maureen M
2013-08-19
Dendrites often display remarkably complex and diverse morphologies that are influenced by developmental and environmental cues. Neuroplasticity in response to adverse environmental conditions entails both hypertrophy and resorption of dendrites. How dendrites rapidly alter morphology in response to unfavorable environmental conditions is unclear. The nematode Caenorhabditis elegans enters into a stress-resistant dauer larval stage in response to an adverse environment. Here we show that the IL2 bipolar sensory neurons undergo dendrite arborization and axon remodeling during dauer development. When dauer larvae are returned to favorable environmental conditions, animals resume reproductive development and IL2 dendritic branches retract, leaving behind remnant branches in postdauer L4 and adult animals. The C. elegans furin homolog KPC-1 is required for dauer IL2 dendritic arborization and dauer-specific nictation behavior. KPC-1 is also necessary for dendritic arborization of PVD and FLP sensory neurons. In mammals, furin is essential, ubiquitously expressed, and associated with numerous pathologies, including neurodegenerative diseases. While broadly expressed in C. elegans neurons and epithelia, KPC-1 acts cell autonomously in IL2 neurons to regulate dauer-specific dendritic arborization and nictation. Neuroplasticity of the C. elegans IL2 sensory neurons provides a paradigm to study stress-induced and reversible dendritic branching, and the role of environmental and developmental cues in this process. The newly discovered role of KPC-1 in dendrite morphogenesis provides insight into the function of proprotein convertases in nervous system development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hoshino, Osamu
2006-12-01
Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.
Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus.
Cox, C L; Huguenard, J R; Prince, D A
1997-08-05
Detailed information regarding the contribution of individual gamma-aminobutyric acid (GABA)-containing inhibitory neurons to the overall synaptic activity of single postsynaptic cells is essential to our understanding of fundamental elements of synaptic integration and operation of neuronal circuits. For example, GABA-containing cells in the thalamic reticular nucleus (nRt) provide major inhibitory innervation of thalamic relay nuclei that is critical to thalamocortical rhythm generation. To investigate the contribution of individual nRt neurons to the strength of this internuclear inhibition, we obtained whole-cell recordings of unitary inhibitory postsynaptic currents (IPSCs) evoked in ventrobasal thalamocortical (VB) neurons by stimulation of single nRt cells in rat thalamic slices, in conjunction with intracellular biocytin labeling. Two types of monosynaptic IPSCs could be distinguished. "Weak" inhibitory connections were characterized by a significant number of postsynaptic failures in response to presynaptic nRt action potentials and relatively small IPSCs. In contrast, "strong" inhibition was characterized by the absence of postsynaptic failures and significantly larger unitary IPSCs. By using miniature IPSC amplitudes to infer quantal size, we estimated that unitary IPSCs associated with weak inhibition resulted from activation of 1-3 release sites, whereas stronger inhibition would require simultaneous activation of 5-70 release sites. The inhibitory strengths were positively correlated with the density of axonal swellings of the presynaptic nRt neurons, an indicator that characterizes different nRt axonal arborization patterns. These results demonstrate that there is a heterogeneity of inhibitory interactions between nRt and VB neurons, and that variations in gross morphological features of axonal arbors in the central nervous system can be associated with significant differences in postsynaptic response characteristics.
An Attractive Reelin Gradient Establishes Synaptic Lamination in the Vertebrate Visual System.
Di Donato, Vincenzo; De Santis, Flavia; Albadri, Shahad; Auer, Thomas Oliver; Duroure, Karine; Charpentier, Marine; Concordet, Jean-Paul; Gebhardt, Christoph; Del Bene, Filippo
2018-03-07
A conserved organizational and functional principle of neural networks is the segregation of axon-dendritic synaptic connections into laminae. Here we report that targeting of synaptic laminae by retinal ganglion cell (RGC) arbors in the vertebrate visual system is regulated by a signaling system relying on target-derived Reelin and VLDLR/Dab1a on the projecting neurons. Furthermore, we find that Reelin is distributed as a gradient on the target tissue and stabilized by heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM). Through genetic manipulations, we show that this Reelin gradient is important for laminar targeting and that it is attractive for RGC axons. Finally, we suggest a comprehensive model of synaptic lamina formation in which attractive Reelin counter-balances repulsive Slit1, thereby guiding RGC axons toward single synaptic laminae. We establish a mechanism that may represent a general principle for neural network assembly in vertebrate species and across different brain areas. Copyright © 2018 Elsevier Inc. All rights reserved.
Jiang, Minghui; Ash, Ryan T.; Baker, Steven A.; Suter, Bernhard; Ferguson, Andrew; Park, Jiyoung; Rudy, Jessica; Torsky, Sergey P.; Chao, Hsiao-Tuan; Zoghbi, Huda Y.
2013-01-01
MECP2 duplication syndrome is a childhood neurological disorder characterized by intellectual disability, autism, motor abnormalities, and epilepsy. The disorder is caused by duplications spanning the gene encoding methyl-CpG-binding protein-2 (MeCP2), a protein involved in the modulation of chromatin and gene expression. MeCP2 is thought to play a role in maintaining the structural integrity of neuronal circuits. Loss of MeCP2 function causes Rett syndrome and results in abnormal dendritic spine morphology and decreased pyramidal dendritic arbor complexity and spine density. The consequences of MeCP2 overexpression on dendritic pathophysiology remain unclear. We used in vivo two-photon microscopy to characterize layer 5 pyramidal neuron spine turnover and dendritic arborization as a function of age in transgenic mice expressing the human MECP2 gene at twice the normal levels of MeCP2 (Tg1; Collins et al., 2004). We found that spine density in terminal dendritic branches is initially higher in young Tg1 mice but falls below control levels after postnatal week 12, approximately correlating with the onset of behavioral symptoms. Spontaneous spine turnover rates remain high in older Tg1 animals compared with controls, reflecting the persistence of an immature state. Both spine gain and loss rates are higher, with a net bias in favor of spine elimination. Apical dendritic arbors in both simple- and complex-tufted layer 5 Tg1 pyramidal neurons have more branches of higher order, indicating that MeCP2 overexpression induces dendritic overgrowth. P70S6K was hyperphosphorylated in Tg1 somatosensory cortex, suggesting that elevated mTOR signaling may underlie the observed increase in spine turnover and dendritic growth. PMID:24336718
Visual Map Development: Bidirectional Signaling, Bifunctional Guidance Molecules, and Competition
Feldheim, David A.; O’Leary, Dennis D. M.
2010-01-01
Topographic maps are a two-dimensional representation of one neural structure within another and serve as the main strategy to organize sensory information. The retina’s projection via axons of retinal ganglion cells to midbrain visual centers, the optic tectum/superior colliculus, is the leading model to elucidate mechanisms of topographic map formation. Each axis of the retina is mapped independently using different mechanisms and sets of axon guidance molecules expressed in gradients to achieve the goal of representing a point in the retina onto a point within the target. An axon’s termination along the temporal-nasal mapping axis is determined by opposing gradients of EphAs and ephrin-As that act through their forward and reverse signaling, respectively, within the projecting axons, each of which inhibits interstitial branching, cooperating with a branch-promoting activity, to generate topographic specific branching along the shaft of the parent axons that overshoot their correct termination zone along the anterior-posterior axis of the target. The dorsal-ventral termination position is then determined using a gradient of ephrin-B that can act as a repellent or attractant depending on the ephrin-B concentration relative to EphB levels on the interstitial branches to guide them along the medial-lateral axis of the target to their correct termination zone, where they arborize. In both cases, axon-axon competition results in axon mapping based on relative rather than absolute levels of repellent or attractant activity. The map is subsequently refined through large-scale pruning driven in large part by patterned retinal activity. PMID:20880989
Carreras, Francisco Javier; Medina, Javier; Ruiz-Lozano, Mariola; Carreras, Ignacio; Castro, Juan Luis
2014-04-17
As part of a larger project on virtual tissue engineering of the optic pathways, we describe the conditions that guide axons extending from the retina to the optic nerve head and formulate algorithms that meet such conditions. To find the entrance site on the optic nerve head of each axon, we challenge the fibers to comply with current models of axonal pathfinding. First, we build a retinal map using a single type of retinal ganglion cell (RGC) using density functions from the literature. Dendritic arbors are equated to receptive fields. Shape and size of retinal surface and optic nerve head (ONH) are defined. A computer model relates each soma to the corresponding entry point of its axon into the optic disc. Weights are given to the heuristics that guide the preference entry order in the nerve. Retinal ganglion cells from the area centralis saturate the temporal section of the disc. Retinal ganglion cells temporal to the area centralis curve their paths surrounding the fovea; some of these cells enter the disc centrally rather than peripherally. Nasal regions of the disc receive mixed axons from the far periphery of the temporal hemiretina, together with axons from the nasal half. The model plots the course of the axon using Bezier curves and compares them with clinical data, for a coincidence level of 86% or higher. Our model is able to simulate basic data of the early optic pathways including certain singularities and to mimic mechanisms operating during development, such as timing and fasciculation. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Sears, James C.; Broihier, Heather T.
2016-01-01
The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity. PMID:27546375
Cell-type specific roles for PTEN in establishing a functional retinal architecture.
Cantrup, Robert; Dixit, Rajiv; Palmesino, Elena; Bonfield, Stephan; Shaker, Tarek; Tachibana, Nobuhiko; Zinyk, Dawn; Dalesman, Sarah; Yamakawa, Kazuhiro; Stell, William K; Wong, Rachel O; Reese, Benjamin E; Kania, Artur; Sauvé, Yves; Schuurmans, Carol
2012-01-01
The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.
[Neuron differential attachment purification and its influence factor].
Li, Jun; Feng, Daxiong; Huang, Yize; Ye, Fei
2010-02-01
Neuron purification is essential to procedure of various nerve cell experimental research, however, at present there is few reports on the effect of various factors on neural axons during purification. To find out a simple method of neuron purification, and to investigate the influence factors of corresponding purification culture in dorsal root ganglion (DRG) tissue culture on beta3-tubulin positive axon. The DRGs were obtained from the 3 days neonatal SD rat microscopically and were made into cell suspension. Then, the amount of attached DRG neurons and nonneuronal cells in poly-D-lysine (PDL) group, PDL/Laminin (PDL/LN) group and collagen-I (Col I) group was observed from 10 to 100 minutes. Then, the extension and arborization of beta3-tubulin positive axons were observed after 72 hours completely randomised DRG tissue culture for the research of the influences among culture substrates (PDL, PDL/LN, and Col I), FBS (0, 5%, and 10%), 5 fluorouracil (5-Fu, 0, 20, and 40 micromol/L), and cytarabine (Ara-C, 0, 10, and 20 micromol/L). Adherent cells were observed instantly after inoculation by inverted phase contrast microscope and inverted fluorescence microscope; after cell suspension was removed, adherent growth of DRGn cells and non-DRGn cells were still seen. In PDL group, the amount of NSE negative cells was significantly higher than that of NSE positive cells at 10 and 30 minutes (P < 0.05); the amount of NSE positive cells was significantly higher than that of NSE negative cells at 80, 90 and 100 minutes (P < 0.05). In PDL/LN group, there was no significant difference (P > 0.05) in the amount of NSE negative cells and NSE positive cells at 10, 20, 30, 40, and 50 minutes; the amount of NSE positive cells was significantly higher (P < 0.05) than that of NSE negative cells at 60, 70, 80, 90, 100 minutes. In Col I group, the amount of NSE negative cells was higher than that of NSE positive cells at 10-40 minutes, but showing no significant difference (P > 0.05); the amount of NSE positive cells was significantly higher (P < 0.05) than that of NSE negative cells at 70-100 minutes. At 72 hours after DRG tissue culture, the best result of beta3-tubulin positive axon extension and arborization was obtained when the substrate level was PDL/LN, and the average length of PDL/LN level was significantly larger than that of other two substrates (P < 0.05). The highest number of beta3-tubulin positive axon distal end was obtained at 5% concentration level of FBS (P < 0.05), but showing no significant differences in beta3-tubulin positive axon length among three levels (P > 0.05). Both the most of beta3-tubulin positive axon distal ends and the longest beta3-tubulin positive axon average length were obtained at 0 micromol/L concentration level of 5-Fu, showing significant differences between 0 micromol/L level and 20, 40 micromol/L levels (P < 0.05). A similar result of 33-tubulin positive axon distal end was got at the 0 micromol/L level and 10 micromol/L level of Ara-C, which was significantly higher than that of 20 micromol/L level (P < 0.05). A purified DRG neuron suspension for neuron culture could be obtained via PDL differential attachment for 30 minutes. When DRG neuron culture, neuron special medium, PDL/LN substrate and 10 micromol/L Ara-C are recommended in beta3-tubulin positive axon research.
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.
2015-01-01
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMN). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30µM). Previous work showed that the paralytic mutant zebrafish known as sofa potato, exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. PMID:25668718
Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.
Louis, Elan D
2016-06-01
A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.
Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy.
Knopp, Andreas; Kivi, Anatol; Wozny, Christian; Heinemann, Uwe; Behr, Joachim
2005-03-21
The subiculum was recently shown to be crucially involved in the generation of interictal activity in human temporal lobe epilepsy. Using the pilocarpine model of epilepsy, this study examines the anatomical substrates for network hyperexcitability recorded in the subiculum. Regular- and burst-spiking subicular pyramidal cells were stained with fluorescence dyes and reconstructed to analyze seizure-induced alterations of the dendritic and axonal system. In control animals burst-spiking cells outnumbered regular-spiking cells by about two to one. Regular- and burst-spiking cells were characterized by extensive axonal branching and autapse-like contacts, suggesting a high intrinsic connectivity. In addition, subicular axons projecting to CA1 indicate a CA1-subiculum-CA1 circuit. In the subiculum of pilocarpine-treated rats we found an enhanced network excitability characterized by spontaneous rhythmic activity, polysynaptic responses, and all-or-none evoked bursts of action potentials. In pilocarpine-treated rats the subiculum showed cell loss of about 30%. The ratio of regular- and burst-spiking cells was practically inverse as compared to control preparations. A reduced arborization and spine density in the proximal part of the apical dendrites suggests a partial deafferentiation from CA1. In pilocarpine-treated rats no increased axonal outgrowth of pyramidal cells was observed. Hence, axonal sprouting of subicular pyramidal cells is not mandatory for the development of the pathological events. We suggest that pilocarpine-induced seizures cause an unmasking or strengthening of synaptic contacts within the recurrent subicular network. Copyright 2005 Wiley-Liss, Inc.
López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
Hokkoku, Keiichi; Matsukura, Kiyoshi; Uchida, Yudai; Kuwabara, Midori; Furukawa, Yuichi; Tsukamoto, Hiroshi; Hatanaka, Yuki; Sonoo, Masahiro
2017-10-01
In chronic inflammatory demyelinating polyneuropathy (CIDP), exclusion of secondary axonal degeneration is challenging with conventional methods such as nerve conduction study (NCS), needle electromyography, and nerve biopsy. Increased echo intensity (EI) and decreased muscle thickness (MT) identified on muscle ultrasound (MUS) examination represent muscle denervation due to axonal degeneration in neurogenic disorders, suggesting MUS as a new tool to detect secondary axonal degeneration in patients with CIDP. EI and MT of abductor pollicis brevis, abductor digiti minimi, and first dorsal interosseous muscles were measured in 16 CIDP patients. Raw values were converted into z -scores using data from 60 normal controls (NCs). Six of 45 muscles showed abnormally high EI and low MT, suggesting denervation following secondary axonal degeneration. These six muscles belonged to two patients with long disease history, unresponsiveness to treatment, and long interval from onset to initial therapy. There were no significant differences in EI and MT ( p = .23 and .67, respectively) between the CIDP and NC groups, although NCS results revealed obvious demyelinating abnormalities in all CIDP patients, suggesting the fact that muscle structures will be preserved, and EI and MT will not change unless secondary axonal degeneration occurs in CIDP. MUS is a promising tool for evaluating secondary axonal degeneration in patients with CIDP.
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
Tourtellotte, Warren G.
2017-01-01
Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less
Constance, William D; Mukherjee, Amrita; Fisher, Yvette E; Pop, Sinziana; Blanc, Eric; Toyama, Yusuke
2018-01-01
Building arborisations of the right size and shape is fundamental for neural network function. Live imaging in vertebrate brains strongly suggests that nascent synapses are critical for branch growth during development. The molecular mechanisms underlying this are largely unknown. Here we present a novel system in Drosophila for studying the development of complex arborisations live, in vivo during metamorphosis. In growing arborisations we see branch dynamics and localisations of presynaptic proteins very similar to the ‘synaptotropic growth’ described in fish/frogs. These accumulations of presynaptic proteins do not appear to be presynaptic release sites and are not paired with neurotransmitter receptors. Knockdowns of either evoked or spontaneous neurotransmission do not impact arbor growth. Instead, we find that axonal branch growth is regulated by dynamic, focal localisations of Neurexin and Neuroligin. These adhesion complexes provide stability for filopodia by a ‘stick-and-grow’ based mechanism wholly independent of synaptic activity. PMID:29504935
Lerer-Goldshtein, Tali; Vatine, Gad David; Appelbaum, Lior
2014-01-01
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2) gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8−/−) zebrafish using zinc-finger nuclease (ZFN)-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8−/− larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8−/− larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8−/− larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8−/− larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit assembly, ultimately mediating sensory and motor control of behavioral performance. We also propose that the administration of TH analogs early during embryo development can specifically reduce neurological damage in AHDS patients. PMID:25255244
Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali
2014-01-01
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478
Schmidt, M L; Murray, J M; Trojanowski, J Q
1993-04-01
Neuropil threads (NTs) are abnormal processes that are associated with tangle-bearing neurons in gray matter areas of Alzheimer disease (AD) brains. Although NTs contain paired helical filaments (PHFs) and share multiple tau epitopes with neurobrillary tangles (NFTs), the relationship between NTs and tangle-bearing neurons is unclear. For this reason, we assessed the continuity of NTs with tangle-bearing and tangle-free neurons. Since astrocytes express low levels of tau and rarely have been shown to contain PHFs, we also examined the relationship of NTs to cortical astrocytes. This was done using histochemical and immunochemical methods in conjunction with confocal laser scanning microscopy to examine NTs in amygdala and entorhinal cortex of seven AD brains. Only a small fraction of NTs (< 1%) in 3.5 x 10(6) microns 3 of amygdala and entorhinal cortex could be traced to local neurons with NFTs or to neurons that did not contain NFTs, and no NTs were continuous with cortical astrocytes. These results indicate that only a very small percentage of NTs in entorhinal cortex and amygdala occur in the most proximal segments of processes that emanate from tangle-bearing or tangle-free neurons. This implies that the majority of NTs reside in the distal parts of dendrites and/or the terminal arborizations of axons or that NTs are discontinuous abnormalities. Taken together, these data suggest that NTs could disrupt local and long distance neuronal circuitry and thereby contribute to the cognitive impairments seen in AD patients.
Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth
2016-01-01
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532
Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth; Perlson, Eran; Ast, Gil
2016-12-01
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.
A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.
Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi
2016-12-01
The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.
Calcium transient prevalence across the dendritic arbor predicts place field properties
Sheffield, Mark E. J.; Dombeck, Daniel A.
2014-01-01
Establishing the hippocampal cellular ensemble that represents an animal’s environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons1–4, and the acquisition of different spatial firing properties across the active population5. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance6,7, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells8,9, but recent studies3,10 instead suggest that place cells themselves may play an active role through regenerative dendritic events. However, due to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons, and dendrites in mice navigating a virtual environment, we show that regenerative dendritic events do exist in place cells of behaving mice and, surprisingly, their prevalence throughout the arbor is highly spatiotemporally variable. Further, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbor may play a key role in forming the hippocampal representation of space. PMID:25363782
Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance
Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.
2011-01-01
We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521
Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.
2016-01-01
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649
Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L
2016-05-04
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.
Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.
2012-01-01
Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767
Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.
2013-01-01
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373
Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark
2016-01-01
Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate gustatory second-order neurons (G2Ns) we screened ~5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single cell analysis by FLPout recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres, and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons’ arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system. PMID:26004543
Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark
2015-01-01
Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons (G2Ns) in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate G2Ns, we screened ∼5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single-cell analysis by FLP-out recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons' arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system.
NASA Astrophysics Data System (ADS)
Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.
2016-08-01
A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.
Optic nerve axons and acquired alterations in the appearance of the optic disc.
Wirtschafter, J D
1983-01-01
The pathophysiologic events in optic nerve axons have recently been recognized as crucial to an understanding of clinically significant acquired alterations in the ophthalmoscopic appearance of the optic disc. Stasis and related abnormalities of axonal transport appear to explain most aspects of optic nerve head swelling, including optic disc drusen and retinal cottonwool spots. Loss of axoplasm and axonal death can be invoked to interpret optic disc pallor, thinning and narrowing of rim tissue, changes in the size and outline of the optic cup, laminar dots, atrophy of the retinal nerve fiber layer, and acquired demyelination and myelination of the retinal nerve fiber layer. It is speculated that the axons may also play a role in the mechanical support of the lamina cribrosa in resisting the pressure gradient across the pars scleralis of the optic nerve head. Axons and their associated glial cells may be involved in those cases where "reversibility" of cupping of the optic disc has been reported. The structure, physiology, and experimental pathologic findings of the optic nerve head have been reviewed. Many aspects concerning the final anatomic appearance of the optic nerve head have been explained. However, many questions remain concerning the intermediate mechanisms by which increased intracranial pressure retards the various components of axonal transport in papilledema and by which increased IOP causes axonal loss in glaucoma. Investigation of the molecular biology of axonal constituents and their responses to abnormalities in their physical and chemical milieu could extend our understanding of the events that result from mechanical compression and local ischemia. Moreover, we have identified a need to further explore the role of axons in the pathophysiology of optic disc cupping. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 11 FIGURE 12 FIGURE 13 PMID:6203209
Auto-fusion and the shaping of neurons and tubes
Soulavie, Fabien; Sundaram, Meera V.
2016-01-01
Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes. PMID:27436685
Kalmar, Bernadett; Innes, Amy; Wanisch, Klaus; Kolaszynska, Alicia Koyen; Pandraud, Amelie; Kelly, Gavin; Abramov, Andrey Y; Reilly, Mary M; Schiavo, Giampietro; Greensmith, Linda
2017-09-01
Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease. © The Author 2017. Published by Oxford University Press.
Innes, Amy; Wanisch, Klaus; Kolaszynska, Alicia Koyen; Pandraud, Amelie; Kelly, Gavin; Abramov, Andrey Y.; Reilly, Mary M.; Schiavo, Giampietro; Greensmith, Linda
2017-01-01
Abstract Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease. PMID:28595321
Communication and wiring in the cortical connectome
Budd, Julian M. L.; Kisvárday, Zoltán F.
2012-01-01
In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns. PMID:23087619
Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites
LaRocca, Greg
2017-01-01
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. SIGNIFICANCE STATEMENT The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. PMID:28003347
Jacobs, S; Cheng, C; Doering, L C
2016-06-02
Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21 days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21 days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Axonal Transport and Morphology: How Myelination gets Nerves into Shape
NASA Astrophysics Data System (ADS)
Jung, Peter; Zhao, Peng; Monsma, Paula; Brown, Tony
2011-03-01
The local caliber of mature axons is largely determined by neurofilament (NF) content. The axoskeleton, mainly consisting of NFs, however, is dynamic. NFs are assembled in the cell body and are transported by molecular motors on microtubule tracks along the axon at a slow rate of fractions of mm per day. We combine live cell fluorescent imaging techniques to access NF transport in myelinated and non-myelinated segments of axons with computational modeling of the active NF flow to show that a), myelination locally slows NF transport rates by regulating duty ratios and b), that the predicted increase in axon caliber agrees well with experiments. This study, for the first time, links NF kinetics directly to axonal morphology, providing a novel conceptual framework for the physical understanding of processes leading to the formation of axonal structures such as the ``Nodes of Ranvier'' as well as abnormal axonal swellings associated with neurodegenerative diseases like Amyotrophic lateral sclerosis (ALS). NSF grants # IOS-0818412(PJ) and IOS-0818653 (AB).
Bilateral Cervical Contusion Spinal Cord Injury in Rats
Anderson, Kim D.; Sharp, Kelli G.; Steward, Oswald
2009-01-01
There is increasing motivation to develop clinically relevant experimental models for cervical SCI in rodents and techniques to assess deficits in forelimb function. Here we describe a bilateral cervical contusion model in rats. Female Sprague-Dawley rats received mild or moderate cervical contusion injuries (using the Infinite Horizons device) at C5, C6, or C7/8. Forelimb motor function was assessed using a Grip Strength Meter (GSM); sensory function was assessed by the von Frey hair test; the integrity of the corticospinal tract (CST) was assessed by biotinylated dextran amine (BDA) tract tracing. Mild contusions caused primarily dorsal column (DC) and gray matter (GM) damage while moderate contusions produced additional damage to lateral and ventral tissue. Forelimb and hindlimb function was severely impaired immediately post-injury, but all rats regained the ability to use their hindlimbs for locomotion. Gripping ability was abolished immediately after injury but recovered partially, depending upon the spinal level and severity of the injury. Rats exhibited a loss of sensation in both fore- and hindlimbs that partially recovered, and did not exhibit allodynia. Tract tracing revealed that the main contingent of CST axons in the DC was completely interrupted in all but one animal whereas the dorsolateral CST (dlCST) was partially spared, and dlCST axons gave rise to axons that arborized in the GM caudal to the injury. Our data demonstrate that rats can survive significant bilateral cervical contusion injuries at or below C5 and that forepaw gripping function recovers after mild injuries even when the main component of CST axons in the dorsal column is completely interrupted. PMID:19559699
KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.
Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud
2016-09-01
Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.
Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor (CaSR)
Vizard, Thomas N.; O'Keeffe, Gerard W.; Gutierrez, Humberto; Kos, Claudine H.; Riccardi, Daniela; Davies, Alun M.
2009-01-01
The extracellular calcium-sensing receptor (CaSR) monitors the systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, the CaSR is also expressed in the nervous system where its role is unknown. Here we find high levels of the CaSR in perinatal mouse sympathetic neurons when their axons are innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists or expressing a dominant-negative CaSR markedly affects neurite growth in vitro Sympathetic neurons lacking the CaSR have smaller neurite arbors in vitro, and sympathetic innervation density is reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express the CaSR, have smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for the CaSR in regulating the growth of neural processes in the peripheral and central nervous systems. PMID:18223649
Parekh, Ruchi; Armañanzas, Rubén; Ascoli, Giorgio A
2015-04-01
Digital reconstructions of axonal and dendritic arbors provide a powerful representation of neuronal morphology in formats amenable to quantitative analysis, computational modeling, and data mining. Reconstructed files, however, require adequate metadata to identify the appropriate animal species, developmental stage, brain region, and neuron type. Moreover, experimental details about tissue processing, neurite visualization and microscopic imaging are essential to assess the information content of digital morphologies. Typical morphological reconstructions only partially capture the underlying biological reality. Tracings are often limited to certain domains (e.g., dendrites and not axons), may be incomplete due to tissue sectioning, imperfect staining, and limited imaging resolution, or can disregard aspects irrelevant to their specific scientific focus (such as branch thickness or depth). Gauging these factors is critical in subsequent data reuse and comparison. NeuroMorpho.Org is a central repository of reconstructions from many laboratories and experimental conditions. Here, we introduce substantial additions to the existing metadata annotation aimed to describe the completeness of the reconstructed neurons in NeuroMorpho.Org. These expanded metadata form a suitable basis for effective description of neuromorphological data.
Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex
Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M
2016-01-01
Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI: http://dx.doi.org/10.7554/eLife.11123.001 PMID:26848828
Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics.
Azevedo, Maria M; Domingues, Helena S; Cordelières, Fabrice P; Sampaio, Paula; Seixas, Ana I; Relvas, João B
2018-05-06
During central nervous system development, oligodendrocytes form structurally and functionally distinct actin-rich protrusions that contact and wrap around axons to assemble myelin sheaths. Establishment of axonal contact is a limiting step in myelination that relies on the oligodendrocyte's ability to locally coordinate cytoskeletal rearrangements with myelin production, under the control of a transcriptional differentiation program. The molecules that provide fine-tuning of actin dynamics during oligodendrocyte differentiation and axon ensheathment remain largely unidentified. We performed transcriptomics analysis of soma and protrusion fractions from rat brain oligodendrocyte progenitors and found a subcellular enrichment of mRNAs in newly-formed protrusions. Approximately 30% of protrusion-enriched transcripts encode proteins related to cytoskeleton dynamics, including the junction mediating and regulatory protein Jmy, a multifunctional regulator of actin polymerization. Here, we show that expression of Jmy is upregulated during myelination and is required for the assembly of actin filaments and protrusion formation during oligodendrocyte differentiation. Quantitative morphodynamics analysis of live oligodendrocytes showed that differentiation is driven by a stereotypical actin network-dependent "cellular shaping" program. Disruption of actin dynamics via knockdown of Jmy leads to a program fail resulting in oligodendrocytes that do not acquire an arborized morphology and are less efficient in contacting neurites and forming myelin wraps in co-cultures with neurons. Our findings provide new mechanistic insight into the relationship between cell shape dynamics and differentiation in development. © 2018 Wiley Periodicals, Inc.
Gibson, Nicholas J; Tolbert, Leslie P
2006-04-10
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.
Gibson, Nicholas J.; Tolbert, Leslie P.
2008-01-01
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681
Auto-fusion and the shaping of neurons and tubes.
Soulavie, Fabien; Sundaram, Meera V
2016-12-01
Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes. Copyright © 2016 Elsevier Ltd. All rights reserved.
García-Alonso, L; Romani, S; Jiménez, F
2000-12-01
Cell adhesion molecules (CAMs) implement the process of axon guidance by promoting specific selection and attachment to substrates. We show that, in Drosophila, loss-of-function conditions of either the Neuroglian CAM, the FGF receptor coded by the gene heartless, or the EGF receptor coded by DER display a similar phenotype of abnormal substrate selection and axon guidance by peripheral sensory neurons. Moreover, neuroglian loss-of-function phenotype can be suppressed by the expression of gain-of-function conditions of heartless or DER. The results are consistent with a scenario where the activity of these receptor tyrosine kinases is controlled by Neuroglian at choice points where sensory axons select between alternative substrates for extension.
Spinal Injury: Regeneration, Recovery, and a Possible New Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Avis
Spinal injury is most frequent in young healthy men, desperate to walk. Most treatments have focused on regeneration of the injured axons, but no one has as yet achieved success with this approach. However, in the lamprey, a primitive fish with a spinal cord having all the critical features of the human spinal cored, spinal injury is followed by complete regeneration of injured axons. Additionally, the animal recovers the ability to swim, and in many, the swimming is normal. Unfortunately, in most others, it is highly abnormal. This talk will review evidence from the abnormal regeneration, why it bespeaks difficultiesmore » heretofore not considered, and suggest an alternate approach for the near future. In so doing, the speaker will introduce the normal function of the spinal cord, what happens in normal and abnormal regeneration, and the new techniques that employ methods from neuromorphic engineering, a synthesis of neuroscience and engineering to engineer smart devices.« less
Spinal Injury: Regeneration, Recovery, and a Possible New Approach
Cohen, Avis [University of Maryland, College Park, Maryland, United States
2017-12-09
Spinal injury is most frequent in young healthy men, desperate to walk. Most treatments have focused on regeneration of the injured axons, but no one has as yet achieved success with this approach. However, in the lamprey, a primitive fish with a spinal cord having all the critical features of the human spinal cored, spinal injury is followed by complete regeneration of injured axons. Additionally, the animal recovers the ability to swim, and in many, the swimming is normal. Unfortunately, in most others, it is highly abnormal. This talk will review evidence from the abnormal regeneration, why it bespeaks difficulties heretofore not considered, and suggest an alternate approach for the near future. In so doing, the speaker will introduce the normal function of the spinal cord, what happens in normal and abnormal regeneration, and the new techniques that employ methods from neuromorphic engineering, a synthesis of neuroscience and engineering to engineer smart devices.
Uncompacted Myelin Lamellae and Nodal Ion Channel Disruption in POEMS Syndrome.
Hashimoto, Rina; Koike, Haruki; Takahashi, Mie; Ohyama, Ken; Kawagashira, Yuichi; Iijima, Masahiro; Sobue, Gen
2015-12-01
To elucidate the significance of uncompacted myelin lamellae (UML) and ion channel disruption at the nodes of Ranvier in the polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, we evaluated sural nerve biopsy specimens from 33 patients with POEMS syndrome and from 7 control patients. Uncompacted myelin lamellae distribution was assessed by electron microscopy and immunofluorescence microscopy. In the POEMS patient biopsies, UML were seen more frequently in small versus large myelinated fibers. Paranodes and Schmidt-Lanterman incisures, where normal physiologic UM is located, were frequently associated with UM. Widening of the nodes of Ranvier (i.e. segmental demyelination) was not associated with UML. There was axonal hollowing with neurofilament condensation at Schmidt-Lanterman incisures with abnormal UML, suggesting axonal damage at those sites in the POEMS patient biopsies. Myelin sheath irregularity was conspicuous in large myelinated fibers and was associated with abnormally widened bizarrely shaped Schmidt-Lanterman incisures. Indirect immunofluorescent studies revealed abnormalities of sodium (pan sodium) and potassium (KCNQ2) channels, even at nonwidened nodes of Ranvier. Thus, UML was not apparently associated with segmental demyelination but seemed to be associated with axonal damage. These observations suggest that nodal ion channel disruption may be associated with functional deficits in POEMS syndrome patient nerves.
Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.
Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N
2017-02-01
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. Copyright © 2017 the authors 0270-6474/17/371117-22$15.00/0.
Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study.
Zotova, Elena G; Schaumburg, Herbert H; Raine, Cedric S; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C
2008-10-01
The present study explored parallel changes in the physiology and structure of myelinated (Adelta) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (< 2.5 m/s). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy.
EFFECTS OF HYPERGLYCEMIA ON RAT CAVERNOUS NERVE AXONS: A FUNCTIONAL AND ULTRASTRUCTURAL STUDY
Zotova, Elena G.; Schaumburg, Herbert H.; Raine, Cedric S.; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C.
2008-01-01
The present study explored parallel changes in the physiology and structure of myelinated (Aδ) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (<2.5 m/sec). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy. PMID:18687329
Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.
2012-01-01
Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452
Short- and long-term effects of LRRK2 on axon and dendrite growth.
Sepulveda, Bryan; Mesias, Roxana; Li, Xianting; Yue, Zhenyu; Benson, Deanna L
2013-01-01
Mutations in leucine-rich repeat kinase 2 (LRRK2) underlie an autosomal-dominant form of Parkinson's disease (PD) that is clinically indistinguishable from idiopathic PD. The function of LRRK2 is not well understood, but it has become widely accepted that LRRK2 levels or its kinase activity, which is increased by the most commonly observed mutation (G2019S), regulate neurite growth. However, growth has not been measured; it is not known whether mean differences in length correspond to altered rates of growth or retraction, whether axons or dendrites are impacted differentially or whether effects observed are transient or sustained. To address these questions, we compared several developmental milestones in neurons cultured from mice expressing bacterial artificial chromosome transgenes encoding mouse wildtype-LRRK2 or mutant LRRK2-G2019S, Lrrk2 knockout mice and non-transgenic mice. Over the course of three weeks of development on laminin, the data show a sustained, negative effect of LRRK2-G2019S on dendritic growth and arborization, but counter to expectation, dendrites from Lrrk2 knockout mice do not elaborate more rapidly. In contrast, young neurons cultured on a slower growth substrate, poly-L-lysine, show significantly reduced axonal and dendritic motility in Lrrk2 transgenic neurons and significantly increased motility in Lrrk2 knockout neurons with no significant changes in length. Our findings support that LRRK2 can regulate patterns of axonal and dendritic growth, but they also show that effects vary depending on growth substrate and stage of development. Such predictable changes in motility can be exploited in LRRK2 bioassays and guide exploration of LRRK2 function in vivo.
Wright, C I; Guela, C; Mesulam, M M
1993-01-01
Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706
Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.
Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D
2016-07-01
Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Craggs, Lucinda J L; Yamamoto, Yumi; Ihara, Masafumi; Fenwick, Richard; Burke, Matthew; Oakley, Arthur E; Roeber, Sigrun; Duering, Marco; Kretzschmar, Hans; Kalaria, Raj N
2014-08-01
Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM. We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles. The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (P<0.01) with the WM underlying the primary motor cortex exhibiting the most severe change. SMI32 immunoreactive axons in CADASIL were invariably increased compared with controls (P<0.01), with most prominent axonal abnormalities observed in the frontal WM (P<0.05). The SIs of arterioles in CADASIL were increased by 25-45% throughout the regions assessed, with the highest change in the mid-frontal region (P=0.000). Our results suggest disruption of either cortico-cortical or subcortical-cortical networks in the WM of the frontal lobe that may explain motor deficits and executive dysfunction in CADASIL. Widespread WM axonal changes arise from differential stenosis and sclerosis of arterioles in the WM of CADASIL subjects, possibly affecting some axons of projection neurones connecting to targets in the subcortical structures. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.
