Sample records for abnormal behavioral phenotype

  1. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    ming during pre- and post-natal neurodevelopment . Previously, we reported that many children with autism have abnormal plasma levels of metabolites...dysregulation in autism . 1. Introduction Autism is a behaviorally defined neurodevelopmental disor- der that usually presents in early childhood and is charac...Phenotype for Autism and Related Alterations in CNS Development PRINCIPAL INVESTIGATOR: Sandra Jill James, Ph.D

  2. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  3. The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.

    PubMed

    Bolivar, Valerie J; Scott Ganus, J; Messer, Anne

    2002-05-24

    The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.

  4. The Neurodevelopmental Basis of Early Childhood Disruptive Behavior: Irritable and Callous Phenotypes as Exemplars.

    PubMed

    Wakschlag, Lauren S; Perlman, Susan B; Blair, R James; Leibenluft, Ellen; Briggs-Gowan, Margaret J; Pine, Daniel S

    2018-02-01

    The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].

  5. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggestingmore » that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.« less

  6. Association of abnormal plasma bilirubin with aggressive HCC phenotype

    PubMed Central

    Carr, Brian I.; Guerra, Vito; Giannini, Edoardo G.; Farinati, Fabio; Ciccarese, Francesca; Rapaccini, Gian Ludovico; Marco, Maria Di; Benvegnù, Luisa; Zoli, Marco; Borzio, Franco; Caturelli, Eugenio; Chiaramonte, Maria; Trevisani, Franco

    2014-01-01

    Background Cirrhosis-related abnormal liver function is associated with predisposition to HCC, features in several HCC classification systems and is an HCC prognostic factor. Aims To examine the phenotypic tumor differences in HCC patients with normal or abnormal plasma bilirubin levels. Methods A 2,416 patient HCC cohort was studied and dichotomized into normal and abnormal plasma bilirubin groups. Their HCC characteristics were compared for tumor aggressiveness features, namely blood AFP levels, tumor size, presence of PVT and tumor multifocality. Results In the total cohort, elevated bilirubin levels were associated with higher AFP levels, increased PVT and multifocality and lower survival, despite similar tumor sizes. When different tumor size terciles were compared, similar results were found, even for small tumor size patients. A multiple logistic regression model for PVT or tumor multifocality showed increased OddsRatios for elevated levels of GGTP, bilirubin and AFP and for larger tumor sizes. Conclusions HCC patients with abnormal bilirubin levels had worse prognosis than patients with normal bilirubin. They also had increased incidence of PVT and tumor multifocality and higher AFP levels, in patients with both small and larger tumors. The results show an association between bilirubin levels and indices of HCC aggressiveness. PMID:24787296

  7. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  8. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  9. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype.

    PubMed

    Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K

    2014-02-01

    Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  11. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice.

    PubMed

    Yamaguchi, Hiroshi; Hara, Yuta; Ago, Yukio; Takano, Erika; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-08-30

    We recently demonstrated that prenatal exposure to valproic acid (VPA) at embryonic day 12.5 causes autism spectrum disorder (ASD)-like phenotypes such as hypolocomotion, anxiety-like behavior, social deficits and cognitive impairment in mice and that it decreases dendritic spine density in the hippocampal CA1 region. Previous studies show that some abnormal behaviors are improved by environmental enrichment in ASD rodent models, but it is not known whether environmental enrichment improves cognitive impairment. In the present study, we examined the effects of early environmental enrichment on behavioral abnormalities and neuromorphological changes in prenatal VPA-treated mice. We also examined the role of dendritic spine formation and synaptic protein expression in the hippocampus. Mice were housed for 4 weeks from 4 weeks of age under either a standard or enriched environment. Enriched housing was found to increase hippocampal brain-derived neurotrophic factor mRNA levels in both control and VPA-exposed mice. Furthermore, in VPA-treated mice, the environmental enrichment improved anxiety-like behavior, social deficits and cognitive impairment, but not hypolocomotion. Prenatal VPA treatment caused loss of dendritic spines in the hippocampal CA1 region and decreases in mRNA levels of postsynaptic density protein-95 and SH3 and multiple ankyrin repeat domains 2 in the hippocampus. These hippocampal changes were improved by the enriched housing. These findings suggest that the environmental enrichment improved most ASD-like behaviors including cognitive impairment in the VPA-treated mice by enhancing dendritic spine function. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, H.G.; Nelen, M.; Ropers, H.H.

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated completemore » MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.« less

  13. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia.

    PubMed

    Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin

    2009-06-01

    Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.

  14. Behavioral and Psychological Phenotyping of Physical Activity and Sedentary Behavior: Implications for Weight Management.

    PubMed

    Bryan, Angela D; Jakicic, John M; Hunter, Christine M; Evans, Mary E; Yanovski, Susan Z; Epstein, Leonard H

    2017-10-01

    Risk for obesity is determined by a complex mix of genetics and lifetime exposures at multiple levels, from the metabolic milieu to psychosocial and environmental influences. These phenotypic differences underlie the variability in risk for obesity and response to weight management interventions, including differences in physical activity and sedentary behavior. As part of a broader effort focused on behavioral and psychological phenotyping in obesity research, the National Institutes of Health convened a multidisciplinary workshop to explore the state of the science in behavioral and psychological phenotyping in humans to explain individual differences in physical activity, both as a risk factor for obesity development and in response to activity-enhancing interventions. Understanding the behavioral and psychological phenotypes that contribute to differences in physical activity and sedentary behavior could allow for improved treatment matching and inform new targets for tailored, innovative, and effective weight management interventions. This summary provides the rationale for identifying psychological and behavioral phenotypes relevant to physical activity and identifies opportunities for future research to better understand, define, measure, and validate putative phenotypic factors and characterize emerging phenotypes that are empirically associated with initiation of physical activity, response to intervention, and sustained changes in physical activity. © 2017 The Obesity Society.

  15. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  16. Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome.

    PubMed

    Moretti, Paolo; Bouwknecht, J Adriaan; Teague, Ryan; Paylor, Richard; Zoghbi, Huda Y

    2005-01-15

    Rett syndrome (RTT) is an autistic spectrum disorder with a known genetic basis. RTT is caused by loss of function mutations in the X-linked gene MECP2 and is characterized by loss of acquired motor, social and language skills in females beginning at 6-18 months of age. MECP2 mutations also cause non-syndromic mental retardation in males and females, and abnormalities of MeCP2 expression in the brain have been found in autistic spectrum disorders. We studied home-cage behavior and social interactions in a mouse model of RTT (Mecp2(308/Y)) carrying a mutation similar to common RTT causing alleles. Young adult mutant mice showed abnormal home-cage diurnal activity in the absence of motor skill deficits. Nesting, a phenotype related to social behavior, and social interactions were both impaired in these animals. Mecp2(308/Y) mice showed deficits in nest building and decreased nest use. Although there were no differences in aggression or exploration of novel inanimate stimuli, mutant mice took less initiative and were less decisive approaching unfamiliar males and spent less time in close vicinity to them in several social interaction paradigms. The abnormalities of diurnal activity and social behavior in Mecp2(308/Y) mice are reminiscent of the sleep/wake dysfunction and autistic features of RTT. These data suggest that MECP2 regulates the expression and/or function of genes involved in social behavior. The study of Mecp2(308/Y) mice will allow the identification of the molecular basis of social impairment in RTT and related autistic spectrum disorders.

  17. Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors

    NASA Astrophysics Data System (ADS)

    Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan

    The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.

  18. Developmental antecedents of abnormal eating attitudes and behaviors in adolescence.

    PubMed

    Le Grange, Daniel; O'Connor, Meredith; Hughes, Elizabeth K; Macdonald, Jacqui; Little, Keriann; Olsson, Craig A

    2014-11-01

    This study capitalizes on developmental data from an Australian population-based birth cohort to identify developmental markers of abnormal eating attitudes and behaviors in adolescence. The aims were twofold: (1) to develop a comprehensive path model identifying infant and childhood developmental correlates of Abnormal Eating Attitudes and Behaviors in adolescence, and (2) to explore potential gender differences. Data were drawn from a 30-year longitudinal study that has followed the health and development of a population based cohort across 15 waves of data collection from infancy since 1983: The Australian Temperament Project. Participants in this analysis were the 1,300 youth who completed the 11th survey at 15-16 years (1998) and who completed the eating disorder inventory at this time point. Developmental correlates of Abnormal Eating Attitudes and Behaviors in mid-adolescence were temperamental persistence, early gestational age, persistent high weight, teen depression, stronger peer relationships, maternal dieting behavior, and pubertal timing. Overall, these factors accounted for 28% of the variance in Abnormal Eating Attitudes and Behaviors at 15-16 years of age. Depressive symptoms, maternal dieting behavior, and early puberty were more important factors for girls. Late puberty was a more important factor for boys. Findings address an important gap in our understanding of the etiology of Abnormal Eating Attitudes and Behaviors in adolescence and suggest multiple targets for preventive intervention. © 2014 Wiley Periodicals, Inc.

  19. Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities.

    PubMed

    Rocha, C F; Paiva, C L A

    2014-03-31

    Prader-Willi syndrome (PWS) is caused by the lack of expression of genes located on paternal chromosome 15q11-q13. This lack of gene expression may be due to a deletion in this chromosomal segment, to maternal uniparental disomy of chromosome 15, or to a defect in the imprinting center on 15q11-q13. PWS is characterized by hypotonia during the neonatal stage and in childhood, accompanied by a delay in neuropsychomotor development. Overeating, obesity, and mental deficiency arise later on. The syndrome has a clinical overlap with other diseases, which makes it difficult to accurately diagnose. The purpose of this article is to review the Prader-Willi-like phenotype in the scientific literature from 2000 to 2013, i.e., to review the cases of PWS caused by chromosomal abnormalities different from those found on chromosome 15. A search was carried out using the "National Center for Biotechnology Information" (www.pubmed.com) and "Scientific Electronic Library Online (www.scielo.br) databases and combinations of key words such as "Prader-Willi-like phenotype" and "Prader-Willi syndrome phenotype". Editorials, letters, reviews, and guidelines were excluded. Articles chosen contained descriptions of patients diagnosed with the PWS phenotype but who were negative for alterations on 15q11-q13. Our search found 643 articles about PWS, but only 14 of these matched with the Prader-Willi-like phenotype and with the selected years of publication (2000-2013). If two or more articles reported the same chromosomal alterations for Prader-Willi-like phenotype, the most recent was chosen. Twelve articles of 14 were case reports and 2 reported series of cases.

  20. Complete trisomy 9 with unusual phenotypic associations: Dandy-Walker malformation, cleft lip and cleft palate, cardiovascular abnormalities.

    PubMed

    Tonni, Gabriele; Lituania, Mario; Chitayat, David; Bonasoni, Maria Paola; Keating, Sarah; Thompson, Megan; Shannon, Patrick

    2014-12-01

    Trisomy 9 is a rare chromosomal abnormality usually associated with first-trimester miscarriage; few fetuses survive until the second trimester. We report two new cases of complete trisomy 9 that both present unusual phenotypic associations, and we analyze the genetic pathway involved in this chromosomal abnormality. The first fetus investigated showed Dandy-Walker malformation, cleft lip, and cleft palate) at the second trimester scan. Cardiovascular abnormalities were characterized by a right-sided, U-shaped aortic arch associated with a ventricular septal defect (VSD). Symmetrical intrauterine growth restriction and multicystic dysplastic kidney disease were associated findings. The second fetus showed a dysmorphic face, bilateral cleft lip, hypoplastic corpus callosum, and a Dandy-Walker malformation. Postmortem examination revealed cardiovascular abnormalities such as persistent left superior vena cava draining into the coronary sinus, membranous ventricular septal defect, overriding aorta, pulmonary valve with two cusps and three sinuses, and the origin of the left subclavian artery distal to the junction of ductus arteriosus and aortic arch. Complete trisomy 9 may result in a wide spectrum of congenital abnormalities, and the presented case series contributes further details on the phenotype of this rare aneuploidy. Copyright © 2014. Published by Elsevier B.V.

  1. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    PubMed

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  2. Abnormal behavior and associated risk factors in captive baboons (Papio hamadryas spp.).

    PubMed

    Lutz, Corrine K; Williams, Priscilla C; Sharp, R Mark

    2014-04-01

    Abnormal behavior, ranging from motor stereotypies to self-injurious behavior, has been documented in captive nonhuman primates, with risk factors including nursery rearing, single housing, and veterinary procedures. Much of this research has focused on macaque monkeys; less is known about the extent of and risk factors for abnormal behavior in baboons. Because abnormal behavior can be indicative of poor welfare, either past or present, the purpose of this study was to survey the presence of abnormal behavior in captive baboons and to identify potential risk factors for these behaviors with an aim of prevention. Subjects were 144 baboons (119 females, 25 males) aged 3-29 (median = 9.18) years temporarily singly housed for research or clinical reasons. A 15-min focal observation was conducted on each subject using the Noldus Observer® program. Abnormal behavior was observed in 26% of the subjects, with motor stereotypy (e.g., pace, rock, swing) being the most common. Motor stereotypy was negatively associated with age when first singly housed (P < 0.005) while self-directed behavior (e.g., hair pull, self-bite) was positively associated with the lifetime number of days singly housed (P < 0.05) and the average number of blood draws per year (P < 0.05). In addition, abnormal appetitive behavior was associated with being male (P < 0.05). Although the baboons in this study exhibited relatively low levels of abnormal behavior, the risk factors for these behaviors (e.g., social restriction, routine veterinary procedures, and sex) appear to remain consistent across primate species. © 2013 Wiley Periodicals, Inc.

  3. Abnormalities of the executive control network in multiple sclerosis phenotypes: An fMRI effective connectivity study.

    PubMed

    Dobryakova, Ekaterina; Rocca, Maria Assunta; Valsasina, Paola; Ghezzi, Angelo; Colombo, Bruno; Martinelli, Vittorio; Comi, Giancarlo; DeLuca, John; Filippi, Massimo

    2016-06-01

    The Stroop interference task is a cognitively demanding task of executive control, a cognitive ability that is often impaired in patients with multiple sclerosis (MS). The aim of this study was to compare effective connectivity patterns within a network of brain regions involved in the Stroop task performance between MS patients with three disease clinical phenotypes [relapsing-remitting (RRMS), benign (BMS), and secondary progressive (SPMS)] and healthy subjects. Effective connectivity analysis was performed on Stroop task data using a novel method based on causal Bayes networks. Compared with controls, MS phenotypes were slower at performing the task and had reduced performance accuracy during incongruent trials that required increased cognitive control. MS phenotypes also exhibited connectivity abnormalities reflected as weaker shared connections, presence of extra connections (i.e., connections absent in the HC connectivity pattern), connection reversal, and loss. In SPMS and the BMS groups but not in the RRMS group, extra connections were associated with deficits in the Stroop task performance. In the BMS group, the response time associated with correct responses during the congruent condition showed a positive correlation with the left posterior parietal → dorsal anterior cingulate connection. In the SPMS group, performance accuracy during the congruent condition showed a negative correlation with the right insula → left insula connection. No associations between extra connections and behavioral performance measures were observed in the RRMS group. These results suggest that, depending on the phenotype, patients with MS use different strategies when cognitive control demands are high and rely on different network connections. Hum Brain Mapp, 37:2293-2304, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Behavioral phenotypes of genetic syndromes with intellectual disability: comparison of adaptive profiles.

    PubMed

    Di Nuovo, Santo; Buono, Serafino

    2011-10-30

    The study of distinctive and consistent behaviors in the most common genetic syndromes with intellectual disability is useful to explain abnormalities or associated psychiatric disorders. The behavioral phenotypes revealed outcomes totally or partially specific for each syndrome. The aim of our study was to compare similarities and differences in the adaptive profiles of the five most frequent genetic syndromes, i.e. Down syndrome, Williams syndrome, Angelman syndrome, Prader-Willi syndrome, and Fragile-X syndrome (fully mutated), taking into account the relation with chronological age and the overall IQ level. The research was carried out using the Vineland Adaptive Behavior Scale (beside the Wechsler Intelligence scales to obtain IQ) with a sample of 181 persons (107 males and 74 females) showing genetic syndromes and mental retardation. Syndrome-based groups were matched for chronological age and mental age (excluding the Angelman group, presenting with severe mental retardation). Similarities and differences in the adaptive profiles are described, relating them to IQs and maladaptive behaviors. The results might be useful in obtaining a global index of adjustment for the assessment of intellectual disability level as well as for educational guidance and rehabilitative plans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Behavioral and neuroanatomical abnormalities in pleiotrophin knockout mice.

    PubMed

    Krellman, Jason W; Ruiz, Henry H; Marciano, Veronica A; Mondrow, Bracha; Croll, Susan D

    2014-01-01

    Pleiotrophin (PTN) is an extracellular matrix-associated protein with neurotrophic and neuroprotective effects that is involved in a variety of neurodevelopmental processes. Data regarding the cognitive-behavioral and neuroanatomical phenotype of pleiotrophin knockout (KO) mice is limited. The purpose of this study was to more fully characterize this phenotype, with emphasis on the domains of learning and memory, cognitive-behavioral flexibility, exploratory behavior and anxiety, social behavior, and the neuronal and vascular microstructure of the lateral entorhinal cortex (EC). PTN KOs exhibited cognitive rigidity, heightened anxiety, behavioral reticence in novel contexts and novel social interactions suggestive of neophobia, and lamina-specific decreases in neuronal area and increases in neuronal density in the lateral EC. Initial learning of spatial and other associative tasks, as well as vascular density in the lateral EC, was normal in the KOs. These data suggest that the absence of PTN in vivo is associated with disruption of specific cognitive and affective processes, raising the possibility that further study of PTN KOs might have implications for the study of human disorders with similar features.

  6. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: prevalence and potential influencing factors

    PubMed Central

    Jacobson, Sarah L.; Bloomsmith, Mollie A.

    2016-01-01

    Abnormal behaviors in captive animals are generally defined as behaviors that are atypical for the species and are often considered to be indicators of poor welfare. Although some abnormal behaviors have been empirically linked to conditions related to elevated stress and compromised welfare in primates, others have little or no evidence on which to base such a relationship. The objective of this study was to investigate a recent claim that abnormal behavior is endemic in the captive population by surveying a broad sample of chimpanzees (Pan troglodytes), while also considering factors associated with the origins of these behaviors. We surveyed animal care staff from 26 accredited zoos to assess the prevalence of abnormal behavior in a large sample of chimpanzees in the United States for which we had information on origin and rearing history. Our results demonstrated that 64% of this sample was reported to engage in some form of abnormal behavior in the past two years and 48% of chimpanzees engaged in abnormal behavior other than coprophagy. Logistic regression models were used to analyze the historical variables that best predicted the occurrence of all abnormal behavior, any abnormal behavior that was not coprophagy, and coprophagy. Rearing had opposing effects on the occurrence of coprophagy and the other abnormal behaviors such that mother-reared individuals were more likely to perform coprophagy, whereas non-mother-reared individuals were more likely to perform other abnormal behaviors. These results support the assertion that coprophagy may be classified separately when assessing abnormal behavior and the welfare of captive chimpanzees. This robust evaluation of the prevalence of abnormal behavior in our sample from the U.S. zoo population also demonstrates the importance of considering the contribution of historical variables to present behavior, in order to better understand the causes of these behaviors and any potential relationship to psychological

  7. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism.