Magnani, Dario; Morlé, Laurette; Hasenpusch-Theil, Kerstin; Paschaki, Marie; Jacoby, Monique; Schurmans, Stéphane; Durand, Bénédicte; Theil, Thomas
2015-05-01
Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nurieva, Olga; Diblik, Pavel; Kuthan, Pavel; Sklenka, Petr; Meliska, Martin; Bydzovsky, Jan; Heissigerova, Jarmila; Urban, Pavel; Kotikova, Katerina; Navratil, Tomas; Komarc, Martin; Seidl, Zdenek; Vaneckova, Manuela; Pelclova, Daniela; Zakharov, Sergey
2018-04-27
To study the dynamics and clinical determinants of chronic retinal nerve fiber layer thickness (RNFL) loss after methanol-induced optic neuropathy. Prospective cohort study. All patients underwent complete ophthalmic evaluation including SD-OCT three times during four years of observation:4.9[±0.6], 25.0[±0.6], and 49.9[±0.5] months after discharge. Eighty-four eyes of 42 survivors of methanol poisoning; mean age (standard deviation) of 45.7[±4.4] years, and 82 eyes of 41 controls; mean age 44.0[±4.2] years. global and temporal RNFL loss. Abnormal RNFL thickness was registered in 13/42(31%) survivors of methanol poisoning and chronic axonal loss in 10/42(24%) patients. Significant decrease of global/temporal RNFL thickness during the observation period was found in the study population compared to the controls (p<0.001). The risk estimate of chronic global RNFL loss for arterial blood pH<7.3 at admission was: 11.65(1.91-71.12;95%CI) after adjusting for age and sex. The patients with chronic axonal degeneration demonstrated progressive visual loss in 7/10 cases. The patients with abnormal RNFL thickness had magnetic resonance signs of brain damage in 10/13 versus 8/29 cases with normal RNFL thickness (p=0.003). Signs of brain hemorrhages were present in 7/13 patients with abnormal RNFL thickness versus 5/29 cases with normal RNFL thickness (p=0.015). Methanol-induced optic neuropathy may lead to chronic retinal axonal loss during the following years. Arterial blood pH on admission is the strongest predictor of chronic RNFL thickness decrease. Chronic retinal neurodegeneration is associated with the progressive loss of visual functions and necrotic brain lesions. Copyright © 2018. Published by Elsevier Inc.
Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel
2011-06-02
hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging ( DTI ), an advanced form of magnetic... DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mecha- nism of injury (e.g...other injuries but no clinical diagnosis of traumatic brain injury. Results Abnormalities revealed on DTI were consistent with traumatic axonal injury in
BmRobo1a and BmRobo1b control axon repulsion in the silkworm Bombyx mori.
Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin
2016-02-15
The development of the nervous system is based on the growth and connection of axons, and axon guidance molecules are the dominant regulators during this course. Robo, as the receptor of axon guidance molecule Slit, plays a key role as a conserved repellent cue for axon guidance during the development of the central nervous system. However, the function of Robo in the silkworm Bombyx mori is unknown. In this study, we cloned two novel robo genes in B. mori (Bmrobo1a and Bmrobo1b). BmRobo1a and BmRobo1b lack an Ig and a FNIII domain in the extracellular region and the CC0 and CC2 motifs in the intracellular region. BmRobo1a and BmRobo1b were colocalized with BmSlit in the neuropil. Knock-down of Bmrobo1a and Bmrobo1b by RNA interference (RNAi) resulted in abnormal development of axons. Our results suggest that BmRobo1a and BmRobo1b have repulsive function in axon guidance, even though their structures are different from Robo1 of other species. Copyright © 2015 Elsevier B.V. All rights reserved.
Pirooznia, Sheila K.; Chiu, Kellie; Chan, May T.; Zimmerman, John E.; Elefant, Felice
2012-01-01
Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease. PMID:22982579
Yoshida, Eriko; Terada, Shin-Ichiro; Tanaka, Yasuyo H; Kobayashi, Kenta; Ohkura, Masamichi; Nakai, Junichi; Matsuzaki, Masanori
2018-05-29
In vivo wide-field imaging of neural activity with a high spatio-temporal resolution is a challenge in modern neuroscience. Although two-photon imaging is very powerful, high-speed imaging of the activity of individual synapses is mostly limited to a field of approximately 200 µm on a side. Wide-field one-photon epifluorescence imaging can reveal neuronal activity over a field of ≥1 mm 2 at a high speed, but is not able to resolve a single synapse. Here, to achieve a high spatio-temporal resolution, we combine an 8 K ultra-high-definition camera with spinning-disk one-photon confocal microscopy. This combination allowed us to image a 1 mm 2 field with a pixel resolution of 0.21 µm at 60 fps. When we imaged motor cortical layer 1 in a behaving head-restrained mouse, calcium transients were detected in presynaptic boutons of thalamocortical axons sparsely labeled with GCaMP6s, although their density was lower than when two-photon imaging was used. The effects of out-of-focus fluorescence changes on calcium transients in individual boutons appeared minimal. Axonal boutons with highly correlated activity were detected over the 1 mm 2 field, and were probably distributed on multiple axonal arbors originating from the same thalamic neuron. This new microscopy with an 8 K ultra-high-definition camera should serve to clarify the activity and plasticity of widely distributed cortical synapses.
MAY, OLIVIA L.; ERISIR, ALEV; HILL, DAVID L.
2008-01-01
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors. PMID:18366062
May, Olivia L; Erisir, Alev; Hill, David L
2008-06-01
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors.
Wong, Jack Jing Lin; Wang, Cheng; Zhang, Heng; Kirilly, Daniel; Wu, Chunlai; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei
2013-01-01
Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning. PMID:24068890
Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons.
Drerup, Catherine M; Herbert, Amy L; Monk, Kelly R; Nechiporuk, Alex V
2017-04-17
Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10 , a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.
Brown, Kerry M; Donohue, Duncan E; D'Alessandro, Giampaolo; Ascoli, Giorgio A
2005-01-01
Digital reconstruction of neuronal arborizations is an important step in the quantitative investigation of cellular neuroanatomy. In this process, neurites imaged by microscopy are semi-manually traced through the use of specialized computer software and represented as binary trees of branching cylinders (or truncated cones). Such form of the reconstruction files is efficient and parsimonious, and allows extensive morphometric analysis as well as the implementation of biophysical models of electrophysiology. Here, we describe Neuron_ Morpho, a plugin for the popular Java application ImageJ that mediates the digital reconstruction of neurons from image stacks. Both the executable and code of Neuron_ Morpho are freely distributed (www.maths. soton.ac.uk/staff/D'Alessandro/morpho or www.krasnow.gmu.edu/L-Neuron), and are compatible with all major computer platforms (including Windows, Mac, and Linux). We tested Neuron_Morpho by reconstructing two neurons from each of the two preparations representing different brain areas (hippocampus and cerebellum), neuritic type (pyramidal cell dendrites and olivar axonal projection terminals), and labeling method (rapid Golgi impregnation and anterograde dextran amine), and quantitatively comparing the resulting morphologies to those of the same cells reconstructed with the standard commercial system, Neurolucida. None of the numerous morphometric measures that were analyzed displayed any significant or systematic difference between the two reconstructing systems.
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly
2013-01-01
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
Laule, Cornelia; Vavasour, Irene M; Shahinfard, Elham; Mädler, Burkhard; Zhang, Jing; Li, David K B; MacKay, Alex L; Sirrs, Sandra M
2018-05-01
Late-onset adult Krabbe disease is a very rare demyelinating leukodystrophy, affecting less than 1 in a million people. Hematopoietic stem cell transplantation (HSCT) strategies can stop the accumulation of toxic metabolites that damage myelin-producing cells. We used quantitative advanced imaging metrics to longitudinally assess the impact of HSCT on brain abnormalities in adult-onset Krabbe disease. A 42-year-old female with late-onset Krabbe disease and an age/sex-matched healthy control underwent annual 3T MRI (baseline was immediately prior to HSCT for the Krabbe subject). Imaging included conventional scans, myelin water imaging, diffusion tensor imaging, and magnetic resonance spectroscopy. Brain abnormalities far beyond those visible on conventional imaging were detected, suggesting a global pathological process occurs in Krabbe disease with adult-onset etiology, with myelin being more affected than axons, and evidence of wide-spread gliosis. After HSCT, our patient showed clinical stability in all measures, as well as improvement in gait, dysarthria, and pseudobulbar affect at 7.5 years post-transplant. No MRI evidence of worsening demyelination and axonal loss was observed up to 4 years post-allograft. Clinical evidence and stability of advanced MR measures related to myelin and axons supports HSCT as an effective treatment strategy for stopping progression associated with late-onset Krabbe disease. Copyright © 2018 by the American Society of Neuroimaging.
Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome
O’Connor, Emily; Töpf, Ana; Müller, Juliane S.; Cox, Daniel; Evangelista, Teresinha; Colomer, Jaume; Abicht, Angela; Senderek, Jan; Hasselmann, Oswald; Yaramis, Ahmet; Laval, Steven H.
2016-01-01
Abstract Congenital myasthenic syndromes are a group of rare and genetically heterogenous disorders resulting from defects in the structure and function of the neuromuscular junction. Patients with congenital myasthenic syndrome exhibit fatigable muscle weakness with a variety of accompanying phenotypes depending on the protein affected. A cohort of patients with a clinical diagnosis of congenital myasthenic syndrome that lacked a genetic diagnosis underwent whole exome sequencing in order to identify genetic causation. Missense biallelic mutations in the MYO9A gene, encoding an unconventional myosin, were identified in two unrelated families. Depletion of MYO9A in NSC-34 cells revealed a direct effect of MYO9A on neuronal branching and axon guidance. Morpholino-mediated knockdown of the two MYO9A orthologues in zebrafish, myo9aa/ab, demonstrated a requirement for MYO9A in the formation of the neuromuscular junction during development. The morphants displayed shortened and abnormally branched motor axons, lack of movement within the chorion and abnormal swimming in response to tactile stimulation. We therefore conclude that MYO9A deficiency may affect the presynaptic motor axon, manifesting in congenital myasthenic syndrome. These results highlight the involvement of unconventional myosins in motor axon functionality, as well as the need to look outside traditional neuromuscular junction-specific proteins for further congenital myasthenic syndrome candidate genes. PMID:27259756
Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel
Mac Donald, Christine L.; Johnson, Ann M.; Cooper, Dana; Nelson, Elliot C.; Werner, Nicole J.; Shimony, Joshua S.; Snyder, Abraham Z.; Raichle, Marcus E.; Witherow, John R.; Fang, Raymond; Flaherty, Stephen F.; Brody, David L.
2011-01-01
BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.) PMID:21631321
Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M
2018-02-14
Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies. Copyright © 2018 the authors 0270-6474/18/381850-16$15.00/0.
The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development.
Linden, D C; Guillery, R W; Cucchiaro, J
1981-12-01
The anterograde transport of 3H proline and of horseradish peroxidase has been used to study the retinogeniculate pathway in normal adult ferrets and in young ferrets during postnatal development. the lateral geniculate nucleus in adults shows a characteristic "carnivore" pattern, with layers A, A1, C, C1, C2, and C3, and a medial interlaminar nucleus recognizable either cytoarchitectonically or on the basis ofth retinogeniculate innervation. In addition, there is a well-defined, rather large perigeniculate nucleus. At birth the lateral geniculate nucleus is unlaminated and essentially all parts are reached by afferents from both eyes. The crossed component is by far the larger. It extends from the optic tract medially well into the perigeniculate field, in contrast to the uncrossed component which barely reaches the perigeniculate field. During the first 3 postnatal days the uncrossed fibers restrict their arbors to a small posterior and medial region, the precursor of the biocular segment of the nucleus. The crossed fibers gradually retreat from the region within which the uncrossed fibers have concentrated. Between the fourth and eighth postnatal days the field occupied by the ipsilateral component expands again to form a major focus that will define lamina A1 and a minor focus that will define C1. At this stage the crossed and the uncrossed fibers overlap at the borders of lamina A1 and the whole region of lamina C1 is also occupied by arbors of the crossed component. The perigeniculate field becomes clearly distinguishable from the lateral geniculate nucleus and the medial interlaminar nucleus is becoming clearly recognizable between days 3 and 8. Between days 8 and 15 the cytoarchitectonic borders between layers A and A1 become clearly defined, but the retinogeniculate axons from each eye still extend across this border. These axons retreat into their appropriate lamina after the 15th postnatal day an the nucleus reaches its essentially adult structure by about the fourth postnatal week. Segregation of retinofugal axons in the C layers occurs after segregation in the A layers, but many of the cells within the C layers show signs of cytological maturity earlier than those of the A layers. The nucleus undergoes a series of migrations and changes of shape as the ipsilateral and contralateral components become segregated. Whereas in teh newborn the nucleus is roughly comma-shaped and on the lateral aspect of the dorsal thalamus, in the adult it is "L"-shaped and mainly on the posterior aspect of the dorsal thalamus.
Directional diffusivity as a magnetic resonance (MR) biomarker in demyelinating disease
NASA Astrophysics Data System (ADS)
Benzinger, Tammie L. S.; Cross, Anne H.; Xu, Junqian; Naismith, Robert; Sun, Shu-Wei; Song, Sheng-Kwei
2007-09-01
Directional diffusivities derived from diffusion tensor magnetic resonance imaging (DTI) measurements describe water movement parallel to (λ ||, axial diffusivity) and perpendicular to (λ⊥radial diffusivity) axonal tracts. λ || and λ⊥ have been shown to differentially detect axon and myelin abnormalities in several mouse models of central nervous system white matter pathology in our laboratory. These models include experimental autoimmune encephalomyelitis (EAE), (1) myelin basic protein mutant mice with dysmyelination and intact axons, (2) cuprizone-induced demyelination, and remyelination, with reversible axon injury (2, 3) and a model of retinal ischemia in which retinal ganglion cell death is followed by Wallerian degeneration of optic nerve, with axonal injury preceding demyelination. (4) Decreased λ|| correlates with acute axonal injury and increased λ⊥ indicates myelin damage. (4) More recently, we have translated this approach to human MR, investigating acute and chronic optic neuritis in adults with multiple sclerosis, brain lesions in adults with multiple sclerosis, and acute disseminated encephalomyelitis (ADEM) in children. We are also investigating the use of this technique to probe the underlying structural change of the cervical spinal cord in acute and chronic T2- hyperintense lesions in spinal stenosis, trauma, and transverse myelitis. In each of these demyelinating diseases, the discrimination between axonal and myelin injury which we can achieve has important prognostic and therapeutic implications. For those patients with myelin injury but intact axons, early, directed drug therapy has the potential to prevent progression to axonal loss and permanent disability.
Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso
2012-01-01
To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769
Using quantum filters to process images of diffuse axonal injury
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-06-01
Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.
Adebola, Adijat A; Di Castri, Theo; He, Chui-Zhen; Salvatierra, Laura A; Zhao, Jian; Brown, Kristy; Lin, Chyuan-Sheng; Worman, Howard J; Liem, Ronald K H
2015-04-15
Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E. Previous studies in transfected cells showed that expression of disease-associated neurofilament light chain variants results in abnormal intermediate filament networks associated with defects in axonal transport. We have now generated knock-in mice with two different point mutations in Nefl: P8R that has been reported in multiple families with variable age of onset and N98S that has been described as an early-onset, sporadic mutation in multiple individuals. Nefl(P8R/+) and Nefl(P8R/P8R) mice were indistinguishable from Nefl(+/+) in terms of behavioral phenotype. In contrast, Nefl(N98S/+) mice had a noticeable tremor, and most animals showed a hindlimb clasping phenotype. Immunohistochemical analysis revealed multiple inclusions in the cell bodies and proximal axons of spinal cord neurons, disorganized processes in the cerebellum and abnormal processes in the cerebral cortex and pons. Abnormal processes were observed as early as post-natal day 7. Electron microscopic analysis of sciatic nerves showed a reduction in the number of neurofilaments, an increase in the number of microtubules and a decrease in the axonal diameters. The Nefl(N98S/+) mice provide an excellent model to study the pathogenesis of CMT2E and should prove useful for testing potential therapies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Huang, Tingqin; Zhao, Junjie; Guo, Dan; Pang, Honggang; Zhao, Yonglin; Song, Jinning
2018-05-23
Diffuse axonal injury (DAI) accounts for more than 50% of all traumatic brain injury. In response to the mechanical damage associated with DAI, the abnormal proteins produced in the neurons and axons, namely, β-APP and p-tau, induce endoplasmic reticulum (ER) stress. Curcumin, a major component extracted from the rhizome of Curcuma longa, has shown potent anti-inflammatory, antioxidant, anti-infection, and antitumor activity in previous studies. Moreover, curcumin is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2) and promotes its nuclear translocation. In this study, we evaluated the therapeutic potential of curcumin for the treatment of DAI and investigated the mechanisms underlying the protective effects of curcumin against neural cell death and axonal injury after DAI. Rats subjected to a model of DAI by head rotational acceleration were treated with vehicle or curcumin to evaluate the effect of curcumin on neuronal and axonal injury. We observed that curcumin (20 mg/kg intraperitoneal) administered 1 h after DAI induction alleviated the aggregation of p-tau and β-APP in neurons, reduced ER-stress-related cell apoptosis, and ameliorated neurological deficits. Further investigation showed that the protective effect of curcumin in DAI was mediated by the PERK/Nrf2 pathway. Curcumin promoted PERK phosphorylation, and then Nrf2 dissociated from Keap1 and was translocated to the nucleus, which activated ATF4, an important bZIP transcription factor that maintains intracellular homeostasis, but inhibited the CHOP, a hallmark of ER stress and ER-associated programmed cell death. In summary, we demonstrate for the first time that curcumin confers protection against abnormal proteins and neuronal apoptosis after DAI, that the process is mediated by strengthening of the unfolded protein response to overcome ER stress, and that the protective effect of curcumin against DAI is dependent on the activation of Nrf2.
X11/Mint Genes Control Polarized Localization of Axonal Membrane Proteins in Vivo
Gross, Garrett G.; Lone, G. Mohiddin; Leung, Lok Kwan; Hartenstein, Volker
2013-01-01
Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body in Drosophila, a brain structure involved in learning and memory. Axonal localization of APP is mediated by an endocytic motif, and loss of X11/Mint results in a dramatic increase in cell-surface levels of APPL, especially on dendrites. Mutations in genes required for endocytosis show similar mislocalization of these proteins to dendrites, and strongly enhance defects seen in X11/Mint mutants. These results suggest that X11/Mint-dependent endocytosis in dendrites may serve to promote the axonal localization of membrane proteins. Since X11/Mint binds to APP, and abnormal trafficking of APP contributes to Alzheimer's disease, deregulation of X11/Mint may be important for Alzheimer's disease pathogenesis. PMID:23658195
Continuous subcutaneous insulin infusion preserves axonal function in type 1 diabetes mellitus.
Kwai, Natalie; Arnold, Ria; Poynten, Ann M; Lin, Cindy S-Y; Kiernan, Matthew C; Krishnan, Arun V
2015-02-01
Diabetic peripheral neuropathy is a common and debilitating complication of diabetes mellitus. Although strict glycaemic control may reduce the risk of developing diabetic peripheral neuropathy, the neurological benefits of different insulin regimens remain relatively unknown. In the present study, 55 consecutive patients with type 1 diabetes mellitus underwent clinical neurological assessment. Subsequently, 41 non-neuropathic patients, 24 of whom were receiving multiple daily insulin injections (MDII) and 17 receiving continuous subcutaneous insulin infusion (CSII), underwent nerve excitability testing, a technique that assesses axonal ion channel function and membrane potential in human nerves. Treatment groups were matched for glycaemic control, body mass index, disease duration and gender. Neurophysiological parameters were compared between treatment groups and those taken from age and sex-matched normal controls. Prominent differences in axonal function were noted between MDII-treated and CSII-treated patients. Specifically, MDII patients manifested prominent abnormalities when compared with normal controls in threshold electrotonus (TE) parameters including depolarizing TE(10-20ms), undershoot and hyperpolarizing TE (90-100 ms) (P < 0.05). Additionally, recovery cycle parameters superexcitability and subexcitability were also abnormal (P < 0.05). In contrast, axonal function in CSII-treated patients was within normal limits when compared with age-matched controls. The differences between the groups were noted in cross-sectional analysis and remained at longitudinal follow-up. Axonal function in type 1 diabetes is maintained within normal limits in patients treated with continuous subcutaneous insulin infusion and not with multiple daily insulin injections. This raises the possibility that CSII therapy may have neuroprotective potential in patients with type 1 diabetes. Copyright © 2014 John Wiley & Sons, Ltd.
Alcalde, Ignacio; Íñigo-Portugués, Almudena; González-González, Omar; Almaraz, Laura; Artime, Enol; Morenilla-Palao, Cruz; Gallar, Juana; Viana, Félix; Merayo-Lloves, Jesús; Belmonte, Carlos
2018-08-01
Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8 + corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8 + corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people. © 2018 Wiley Periodicals, Inc.
Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik
2017-01-01
Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.
Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide
2012-03-01
Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.
Nelson, Andrew D.; Jenkins, Paul M.
2017-01-01
Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS) and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of Ranvier, and how abnormalities in these processes may contribute to disease. PMID:28536506
Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.
1994-01-01
Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely contacted Type B and Type C hair cells, particularly on the outer rows of the medial striola. Afferents supplying more central striolar regions innervated fewer Type B and larger numbers of Type E and Type F hair cells. Striolar afferents with thin parent axons largely supplied Type E hair cells with bulbed kniocilia in the innermost striolar rows.
Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment
Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José
2017-01-01
Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies will be necessary to determine which CB1R-dependent mechanisms can coordinate these two domains, and what may be the impact of these early developmental changes once neurons mature and are embedded in a functional brain network. PMID:28179879
Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R
1995-08-04
Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.
Zhang, Sanbing; Cui, Huixian; Wang, Lei; Kang, Lin; Huang, Guannan; Du, Juan; Li, Sha; Tanaka, Hideaki; Su, Yuhong
2016-01-01
The appropriate projection of axons within the nervous system is a crucial component of the establishment of neural circuitry. Draxin is a repulsive axon guidance protein. Draxin has important functions in the guidance of three commissures in the central nervous system and in the migration of neural crest cells and dI3 interneurons in the chick spinal cord. Here, we report that the distribution of the draxin protein and the location of 23C10-positive areas have a strong temporal and spatial correlation. The overexpression of draxin, especially transmembrane draxin, caused 23C10-positive axon bundles to misproject in the dorsal hindbrain. In addition, the overexpression of transmembrane draxin caused abnormal formation of the ganglion crest of the IX and X cranial nerves, misprojection of some anti-human natural killer-1 (HNK-1)-stained structures in the dorsal roof of the hindbrain, and a simultaneous reduction in the efferent nerves of some motoneuron axons inside the hindbrain. Our data reveal that draxin might be involved in the fascicular projection of cranial nerves in the hindbrain. PMID:27199282
GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system
Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro
2017-01-01
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137
GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system.
Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D; Baba, Hiroko; Ikenaka, Kazuhiro
2017-02-10
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P 0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.
Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E
2017-05-01
Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome.
O'Connor, Emily; Töpf, Ana; Müller, Juliane S; Cox, Daniel; Evangelista, Teresinha; Colomer, Jaume; Abicht, Angela; Senderek, Jan; Hasselmann, Oswald; Yaramis, Ahmet; Laval, Steven H; Lochmüller, Hanns
2016-08-01
Congenital myasthenic syndromes are a group of rare and genetically heterogenous disorders resulting from defects in the structure and function of the neuromuscular junction. Patients with congenital myasthenic syndrome exhibit fatigable muscle weakness with a variety of accompanying phenotypes depending on the protein affected. A cohort of patients with a clinical diagnosis of congenital myasthenic syndrome that lacked a genetic diagnosis underwent whole exome sequencing in order to identify genetic causation. Missense biallelic mutations in the MYO9A gene, encoding an unconventional myosin, were identified in two unrelated families. Depletion of MYO9A in NSC-34 cells revealed a direct effect of MYO9A on neuronal branching and axon guidance. Morpholino-mediated knockdown of the two MYO9A orthologues in zebrafish, myo9aa/ab, demonstrated a requirement for MYO9A in the formation of the neuromuscular junction during development. The morphants displayed shortened and abnormally branched motor axons, lack of movement within the chorion and abnormal swimming in response to tactile stimulation. We therefore conclude that MYO9A deficiency may affect the presynaptic motor axon, manifesting in congenital myasthenic syndrome. These results highlight the involvement of unconventional myosins in motor axon functionality, as well as the need to look outside traditional neuromuscular junction-specific proteins for further congenital myasthenic syndrome candidate genes. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria
2011-01-01
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588
Tohda, Chihiro; Nakada, Rie; Urano, Takuya; Okonogi, Akira; Kuboyama, Tomoharu
2011-12-01
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. Current agents for AD are employed for symptomatic therapy and insufficient to cure. We consider that this is quite necessary for AD treatment and have investigated axon/synapse formation-promoting activity. The aim of this study is to investigate the effects of Kamikihi-to [KKT; traditional Japanese (Kampo) medicine] on memory deficits in an AD model, 5XFAD. KKT (200 mg/kg, p.o.) was administered for 15 days to 5XFAD mice. Object recognition memory was tested in vehicle-treated wild-type and 5XFAD mice and KKT-treated 5XFAD mice. KKT-treated 5XFAD mice showed significant improvement of object recognition memory. KKT treatment significantly reduced the number of amyloid plaques in the frontal cortex and hippocampus. Only inside of amyloid plaques were abnormal structures such as bulb-like axons and swollen presynaptic boutons observed. These degenerated axons and presynaptic terminals were significantly reduced by KKT treatment in the frontal cortex. In primary cortical neurons, KKT treatment significantly increased axon length when applied after Aβ(25-35)-induced axonal atrophy had progressed. In conclusion, KKT improved object recognition memory deficit in an AD model 5XFAD mice. Restoration of degenerated axons and synapses may be associated with the memory recovery by KKT.
Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal
2011-01-01
In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883
Huang, Lejian; Kutch, Jason J; Ellingson, Benjamin M; Martucci, Katherine T; Harris, Richard E; Clauw, Daniel J; Mackey, Sean; Mayer, Emeran A; Schaeffer, Anthony J; Apkarian, A Vania; Farmer, Melissa A
2016-12-01
Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPSs) in men and women have focused on end organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multisite investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared with positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data were collected from participants with UCPPS (n = 52), IBS (n = 39), and healthy sex- and age-matched controls (n = 61). White matter microstructure, measured as fractional anisotropy (FA), was examined by diffusion tensor imaging. Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished patients with IBS from those with UCPPS and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development.
Huang, Lejian; Kutch, Jason J.; Ellingson, Benjamin M.; Martucci, Katherine T.; Harris, Richard E.; Clauw, Daniel J.; Mackey, Sean; Mayer, Emeran A.; Schaeffer, Anthony J.; Apkarian, A. Vania; Farmer, Melissa A.
2016-01-01
Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPS) in men and women has focused on end-organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multi-site investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared to positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data was collected from participants with UCPPS (n=52), IBS (n=39), and healthy, sex- and age-matched controls (n=61). White matter microstructure, measured as fractional anisotropy (FA), was examined with diffusion tensor imaging (DTI). Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished IBS from UCPPS patients and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development. PMID:27842046
Functional binding interaction identified between the axonal CAM L1 and members of the ERM family
Dickson, Tracey C.; Mintz, C. David; Benson, Deanna L.; Salton, Stephen R.J.
2002-01-01
Ayeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane–cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM–actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis. PMID:12070130
Functional binding interaction identified between the axonal CAM L1 and members of the ERM family.
Dickson, Tracey C; Mintz, C David; Benson, Deanna L; Salton, Stephen R J
2002-06-24
A yeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane-cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM-actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis.
Neurophysiological aspects of peripheral neuropathies.
MacKenzie, R A; Skuse, N F; Lethlean, A K
1976-01-01
1. Eighty-eight intrafascicular neural recordings were obtained in 10 normal subjects, 5 patients with axonal degeneration and 11 patients with demyelinating neuropathy. 2. Stimulus levels required for perception and fibre activation were higher in neuropathic subjects. Fibres transmitting touch perception had significantly lower conduction velocities in both patient groups, but were very much lower in the group with demyelinating neuropahty than the group with axonal degeneration. Maximum electrical stimulation evoked dispersed fibre responses in the axonal degeneration group and more dispersed, slowly conducting fibre potentials in the demyelinating group. In patients with hypertrophic Charcot-Marie-Tooth disorder, usually only a small group of slowly conducting low amplitude potentials was recorded. 3. Delivery of a train of supramaximal stimuli caused prolongation of latency and dispersion of fibre potentials in all microneurographic recordings. The changes were significantly greater in the axonal neuropathy group than in normals, and recovery was slower. The demyelinating neuropathies showed significantly greater changes than both the normal and the axonal neuropathy groups, and post-tetanic conduction slowing became even more marked after limb temperature was raised. 4. Surface SAP recordings showed normal refractory period in chronic axonal neuropathy but significant latency prolongation occurred in demyelinating neuropathy. 5. It is concluded that both receptor and nerve fibre abnormalities contribute to sensory dysfunction in degenerative and demyelinating neuropathies.
Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour
Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie
2016-01-01
Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period. PMID:27008987
Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour.
Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie
2016-03-24
Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.
Excitability properties of motor axons in adults with cerebral palsy
Klein, Cliff S.; Zhou, Ping; Marciniak, Christina
2015-01-01
Cerebral palsy (CP) is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out), and resting current–threshold (I/V) slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett–Barrett conductance, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury. PMID:26089791
Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy.
Zhang, Bin; Higuchi, Makoto; Yoshiyama, Yasumasa; Ishihara, Takeshi; Forman, Mark S; Martinez, Dan; Joyce, Sonali; Trojanowski, John Q; Lee, Virginia M-Y
2004-05-12
Intracellular accumulations of filamentous tau inclusions are neuropathological hallmarks of neurodegenerative diseases known as tauopathies. The discovery of multiple pathogenic tau gene mutations in many kindreds with familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) unequivocally confirmed the central role of tau abnormalities in the etiology of neurodegenerative disorders. To examine the effects of tau gene mutations and the role of tau abnormalities in neurodegenerative tauopathies, transgenic (Tg) mice were engineered to express the longest human tau isoform (T40) with or without the R406W mutation (RW and hWT Tg mice, respectively) that is pathogenic for FTDP-17 in several kindreds. RW but not hWT tau Tg mice developed an age-dependent accumulation of insoluble filamentous tau aggregates in neuronal perikarya of the cerebral cortex, hippocampus, cerebellum, and spinal cord. Significantly, CNS axons in RW mice contained reduced levels of tau when compared with hWT mice, and this was linked to retarded axonal transport and increased accumulation of an insoluble pool of RW but not hWT tau. Furthermore, RW but not hWT mice demonstrated neurodegeneration and a reduced lifespan. These data indicate that the R406W mutation causes reduced binding of this mutant tau to microtubules, resulting in slower axonal transport. This altered tau function caused by the RW mutation leads to increased accumulation and reduced solubility of RW tau in an age-dependent manner, culminating in the formation of filamentous intraneuronal tau aggregates similar to that observed in tauopathy patients.
The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.
Hummel, T; Leifker, K; Klämbt, C
2000-04-01
In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.
The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization
Hummel, Thomas; Leifker, Karin; Klämbt, Christian
2000-01-01
In Drosophila, the correct formation of the segmental commissures depends on neuron–glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2–SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding. PMID:10766742
Manuel, Martine; Pratt, Thomas; Liu, Min; Jeffery, Glen; Price, David J
2008-01-01
Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey) and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs). At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+) showed that (1) the total number of RGC axons projected by the retina and (2) the proportions that are sorted into the ipsilateral and contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm. PMID:18507827
Sung, Hyun; Tandarich, Lauren C; Nguyen, Kenny; Hollenbeck, Peter J
2016-07-13
In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. Copyright © 2016 the authors 0270-6474/16/367375-17$15.00/0.
Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny
2016-01-01
In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. PMID:27413149
Sensory Neuropathy Due to Loss of Bcl-w
Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.
2010-01-01
Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171
Zhang, Sanbing; Cui, Huixian; Wang, Lei; Kang, Lin; Huang, Guannan; Du, Juan; Li, Sha; Tanaka, Hideaki; Su, Yuhong
2016-07-01
The appropriate projection of axons within the nervous system is a crucial component of the establishment of neural circuitry. Draxin is a repulsive axon guidance protein. Draxin has important functions in the guidance of three commissures in the central nervous system and in the migration of neural crest cells and dI3 interneurons in the chick spinal cord. Here, we report that the distribution of the draxin protein and the location of 23C10-positive areas have a strong temporal and spatial correlation. The overexpression of draxin, especially transmembrane draxin, caused 23C10-positive axon bundles to misproject in the dorsal hindbrain. In addition, the overexpression of transmembrane draxin caused abnormal formation of the ganglion crest of the IX and X cranial nerves, misprojection of some anti-human natural killer-1 (HNK-1)-stained structures in the dorsal roof of the hindbrain, and a simultaneous reduction in the efferent nerves of some motoneuron axons inside the hindbrain. Our data reveal that draxin might be involved in the fascicular projection of cranial nerves in the hindbrain. © 2016 The Histochemical Society.
Price, Gary; Cercignani, Mara; Parker, Geoffrey J.M.; Altmann, Daniel R.; Barnes, Thomas R.E.; Barker, Gareth J.; Joyce, Eileen M.; Ron, Maria A.
2007-01-01
A model of disconnectivity involving abnormalities in the cortex and connecting white matter pathways may explain the clinical manifestations of schizophrenia. Recently, diffusion imaging tractography has made it possible to study white matter pathways in detail and we present here a study of patients with first-episode psychosis using this technique. We selected the corpus callosum for this study because there is evidence that it is abnormal in schizophrenia. In addition, the topographical organization of its fibers makes it possible to relate focal abnormalities to specific cortical regions. Eighteen patients with first-episode psychosis and 21 healthy subjects took part in the study. A probabilistic tractography algorithm (PICo) was used to study fractional anisotropy (FA). Seed regions were placed in the genu and splenium to track fiber tracts traversing these regions, and a multi-threshold approach to study the probability of connection was used. Multiple linear regressions were used to explore group differences. FA, a measure of tract coherence, was reduced in tracts crossing the genu, and to a lesser degree the splenium, in patients compared with controls. FA was also lower in the genu in females across both groups, but there was no gender-by-group interaction. The FA reduction in patients may be due to aberrant myelination or axonal abnormalities, but the similar tract volumes in the two groups suggest that severe axonal loss is unlikely at this stage of the illness. PMID:17275337
2018-06-11
AIDS-Related Hodgkin Lymphoma; Ann Arbor Stage II Hodgkin Lymphoma; Ann Arbor Stage IIA Hodgkin Lymphoma; Ann Arbor Stage IIB Hodgkin Lymphoma; Ann Arbor Stage III Hodgkin Lymphoma; Ann Arbor Stage IIIA Hodgkin Lymphoma; Ann Arbor Stage IIIB Hodgkin Lymphoma; Ann Arbor Stage IV Hodgkin Lymphoma; Ann Arbor Stage IVA Hodgkin Lymphoma; Ann Arbor Stage IVB Hodgkin Lymphoma; Classic Hodgkin Lymphoma; HIV Infection
Koizumi, Hidehiko; Koshiya, Naohiro; Chia, Justine X.; Cao, Fang; Nugent, Joseph; Zhang, Ruli
2013-01-01
We comparatively analyzed cellular and circuit properties of identified rhythmic excitatory and inhibitory interneurons within respiratory microcircuits of the neonatal rodent pre-Bötzinger complex (pre-BötC), the structure generating inspiratory rhythm in the brainstem. We combined high-resolution structural–functional imaging, molecular assays for neurotransmitter phenotype identification in conjunction with electrophysiological property phenotyping, and morphological reconstruction of interneurons in neonatal rat and mouse slices in vitro. This approach revealed previously undifferentiated structural–functional features that distinguish excitatory and inhibitory interneuronal populations. We identified distinct subpopulations of pre-BötC glutamatergic, glycinergic, GABAergic, and glycine-GABA coexpressing interneurons. Most commissural pre-BötC inspiratory interneurons were glutamatergic, with a substantial subset exhibiting intrinsic oscillatory bursting properties. Commissural excitatory interneurons projected with nearly planar trajectories to the contralateral pre-BötC, many also with axon collaterals to areas containing inspiratory hypoglossal (XII) premotoneurons and motoneurons. Inhibitory neurons as characterized in the present study did not exhibit intrinsic oscillatory bursting properties, but were electrophysiologically distinguished by more pronounced spike frequency adaptation properties. Axons of many inhibitory neurons projected ipsilaterally also to regions containing inspiratory XII premotoneurons and motoneurons, whereas a minority of inhibitory neurons had commissural axonal projections. Dendrites of both excitatory and inhibitory interneurons were arborized asymmetrically, primarily in the coronal plane. The dendritic fields of inhibitory neurons were more spatially compact than those of excitatory interneurons. Our results are consistent with the concepts of a compartmental circuit organization, a bilaterally coupled excitatory rhythmogenic kernel, and a role of pre-BötC inhibitory neurons in shaping inspiratory pattern as well as coordinating inspiratory and expiratory activity. PMID:23407957
Akude, Eli; Zherebitskaya, Elena; Chowdhury, Subir K Roy; Smith, Darrell R; Dobrowsky, Rick T; Fernyhough, Paul
2011-01-01
Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.
TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.
Falace, Antonio; Filipello, Fabia; La Padula, Veronica; Vanni, Nicola; Madia, Francesca; De Pietri Tonelli, Davide; de Falco, Fabrizio A; Striano, Pasquale; Dagna Bricarelli, Franca; Minetti, Carlo; Benfenati, Fabio; Fassio, Anna; Zara, Federico
2010-09-10
Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders. 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors
DePoy, Lauren M.; Perszyk, Riley E.; Zimmermann, Kelsey S.; Koleske, Anthony J.; Gourley, Shannon L.
2014-01-01
Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC). Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31–35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability—the p190rhogap+/– mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/– mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/– mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population. PMID:25452728
Nagasunder, A.C.; Kinney, H.C.; Blüml, S.; Tavaré, C.J.; Rosser, T.; Gilles, F.H.; Nelson, M.D.; Panigrahy, A.