    PubMed

    Dhamne, Sameer C; Silverman, Jill L; Super, Chloe E; Lammers, Stephen H T; Hameed, Mustafa Q; Modi, Meera E; Copping, Nycole A; Pride, Michael C; Smith, Daniel G; Rotenberg, Alexander; Crawley, Jacqueline N; Sahin, Mustafa

    2017-01-01

    Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models. The goal of this study was to identify electroencephalographic (EEG) and behavioral phenotypes that are replicable between independent cohorts in a mouse model of ASD. The larger goal of our strategy is to empower the preclinical biomedical ASD research field by generating robust and reproducible behavioral and physiological phenotypes in animal models of ASD, for the characterization of mechanistic underpinnings of ASD-relevant phenotypes, and to ensure reliability for the discovery of novel therapeutics. Genetic disruption of the SHANK3 gene, a scaffolding protein involved in the stability of the postsynaptic density in excitatory synapses, is thought to be responsible for a relatively large number of cases of ASD. Therefore, we have thoroughly characterized the robustness of ASD-relevant behavioral phenotypes in two cohorts, and for the first time quantified translational EEG activity in Shank3B null mutant mice. In vivo physiology and behavioral assays were conducted in two independently bred and tested full cohorts of Shank3B null mutant ( Shank3B KO) and wildtype littermate control (WT) mice. EEG was recorded via wireless implanted telemeters for 7 days of baseline followed by 20 min of recording following pentylenetetrazol (PTZ) challenge. Behaviors relevant to the diagnostic and associated symptoms of ASD were tested on a battery of established behavioral tests. Assays were designed to reproduce and expand on the original behavioral characterization of Shank3B KO mice. Two or more corroborative tests were conducted within each

  8. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    PubMed

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.

  9. Previously unrecognized behavioral phenotype in Gaucher disease type 3

    PubMed Central

    Potegal, Michael; Shapiro, Elsa G.; Nestrasil, Igor

    2017-01-01

    Objective: To provide a comprehensive description of abnormal behaviors in patients with Gaucher disease type 3 (GD3) and relate these behaviors to demographic, neurodevelopmental, and neurologic characteristics. Methods: Thirty-four Egyptian patients with GD3 (mean age of 7.9 years) were enrolled in the study. They were selected based on parent report and/or physician observation of one or more abnormal behaviors documented in 2 settings and by 2 different individuals and/or by video recording. Behaviors were grouped into 4 categories: Crying/Withdrawal, Impatience/Overactivity, Anger/Aggression, and Repetitive Acts. Baseline and follow-up 6–12 monthly neurologic evaluations included IQ assessment and an EEG. All patients were receiving enzyme replacement therapy (30–60 IU/kg every 2 weeks) and were followed for periods of 3–10 years. Results: Supranuclear palsy of horizontal gaze, and of both horizontal and vertical gaze, bulbar symptoms, seizures, convergent strabismus, abnormal gait, and neck retroflexion were present in 97.1%, 50%, 55.9%, 29.4%, 29.4%, 20.6%, and 4.4% of patients, respectively. The most abnormal behavioral features were excessive anger (88.2%) and aggression (64.7%), and both were significantly higher in males. Anger/Aggression scores were highly correlated with IQ but not with either EEG/Seizure status or neurologic signs. Conclusions: We describe behavioral problems with a unique pattern of excessive anger and aggression in patients with GD3. Defining these components using quantitative behavioral scoring methods holds promise to provide a marker of neurologic disease progression and severity. PMID:28634598

  10. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  11. Freud Was Right. . . about the Origins of Abnormal Behavior

    ERIC Educational Resources Information Center

    Muris, Peter

    2006-01-01

    Freud's psychodynamic theory is predominantly based on case histories of patients who displayed abnormal behavior. From a scientific point of view, Freud's analyses of these cases are unacceptable because the key concepts of his theory cannot be tested empirically. However, in one respect, Freud was totally right: most forms of abnormal behavior…

  12. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    PubMed

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals. Copyright 2008 S. Karger AG, Basel.

  13. Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake

    PubMed Central

    Hayakawa, Masashi

    2013-01-01

    Simple Summary Possible electromagnetic effects on abnormal animal behavior before earthquakes. Abstract The former statistical properties summarized by Rikitake (1998) on unusual animal behavior before an earthquake (EQ) have first been presented by using two parameters (epicentral distance (D) of an anomaly and its precursor (or lead) time (T)). Three plots are utilized to characterize the unusual animal behavior; (i) EQ magnitude (M) versus D, (ii) log T versus M, and (iii) occurrence histogram of log T. These plots are compared with the corresponding plots for different seismo-electromagnetic effects (radio emissions in different frequency ranges, seismo-atmospheric and -ionospheric perturbations) extensively obtained during the last 15–20 years. From the results of comparisons in terms of three plots, it is likely that lower frequency (ULF (ultra-low-frequency, f ≤ 1 Hz) and ELF (extremely-low-frequency, f ≤ a few hundreds Hz)) electromagnetic emissions exhibit a very similar temporal evolution with that of abnormal animal behavior. It is also suggested that a quantity of field intensity multiplied by the persistent time (or duration) of noise would play the primary role in abnormal animal behavior before an EQ. PMID:26487307

  14. Autism-related behavioral abnormalities in synapsin knockout mice.

    PubMed

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. [Behavioral characteristics of children with Prader-Willi syndrome in preschool and school age: an exploratory study on ritualistic behavior].

    PubMed

    Sarimski, Klaus; Ebner, Sarah; Wördemann, Claudia

    2012-01-01

    Parents of 64 children and youths with Prader-Willi syndrome (PWS) describe their children's behaviour on the "Temperament and Atypical Behavior Scale" (TABS) and the German version of the "Developmental Behavior Checklist" (VFE). In the younger age group, there are no specific behavioural abnormalities which characterize a behavioral phenotype. In the older age group the data reveal elevated levels of abnormal behaviors (communication disturbance, social relations and disruptive behaviors). Parents stress ritualistic behaviors as especially challenging. The results concerning form and age-dependency of abnormal behaviors are discussed in the context of prevention and treatment options.

  17. Olfaction in eating disorders and abnormal eating behavior: a systematic review

    PubMed Central

    Islam, Mohammed A.; Fagundo, Ana B.; Arcelus, Jon; Agüera, Zaida; Jiménez-Murcia, Susana; Fernández-Real, José M.; Tinahones, Francisco J.; de la Torre, Rafael; Botella, Cristina; Frühbeck, Gema; Casanueva, Felipe F.; Menchón, José M.; Fernandez-Aranda, Fernando

    2015-01-01

    The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior. The objective is to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insight with regard to the complex etiopathology of eating disorders (ED) and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct, and Web of Science) were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1352 articles, titles were first excluded by title (n = 64) and then by abstract and fulltext resulting in a final selection of 14 articles (820 patients and 385 control participants) for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6%) followed by BN patients (35.7%) and obese individuals (14.3%). Most studies were only conducted on females. The general findings support that olfaction is altered in AN and in obesity and indicates toward there being little to no difference in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior. PMID:26483708

  18. Olfaction in eating disorders and abnormal eating behavior: a systematic review.

    PubMed

    Islam, Mohammed A; Fagundo, Ana B; Arcelus, Jon; Agüera, Zaida; Jiménez-Murcia, Susana; Fernández-Real, José M; Tinahones, Francisco J; de la Torre, Rafael; Botella, Cristina; Frühbeck, Gema; Casanueva, Felipe F; Menchón, José M; Fernandez-Aranda, Fernando

    2015-01-01

    The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior. The objective is to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insight with regard to the complex etiopathology of eating disorders (ED) and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct, and Web of Science) were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1352 articles, titles were first excluded by title (n = 64) and then by abstract and fulltext resulting in a final selection of 14 articles (820 patients and 385 control participants) for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6%) followed by BN patients (35.7%) and obese individuals (14.3%). Most studies were only conducted on females. The general findings support that olfaction is altered in AN and in obesity and indicates toward there being little to no difference in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior.

  19. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome.

    PubMed

    Aziz, Nadine M; Guedj, Faycal; Pennings, Jeroen L A; Olmos-Serrano, Jose Luis; Siegel, Ashley; Haydar, Tarik F; Bianchi, Diana W

    2018-06-12

    Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS

  20. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.

    PubMed

    Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K

    2014-07-15

    Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency: data from an international observational study.

    PubMed

    Deal, Cheri; Hasselmann, Caroline; Pfäffle, Roland W; Zimmermann, Alan G; Quigley, Charmian A; Child, Christopher J; Shavrikova, Elena P; Cutler, Gordon B; Blum, Werner F

    2013-01-01

    Magnetic resonance imaging (MRI) is used to investigate the etiology of growth hormone deficiency (GHD). This study examined relationships between MRI findings and clinical/hormonal phenotypes in children with GHD in the observational Genetics and Neuroendocrinology of Short Stature International Study, GeNeSIS. Clinical presentation, hormonal status and first-year GH response were compared between patients with pituitary imaging abnormalities (n = 1,071), patients with mutations in genes involved in pituitary development/GH secretion (n = 120) and patients with idiopathic GHD (n = 7,039). Patients with hypothalamic-pituitary abnormalities had more severe phenotypes than patients with idiopathic GHD. Additional hormonal deficiencies were found in 35% of patients with structural abnormalities (thyroid-stimulating hormone > adrenocorticotropic hormone > luteinizing hormone/follicle-stimulating hormone > antidiuretic hormone), most frequently in patients with septo-optic dysplasia (SOD). Patients with the triad [ectopic posterior pituitary (EPP), pituitary aplasia/hypoplasia and stalk defects] had a more severe phenotype and better response to GH treatment than patients with isolated abnormalities. The sex ratio was approximately equal for patients with SOD, but there was a significantly higher proportion of males (approximately 70%) in the EPP, pituitary hypoplasia, stalk defects, and triad categories. This large, international database demonstrates the value of classification of GH-deficient patients by the presence and type of hypothalamic-pituitary imaging abnormalities. This information may assist family counseling and patient management. Copyright © 2013 S. Karger AG, Basel.

  2. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes.

    PubMed

    Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P

    2017-01-03

    The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer's disease, and Parkinson's disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number.

  3. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

    PubMed

    Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K

    2013-12-19

    Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice.