2012-01-01
BACKGROUND AND PURPOSE The neuroanatomic substrate of cognitive deficits in long-term survivors of prematurity with PVL is poorly understood. The thalamus is critically involved in cognition via extensive interconnections with the cerebral cortex. We hypothesized that the thalamus is atrophic (reduced in volume) in childhood survivors of prematurity with neuroimaging evidence of PVL and that the atrophy is associated with selective microstructural abnormalities within its subdivisions. MATERIALS AND METHODS We performed quantitative volumetric and DTI measurements of the thalamus in 17 children with neuroimaging evidence of PVL (mean postconceptional age, 5.6 ± 4.0 years) who were born prematurely and compared these with 74 term control children (5.7 ± 3.4 years). RESULTS The major findings were the following: 1) a significant reduction in the overall volume of the thalamus in patients with PVL compared with controls (P < .0001), which also correlated with the severity of PVL (P = .001); 2) significantly decreased FA (P = .003) and increased λ⊥ (P = .02) in the thalamus overall and increased axial, radial, and mean diffusivities in the pulvinar (P < .03), suggesting injury to afferent and efferent myelinated axons; and 3) a positive correlation of pulvinar abnormalities with those of the parieto-occipital white matter in periventricular leukomalacia, suggesting that the pulvinar abnormalities reflect secondary effects of damaged interconnections between the pulvinar and parieto-occipital cortices in the cognitive visual network. CONCLUSIONS There are volumetric and microstructural abnormalities of the thalamus in preterm children with PVL, very likely reflecting neuronal loss and myelinated axonal injury. The selective microstructural damage in the pulvinar very likely contributes to abnormal cognitive visual processing known to occur in such survivors. PMID:20930003
2018-01-24
Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage II Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
Study of axonal dystrophy. II Dystrophy and atrophy of the presynaptic boutons: a dual pathology.
Fujisawa, K; Shiraki, H
1980-01-01
In succession to the previous quantitative work, a qualitative study has been carried out on the nature of a dual pathology affecting presynaptic boutons in the posterior tract nuclei of ageing rats. Based on the morphology of dystrophic boutons in early stage, it is concluded that the initial and therefore essential characteristic of dystrophic process is an abnormal increase of normal axonal components within the presynaptic boutons, and that various abnormal substructures of spheroids hitherto reported in the literature are probably the results of their secondary metamorphosis. The dystrophic process within the posterior tract nuclei is a selective one, involving presynaptic boutons and preterminal axons only of the posterior tract fibres. Comparison of the frequency of early dystrophic boutons and of fully grown-up spheroids indicates that a small percentage of boutons deriving from posterior tract fibres become dystrophic and of these dystrophic boutons only a small percentage again continue to develop unto large spheroids, throughout lifespan of the animals. On the other hand, in search of a morphological counterpart for the age-related decrease of volume ratio of presynaptic boutons to the neuropil, some dubious atrophic changes were also found in presynaptic boutons, which could have been easily missed from observation if studied qualitatively alone. Accordingly, no less numerous boutons other than dystrophic ones are supposed to atrophy 'independently' and to disappear 'silently' during the same period. The dystrophic and the atrophic changes involve different boutons (of different or the same terminal axons) within the same gray matter. This dual pathology of boutons needs further elucidation of its neurocytopathological as well as neurobiological background in the future.
Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S
2007-05-01
Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.
Envenomation by Bothrops punctatus in southwestern Colombia.
Cañas, Carlos A; Vallejo, Alexandra
2016-12-15
Bothrops punctatus (Chocoan forest lancehead) is a semi-arboreal pitviper species distributed in Panamá, Colombia, and Ecuador, whose human envenomation is poorly characterized. We describe two patients bitten by B. punctatus, whose most relevant clinical feature was the development of a severe coagulopathy with few local manifestations (mild edema without signs of necrosis) at the site of the bite. Patients quickly improved their clinical and laboratory abnormalities after polyvalent antivenom application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Axonal degeneration and regeneration in sensory roots in a genital herpes model.
Soffer, D; Martin, J R
1989-01-01
In a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, roots of the lower spinal cord were examined 5 days to 6 months after inoculation. Using immunoperoxidase methods on paraffin sections, viral antigen was found in sensory ganglia, their proximal roots and distal nerves on days 5 and 6 after infection. In Epon sections, most mice had focal sensory root abnormalities in lower thoracic, lumbar or sacral levels. At days 7 and 10, lesions showed chiefly nerve fiber degeneration, particularly of large myelinated fibers. At 2 weeks, lesions contained relatively large bundles of small unmyelinated fibers with immature axon-Schwann cell relationships. From 3 to 6 weeks, lesions again contained many more small unmyelinated fibers than normal but, in increasing proportions, axons in bundles were isolated from their neighbors by Schwann cell cytoplasm, and Schwann cells having 1:1 relationships with axons showed mesaxon or thin myelin sheath formation. At later times, the proportion of small unmyelinated axons decreased in parallel with increased numbers of small myelinated axons. By 6 months, affected roots showed a relative reduction in large myelinated fibers, increased proportions of small myelinated fibers and Schwann cell nuclei. Numbers of unmyelinated fibers were reduced relative to 3- to 6-week lesions. Axonal degeneration and regeneration appears to be the chief pathological change in sensory roots in this model. If regenerated fibers arise from latently infected neurons, then establishment of latency is not a relatively silent event, but is associated with major long-lasting, morphologically detectable effects.
Nguyen, Huy Bang; Sui, Yang; Thai, Truc Quynh; Ikenaka, Kazuhiro; Oda, Toshiyuki; Ohno, Nobuhiko
2018-05-23
Impaired nerve conduction, axonal degeneration, and synaptic alterations contribute to neurological disabilities in inflammatory demyelinating diseases. Cerebellar dysfunction is associated with demyelinating disorders, but the alterations of axon terminals in cerebellar gray matter during chronic demyelination are still unclear. We analyzed the morphological and ultrastructural changes of climbing fiber terminals in a mouse model of hereditary chronic demyelination. Three-dimensional ultrastructural analyses using serial block-face scanning electron microscopy and immunostaining for synaptic markers were performed in a demyelination mouse model caused by extra copies of myelin gene (PLP4e). At 1 month old, many myelinated axons were observed in PLP4e and wild-type mice, but demyelinated axons and axons with abnormally thin myelin were prominent in PLP4e mice at 5 months old. The density of climbing fiber terminals was significantly reduced in PLP4e mice at 5 months old. Reconstruction of climbing fiber terminals revealed that PLP4e climbing fibers had increased varicosity volume and enlarged mitochondria in the varicosities at 5-month-old mice. These results suggest that chronic demyelination is associated with alterations and loss of climbing fiber terminals in the cerebellar cortex, and that synaptic changes may contribute to cerebellar phenotypes observed in hereditary demyelinating disorders.
Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro
Trushina, Eugenia; Dyer, Roy B.; Badger, John D.; Ure, Daren; Eide, Lars; Tran, David D.; Vrieze, Brent T.; Legendre-Guillemin, Valerie; McPherson, Peter S.; Mandavilli, Bhaskar S.; Van Houten, Bennett; Zeitlin, Scott; McNiven, Mark; Aebersold, Ruedi; Hayden, Michael; Parisi, Joseph E.; Seeberg, Erling; Dragatsis, Ioannis; Doyle, Kelly; Bender, Anna; Chacko, Celin; McMurray, Cynthia T.
2004-01-01
Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction. PMID:15340079
Conduction velocity and refractory period of single motor nerve fibres in antecedent poliomyelitis.
Borg, K; Borg, J
1987-01-01
The axonal conduction velocity and the axonal refractory period were determined using electromyographic techniques for 60 single motor units in 11 patients with antecedent poliomyelitis. The results were compared with previous observations in healthy subjects as well as subjects with motor neuron disease. In antecedent poliomyelitis there was a reduced proportion of nerve fibres with low conduction velocity as compared with the findings in healthy subjects. The mean value of the axonal conduction velocities in antecedent poliomyelitis (42.4 +/- 3.7 m/s, M +/- SD) was significantly higher (p less than 0.01) while in motor neuron disease the corresponding value (35.2 +/- 7.8 m/s) was significantly lower (p less than 0.005) than in healthy subjects (39.8 +/- 4.9 m/s). In antecedent poliomyelitis the conduction velocity and refractory period were related as in healthy subjects while abnormally long refractory periods were observed in motor neuron disease. Images PMID:3585356
Martin, Elodie; Yanicostas, Constantin; Rastetter, Agnès; Alavi Naini, Seyedeh Maryam; Maouedj, Alissia; Kabashi, Edor; Rivaud-Péchoux, Sophie; Brice, Alexis; Stevanin, Giovanni; Soussi-Yanicostas, Nadia
2012-12-01
Hereditary spastic paraplegias (HSPs) are rare neurological conditions caused by degeneration of the long axons of the cerebrospinal tracts, leading to locomotor impairment and additional neurological symptoms. There are more than 40 different causative genes, 24 of which have been identified, including SPG11 and SPG15 mutated in complex clinical forms. Since the vast majority of the causative mutations lead to loss of function of the corresponding proteins, we made use of morpholino-oligonucleotide (MO)-mediated gene knock-down to generate zebrafish models of both SPG11 and SPG15 and determine how invalidation of the causative genes (zspg11 and zspg15) during development might contribute to the disease. Micro-injection of MOs targeting each gene caused locomotor impairment and abnormal branching of spinal cord motor neurons at the neuromuscular junction. More severe phenotypes with abnormal tail developments were also seen. Moreover, partial depletion of both proteins at sub-phenotypic levels resulted in the same phenotypes, suggesting for the first time, in vivo, a genetic interaction between these genes. In conclusion, the zebrafish orthologues of the SPG11 and SPG15 genes are important for proper development of the axons of spinal motor neurons and likely act in a common pathway to promote their proper path finding towards the neuromuscular junction. Copyright © 2012 Elsevier Inc. All rights reserved.
Positional Cues in the Drosophila Nerve Cord: Semaphorins Pattern the Dorso-Ventral Axis
Zlatic, Marta; Li, Feng; Strigini, Maura; Grueber, Wesley; Bate, Michael
2009-01-01
During the development of neural circuitry, neurons of different kinds establish specific synaptic connections by selecting appropriate targets from large numbers of alternatives. The range of alternative targets is reduced by well organised patterns of growth, termination, and branching that deliver the terminals of appropriate pre- and postsynaptic partners to restricted volumes of the developing nervous system. We use the axons of embryonic Drosophila sensory neurons as a model system in which to study the way in which growing neurons are guided to terminate in specific volumes of the developing nervous system. The mediolateral positions of sensory arbors are controlled by the response of Robo receptors to a Slit gradient. Here we make a genetic analysis of factors regulating position in the dorso-ventral axis. We find that dorso-ventral layers of neuropile contain different levels and combinations of Semaphorins. We demonstrate the existence of a central to dorsal and central to ventral gradient of Sema 2a, perpendicular to the Slit gradient. We show that a combination of Plexin A (Plex A) and Plexin B (Plex B) receptors specifies the ventral projection of sensory neurons by responding to high concentrations of Semaphorin 1a (Sema 1a) and Semaphorin 2a (Sema 2a). Together our findings support the idea that axons are delivered to particular regions of the neuropile by their responses to systems of positional cues in each dimension. PMID:19547742
Zhang, Wenjie; Xu, Dongsheng; Cui, Jingjing; Jing, Xianghong; Xu, Nenggui; Liu, Jianhua; Bai, Wanzhu
2017-02-01
Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA. © 2016 Wiley Periodicals, Inc.
2018-04-30
Ann Arbor Stage I Hodgkin Lymphoma; Ann Arbor Stage IA Hodgkin Lymphoma; Ann Arbor Stage IB Hodgkin Lymphoma; Ann Arbor Stage II Hodgkin Lymphoma; Ann Arbor Stage IIA Hodgkin Lymphoma; Ann Arbor Stage IIB Hodgkin Lymphoma
Sweat testing to evaluate autonomic function
Illigens, Ben M.W.; Gibbons, Christopher H.
2011-01-01
Sudomotor dysfunction is one of the earliest detectable neurophysiologic abnormalities in distal small fiber neuropathy. Traditional neurophysiologic measurements of sudomotor function include thermoregulatory sweat testing (TST), quantitative sudomotor axon reflex testing (QSART), silicone impressions, the sympathetic skin response (SSR), and the recent addition of quantitative direct and indirect axon reflex testing (QDIRT). These testing techniques, when used in combination, can detect and localized pre- and postganglionic lesions, can provide early diagnosis of sudomotor dysfunction and can monitor disease progression or disease recovery. In this article, we review the common tests available for assessment of sudomotor function, detail the testing methodology, review the limitations and provide examples of test results. PMID:18989618
Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.
Fieremans, E; Benitez, A; Jensen, J H; Falangola, M F; Tabesh, A; Deardorff, R L; Spampinato, M V S; Babb, J S; Novikov, D S; Ferris, S H; Helpern, J A
2013-01-01
Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.
2018-04-17
Ann Arbor Stage III Grade 1 Follicular Lymphoma; Ann Arbor Stage III Grade 2 Follicular Lymphoma; Ann Arbor Stage III Grade 3 Follicular Lymphoma; Ann Arbor Stage IV Grade 1 Follicular Lymphoma; Ann Arbor Stage IV Grade 2 Follicular Lymphoma; Ann Arbor Stage IV Grade 3 Follicular Lymphoma; Grade 3a Follicular Lymphoma
Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.
Ferreira, Tiago; Ou, Yimiao; Li, Sally; Giniger, Edward; van Meyel, Donald J
2014-02-01
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A
2009-09-29
Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.
Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun
2018-05-02
Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.
2009-10-01
cell 68814_C001.indd 9 6/ 22 /2009 12:32:42 PM 10 Autism: Oxidative Stress, Infl ammation and Immune Abnormalities proliferation, apoptosis, cell ...containing cells in the brain of 7- to 14-year-old autistic subjects (by 69% in area 22 , 149% in area 39, and 45% in area 44). The increase in the number...Maeshima et al., 1998). In vitro studies have shown that that 5- HT inhibits the growth and arborization of Purkinje cell dendrites through 5-HT2A
NASA Astrophysics Data System (ADS)
Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.
2016-03-01
Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer's disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) - directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy - characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease.
2018-06-25
Ann Arbor Stage IIB Hodgkin Lymphoma; Ann Arbor Stage IIIB Hodgkin Lymphoma; Ann Arbor Stage IV Hodgkin Lymphoma; Ann Arbor Stage IVA Hodgkin Lymphoma; Ann Arbor Stage IVB Hodgkin Lymphoma; Childhood Hodgkin Lymphoma; Classic Hodgkin Lymphoma
Dung, Vuu My; Suong, Dang Ngoc Anh; Okamaoto, Yuji; Hiramatsu, Yu; Thao, Dang Thi Phuong; Yoshida, Hideki; Takashima, Hiroshi; Yamaguchi, Masamitsu
2018-05-15
Pyruvate dehydrogenase complex deficiency (PDCD) is a common primary cause of defects in mitochondrial function and also can lead to peripheral neuropathy. Pyruvate dehydrogenase E1 component subunit beta (PDHB) is a subunit of pyruvate dehydrogenase E1, which is a well-known component of PDC. In Drosophila melanogaster, the CG11876 (dPDHB) gene is a homolog of human PDHB. In this study, we established a Drosophila model with neuron-specific knockdown of dPDHB to investigate its role in neuropathy pathogenesis. Knockdown of dPDHB in pan-neurons induced locomotor defects in both larval and adult stages, which were consistent with abnormal morphology of the motor neuron terminals at neuromuscular junctions and mitochondrial fragmentation in brains. Moreover, neuron-specific knockdown of dPDHB also shortened the lifespan of adult flies. In addition, flies with knockdown of dPDHB manifested a rough eye phenotype and aberrant photoreceptor axon targeting. These results with the Drosophila model suggest the involvement of PDHB in peripheral neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.
Integrative Properties of the Pe1 Neuron, a Unique Mushroom Body Output Neuron
Rybak, Jürgen; Menzel, Randolf
1998-01-01
A mushroom body extrinsic neuron, the Pe1 neuron, connects the peduncle of the mushroom body (MB) with two areas of the protocerebrum in the honeybee brain, the lateral protocerebral lobe (LPL) and the ring neuropil around the α-lobe. Each side of the bee brain contains only one Pe1 neuron. Using a combination of intracellular recording and neuroanatomical techniques we analyzed its properties of integrative processing of the different sensory modalities. The Pe1 neuron responds to visual, mechanosensory, and olfactory stimuli. The responses are broadly tuned, consisting of a sustained increase of spike frequency to the onset and offset of light flashes, to horizontal and vertical movements of extended objects, to mechanical stimuli applied to the antennae or mouth parts, and to all olfactory stimuli tested (29 chemicals). These multisensory properties are reflected in its dendritic organization. Serial reconstructions of intracellularly stained Pe1 neurons using confocal microscopy reveal that the Pe1 neuron arborizes throughout all layers of MB peduncle with finger-like, vertically oriented dendrites. The peduncle of the MB is formed by the axons of Kenyon cells, whose dendritic inputs are organized in modality-specific subcompartments of the calyx region. The peduncular arborization indicates that the Pe1 neuron receives input from Kenyon cells of all calycal subcompartments. Because the Pe1 neuron changes its odor responses transiently as a consequence of olfactory learning, we hypothesize that the multimodal response properties might have a role in memory consolidation and help to establish contextual references in the long-term trace. PMID:10454378
Somatic and neuritic spines on tyrosine hydroxylase–immunopositive cells of rat retina
Fasoli, Anna; Dang, James; Johnson, Jeffrey S.; Gouw, Aaron H.; Iseppe, Alex Fogli; Ishida, Andrew T.
2018-01-01
Dopamine- and tyrosine hydroxylase–immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAARα1), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. PMID:28035673
Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.
Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro
2018-01-01
In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.
Kagitani-Shimono, Kuriko; Mohri, Ikuko; Yagi, Takashi; Taniike, Masako; Suzuki, Kinuko
2008-05-01
Globoid cell leukodystrophy (GLD; Krabbe's disease), caused by a genetic galactosylceramidase deficiency, affects both the central and peripheral nervous systems (CNS and PNS). Allogenic hematopoietic stem-cell transplantation (HSCT) has been beneficial for clinical improvement of this disease. However, recent reports by Siddiqi et al. suggested that none of their transplanted patients achieved complete normalization of their peripheral nerve function, despite the well-documented remyelination of the CNS and PNS in the treated patients. We hypothesized that the PNS dysfunction in GLD is due to altered Schwann cell-axon interactions, resulting in structural abnormalities of the node of Ranvier and aberrant expression of ion channels caused by demyelination and that the persistence of this altered interaction is responsible for the dysfunction of the PNS after HSCT. Since there has not been any investigation of the Schwann cell-axonal relationship in twitcher mice, an authentic model of GLD, we first investigated structural abnormalities, focusing on the node of Ranvier in untreated twitcher mice, and compared the results with those obtained after receiving bone marrow transplantation (BMT). As expected, we found numerous supernumerary Schwann cells that formed structurally abnormal nodes of Ranvier. Similar findings, though at somewhat variable extent, were detected in mice treated with BMT. Activated supernumerary Schwann cells expressed GFAP immunoreactivity and generated Alcian blue-positive extracellular matrix (ECM) in the endoneurial space. The processes of these supernumerary Schwann cells often covered and obliterated the nodal regions. Furthermore, the distribution of Na(+) channel immunoreactivity was diffuse without the concentration at the nodes of Ranvier as seen in wild-type mice. Neither K(+) channels nor Neurexin IV/ Caspr/ Paranoidin (NCP-1) were detected in the twi/twi sciatic nerve. The results of our study suggest the importance of normalization of the Schwann cell-axon relationship for the functional recovery of peripheral nerves, when one considers therapeutic strategies for PNS pathology in GLD.
2018-06-27
Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
Ultrastructural Examination of Diffuse and Specific Tectopulvinar Projections in the Tree Shrew
CHOMSUNG, RANIDA D.; PETRY, HEYWOOD M.; BICKFORD, MARTHA E.
2008-01-01
Two pathways from the superior colliculus (SC) to the tree shrew pulvinar nucleus have been described, one in which the axons terminate in dense (or specific) patches and one in which the axon arbors are more diffusely organized (Luppino et al. [1988] J. Comp. Neurol. 273:67– 86). As predicted by Lyon et al. ([2003] J. Comp. Neurol. 467:593– 606), we found that anterograde labeling of the diffuse tectopulvinar pathway terminated in the acetylcholinesterase (AChE)-rich dorsal pulvinar (Pd), whereas the specific pathway terminated in the AChE-poor central pulvinar (Pc). Injections of retrograde tracers in Pd labeled non-γ-aminobutyric acid (GABA)-ergic wide-field vertical cells located in the lower stratum griseum superficiale and stratum opticum of the medial SC, whereas injections in Pc labeled similar cells in more lateral regions. At the ultrastructural level, we found that tectopulvinar terminals in both Pd and Pc contact primarily non-GABAergic dendrites. When present, however, synaptic contacts on GABAergic profiles were observed more frequently in Pc (31% of all contacts) compared with Pd (16%). Terminals stained for the type 2 vesicular glutamate transporter, a potential marker of tectopulvinar terminals, also contacted more GABAergic profiles in Pc (19%) compared with Pd (4%). These results provide strong evidence for the division of the tree shrew pulvinar into two distinct tectorecipient zones. The potential functions of these pathways are discussed. J. Comp. Neurol. 510:24 – 46, 2008. PMID:18615501
Brat, D J; Windebank, A J; Brimijoin, S
1992-05-01
The emulsifier for cyclosporin in clinical i.v. formulations, Cremophor EL, has recently come into question as a possible source of neurotoxic side effects in immunosuppressant therapy. To address this issue we tested Cremophor EL and cyclosporin on an in vitro neuronal model, the differentiating N1E.115 neuroblastoma cell. In terms of effects on elaboration of neurites by these cells, Cremophor accounted for nearly all the neurotoxicity of clinically formulated cyclosporin. At a concentration of 0.005% (v/v), Cremophor EL halved the number of cells that extended neurites after 48 hr in serum-free medium. Average neurite length was also reduced substantially. Inhibition of neurite outgrowth first became apparent 24 hr after exposure to Cremophor EL. Neurites that did grow in the presence of Cremophor were disfigured by a series of regularly spaced, gross dilatations (beads) filled with large (0.2-0.5 microns) lipid vesicles. Abnormalities of rapid axonal transport were documented in the beaded neurites by means of video-enhanced contrast, differential interference-contrast microscopy. Velocity of retrograde transport remained normal, but the velocity of anterograde transport and the total bidirectional flux of organelles were both reduced. It seems likely that the inhibition of neurite outgrowth, the swellings of the neurites and the abnormalities of transport are interrelated phenomena.
Enzalutamide in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma
2018-03-27
Ann Arbor Stage I Mantle Cell Lymphoma; Ann Arbor Stage II Mantle Cell Lymphoma; Ann Arbor Stage III Mantle Cell Lymphoma; Ann Arbor Stage IV Mantle Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Mantle Cell Lymphoma
Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.
2009-01-01
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons. PMID:19787046
Otero, María Gabriela; Fernandez Bessone, Ivan; Hallberg, Alan Earle; Cromberg, Lucas Eneas; De Rossi, María Cecilia; Saez, Trinidad M; Levi, Valeria; Almenar-Queralt, Angels; Falzone, Tomás Luis
2018-06-11
Alzheimer disease (AD) pathology includes the accumulation of poly-ubiquitylated (also known as poly-ubiquitinated) proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. By using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescence cross-correlation analyses and membrane internalization blockage experiments showed that plasma membrane APP does not contribute to transport defects. Moreover, by western blotting and double-color APP imaging, we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery, where β-cleavage is induced. Taken together, we found that proteasomes control the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates the intracellular APP dynamics, and defects in proteasome activity can be considered a contributing factor that leads to abnormal APP metabolism in AD.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Sun, Rui-Di; Fu, Bing; Jiang, Jun
2017-05-01
To investigate the role of short-latency somatosensory evoked potential (SSEP) in the diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). A total of 48 children with a confirmed or suspected CIDP and 40 healthy children were enrolled. Nerve electrophysiological examination and/or SSEP examination was performed (the children in the healthy control group only underwent SSEP examination). Four-lead electromyography was used for nerve electrophysiological examination, including at least 4 motor nerves and 2 sensory nerves. N6 (elbow potential), N13 (cervical cord potential), and N20 (cortex potential) of the median nerve and N8 (popliteal fossa potential), N22 (lumbar cord potential), and P39 (cortex potential) of the tibial nerve were observed by SSEP examination. Among the 48 children with CIDP, 35 had demyelination in both motor and sensory nerves, 8 had demyelination in sensory nerves, and 5 had axonal degeneration. SSEP examination showed that 7 had conduction abnormality in the trunk of the brachial plexus and/or the posterior root and 33 had damage in the lumbosacral plexus and/or the posterior root. The 40 children with abnormal findings of SSEP examination included 8 children with affected sensory nerves and 5 children with secondary axonal degeneration who did not meet the electrophysiological diagnostic criteria for CIDP. Compared with the healthy control group, the CIDP group had significantly prolonged latency periods of N13 and N22 (P<0.05). SSEP can be used for the auxiliary diagnosis of CIDP, especially in CIDP children with affected sensory nerves or secondary axonal degeneration.
Menezes, Manoj P; Farrar, Michelle A; Webster, Richard; Antony, Jayne; O'Brien, Katherine; Ouvrier, Robert; Kiernan, Matthew C; Burns, Joshua; Vucic, Steve
2016-01-01
Brown-Vialetto-Van Laere (BVVL) syndrome is a progressive motor and sensory neuronopathy secondary to mutations in SLC52A2 encoding the riboflavin transporter type 2 (RFVT2). The phenotype is characterized by early childhood onset hearing loss and sensory ataxia followed by progressive upper limb weakness, optic atrophy, bulbar weakness and respiratory failure. To gain further insight into disease pathophysiology and response to riboflavin supplementation, the present study investigated whether axonal ion channel or membrane abnormalities were a feature of BVVL. Axonal excitability studies and clinical assessments were prospectively undertaken on six patients with BVVL secondary to riboflavin transporter deficiency type 2 (age range 10-21 years) at baseline and after 12 months of riboflavin (1000 mg daily) therapy. At baseline, depolarizing and hyperpolarizing threshold electrotonus was 'fanned out' and superexcitability was increased, while the resting current-threshold gradient and refractoriness were significantly reduced in BVVL patients when compared to controls. Mathematical modeling suggested that functional alterations of myelin underlay these findings with an increase in myelin permeability. Riboflavin therapy resulted in partial normalization of the axonal excitability findings, paralleled by maintenance of muscle strength. The present study established that abnormalities in myelin permeability at the paranode was a feature of BVVL and were partially normalized with riboflavin therapy. This study reveals a novel pathophysiological process for motor nerve dysfunction in BVVL. It also indicates that nerve excitability studies may be further developed in larger cohorts as a potential biomarker to identify treatment response for BVVL patients. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B
2016-03-01
There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.
Silverman, A J; Antunes, J L; Abrams, G M; Nilaver, G; Thau, R; Robinson, J A; Ferin, M; Krey, L C
1982-11-01
Immunocytochemical procedures on thick, unembedded tissue sections were used to study the localization of LHRH neurons and fibers in the diencephalon and mesencephalon of rhesus and pigtailed macaques. Cell bodies were visualized in large numbers. Much of their dendritic arborization was also filled with reaction product. Cell bodies were present in the preoptic area, the periventricular hypothalamic zone from the level of the anterior hypothalamus to the premammillary nuclei, the infundibular nucleus, supraoptic nucleus, several septal nuclei, the nervus terminalis, and the amygdala. The localization of LHRH cells in several of these areas represents new observations. LHRH axons were observed to innervate the portal vessels in the median eminence, the organum vasculosum of the lamina terminalis, the median eminence, the organum vasculosum of the lamina terminalis, the medial mammillary nuclei, the epithalamus, and the amygdala. These observations are discussed in relationship to the regulation of gonadotropin secretion in the primate.
Real-time million-synapse simulation of rat barrel cortex.
Sharp, Thomas; Petersen, Rasmus; Furber, Steve
2014-01-01
Simulations of neural circuits are bounded in scale and speed by available computing resources, and particularly by the differences in parallelism and communication patterns between the brain and high-performance computers. SpiNNaker is a computer architecture designed to address this problem by emulating the structure and function of neural tissue, using very many low-power processors and an interprocessor communication mechanism inspired by axonal arbors. Here we demonstrate that thousand-processor SpiNNaker prototypes can simulate models of the rodent barrel system comprising 50,000 neurons and 50 million synapses. We use the PyNN library to specify models, and the intrinsic features of Python to control experimental procedures and analysis. The models reproduce known thalamocortical response transformations, exhibit known, balanced dynamics of excitation and inhibition, and show a spatiotemporal spread of activity though the superficial cortical layers. These demonstrations are a significant step toward tractable simulations of entire cortical areas on the million-processor SpiNNaker machines in development.
Sun, Qian; Srinivas, Kalyan V; Sotayo, Alaba; Siegelbaum, Steven A
2014-01-01
Synaptic inputs from different brain areas are often targeted to distinct regions of neuronal dendritic arbors. Inputs to proximal dendrites usually produce large somatic EPSPs that efficiently trigger action potential (AP) output, whereas inputs to distal dendrites are greatly attenuated and may largely modulate AP output. In contrast to most other cortical and hippocampal neurons, hippocampal CA2 pyramidal neurons show unusually strong excitation by their distal dendritic inputs from entorhinal cortex (EC). In this study, we demonstrate that the ability of these EC inputs to drive CA2 AP output requires the firing of local dendritic Na+ spikes. Furthermore, we find that CA2 dendritic geometry contributes to the efficient coupling of dendritic Na+ spikes to AP output. These results provide a striking example of how dendritic spikes enable direct cortical inputs to overcome unfavorable distal synaptic locale to trigger axonal AP output and thereby enable efficient cortico-hippocampal information flow. DOI: http://dx.doi.org/10.7554/eLife.04551.001 PMID:25390033
Quantitative assessment of neural outgrowth using spatial light interference microscopy
NASA Astrophysics Data System (ADS)
Lee, Young Jae; Cintora, Pati; Arikkath, Jyothi; Akinsola, Olaoluwa; Kandel, Mikhail; Popescu, Gabriel; Best-Popescu, Catherine
2017-06-01
Optimal growth as well as branching of axons and dendrites is critical for the nervous system function. Neuritic length, arborization, and growth rate determine the innervation properties of neurons and define each cell's computational capability. Thus, to investigate the nervous system function, we need to develop methods and instrumentation techniques capable of quantifying various aspects of neural network formation: neuron process extension, retraction, stability, and branching. During the last three decades, fluorescence microscopy has yielded enormous advances in our understanding of neurobiology. While fluorescent markers provide valuable specificity to imaging, photobleaching, and photoxicity often limit the duration of the investigation. Here, we used spatial light interference microscopy (SLIM) to measure quantitatively neurite outgrowth as a function of cell confluence. Because it is label-free and nondestructive, SLIM allows for long-term investigation over many hours. We found that neurons exhibit a higher growth rate of neurite length in low-confluence versus medium- and high-confluence conditions. We believe this methodology will aid investigators in performing unbiased, nondestructive analysis of morphometric neuronal parameters.
Real-time million-synapse simulation of rat barrel cortex
Sharp, Thomas; Petersen, Rasmus; Furber, Steve
2014-01-01
Simulations of neural circuits are bounded in scale and speed by available computing resources, and particularly by the differences in parallelism and communication patterns between the brain and high-performance computers. SpiNNaker is a computer architecture designed to address this problem by emulating the structure and function of neural tissue, using very many low-power processors and an interprocessor communication mechanism inspired by axonal arbors. Here we demonstrate that thousand-processor SpiNNaker prototypes can simulate models of the rodent barrel system comprising 50,000 neurons and 50 million synapses. We use the PyNN library to specify models, and the intrinsic features of Python to control experimental procedures and analysis. The models reproduce known thalamocortical response transformations, exhibit known, balanced dynamics of excitation and inhibition, and show a spatiotemporal spread of activity though the superficial cortical layers. These demonstrations are a significant step toward tractable simulations of entire cortical areas on the million-processor SpiNNaker machines in development. PMID:24910593
Kullander, K; Croll, S D; Zimmer, M; Pan, L; McClain, J; Hughes, V; Zabski, S; DeChiara, T M; Klein, R; Yancopoulos, G D; Gale, N W
2001-04-01
Growing axons follow highly stereotypical pathways, guided by a variety of attractive and repulsive cues, before establishing specific connections with distant targets. A particularly well-known example that illustrates the complexity of axonal migration pathways involves the axonal projections of motor neurons located in the motor cortex. These projections take a complex route during which they first cross the midline, then form the corticospinal tract, and ultimately connect with motor neurons in the contralateral side of the spinal cord. These obligatory contralateral connections account for why one side of the brain controls movement on the opposing side of the body. The netrins and slits provide well-known midline signals that regulate axonal crossings at the midline. Herein we report that a member of the ephrin family, ephrin-B3, also plays a key role at the midline to regulate axonal crossing. In particular, we show that ephrin-B3 acts as the midline barrier that prevents corticospinal tract projections from recrossing when they enter the spinal gray matter. We report that in ephrin-B3(-/-) mice, corticospinal tract projections freely recross in the spinal gray matter, such that the motor cortex on one side of the brain now provides bilateral input to the spinal cord. This neuroanatomical abnormality in ephrin-B3(-/-) mice correlates with loss of unilateral motor control, yielding mice that simultaneously move their right and left limbs and thus have a peculiar hopping gait quite unlike the alternate step gait displayed by normal mice. The corticospinal and walking defects in ephrin-B3(-/-) mice resemble those recently reported for mice lacking the EphA4 receptor, which binds ephrin-B3 as well as other ephrins, suggesting that the binding of EphA4-bearing axonal processes to ephrin-B3 at the midline provides the repulsive signal that prevents corticospinal tract projections from recrossing the midline in the developing spinal cord.
Introduction to the special section: Myelin and oligodendrocyte abnormalities in schizophrenia.
Haroutunian, Vahram; Davis, Kenneth L
2007-08-01
A central tenet of modern views of the neurobiology of schizophrenia is that the symptoms of schizophrenia arise from a failure of adequate communication between different brain regions and disruption of the circuitry that underlies behaviour and perception. Historically this disconnectivity syndrome has been approached from a neurotransmitter-based perspective. However, efficient communication between brain circuits is also contingent on saltatory signal propagation and salubrious myelination of axons. The papers in this Special Section examine the neuroanatomical and molecular biological evidence for abnormal myelination and oligodendroglial function in schizophrenia through studies of post-mortem brain tissue and animal model systems. The picture that emerges from the studies described suggests that although schizophrenia is not characterized by gross abnormalities of white matter such as those evident in multiple sclerosis, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths.
Mapping pathological phenotypes in a mouse model of CDKL5 disorder.
Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T
2014-01-01
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.
Neurofilament protein levels: quantitative analysis in essential tremor cerebellar cortex.
Louis, Elan D; Ma, Karen; Babij, Rachel; Cortés, Etty; Liem, Ronald K; Vonsattel, Jean-Paul G; Faust, Phyllis L
2012-06-14
Essential tremor (ET) is among the most prevalent neurological diseases. A substantial increase in the number of Purkinje cell axonal swellings (torpedoes) has been identified in ET brains. We recently demonstrated that torpedoes in ET contain an over-accumulation of disorganized neurofilament (NF) proteins. This now raises the question whether NF protein composition and/or phosphorylation state in cerebellar tissue might differ between ET cases and controls. We used a Western blot analysis to compare the levels and phosphorylation state of NF proteins and α-internexin in cerebellar tissue from 47 ET cases versus 26 controls (2:1 ratio). Cases and controls did not differ with respect to the cerebellar levels of NF-light (NF-L), NF-medium (NF-M), NF-heavy (NF-H), or α-internexin. However, SMI-31 levels (i.e., phosphorylated NF-H) and SMI-32 levels (i.e., non-phosphorylated NF-H) were significantly higher in ET cases than controls (1.28±0.47 vs. 1.06±0.32, p=0.02; and 1.38±0.75 vs. 1.00±0.42, p=0.006). Whether the abnormal phosphorylation state that we observed is a cause of defective axonal transport and/or function of NFs in ET is not known. NF abnormalities have been demonstrated in several neurodegenerative diseases. Regardless of whether these protein aggregates are the cause or consequence of these diseases, NF abnormalities have been shown to be an important factor in the cellular disruption observed in several neurodegenerative diseases. Therefore, further analyses of these NF abnormalities and their mechanisms are important to enhance our understanding of disease pathogenesis in ET. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
[Two novel pathogenic mutations of GAN gene identified in a patient with giant axonal neuropathy].
Wang, Juan; Ma, Qingwen; Cai, Qin; Liu, Yanna; Wang, Wei; Ren, Zhaorui
2016-06-01
To explore the disease-causing mutations in a patient suspected for giant axonal neuropathy(GAN). Target sequence capture sequencing was used to screen potential mutations in genomic DNA extracted from peripheral blood sample of the patient. Sanger sequencing was applied to confirm the detected mutation. The mutation was verified among 400 GAN alleles from 200 healthy individuals by Sanger sequencing. The function of the mutations was predicted by bioinformatics analysis. The patient was identified as a compound heterozygote carrying two novel pathogenic GAN mutations, i.e., c.778G>T (p.Glu260Ter) and c.277G>A (p.Gly93Arg). Sanger sequencing confirmed that the c.778G>T (p.Glu260Ter) mutation was inherited from his father, while c.277G>A (p.Gly93Arg) was inherited from his mother. The same mutations was not found in the 200 healthy individuals. Bioinformatics analysis predicted that the two mutations probably caused functional abnormality of gigaxonin. Two novel GAN mutations were detected in a patient with GAN. Both mutations are pathogenic and can cause abnormalities of gigaxonin structure and function, leading to pathogenesis of GAN. The results may also offer valuable information for similar diseases.
Lahoria, Rajat; Pittock, Sean J; Gadoth, Avi; Engelstad, Janean K; Lennon, Vanda A; Klein, Christopher J
2017-04-01
Voltage-gated Kv1 potassium channel complex (VGKC) autoantibodies subtyped for leucine-rich glioma-inactivated 1 (LGI1), contactin-associated-proteinlike 2 (CASPR2), and Kv IgGs have a spectrum of neurological presentations. Painful polyneuropathy is seen in some patients, but nerve pathology descriptions are lacking. Clinicopathologic features were studied in subtyped VGKC-autoantibody-seropositive patients who had undergone nerve biopsies. Five patients were identified, 1 LGI1 IgG positive and 1 CASPR2 IgG positive, but all negative for Kv1.1-, 1.2-, 1.6-subtyped IgG autoantibodies. Median symptom duration was 17 months. Pain was the predominant symptom; 3 had mild sensory loss and/or weakness. Histopathological abnormalities were limited to axonal loss in 3. None had mononuclear cellular infiltrates. Electron micrographs revealed no interstitial abnormalities. Three patients reported marked improvement in pain with immunotherapy. The nerve biopsy histopathology of patients subtyped for LGI1 and CASPR2 IgGs within the VGKC-complex spectrum disorders shows either normal density or axonal fiber loss without inflammatory infiltrates. A reversible neural hyperexcitable mechanism is considered to be the cause of this painful polyneuropathy. Muscle Nerve 55: 520-525, 2017. © 2016 Wiley Periodicals, Inc.
Harden, Scott W.; Frazier, Charles J.
2016-01-01
Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. PMID:27068005
Factoring neurotrophins into a neurite-based pathophysiological model of schizophrenia.
Bellon, Alfredo; Krebs, Marie-Odile; Jay, Thérèse M
2011-06-01
Neurotrophins are growth factors that, through variations in concentration and changes in receptor expression, regulate the formation of axons and dendrites during development and throughout adult life. Here we review these growth factors, particularly in the context of schizophrenia, a psychiatric disorder characterized by neurodevelopmental abnormalities. We first discuss emerging information derived from physiologically relevant organotypic cultures and in vivo studies regarding the effects of neurotrophins on the neuronal structure including pruning and GABAergic neurons. We then review postmortem studies of neurotrophin levels and their receptors in brains of individuals with schizophrenia, and compare them with what is known about neurotrophin effects on neuronal structure. This comparison indicates that only some neuropathological defects encountered in patients with schizophrenia can be explained by the single action of neurotrophins on dendrites and axons. However, we propose that a number of inconsistent findings and apparently unrelated results in the schizophrenia field can be reconciled if neurons are considered structurally plastic cells capable of extending and retracting dendrites and axons throughout life. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alba-Ferrara, L M; de Erausquin, Gabriel A
2013-01-01
Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.
ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila
Liao, Pin-Chao; Tandarich, Lauren C.
2017-01-01
Mitochondria perform critical functions including aerobic ATP production and calcium (Ca2+) homeostasis, but are also a major source of reactive oxygen species (ROS) production. To maintain cellular function and survival in neurons, mitochondria are transported along axons, and accumulate in regions with high demand for their functions. Oxidative stress and abnormal mitochondrial axonal transport are associated with neurodegenerative disorders. However, we know little about the connection between these two. Using the Drosophila third instar larval nervous system as the in vivo model, we found that ROS inhibited mitochondrial axonal transport more specifically, primarily due to reduced flux and velocity, but did not affect transport of other organelles. To understand the mechanisms underlying these effects, we examined Ca2+ levels and the JNK (c-Jun N-terminal Kinase) pathway, which have been shown to regulate mitochondrial transport and general fast axonal transport, respectively. We found that elevated ROS increased Ca2+ levels, and that experimental reduction of Ca2+ to physiological levels rescued ROS-induced defects in mitochondrial transport in primary neuron cell cultures. In addition, in vivo activation of the JNK pathway reduced mitochondrial flux and velocities, while JNK knockdown partially rescued ROS-induced defects in the anterograde direction. We conclude that ROS have the capacity to regulate mitochondrial traffic, and that Ca2+ and JNK signaling play roles in mediating these effects. In addition to transport defects, ROS produces imbalances in mitochondrial fission-fusion and metabolic state, indicating that mitochondrial transport, fission-fusion steady state, and metabolic state are closely interrelated in the response to ROS. PMID:28542430
Transcriptional control of behavior: Engrailed knockout changes cockroach escape trajectories
Booth, David; Marie, Bruno; Domenici, Paolo; Blagburn, Jonathan M; Bacon, Jonathan P
2009-01-01
The cerci of the cockroach are covered with identified sensory hairs, which detect air movements. The sensory neurons which innervate these hairs synapse with giant interneurons (GIs) in the terminal ganglion which in turn synapse with interneurons and leg motorneurons in thoracic ganglia. This neural circuit mediates the animal's escape behavior. The transcription factor Engrailed (En) is expressed only in the medially born sensory neurons, which suggested it could work as a positional determinant of sensory neuron identity. Previously, we used dsRNA interference to abolish En expression, and found that the axonal arborization and synaptic outputs of an identified En-positive sensory neuron changed so that it came to resemble a nearby En-negative cell, which was itself unaffected. We thus demonstrated directly that En controls synaptic choice, as well as axon projections. Is escape behavior affected as a result of this mis-wiring? We recently showed that adult cockroaches keep each escape unpredictable by running along one of a set of preferred escape trajectories (ETs) at fixed angles from the direction of the threatening stimulus. The probability of selecting a particular ET is influenced by wind direction. In this present study we show that early instar juvenile cockroaches also use those same ETs. En knockout significantly perturbs the animals' perception of posterior wind, altering the choice of ETs to one more appropriate for anterior wind. This is the first time that it has been shown that knockout of a transcription factor controlling synaptic connectivity can alter the perception of a directional stimulus. PMID:19494140
Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat
Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.
2014-01-01
The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121
Gap junction-dependent homolog avoidance in the developing CNS.
Baker, Michael W; Yazdani, Neema; Macagno, Eduardo R
2013-10-16
Oppositely directed projections of some homologous neurons in the developing CNS of the medicinal leech (Hirudo verbana), such as the AP cells, undergo a form of contact-dependent homolog avoidance. Embryonic APs extend axons within the connective nerve toward adjacent ganglia, in which they meet and form gap junctions (GJs) with the oppositely directed axons of their segmental homologs, stop growing, and are later permanently retracted (Wolszon et al., 1994a,b). However, early deletion of an AP neuron leads to resumed growth and permanent maintenance of the projections of neighboring APs. Here we test the hypothesis that a GJ-based signaling mechanism is responsible for this instance of homolog avoidance. We demonstrate that selective knockdown of GJ gene Hve-inx1 expression in single embryonic APs, by expressing a short-hairpin interfering RNA, leads to continued growth of the projections of the cell toward, into, and beyond adjacent ganglia. Moreover, the projections of the APs in adjacent ganglia also resume growth, mimicking their responses to cell deletion. Continued growth was also observed when two different INX1 mutant transgenes that abolish dye coupling between APs were expressed. These include a mutant transgene that effectively downregulates all GJ plaques that include the INX1 protein and a closed channel INX1 mutant that retains the adhesive cellular binding characteristic of INX1 GJs but not the open channel pore function. Our results add GJ intercellular communication to the list of molecular signaling mechanisms that can act as mediators of growth-inhibiting cell-cell interactions that define the topography of neuronal arbors.
Wu, Tiecheng; Fan, Jie; Lee, Kim Seng; Li, Xiaoping
2016-02-01
Previous simulation works concerned with the mechanism of non-invasive neuromodulation has isolated many of the factors that can influence stimulation potency, but an inclusive account of the interplay between these factors on realistic neurons is still lacking. To give a comprehensive investigation on the stimulation-evoked neuronal activation, we developed a simulation scheme which incorporates highly detailed physiological and morphological properties of pyramidal cells. The model was implemented on a multitude of neurons; their thresholds and corresponding activation points with respect to various field directions and pulse waveforms were recorded. The results showed that the simulated thresholds had a minor anisotropy and reached minimum when the field direction was parallel to the dendritic-somatic axis; the layer 5 pyramidal cells always had lower thresholds but substantial variances were also observed within layers; reducing pulse length could magnify the threshold values as well as the variance; tortuosity and arborization of axonal segments could obstruct action potential initiation. The dependence of the initiation sites on both the orientation and the duration of the stimulus implies that the cellular excitability might represent the result of the competition between various firing-capable axonal components, each with a unique susceptibility determined by the local geometry. Moreover, the measurements obtained in simulation intimately resemble recordings in physiological and clinical studies, which seems to suggest that, with minimum simplification of the neuron model, the cable theory-based simulation approach can have sufficient verisimilitude to give quantitatively accurate evaluation of cell activities in response to the externally applied field.
Teriakidis, Adrianna; Willshaw, David J; Ribchester, Richard R
2012-10-01
During development, neurons form supernumerary synapses, most of which are selectively pruned leading to stereotyped patterns of innervation. During the development of skeletal muscle innervation, or its regeneration after nerve injury, each muscle fiber is transiently innervated by multiple motor axon branches but eventually by a single branch. The selective elimination of all but one branch is the result of competition between the converging arbors. It is thought that motor neurons initially innervate muscle fibers randomly, but that axon branches from the same neuron (sibling branches) do not converge to innervate the same muscle fiber. However, random innervation would result in many neonatal endplates that are co-innervated by sibling branches. To investigate whether this occurs we examined neonatal levator auris longus (LAL) and 4th deep lumbrical (4DL) muscles, as well as adult reinnervated deep lumbrical muscles (1-4) in transgenic mice expressing yellow fluorescent protein (YFP) as a reporter. We provide direct evidence of convergence of sibling neurites within single fluorescent motor units, both during development and during regeneration after nerve crush. The incidence of sibling neurite convergence was 40% lower in regeneration and at least 75% lower during development than expected by chance. Therefore, there must be a mechanism that decreases the probability of its occurrence. As sibling neurite convergence is not seen in normal adults, or at later timepoints in regeneration, synapse elimination must also remove convergent synaptic inputs derived from the same motor neuron. Mechanistic theories of synaptic competition should now accommodate this form of isoaxonal plasticity. Copyright © 2012 Wiley Periodicals, Inc.
Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations.
Brockmann, Knut; Dreha-Kulaczewski, Steffi; Dechent, Peter; Bönnemann, Carsten; Helms, Gunther; Kyllerman, Marten; Brück, Wolfgang; Frahm, Jens; Huehne, Kathrin; Gärtner, Jutta; Rautenstrauss, Bernd
2008-07-01
Mutations in the mitofusin 2 (MFN2) gene are a major cause of primary axonal Charcot- Marie-Tooth (CMT) neuropathy. This study aims at further characterization of cerebral white matter alterations observed in patients with MFN2 mutations. Molecular genetic, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) investigations were performed in four unrelated patients aged 7 to 38 years with early onset axonal CMT neuropathy. Three distinct and so far undescribed MFN2 mutations were detected. Two patients had secondary macrocephaly and mild diffuse predominantly periventricular white matter alterations on MRI. In addition, one boy had symmetrical T2-hyperintensities in both thalami. Two patients had optic atrophy, one of them with normal MRI. In three patients proton MRS revealed elevated concentrations of total N-acetyl compounds (neuronal marker), total creatine (found in all cells) and myo-inositol (astrocytic marker) in cerebral white and gray matter though with regional variation. These alterations were most pronounced in the two patients with abnormal MRI. DTI of these patients revealed mild reductions of fractional anisotropy and mild increase of mean diffusivity in white matter. The present findings indicate an enhanced cellular density in cerebral white matter of MFN2 neuropathy which is primarily due to a reactive gliosis without axonal damage and possibly accompanied by mild demyelination.
Luigetti, M; Sauchelli, D; Primiano, G; Cuccagna, C; Bernardo, D; Lo Monaco, M; Servidei, S
2016-06-01
Peripheral neuropathy in mitochondrial diseases (MDs) may vary from a subclinical finding in a multisystem syndrome to a severe, even isolated, manifestation in some patients. To investigate the involvement of the peripheral nervous system in MDs extensive electrophysiological studies were performed in 109 patients with morphological, biochemical and genetic diagnosis of MD [12 A3243G progressive external ophthalmoplegia (PEO)/mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), 16 myoclonic epilepsy with ragged-red fibres (MERRF), four mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), 67 PEO with single or multiple deletions of mitochondrial DNA, 10 others]. A neuropathy was found in 49 patients (45%). The incidence was very high in MNGIE (100%), MELAS (92%) and MERRF (69%), whilst 28% of PEO patients had evidence of peripheral involvement. The most frequent abnormality was a sensory axonal neuropathy found in 32/49 patients (65%). A sensory-motor axonal neuropathy was instead detected in 16% of the patients and sensory-motor axonal demyelinating neuropathy in 16%. Finally one Leigh patient had a motor axonal neuropathy. It is interesting to note that the great majority had preserved tendon reflexes and no sensory disturbances. In conclusion, peripheral involvement in MD is frequent even if often mild or asymptomatic. The correct identification and characterization of peripheral neuropathy through electrophysiological studies represents another tile in the challenge of MD diagnosis. © 2016 EAN.
Mallik, Shahrukh; Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T
2015-04-01
In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. © The Author(s), 2014.
[Review of the recent literature on hereditary neuropathies].
Birouk, N
2014-12-01
The recent literature included interesting reports on the pathogenic mechanisms of hereditary neuropathies. The axonal traffic and its abnormalities in some forms of Charcot-Marie-Tooth (CMT) disease were particularly reviewed by Bucci et al. Many genes related to CMT disease code for proteins that are involved directly or not in intracellular traffic. KIF1B controls vesicle motility on microtubules. MTMR2, MTMR13 and FIG4 regulate the metabolism of phosphoinositide at the level of endosomes. The HSPs are involved in the proteasomal degradation. GDAP1 and MFN2 regulate the mitochondrial fission and fusion respectively and the mitochondial transport within the axon. Pareyson et al. reported a review on peripheral neuropathies in mitochondrial disorders. They used the term of "mitochondrial CMT" for the forms of CMT with abnormal mitochondrial dynamic or structure. Among the new entities, we can draw the attention to a proximal form of hereditary motor and sensory neuropathy with autosomal dominant inheritance, which is characterized by motor deficit with cramps and fasciculations predominating in proximal muscles. Distal sensory deficit can be present. The gene TFG on chromosome 3 has been recently identified to be responsible for this form. Another rare form of axonal autosomal recessive neuropathy due to HNT1 gene mutation is characterized by the presence of hands myotonia that appears later than neuropathy but constitute an interesting clinical hallmark to orientate the diagnosis of this form. In terms of differential diagnosis, CMT4J due to FIG4 mutation can present with a rapidly progressive and asymmetric weakness that resembles CIDP. Bouhy et al. made an interesting review on the therapeutic trials, animal models and the future therapeutic strategies to be developed in CMT disease. Copyright © 2014. Published by Elsevier Masson SAS.
Sadeghi, N.; Namjoshi, D.; Irfanoglu, M. O.; Wellington, C.; Diaz-Arrastia, R.
2017-01-01
Diffuse axonal injury (DAI) is a hallmark of traumatic brain injury (TBI) pathology. Recently, the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) was developed to generate an experimental model of DAI in a mouse. The characterization of DAI using diffusion tensor magnetic resonance imaging (MRI; diffusion tensor imaging, DTI) may provide a useful set of outcome measures for preclinical and clinical studies. The objective of this study was to identify the complex neurobiological underpinnings of DTI features following DAI using a comprehensive and quantitative evaluation of DTI and histopathology in the CHIMERA mouse model. A consistent neuroanatomical pattern of pathology in specific white matter tracts was identified across ex vivo DTI maps and photomicrographs of histology. These observations were confirmed by voxelwise and regional analysis of DTI maps, demonstrating reduced fractional anisotropy (FA) in distinct regions such as the optic tract. Similar regions were identified by quantitative histology and exhibited axonal damage as well as robust gliosis. Additional analysis using a machine-learning algorithm was performed to identify regions and metrics important for injury classification in a manner free from potential user bias. This analysis found that diffusion metrics were able to identify injured brains almost with the same degree of accuracy as the histology metrics. Good agreement between regions detected as abnormal by histology and MRI was also found. The findings of this work elucidate the complexity of cellular changes that give rise to imaging abnormalities and provide a comprehensive and quantitative evaluation of the relative importance of DTI and histological measures to detect brain injury. PMID:28966972
Melanopsin retinal ganglion cell loss in Alzheimer disease
Ross‐Cisneros, Fred N.; Koronyo, Yosef; Hannibal, Jens; Gallassi, Roberto; Cantalupo, Gaetano; Sambati, Luisa; Pan, Billy X.; Tozer, Kevin R.; Barboni, Piero; Provini, Federica; Avanzini, Pietro; Carbonelli, Michele; Pelosi, Annalisa; Chui, Helena; Liguori, Rocco; Baruzzi, Agostino; Koronyo‐Hamaoui, Maya; Sadun, Alfredo A.; Carelli, Valerio
2015-01-01
Objective Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer disease (AD). We investigated mRGCs in AD, hypothesizing that they contribute to circadian dysfunction. Methods We assessed retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT) in 21 mild‐moderate AD patients, and in a subgroup of 16 we evaluated rest–activity circadian rhythm by actigraphy. We studied postmortem mRGCs by immunohistochemistry in retinas, and axons in optic nerve cross‐sections of 14 neuropathologically confirmed AD patients. We coimmunostained for retinal amyloid β (Aβ) deposition and melanopsin to locate mRGCs. All AD cohorts were compared with age‐matched controls. Results We demonstrated an age‐related optic neuropathy in AD by OCT, with a significant reduction of RNFL thickness (p = 0.038), more evident in the superior quadrant (p = 0.006). Axonal loss was confirmed in postmortem AD optic nerves. Abnormal circadian function characterized only a subgroup of AD patients. Sleep efficiency was significantly reduced in AD patients (p = 0.001). We also found a significant loss of mRGCs in postmortem AD retinal specimens (p = 0.003) across all ages and abnormal mRGC dendritic morphology and size (p = 0.003). In flat‐mounted AD retinas, Aβ accumulation was remarkably evident inside and around mRGCs. Interpretation We show variable degrees of rest–activity circadian dysfunction in AD patients. We also demonstrate age‐related loss of optic nerve axons and specifically mRGC loss and pathology in postmortem AD retinal specimens, associated with Aβ deposition. These results all support the concept that mRGC degeneration is a contributor to circadian rhythm dysfunction in AD. ANN NEUROL 2016;79:90–109 PMID:26505992
Dalakas, M C; Semino-Mora, C; Leon-Monzon, M
2001-11-01
The 2'3'-dideoxycytidine (ddC), a nonazylated dideoxynucleoside analog used for the treatment of AIDS, causes a dose-dependent, painful, sensorimotor axonal peripheral neuropathy in up to 30% of the patients. To investigate the cause of the neuropathy, we performed morphological and molecular studies on nerve biopsy specimens from well-selected patients with ddC-neuropathy and from control subjects with disease, including patients with AIDS-related neuropathy never treated with ddC. Because ddC, in vitro, inhibits the replication of mitochondrial DNA (mtDNA), we counted the number of normal and abnormal mitochondria in a 0.04 mm(2) cross-sectional area of the nerves and quantified the copy numbers of mtDNA by competitive PCR in all specimens. A varying degree of axonal degeneration was present in all nerves. Abnormal mitochondria with enlarged size, excessive vacuolization, electron-dense concentric inclusions and degenerative myelin structures were prominent in the ddC-neuropathy and accounted for 55% +/- 2.5% of all counted mitochondria in the axon and Schwann cells, compared with 9% +/- 0.7% of the controls (p < 0.001). Significantly (p < 0.005) reduced copy numbers, with as high as 80% depletion, of the mtDNA was demonstrated in the nerves of the ddC-treated patients compared with the controls. We conclude that ddC induces a mitochondrial neuropathy with depletion of the nerve's mtDNA. The findings are consistent with the ability of ddC to selectively inhibit the gamma-DNA polymerase in neuronal cell lines. Toxicity to mitochondria of the peripheral nerve is a new cause of acquired neuropathy induced by exogenous toxins and may be the cause of neuropathy associated with the other neurotoxic antiretroviral drugs or toxic-metabolic conditions.
Singh, Katyayani; Loreth, Desirée; Pöttker, Bruno; Hefti, Kyra; Innos, Jürgen; Schwald, Kathrin; Hengstler, Heidi; Menzel, Lutz; Sommer, Clemens J.; Radyushkin, Konstantin; Kretz, Oliver; Philips, Mari-Anne; Haas, Carola A.; Frauenknecht, Katrin; Lilleväli, Kersti; Heimrich, Bernd; Vasar, Eero; Schäfer, Michael K. E.
2018-01-01
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders. PMID:29479305
NASA Astrophysics Data System (ADS)
Wilde, C.; Langehanenberg, P.; Schenk, T.
2017-10-01
For modern production of micro lens systems, such as cementing of doublets or more lenses, precise centering of the lens edge is crucial. Blocking the lens temporarily on a centering arbor ensures that the centers of all optical lens surfaces coincide with the lens edge, while the arbor's axis serves as reference for both alignment and edging process. This theoretical assumption of the traditional cementing technology is not applicable for high-end production. In reality cement wedges between the bottom lens surface and the arbor's ring knife edge may occur and even expensive arbors with single-micron precision suffer from reduced quality of the ring knife edge after multiple usages and cleaning cycles. Consequently, at least the position of the bottom lens surface is undefined and the optical axis does not coincide with the arbor's reference axis! In order to overcome this basic problem in using centering arbors, we present a novel and efficient technique which can measure and align both surfaces of a lens with respect to the arbor axis with high accuracy and furthermore align additional lenses to the optical axis of the bottom lens. This is accomplished by aligning the lens without mechanical contact to the arbor. Thus the lens can be positioned in four degrees of freedom, while the centration errors of all lens surfaces are measured and considered. Additionally the arbor's reference axis is not assumed to be aligned to the rotation axis, but simultaneously measured with high precision.
Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.
Holowka, Nicholas B; O'Neill, Matthew C; Thompson, Nathan E; Demes, Brigitte
2017-09-01
Many aspects of chimpanzee ankle and midfoot joint morphology are believed to reflect adaptations for arboreal locomotion. However, terrestrial travel also constitutes a significant component of chimpanzee locomotion, complicating functional interpretations of chimpanzee and fossil hominin foot morphology. Here we tested hypotheses of foot motion and, in keeping with general assumptions, we predicted that chimpanzees would use greater ankle and midfoot joint ranges of motion during travel on arboreal supports than on the ground. We used a high-speed motion capture system to measure three-dimensional kinematics of the ankle and midfoot joints in two male chimpanzees during three locomotor modes: terrestrial quadrupedalism on a flat runway, arboreal quadrupedalism on a horizontally oriented tree trunk, and climbing on a vertically oriented tree trunk. Chimpanzees used relatively high ankle joint dorsiflexion angles during all three locomotor modes, although dorsiflexion was greatest in arboreal modes. They used higher subtalar joint coronal plane ranges of motion during terrestrial and arboreal quadrupedalism than during climbing, due in part to their use of high eversion angles in the former. Finally, they used high midfoot inversion angles during arboreal locomotor modes, but used similar midfoot sagittal plane kinematics across all locomotor modes. The results indicate that chimpanzees use large ranges of motion at their various ankle and midfoot joints during both terrestrial and arboreal locomotion. Therefore, we argue that chimpanzee foot anatomy enables a versatile locomotor repertoire, and urge caution when using foot joint morphology to reconstruct arboreal behavior in fossil hominins. © 2017 Wiley Periodicals, Inc.
Håkansson, Kerstin; Runker, Annette E; O'Sullivan, Gerard J; Mitchell, Kevin J; Waddington, John L; O'Tuathaigh, Colm M P
2017-02-22
Semaphorins are secreted or membrane-bound proteins implicated in neurodevelopmental processes of axon guidance and cell migration. Exploratory behaviour and motor learning was examined ethologically in Semaphorin 6A (Sema6A) mutant mice. The ethogram of initial exploration in Sema6A knockout mice was characterised by increased rearing to wall with decreased sifting; over subsequent habituation, locomotion, sniffing and rearing to wall were increased, with reduced habituation of rearing seated. Rotarod analysis indicated delayed motor learning in Sema6A heterozygous mutants. Disruption to the axonal guidance and cell migration processes regulated by Sema6A is associated with topographically specific disruption to fundamental aspects of behaviour, namely the ethogram of initial exploration and subsequent habituation to the environment, and motor learning. Copyright © 2017 Elsevier B.V. All rights reserved.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2017-07-01
Axonal damage is one of the most common pathological features of traumatic brain injury, leading to abnormalities in signal propagation for nervous systems. We present a 3D fully coupled electro-mechanical model of a nerve bundle, made with the finite element software Abaqus 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation and independent alteration of the electrical properties for each 3-layer fibre within the bundle. Compression and tension are simulated to induce damage at the nerve membrane. Changes in strain, stress distribution and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatized nerve membrane. Results show greater changes in transmitting action potential in the myelinated fibre.
Nout-Lomas, Yvette S.; Wendland, Michael F.; Mukherjee, Pratik; Huie, J. Russell; Hess, Christopher P.; Mabray, Marc C.; Bresnahan, Jacqueline C.; Beattie, Michael S.
2016-01-01
Abstract Alterations in magnetic resonance imaging (MRI)–derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury. PMID:26483094
Factors Regulating Vagal Sensory Development: Potential Role in Obesities of Developmental Origin
Fox, Edward A.; Murphy, Michelle C.
2008-01-01
Contributors to increased obesity in children may include perinatal under- or overnutrition. Humans and rodents raised under these conditions develop obesity, which like obesities of other etiologies has been associated with increased meal size. Since vagal sensory innervation of the gastrointestinal (GI) tract transmits satiation signals that regulate meal size, one mechanism through which abnormal perinatal nutrition could increase meal size is by altering vagal development, possibly by causing changes in the expression of factors that control it. Therefore, we have begun to characterize development of vagal innervation of the GI tract and the expression patterns and functions of the genes involved in this process. Important events in development of mouse vagal GI innervation occurred between midgestation and the second postnatal week, suggesting they could be vulnerable to effects of abnormal nutrition preor postnatally. One gene investigated was brain- derived neurotrophic factor (BDNF), which regulates survival of a subpopulation of vagal sensory neurons. BDNF was expressed in some developing stomach wall tissues innervated by vagal afferents. At birth, mice deficient in BDNF exhibited a 50% reduction of putative intraganglionic laminar ending mechanoreceptor precursors, and a 50% increase in axons that had exited fiber bundles. Additionally, BDNF was required for patterning of individual axons and fiber bundles in the antrum and differentiation of intramuscular array mechanoreceptors in the forestomach. It will be important to determine whether abnormal perinatal environments alter development of vagal sensory innervation of the GI tract, involving effects on expression of BDNF, or other factors regulating vagal development. PMID:18234244
Mutations in the netrin-1 gene cause congenital mirror movements.
Méneret, Aurélie; Franz, Elizabeth A; Trouillard, Oriane; Oliver, Thomas C; Zagar, Yvrick; Robertson, Stephen P; Welniarz, Quentin; Gardner, R J MacKinlay; Gallea, Cécile; Srour, Myriam; Depienne, Christel; Jasoni, Christine L; Dubacq, Caroline; Riant, Florence; Lamy, Jean-Charles; Morel, Marie-Pierre; Guérois, Raphael; Andreani, Jessica; Fouquet, Coralie; Doulazmi, Mohamed; Vidailhet, Marie; Rouleau, Guy A; Brice, Alexis; Chédotal, Alain; Dusart, Isabelle; Roze, Emmanuel; Markie, David
2017-11-01
Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.
Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.
Hen Chow, Elly Suk; Cheng, Shuk Han
2003-05-01
We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.
Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.
De Gregorio, Cristian; Delgado, Ricardo; Ibacache, Andrés; Sierralta, Jimena; Couve, Andrés
2017-10-15
Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1 - ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila , we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin -null Drosophila mutant ( atl 2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion. © 2017. Published by The Company of Biologists Ltd.
Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.
Najarro, Elvis Huarcaya; Wong, Lianna; Zhen, Mei; Carpio, Edgar Pinedo; Goncharov, Alexandr; Garriga, Gian; Lundquist, Erik A; Jin, Yishi; Ackley, Brian D
2012-03-21
In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.
Titanium oxide as substrate for neural cell growth.
Carballo-Vila, Mónica; Moreno-Burriel, Berta; Chinarro, Eva; Jurado, José R; Casañ-Pastor, Nieves; Collazos-Castro, Jorge E
2009-07-01
Titanium oxide has antiinflammatory activity and tunable electrochemical behavior that make it an attractive material for the fabrication of implantable devices. The most stable composition is TiO2 and occurs mainly in three polymorphs, namely, anatase, rutile, and brookite, which differ in its crystallochemical properties. Here, we report the preparation of rutile surfaces that permit good adherence and axonal growth of cultured rat cerebral cortex neurons. Rutile disks were obtained by sinterization of TiO2 powders of commercial origin or precipitated from hydrolysis of Ti(IV)-isopropoxide. Commercial powders sintered at 1300-1600 degrees C produced rutile surfaces with abnormal grain growth, probably because of impurities of the powders. Neurons cultured on those surfaces survived in variable numbers and showed fewer neurites than on control materials. On the other hand, rutile sintered from precipitated powders had less contaminants and more homogenous grain growth. By adjusting the thermal treatment it was possible to obtain surfaces performing well as substrate for neuron survival for at least 10 days. Some surfaces permitted normal axonal elongation, whereas dendrite growth was generally impaired. These findings support the potential use of titanium oxide in neuroprostheses and other devices demanding materials with enhanced properties in terms of biocompatibility and axon growth promotion.
The CONNECT project: Combining macro- and micro-structure.
Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei
2013-10-15
In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.
Zochodne, D W; Murray, M; Nag, S; Riopelle, R J
1994-02-01
We explored the effects of chronic lumbar intrathecal NMDA infusion (mini-osmotic pumps) in Sprague-Dawley rats on motor and sensory axon integrity. Several different infusion protocols, each given over a 4 week period were examined: 0.15 M NMDA in phosphate buffered saline; phosphate buffered saline without NMDA; and 0.20 M magnesium sulfate plus 0.15 M NMDA; 0.35 M NMDA. In two additional protocols, 0.15 M NMDA or phosphate buffered saline were infused for a total of 8 weeks. Within 1-2 weeks of the onset of NMDA, but not phosphate buffered saline infusions, the rats exhibited irritability, circling, biting and excessive grooming resulting in loss of hair, and skin ulcerations from autotomy localized to lumbar and sacral innervated dermatomes. Co-infusion of NMDA with magnesium sulfate almost completely prevented these findings. The behavioural changes were not associated with abnormalities of sensory or motor conduction. Intrathecal infusion of NMDA induces a chronic "central" experimental pain disorder in rats, localized to the cord segment with the greatest exposure to the infusion, without involvement of peripheral sensory axons and sparing the axonal integrity of anterior horn cells.
The structural and functional characteristics of tectospinal neurons in the golden hamster.
Rhoades, R W; Mooney, R D; Klein, B G; Jacquin, M F; Szczepanik, A M; Chiaia, N L
1987-01-15
Intracellular recording and horseradish peroxidase (HRP) injection techniques were used to delineate the structural and functional characteristics of the superior collicular cells in the hamster, which could be antidromically activated from the first cervical segment of the spinal cord. Thirty-one such neurons were characterized, filled with HRP, and recovered. Complete physiological data were obtained from another 21 tectospinal cells for which anatomical data were sufficient only to define the laminar location of the cell body from which recordings were made. Of the total sample of 52 cells, 7.7% had their somata in the stratum griseum intermediale (SGI), 50% were in the stratum album intermedium (SAI), 36.5% were in the stratum griseum profundum (SGP), and 5.8% were in the stratum album profundum (SAP). The tectospinal cells were fairly uniform morphologically. They had large (27.7 +/- 5.5 microns diameter) cell bodies, which gave rise to an average of 6.7 +/- 1.2 primary dendrites. These were generally smooth and extended up to 500 microns away from the cell body. In many cases, they ascended out of the deep laminae into the stratum opticum (SO) and/or stratum griseum superficiale (SGS). The axons of TS cells averaged 3.4 +/- 0.8 microns in diameter, and they generally coursed radially to the SAP where they curved around the periaqueductal gray and entered the predorsal bundle. These axons often gave rise to collaterals that arborized in the deep laminae of the ipsilateral superior colliculus and subjacent reticular formation. The tectospinal cells were also fairly uniform physiologically. Their average conduction latency was 2.0 +/- 2.3 ms, and this variable had a strong negative correlation (-.81) with axon diameter for the recovered cells. Most (63.5%) of the TS cells were exclusively somatosensory and gave rapidly adapting responses to deflection of vibrissae and/or guard hairs; 7.7% were bimodal (visual-somatosensory); 11.5% had complex (Rhoades et al., '83) somatosensory receptive fields; 1.9% were discharged only by a noxious pinch, and 15.4% were unresponsive. A common feature of all bimodal tectospinal neurons was dendrites that extended at least as far dorsally as the SO. Whereas there were no other clear-cut correlations between the structural and functional characteristics of these tectal neurons, we did note that all of the cells with complex somatosensory receptive fields received inhibitory input from axons that either originated from, or passed through, the contralateral superior colliculus.
Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).
Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter
2016-11-01
Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The ERM protein Moesin is essential for neuronal morphogenesis and long-term memory in Drosophila.
Freymuth, Patrick S; Fitzsimons, Helen L
2017-08-29
Moesin is a cytoskeletal adaptor protein that plays an important role in modification of the actin cytoskeleton. Rearrangement of the actin cytoskeleton drives both neuronal morphogenesis and the structural changes in neurons that are required for long-term memory formation. Moesin has been identified as a candidate memory gene in Drosophila, however, whether it is required for memory formation has not been evaluated. Here, we investigate the role of Moesin in neuronal morphogenesis and in short- and long-term memory formation in the courtship suppression assay, a model of associative memory. We found that both knockdown and overexpression of Moesin led to defects in axon growth and guidance as well as dendritic arborization. Moreover, reduction of Moesin expression or expression of a constitutively active phosphomimetic in the adult Drosophila brain had no effect on short term memory, but prevented long-term memory formation, an effect that was independent of its role in development. These results indicate a critical role for Moesin in both neuronal morphogenesis and long-term memory formation.
Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window
Holtmaat, Anthony; Bonhoeffer, Tobias; Chow, David K; Chuckowree, Jyoti; De Paola, Vincenzo; Hofer, Sonja B; Hübener, Mark; Keck, Tara; Knott, Graham; Lee, Wei-Chung A; Mostany, Ricardo; Mrsic-Flogel, Tom D; Nedivi, Elly; Portera-Cailliau, Carlos; Svoboda, Karel; Trachtenberg, Joshua T; Wilbrecht, Linda
2011-01-01
To understand the cellular and circuit mechanisms of experience-dependent plasticity, neurons and their synapses need to be studied in the intact brain over extended periods of time. Two-photon excitation laser scanning microscopy (2PLSM), together with expression of fluorescent proteins, enables high-resolution imaging of neuronal structure in vivo. In this protocol we describe a chronic cranial window to obtain optical access to the mouse cerebral cortex for long-term imaging. A small bone flap is replaced with a coverglass, which is permanently sealed in place with dental acrylic, providing a clear imaging window with a large field of view (∼0.8–12 mm2). The surgical procedure can be completed within ∼1 h. The preparation allows imaging over time periods of months with arbitrary imaging intervals. The large size of the imaging window facilitates imaging of ongoing structural plasticity of small neuronal structures in mice, with low densities of labeled neurons. The entire dendritic and axonal arbor of individual neurons can be reconstructed. PMID:19617885
Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei
2014-08-25
Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Chia-Fang; Hsing, Hsiang-Wei; Zhuang, Zi-Hui; Wen, Meng-Hsuan; Chang, Wei-Jen; Briz, Carlos G; Nieto, Marta; Shyu, Bai Chuang; Chou, Shen-Ju
2017-01-24
Cortical neurons must be specified and make the correct connections during development. Here, we examine a mechanism initiating neuronal circuit formation in the barrel cortex, a circuit comprising thalamocortical axons (TCAs) and layer 4 (L4) neurons. When Lhx2 is selectively deleted in postmitotic cortical neurons using conditional knockout (cKO) mice, L4 neurons in the barrel cortex are initially specified but fail to form cellular barrels or develop polarized dendrites. In Lhx2 cKO mice, TCAs from the thalamic ventral posterior nucleus reach the barrel cortex but fail to further arborize to form barrels. Several activity-regulated genes and genes involved in regulating barrel formation are downregulated in the Lhx2 cKO somatosensory cortex. Among them, Btbd3, an activity-regulated gene controlling dendritic development, is a direct downstream target of Lhx2. We find that Lhx2 confers neuronal competency for activity-dependent dendritic development in L4 neurons by inducing the expression of Btbd3. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel
2015-01-01
The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868
Lee, Samuel M.; Sha, Di; Mohammed, Anum A.; Asress, Seneshaw; Glass, Jonathan D.; Chin, Lih-Shen; Li, Lian
2013-01-01
Charcot–Marie–Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt–Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients. PMID:23359569
Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia AM; Miller, David H; Chard, Declan T
2015-01-01
Background: In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing–remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). Methods: A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. Results: MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. Conclusions: These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. PMID:25145689
Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder
Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L.; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T.
2014-01-01
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder. PMID:24838000
Use of arboreal nests of tree voles (Arborimus spp.) by amphibians.
Eric D. Forsman; James K. Swingle
2007-01-01
We describe occupancy of arboreal nests of tree voles (Arborintus spp.) by four amphibian species in western Oregon and northern California, including clouded salamanders (Aneides ferreus), arboreal salamanders (Aneides lugubris), Pacific tree frogs (Pseudacris regilla), and a...
Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R
2016-09-01
Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.
Overstreet, C K; Klein, J D; Helms Tillery, S I
2013-12-01
Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of stimulation that can be used to generate effective sensory feedback for neuroprosthetic devices.