    PubMed

    Han, Kihoon; Chen, Hogmei; Gennarino, Vincenzo A; Richman, Ronald; Lu, Hui-Chen; Zoghbi, Huda Y

    2015-04-01

    Silencing of fragile X mental retardation 1 (FMR1) gene and loss of fragile X mental retardation protein (FMRP) cause fragile X syndrome (FXS), a genetic disorder characterized by intellectual disability and autistic behaviors. FMRP is an mRNA-binding protein regulating neuronal translation of target mRNAs. Abnormalities in actin-rich dendritic spines are major neuronal features in FXS, but the molecular mechanism and identity of FMRP targets mediating this phenotype remain largely unknown. Cytoplasmic FMR1-interacting protein 2 (Cyfip2) was identified as an interactor of FMRP, and its mRNA is a highly ranked FMRP target in mouse brain. Importantly, Cyfip2 is a component of WAVE regulatory complex, a key regulator of actin cytoskeleton, suggesting that Cyfip2 could be implicated in the dendritic spine phenotype of FXS. Here, we generated and characterized Cyfip2-mutant (Cyfip2(+/-)) mice. We found that Cyfip2(+/-) mice exhibited behavioral phenotypes similar to Fmr1-null (Fmr1(-/y)) mice, an animal model of FXS. Synaptic plasticity and dendritic spines were normal in Cyfip2(+/-) hippocampus. However, dendritic spines were altered in Cyfip2(+/-) cortex, and the dendritic spine phenotype of Fmr1(-/y) cortex was aggravated in Fmr1(-/y); Cyfip2(+/-) double-mutant mice. In addition to the spine changes at basal state, metabotropic glutamate receptor (mGluR)-induced dendritic spine regulation was impaired in both Fmr1(-/y) and Cyfip2(+/-) cortical neurons. Mechanistically, mGluR activation induced mRNA translation-dependent increase of Cyfip2 in wild-type cortical neurons, but not in Fmr1(-/y) or Cyfip2(+/-) neurons. These results suggest that misregulation of Cyfip2 function and its mGluR-induced expression contribute to the neurobehavioral phenotypes of FXS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Electrolyte and acid-base abnormalities associated with purging behaviors.

    PubMed

    Mehler, Philip S; Walsh, Kristine

    2016-03-01

    Eating disorders that are associated with purging behaviors are complicated by frequent blood electrolyte and acid-base abnormalities. Herein, we review the major electrolyte and acid-base abnormalities and their treatment methods. The body of rigorous, eating disorder-specific literature on this topical area is not robust enough to perform a systematic review as defined by PRISMA guidelines. Therefore, a qualitative review of mostly medical literature was conducted. Hypokalemia, hyponatremia, and sodium chloride-responsive metabolic alkalosis are the most common serum changes that occur as a result of purging behaviors. They vary depending on the mode and frequency of purging behaviors. They can all potentially cause dangerous medical complications and are in need of definitive medical treatment. Eating disorders that are associated with purging behaviors are associated with a number of electrolyte and acid-base changes which are complex in their origin, documented to be medically dangerous and this definitive treatment is necessary to help achieve a successful treatment outcome, and in need of definitive treatment as described herein. © 2016 Wiley Periodicals, Inc.

  6. The Effect of Otolith Malformation on Behavior and Cortisol Levels in Juvenile Red Drum Fish (Sciaenops ocellatus)

    PubMed Central

    Browning, Zoe S; Wilkes, Allison A; Moore, Erica J; Lancon, Trevor W; Clubb, Fred J

    2012-01-01

    Captive-raised red drum fish were observed with phenotypic abnormalities, including deformities of the spine, jaw, and cephalic region, that were consistent with vitamin C deficiency during the larval stage. In light of their visible exterior skeletal abnormalities, we suspected that the affected fish would also have abnormal otoliths. Otoliths are dense calcareous structures that function in fish hearing. We hypothesized that abnormal fish would have irregular otoliths that would alter behavior and cortisol levels as compared with those of phenotypically normal fish. The normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses. PMID:23043776

  7. Correlation between physical anomaly and behavioral abnormalities in Down syndrome

    PubMed Central

    Bhattacharyya, Ranjan; Sanyal, Debasish; Roy, Krishna; Bhattacharyya, Sumita

    2010-01-01

    Objective: The minor physical anomaly (MPA) is believed to reflect abnormal development of the CNS. The aim is to find incidence of MPA and its behavioral correlates in Down syndrome and to compare these findings with the other causes of intellectual disability and normal population. Materials and Methods: One-hundred and forty intellectually disabled people attending a tertiary care set-up and from various NGOs are included in the study. The age-matched group from normal population was also studied for comparison. MPA are assessed by using Modified Waldrop scale and behavioral abnormality by Diagnostic assessment scale for severely handicapped (DASH II scale). Results: The Down syndrome group had significantly more MPA than other two groups and most of the MPA is situated in the global head region. There is strong correlation (P < 0.001) between the various grouped items of Modified Waldrop scale. Depression subscale is correlated with anomalies in the hands (P < 0.001), feet and Waldrop total items (P < 0.005). Mania item of DASH II scale is related with anomalies around the eyes (P < 0.001). Self-injurious behavior and total Waldrop score is negatively correlated with global head. Conclusion: Down syndrome group has significantly more MPA and a pattern of correlation between MPA and behavioral abnormalities exists which necessitates a large-scale study. PMID:21559153

  8. Advances in understanding behavioral phenotypes in neurogenetic syndromes.

    PubMed

    Harris, James C

    2010-11-15

    Syndrome-specific behavior was proposed by Langdon Down in his first clinical descriptions. Research interest followed but waned during the eugenics era when antisocial behavior was attributed to people with intellectual disability (ID) and the US Supreme Court legalized involuntary sterilization. When these claims were refuted and behavioral treatments introduced, their focus on environmental determination minimized the importance of biological research. The modern era began with the recognition that patterned behavior, for example, self-injury in Lesch-Nyhan syndrome and hyperphagia in PWS, was syndrome-specific, and when parent support groups pointed out syndrome-specific behavioral similarities in their children. Syndrome-specific rating scales and methodologies followed to allow behavioral comparisons between syndromes. The focus initially was on specific behaviors but with refinements in neuropsychological tests has expanded to include neurocognitive profiles. Greater clarification in genetic diagnoses has led to mutant mouse behavioral models and neurophysiologic and neuroimaging strategies have made possible the study of brain circuits. There is growing interest in investigating the developmental trajectory of behaviors from infancy to adulthood and old age. Because anxiety, mood disturbance, repetitive behaviors, and social deficits commonly occur in people with severe ID, those affected are often given multiple psychiatric diagnoses. This has led to considerable confusion in the literature. It is critical to focus on specific behaviors and cognitive patterns in research and not confuse psychiatric symptoms that lack precise definitions and involve multiple genes, the so-called psychiatric phenotype, with the more specific behavioral phenotype. New treatments based on knowledge of underlying neurobiology call for more fine-grained definition of behavior. © 2010 Wiley-Liss, Inc.

  9. Psychosocial correlates, outcome, and stability of abnormal adolescent eating behavior in community samples of young people.

    PubMed

    Steinhausen, Hans-Christoph; Gavez, Silvia; Winkler Metzke, Christa

    2005-03-01

    The current study investigated psychosocial correlates of abnormal adolescent eating behavior at three times during adolescence and young adulthood and its association with psychiatric diagnosis in young adulthood in a community sample. Sixty-four (10.5%) high-risk subjects (mean age 15 years) with abnormal eating behavior were identified at Time 1, another 252 (16.9%) were identified at Time 2 (mean age 16.2 years), and 164 (16.9%) were identified at Time 3 (mean age 19.7 years) and compared with three control groups matched for age and gender. Dependent measures included emotional and behavioral problems, life events, coping capacities, self-related cognition, social network, and family functions. Outcome was measured additionally by structured psychiatric interviews, and stability of abnormal eating behavior was studied in a longitudinal sample of 330 subjects. Few subjects showed more than one of five criteria of abnormal eating behavior. High-risk subjects shared a very similar pattern at all three times. They were characterized by higher scores for emotional and behavioral problems, more life events including more negative impact, less active coping, lower self-esteem, and less family cohesion. Among 10 major psychiatric disorders, only clinical eating disorders at Time 3 shared a significant association with abnormal eating disorder at the same time whereas high-risk status at Times 1 and 2 did not predict any psychiatric disorder at Time 3. Stability of abnormal eating behavior across time was very low. Stability of abnormal eating behavior across time was very low. Abnormal eating behavior in adolescence and young adulthood is clearly associated with various indicators of psychosocial maladaption. In adolescence, it does not significantly predict any psychiatric disorder including eating disorder in young adulthood and it is predominantly a transient feature. (c) 2005 by Wiley Periodicals, Inc.

  10. Salivary glands abnormalities in oculo-auriculo-vertebral spectrum.

    PubMed

    Brotto, Davide; Manara, Renzo; Vio, Stefania; Ghiselli, Sara; Cantone, Elena; Mardari, Rodica; Toldo, Irene; Stritoni, Valentina; Castiglione, Alessandro; Lovo, Elisa; Trevisi, Patrizia; Bovo, Roberto; Martini, Alessandro

    2018-01-01

    Feeding and swallowing impairment are present in up to 80% of oculo-auriculo-vertebral spectrum (OAVS) patients. Salivary gland abnormalities have been reported in OAVS patients but their rate, features, and relationship with phenotype severity have yet to be defined. Parotid and submandibular salivary gland hypo/aplasia was evaluated on head MRI of 25 OAVS patients (16 with severe phenotype, Goldenhar syndrome) and 11 controls. All controls disclosed normal salivary glands. Abnormal parotid glands were found exclusively ipsilateral to facial microsomia in 21/25 OAVS patients (84%, aplasia in six patients) and showed no association with phenotype severity (14/16 patients with Goldenhar phenotype vs 7/9 patients with milder phenotype, p = 0.6). Submandibular salivary gland hypoplasia was detected in six OAVS patients, all with concomitant ipsilateral severe involvement of the parotid gland (p < 0.001). Submandibular salivary gland hypoplasia was associated to Goldenhar phenotype (p < 0.05). Parotid gland abnormalities were associated with ipsilateral fifth (p < 0.001) and seventh cranial nerve (p = 0.001) abnormalities. No association was found between parotid gland anomaly and ipsilateral internal carotid artery, inner ear, brain, eye, or spine abnormalities (p > 0.6). Salivary gland abnormalities are strikingly common in OAVS. Their detection might help the management of OAVS-associated swallowing and feeding impairment.