Losonczy, Attila; Zhang, Limei; Shigemoto, Ryuichi; Somogyi, Peter; Nusser, Zoltan
2002-01-01
Synapses exhibit different short-term plasticity patterns and this behaviour influences information processing in neuronal networks. We tested how the short-term plasticity of excitatory postsynaptic currents (EPSCs) depends on the postsynaptic cell type, identified by axonal arborizations and molecular markers in the hippocampal CA1 area. Three distinct types of short-term synaptic behaviour (facilitating, depressing and combined facilitating–depressing) were defined by fitting a dynamic neurotransmission model to the data. Approximately 75 % of the oriens-lacunosum-moleculare (O-LM) interneurones received facilitating EPSCs, but in three of 12 O-LM cells EPSCs also showed significant depression. Over 90 % of the O-LM cells were immunopositive for somatostatin and mGluR1α and all tested cells were decorated by strongly mGluR7a positive axon terminals. Responses in eight of 12 basket cells were described well with a model involving only depression, but the other cells displayed combined facilitating–depressing EPSCs. No apparent difference was found between the plasticity of EPSCs in cholecystokinin- or parvalbumin-containing basket cells. In oriens-bistratified cells (O-Bi), two of nine cells showed facilitating EPSCs, another two depressing, and the remaining five cells combined facilitating–depressing EPSCs. Seven of 10 cells tested for somatostatin were immunopositive, but mGluR1α was detectable only in two of 11 tested cells. Furthermore, most O-Bi cells projected to the CA3 area and the subiculum, as well as outside the hippocampal formation. Postsynaptic responses to action potentials recorded in vivo from a CA1 place cell were modelled, and revealed great differences between and within cell types. Our results demonstrate that the short-term plasticity of EPSCs is cell type dependent, but with significant heterogeneity within all three interneurone populations. PMID:12096061
Increasing arboreality with altitude: a novel biogeographic dimension
Scheffers, Brett R.; Phillips, Ben L.; Laurance, William F.; Sodhi, Navjot S.; Diesmos, Arvin; Williams, Stephen E.
2013-01-01
Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed ‘arboreality hypothesis’ suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will ‘flatten’ the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This ‘flattening’ could potentially have serious impacts on forest functioning and species survival. PMID:24026817
Increasing arboreality with altitude: a novel biogeographic dimension.
Scheffers, Brett R; Phillips, Ben L; Laurance, William F; Sodhi, Navjot S; Diesmos, Arvin; Williams, Stephen E
2013-11-07
Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed 'arboreality hypothesis' suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will 'flatten' the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This 'flattening' could potentially have serious impacts on forest functioning and species survival.
Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS
Kirov, Ivan I.; Tal, Assaf; Babb, James S.; Herbert, Joseph
2013-01-01
Objective: To characterize and follow the diffuse gray and white matter (GM/WM) metabolic abnormalities in early relapsing-remitting multiple sclerosis using proton magnetic resonance spectroscopic imaging (1H-MRSI). Methods: Eighteen recently diagnosed, mildly disabled patients (mean baseline time from diagnosis 32 months, mean Expanded Disability Status Scale [EDSS] score 1.3), all on immunomodulatory medication, were scanned semiannually for 3 years with T1-weighted and T2-weighted MRI and 3D 1H-MRSI at 3 T. Ten sex- and age-matched controls were followed annually. Global absolute concentrations of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and myo-inositol (mI) were obtained for all GM and WM in the 360 cm3 1H-MRSI volume of interest. Results: Patients' average WM Cr, Cho, and mI concentrations (over all time points), 5.3 ± 0.4, 1.6 ± 0.1, and 5.1 ± 0.7 mM, were 8%, 12%, and 11% higher than controls' (p ≤ 0.01), while their WM NAA, 7.4 ± 0.7 mM, was 6% lower (p = 0.07). There were increases with time of patients' WM Cr: 0.1 mM/year, Cho: 0.02 mM/year, and NAA: 0.1 mM/year (all p < 0.05). None of the patients' metabolic concentrations correlated with their EDSS score, relapse rate, GM/WM/CSF fractions, or lesion volume. Conclusions: Diffuse WM glial abnormalities were larger in magnitude than the axonal abnormalities and increased over time independently of conventional clinical or imaging metrics and despite immunomodulatory treatment. In contrast, the axonal abnormalities showed partial recovery, suggesting that patients' lower WM NAA levels represented a dysfunction, which may abate with treatment. Absence of detectable diffuse changes in GM suggests that injury there is minimal, focal, or heterogeneous between cortex and deep GM nuclei. PMID:23175732
2013-01-01
Background A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. Methods/Design Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. Discussion We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into consideration the important confounding variable of early adolescent onset of regular cannabis use. PMID:24131511
Bernier, Denise; Cookey, Jacob; McAllindon, David; Bartha, Robert; Hanstock, Christopher C; Newman, Aaron J; Stewart, Sherry H; Tibbo, Philip G
2013-10-17
A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into consideration the important confounding variable of early adolescent onset of regular cannabis use.
Israeli, Eitan; Dryanovski, Dilyan I.; Schumacker, Paul T.; Chandel, Navdeep S.; Singer, Jeffrey D.; Julien, Jean P.; Goldman, Robert D.; Opal, Puneet
2016-01-01
Intermediate filaments (IFs) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as giant axonal neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin–proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation. PMID:27000625
Neuroaxonal Dystrophy and Cavitating Leukoencephalopathy of Chihuahua Dogs.
Degl'Innocenti, Sara; Asiag, Nimrod; Zeira, Offer; Falzone, Cristian; Cantile, Carlo
2017-09-01
A novel form of neuroaxonal dystrophy is described in 3 Chihuahua pups, 2 of which were from the same litter. It was characterized not only by accumulation of numerous and widely distributed axonal swellings (spheroids) but also by a severe cavitating leukoencephalopathy. The dogs presented with progressive neurological signs, including gait abnormalities and postural reaction deficits. Magnetic resonance images and gross examination at necropsy revealed dilation of lateral ventricles and cerebral atrophy, accompanied by cavitation of the subcortical white matter. Histopathologically, severe axonal degeneration with formation of large spheroids was found in the cerebral and cerebellar white matter, thalamus, and brainstem nuclei. Small-caliber spheroids were observed in the cerebral and cerebellar gray matter. The telencephalic white matter had severe myelin loss and cavitation with relative sparing of the U-fibers. Different from previously reported cases of canine neuroaxonal dystrophy, in these Chihuahuas the spheroid distribution predominantly involved the white matter with secondary severe leukoencephalopathy.
Stan, Ana D; Lewis, David A
2012-06-01
Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.
Canuet, Leonides; Pusil, Sandra; López, María Eugenia; Bajo, Ricardo; Pineda-Pardo, José Ángel; Cuesta, Pablo; Gálvez, Gerardo; Gaztelu, José María; Lourido, Daniel; García-Ribas, Guillermo; Maestú, Fernando
2015-07-15
Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities on neural function in mild cognitive impairment. Disruption in functional connectivity between several pairs of cortical regions associated with abnormal levels of biomarkers, cognitive deficits, or with impaired axonal integrity of hippocampal tracts. Amyloid deposition and tau protein-related neuronal injury in early Alzheimer's disease are associated with synaptic dysfunction and a dual pattern of cortical network disorganization (i.e., desynchronization and hypersynchronization) that affects key regions of the default mode network and temporal areas. Copyright © 2015 the authors 0270-6474/15/3510326-06$15.00/0.
Does the Morphology of the Forelimb Flexor Muscles Differ Between Lizards Using Different Habitats?
Lowie, Aurélien; Herrel, Anthony; Abdala, Virginia; Manzano, Adriana S; Fabre, Anne-Claire
2018-03-01
Lizards are an interesting group to study how habitat use impacts the morphology of the forelimb because they occupy a great diversity of ecological niches. In this study, we specifically investigated whether habitat use impacts the morphology of the forelimb flexor muscles in lizards. To do so, we performed dissections and quantified the physiological cross sectional area (PCSA), the fiber length, and the mass of four flexor muscles in 21 different species of lizards. Our results show that only the PCSA of the m. flexor carpi radialis is different among lizards with different ecologies (arboreal versus non-arboreal). This difference disappeared, however, when taking phylogeny into account. Arboreal species have a higher m. flexor carpi radialis cross sectional area likely allowing them to flex the wrist more forcefully which may allow them climb and hold on to branches better. In contrast, other muscles are not different between arboreal and non-arboreal species. Further studies focusing on additional anatomical features of the lizard forelimb as well as studies documenting how lizards use the arboreal niche are needed to fully understand how an arboreal life style may constrain limb morphology in lizards. Anat Rec, 301:424-433, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni
2012-01-01
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285
Magnoni, Sandra; Mac Donald, Christine L; Esparza, Thomas J; Conte, Valeria; Sorrell, James; Macrì, Mario; Bertani, Giulio; Biffi, Riccardo; Costa, Antonella; Sammons, Brian; Snyder, Abraham Z; Shimony, Joshua S; Triulzi, Fabio; Stocchetti, Nino; Brody, David L
2015-08-01
Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Jian; Brown, Kristy; Liem, Ronald K H
2017-01-01
Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most prevalent inherited peripheral neuropathy and is associated with over 90 causative genes. Mutations in neurofilament light polypeptide gene, NEFL cause CMT2E, an axonal form of CMT that results in abnormal structures and/or functions of peripheral axons in spinal cord motor neurons and dorsal root ganglion neurons. We have previously generated and characterized a knock-in mouse model of CMT2E with the N98S mutation in Nefl that presented with multiple inclusions in spinal cord neurons. In this report, we conduct immunofluorescence studies of cultured dorsal root ganglia (DRG) from NeflN98S/+ mice, and show that inclusions found in DRG neurites can occur in embryonic stages. Ultrastructural analyses reveal that the inclusions are disordered neurofilaments packed in high density, segregated from other organelles. Immunochemical studies show decreased NFL protein levels in DRG, cerebellum and spinal cord in NeflN98S/+ mice, and total NFL protein pool is shifted toward the triton-insoluble fraction. Our findings reveal the nature of the inclusions in NeflN98S/+ mice, provide useful information to understand mechanisms of CMT2E disease, and identify DRG from NeflN98S/+ mice as a useful cell line model for therapeutic discoveries.
Braak, H; Braak, E; Strothjohann, M
1994-04-25
Frontal sections including temporal isocortex, entorhinal region and hippocampus from aged domestic animals (dog, cat, horse, sheep and goat) were studied for Alzheimer-related changes using immunostaining with the AT8 antibody for abnormally phosphorylated tau protein and selective silver techniques for A4 amyloid and neurofibrillary changes of the Alzheimer type. The material available to us did not show A4 amyloid deposits or argyrophilic neurofibrillary changes. Only the brains of aged sheep and goat exhibited the presence of AT8-immunoreactive pyramidal cells in the entorhinal region and hippocampal formation. Two groups of AT8-positive neurons could be observed: The first group contained evenly distributed immunoreactive material in all parts of the soma, the dendrites and the axon. The neuronal processes appeared quite normal. The second group, however, showed conspicuous changes in the cellular processes consisting of a loss of immunoreactivity within the axon and the proximal dendrites and the appearance of intensely stained swellings within the curved distal dendrites. These changes were closely reminiscent to alterations of the cytoskeleton known to occur at the same location in the aging human brain and in Alzheimer's disease. The findings justify a closer look at sheep and goat when searching for suitable animal models for experimental studies of the conditions responsible for the development of Alzheimer-related neurofibrillary changes.
Early electrophysiological findings in Fisher-Bickerstaff syndrome.
Alberti, M A; Povedano, M; Montero, J; Casasnovas, C
2017-09-06
The term Fisher-Bickerstaff syndrome (FBS) has been proposed to describe the clinical spectrum encompassing Miller-Fisher syndrome (MFS) and Bickerstaff brainstem encephalitis. The pathophysiology of FBS and the nature of the underlying neuropathy (demyelinating or axonal) are still subject to debate. This study describes the main findings of an early neurophysiological study on 12 patients diagnosed with FBS. Retrospective evaluation of clinical characteristics and electrophysiological findings of 12 patients with FBS seen in our neurology department within 10 days of disease onset. Follow-up electrophysiological studies were also evaluated, where available. The most frequent electrophysiological finding, present in 5 (42%) patients, was reduced sensory nerve action potential (SNAP) amplitude in one or more nerves. Abnormalities were rarely found in motor neurography, with no signs of demyelination. The cranial nerve exam revealed abnormalities in 3 patients (facial neurography and/or blink reflex test). Three patients showed resolution of SNAP amplitude reduction in serial neurophysiological studies, suggesting the presence of reversible sensory nerve conduction block. Results from cranial MRI scans were normal in all patients. An electrophysiological pattern of sensory axonal neuropathy, with no associated signs of demyelination, is an early finding of FBS. Early neurophysiological evaluation and follow-up are essential for diagnosing patients with FBS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Cultural Items: Museum of Anthropology, University of Michigan, Ann Arbor, MI AGENCY: National Park Service... Museum of Anthropology, University of Michigan, Ann Arbor, MI, that meet the definition of unassociated... funerary objects should contact Carla Sinopoli, Museum of Anthropology, University of Michigan, Ann Arbor...
2018-06-25
Anaplastic Large Cell Lymphoma, ALK-Positive; Ann Arbor Stage II Noncutaneous Childhood Anaplastic Large Cell Lymphoma; Ann Arbor Stage III Noncutaneous Childhood Anaplastic Large Cell Lymphoma; Ann Arbor Stage IV Noncutaneous Childhood Anaplastic Large Cell Lymphoma; CD30-Positive Neoplastic Cells Present
Perturbed glial scaffold formation precedes axon tract malformation in Drosophila mutants.
Jacobs, J R
1993-05-01
The longitudinal glia (LG), progeny of a single glioblast, form a scaffold that presages the formation of longitudinal tracts in the ventral nerve cord (VNC) of the Drosophila embryo. The LG are used as a substrate during the extension of the first axons of the longitudinal tract. I have examined the differentiation of the LG in six mutations in which the longitudinal tracts were absent, displaced, or interrupted to determine whether the axon tract malformations may be attributable to disruptions in the LG scaffold. Embryos mutant for the gene prospero had no longitudinal tracts, and glial differentiation remained arrested at a preaxonogenic state. Two mutants of the Polycomb group also lacked longitudinal tracts; here the glia failed to form an oriented scaffold, but cytological differentiation of the LG was unperturbed. The longitudinal tracts in embryos mutant for slit fused at the VNC midline and scaffold formation was normal, except that it was medially displaced. Longitudinal tracts had intersegmental interruptions in embryos mutant for hindsight and midline. In hindsight, there were intersegmental gaps in the glial scaffold. In midline, the glial scaffold retracted after initial extension. LG morphogenesis during axonogenesis was abnormal in midline. Commitment to glial identity and glial differentiation also occurred before scaffold formation. In all mutants examined, the early distribution of the glycoprotein neuroglian was perturbed. This was indicative of early alterations in VNC pattern present before LG scaffold formation began. Therefore, some changes in scaffold formation may have reflected changes in the placement and differentiation of other cells of the VNC. In all mutants, alterations in scaffold formation preceded longitudinal axon tract formation.
Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome
Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda
2014-01-01
Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732
Harden, Scott W; Frazier, Charles J
2016-09-01
Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found in close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lin, Ching-Yi; Huang, Whitney J.; Li, Kevin; Swanson, Roy; Cheung, Brian; Lin, Vernon W.; Lee, Yu-Shang
2015-04-01
Objective. Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. Approach. To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). Main results. We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. Significance. These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.
Edgar, J. Christopher; Hunter, Michael A.; Huang, Mingxiong; Smith, Ashley K.; Chen, Yuhan; Sadek, Joseph; Lu, Brett Y; Miller, Gregory A.; Cañive, José M.
2012-01-01
Background Although gray matter (GM) abnormalities are frequently observed in individuals with schizophrenia (SCZ), the functional consequences of these structural abnormalities are not yet understood. The present study sought to better understand GM abnormalities in SCZ by examining associations between GM and two putative functional SCZ biomarkers: weak 100 ms (M100) auditory responses and impairment on tests of attention. Methods Data were available from 103 subjects (healthy controls=52, SCZ=51). GM cortical thickness measures were obtained for superior temporal gyrus (STG) and prefrontal cortex (PFC). Magnetoencephalography (MEG) provided measures of left and right STG M100 source strength. Subjects were administered the Trail Making Test A and the Connors’ Continuous Performance Test to assess attention. Results A strong trend indicated less GM cortical thickness in SCZ than controls in both regions and in both hemispheres (p=0.06). Individuals with SCZ had weaker M100 responses than controls bilaterally, and individuals with SCZ performed more poorly than controls on tests of attention. Across groups, left STG GM was positively associated with left M00 source strength. In SCZ only, less left and right STG and PFC GM predicted poorer performance on tests of attention. After removing variance in attention associated with age, associations between GM and attention remained significant only in left and right STG. Conclusions Reduced GM cortical thickness may serve as a common substrate for multiple functional abnormalities in SCZ, with structural-functional abnormalities in STG GM especially prominent. As suggested by others, functional abnormalities in SCZ may be a consequence of elimination of the neuropil (dendritic arbors and associated synaptic infrastructure) between neuron bodies. PMID:22766129
Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui
2016-01-01
Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558
Martella, Andrea; Sepe, Rosa M; Silvestri, Cristoforo; Zang, Jingjing; Fasano, Giulia; Carnevali, Oliana; De Girolamo, Paolo; Neuhauss, Stephan C F; Sordino, Paolo; Di Marzo, Vincenzo
2016-12-01
The developmental role of the endocannabinoid system still remains to be fully understood. Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth. By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception. Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.-Martella, A., Sepe, R. M., Silvestri, C., Zang, J., Fasano, G., Carnevali, O., De Girolamo, P., Neuhauss, S. C. F., Sordino, P., Di Marzo, V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. © FASEB.
Final Technical Report, Wind Generator Project (Ann Arbor)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, Nathan
A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.
Simplification of arboreal marsupial assemblages in response to increasing urbanization.
Isaac, Bronwyn; White, John; Ierodiaconou, Daniel; Cooke, Raylene
2014-01-01
Arboreal marsupials play an essential role in ecosystem function including regulating insect and plant populations, facilitating pollen and seed dispersal and acting as a prey source for higher-order carnivores in Australian environments. Primarily, research has focused on their biology, ecology and response to disturbance in forested and urban environments. We used presence-only species distribution modelling to understand the relationship between occurrences of arboreal marsupials and eco-geographical variables, and to infer habitat suitability across an urban gradient. We used post-proportional analysis to determine whether increasing urbanization affected potential habitat for arboreal marsupials. The key eco-geographical variables that influenced disturbance intolerant species and those with moderate tolerance to disturbance were natural features such as tree cover and proximity to rivers and to riparian vegetation, whereas variables for disturbance tolerant species were anthropogenic-based (e.g., road density) but also included some natural characteristics such as proximity to riparian vegetation, elevation and tree cover. Arboreal marsupial diversity was subject to substantial change along the gradient, with potential habitat for disturbance-tolerant marsupials distributed across the complete gradient and potential habitat for less tolerant species being restricted to the natural portion of the gradient. This resulted in highly-urbanized environments being inhabited by a few generalist arboreal marsupial species. Increasing urbanization therefore leads to functional simplification of arboreal marsupial assemblages, thus impacting on the ecosystem services they provide.
Simplification of Arboreal Marsupial Assemblages in Response to Increasing Urbanization
Isaac, Bronwyn; White, John; Ierodiaconou, Daniel; Cooke, Raylene
2014-01-01
Arboreal marsupials play an essential role in ecosystem function including regulating insect and plant populations, facilitating pollen and seed dispersal and acting as a prey source for higher-order carnivores in Australian environments. Primarily, research has focused on their biology, ecology and response to disturbance in forested and urban environments. We used presence-only species distribution modelling to understand the relationship between occurrences of arboreal marsupials and eco-geographical variables, and to infer habitat suitability across an urban gradient. We used post-proportional analysis to determine whether increasing urbanization affected potential habitat for arboreal marsupials. The key eco-geographical variables that influenced disturbance intolerant species and those with moderate tolerance to disturbance were natural features such as tree cover and proximity to rivers and to riparian vegetation, whereas variables for disturbance tolerant species were anthropogenic-based (e.g., road density) but also included some natural characteristics such as proximity to riparian vegetation, elevation and tree cover. Arboreal marsupial diversity was subject to substantial change along the gradient, with potential habitat for disturbance-tolerant marsupials distributed across the complete gradient and potential habitat for less tolerant species being restricted to the natural portion of the gradient. This resulted in highly-urbanized environments being inhabited by a few generalist arboreal marsupial species. Increasing urbanization therefore leads to functional simplification of arboreal marsupial assemblages, thus impacting on the ecosystem services they provide. PMID:24608165
2018-06-11
AIDS-Related Lymphoma; Ann Arbor Stage II Diffuse Large B-Cell Lymphoma; Ann Arbor Stage III Diffuse Large B-Cell Lymphoma; Ann Arbor Stage IV Diffuse Large B-Cell Lymphoma; CD20 Negative; CD20 Positive; Human Immunodeficiency Virus Positive
Arboreal seed removal and insect damage in three California oaks
Walter D. Koenig; Johannes M. H. Knops; William J. Carmen
2002-01-01
We investigated arboreal removal and insect damage to acorns in an undisturbed oak woodland in central coastal California. Arboreal seed removal was determined for four to eight individual Quercus lobata trees over a period of 14 years by comparing visual estimates of the acorn crop with the number of acorns caught in seed traps. Insect damage was...
Chen, J-R; Wang, T-J; Wang, Y-J; Tseng, G-F
2010-05-05
Head trauma and acute disorders often instantly compress the cerebral cortex and lead to functional abnormalities. Here we used rat epidural bead implantation model and investigated the immediate changes following acute compression. The dendritic arbors of affected cortical pyramidal neurons were filled with intracellular dye and reconstructed 3-dimensionally for analysis. Compression was found to shorten the apical, but not basal, dendrites of underlying layer III and V cortical pyramidal neurons and reduced dendritic spines on the entire dendritic arbor immediately. Dendrogram analysis showed that in addition to distal, proximal apical dendrites also quickly reconfigured. We then focused on apical dendritic trunks and explored how proximal dendrites were rapidly altered. Compression instantly twisted the microtubules and deformed the membrane contour of dendritic trunks likely a result of the elastic nature of dendrites as immediate decompression restored it and stabilization of microtubules failed to block it. Subsequent adaptive remodeling restored plasmalemma and microtubules to normal appearance in 3 days likely via active mechanisms as taxol blocked the restoration of microtubules and in addition partly affected plasmalemmal reorganization which presumably engaged recycling of excess membrane. In short, the structural dynamics and the associated mechanisms that we revealed demonstrate how compression quickly altered the morphology of cortical output neurons and hence cortical functions consequently. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resistance of extraocular motoneuron terminals to effects of amyotrophic lateral sclerosis sera
NASA Technical Reports Server (NTRS)
Mosier, D. R.; Siklos, L.; Appel, S. H.
2000-01-01
In sporadic ALS (s-ALS), axon terminals contain increased intracellular calcium. Passively transferred sera from patients with s-ALS increase intracellular calcium in spinal motoneuron terminals in vivo and enhance spontaneous transmitter release, a calcium-dependent process. In this study, passive transfer of s-ALS sera increased spontaneous release from spinal but not extraocular motoneuron terminals, suggesting that the resistance to physiologic abnormalities induced by s-ALS sera in mice parallels the resistance of extraocular motoneurons to dysfunction and degeneration in ALS.
Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs
Li, Shuai; Mitchell, Joe; Briggs, Deidrie J.; Young, Jaime K.; Long, Samuel S.; Fuerst, Peter G.
2016-01-01
Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization. PMID:26930660
Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs.
Li, Shuai; Mitchell, Joe; Briggs, Deidrie J; Young, Jaime K; Long, Samuel S; Fuerst, Peter G
2016-01-01
Rod spherules are the site of the first synaptic contact in the retina's rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.
Hamada, Nanako; Negishi, Yutaka; Mizuno, Makoto; Miya, Fuyuki; Hattori, Ayako; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Tabata, Hidenori; Saitoh, Shinji; Nagata, Koh-Ichi
2017-01-01
We analyzed the role of a heterotrimeric G-protein, Gi2, in the development of the cerebral cortex. Acute knockdown of the α-subunit (Gαi2) with in utero electroporation caused delayed radial migration of excitatory neurons during corticogenesis, perhaps because of impaired morphology. The migration phenotype was rescued by an RNAi-resistant version of Gαi2. On the other hand, silencing of Gαi2 did not affect axon elongation, dendritic arbor formation or neurogenesis at ventricular zone in vivo. When behavior analyses were conducted with acute Gαi2-knockdown mice, they showed defects in social interaction, novelty recognition and active avoidance learning as well as increased anxiety. Subsequently, using whole-exome sequencing analysis, we identified a de novo heterozygous missense mutation (c.680C>T; p.Ala227Val) in the GNAI2 gene encoding Gαi2 in an individual with periventricular nodular heterotopia and intellectual disability. Collectively, the phenotypes in the knockdown experiments suggest a role of Gαi2 in the brain development, and impairment of its function might cause defects in neuronal functions which lead to neurodevelopmental disorders. © 2016 International Society for Neurochemistry.
Adult-specific insulin-producing neurons in Drosophila melanogaster.
Ohhara, Yuya; Kobayashi, Satoru; Yamakawa-Kobayashi, Kimiko; Yamanaka, Naoki
2018-06-01
Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Wang, Vincent Y.; Hassan, Bassem A.; Bellen, Hugo J.; Zoghbi, Huda Y.
2002-01-01
Many genes share sequence similarity between species, but their properties often change significantly during evolution. For example, the Drosophila genes engrailed and orthodenticle and the onychophoran gene Ultrabithorax only partially substitute for their mouse or Drosophila homologs. We have been analyzing the relationship between atonal (ato) in the fruit fly and its mouse homolog, Math1. In flies, ato acts as a proneural gene that governs the development of chordotonal organs (CHOs), which serve as stretch receptors in the body wall and joints and as auditory organs in the antennae. In the fly CNS, ato is important not for specification but for axonal arborization. Math1, in contrast, is required for the specification of cells in both the CNS and the PNS. Furthermore, Math1 serves a role in the development of secretory lineage cells in the gut, a function that does not parallel any known to be served by ato. We wondered whether ato and Math1 might be more functionally homologous than they appear, so we expressed Math1 in ato mutant flies and ato in Math1 null mice. To our surprise, the two proteins are functionally interchangeable.
Functional neuroanatomy of the central noradrenergic system.
Szabadi, Elemer
2013-08-01
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.
Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M
2007-08-01
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
Ram, Suresh; Devapriya, Inoka A; Fenton, Grace; Mcvay, Lindsey; Nguyen, Danh V; Tassone, Flora; Maselli, Ricardo A; Hagerman, Randi J
2015-08-01
In this study we examined whether females with the fragile X-associated tremor ataxia syndrome (FXTAS) and non-FXTAS premutation carriers have electrophysiological signs of underlying peripheral neuropathy. Nerve conduction studies (NCS) were performed on 19 women with FXTAS, 20 non-FXTAS carriers, and 26 age-matched controls. The results were compared with existing data on corresponding male carriers. Women with FXTAS and non-FXTAS carriers had reduced sensory nerve action potential amplitudes. Also, there was a strong trend for reduced compound muscle action potential amplitudes in women with FXTAS, but not in non-FXTAS carriers. No significant slowing of nerve conduction velocities, prolongation of F-wave latencies, or associations with molecular measures was observed. This study suggests an underlying axonal neuropathy in women with FXTAS. However, in comparison to men with FXTAS, the NCS abnormalities in women were less severe, possibly due to the effect of a normal X chromosome. © 2014 Wiley Periodicals, Inc.
Clinical and electrophysiologic attributes as predictors of results of autonomic function tests
NASA Technical Reports Server (NTRS)
Wu, C. L.; Denq, J. C.; Harper, C. M.; O'Brien, P. C.; Low, P. A.
1998-01-01
Autonomic dysfunction is a feature of some neuropathies and not others. It has been suggested that some clinical and electrophysiologic attributes are predictable of autonomic impairment detected using laboratory testing; however, dear guidelines are unavailable. We evaluated 138 relatively unselected patients with peripheral neuropathy who underwent neurologic evaluation, electromyography (EMG), nerve conduction studies, and autonomic function tests to determine which variables were predictive of laboratory findings of autonomic failure. The variables evaluated were 1) clinical somatic neuropathic findings, 2) clinical autonomic symptoms, and 3) electrophysiologic findings. Autonomic symptoms were strongly predictive (Rs = 0.40, p < 0.001) of autonomic failure. Among the non-autonomic indices, absent ankle reflexes were mildly predictive (Rs = 0.19, p = 0.022) of autonomic impairment, but all others were not (duration, clinical pattern, severity, weakness, sensory loss). Electrophysiologic changes of an axonal neuropathy predicted autonomic impairment while demyelinating neuropathy did not. We conclude that autonomic studies will most likely be abnormal in patients who have symptoms of autonomic involvement and those who have an axonal neuropathy.
Garg, Nidhi; Park, Susanna B; Yiannikas, Con; Vucic, Steve; Howells, James; Noto, Yu-Ichi; Mathey, Emily K; Pollard, John D; Kiernan, Matthew C
2018-05-01
Sensorimotor neuropathy associated with IgG4 antibodies to neurofascin-155 (NF155) was recently described. The clinical phenotype is typically associated with young onset, distal weakness, and in some cases, tremor. From a consecutive cohort of 55 patients diagnosed with chronic inflammatory demyelinating polyneuropathy, screening for anti-NF155 antibodies was undertaken. Patients underwent clinical assessment, diagnostic neurophysiology, including peripheral axonal excitability studies and nerve ultrasound. Three of 55 chronic inflammatory demyelinating polyneuropathy patients (5%) tested positive for anti-NF155 IgG4. Patients presenting with more severe disease had higher antibody titers. Ultrasound demonstrated diffuse nerve enlargement. Axonal excitability studies were markedly abnormal, with subsequent mathematical modeling of the results supporting disruption of the paranodal seal. A broad spectrum of disease severity and treatment response may be observed in anti-NF155 neuropathy. Excitability studies support the pathogenic role of anti-NF155 IgG4 antibodies targeting the paranodal region. Muscle Nerve 57: 848-851, 2018. © 2017 Wiley Periodicals, Inc.
Thompson, Christopher K.
2016-01-01
Thyroid hormone (TH) regulates many cellular events underlying perinatal brain development in vertebrates. Whether and how TH regulates brain development when neural circuits are first forming is less clear. Furthermore, although the molecular mechanisms that impose spatiotemporal constraints on TH action in the brain have been described, the effects of local TH signaling are poorly understood. We determined the effects of manipulating TH signaling on development of the optic tectum in stage 46–49 Xenopus laevis tadpoles. Global TH treatment caused large-scale morphological effects in tadpoles, including changes in brain morphology and increased tectal cell proliferation. Either increasing or decreasing endogenous TH signaling in tectum, by combining targeted DIO3 knockdown and methimazole, led to corresponding changes in tectal cell proliferation. Local increases in TH, accomplished by injecting suspensions of tri-iodothyronine (T3) in coconut oil into the midbrain ventricle or into the eye, selectively increased tectal or retinal cell proliferation, respectively. In vivo time-lapse imaging demonstrated that local TH first increased tectal progenitor cell proliferation, expanding the progenitor pool, and subsequently increased neuronal differentiation. Local T3 also dramatically increased dendritic arbor growth in neurons that had already reached a growth plateau. The time-lapse data indicate that the same cells are differentially sensitive to T3 at different time points. Finally, TH increased expression of genes pertaining to proliferation and neuronal differentiation. These experiments indicate that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting cell proliferation and differentiation and by acting on neurons to increase dendritic arbor elaboration. SIGNIFICANCE STATEMENT Thyroid hormone (TH) is a critical regulator of perinatal brain development in vertebrates. Abnormal TH signaling in early pregnancy is associated with significant cognitive deficits in humans; however, it is difficult to probe the function of TH in early brain development in mammals because of the inaccessibility of the fetal brain in the uterine environment and the challenge of disambiguating maternal versus fetal contributions of TH. The external development of tadpoles allows manipulation and direct observation of the molecular and cellular mechanisms underlying TH's effects on brain development in ways not possible in mammals. We find that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting neural progenitor cell proliferation and differentiation and by acting on neurons to enhance dendritic arbor elaboration. PMID:27707971
Tulgren, Erik D.; Turgeon, Shane M.; Opperman, Karla J.; Grill, Brock
2014-01-01
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. PMID:25010424
Tulgren, Erik D; Turgeon, Shane M; Opperman, Karla J; Grill, Brock
2014-07-01
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions.
Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.
2011-01-01
Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons. PMID:21832035
Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis
Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi
2016-01-01
Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p < 0.05), greater threshold changes in depolarizing threshold electrotonus (p < 0.05) and depolarizing current threshold relationship (i.e. less accommodation; (p < 0.05), greater superexcitability (a measure of fast potassium current; p < 0.05) and reduced late subexcitability (a measure of slow potassium current; p < 0.05), suggesting increased persistent sodium currents and decreased potassium currents. The reduced potassium currents were found even in the patient subgroups with normal CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069
Pelosi, L; Mulroy, E; Leadbetter, R; Kilfoyle, D; Chancellor, A M; Mossman, S; Wing, L; Wu, T Y; Roxburgh, R H
2018-04-01
Sensory neuronopathy is a cardinal feature of cerebellar ataxia neuropathy vestibular areflexia syndrome (CANVAS). Having observed that two patients with CANVAS had small median and ulnar nerves on ultrasound, we set out to examine this finding systematically in a cohort of patients with CANVAS, and compare them with both healthy controls and a cohort of patients with axonal neuropathy. We have previously reported preliminary findings in seven of these patients with CANVAS and seven healthy controls. We compared the ultrasound cross-sectional area of median, ulnar, sural and tibial nerves of 14 patients with CANVAS with 14 healthy controls and 14 age- and gender-matched patients with acquired primarily axonal neuropathy. We also compared the individual nerve cross-sectional areas of patients with CANVAS and neuropathy with the reference values of our laboratory control population. The nerve cross-sectional area of patients with CANVAS was smaller than that of both the healthy controls and the neuropathy controls, with highly significant differences at most sites (P < 0.001). Conversely, the nerve cross-sectional areas in the upper limb were larger in neuropathy controls than healthy controls (P < 0.05). On individual analysis, the ultrasound abnormality was sufficiently characteristic to be detected in all but one patient with CANVAS. Small nerves in CANVAS probably reflect nerve thinning from loss of axons due to ganglion cell loss. This is distinct from the ultrasound findings in axonal neuropathy, in which nerve size was either normal or enlarged. Our findings indicate a diagnostic role for ultrasound in CANVAS sensory neuronopathy and in differentiating neuronopathy from neuropathy. © 2018 EAN.
Judson, Matthew C.; Burette, Alain C.; Shen, Mark D.; Rumple, Ashley M.; Del Cid, Wilmer A.; Paniagua, Beatriz
2017-01-01
Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder. SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction. PMID:28663201
Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.
2017-01-01
Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563
Gonthier, David J.; Marín, Linda; Iverson, Aaron L.; Perfecto, Ivette
2014-01-01
Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee. PMID:25392751
Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex
Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2016-01-01
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100
Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.
Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2016-01-01
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.
Phan, K Luan; Orlichenko, Anton; Boyd, Erin; Angstadt, Mike; Coccaro, Emil F; Liberzon, Israel; Arfanakis, Konstantinos
2009-10-01
Individuals with generalized social anxiety disorder (GSAD) exhibit exaggerated amygdala reactivity to aversive social stimuli. These findings could be explained by microstructural abnormalities in white matter (WM) tracts that connect the amygdala and prefrontal cortex, which is known to modulate the amygdala's response to threat. The goal of this study was to investigate brain frontal WM abnormalities using diffusion tensor imaging (DTI) in patients with social anxiety disorder. A Turboprop DTI sequence was used to acquire diffusion tensor images in 30 patients with GSAD and 30 matched healthy control subjects. Fractional anisotropy, an index of axonal organization, within WM was quantified in individual subjects, and an automated voxel-based, whole-brain method was used to analyze group differences. Compared with healthy control subjects, patients had significantly lower fractional anisotropy localized to the right uncinate fasciculus WM near the orbitofrontal cortex. There were no areas of higher fractional anisotropy in patients than controls. These findings point to an abnormality in the uncinate fasciculus, the major WM tract connecting the frontal cortex to the amygdala and other limbic temporal regions, in GSAD, which could underlie the aberrant amygdala-prefrontal interactions resulting in dysfunctional social threat processing in this illness.
Field, Daniel J; Bercovici, Antoine; Berv, Jacob S; Dunn, Regan; Fastovsky, David E; Lyson, Tyler R; Vajda, Vivi; Gauthier, Jacques A
2018-06-04
The fossil record and recent molecular phylogenies support an extraordinary early-Cenozoic radiation of crown birds (Neornithes) after the Cretaceous-Paleogene (K-Pg) mass extinction [1-3]. However, questions remain regarding the mechanisms underlying the survival of the deepest lineages within crown birds across the K-Pg boundary, particularly since this global catastrophe eliminated even the closest stem-group relatives of Neornithes [4]. Here, ancestral state reconstructions of neornithine ecology reveal a strong bias toward taxa exhibiting predominantly non-arboreal lifestyles across the K-Pg, with multiple convergent transitions toward predominantly arboreal ecologies later in the Paleocene and Eocene. By contrast, ecomorphological inferences indicate predominantly arboreal lifestyles among enantiornithines, the most diverse and widespread Mesozoic avialans [5-7]. Global paleobotanical and palynological data show that the K-Pg Chicxulub impact triggered widespread destruction of forests [8, 9]. We suggest that ecological filtering due to the temporary loss of significant plant cover across the K-Pg boundary selected against any flying dinosaurs (Avialae [10]) committed to arboreal ecologies, resulting in a predominantly non-arboreal post-extinction neornithine avifauna composed of total-clade Palaeognathae, Galloanserae, and terrestrial total-clade Neoaves that rapidly diversified into the broad range of avian ecologies familiar today. The explanation proposed here provides a unifying hypothesis for the K-Pg-associated mass extinction of arboreal stem birds, as well as for the post-K-Pg radiation of arboreal crown birds. It also provides a baseline hypothesis to be further refined pending the discovery of additional neornithine fossils from the Latest Cretaceous and earliest Paleogene. Copyright © 2018 Elsevier Ltd. All rights reserved.
Population-scale three-dimensional reconstruction and quantitative profiling of microglia arbors
Rey-Villamizar, Nicolas; Merouane, Amine; Lu, Yanbin; Mukherjee, Amit; Trett, Kristen; Chong, Peter; Harris, Carolyn; Shain, William; Roysam, Badrinath
2015-01-01
Motivation: The arbor morphologies of brain microglia are important indicators of cell activation. This article fills the need for accurate, robust, adaptive and scalable methods for reconstructing 3-D microglial arbors and quantitatively mapping microglia activation states over extended brain tissue regions. Results: Thick rat brain sections (100–300 µm) were multiplex immunolabeled for IBA1 and Hoechst, and imaged by step-and-image confocal microscopy with automated 3-D image mosaicing, producing seamless images of extended brain regions (e.g. 5903 × 9874 × 229 voxels). An over-complete dictionary-based model was learned for the image-specific local structure of microglial processes. The microglial arbors were reconstructed seamlessly using an automated and scalable algorithm that exploits microglia-specific constraints. This method detected 80.1 and 92.8% more centered arbor points, and 53.5 and 55.5% fewer spurious points than existing vesselness and LoG-based methods, respectively, and the traces were 13.1 and 15.5% more accurate based on the DIADEM metric. The arbor morphologies were quantified using Scorcioni’s L-measure. Coifman’s harmonic co-clustering revealed four morphologically distinct classes that concord with known microglia activation patterns. This enabled us to map spatial distributions of microglial activation and cell abundances. Availability and implementation: Experimental protocols, sample datasets, scalable open-source multi-threaded software implementation (C++, MATLAB) in the electronic supplement, and website (www.farsight-toolkit.org). http://www.farsight-toolkit.org/wiki/Population-scale_Three-dimensional_Reconstruction_and_Quanti-tative_Profiling_of_Microglia_Arbors Contact: broysam@central.uh.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701570
Arbor, MI, 2014 M.S. in natural resources and environment, University of Michigan, Ann Arbor, MI, 2014 ) Research Analyst, Center for Energy and Environment, Minneapolis, MN (2010-2012)
Zhong, Y
2016-12-11
Secondary optic neuropathy of optic nerve abnormalities is the leading cause of persistent visual impairment. Previous ocular neuroprotection studies have proved that the nerve growth factor and other agents are of significant in the preservation of optic nerve axon and retinal ganglion cells. However, finding novel safe and effective approach as well as the appropriate applications of optic neuroprotection should be highly emphasized and would be very helpful in the treatment of optic neuropathy. (Chin J Ophthalmol, 2016, 52: 881 - 884) .
Louraki, Maria; Katsalouli, Marina; Kanaka-Gantenbein, Christina; Kafassi, Nikolitsa; Critselis, Eleni; Kallinikou, Dimitra; Tsentidis, Charalampos; Karavanaki, Kyriaki
2016-07-01
To evaluate the prevalence of early somatic neuropathy in children and adolescents with Type 1 diabetes mellitus (Type 1 DM) and its association with the presence of glutamic acid decarboxylase and islet antigen-2 autoantibodies (GADA and IA-2A). A cross-sectional study was conducted in a hospital-based cohort of pediatric Type 1 DM patients (n=85, mean(±SD) age: 13.5±3.4years, mean(±SD) disease duration 5.5±3.4years). Peripheral neuropathy was assessed with nerve conduction studies (NCS). GADA and IA-2A titers were measured with radioligand assays. Among the study population, 34.1% had at least one abnormal electrophysiological parameter, although predominantly asymptomatic. The highest rates of abnormality were detected in sensory peroneal nerve (25.9%) followed by sural nerve (15.3%). Affected patients were not different in terms of age, diabetes duration or glycaemic control. Among the participants, 62.4% had positive GADA, 58.8% positive IA-2A and 42.4% double antibody positivity. Abnormal NCS correlated neither with GADA nor with IA-2A levels or positivity. However lower sensory nerve action potential in the peroneal nerve, indicative of early axonal dysfunction, was observed in patients with GADA or IA-2A positivity. Absence of both antibodies was associated with better action potentials in all the examined nerves of the lower limbs. Impaired indices of subclinical peripheral primarily sensory neuropathy were present among one third of Type 1 DM children and adolescents, with no impact of diabetes duration or glycaemic control. GADA and IA-2A seem to be involved in the development of axonal degeneration, in a pathway which remains to be identified. Copyright © 2016. Published by Elsevier Ireland Ltd.
Köşkderelioğlu, Aslı; Ortan, Pınar; Ari, Alpay; Gedizlioğlu, Muhteşem
2016-03-01
To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type.
KÖŞKDERELİOĞLU, Aslı; ORTAN, Pınar; ARI, Alpay; GEDİZLİOĞLU, Muhteşem
2016-01-01
Introduction To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Methods Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Results Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Conclusion Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type. PMID:28360761
Hirata, Harumitsu; Mizerska, Kamila; Dallacasagrande, Valentina; Guaiquil, Victor H; Rosenblatt, Mark I
2017-05-01
It is widely accepted that the mechanisms for transducing sensory information reside in the nerve terminals. Occasionally, however, studies have appeared demonstrating that similar mechanisms may exist in the axon to which these terminals are connected. We examined this issue in the cornea, where nerve terminals in the epithelial cell layers are easily accessible for debridement, leaving the underlying stromal (axonal) nerves undisturbed. In isoflurane-anesthetized rats, we recorded extracellularly from single trigeminal ganglion neurons innervating the cornea that are excited by ocular dryness and cooling: low-threshold (<2°C cooling) and high-threshold (>2°C) cold-sensitive plus dry-sensitive neurons playing possible roles in tearing and ocular pain. We found that the responses in both types of neurons to dryness, wetness, and menthol stimuli were effectively abolished by the debridement, indicating that their transduction mechanisms lie in the nerve terminals. However, some responses to the cold, heat, and hyperosmolar stimuli in low-threshold cold-sensitive plus dry-sensitive neurons still remained. Surprisingly, the responses to heat in approximately half of the neurons were augmented after the debridement. We were also able to evoke these residual responses and follow the trajectory of the stromal nerves, which we subsequently confirmed histologically. The residual responses always disappeared when the stromal nerves were cut at the limbus, suggesting that the additional transduction mechanisms for these sensory modalities originated most likely in stromal nerves. The functional significance of these residual and enhanced responses from stromal nerves may be related to the abnormal sensations observed in ocular disease. NEW & NOTEWORTHY In addition to the traditional view that the sensory transduction mechanisms exist in the nerve terminals, we report here that the proximal axons (stromal nerves in the cornea from which these nerve terminals originate) may also be capable of transducing sensory information. We arrived at this conclusion by removing the epithelial cell layers of the cornea in which the nerve terminals reside but leaving the underlying stromal nerves undisturbed. Copyright © 2017 the American Physiological Society.
Mizerska, Kamila; Dallacasagrande, Valentina; Guaiquil, Victor H.; Rosenblatt, Mark I.
2017-01-01
It is widely accepted that the mechanisms for transducing sensory information reside in the nerve terminals. Occasionally, however, studies have appeared demonstrating that similar mechanisms may exist in the axon to which these terminals are connected. We examined this issue in the cornea, where nerve terminals in the epithelial cell layers are easily accessible for debridement, leaving the underlying stromal (axonal) nerves undisturbed. In isoflurane-anesthetized rats, we recorded extracellularly from single trigeminal ganglion neurons innervating the cornea that are excited by ocular dryness and cooling: low-threshold (<2°C cooling) and high-threshold (>2°C) cold-sensitive plus dry-sensitive neurons playing possible roles in tearing and ocular pain. We found that the responses in both types of neurons to dryness, wetness, and menthol stimuli were effectively abolished by the debridement, indicating that their transduction mechanisms lie in the nerve terminals. However, some responses to the cold, heat, and hyperosmolar stimuli in low-threshold cold-sensitive plus dry-sensitive neurons still remained. Surprisingly, the responses to heat in approximately half of the neurons were augmented after the debridement. We were also able to evoke these residual responses and follow the trajectory of the stromal nerves, which we subsequently confirmed histologically. The residual responses always disappeared when the stromal nerves were cut at the limbus, suggesting that the additional transduction mechanisms for these sensory modalities originated most likely in stromal nerves. The functional significance of these residual and enhanced responses from stromal nerves may be related to the abnormal sensations observed in ocular disease. NEW & NOTEWORTHY In addition to the traditional view that the sensory transduction mechanisms exist in the nerve terminals, we report here that the proximal axons (stromal nerves in the cornea from which these nerve terminals originate) may also be capable of transducing sensory information. We arrived at this conclusion by removing the epithelial cell layers of the cornea in which the nerve terminals reside but leaving the underlying stromal nerves undisturbed. PMID:28250152
Lucia, Federico S; Pacheco-Torres, Jesús; González-Granero, Susana; Canals, Santiago; Obregón, María-Jesús; García-Verdugo, José M; Berbel, Pere
2018-01-01
Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.
2016-06-25
The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was
Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism
Guo, Yue-Ping; Commons, Kathryn G.
2017-01-01
The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, J.
1987-10-01
In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brainmore » regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references.« less
7. EXTERIOR, SIDE VIEW FROM GARDEN SHOWING GRAPE ARBOR undated ...
7. EXTERIOR, SIDE VIEW FROM GARDEN SHOWING GRAPE ARBOR undated - Jean Baptiste Valle House, 99 South Main Street (Northwest corner of Main & Market Streets), Sainte Genevieve, Ste. Genevieve County, MO
20. STREAM ARBOR, LOOKING NORTHWEST Photocopy of photograph, 1930s National ...
20. STREAM ARBOR, LOOKING NORTHWEST Photocopy of photograph, 1930s National Park Service, National Capital Region files - Dumbarton Oaks Park, Thirty-second & R Streets Northwest, Washington, District of Columbia, DC
Glorioso, Brad M.; Waddle, J. Hardin
2017-01-01
The southeastern United States is home to a diverse assemblage of snakes, but only one species, the Rough Greensnake (Opheodrys aestivus), is considered specialized for a predominantly arboreal lifestyle. Other species, such as Ratsnakes (genus Pantherophis) and Ribbonsnakes/Gartersnakes (genus Thamnophis), are widely known to climb into vegetation and trees. Some explanations given for snake climbing behavior are foraging, thermoregulation, predator avoidance, and response to flood. Reports of arboreality in snake species typically not associated with life in the trees (such as terrestrial, aquatic, and even fossorial species) usually come from single observations, with no knowledge of prevalence of the behavior. Here, we report on arboreality of snake species detected during 8 years of night surveys in the Atchafalaya Basin of south-central Louisiana and 5+ years of night surveys in Big Thicket National Preserve in southeast Texas. We recorded a total of 1,088 detections of 19 snake species between the two study areas, with 348 detections above ground level (32%). The Rough Greensnake and Western Ribbonsnake (Thamnophis proximus) accounted for nearly 75% of total arboreal detections among the two study areas. However, with one exception, all snake species detected more than once between both study areas had at least one arboreal detection. These observations demonstrate that snakes with widely varying natural histories may be found in the trees at night, and for some species, this behavior may be more common than previously believed.
Dececchi, T Alexander; Larsson, Hans C E
2011-01-01
The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.
Brain Microstructure and Impulsivity Differ between Current and Past Methamphetamine Users.
Andres, Tamara; Ernst, Thomas; Oishi, Kenichi; Greenstein, David; Nakama, Helenna; Chang, Linda
2016-09-01
Methamphetamine (Meth) use disorder continues to be highly prevalent worldwide. Meth users have higher impulsivity and brain abnormalities that may be different between current and past Meth users. The current study assessed impulsivity and depressive symptoms in 94 participants (27 current Meth users, 32 past Meth users and 35 non-drug user controls). Additionally, brain microstructure was assessed using diffusion tensor imaging (DTI); fractional anisotropy (FA) and mean diffusivity (MD) were assessed in the striatum, and FA, MD, radial and axial diffusivity were quantified in five white matter structures using DtiStudio.Across the three subject groups, current users had the highest self-reported impulsivity scores, while both Meth user groups had larger striatal structures than the controls. Past Meth users had the highest FA and lowest MD in the striatum, which is likely due to greater magnetic susceptibility from higher iron content and greater dendritic spine density. In white matter tracts, current Meth users had higher AD than past users, indicating greater water diffusion along the axons, and suggesting inflammation with axonal swelling. In contrast, past users had the lowest AD, indicating more restricted diffusion, which might have resulted from reactive gliosis. Although current Meth users had greater impulsivity than past users, the brain microstructural abnormalities showed differences that may reflect different stages of neuroinflammation or iron-induced neurodegeneration. Combining current and past Meth users may lead to greater variability in studies of Meth users. Longitudinal studies are needed to further evaluate the relationship between recency of Meth use and brain microstructure.
NASA Astrophysics Data System (ADS)
Poon, Kelvin W.; Brideau, Craig; Teo, Wulin; Schenk, Geert J.; Klaver, Roel; Klauser, Antoine M.; Kawasoe, Jean H.; Geurts, Jeroen J. G.; Stys, Peter K.
2013-03-01
The pathology of multiple sclerosis (MS) involves both the gray and white matter regions of the brain and spinal cord. It is characterized by various combinations of demyelination, inflammatory infiltration, axonal degeneration, and later gliosis in chronic lesions. While acute and chronic white matter plaques are well characterized and easily identified, evidence indicates that the CNS of MS patients may be globally altered, with subtle abnormalities found in grossly normal appearing white matter (NAWM) and in diffusely abnormal white matter (DAWM) where histochemical stains and advanced magnetic resonance imaging indicate altered tissue composition. Thus, the prototypical acute inflammatory lesion may merely represent the most obvious manifestation of a chronic widespread involvement of the CNS, which is difficult to examine reliably. The current study deals with the microstructure and biochemistry of demyelination, remyelination and axonal loss in various regions of post-mortem human MS brain, including NAWM, areas of remyelination and more typical acute and chronic lesions. The myelin sheath, neuroglia and perivascular spaces were investigated using a novel Coherent Anti-Stokes Raman Scattering (CARS) microscope with simultaneous Two-Photon Excited Fluorescence (TPEF) imaging. The active CH stretching region between 2800 and 3000 cm-1 was probed to provide chemically specific, high resolution, label-free imaging pertaining to the progression of the disease. CARS data were correlated with TPEF and conventional histochemical and immunohistochemical stains. Our novel CARS microscopy system provides detailed morphological and biochemical information regarding CNS pathology in MS and that may be applicable to a broad range of other human brain and spinal cord disorders.
Scharfman, Helen E; Myers, Catherine E
2016-03-01
The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic control of postnatal human brain growth
van Dyck, Laura I.; Morrow, Eric M.
2017-01-01
Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583
Arrigoni, F; Romaniello, R; Peruzzo, D; De Luca, A; Parazzini, C; Valente, E M; Borgatti, R; Triulzi, F
2017-12-01
In Joubert syndrome, the "molar tooth" sign can be associated with several additional supra- and infratentorial malformations. Here we report on 3 subjects (2 siblings, 8-14 years of age) with Joubert syndrome, showing an abnormal thick bulging of the anterior profile of the mesencephalon causing a complete obliteration of the interpeduncular fossa. DTI revealed that the abnormal tissue consisted of an ectopic white matter tract with a laterolateral transverse orientation. Tractographic reconstructions support the hypothesis of impaired axonal guidance mechanisms responsible for the malformation. The 2 siblings were compound heterozygous for 2 missense variants in the TMEM67 gene, while no mutations in a panel of 120 ciliary genes were detected in the third patient. The name "anterior mesencephalic cap dysplasia," referring to the peculiar aspect of the mesencephalon on sagittal MR imaging, is proposed for this new malformative feature. © 2017 by American Journal of Neuroradiology.
Sensory chronic inflammatory demyelinating polyneuropathy: an under-recognized entity?
Ayrignac, Xavier; Viala, Karine; Koutlidis, Régine Morizot; Taïeb, Guillaume; Stojkovic, Tanya; Musset, Lucille; Léger, Jean-Marc; Fournier, Emmanuel; Maisonobe, Thierry; Bouche, Pierre
2013-11-01
Sensory chronic inflammatory demyelinating polyneuropathy (CIDP) can be difficult to diagnose. We report 22 patients with chronic sensory polyneuropathy with ≥1 clinical sign atypical for chronic idiopathic axonal polyneuropathy (CIAP) but no electrodiagnostic criteria for CIDP. Clinical signs atypical for CIAP were: sensory ataxia (59%), generalized areflexia (36%), cranial nerve involvement (32%), rapid upper limb involvement (40%), and age at onset ≤55 years (50%). Additional features were: normal sensory nerve action potentials (36%), abnormal radial/normal sural pattern (23%), abnormal somatosensory evoked potentials (SSEPs) (100%), elevated cerebrospinal fluid (CSF) protein (73%), and demyelinating features in 5/7 nerve biopsies. Over 90% of patients responded to immunotherapy. We conclude that all patients had sensory CIDP. Sensory CIDP patients can be misdiagnosed as having CIAP. If atypical clinical/electrophysiologic features are present, we recommend performing SSEPs and CSF examination. Nerve biopsy should be restricted to disabled patients if other examinations are inconclusive. Copyright © 2013 Wiley Periodicals, Inc.
Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)
Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda
2015-01-01
The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658
Smith, Joshua B; Laatsch, Lauren J; Beasley, James C
2017-08-31
Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate of arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.
Holmes, William R; Huwe, Janice A; Williams, Barbara; Rowe, Michael H; Peterson, Ellengene H
2017-05-01
Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents. NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings. Copyright © 2017 the American Physiological Society.
Structure and plasticity potential of neural networks in the cerebral cortex
NASA Astrophysics Data System (ADS)
Fares, Tarec Edmond
In this thesis, we first described a theoretical framework for the analysis of spine remodeling plasticity. We provided a quantitative description of two models of spine remodeling in which the presence of a bouton is either required or not for the formation of a new synapse. We derived expressions for the density of potential synapses in the neuropil, the connectivity fraction, which is the ratio of actual to potential synapses, and the number of structurally different circuits attainable with spine remodeling. We calculated these parameters in mouse occipital cortex, rat CA1, monkey V1, and human temporal cortex. We found that on average a dendritic spine can choose among 4-7 potential targets in rodents and 10-20 potential targets in primates. The neuropil's potential for structural circuit remodeling is highest in rat CA1 (7.1-8.6 bits/mum3) and lowest in monkey V1 (1.3-1.5 bits/mum 3 We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, ). We also evaluated the lower bound of neuron selectivity in the choice of synaptic partners. Post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, such axo-dendritic oppositions, or potential synapses, must be bridged by dendritic spines to form synaptic connections. To explore the rules by which synaptic connections are formed within the constraints imposed by neuron morphology, we compared the distributions of the numbers of actual and potential synapses between pre- and post-synaptic neurons forming different laminar projections in rat barrel cortex. Quantitative comparison explicitly ruled out the hypothesis that individual synapses between neurons are formed independently of each other. Instead, the data are consistent with a cooperative scheme of synapse formation, where multiple-synaptic connections between neurons are stabilized, while neurons that do not establish a critical number of synapses are not likely to remain synaptically coupled. In the above two projects, analysis of potential synapse numbers played an important role in shaping our understanding of connectivity and structural plasticity. In the third part of this thesis, we shift our attention to the study of the distribution of potential synapse numbers. This distribution is dependent on the details of neuron morphology and it defines synaptic connectivity patterns attainable with spine remodeling. To better understand how the distribution of potential synapse numbers is influenced by the overlap and the shapes of axonal and dendritic arbors, we first analyzed uniform disconnected arbors generated in silico. The resulting distributions are well described by binomial functions. We used a dataset of neurons reconstructed in 3D and generated the potential synapse distributions for neurons of different classes. Quantitative analysis showed that the binomial distribution is a good fit to this data as well. All distributions considered clustered into two categories, inhibitory to inhibitory and excitatory to excitatory projections. We showed that the distributions of potential synapse numbers are universally described by a family of single parameter (p) binomial functions, where p = 0.08, and for the inhibitory and p = 0.19 for the excitatory projections. In the last part of this thesis an attempt is made to incorporate some of the biological constraints we considered thus far, into an artificial neural network model. It became clear that several features of synaptic connectivity are ubiquitous among different cortical networks: (1) neural networks are predominately excitatory, containing roughly 80% of excitatory neurons and synapses, (2) neural networks are only sparsely interconnected, where the probabilities of finding connected neurons are always less than 50% even for neighboring cells, (3) the distribution of connection strengths has been shown to have a slow non-exponential decay. In the attempt to understand the advantage of such network architecture for learning and memory, we analyzed the associative memory capacity of a biologically constrained perceptron-like neural network model. The artificial neural network we consider consists of robust excitatory and inhibitory McCulloch and Pitts neurons with a constant firing threshold. Our theoretical results show that the capacity for associative memory storage in such networks increases with an addition of a small fraction of inhibitory neurons, while the connection probability remains below 50%. (Abstract shortened by UMI.)
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.
2016-01-01
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320
Demyelination of vestibular nerve axons in unilateral Ménière's disease.
Spencer, Robert F; Sismanis, Aristides; Kilpatrick, Jefferson K; Shaia, Wayne T
2002-11-01
We conducted a study to determine whether vestibular nerves in patients with unilateral Ménière's disease whose symptoms are refractory to medical management exhibit neuropathologic changes. We also endeavored to determine whether retrocochlear abnormalities are primary or secondary factors in the disease process. To these ends, we obtained vestibular nerve segments from five patients during retrosigmoid (posterior fossa) neurectomy, immediately fixed them, and processed them for light and electron microscopy. We found that all five segments exhibited moderate to severe demyelination with axonal sparing. Moreover, we noted that reactive astrocytes produced an extensive proliferation of fibrous processes and that the microglia assumed a phagocytic role. We conclude that the possible etiologies of demyelination include viral and/or immune-mediated factors similar to those seen in other demyelinating diseases, such as multiple sclerosis and Guillain-Barré syndrome. Our findings suggest that some forms of Ménière's disease that are refractory to traditional medical management might be the result of retrocochlear pathology that affects the neuroglial portion of the vestibular nerve.
Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke
2018-03-29
Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.
Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy
Rebelo, Adriana P.; Abrams, Alexander J.; Cottenie, Ellen; Horga, Alejandro; Gonzalez, Michael; Bis, Dana M.; Sanchez-Mejias, Avencia; Pinto, Milena; Buglo, Elena; Markel, Kasey; Prince, Jeffrey; Laura, Matilde; Houlden, Henry; Blake, Julian; Woodward, Cathy; Sweeney, Mary G.; Holton, Janice L.; Hanna, Michael; Dallman, Julia E.; Auer-Grumbach, Michaela; Reilly, Mary M.; Zuchner, Stephan
2016-01-01
Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3′ UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants. PMID:27040688
Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril
2015-02-01
Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito-frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
Phan, K. Luan; Orlichenko, Anton; Boyd, Erin; Angstadt, Mike; Coccaro, Emil F.; Liberzon, Israel; Arfanakis, Konstantinos
2009-01-01
Background Individuals with generalized social anxiety disorder (GSAD) exhibit exaggerated amygdala reactivity to aversive social stimuli. These findings could be explained by microstructural abnormalities in white matter (WM) tracts that connect the amygdala and prefrontal cortex, which is known to modulate the amygdala’s response to threat. The goal of this study was to investigate brain frontal WM abnormalities by using diffusion tensor imaging (DTI) in patients with social anxiety disorder. Method A Turboprop DTI sequence was used to acquire diffusion tensor images in thirty patients with GSAD and thirty matched healthy controls. Fractional anisotropy, an index of axonal organization, within WM was quantified in individual subjects and an automated voxel-based, whole-brain method was used to analyze group differences. Results Compared to healthy controls, patients had significantly lower fractional anisotropy localized to the right uncinate fasciculus WM near the orbitofrontal cortex. There were no areas of higher fractional anisotropy in patients than controls. Conclusions These findings point to an abnormality in the uncinate fasciculus, the major WM tract connecting the frontal cortex to the amygdala and other limbic temporal regions, in GSAD which could underlie the aberrant amygdala-prefrontal interactions resulting in dysfunctional social threat processing in this illness. PMID:19362707
Developmental abnormalities of the posterior pituitary gland.
di Iorgi, Natascia; Secco, Andrea; Napoli, Flavia; Calandra, Erika; Rossi, Andrea; Maghnie, Mohamad
2009-01-01
While the molecular mechanisms of anterior pituitary development are now better understood than in the past, both in animals and in humans, little is known about the mechanisms regulating posterior pituitary development. The posterior pituitary gland is formed by the evagination of neural tissue from the floor of the third ventricle. It consists of the distal axons of the hypothalamic magnocellular neurones that shape the neurohypophysis. After its downward migration, it is encapsulated together with the ascending ectodermal cells of Rathke's pouch which form the anterior pituitary. By the end of the first trimester, this development is completed and vasopressin and oxytocin can be detected in neurohypophyseal tissue. Abnormal posterior pituitary migration such as the ectopic posterior pituitary lobe appearing at the level of median eminence or along the pituitary stalk have been reported in idiopathic GH deficiency or in subjects with HESX1, LHX4 and SOX3 gene mutations. Another intriguing feature of abnormal posterior pituitary development involves genetic forms of posterior pituitary neurodegeneration that have been reported in autosomal-dominant central diabetes insipidus and Wolfram disease. Defining the phenotype of the posterior pituitary gland can have significant clinical implications for management and counseling, as well as providing considerable insight into normal and abnormal mechanisms of posterior pituitary development in humans.
Pittman, Andrew J.; Law, Mei-Yee; Chien, Chi-Bin
2008-01-01
Summary Navigating axons respond to environmental guidance signals, but can also follow axons that have gone before—pioneer axons. Pioneers have been studied extensively in simple systems, but the role of axon-axon interactions remains largely unexplored in large vertebrate axon tracts, where cohorts of identical axons could potentially use isotypic interactions to guide each other through multiple choice points. Furthermore, the relative importance of axon-axon interactions compared to axon-autonomous receptor function has not been assessed. Here we test the role of axon-axon interactions in retinotectal development, by devising a technique to selectively remove or replace early-born retinal ganglion cells (RGCs). We find that early RGCs are both necessary and sufficient for later axons to exit the eye. Furthermore, introducing misrouted axons by transplantation reveals that guidance from eye to tectum relies heavily on interactions between axons, including both pioneer-follower and community effects. We conclude that axon-axon interactions and ligand-receptor signaling have coequal roles, cooperating to ensure the fidelity of axon guidance in developing vertebrate tracts. PMID:18653554
22. MEADOW, LOOKING EAST WITH STREAM ARBOR ON RIGHT Photocopy ...
22. MEADOW, LOOKING EAST WITH STREAM ARBOR ON RIGHT Photocopy of photograph, 1930s National Park Service, National Capital Region files - Dumbarton Oaks Park, Thirty-second & R Streets Northwest, Washington, District of Columbia, DC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... Particle Standard for the Detroit-Ann Arbor Nonattainment Area AGENCY: Environmental Protection Agency (EPA...) regarding the 1997 annual fine particle (PM 2.5 ) nonattainment area of Detroit-Ann Arbor, Michigan...
Evaluation of the advanced operating system of the Ann Arbor Transit Authority
DOT National Transportation Integrated Search
1999-10-01
These reports constitute an evaluation of the intelligent transportation system deployment efforts of the Ann Arbor Transportation Authority. These efforts, collectively termed "Advanced Operating System" (AOS), represent a vision of an integrated ad...
Habitat use affects morphological diversification in dragon lizards
COLLAR, D C; SCHULTE, J A; O’MEARA, B C; LOSOS, J B
2010-01-01
Habitat use may lead to variation in diversity among evolutionary lineages because habitats differ in the variety of ways they allow for species to make a living. Here, we show that structural habitats contribute to differential diversification of limb and body form in dragon lizards (Agamidae). Based on phylogenetic analysis and ancestral state reconstructions for 90 species, we find that multiple lineages have independently adopted each of four habitat use types: rock-dwelling, terrestriality, semi-arboreality and arboreality. Given these reconstructions, we fit models of evolution to species’ morphological trait values and find that rock-dwelling and arboreality limit diversification relative to terrestriality and semi-arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model-averaged rate estimates are slowest for these habitat types. These results suggest that ground-dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification. PMID:20345808
CDKL5 localizes at the centrosome and midbody and is required for faithful cell division.
Barbiero, Isabella; Valente, Davide; Chandola, Chetan; Magi, Fiorenza; Bergo, Anna; Monteonofrio, Laura; Tramarin, Marco; Fazzari, Maria; Soddu, Silvia; Landsberger, Nicoletta; Rinaldo, Cinzia; Kilstrup-Nielsen, Charlotte
2017-07-24
The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental disorders characterized by the early onset of seizures and intellectual disability. The CDKL5 protein is widely expressed in most tissues and cells with both nuclear and cytoplasmic localization. In post-mitotic neurons CDKL5 is mainly involved in dendritic arborization, axon outgrowth, and spine formation while in proliferating cells its function is still largely unknown. Here, we report that CDKL5 localizes at the centrosome and at the midbody in proliferating cells. Acute inactivation of CDKL5 by RNA interference (RNAi) leads to multipolar spindle formation, cytokinesis failure and centrosome accumulation. At the molecular level, we observed that, among the several midbody components we analyzed, midbodies of CDKL5-depleted cells were devoid of HIPK2 and its cytokinesis target, the extrachromosomal histone H2B phosphorylated at S14. Of relevance, expression of the phosphomimetic mutant H2B-S14D, which is capable of overcoming cytokinesis failure in HIPK2-defective cells, was sufficient to rescue spindle multipolarity in CDKL5-depleted cells. Taken together, these results highlight a hitherto unknown role of CDKL5 in regulating faithful cell division by guaranteeing proper HIPK2/H2B functions at the midbody.
Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta
2011-01-01
Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.
Neurobeachin is required postsynaptically for electrical and chemical synapse formation
Miller, Adam C.; Voelker, Lisa H.; Shah, Arish N.; Moens, Cecilia B.
2014-01-01
Summary Background Neural networks and their function are defined by synapses, which are adhesions specialized for intercellular communication that can be either chemical or electrical. At chemical synapses transmission between neurons is mediated by neurotransmitters, while at electrical synapses direct ionic and metabolic coupling occurs via gap junctions between neurons. The molecular pathways required for electrical synaptogenesis are not well understood and whether they share mechanisms of formation with chemical synapses is not clear. Results Here, using a forward genetic screen in zebrafish we find that the autism-associated gene neurobeachin (nbea), which encodes a BEACH-domain containing protein implicated in endomembrane trafficking, is required for both electrical and chemical synapse formation. Additionally, we find that nbea is dispensable for axonal formation and early dendritic outgrowth, but is required to maintain dendritic complexity. These synaptic and morphological defects correlate with deficiencies in behavioral performance. Using chimeric animals in which individually identifiable neurons are either mutant or wildtype we find that Nbea is necessary and sufficient autonomously in the postsynaptic neuron for both synapse formation and dendritic arborization. Conclusions Our data identify a surprising link between electrical and chemical synapse formation and show that Nbea acts as a critical regulator in the postsynaptic neuron for the coordination of dendritic morphology with synaptogenesis. PMID:25484298
Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.
Meek, J; Nieuwenhuys, R
1991-04-01
The present study is devoted to a detailed analysis of the structural and synaptic organization of mormyrid Purkinje cells in order to evaluate the possible functional significance of their dendritic palisade pattern. For this purpose, the properties of Golgi-impregnated as well as unimpregnated Purkinje cells in lobe C1 and C3 of the cerebellum of Gnathonemus petersii were light and electron microscopically analyzed, quantified, reconstructed, and mutually compared. Special attention was paid to the degree of regularity of their dendritic trees, their relations with Bergmann glia, and the distribution and numerical properties of their synaptic connections with parallel fibers, stellate cells, "climbing" fibers, and Purkinje axonal boutons. The highest degree of palisade specialization was encountered in lobe C1, where Purkinje cells have on average 50 palisade dendrites with a very regular distribution in a sagittal plane. Their spine density decreases from superficial to deep (from 14 to 6 per micron dendritic length), a gradient correlated with a decreasing parallel fiber density but an increasing parallel fiber diameter. Each Purkinje cell makes on average 75,000 synaptic contacts with parallel fibers, some of which are rather coarse (0.45 microns), and provided with numerous short collaterals. Climbing fibers do not climb, since their synaptic contacts are restricted to the ganglionic layer (i.e., the layer of Purkinje and eurydendroid projection cells), where they make about 130 synaptic contacts per cell with 2 or 3 clusters of thorns on the proximal dendrites. These clusters contain also a type of "shunting" elements that make desmosome-like junctions with both the climbing fiber boutons and the necks of the thorns. The axons of Purkinje cells in lobe C1 make small terminal arborizations, with about 20 boutons, that may be substantially (up to 500 microns) displaced rostrally or caudally with respect to the soma. Purkinje axonal boutons were observed to make synaptic contacts with eurydendroid projection cells and with the proximal dendritic and somatic receptive surface of Purkinje cells, where about 15 randomly distributed boutons per neuron occur. The organization of Purkinje cells in lobe C3 differs markedly from that in C1 and seems to be less regular and specialized, although the overall palisade pattern is even more regular than in lobe C1 because of the absence of large eurydendroid neurons. However, individual neurons have a less regular dendritic tree, there is no apical-basal gradient in spine density or parallel fiber density and diameter, and there are no "shunting" elements in the climbing fiber glomeruli.(ABSTRACT TRUNCATED AT 400 WORDS)
Ye, Xuan; Chang, Qing; Jeong, Yu Young; Cai, Huaibin; Kusnecov, Alexander
2017-01-01
Amyloid-β (Aβ) peptides play a key role in synaptic damage and memory deficits in the early pathogenesis of Alzheimer's disease (AD). Abnormal accumulation of Aβ at nerve terminals leads to synaptic pathology and ultimately to neurodegeneration. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for Aβ generation. However, the mechanisms regulating BACE1 distribution in axons and β cleavage of APP at synapses remain largely unknown. Here, we reveal that dynein–Snapin-mediated retrograde transport regulates BACE1 trafficking in axons and APP processing at presynaptic terminals. BACE1 is predominantly accumulated within late endosomes at the synapses of AD-related mutant human APP (hAPP) transgenic (Tg) mice and patient brains. Defective retrograde transport by genetic ablation of snapin in mice recapitulates late endocytic retention of BACE1 and increased APP processing at presynaptic sites. Conversely, overexpressing Snapin facilitates BACE1 trafficking and reduces synaptic BACE1 accumulation by enhancing the removal of BACE1 from distal AD axons and presynaptic terminals. Moreover, elevated Snapin expression via stereotactic hippocampal injections of adeno-associated virus particles in mutant hAPP Tg mouse brains decreases synaptic Aβ levels and ameliorates synapse loss, thus rescuing cognitive impairments associated with hAPP mice. Altogether, our study provides new mechanistic insights into the complex regulation of BACE1 trafficking and presynaptic localization through Snapin-mediated dynein-driven retrograde axonal transport, thereby suggesting a potential approach of modulating Aβ levels and attenuating synaptic deficits in AD. SIGNIFICANCE STATEMENT β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) trafficking and synaptic localization significantly influence its β secretase activity and amyloid-β (Aβ) production. In AD brains, BACE1 is accumulated within dystrophic neurites, which is thought to augment Aβ-induced synaptotoxicity by Aβ overproduction. However, it remains largely unknown whether axonal transport regulates synaptic APP processing. Here, we demonstrate that Snapin-mediated retrograde transport plays a critical role in removing BACE1 from presynaptic terminals toward the soma, thus reducing synaptic Aβ production. Adeno-associated virus–mediated Snapin overexpression in the hippocampus of mutant hAPP mice significantly decreases synaptic Aβ levels, attenuates synapse loss, and thus rescues cognitive deficits. Our study uncovers a new pathway that controls synaptic APP processing by enhancing axonal BACE1 trafficking, thereby advancing our fundamental knowledge critical for ameliorating Aβ-linked synaptic pathology. PMID:28159908
Dececchi, T. Alexander; Larsson, Hans C. E.
2011-01-01
The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918
Slow but tenacious: an analysis of running and gripping performance in chameleons.
Herrel, Anthony; Tolley, Krystal A; Measey, G John; da Silva, Jessica M; Potgieter, Daniel F; Boller, Elodie; Boistel, Renaud; Vanhooydonck, Bieke
2013-03-15
Chameleons are highly specialized and mostly arboreal lizards characterized by a suite of derived characters. The grasping feet and tail are thought to be related to the arboreal lifestyle of chameleons, yet specializations for grasping are thought to exhibit a trade-off with running ability. Indeed, previous studies have demonstrated a trade-off between running and clinging performance, with faster species being poorer clingers. Here we investigate the presence of trade-offs by measuring running and grasping performance in four species of chameleon belonging to two different clades (Chamaeleo and Bradypodion). Within each clade we selected a largely terrestrial species and a more arboreal species to test whether morphology and performance are related to habitat use. Our results show that habitat drives the evolution of morphology and performance but that some of these effects are specific to each clade. Terrestrial species in both clades show poorer grasping performance than more arboreal species and have smaller hands. Moreover, hand size best predicts gripping performance, suggesting that habitat use drives the evolution of hand morphology through its effects on performance. Arboreal species also had longer tails and better tail gripping performance. No differences in sprint speed were observed between the two Chamaeleo species. Within Bradypodion, differences in sprint speed were significant after correcting for body size, yet the arboreal species were both better sprinters and had greater clinging strength. These results suggest that previously documented trade-offs may have been caused by differences between clades (i.e. a phylogenetic effect) rather than by design conflicts between running and gripping per se.
Hand pressures during arboreal locomotion in captive bonobos (Pan paniscus).