  11. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study.

    PubMed

    Green, Angela K; Jacques, Paul F; Rogers, Gail; Fox, Caroline S; Meigs, James B; McKeown, Nicola M

    2014-05-01

    The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the Framingham Heart Study Offspring (1998-2001) and Third Generation (2002-2005) cohorts. Adults were classified as normal weight, overweight or obese and, within these categories, metabolic health was defined based on five criteria-hypertension, elevated fasting glucose, elevated triglycerides, low HDL cholesterol, and insulin resistance. Individuals without metabolic abnormalities were considered metabolically healthy. Logistic regression was used to examine the associations between categories of SSB consumption and risk of metabolic health after stratification by BMI. Comparing the highest category of SSB consumers (median of 7 SSB per week) to the lowest category (non-consumers), odds ratios (95% confidence intervals) for metabolically abnormal phenotypes, compared to the metabolically normal, were 1.9 (1.1-3.4) among the obese, 2.0 (1.4-2.9) among the overweight, and 1.9 (1.4-2.6) among the normal weight individuals. In this cross-sectional analysis, it is observed that, irrespective of weight status, consumers of SSB were more likely to display metabolic abnormalities compared to non-consumers in a dose-dependent manner. Copyright © 2014 The Obesity Society.

  12. Relationship between the broad autism phenotype, social relationships and mental health for mothers of children with autism spectrum disorder.

    PubMed

    Pruitt, Megan M; Rhoden, Madeline; Ekas, Naomi V

    2018-02-01

    This study aimed to examine the mechanisms responsible for the association between the broad autism phenotype and depressive symptoms in mothers of a child with autism spectrum disorder. A total of 98 mothers who had a child with autism spectrum disorder between the ages of 2 and 16 years completed assessments of maternal broad autism phenotype, child behavior problems, romantic relationship satisfaction, friend support, family support, and maternal depressive symptoms. Results indicated that only romantic relationship satisfaction was a significant mediator of the relationship between maternal broad autism phenotype social abnormalities and maternal depressive symptoms, where greater broad autism phenotype social abnormalities were associated with lower relationship satisfaction, which in turn was associated with increased depressive symptoms. Child behavior problems were directly related to increased depressive symptoms. Implications regarding maternal mental health outcomes within this population as well as intervention implications are discussed.

  13. The neurobehavior ontology: an ontology for annotation and integration of behavior and behavioral phenotypes.

    PubMed

    Gkoutos, Georgios V; Schofield, Paul N; Hoehndorf, Robert

    2012-01-01

    In recent years, considerable advances have been made toward our understanding of the genetic architecture of behavior and the physical, mental, and environmental influences that underpin behavioral processes. The provision of a method for recording behavior-related phenomena is necessary to enable integrative and comparative analyses of data and knowledge about behavior. The neurobehavior ontology facilitates the systematic representation of behavior and behavioral phenotypes, thereby improving the unification and integration behavioral data in neuroscience research. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Neurofilament light polypeptide gene N98S mutation in mice leads to neurofilament network abnormalities and a Charcot-Marie-Tooth Type 2E phenotype.

    PubMed

    Adebola, Adijat A; Di Castri, Theo; He, Chui-Zhen; Salvatierra, Laura A; Zhao, Jian; Brown, Kristy; Lin, Chyuan-Sheng; Worman, Howard J; Liem, Ronald K H

    2015-04-15

    Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E. Previous studies in transfected cells showed that expression of disease-associated neurofilament light chain variants results in abnormal intermediate filament networks associated with defects in axonal transport. We have now generated knock-in mice with two different point mutations in Nefl: P8R that has been reported in multiple families with variable age of onset and N98S that has been described as an early-onset, sporadic mutation in multiple individuals. Nefl(P8R/+) and Nefl(P8R/P8R) mice were indistinguishable from Nefl(+/+) in terms of behavioral phenotype. In contrast, Nefl(N98S/+) mice had a noticeable tremor, and most animals showed a hindlimb clasping phenotype. Immunohistochemical analysis revealed multiple inclusions in the cell bodies and proximal axons of spinal cord neurons, disorganized processes in the cerebellum and abnormal processes in the cerebral cortex and pons. Abnormal processes were observed as early as post-natal day 7. Electron microscopic analysis of sciatic nerves showed a reduction in the number of neurofilaments, an increase in the number of microtubules and a decrease in the axonal diameters. The Nefl(N98S/+) mice provide an excellent model to study the pathogenesis of CMT2E and should prove useful for testing potential therapies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Minos-insertion mutant of the Drosophila GBA gene homologue showed abnormal phenotypes of climbing ability, sleep and life span with accumulation of hydroxy-glucocerebroside.

    PubMed

    Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Takahara, Tsubasa; Goto-Inoue, Naoko; Setou, Mitsutoshi; Sakata, Kazuki; Ishida, Norio

    2017-05-30

    Gaucher's disease in humans is considered a deficiency of glucocerebrosidase (GlcCerase) that result in the accumulation of its substrate, glucocerebroside (GlcCer). Although mouse models of Gaucher's disease have been reported from several laboratories, these models are limited due to the perinatal lethality of GlcCerase gene. Here, we examined phenotypes of Drosophila melanogaster homologues genes of the human Gaucher's disease gene by using Minos insertion. One of two Minos insertion mutants to unknown function gene (CG31414) accumulates the hydroxy-GlcCer in whole body of Drosophila melanogaster. This mutant showed abnormal phenotypes of climbing ability and sleep, and short lifespan. These abnormal phenotypes are very similar to that of Gaucher's disease in human. In contrast, another Minos insertion mutant (CG31148) and its RNAi line did not show such severe phenotype as observed in CG31414 gene mutation. The data suggests that Drosophila CG31414 gene mutation might be useful for unraveling the molecular mechanism of Gaucher's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2)

    PubMed Central

    Walz, Katherina; Paylor, Richard; Yan, Jiong; Bi, Weimin; Lupski, James R.

    2006-01-01

    Genomic disorders are conditions that result from DNA rearrangements, such as deletions or duplications. The identification of the dosage-sensitive gene(s) within the rearranged genomic interval is important for the elucidation of genes responsible for complex neurobehavioral phenotypes. Smith-Magenis syndrome is associated with a 3.7-Mb deletion in 17p11.2, and its clinical presentation is caused by retinoic acid inducible 1 (RAI1) haploinsufficiency. The reciprocal microduplication syndrome, dup(17)(p11.2p11.2), manifests several neurobehavioral abnormalities, but the responsible dosage-sensitive gene(s) remain undefined. We previously generated a mouse model for dup(17)(p11.2p11.2), Dp(11)17/+, that recapitulated most of the phenotypes observed in human patients. We have now analyzed compound heterozygous mice carrying a duplication [Dp(11)17] in one chromosome 11 along with a null allele of Rai1 in the other chromosome 11 homologue [Dp(11)17/Rai1– mice] in order to study the relationship between Rai1 gene copy number and the Dp(11)17/+ phenotypes. Normal disomic Rai1 gene dosage was sufficient to rescue the complex physical and behavioral phenotypes observed in Dp(11)17/+ mice, despite altered trisomic copy number of the other 18 genes present in the rearranged genomic interval. These data provide a model for variation in copy number of single genes that could influence common traits such as obesity and behavior. PMID:17024248

  17. Severe abnormal behavior incidence after administration of neuraminidase inhibitors using the national database of medical claims.

    PubMed

    Nakamura, Yuuki; Sugawara, Tamie; Ohkusa, Yasushi; Taniguchi, Kiyosu; Miyazaki, Chiaki; Momoi, Mariko; Okabe, Nobuhiko

    2018-03-01

    An earlier study using the number of abnormal behaviors reported to the study group as the numerator and the number of influenza patient prescribed each neuraminidase inhibitor (NI) estimated by respective pharmaceutical companies found no significant difference among incidence rates of the most severe abnormal behaviors by type of NI throughout Japan. However, the dataset for the denominator used in that earlier study was the estimated number of prescriptions. In the present study, to compare the incidence rates of abnormal behavior more precisely among influenza patients administered several sorts of NI or administered no NI, we used data obtained from the National Database of Electronic Medical Claims (NDBEMC) as the denominator to reach a definitive conclusion. Results show that patients not administered any NI (hereinafter un-administered) or those administered peramivir sometimes showed higher risk of abnormal behavior than those administered oseltamivir, zanamivir, or laninamivir. However, the un-administered or peramivir patients were fewer than those taking other NI. Therefore, accumulation of data through continued research is expected to be necessary to reach a definitive conclusion about the relation between abnormal behavior and NI in influenza patients. Since severe abnormal behaviors with all types of NI or of un-administered patients have been reported, there are some risks in the administration of NI or even in un-administered cases. Therefore, we infer that the policy mandating package inserts in all types of NI. Copyright © 2017. Published by Elsevier Ltd.

  18. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    PubMed

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. [The relationship between the abnormal behavior and serum C-reactive protein in children with obstructive sleep apnea-hypopnea syndrome].

    PubMed

    Wang, Yan; Li, Yanzhong; Wang, Xin

    2009-12-01

    To explore the pathogenesis of abnormal behavior in children with obstructive sleep apnea-hypopnea syndrome (OSAHS). The behavioral problems and C-reactive protein were measured in 40 children with OSAHS and 30 children with habitual snoring who underwent overnight Polysomnography, 40 cases of healthy children for the control group. The ratio of abnormal behavior in OSAHS and habitual snoring children was significantly higher than that of the healthy control group, while no significant difference between the two groups. The content of C-reactive protein in OSAHS children (4.24 mg/L) was significantly higher than habitual snoring (2.76 mg/L) and healthy control group (1.27 mg/L); in habitual snoring children C-reactive protein was higher than in healthy control group. The content of serum C-reactive protein in OSAHS children accompanied by abnormal behavior (4.63 mg/L) was significantly higher than that without abnormal behavior (3.23 mg/L). The content of serum C-reactive protein content in habitual snoring children accompanied by abnormal behavior (3.63 mg/L) was significantly higher than that without abnormal behavior (1.76 mg/L). OSAHS and habitual snoring children have more behavior problems. C-reactive protein levels are higher in children with OSAHS and habitual snoring, and the levels of C-reactive protein are related to the abnormal behavior in these children.

  20. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions?

    PubMed Central

    Hall, F. Scott; Perona, Maria T. G.

    2012-01-01

    This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448

  1. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. 3D abnormal behavior recognition in power generation

    NASA Astrophysics Data System (ADS)

    Wei, Zhenhua; Li, Xuesen; Su, Jie; Lin, Jie

    2011-06-01

    So far most research of human behavior recognition focus on simple individual behavior, such as wave, crouch, jump and bend. This paper will focus on abnormal behavior with objects carrying in power generation. Such as using mobile communication device in main control room, taking helmet off during working and lying down in high place. Taking account of the color and shape are fixed, we adopted edge detecting by color tracking to recognize object in worker. This paper introduces a method, which using geometric character of skeleton and its angle to express sequence of three-dimensional human behavior data. Then adopting Semi-join critical step Hidden Markov Model, weighing probability of critical steps' output to reduce the computational complexity. Training model for every behavior, mean while select some skeleton frames from 3D behavior sample to form a critical step set. This set is a bridge linking 2D observation behavior with 3D human joints feature. The 3D reconstruction is not required during the 2D behavior recognition phase. In the beginning of recognition progress, finding the best match for every frame of 2D observed sample in 3D skeleton set. After that, 2D observed skeleton frames sample will be identified as a specifically 3D behavior by behavior-classifier. The effectiveness of the proposed algorithm is demonstrated with experiments in similar power generation environment.

  3. Abnormal animal behavior prior to the Vrancea (Romania) major subcrustal earthquakes

    NASA Astrophysics Data System (ADS)

    Constantin, Angela; Pantea, Aurelian

    2013-04-01

    The goal of this paper is to present some observations about abnormal animal behavior prior and during of some Romanian subcrustal earthquakes. The major Vrancea earthquakes of 4 March 1977 (Mw = 7.4, Imax = IX-X MSK), 30 August 1986 (Mw = 7.1, Io = VIII-IX MSK) and 30 May 1990 (Mw = 6.9, Io = VIII MSK), were preceded by extensive occurrences of anomalous animal behavior. These data were collected immediately after the earthquakes from the areas affected by these. Some species of animals became excited, nervous and panicked before and during the earthquakes, such as: dogs (barking and running in panic), cats, snakes, mice and rats (came into the houses and have lost their fear), birds (hens, geese, parrots), horses, fishes etc. These strange manifestations of the animals were observed on the entire territory of country, especially in the extra-Carpathian area. This unusual behavior was noticed within a few hours to days before the seismic events, but for the most of cases the time of occurrence was within two hours of the quakes. We can hope that maybe one day the abnormal animal behavior will be used as a reliable seismic precursor for the intermediate depth earthquakes.

  4. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A

    2017-03-14

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  6. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities.

    PubMed

    Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred; Abitbol, Marc

    2007-04-02

    The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated

  7. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities

    PubMed Central

    Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred

    2007-01-01

    Purpose The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Methods Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Results Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic

  8. Behavioral Phenotyping of Murine Disease Models with the Integrated Behavioral Station (INBEST).

    PubMed

    Sakic, Boris; Cooper, Marcella P A; Taylor, Sarah E; Stojanovic, Milica; Zagorac, Bosa; Kapadia, Minesh

    2015-04-23

    Due to rapid advances in genetic engineering, small rodents have become the preferred subjects in many disciplines of biomedical research. In studies of chronic CNS disorders, there is an increasing demand for murine models with high validity at the behavioral level. However, multiple pathogenic mechanisms and complex functional deficits often impose challenges to reliably measure and interpret behavior of chronically sick mice. Therefore, the assessment of peripheral pathology and a behavioral profile at several time points using a battery of tests are required. Video-tracking, behavioral spectroscopy, and remote acquisition of physiological measures are emerging technologies that allow for comprehensive, accurate, and unbiased behavioral analysis in a home-base-like setting. This report describes a refined phenotyping protocol, which includes a custom-made monitoring apparatus (Integrated Behavioral Station, INBEST) that focuses on prolonged measurements of basic functional outputs, such as spontaneous activity, food/water intake and motivated behavior in a relatively stress-free environment. Technical and conceptual improvements in INBEST design may further promote reproducibility and standardization of behavioral studies.

  9. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: Multivariate analysis of task-free fMRI.

    PubMed

    Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D

    2015-11-01

    Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox

  10. Comprehensive Behavioral Phenotyping of Ts65Dn Mouse Model of Down Syndrome: Activation of β1-Adrenergic Receptor by Xamoterol as a Potential Cognitive Enhancer

    PubMed Central

    Faizi, Mehrdad; Bader, Patrick L.; Tun, Christine; Encarnacion, Angelo; Kleschevnikov, Alexander; Belichenko, Pavel; Saw, Nay; Priestley, Matthew; Tsien, Richard W; Mobley, William C; Shamloo, Mehrdad

    2012-01-01

    Down Syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down Syndrome display cognitive deficits which is mediated by imbalance in noradrenergic

  11. Spent fuel behavior under abnormal thermal transients during dry storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, D.; Landow, M.P.; Burian, R.J.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment wasmore » heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.« less

  12. Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil.

    PubMed

    Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori

    2011-08-01

    Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.

  13. The spectrum of renal involvement in male patients with infertility related to excretory-system abnormalities: phenotypes, genotypes, and genetic counseling.

    PubMed

    Mieusset, Roger; Fauquet, Isabelle; Chauveau, Dominique; Monteil, Laetitia; Chassaing, Nicolas; Daudin, Myriam; Huart, Antoine; Isus, François; Prouheze, Cathy; Calvas, Patrick; Bieth, Eric; Bujan, Louis; Faguer, Stanislas

    2017-04-01

    While reproductive technologies are increasingly used worldwide, epidemiologic, clinical and genetic data regarding infertile men with combined genital tract and renal abnormalities remain scarce, preventing adequate genetic counseling. In a cohort-based study, we assessed the prevalence (1995-2014) and the clinical characteristics of renal disorders in infertile males with genital tract malformation. In a subset of 34 patients, we performed a detailed phenotype analysis of renal and genital tract disorders. Among the 180 patients with congenital uni- or bilateral absence of vas deferens (CU/BAVD), 45 (25 %) had a renal malformation. We also identified 14 infertile men with combined seminal vesicle (SV) and renal malformation but no CU/BAVD. Among the 34 patients with detailed clinical description, renal disease was unknown before the assessment of the infertility in 27 (79.4 %), and 7 (20.6 %) had chronic renal failure. Four main renal phenotypes were observed: solitary kidney (47 %); autosomal-dominant polycystic kidney disease (ADPKD, 0.6 %); uni- or bilateral hypoplastic kidneys (20.6 %); and a complex renal phenotype associated with a mutation of the HNF1B gene (5.8 %). Absence of SV and azoospermia were significantly associated with the presence of a solitary kidney, while dilatation of SV and necroasthenozoospermia were suggestive of ADPKD. A dominantly inherited renal disease (ADPKD or HNF1B-related nephropathy) is frequent in males with infertility and combined renal and genital tract abnormalities (26 %). A systematic renal screening should be proposed in infertile males with CU/BAVD or SV disorders.

  14. Cyclic-AMP metabolism in synaptic growth, strength and precision: Neural and behavioral phenotype-specific counterbalancing effects between dnc PDE and rut AC mutations

    PubMed Central

    Ueda, Atsushi; Wu, Chun-Fang

    2012-01-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cAMP synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrate that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29–30 °C) decreased synaptic transmission in rut, but did not alter dnc and WT. Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the

  15. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study

    PubMed Central

    Mandillo, Silvia; Tucci, Valter; Hölter, Sabine M.; Meziane, Hamid; Banchaabouchi, Mumna Al; Kallnik, Magdalena; Lad, Heena V.; Nolan, Patrick M.; Ouagazzal, Abdel-Mouttalib; Coghill, Emma L.; Gale, Karin; Golini, Elisabetta; Jacquot, Sylvie; Krezel, Wojtek; Parker, Andy; Riet, Fabrice; Schneider, Ilka; Marazziti, Daniela; Auwerx, Johan; Brown, Steve D. M.; Chambon, Pierre; Rosenthal, Nadia; Tocchini-Valentini, Glauco; Wurst, Wolfgang

    2008-01-01

    Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs. PMID:18505770

  16. Abnormal Neural Activation to Faces in the Parents of Children with Autism

    PubMed Central

    Yucel, G. H.; Belger, A.; Bizzell, J.; Parlier, M.; Adolphs, R.; Piven, J.

    2015-01-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the “Broad Autism Phenotype ” (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality (“BAP+”). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. PMID:25056573

  17. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  18. The Human Phenotype Ontology in 2017

    DOE PAGES

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; ...

    2016-11-24

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less

  19. The down syndrome behavioral phenotype: implications for practice and research in occupational therapy.

    PubMed

    Daunhauer, Lisa A; Fidler, Deborah J

    2011-01-01

    ABSTRACT Down syndrome (DS) is the most common chromosomal cause of intellectual disability. The genetic causes of DS are associated with characteristic outcomes, such as relative strengths in visual-spatial skills and relative challenges in motor planning. This profile of outcomes, called the DS behavioral phenotype, may be a critical tool for intervention planning and research in this population. In this article, aspects of the DS behavioral phenotype potentially relevant to occupational therapy practice are reviewed. Implications and challenges for etiology-informed research and practice are discussed.