Samuel, Diana S; Nauwelaerts, Sandra; Stevens, Jeroen M G; Kivell, Tracy L
2018-04-19
Evolution of the human hand has undergone a transition from use during locomotion to use primarily for manipulation. Previous comparative morphological and biomechanical studies have focused on potential changes in manipulative abilities during human hand evolution, but few have focused on functional signals for arboreal locomotion. Here, we provide this comparative context though the first analysis of hand loading in captive bonobos during arboreal locomotion. We quantify pressure experienced by the fingers, palm and thumb in bonobos during vertical locomotion, suspension and arboreal knuckle-walking. The results show that pressure experienced by the fingers is significantly higher during knuckle-walking compared with similar pressures experienced by the fingers and palm during suspensory and vertical locomotion. Peak pressure is most often experienced at or around the third digit in all locomotor modes. Pressure quantified for the thumb is either very low or absent, despite the thumb making contact with the substrate during all suspensory and vertical locomotor trials. Unlike chimpanzees, bonobos do not show a rolling pattern of digit contact with the substrate during arboreal knuckle-walking - instead, we found that digits 3 and 4 typically touch down first and digit 5 almost always made contact with the substrate. These results have implications for interpreting extant and fossilized hand morphology; we expect bonobo (and chimpanzee) bony morphology to primarily reflect the biomechanical loading of knuckle-walking, while functional signals for arboreal locomotion in fossil hominins are most likely to appear in the fingers, particularly digit 3, and least likely to appear in the morphology of the thumb. © 2018. Published by The Company of Biologists Ltd.
Brainstem pathology in spasmodic dysphonia
Simonyan, Kristina; Ludlow, Christy L.; Vortmeyer, Alexander O.
2009-01-01
Spasmodic dysphonia (SD) is a primary focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speech production. We examined two rare cases of postmortem brainstem tissue from SD patients compared to four controls. In SD patients, small clusters of inflammation were found in the reticular formation surrounding solitary tract, spinal trigeminal and ambigual nuclei, inferior olive and pyramids. Mild neuronal degeneration and depigmentation were observed in the substantia nigra and locus coeruleus. No abnormal protein accumulations and no demyelination or axonal degeneration were found. These neuropathological findings may provide insights into the pathophysiology of SD. PMID:19795469
Shively, Sharon B; Edgerton, Sarah L; Iacono, Diego; Purohit, Dushyant P; Qu, Bao-Xi; Haroutunian, Vahram; Davis, Kenneth L; Diaz-Arrastia, Ramon; Perl, Daniel P
2017-03-01
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild impact traumatic brain injury from contact sports. Recently, a consensus panel defined the pathognomonic lesion for CTE as accumulations of abnormally hyperphosphorylated tau (p-tau) in neurons (neurofibrillary tangles), astrocytes and cell processes distributed around small blood vessels at sulcal depths in irregular patterns within the cortex. The pathophysiological mechanism for this lesion is unknown. Moreover, a subset of CTE cases harbors cortical β-amyloid plaques. In this study, we analyzed postmortem brain tissues from five institutionalized patients with schizophrenia and history of surgical leucotomy with subsequent survival of at least another 40 years. Because leucotomy involves severing axons bilaterally in prefrontal cortex, this surgical procedure represents a human model of single traumatic brain injury with severe axonal damage and no external impact. We examined cortical tissues at the leucotomy site and at both prefrontal cortex rostral and frontal cortex caudal to the leucotomy site. For comparison, we analyzed brain tissues at equivalent neuroanatomical sites from non-leucotomized patients with schizophrenia, matched in age and gender. All five leucotomy cases revealed severe white matter damage with dense astrogliosis at the axotomy site and also neurofibrillary tangles and p-tau immunoreactive neurites in the overlying gray matter. Four cases displayed p-tau immunoreactivity in neurons, astrocytes and cell processes encompassing blood vessels at cortical sulcal depths in irregular patterns, similar to CTE. The three cases with apolipoprotein E ε4 haplotype showed scattered β-amyloid plaques in the overlying gray matter, but not the two cases with apolipoprotein E ε3/3 genotype. Brain tissue samples from prefrontal cortex rostral and frontal cortex caudal to the leucotomy site, and all cortical samples from the non-leucotomized patients, showed minimal p-tau and β-amyloid pathology. These findings suggest that chronic axonal damage contributes to the unique pathology of CTE over time.
Clark, Jayden A; Yeaman, Elise J; Blizzard, Catherine A; Chuckowree, Jyoti A; Dickson, Tracey C
2016-01-01
Amyotrophic lateral sclerosis (ALS) is an aggressive multifactorial disease converging on a common pathology: the degeneration of motor neurons (MNs), their axons and neuromuscular synapses. This vulnerability and dysfunction of MNs highlights the dependency of these large cells on their intracellular machinery. Neuronal microtubules (MTs) are intracellular structures that facilitate a myriad of vital neuronal functions, including activity dependent axonal transport. In ALS, it is becoming increasingly apparent that MTs are likely to be a critical component of this disease. Not only are disruptions in this intracellular machinery present in the vast majority of seemingly sporadic cases, recent research has revealed that mutation to a microtubule protein, the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease. In both sporadic and familial disease, studies have provided evidence that microtubule mediated deficits in axonal transport are the tipping point for MN survivability. Axonal transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle and mRNA transport and limited signaling of key survival factors from the neurons peripheral synapses, causing the characteristic peripheral "die back". This disruption to microtubule dependant transport in ALS has been shown to result from alterations in the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage of microtubule polymers. This is accomplished primarily due to aberrant alterations to microtubule associated proteins (MAPs) that regulate microtubule stability. Indeed, the current literature would argue that microtubule stability, particularly alterations in their dynamics, may be the initial driving force behind many familial and sporadic insults in ALS. Pharmacological stabilization of the microtubule network offers an attractive therapeutic strategy in ALS; indeed it has shown promise in many neurological disorders, ALS included. However, the pathophysiological involvement of MTs and their functions is still poorly understood in ALS. Future investigations will hopefully uncover further therapeutic targets that may aid in combating this awful disease.
Tsai, Shang-Yi A.; Pokrass, Michael J.; Klauer, Neal R.; Nohara, Hiroshi; Su, Tsung-Ping
2015-01-01
Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor’s interaction with myristic acid. In Sig-1R–KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R–KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R–KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25. PMID:25964330
Tsai, Shang-Yi A; Pokrass, Michael J; Klauer, Neal R; Nohara, Hiroshi; Su, Tsung-Ping
2015-05-26
Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.
Thyroid hormones states and brain development interactions.
Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G
2008-04-01
The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
78 FR 65380 - Notice of Inventory Completion: University of Michigan, Ann Arbor, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... the University of Michigan, Ann Arbor, MI. The human remains were removed from Alpena, Isabella, Grand... removed from the Devil River Mound site (20AL1) in Alpena County, MI. A resident of Ossineke, MI...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... 2006 24-Hour Fine Particle Standards for the Detroit-Ann Arbor Nonattainment Area AGENCY: Environmental... the Clean Air Act (CAA) regarding the fine particle (PM 2.5 ) nonattainment area of Detroit-Ann Arbor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Joshua B.; Laatsch, Lauren J.; Beasley, James C.
Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate ofmore » arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.« less
Smith, Joshua B.; Laatsch, Lauren J.; Beasley, James C.
2017-08-31
Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate ofmore » arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.« less
Touchon, Justin C.; Worley, Julie L.
2015-01-01
Laying eggs out of water was crucial to the transition to land and has evolved repeatedly in multiple animal phyla. However, testing hypotheses about this transition has been difficult because extant species only breed in one environment. The pantless treefrog, Dendropsophus ebraccatus, makes such tests possible because they lay both aquatic and arboreal eggs. Here, we test the oviposition site choices of D. ebraccatus under conflicting risks of arboreal egg desiccation and aquatic egg predation, thereby estimating the relative importance of each selective agent on reproduction. We also measured discrimination between habitats with and without predators and development of naturally laid aquatic and arboreal eggs. Aquatic embryos in nature developed faster than arboreal embryos, implying no cost to aquatic egg laying. In choice tests, D. ebraccatus avoided habitats with fish, showing that they can detect aquatic egg predators. Most importantly, D. ebraccatus laid most eggs in the water when faced with only desiccation risk, but switched to laying eggs arboreally when desiccation risk and aquatic predators were both present. This provides the first experimental evidence to our knowledge that aquatic predation risk influences non-aquatic oviposition and strongly supports the hypothesis that it was a driver of the evolution of terrestrial reproduction. PMID:25948689
DTI-measured white matter abnormalities in adolescents with Conduct Disorder
Haney-Caron, Emily; Caprihan, Arvind; Stevens, Michael C.
2013-01-01
Emerging research suggests that antisocial behavior in youth is linked to abnormal brain white matter microstructure, but the extent of such anatomical connectivity abnormalities remain largely untested because previous Conduct Disorder (CD) studies typically have selectively focused on specific frontotemporal tracts. This study aimed to replicate and extend previous frontotemporal diffusion tensor imaging (DTI) findings to determine whether noncomorbid CD adolescents have white matter microstructural abnormalities in major white matter tracts across the whole brain. Seventeen CD-diagnosed adolescents recruited from the community were compared to a group of 24 non-CD youth which did not differ in average age (12–18) or gender proportion. Tract-based spatial statistics (TBSS) fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) measurements were compared between groups using FSL nonparametric two-sample t test, clusterwise whole-brain corrected, p<.05. CD FA and AD deficits were widespread, but unrelated to gender, verbal ability, or CD age of onset. CD adolescents had significantly lower FA and AD values in frontal lobe and temporal lobe regions, including frontal lobe anterior/superior corona radiata, and inferior longitudinal and fronto-occpital fasciculi passing through the temporal lobe. The magnitude of several CD FA deficits was associated with number of CD symptoms. Because AD, but not RD, differed between study groups, abnormalities of axonal microstructure in CD rather than myelination are suggested. This study provides evidence that adolescent antisocial disorder is linked to abnormal white matter microstructure in more than just the uncinate fasciulcus as identified in previous DTI studies, or frontotemporal brain structures as suggested by functional neuroimaging studies. Instead, neurobiological risk specific to antisociality in adolescence is linked to microstructural abnormality in numerous long-range white matter connections among many diverse different brain regions. PMID:24139595
DOT National Transportation Integrated Search
1999-01-01
During 1997, visitors to the Ann Arbor (Michigan) Transportation Authority's worldwide web site were invited to complete an electronic questionnaire about their experience with the site. Eighty surveys were collected, representing a non-scientific se...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Eucalyptus. ArborGen is requesting that trees be allowed to flower at four locations in Alabama, Florida and... have indicated they will not allow these trees to flower at these locations. Permit application 11-052...
The biology of arboreal rodents in Douglas-fir forests.
Andrew B. Carey
1991-01-01
Arboreal rodents in Douglas-fir forests west of the Cascade crest in Oregon and Washington include (listed in decreasing order of dependence on trees) red tree vole (Phenacomys longicaucfus), northern flying squirrel (Glaucomys sabrinus), Douglas' squirrel (Tamiasciurus douglasii), dusky-footed woodrat...
Methods for measuring populations of arboreal rodents.
Andrew B. Carey; Brian L. Biswell; Joseph W. Witt
1991-01-01
Three arboreal rodents are sensitive indicators of forest ecosystem function in the Pacific Northwest. The northern flying squirrel (Glaucomys sabrinus) is mycophagous, cavity-nesting, and a major prey of the spotted owl (Strix occidentalis). The red tree vole (Phenacomys longicaudus) is restricted to trees...
DOT National Transportation Integrated Search
1999-01-01
This study examines data regularly maintained by the AATA (Ann Arbor Transportation Authority) for evidence of AOS (Advanced Operating System) impact. These data include on-time performance, bus trips broken because of maintenance or other incidents,...
Late-Night Shared-Ride Taxi Transit in Ann Arbor, MI
DOT National Transportation Integrated Search
1984-10-01
The Ann Arbor Transportation Authority introduced Night Ride, a late-night shared-ride taxi transit service, in mid-March 1982. The service was provided through a contract with a local taxicab company and funded through a demonstration grant from the...
NASA Technical Reports Server (NTRS)
Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1995-01-01
Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.
Functional morphology of the douc langur (Pygathrix spp.) scapula.
Bailey, Katie E; Lad, Susan E; Pampush, James D
2017-06-01
Most colobine monkeys primarily move through their arboreal environment quadrupedally. Douc langurs (Pygathrix spp.), however, are regularly observed to use suspensory behaviors at the Endangered Primate Rescue Center (EPRC) in Northern Vietnam. Previous work has linked variation in scapular morphology to different modes of primate arboreal locomotion. Here we investigate whether the shape of the Pygathrix scapula resembles obligate brachiators (gibbons) or obligate arboreal quadrupeds (other cercopithecoids). Using a MicroScribe G2X 3D digitizer, the positions of 17 landmarks were recorded on 15 different species of nonhuman primates (n = 100) from three categories of locomotor behavior: brachiator, arboreal quadruped, and unknown (Pygathrix). All analyses were conducted in the R package geomorph. A Procrustes analysis uniformly scaled the shape data and placed specimens into the same morphospace. A Principal Component Analysis was used to examine scapular shape and a Procrustes ANOVA was conducted to test for shape difference in the scapulae. A pairwise analysis was used to compare the means of the locomotor categories and identify any statistically significant differences. A phylogenetically controlled Procrustes ANOVA was also conducted using a phylogeny from 10kTrees. Results show Pygathrix scapular morphology is significantly different from both arboreal colobine quadrupeds (p < 0.01) and hylobatid brachiators (p < 0.01). It does, however, share some features with each including a long vertebral border, like other cercopithecoids, and a more laterally projecting acromion process, like the hylobatids. The principal difference segregating Pygathrix from both the arboreal quadrupeds and the brachiators is the more medially placed superior angle. These nuanced morphological characteristics associated with suspensory behaviors may be useful for inferring suspensory locomotion in the primate fossil record. © 2017 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
Diversity of Carabidae (Insecta, Coleoptera) in epiphytic Bromeliaceae in central Veracruz, Mexico.
Montes de Oca, E; Ball, G E; Spence, J R
2007-06-01
This paper documents the existence of carabid assemblages associated with bromeliads on the Cofre de Perote, Veracruz, Mexico. Based on bromeliads sampled over three altitudinal ranges, the assemblages included at least 26 species with an arboreal lifestyle and another 11 species that are not strictly arboreal. Seven species are new to science, urging us to pay attention to the arboreal fauna in forest conservation studies. Composition of carabid assemblages associated with bromeliads changes with altitude. In lowlands, it is comprised almost entirely of species of Lebiini, with the Platynini dominating assemblages found in bromeliads >1,000 m above sea level. Our data suggest that carabids use bromeliads to reduce stresses associated with drought periods, the exact timing of which depends on altitude. The unexpected low diversity of the carabid fauna associated with bromeliads at middle altitude is explained in terms of anthropogenic conversion of the original forest to pastureland. Given the importance of arboreal elements, further fragmentation of subtropical and tropical mountain forest significantly threatens overall carabid diversity.
Genetic analyses of roundabout (ROBO) axon guidance receptors in autism.
Anitha, A; Nakamura, Kazuhiko; Yamada, Kazuo; Suda, Shiro; Thanseem, Ismail; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-Ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Koizumi, Keita; Higashida, Haruhiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio
2008-10-05
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI-R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug-naïve autistic patients and 20 age- and sex-matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.
Jasmin, R; Sockalingam, S; Ramanaidu, L P; Goh, K J
2015-03-01
Peripheral neuropathy in systemic lupus erythematosus (SLE) is heterogeneous and its commonest pattern is symmetrical polyneuropathy. The aim of this study was to describe the prevalence, clinical and electrophysiological features, disease associations and effects on function and quality of life of polyneuropathy in SLE patients, defined using combined clinical and electrophysiological diagnostic criteria. Consecutive SLE patients seen at the University of Malaya Medical Centre were included. Patients with medication and other disorders known to cause neuropathy were excluded. Demographic, clinical and laboratory data were obtained using a pre-defined questionnaire. Function and health-related quality of life was assessed using the modified Rankin scale and the SF-36 scores. Nerve conduction studies (NCS) were carried out in both upper and lower limbs. Polyneuropathy was defined as the presence of bilateral clinical symptoms and/or signs and bilateral abnormal NCS parameters. Of 150 patients, 23 (15.3%) had polyneuropathy. SLE-related polyneuropathy was mainly characterized by sensory symptoms of numbness/tingling and pain with mild signs of absent ankle reflexes and reduced pain sensation. Function was minimally affected and there were no differences in quality of life scores. NCS abnormalities suggested mild length-dependent axonal neuropathy, primarily in the distal lower limbs. Compared to those without polyneuropathy, SLE-related polyneuropathy patients were significantly older but had no other significant demographic or disease associations. SLE-related polyneuropathy is a chronic, axonal and predominantly sensory neuropathy, associated with older age. Its underlying pathogenetic mechanisms are unknown, although a possibility could be an increased susceptibility of peripheral nerves in SLE patients to effects of aging. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits
Maillard, Julien; Park, Soyoung; Croizier, Sophie; Vanacker, Charlotte; Cook, Joshua H.; Prevot, Vincent; Tauber, Maithe; Bouret, Sebastien G.
2016-01-01
Prader–Willi syndrome (PWS) is a genetic disorder characterized by a variety of physiological and behavioral dysregulations, including hyperphagia, a condition that can lead to life-threatening obesity. Feeding behavior is a highly complex process with multiple feedback loops that involve both peripheral and central systems. The arcuate nucleus of the hypothalamus (ARH) is critical for the regulation of homeostatic processes including feeding, and this nucleus develops during neonatal life under of the influence of both environmental and genetic factors. Although much attention has focused on the metabolic and behavioral outcomes of PWS, an understanding of its effects on the development of hypothalamic circuits remains elusive. Here, we show that mice lacking Magel2, one of the genes responsible for the etiology of PWS, display an abnormal development of ARH axonal projections. Notably, the density of anorexigenic α-melanocyte-stimulating hormone axons was reduced in adult Magel2-null mice, while the density of orexigenic agouti-related peptide fibers in the mutant mice appeared identical to that in control mice. On the basis of previous findings showing a pivotal role for metabolic hormones in hypothalamic development, we also measured leptin and ghrelin levels in Magel2-null and control neonates and found that mutant mice have normal leptin and ghrelin levels. In vitro experiments show that Magel2 directly promotes axon growth. Together, these findings suggest that a loss of Magel2 leads to the disruption of hypothalamic feeding circuits, an effect that appears to be independent of the neurodevelopmental effects of leptin and ghrelin and likely involves a direct neurotrophic effect of Magel2. PMID:27288456
Trentini, Alessandro; Comabella, Manuel; Tintoré, Mar; Koel-Simmelink, Marleen J A; Killestein, Joep; Roos, Birthe; Rovira, Alex; Korth, Carsten; Ottis, Philipp; Blankenstein, Marinus A; Montalban, Xavier; Bellini, Tiziana; Teunissen, Charlotte E
2014-12-01
Primary and secondary progressive forms of multiple sclerosis (PPMS and SPMS) have different pathological characteristics. However, it is unknown whether neurodegenerative mechanisms are shared. We measured cerebrospinal fluid (CSF) levels of neurofilament (Nf) light and heavy isoforms and N-acetylaspartic acid (NAA) in 21 PP, 10 SPMS patients and 15 non-inflammatory neurological disease controls (NINDC). Biomarkers were related to Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Severity Score (MSSS) over a long period of follow-up [median (interquartile range) 9 (5.5-12.5) years] in 19 PPMS and 4 SPMS patients, and to T2 lesion load, T1 lesion load, and brain parenchymal fraction at the time of lumbar puncture. Nf light was higher in PPMS (p < 0.005) and Nf heavy was increased in both SPMS and PPMS (p < 0.05 and p < 0.01) compared to NINDC, but were comparable between the two MS subtypes. Nf heavy was a predictor of the ongoing disability measured by MSSS (R(2) = 0.17, β = 0.413; p < 0.05). Conversely, Nf light was the only predictor of the EDSS annual increase (R(2) = 0.195, β = 0.441; p < 0.05). The frequency of abnormal biomarkers did not differ between the two MS progressive subtypes. Our data suggest that PP and SPMS likely share similar mechanisms of axonal damage. Moreover, Nf heavy can be a biomarker of ongoing axonal damage. Conversely, Nf light can be used as a prognostic marker for accumulating disability suggesting it as a good tool for possible treatment monitoring in the progressive MS forms.
Serotonin neuron abnormalities in the BTBR mouse model of autism.
Guo, Yue-Ping; Commons, Kathryn G
2017-01-01
The inbred mouse strain BTBR T + Itpr3 tf /J (BTBR) is studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. Autism Res 2017, 10: 66-77. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
A mechanical model predicts morphological abnormalities in the developing human brain
NASA Astrophysics Data System (ADS)
Budday, Silvia; Raybaud, Charles; Kuhl, Ellen
2014-07-01
The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.
Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki
2011-06-01
Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
The spectrum of disease in chronic traumatic encephalopathy.
McKee, Ann C; Stern, Robert A; Nowinski, Christopher J; Stein, Thor D; Alvarez, Victor E; Daneshvar, Daniel H; Lee, Hyo-Soon; Wojtowicz, Sydney M; Hall, Garth; Baugh, Christine M; Riley, David O; Kubilus, Caroline A; Cormier, Kerry A; Jacobs, Matthew A; Martin, Brett R; Abraham, Carmela R; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L; Budson, Andrew E; Goldstein, Lee E; Kowall, Neil W; Cantu, Robert C
2013-01-01
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer's disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.
The spectrum of disease in chronic traumatic encephalopathy
McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.
2013-01-01
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I–IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I–III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer’s disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein. PMID:23208308
Differential effects of myostatin deficiency on motor and sensory axons.
Jones, Maria R; Villalón, Eric; Northcutt, Adam J; Calcutt, Nigel A; Garcia, Michael L
2017-12-01
Deletion of myostatin in mice (MSTN -/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. Using the MSTN -/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. Axon diameter and myelin thickness were increased in motor axons of MSTN -/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017. © 2017 Wiley Periodicals, Inc.
Lalonde, R; Hayzoun, K; Selimi, F; Mariani, J; Strazielle, C
2003-11-01
Grid2(ho/ho) is a loss of function gene mutation resulting in abnormal dendritic arborizations of Purkinje cells. These mutants were compared in a series of motor coordination tests requiring balance and equilibrium to nonataxic controls (Grid2(ho/+)) and to a double mutant (Grid2(ho/Lc)) with an inserted Lc mutation. The performance of Grid2(ho/ho) mutant mice was poorer than that of controls on stationary beam, coat hanger, unsteady platform, and rotorod tests. Grid2(ho/Lc) did not differ from Grid2(Lc/+) mice. However, the insertion of the Lc mutation in Grid2(ho/Lc) potentiated the deficits found in Grid2(ho/ho) in stationary beam, unsteady platform, and rotorod tests. These results indicate a deleterious effect of the Lc mutation on Grid2-deficient mice.
Astrocyte atrophy and immune dysfunction in self-harming macaques.
Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G
2013-01-01
Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.
Pappas, Samuel S; Bonifacino, Juan; Danek, Adrian; Dauer, William T; De, Mithu; De Franceschi, Lucia; DiPaolo, Gilbert; Fuller, Robert; Haucke, Volker; Hermann, Andreas; Kornmann, Benoit; Landwehrmeyer, Bernhard; Levin, Johannes; Neiman, Aaron M; Rudnicki, Dobrila D; Sibon, Ody; Velayos-Baeza, Antonio; Vonk, Jan J; Walker, Ruth H; Weisman, Lois S; Albin, Roger L
2017-01-01
Chorea-Acanthocytosis (ChAc) is a rare hereditary neurological disorder characterized by abnormal movements, red blood cell pathology, and progressive neurodegeneration. Little is understood of the pathogenesis of ChAc and related disorders (collectively Neuroacanthocytosis). The Eighth International Chorea-Acanthocytosis Symposium was held in May 2016 in Ann Arbor, MI, USA, and focused on molecular mechanisms driving ChAc pathophysiology. Accompanying the meeting, members of the neuroacanthocytosis research community and other invited scientists met in a workshop to discuss the current understanding and next steps needed to better understand ChAc pathogenesis. These discussions identified several broad and critical needs for advancing ChAc research and patient care, and led to the definition of 18 specific action points related to functional and molecular studies, animal models, and clinical research. These action points, described below, represent tractable research goals to pursue for the next several years.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... of Anthropology, University of Michigan, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Museum of Anthropology, University of Michigan, has completed an inventory... the Museum of Anthropology, University of Michigan. Repatriation of the human remains to the tribe...
Aneides ferreus (clouded salamander): arboreal activity
William W. Price; Clinton P. Landon; Eric D. Forsman
2010-01-01
Aneides ferreus (clouded salamander) inhabits the forests of western Oregon and extreme northwestern California. Although thought to be primarily terrestrial, A. ferreus has occasionally been found as high as 60 m up in trees and two recent reports suggest that it may be more arboreal than previously believed. However, it is...
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
Mitochondria localize to injured axons to support regeneration
Han, Sung Min; Baig, Huma S.; Hammarlund, Marc
2016-01-01
SUMMARY Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons, so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase-1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell biological mechanism that helps determine the regenerative response of injured neurons. PMID:28009276
Quigley, Harry A
2015-01-01
Glaucoma, the second most common cause of world blindness, results from loss of retinal ganglion cells (RGC). RGC die as a consequence of injury to their axons, as they pass through the transition between the environment within the eye and that of the retrobulbar optic nerve, as they course to central visual centers. At the optic nerve head (ONH), axonal transport becomes abnormal, at least in part due to the effect of strain induced by intraocular pressure (IOP) on the sclera and ONH. Animal glaucoma models provide the ability to study how alterations in ocular connective tissues affect this pathological process. New therapeutic interventions are being investigated to mitigate glaucoma blindness by modifying the remodeling of ocular tissues in glaucoma. Some genetically altered mice are resistant to glaucoma damage, while treatment of the sclera with cross-linking agents makes experimental mouse glaucoma damage worse. Inhibition of transforming growth factor β activity is strikingly protective. Treatments that alter the response of ocular connective tissues to IOP may be effective in protecting those with glaucoma from vision loss. © 2015 Elsevier B.V. All rights reserved.
Role of the blood-brain barrier in multiple sclerosis.
Ortiz, Genaro Gabriel; Pacheco-Moisés, Fermín Paul; Macías-Islas, Miguel Ángel; Flores-Alvarado, Luis Javier; Mireles-Ramírez, Mario A; González-Renovato, Erika Daniela; Hernández-Navarro, Vanessa Elizabeth; Sánchez-López, Angélica Lizeth; Alatorre-Jiménez, Moisés Alejandro
2014-11-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with demyelination and axonal loss eventually leading to neurodegeneration. MS exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB). The BBB is a complex organization of cerebral endothelial cells, pericytes and their basal lamina, which are surrounded and supported by astrocytes and perivascular macrophages. In pathological conditions, lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Cytotoxic factors including pro-inflammatory cytokines, proteases, and reactive oxygen and nitrogen species accumulate and may contribute to myelin destruction. Dysregulation of the BBB and transendothelial migration of activated leukocytes are among the earliest cerebrovascular abnormalities seen in MS brains and parallel the release of inflammatory cytokines. In this review we establish the importance of the role of the BBB in MS. Improvements in our understanding of molecular mechanism of BBB functioning in physiological and pathological conditions could lead to improvement in the quality of life of MS patients. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6
Poët, Mallorie; Kornak, Uwe; Schweizer, Michaela; Zdebik, Anselm A.; Scheel, Olaf; Hoelter, Sabine; Wurst, Wolfgang; Schmitt, Anja; Fuhrmann, Jens C.; Planells-Cases, Rosa; Mole, Sara E.; Hübner, Christian A.; Jentsch, Thomas J.
2006-01-01
Mammalian CLC proteins function as Cl− channels or as electrogenic Cl−/H+ exchangers and are present in the plasma membrane and intracellular vesicles. We now show that the ClC-6 protein is almost exclusively expressed in neurons of the central and peripheral nervous systems, with a particularly high expression in dorsal root ganglia. ClC-6 colocalized with markers for late endosomes in neuronal cell bodies. The disruption of ClC-6 in mice reduced their pain sensitivity and caused moderate behavioral abnormalities. Neuronal tissues showed autofluorescence at initial axon segments. At these sites, electron microscopy revealed electron-dense storage material that caused a pathological enlargement of proximal axons. These deposits were positive for several lysosomal proteins and other marker proteins typical for neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. However, the lysosomal pH of Clcn6−/− neurons appeared normal. CLCN6 is a candidate gene for mild forms of human NCL. Analysis of 75 NCL patients identified ClC-6 amino acid exchanges in two patients but failed to prove a causative role of CLCN6 in that disease. PMID:16950870
Matsukawa, Hidetoshi; Shinoda, Masaki; Fujii, Motoharu; Takahashi, Osamu; Murakata, Atsushi; Yamamoto, Daisuke
2013-01-01
The influence of blood alcohol level (BAL) on outcome remains unclear. This study investigated the relationships between BAL, type and number of diffuse axonal injury (DAI), intraventricular bleeding (IVB) and 6-month outcome. This study reviewed 419 patients with isolated blunt traumatic brain injury. First, it compared clinical and radiological characteristics between patients with good recovery and disability. Second, it compared BAL among DAI lesions. Third, it evaluated the correlation between the BAL and severity of IVB, number of DAI and corpus callosum injury lesions. Regardless of BAL, older age, male gender, severe Glasgow Coma Scale score (<9), abnormal pupil, IVB and lesion on genu of corpus callosum were significantly related to disability. There were no significant differences between the BAL and lesions of DAI. Simple regression analysis revealed that there were no significant correlation between BAL and severity of IVB, number of DAI and corpus callosum injury lesions. Acute alcohol intoxication was not associated with type and number of DAI lesion, IVB and disability. This study suggested that a specific type of traumatic lesion, specifically lesion on genu of corpus callosum and IVB, might be more vital for outcome.
Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis
Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.
2011-01-01
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination. PMID:21705418
Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.
Zambonin, Jessica L; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M; Turnbull, Doug M; Trapp, Bruce D; Lassmann, Hans; Franklin, Robin J M; Mahad, Don J
2011-07-01
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.
Creatine pretreatment protects cortical axons from energy depletion in vitro
Shen, Hua; Goldberg, Mark P.
2012-01-01
Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466
Imaging of Cranial Nerves III, IV, VI in Congenital Cranial Dysinnervation Disorders
Kim, Jae Hyoung
2017-01-01
Congenital cranial dysinnervation disorders are a group of diseases caused by abnormal development of cranial nerve nuclei or their axonal connections, resulting in aberrant innervation of the ocular and facial musculature. Its diagnosis could be facilitated by the development of high resolution thin-section magnetic resonance imaging. The purpose of this review is to describe the method to visualize cranial nerves III, IV, and VI and to present the imaging findings of congenital cranial dysinnervation disorders including congenital oculomotor nerve palsy, congenital trochlear nerve palsy, Duane retraction syndrome, Möbius syndrome, congenital fibrosis of the extraocular muscles, synergistic divergence, and synergistic convergence. PMID:28534340
Serizawa, S; Chambers, J K; Une, Y
2012-03-01
Alzheimer disease is a dementing disorder characterized pathologically by Aβ deposition, neurofibrillary tangles, and neuronal loss. Although aged animals of many species spontaneously develop Aβ deposits, only 2 species (chimpanzee and wolverine) have been reported to develop Aβ deposits and neurofibrillary tangles in the same individual. Here, the authors demonstrate the spontaneous occurrence of Aβ deposits and neurofibrillary tangles in captive cheetahs (Acinonyx jubatus). Among 22 cheetahs examined in this study, Aβ deposits were observed in 13. Immunostaining (AT8) revealed abnormal intracellular tau immunoreactivity in 10 of the cheetahs with Aβ deposits, and they were mainly distributed in the parahippocampal cortex and CA1 in a fashion similar to that in human patients with Alzheimer disease. Ultrastructurally, bundles of straight filaments filled the neuronal somata and axons, consistent with tangles. Interestingly, 2 of the cheetahs with the most severe abnormal tau immunoreactivity showed clinical cognitive dysfunction. The authors conclude that cheetahs spontaneously develop age-related neurodegenerative disease with pathologic changes similar to Alzheimer disease.
Sensory nerves are frequently involved in the spectrum of fisher syndrome.
Shahrizaila, Nortina; Goh, Khean J; Kokubun, Norito; Tan, Ai H; Tan, Cheng Y; Yuki, Nobuhiro
2014-04-01
Differing patterns of neurophysiological abnormalities have been reported in patients with Fisher syndrome. Fisher syndrome is rare, and few series have incorporated prospective serial studies to define the natural history of nerve conduction studies in Guillain-Barré syndrome. In an ongoing prospective study of Guillain-Barré syndrome patients, patients who presented with Fisher syndrome and its spectrum of illness were assessed through serial neurological examinations, nerve conduction studies, and serological testing of IgG against gangliosides and ganglioside complexes. Of the 36 Guillain-Barré syndrome patients identified within 2 years, 17 had features of Fisher syndrome. Serial nerve conduction studies detected significant abnormalities in sensory nerve action potential amplitude in 94% of patients associated with 2 patterns of recovery-non-demyelinating reversible distal conduction failure and axonal regeneration. Similar changes were seen in motor nerves of 5 patients. Patients with the Fisher syndrome spectrum of illness have significant sensory involvement, which may only be evident with serial neurophysiological studies. Copyright © 2013 Wiley Periodicals, Inc.
Intracellular calcium release through IP3R or RyR contributes to secondary axonal degeneration.
Orem, Ben C; Pelisch, Nicolas; Williams, Joshua; Nally, Jacqueline M; Stirling, David P
2017-10-01
Severed CNS axons often retract or dieback away from the injury site and fail to regenerate. The precise mechanisms underlying acute axonal dieback and secondary axonal degeneration remain poorly understood. Here we investigate the role of Ca 2+ store mediated intra-axonal Ca 2+ release in acute axonal dieback and secondary axonal degeneration. To differentiate between primary (directly transected) and "bystander" axonal injury (axons spared by the initial injury but then succumb to secondary degeneration) in real-time we use our previously published highly focal laser-induced spinal cord injury (LiSCI) ex vivo model. Ascending spinal cord dorsal column axons that express YFP were severed using an 800 nm laser pulse while being imaged continuously using two-photon excitation microscopy. We inhibited two major intra-axonal Ca 2+ store channels, ryanodine receptors (RyR) and IP 3 R, with ryanodine or 2-APB, respectively, to individually determine their role in axonal dieback and secondary axonal degeneration. Each antagonist was dissolved in artificial CSF and applied 1h post-injury alone or in combination, and continuously perfused for the remainder of the imaging session. Initially following LiSCI, transected axons retracted equal distances both distal and proximal to the lesion. However, by 4h after injury, the distal axonal segments that are destined for Wallerian degeneration had significantly retracted further than their proximal counterparts. We also found that targeting either RyR or IP 3 R using pharmacological and genetic approaches significantly reduced proximal axonal dieback and "bystander" secondary degeneration of axons compared to vehicle controls at 6h post-injury. Combined treatment effects on secondary axonal degeneration were similar to either drug in isolation. Together, these results suggest that intra-axonal Ca 2+ store mediated Ca 2+ release through RyR or IP 3 R contributes to secondary axonal degeneration following SCI. Copyright © 2017 Elsevier Inc. All rights reserved.
Rao, Raghavendra; Nashawaty, Motaz; Fatima, Saher; Ennis, Kathleen; Tkac, Ivan
2018-05-01
Hyperglycemia (blood glucose concentration >150 mg/dL) is common in extremely low gestational age newborns (ELGANs; birth at <28 week gestation). Hyperglycemia increases the risk of brain injury in the neonatal period. The long-term effects are not well understood. In adult rats, hyperglycemia alters hippocampal energy metabolism. The effects of hyperglycemia on the developing hippocampus were studied in rat pups. In Experiment 1, recurrent hyperglycemia of graded severity (moderate hyperglycemia (moderate-HG), mean blood glucose 214.6 ± 11.6 mg/dL; severe hyperglycemia (severe-HG), 338.9 ± 21.7 mg/dL; control, 137.7 ± 2.6 mg/dL) was induced from postnatal day (P) 3 to P12. On P30, the hippocampal neurochemical profile was determined using in vivo 1 H MR spectroscopy. Dendritic arborization in the hippocampal CA1 region was determined using microtubule-associated protein (MAP)-2 immunohistochemistry. In Experiment 2, continuous hyperglycemia (mean blood glucose 275.3 ± 25.8 mg/dL; control, 142.3 ± 2.6 mg/dL) was induced from P2 to P6 by injecting streptozotocin (STZ) on P2. The mRNA expression of glycogen synthase 1 (Gys1), lactate dehydrogenase (Ldh), glucose transporters 1 (Glut1) and 3 (Glut3) and monocarboxylate transporters 1 (Mct1), 2 (Mct2) and 4 (Mct4) in the hippocampus was determined on P6. In Experiment 1, MRS demonstrated lower lactate concentration and glutamate/glutamine (Glu/Gln) ratio in the severe-HG group, compared with the control group (p < 0.05). Phosphocreatine/creatine ratio was higher in both hyperglycemia groups (p < 0.05). MAP-2 histochemistry demonstrated longer apical segment length, indicating abnormal synaptic efficacy in both hyperglycemia groups (p < 0.05). Experiment 2 showed lower Glut1, Gys1 and Mct4 expression and higher Mct1 expression in the hyperglycemia group, relative to the control group (p < 0.05). These results suggest that hyperglycemia alters substrate transport, lactate homeostasis, dendritogenesis and Glu-Gln cycling in the developing hippocampus. Abnormal neurochemical profile and dendritic structure due to hyperglycemia may partially explain the long-term hippocampus-mediated cognitive deficits in human ELGANs. Copyright © 2018 John Wiley & Sons, Ltd.
Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E
2018-03-07
The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
...: University of Michigan Museum of Anthropology, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION... Michigan officials and its Museum of Anthropology professional staff in consultation with representatives... accessioned into the Museum of Anthropology. Between 2007 and 2009 the remains were inventoried at the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-10375; 2200-1100-665] Notice of Inventory Completion: Museum of Anthropology, University of Michigan, Ann Arbor, MI; Correction AGENCY: National Park Service, Interior. ACTION: Notice; correction. Notice is here given in accordance with the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... ecotypes of woodland caribou: Mountain (alpine; arboreal lichen winter feeding group), northern (lives in... in that estimate due to poor weather conditions that limited aerial surveys (Wakkinen 2011, pers... forests (generally more than 100-150 years old), which support abundant arboreal lichens (the key winter...
Interactions of Northwest forest canopies and arboreal mammals.
A.B. Carey
1996-01-01
The interactions among Northwest forest canopies and the mammals that inhabit them have been poorly studied. My purpose was to identify interactions among arboreal mammals and canopies that have implications for managers seeking to conserve biodiversity in the Pacific Northwest. I constructed a comprehensive, but parsimonious list of canopy attributes that could be...
Dover Schools' Unintelligent Design
ERIC Educational Resources Information Center
Barlow, Dudley
2006-01-01
The author of this article was surprised to read in the December 21, 2005, Ann Arbor News that "The Ann Arbor-based Thomas More Law Center, which represented the Dover [Pennsylvania] School District in its federal case for the teaching of intelligent design, has threatened to sue Gull Lake [Michigan] Community Schools over its policy that…
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority (AATA) began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such te...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... 2005 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is approving the fine particulate matter (PM 2.5 ) 2005 base year emissions inventory, a... 2005 base year emissions inventory for the Detroit-Ann Arbor area. EPA did not receive any comments...
Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals
Briscoe, Natalie J.; Handasyde, Kathrine A.; Griffiths, Stephen R.; Porter, Warren P.; Krockenberger, Andrew; Kearney, Michael R.
2014-01-01
How climate impacts organisms depends not only on their physiology, but also whether they can buffer themselves against climate variability via their behaviour. One of the way species can withstand hot temperatures is by seeking out cool microclimates, but only if their habitat provides such refugia. Here, we describe a novel thermoregulatory strategy in an arboreal mammal, the koala Phascolarctos cinereus. During hot weather, koalas enhanced conductive heat loss by seeking out and resting against tree trunks that were substantially cooler than ambient air temperature. Using a biophysical model of heat exchange, we show that this behaviour greatly reduces the amount of heat that must be lost via evaporative cooling, potentially increasing koala survival during extreme heat events. While it has long been known that internal temperatures of trees differ from ambient air temperatures, the relevance of this for arboreal and semi-arboreal mammals has not previously been explored. Our results highlight the important role of tree trunks as aboveground ‘heat sinks’, providing cool local microenvironments not only for koalas, but also for all tree-dwelling species. PMID:24899683
Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.
Wolf, H; Büschges, A
1997-09-01
We investigated possible roles of retrograde signals and competitive interactions in the lesion-induced reorganization of synaptic contacts in the locust CNS. Neuronal plasticity is elicited in the adult flight system by removal of afferents from the tegula, a mechanoreceptor organ at the base of the wing. We severed one hindwing organ and studied the resulting rearrangement of synaptic contacts between flight interneurons and afferent neurons from the remaining three tegulae (2 forewing, 1 hindwing). This was done by electric stimulation of afferents and intracellular recording from interneurons (and occasionally motoneurons). Two to three weeks after unilateral tegula lesion, connections between tegula afferents and flight interneurons were altered in the following way. 1) Axons from the forewing tegula on the operated side had established new synaptic contacts with metathoracic elevator interneurons. In addition, the amplitude of compound excitatory postsynaptic potentials elicited by electric stimulation was increased, indicating that a larger number of afferents connected to any given interneuron. 2) On the side contralateral to the lesion, connectivity between axons from the forewing tegula and elevator interneurons was decreased. 3) The efficacy of the (remaining) hindwing afferents appeared to be increased with regard to both synaptic transmission to interneurons and impact on flight motor pattern. 4) Flight motoneurons, which are normally restricted to the ipsilateral hemiganglion, sprouted across the ganglion midline after unilateral tegula removal and apparently established new synaptic contacts with tegula afferents on that side. The changes on the operated side are interpreted as occupation of synaptic space vacated on the interneurons by the severed hindwing afferents. On the contralateral side, the changes in synaptic contact must be elicited by retrograde signals from bilaterally arborizing flight interneurons, because tegula projections remain strictly ipsilateral. The pattern of changes suggests competitive interactions between forewing and hindwing afferents. The present investigation thus presents evidence that the CNS of the mature locust is capable of extensive synaptic rearrangement in response to injury and indicates for the first time the action of retrograde signals from interneurons.
Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire
2017-11-01
Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.
Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.
Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J
2017-07-25
Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.
Color blindness among multiple sclerosis patients in Isfahan.
Shaygannejad, Vahid; Golabchi, Khodayar; Dehghani, Alireza; Ashtari, Fereshteh; Haghighi, Sepehr; Mirzendehdel, Mahsa; Ghasemi, Majid
2012-03-01
Multiple sclerosis (MS) is a disease of young and middle aged individuals with a demyelinative axonal damage nature in central nervous system that causes various signs and symptoms. As color vision needs normal function of optic nerve and macula, it is proposed that MS can alter it via influencing optic nerve. In this survey, we evaluated color vision abnormalities and its relationship with history of optic neuritis and abnormal visual evoked potentials (VEPs) among MS patients. The case group was included of clinically definitive MS patients and the same number of normal population was enrolled as the control group. Color vision of all the participants was evaluated by Ishihara test and then visual evoked potential (VEPs) and history of optic neuritis (ON) was assessed among them. Then, frequency of color blindness was compared between the case and the control group. Finally, color blinded patients were compared to those with the history of ON and abnormal VEPs. 63 MS patients and the same number of normal populations were enrolled in this study. 12 patients had color blindness based on the Ishihara test; only 3 of them were among the control group, which showed a significant different between the two groups (P = 0.013). There was a significant relationship between the color blindness and abnormal VEP (R = 0.53, P = 0.023) but not for the color blindness and ON (P = 0.67). This study demonstrates a significant correlation between color blindness and multiple sclerosis including ones with abnormal prolonged VEP latencies. Therefore, in individuals with acquired color vision impairment, an evaluation for potentially serious underlying diseases like MS is essential.
Almond, Kelly M; Trombetta, Louis D
2017-09-01
The metal pyrithiones, principally zinc (ZnPT) and copper (CuPT), are replacing tributyltin (TBT) as antifouling agents. Zebrafish embryos were exposed within the first hour after fertilization to 12 and 64 µg/L of CuPT for 24 h. Morphological abnormalities in notochord and muscle architecture were observed at 96 h post fertilization (hpf). TEM revealed abnormal electron dense deposits in the notochord sheath and muscle fiber degeneration in animals treated with 12 µg/L of CuPT. Embryos that were exposed to 64 µg/L of CuPT displayed severe muscle fiber degeneration including abnormal A and I band patterning and altered z disk arrangement. Abnormalities in the notochord sheath, swelling of the mitochondria and numerous lipid whorls were also noted. Total antioxidant capacity was significantly decreased in embryos exposed to 12 and 64 µg/L of CuPT. Acridine orange staining revealed an increase in apoptosis particularly in the brain, eye, heart and tail regions of both treatment groups. Apoptosis was confirmed with an increase in caspase 3/7 activity in both treatment groups. Severe alternations in primary motor neuron axon extensions, slow tonic muscle fibers and fast twitch fibers were observed in CuPT treated embryos. There was a significant upregulation in sonic hedgehog and myod1 expression at 24 hpf in the 12 µg/L treatment group. Exposed zebrafish embryos showed ultra-structural hallmarks of peroxidative injury and cell death via apoptosis. These changes question the use of copper pyrithione as an antifouling agent.
Huang, Chia-Yi; Chu, Dachen; Hwang, Wei-Chao; Tsaur, Meei-Ling
2012-11-01
Precise axon pathfinding is crucial for establishment of the initial neuronal network during development. Pioneer axons navigate without the help of preexisting axons and pave the way for follower axons that project later. Voltage-gated ion channels make up the intrinsic electrical activity of pioneer axons and regulate axon pathfinding. To elucidate which channel molecules are present in pioneer axons, immunohistochemical analysis was performed to examine 14 voltage-gated ion channels (Kv1.1-Kv1.3, Kv3.1-Kv3.4, Kv4.3, Cav1.2, Cav1.3, Cav2.2, Nav1.2, Nav1.6, and Nav1.9) in nine axonal tracts in the developing rat forebrain, including the optic nerve, corpus callosum, corticofugal fibers, thalamocortical axons, lateral olfactory tract, hippocamposeptal projection, anterior commissure, hippocampal commissure, and medial longitudinal fasciculus. We found A-type K⁺ channel Kv3.4 in both pioneer axons and early follower axons and L-type Ca²⁺ channel Cav1.2 in pioneer axons and early and late follower axons. Spatially, Kv3.4 and Cav1.2 were colocalized with markers of pioneer neurons and pioneer axons, such as deleted in colorectal cancer (DCC), in most fiber tracts examined. Temporally, Kv3.4 and Cav1.2 were expressed abundantly in most fiber tracts during axon pathfinding but were downregulated beginning in synaptogenesis. By contrast, delayed rectifier Kv channels (e.g., Kv1.1) and Nav channels (e.g., Nav1.2) were absent from these fiber tracts (except for the corpus callosum) during pathfinding of pioneer axons. These data suggest that Kv3.4 and Cav1.2, two high-voltage-activated ion channels, may act together to control Ca²⁺ -dependent electrical activity of pioneer axons and play important roles during axon pathfinding. Copyright © 2012 Wiley Periodicals, Inc.
Lindenmayer, David B.; Barton, Philip S.; Lane, Peter W.; Westgate, Martin J.; McBurney, Lachlan; Blair, David; Gibbons, Philip; Likens, Gene E.
2014-01-01
A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates. We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance, but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either species- or habitat-based surrogates are likely to be superior. PMID:24587050
Lindenmayer, David B; Barton, Philip S; Lane, Peter W; Westgate, Martin J; McBurney, Lachlan; Blair, David; Gibbons, Philip; Likens, Gene E
2014-01-01
A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates. We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance, but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either species- or habitat-based surrogates are likely to be superior.
Horstkotte, Tim; Moen, Jon; Lämås, Tomas; Helle, Timo
2011-01-01
In northern Sweden, the availability of arboreal lichens (Bryoria fuscescens, Alectoria sarmentosa) as winter grazing resources is an important element in reindeer husbandry. With the industrialization of forestry, forests rich in arboreal lichens have diminished considerably. Here, we analyze how forestry has impacted lichen availability from the 1920's to the present day and model its future development assuming different forest management scenarios.We recorded the current occurrence of B. fuscescens in 144 sampling plots, stratified by forest age class and dominant tree species in a 26,600 ha boreal forest landscape that is used for both reindeer herding and forestry. Lichen abundance was visually estimated in four classes: none, sparse, moderate and abundant. A binary logistic model using forest age as the independent variable was developed to predict the probability of lichens being present. Using this model, we found that lichens were present in stands that are at least 63 years old. Because of the relative paucity of stands rich in arboreal lichens, it was not possible to reliably determine how age affects the variation in abundance of older forest stands. The historical development of forests where arboreal lichens could potentially occur was studied using historic forestry records dating back 80 years. Between 1926 and the present day, forestry has reduced the cover of forests older than 60 years from 84% to 34%. The likely future spatial coverage of these stands over the next 120 years was estimated for two different management scenarios and an unmanaged reference scenario, using the Heureka strategic planning program. Under both the "business as usual" scenario and that involving more intensive forestry, continued decreases in lichen availability are projected. Our results emphasize the importance of alternative forestry practices, such as prolonged rotation periods, to increase the availability of arboreal lichens as a grazing resource for reindeer.
Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi
2016-04-01
A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans
Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.
2016-01-01
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100
Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS
Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.
2015-01-01
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348
Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza; Pielage, Jan
2015-03-30
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits. © 2015 Siegenthaler et al.
Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits.
Maillard, Julien; Park, Soyoung; Croizier, Sophie; Vanacker, Charlotte; Cook, Joshua H; Prevot, Vincent; Tauber, Maithe; Bouret, Sebastien G
2016-08-01
Prader-Willi syndrome (PWS) is a genetic disorder characterized by a variety of physiological and behavioral dysregulations, including hyperphagia, a condition that can lead to life-threatening obesity. Feeding behavior is a highly complex process with multiple feedback loops that involve both peripheral and central systems. The arcuate nucleus of the hypothalamus (ARH) is critical for the regulation of homeostatic processes including feeding, and this nucleus develops during neonatal life under of the influence of both environmental and genetic factors. Although much attention has focused on the metabolic and behavioral outcomes of PWS, an understanding of its effects on the development of hypothalamic circuits remains elusive. Here, we show that mice lacking Magel2, one of the genes responsible for the etiology of PWS, display an abnormal development of ARH axonal projections. Notably, the density of anorexigenic α-melanocyte-stimulating hormone axons was reduced in adult Magel2-null mice, while the density of orexigenic agouti-related peptide fibers in the mutant mice appeared identical to that in control mice. On the basis of previous findings showing a pivotal role for metabolic hormones in hypothalamic development, we also measured leptin and ghrelin levels in Magel2-null and control neonates and found that mutant mice have normal leptin and ghrelin levels. In vitro experiments show that Magel2 directly promotes axon growth. Together, these findings suggest that a loss of Magel2 leads to the disruption of hypothalamic feeding circuits, an effect that appears to be independent of the neurodevelopmental effects of leptin and ghrelin and likely involves a direct neurotrophic effect of Magel2. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease.
Menezes, Manoj P; Rahman, Shamima; Bhattacharya, Kaustuv; Clark, Damian; Christodoulou, John; Ellaway, Carolyn; Farrar, Michelle; Pitt, Matthew; Sampaio, Hugo; Ware, Tyson L; Wedatilake, Yehani; Thorburn, David R; Ryan, Monique M; Ouvrier, Robert
2016-09-01
Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Games, Dora; Seubert, Peter; Rockenstein, Edward; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Ettle, Benjamin; Ghassemiam, Majid; Barbour, Robin; Schenk, Dale; Nuber, Silke; Masliah, Eliezer
2014-01-01
Progressive accumulation of α-synuclein (α-syn) in limbic and striatonigral systems is associated with the neurodegenerative processes in dementia with Lewy bodies (DLB) and Parkinson’s disease (PD). The murine Thy-1 (mThy1)-α-syn transgenic (tg) model recapitulates aspects of degenerative processes associated with α-syn accumulation in these disorders. Given that axonal and synaptic pathologies are important features of DLB and PD, we sought to investigate the extent and characteristics of these alterations in mThy1-α-syn tg mice and to determine the contribution of α-syn c-terminally cleaved at amino acid 122 (CT α-syn) to these abnormalities. We generated a novel polyclonal antibody (SYN105) against the c-terminally truncated sequence (amino acids 121 to 123) of α-syn (CT α-syn) and performed immunocytochemical and ultrastructural analyses in mThy1-α-syn tg mice. We found abundant clusters of dystrophic neurites in layers 2 to 3 of the neocortex, the stratum lacunosum, the dentate gyrus, and cornu ammonis 3 of the hippocampus, striatum, thalamus, midbrain, and pons. Dystrophic neurites displayed intense immunoreactivity detected with the SYN105 antibody. Double-labeling studies with antibodies to phosphorylated neurofilaments confirmed the axonal location of full-length and CT α-syn. α-Syn immunoreactive dystrophic neurites contained numerous electrodense laminated structures. These results show that neuritic dystrophy is a prominent pathologic feature of the mThy1-α-syn tg model and suggest that CT α-syn might play an important role in the process of axonal damage in these mice as well as in DLB and PD. PMID:23313024
Games, Dora; Seubert, Peter; Rockenstein, Edward; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Ettle, Benjamin; Ghassemiam, Majid; Barbour, Robin; Schenk, Dale; Nuber, Silke; Masliah, Eliezer
2013-03-01
Progressive accumulation of α-synuclein (α-syn) in limbic and striatonigral systems is associated with the neurodegenerative processes in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). The murine Thy-1 (mThy1)-α-syn transgenic (tg) model recapitulates aspects of degenerative processes associated with α-syn accumulation in these disorders. Given that axonal and synaptic pathologies are important features of DLB and PD, we sought to investigate the extent and characteristics of these alterations in mThy1-α-syn tg mice and to determine the contribution of α-syn c-terminally cleaved at amino acid 122 (CT α-syn) to these abnormalities. We generated a novel polyclonal antibody (SYN105) against the c-terminally truncated sequence (amino acids 121 to 123) of α-syn (CT α-syn) and performed immunocytochemical and ultrastructural analyses in mThy1-α-syn tg mice. We found abundant clusters of dystrophic neurites in layers 2 to 3 of the neocortex, the stratum lacunosum, the dentate gyrus, and cornu ammonis 3 of the hippocampus, striatum, thalamus, midbrain, and pons. Dystrophic neurites displayed intense immunoreactivity detected with the SYN105 antibody. Double-labeling studies with antibodies to phosphorylated neurofilaments confirmed the axonal location of full-length and CT α-syn. α-Syn immunoreactive dystrophic neurites contained numerous electrodense laminated structures. These results show that neuritic dystrophy is a prominent pathologic feature of the mThy1-α-syn tg model and suggest that CT α-syn might play an important role in the process of axonal damage in these mice as well as in DLB and PD. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya
2016-11-15
Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fernandez, C.; Lysakowski, A.; Goldberg, J. M.
1995-01-01
1. The numbers of type I and type II hair cells were estimated by dissector techniques applied to semithin, stained sections of the horizontal, superior, and posterior cristae in the squirrel monkey and the chinchilla. 2. The crista in each species was divided into concentrically arranged central, intermediate, and peripheral zones of equal areas. The three zones can be distinguished by the sizes of individual hair cells and calyx endings, by the density of hair cells, and by the relative frequency of calyx endings innervating single or multiple type I hair cells. 3. In the monkey crista, type I hair cells outnumber type II hair cells by a ratio of almost 3:1. The ratio decreases from 4-5:1 in the central and intermediate zones to under 2:1 in the peripheral zone. For the chinchilla, the ratio is near 1:1 for the entire crista and decreases only slightly between the central and peripheral zones. 4. Nerve fibers supplying the cristae in the squirrel monkey were labeled by extracellular injections of horseradish peroxidase (HRP) into the vestibular nerve. Peripheral terminations of individual fibers were reconstructed and related to the zones of the cristae they innervated and to the sizes of their parent axons. Results were similar for the horizontal, superior, and posterior cristae. 5. Axons seldom bifurcate below the neuroepithelium. Most fibers begin branching shortly after crossing the basement membrane. Their terminal arbors are compact, usually extending no more than 50-100 microns from the parent exon. A small number of long intraepithelial fibers enter the intermediate and peripheral zones of the cristae near its base, then run unbranched for long distances through the neuroepithelium to reach the central zone. 6. There are three classes of afferent fibers innervating the monkey crista. Calyx fibers terminate exclusively on type I hair cells, and bouton fibers end only on type II hair cells. Dimorphic fibers provide a mixed innervation, including calyx endings to type I hair cells and bouton endings to type II hair cells. Long intraepithelial fibers are calyx and dimorphic units, whose terminal fields are similar to those of other fibers. The central zone is innervated by calyx and dimorphic fibers; the peripheral zone, by bouton and dimorphic fibers; and the intermediate zone, by all three kinds of fibers. Internal (axon) diameters are largest for calyx fibers and smallest for bouton fibers. Of the entire sample of 286 labeled fibers, 52% were dimorphic units, 40% were calyx units, and 8% were bouton units.(ABSTRACT TRUNCATED AT 400 WORDS).
Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P
2014-11-25
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
...: University of Michigan Museum of Anthropology, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION... Museum of Anthropology NAGPRA collections staff in consultation with representatives of the Bay Mills... Anthropology purchased the human remains from Reverend L. P. Rowland in November of 1924 as part of a larger...
Designing a fixed-blade gang ripsaw arbor with a pencil
Charles J. Gatchell; Charles J. Gatchell
1996-01-01
This paper presents a step-by-step procedure for designing the "best" sequence of saw spacings for a fixed-blade gang ripsaw arbor. Using the information contained in a cutting bill and knowledge of the lumber width distributions to be processed, thousands of possible saw spacing sequences can be reduced to a few good ones.
Conservation and relative habitat suitability for an arboreal mammal associated with old forest
Mark A. Linnell; Raymond J. Davis; Damon B. Lesmeister; James K. Swingle
2017-01-01
Contraction of native old forest can limit occurrence of old forest associated species, especially species with limited vagility. Patterns of size and distribution of remaining patches of old forest along with forest disturbance and what replaces old forest can influence whether species adapt or perish after forest loss. The arboreal red tree vole (Arborimus...
Habitat management for red tree voles in Douglas-fir forests.
M.H. Huff; R.S. Holthausen; K.B. Aubry
1992-01-01
The relations between arboreal rodents and trees causes the animals to be particularly sensitive to the effects of timber harvesting.Among arboreal rodents,we consider the redtree vole to be the most vulnerable to local extinctions resulting from the loss or fragmentation of old-growth Douglas-fir forests. Redtree voles are nocturnal,canopy dwelling, and difficult to...
Arboreal behavior in the timber rattlesnake, Crotalus horridus, in eastern Texas
D. Craig Rudolph; R. R. Schaefer; D. Saenz; R. N. Conner
2004-01-01
There have been several recent reports, and anecdotal observations extending back at least to J. J. Audubon, suggesting that the timber rattlesnake (Crotalus horridus) is one of the most arboreal members of the genus. Most previous records are of snakes located at heights of less than 5 m. Telemetry studies in eastern Texas have documented more...
Survival, Growth, and Ecosystem Dynamics of Displaced Bromeliads in a Montane Tropical Forest.
Jennifer Pett-Ridge; Whendee L. Silver
2002-01-01
Epiphytes generally occupy arboreal perches, which are inherently unstable environments due to periodic windstorms, branch falls, and treefalls. During high wind events, arboreal bromeliads are often knocked from the canopy and deposited on the forest floor. In this study, we used a common epiphytic tank bromeliad, Guzmania berteroniana (R. & S.) Mez, to determine...
2018-04-13
Ann Arbor Stage III Small Lymphocytic Lymphoma; Ann Arbor Stage IV Small Lymphocytic Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia
[Photosynthetic characteristics of five arbor species in Shenyang urban area].
Li, Hai-Me; He, Xing-Yuan; Wang, Kui-Ling; Chen, Wei
2007-08-01
By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.
Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi
2016-10-01
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD). © 2016 International Society for Neurochemistry.
Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins
Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J
2017-01-01
Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI: http://dx.doi.org/10.7554/eLife.23882.001 PMID:28742022
Chen, Yijing; Magnani, Dario; Theil, Thomas; Pratt, Thomas; Price, David J.
2012-01-01
Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors. PMID:22412988
Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy
Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Belisle, Jonathan M.; Costantino, Santiago; Levin, Leonard A.
2013-01-01
Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration. PMID:22642911
Nguyen, P V; Atwood, H L
1994-12-01
1. Crayfish phasic motor synapses produce large initial excitatory postsynaptic potentials (EPSPs) that fatigue rapidly during high-frequency stimulation. Periodic in vivo stimulation of an identified phasic abdominal extensor motor neuron (axon 3) induced long-term adaptation (LTA) of neuromuscular transmission: initial EPSP amplitude became smaller and synaptic depression was significantly reduced. We tested the hypothesis that activity-induced synaptic fatigue-resistance seen during LTA was dependent upon, or correlated with, mitochondrial oxidative competence. 2. Periodic unilateral conditioning stimulation of axon 3 entering each of two adjacent homologous abdominal segments (segments 2 and 3) increased the synaptic stamina in both "conditioned" axons; mean final EPSP amplitudes, recorded after 20 min of 5-Hz test stimulation, were significantly larger than those measured with the same protocol from contralateral unstimulated axons. 3. During 5-Hz test stimulation of the conditioned axon 3 of segment 3, acute superfusion with 0.8 mM dinitrophenol or 20 mM sodium azide [inhibitors of oxidative adenosinetriphosphate (ATP) synthesis] produced increased synaptic depression. Drug-free saline superfusion of the conditioned axon 3 of segment 2 in these same animals did not affect the increased synaptic fatigue resistance seen in this segment. Thus both successful induction (in axon 3 of saline-perfused segment 2) and attenuation (in axon 3 of drug-perfused segment 3) of the increased synaptic stamina can be demonstrated with this twin-segment conditioning protocol. 4. Confocal microscopic imaging of mitochondrial rhodamine-123 (Rh123) fluorescence was used to assess relative oxidative competence of conditioned and unconditioned phasic axons. Conditioned phasic axons showed significantly higher mean mitochondrial Rh123 fluorescence than contralateral unstimulated axons. In the same preparations that showed increased postconditioning Rh123 fluorescence, the synaptic fatigue resistance measured from conditioned axon 3 was also significantly greater than that recorded from contralateral unstimulated axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root. Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, Prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3 6. Because mitochondrial Rh123 fluorescence is primarily dependent upon the oxidative activity of these organelles, our findings suggest that conditioning stimulation of phasic extensor axon 3 increases its mitochondrial oxidative competence and that the enhanced synaptic stamina seen during LTA in axon 3 is correlated with, and dependent upon, oxidative activity.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Technical Reports Server (NTRS)
Lnenicka, G. A.; Keshishian, H.
2000-01-01
In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon. Copyright 2000 John Wiley & Sons, Inc.
Physical Biology of Axonal Damage.
de Rooij, Rijk; Kuhl, Ellen
2018-01-01
Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.
Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas
NASA Technical Reports Server (NTRS)
Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.
1998-01-01
Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.
Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.
Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C
2017-04-01
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.
Axon Regeneration in C. elegans
Hammarlund, Marc; Jin, Yishi
2014-01-01
Single axon transection by laser surgery has made C. elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. in vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge of the molecular and cellular mechanisms of axon regeneration. PMID:24794753
Optic nerve head component responses of the multifocal electroretinogram in MS.
Frohman, Teresa C; Beh, Shin Chien; Saidha, Shiv; Schnurman, Zane; Conger, Darrel; Conger, Amy; Ratchford, John N; Lopez, Carmen; Galetta, Steven L; Calabresi, Peter A; Balcer, Laura J; Green, Ari J; Frohman, Elliot M
2013-08-06
To employ a novel stimulation paradigm in order to elicit multifocal electroretinography (mfERG)-induced optic nerve head component (ONHC) responses, believed to be contingent upon the transformation in electrical transmission properties of retinal ganglion cell axons from membrane to saltatory conduction mechanisms, as they traverse the lamina cribrosa and obtain oligodendrocyte myelin. We further sought to characterize abnormalities in ONHC responses in eyes from patients with multiple sclerosis (MS). In 10 normal subjects and 7 patients with MS (including eyes with and without a history of acute optic neuritis), we utilized a novel mfERG stimulation paradigm that included interleaved global flashes in order to elicit the ONHC responses from 103 retinal patches of pattern-reversal stimulation. The number of abnormal or absent ONHC responses was significantly increased in MS patient eyes compared to normal subject eyes (p < 0.001, by general estimating equation modeling, and accounting for age and within-subject, intereye correlations). Studying the relationship between ONHC abnormalities and alterations in validated structural and functional measures of the visual system may facilitate the ability to dissect and characterize the pathobiological mechanisms that contribute to tissue damage in MS, and may have utility to detect and monitor neuroprotective or restorative effects of novel therapies.
Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Merino-Serrais, Paula; Ávila, Jesús; DeFelipe, Javier
2011-01-01
A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.
The epileptology of Koolen-de Vries syndrome: Electro-clinico-radiologic findings in 31 patients.
Myers, Kenneth A; Mandelstam, Simone A; Ramantani, Georgia; Rushing, Elisabeth J; de Vries, Bert B; Koolen, David A; Scheffer, Ingrid E
2017-06-01
This study was designed to describe the spectrum of epilepsy phenotypes in Koolen-de Vries syndrome (KdVS), a genetic syndrome involving dysmorphic features, intellectual disability, hypotonia, and congenital malformations, that occurs secondary to 17q21.31 microdeletions and heterozygous mutations in KANSL1. We were invited to attend a large gathering of individuals with KdVS and their families. While there, we recruited individuals with KdVS and seizures, and performed thorough phenotyping. Additional subjects were included who approached us after the family support group brought attention to our research via social media. Inclusion criteria were genetic testing results demonstrating 17q21.31 deletion or KANSL1 mutation, and at least one seizure. Thirty-one individuals were studied, aged 2-35 years. Median age at seizure onset was 3.5 years, and 9 of 22 had refractory seizures 2 years after onset. Focal impaired awareness seizures were the most frequent seizure type occurring in 20 of 31, usually with prominent autonomic features. Twenty-one patients had prolonged seizures and, at times, refractory status epilepticus. Electroencephalography (EEG) showed focal/multifocal epileptiform discharges in 20 of 26. MRI studies of 13 patients were reviewed, and all had structural anomalies. Corpus callosum dysgenesis, abnormal hippocampi, and dilated ventricles were the most common, although periventricular nodular heterotopia, focal cortical dysplasia, abnormal sulcation, and brainstem and cerebellum abnormalities were also observed. One patient underwent epilepsy surgery for a lesion that proved to be an angiocentric glioma. The typical epilepsy phenotype of KdVS involves childhood-onset focal seizures that are prolonged and have prominent autonomic features. Multifocal epileptiform discharges are the typical EEG pattern. Structural brain abnormalities may be universal, including signs of abnormal neuroblast migration and abnormal axonal guidance. Epilepsy surgery should be undertaken with care given the widespread neuroanatomic abnormalities; however, tumors are a rare, yet important, occurrence. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A
2015-10-01
The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.
Fung, Lawrence K; Quintin, Eve-Marie; Haas, Brian W; Reiss, Allan L
2012-04-01
The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.
Yamashita, Sumimasa; Miyake, Noriko; Matsumoto, Naomichi; Osaka, Hitoshi; Iai, Mizue; Aida, Noriko; Tanaka, Yukichi
2013-04-01
We diagnosed three siblings from consanguineous east Asian parents with leukoencephalopathy with brainstem and spinal cord involvement and high lactate (LBSL) from characteristic MRI, MRS findings and a homozygous mutation in the DARS2 gene. The neurological symptoms of the three patients consisted of psychomotor developmental delay, cerebellar ataxia since infancy, spasticity in the initial phase and peripheral neuropathy in later stages. Their mental development was delayed, but did not deteriorate. MRI signal abnormalities included the same abnormalities reported previously but tended to be more extensive. Signal abnormalities in the cerebral and cerebellar white matter were homogeneous and confluent from early stages. In addition, other tract such as the central tegmental tract was involved. Furthermore, an atrophic change in the cerebral white matter was observed on follow-up in one case. Two of the patients were autopsied and neuropathological findings revealed characteristic vacuolar changes in the white matter of the cerebrum, cerebellum and the nerve tracts of the brain stem and spinal cord. The central myelin sheath showed intralamellar splitting by electron microscopy. These findings were consistent to a spongy degeneration in the diffuse white matter of the brain, or spongiform leukoencephalopathy. In addition, peripheral nerves showed both axonal degeneration and abnormal myelin structures. We discussed the relationship between deficits in mitochondrial aspartyl-tRNA synthetase activity and the neuropathology observed. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.
Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N
2017-11-22
Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration. Copyright © 2017 the authors 0270-6474/17/3711323-12$15.00/0.
Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
Šmít, Daniel; Fouquet, Coralie; Pincet, Frédéric; Zapotocky, Martin; Trembleau, Alain
2017-01-01
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation. DOI: http://dx.doi.org/10.7554/eLife.19907.001 PMID:28422009
Guo, Xinzheng; Snider, William D; Chen, Bo
2016-03-14
Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.
ERIC Educational Resources Information Center
Pinsak, Arthur P., Ed.
This publication contains the proceedings of a workshop held in Ann Arbor, Michigan to identify the priority Great Lakes environmental research initiatives. The five major objectives of the workshop include the determination of research initiatives, opportunities for university research communities to discuss and recommend future research…
Elizabeth A. Flaherty; Merav Ben-David; Winston P. Smith
2010-01-01
Gliding allows mammals to exploit canopy habitats of old-growth forests possibly as a means to save energy. To assess costs of quadrupedal locomotion for a gliding arboreal mammal, we used open-flow respirometry and a variable-speed treadmill to measure oxygen consumption and to calculate cost of transport, excess exercise oxygen consumption, and excess post-exercise...
ERIC Educational Resources Information Center
Morrissey, Gwynne E.; Coolican, Maria J.; Wolfgang, David F.
2011-01-01
The Ann Arbor Languages Partnership (A2LP) between Ann Arbor Public Schools and the University of Michigan's School of Education recruits Spanish-speaking undergraduates from many academic majors to teach Spanish in the district's 3rd and 4th grade classrooms during the academic year. The partnership allows the district to offer students a world…
Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A
2014-03-01
The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.
Axonal transport: cargo-specific mechanisms of motility and regulation.
Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J; Holzbaur, Erika L F
2014-10-22
Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.
Kamiya, Kouhei; Hori, Masaaki; Miyajima, Masakazu; Nakajima, Madoka; Suzuki, Yuriko; Kamagata, Koji; Suzuki, Michimasa; Arai, Hajime; Ohtomo, Kuni; Aoki, Shigeki
2014-01-01
Previous studies suggest that compression and stretching of the corticospinal tract (CST) potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH). Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI) analysis. Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( = axon diameter) and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001), whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.
ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons.
Eva, Richard; Crisp, Sarah; Marland, Jamie R K; Norman, Jim C; Kanamarlapudi, Venkateswarlu; ffrench-Constant, Charles; Fawcett, James W
2012-07-25
Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.
Imaging of Cranial Nerves III, IV, VI in Congenital Cranial Dysinnervation Disorders.
Kim, Jae Hyoung; Hwang, Jeong Min
2017-06-01
Congenital cranial dysinnervation disorders are a group of diseases caused by abnormal development of cranial nerve nuclei or their axonal connections, resulting in aberrant innervation of the ocular and facial musculature. Its diagnosis could be facilitated by the development of high resolution thin-section magnetic resonance imaging. The purpose of this review is to describe the method to visualize cranial nerves III, IV, and VI and to present the imaging findings of congenital cranial dysinnervation disorders including congenital oculomotor nerve palsy, congenital trochlear nerve palsy, Duane retraction syndrome, Möbius syndrome, congenital fibrosis of the extraocular muscles, synergistic divergence, and synergistic convergence. © 2017 The Korean Ophthalmological Society.
NASA Astrophysics Data System (ADS)
Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.
2014-11-01
Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.
Time course of ongoing activity during neuritis and following axonal transport disruption.
Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew
2018-05-01
Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (<10%) A- and C-fiber neurons showed ongoing activity 1-15 days following vinblastine treatment. In contrast, AMS increased transiently at the vinblastine treatment site, peaking on days 4-5 (28% of C/slow Aδ-fiber neurons) and resolved by day 15. Conduction velocities were slowed in all groups. In summary, the disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.
Localization of mRNA in vertebrate axonal compartments by in situ hybridization.
Sotelo-Silveira, José Roberto; Calliari, Aldo; Kun, Alejandra; Elizondo, Victoria; Canclini, Lucía; Sotelo, José Roberto
2011-01-01
The conclusive demonstration of RNA in vertebrate axons by in situ hybridization (ISH) has been elusive. We review the most important reasons for difficulties, including low concentration of axonal RNAs, localization in specific cortical domains, and the need to isolate axons. We demonstrate the importance of axon micro-dissection to obtain a whole mount perspective of mRNA distribution in the axonal territory. We describe a protocol to perform fluorescent ISH in isolated axons and guidelines for the preservation of structural and molecular integrity of cortical RNA-containing domains (e.g., Periaxoplasmic Ribosomal Plaques, or PARPs) in isolated axoplasm.
Selective rab11 transport and the intrinsic regenerative ability of CNS axons
Koseki, Hiroaki; Donegá, Matteo; Lam, Brian YH; Petrova, Veselina; van Erp, Susan; Yeo, Giles SH; Kwok, Jessica CF; ffrench-Constant, Charles
2017-01-01
Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration. PMID:28829741
Inhibiting poly(ADP-ribosylation) improves axon regeneration.
Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc
2016-10-04
The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.
Inhibiting poly(ADP-ribosylation) improves axon regeneration
Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc
2016-01-01
The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001 PMID:27697151
López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A
2018-01-01
Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.
Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W
2010-01-01
Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.
The amyloid precursor protein and postnatal neurogenesis/neuroregeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yanan; Tang, Bor Luen
2006-03-03
The amyloid precursor protein (APP) is the source of amyloid-beta (A{beta}) peptide, produced via its sequential cleavage {beta}- and {gamma}-secretases. Various biophysical forms of A{beta} (and the mutations of APP which results in their elevated levels) have been implicated in the etiology and early onset of Alzheimer's disease. APP's evolutionary conservation and the existence of APP-like isoforms (APLP1 and APLP2) which lack the A{beta} sequence, however, suggest that these might have important physiological functions that are unrelated to A{beta} production. Soluble N-terminal fragments of APP have been known to be neuroprotective, and the interaction of its cytoplasmic C-terminus with amore » myriad of proteins associates it with diverse processes such as axonal transport and transcriptional regulation. The notion for an essential postnatal function of APP has been demonstrated genetically, as mice deficient in both APP and APLP2 or all three APP isoforms exhibit early postnatal lethality and neuroanatomical abnormalities. Recent findings have also brought to light two possible functions of the APP family in Brain-regulation of neural progenitor cell proliferation and axonal outgrowth after injury. Interestingly, these two apparently related neurogenic/neuroregenerative functions of APP involve two separate domains of the molecule.« less