  20. Female phenotype and multiple abnormalities in sibs with a Y chromosome and partial X chromosome duplication: H--Y antigen and Xg blood group findings.

    PubMed Central

    Bernstein, R; Jenkins, T; Dawson, B; Wagner, J; Dewald, G; Koo, G C; Wachtel, S S

    1980-01-01

    A mentally retarded female child with multiple congenital abnormalities had an abnormal X chromosome and a Y chromosome; the karyotype was interpreted as 46,dup(X)(p21 leads to pter)Y. Prenatal chromosome studies in a later pregnancy indicated the same chromosomal abnormality in the fetus. The fetus and proband had normal female genitalia and ovarian tissue. H--Y antigen was virtually absent in both sibs, a finding consistent with the view that testis-determining genes of the Y chromosome may be suppressed by regulatory elements of the X. The abnormal X chromosome was present in the mother, the maternal grandmother, and a female sib: all were phenotypically normal and showed the karyotype 46,Xdup(X)(p21 leads to pter) with non-random inactivation of the abnormal X. Anomalous segregation of the Xga allele suggests that the Xg locus was involved in the inactivation process or that crossing-over at meiosis occurred. Images PMID:7193738

  1. Incidence of abnormal offspring from cloning and other assisted reproductive technologies.

    PubMed

    Hill, Jonathan R

    2014-02-01

    In animals produced by assisted reproductive technologies, two abnormal phenotypes have been characterized. Large offspring syndrome (LOS) occurs in offspring derived from in vitro cultured embryos, and the abnormal clone phenotype includes placental and fetal changes. LOS is readily apparent in ruminants, where a large calf or lamb derived from in vitro embryo production or cloning may weigh up to twice the expected body weight. The incidence of LOS varies widely between species. When similar embryo culture conditions are applied to nonruminant species, LOS either is not as dramatic or may even be unapparent. Coculture with serum and somatic cells was identified in the 1990s as a risk factor for abnormal development of ruminant pregnancies. Animals cloned from somatic cells may display a combination of fetal and placental abnormalities that are manifested at different stages of pregnancy and postnatally. In highly interventional technologies, such as nuclear transfer (cloning), the incidence of abnormal offspring continues to be a limiting factor to broader application of the technique. This review details the breadth of phenotypes found in nonviable pregnancies, together with the phenotypes of animals that survive the transition to extrauterine life. The focus is on animals produced using in vitro embryo culture and nuclear transfer in comparison to naturally occurring phenotypes.

  2. [DAILY AND ABNORMAL EATING BEHAVIORS IN A COMMUNITY SAMPLE OF CHILEAN ADULTS].

    PubMed

    Oda-Montecinos, Camila; Saldaña, Carmina; Andrés Valle, Ana

    2015-08-01

    this research aimed to characterize the daily eating behavior in a sample of Chilean adults according to their Body Mass Index (BMI) and gender and to analyze the possible links between these variables and abnormal eating behaviors. 657 participants (437 women and 220 men, age range 18-64 years) were evaluated with a battery of self-administered questionnaires. Mean BMI was 25.50 kg/m2 (women 24.96 kg/m2, men 26.58 kg/m2), being significantly higher the mean of BMI in the men group, being the BMI mean of the total sample and that of the male group in the overweight range. participants with overweight (BMI ≥ 25 kg/m2), in contrast with normal-weight group, tended to do more frequently the following behaviors: skip meals, follow a diet, eat less homemade food, eat faster and in greater quantities, in addition to do a greater number of abnormal eating behaviors of various kinds and to rate significantly higher in clinical scales that evaluated eating restraint and overeating. Men showed significantly more eating behaviors linked with overeating, and women performed more behaviors related with eating restraint and emotional eating. the results suggest that, besides "what" people eat, "how" people eat, in terms of specific behaviors, may contribute to the rapid increase of overweight in Chilean population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Ablation of Mrds1/Ofcc1 Induces Hyper-γ-Glutamyl Transpeptidasemia without Abnormal Head Development and Schizophrenia-Relevant Behaviors in Mice

    PubMed Central

    Ohnishi, Tetsuo; Yamada, Kazuo; Watanabe, Akiko; Ohba, Hisako; Sakaguchi, Toru; Honma, Yota; Iwayama, Yoshimi; Toyota, Tomoko; Maekawa, Motoko; Watanabe, Kazutada; Detera-Wadleigh, Sevilla D.; Wakana, Shigeharu; Yoshikawa, Takeo

    2011-01-01

    Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as “the Japan Mouse Clinic”. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia. PMID:22242126

  4. 76 FR 22925 - Assumption Buster Workshop: Abnormal Behavior Detection Finds Malicious Actors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Technology Research and Development (NITRD) Program, National Science Foundation. ACTION: Call for... NATIONAL SCIENCE FOUNDATION Assumption Buster Workshop: Abnormal Behavior Detection Finds...: The NCO, on behalf of the Special Cyber Operations Research and Engineering (SCORE) Committee, an...

  5. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    PubMed Central

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  6. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

    PubMed

    Egan, Rupert J; Bergner, Carisa L; Hart, Peter C; Cachat, Jonathan M; Canavello, Peter R; Elegante, Marco F; Elkhayat, Salem I; Bartels, Brett K; Tien, Anna K; Tien, David H; Mohnot, Sopan; Beeson, Esther; Glasgow, Eric; Amri, Hakima; Zukowska, Zofia; Kalueff, Allan V

    2009-12-14

    The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.

  7. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.

    PubMed

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.

  8. Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder

    PubMed Central

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L.; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T.

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder. PMID:24838000

  9. Neurocognitive Allied Phenotypes for Schizophrenia and Bipolar Disorder

    PubMed Central

    Hill, S. Kristian; Harris, Margret S. H.; Herbener, Ellen S.; Pavuluri, Mani; Sweeney, John A.

    2008-01-01

    Psychiatric disorders are genetically complex and represent the end product of multiple biological and social factors. Links between genes and disorder-related abnormalities can be effectively captured via assessment of phenotypes that are both associated with genetic effects and potentially contributory to behavioral abnormalities. Identifying intermediate or allied phenotypes as a strategy for clarifying genetic contributions to disorders has been successful in other areas of medicine and is a promising strategy for identifying susceptibility genes in complex psychiatric disorders. There is growing evidence that schizophrenia and bipolar disorder, rather than being wholly distinct disorders, share genetic risk at several loci. Further, there is growing evidence of similarity in the pattern of cognitive and neurobiological deficits in these groups, which may be the result of the effects of these common genetic factors. This review was undertaken to identify patterns of performance on neurocognitive and affective tasks across probands with schizophrenia and bipolar disorder as well as unaffected family members, which warrant further investigation as potential intermediate trait markers. Available evidence indicates that measures of attention regulation, working memory, episodic memory, and emotion processing offer potential for identifying shared and illness-specific allied neurocognitive phenotypes for schizophrenia and bipolar disorder. However, very few studies have evaluated neurocognitive dimensions in bipolar probands or their unaffected relatives, and much work in this area is needed. PMID:18448479

  10. Generating Phenotypical Erroneous Human Behavior to Evaluate Human-automation Interaction Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.

    2012-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914

  11. Abnormal eating behavior in video-recorded meals in anorexia nervosa.

    PubMed

    Gianini, Loren; Liu, Ying; Wang, Yuanjia; Attia, Evelyn; Walsh, B Timothy; Steinglass, Joanna

    2015-12-01

    Eating behavior during meals in anorexia nervosa (AN) has long been noted to be abnormal, but little research has been done carefully characterizing these behaviors. These eating behaviors have been considered pathological, but are not well understood. The current study sought to quantify ingestive and non-ingestive behaviors during a laboratory lunch meal, compare them to the behaviors of healthy controls (HC), and examine their relationships with caloric intake and anxiety during the meal. A standardized lunch meal was video-recorded for 26 individuals with AN and 10 HC. Duration, frequency, and latency of 16 mealtime behaviors were coded using computer software. Caloric intake, dietary energy density (DEDS), and anxiety were also measured. Nine mealtime behaviors were identified that distinguished AN from HC: staring at food, tearing food, nibbling/picking, dissecting food, napkin use, inappropriate utensil use, hand fidgeting, eating latency, and nibbling/picking latency. Among AN, a subset of these behaviors was related to caloric intake and anxiety. These data demonstrate that the mealtime behaviors of patients with AN and HC differ significantly, and some of these behaviors may be associated with food intake and anxiety. These mealtime behaviors may be important treatment targets to improve eating behavior in individuals with AN. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.

  13. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    PubMed

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  14. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models

    PubMed Central

    Maulik, Malabika; Mitra, Swarup; Bult-Ito, Abel; Taylor, Barbara E.; Vayndorf, Elena M.

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans. PMID:28659967

  15. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice.

    PubMed

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Hasebe, Shigeru; Kawase, Haruki; Tanabe, Wataru; Tsukada, Shinji; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.

  16. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    PubMed

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  17. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Behavior change is not one size fits all: psychosocial phenotypes of childhood obesity prevention intervention participants.

    PubMed

    Burgermaster, Marissa; Contento, Isobel; Koch, Pamela; Mamykina, Lena

    2018-01-17

    Variability in individuals' responses to interventions may contribute to small average treatment effects of childhood obesity prevention interventions. But, neither the causes of this individual variability nor the mechanism by which it influences behavior are clear. We used qualitative methods to characterize variability in students' responses to participating in a childhood obesity prevention intervention and psychosocial characteristics related to the behavior change process. We interviewed 18 students participating in a school-based curriculum and policy behavior change intervention. Descriptive coding, summary, and case-ordered descriptive meta-matrices were used to group participants by their psychosocial responses to the intervention and associated behavior changes. Four psychosocial phenotypes of responses emerged: (a) Activated-successful behavior-changers with strong internal supports; (b) Inspired-motivated, but not fully successful behavior-changers with some internal supports, whose taste preferences and food environment overwhelmed their motivation; (c) Reinforced-already practiced target behaviors, were motivated, and had strong family support; and (d) Indifferent-uninterested in behavior change and only did target behaviors if family insisted. Our findings contribute to the field of behavioral medicine by suggesting the presence of specific subgroups of participants who respond differently to behavior change interventions and salient psychosocial characteristics that differentiate among these phenotypes. Future research should examine the utility of prospectively identifying psychosocial phenotypes for improving the tailoring of nutrition behavior change interventions. © Society of Behavioral Medicine 2018.

  19. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses

    PubMed Central

    Pildervasser, João V. N.; Abrahao, Karina P.; Souza-Formigoni, Maria L. O.

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties. PMID:25152719

  20. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses.

    PubMed

    Pildervasser, João V N; Abrahao, Karina P; Souza-Formigoni, Maria L O

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties.

  1. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation.

    PubMed

    Mazerolles, Fabienne; Stolzenberg, Marie-Claude; Pelle, Olivier; Picard, Capucine; Neven, Benedicte; Fischer, Alain; Magerus-Chatinet, Aude; Rieux-Laucat, Frederic

    2018-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS. The proportion of CD25 high CD127 low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3 + CD4 + T cells from ALPS patients and thus an abnormally low proportion of CD25 high FOXP3 + Helios + T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3 low CD45RA + ) and an unusual subpopulation (CD4 + CD127 low CD15s + CD45RA + ). Despite this abnormal phenotype, the CD25 high CD127 low Tregs' suppressive function was unaffected. Furthermore, conventional T cells from FAS -mutated patients showed normal levels of sensitivity to Treg suppression. An abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro . This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression.

  3. Oseltamivir use and severe abnormal behavior in Japanese children and adolescents with influenza: Is a self-controlled case series study applicable?

    PubMed

    Fukushima, Wakaba; Ozasa, Kotaro; Okumura, Akihisa; Mori, Masaaki; Hosoya, Mitsuaki; Nakano, Takashi; Tanabe, Takuya; Yamaguchi, Naoto; Suzuki, Hiroshi; Mori, Mitsuru; Hatayama, Hideaki; Ochiai, Hirotaka; Kondo, Kyoko; Ito, Kazuya; Ohfuji, Satoko; Nakamura, Yosikazu; Hirota, Yoshio

    2017-08-24

    Since the 1990s, self-controlled designs including self-controlled case series (SCCS) studies have been occasionally used in post-marketing evaluation of drug or vaccine safety. An SCCS study was tentatively applied to evaluate the relationship between oseltamivir use and abnormal behavior Type A (serious abnormal behavior potentially leading to an accident or harm to another person) in influenza patients. From the original prospective cohort study with approximately 10,000 Japanese children and adolescents with influenza (aged <18years), 28 subjects (mean age: 7.3years) who developed abnormal behavior Type A after the first visit to the collaborating hospitals/clinics were analyzed. We hypothesized four combination patterns of the effect period (i.e., the period that effect of oseltamivir on occurrence of abnormal behavior Type A is likely) and the control period. Mantel-Haenszel rate ratio (M-H RR) and its 95% confidence interval (CI) were calculated as the relative risk estimate. Among 28 subjects in the SCCS study, 24 subjects (86%) were administered oseltamivir and 4 subjects (14%) were not. Abnormal behavior Type A was more likely to occur in the effect period than the control period in every pattern (M-H RR: 1.90-29.1). We observed the highest estimate when the effect period was set between the initial intake of oseltamivir and T max (M-H RR: 29.1, 95% CI: 4.21-201). Abnormal behavior Type A was more likely to develop up to approximately 30 times during the period between the initial intake of oseltamivir and T max . However, this period overlapped with the early period of influenza where high fever was observed. Since useful approaches to control the influence of the natural disease course of influenza were not available in this study, we could not deny the possibility that abnormal behavior was induced by influenza itself. The SCCS study was not an optimal method to evaluate the relationship between oseltamivir use and abnormal behavior. Copyright © 2017

  4. Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.

    PubMed

    Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo

    2013-02-01

    Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Antisocial Behavior, Psychopathic Features and Abnormalities in Reward and Punishment Processing in Youth

    PubMed Central

    Byrd, Amy L.; Loeber, Rolf; Pardini, Dustin A.

    2017-01-01

    A better understanding of what leads youth to initially engage in antisocial behavior (ASB) and more importantly persist with such behaviors into adulthood has significant implications for prevention and intervention efforts. A considerable number of studies using behavioral and neuroimaging techniques have investigated abnormalities in reward and punishment processing as potential causal mechanisms underlying ASB. However, this literature has yet to be critically evaluated, and there are no comprehensive reviews that systematically examine and synthesize these findings. The goal of the present review is twofold. The first aim is to examine the extent to which youth with ASB are characterized by abnormalities in (1) reward processing; (2) punishment processing; or (3) both reward and punishment processing. The second aim is to evaluate whether aberrant reward and/or punishment processing is specific to or most pronounced in a subgroup of antisocial youth with psychopathic features. Studies utilizing behavioral methods are first reviewed, followed by studies using functional magnetic resonance imaging. An integration of theory and research across multiple levels of analysis is presented in order to provide a more comprehensive understanding of reward and punishment processing in antisocial youth. Findings are discussed in terms of developmental and contextual considerations, proposed future directions and implications for intervention. PMID:24357109

  6. Abnormal behavior with hump characteristics in current stressed a-InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Sic; Cho, Yong-Jung; Lee, Yeol-Hyeong; Park, JeongKi; Kim, GeonTae; Kim, Ohyun

    2017-11-01

    We investigated the degradation mechanism of a-InGaZnO TFTs under simultaneous gate and drain bias stress. Gate and drain bias of 20 V were applied simultaneously to induce current stress, and abnormal turn-around behavior in transfer characteristics with a hump phenomenon were identified. Hump characteristics were interpreted in terms of parasitic current path, and the degradation itself was found to be caused dominantly by the electrical field and to be accelerated with current by Joule heating. The mechanism of asymmetrical degradation after current stress was also investigated. By decomposing the curves into two curves and measuring the relaxation behavior of the stressed TFTs, we also found that abnormal turn-around behavior in the transfer characteristics was related to acceptor-like states.

  7. An autopsy case of cortical superficial siderosis with persistent abnormal behavior.

    PubMed

    Torii, Youta; Iritani, Shuji; Fujishiro, Hiroshige; Sekiguchi, Hirotaka; Habuchi, Chikako; Umeda, Kentaro; Matsunaga, Shinji; Mimuro, Maya; Ozaki, Norio; Yoshida, Mari; Fujita, Kiyoshi

    2016-12-01

    In recent years, MRI has revealed cortical superficial siderosis (cSS), which exhibits hemosiderin deposition in only the cortical surface. However, the associations between the histological findings and clinical symptoms of cSS remain unclear. We herein report an autopsy case of a 75-year-old Japanese man with cSS with persistent abnormal behavior according to cognitive impairment, hallucination and delusion. At 73 years of age, the patient presented with unusual behavior that indicated auditory hallucination and delusion. One year later, he was admitted to the hospital for malignant lymphoma. On admission, cognitive impairment was detected by a screening test. Soon after hospitalization, he presented with active delirium including visual hallucination and delusion. The patient's excited behavior was improved by the administration of a major tranquilizer. However, the abnormal behavior and cognitive impairment persisted. At 75 years of age, he died of heart failure. A neuropathological investigation revealed hemosiderin depositions in the superficial layer of the cortex in the medial and lateral frontal lobe, the lateral temporal lobe, the parietal lobe, and the medial and lateral occipital lobe. Neuritic plaques and diffuse plaques were extensively observed, which corresponded to Braak stage C and CERAD B, although NFTs were observed that corresponded to Braak stage II. Cortical amyloid angiopathy was not observed in any regions. Ischemic change of brain was also mild. Our report suggests that localized deposition of hemosiderin in the cortex might affect the manifestation of cognitive impairments and hallucination. Further clinicopathological studies are needed to clarify the clinical manifestations of patients with cSS. © 2016 Japanese Society of Neuropathology.

  8. Generational Association Studies of Dopaminergic Genes in Reward Deficiency Syndrome (RDS) Subjects: Selecting Appropriate Phenotypes for Reward Dependence Behaviors

    PubMed Central

    Blum, Kenneth; Chen, Amanda L. C.; Oscar-Berman, Marlene; Chen, Thomas J. H.; Lubar, Joel; White, Nancy; Lubar, Judith; Bowirrat, Abdalla; Braverman, Eric; Schoolfield, John; Waite, Roger L.; Downs, Bernard W.; Madigan, Margaret; Comings, David E.; Davis, Caroline; Kerner, Mallory M.; Knopf, Jennifer; Palomo, Tomas; Giordano, John J.; Morse, Siobhan A.; Fornari, Frank; Barh, Debmalya; Femino, John; Bailey, John A.

    2011-01-01

    Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific “reward” phenotype may

  9. Humans display a reduced set of consistent behavioral phenotypes in dyadic games.

    PubMed

    Poncela-Casasnovas, Julia; Gutiérrez-Roig, Mario; Gracia-Lázaro, Carlos; Vicens, Julian; Gómez-Gardeñes, Jesús; Perelló, Josep; Moreno, Yamir; Duch, Jordi; Sánchez, Angel

    2016-08-01

    Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals' behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals' actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications.

  10. Abnormal chromosome behavior in human oocytes which remained unfertilized during human in vitro fertilization.

    PubMed

    Spielmann, H; Krüger, C; Stauber, M; Vogel, R

    1985-09-01

    Chromosomal abnormalities and abnormal embryonic development have previously been observed after human in vitro fertilization (IVF). Chromosomal abnormalities may arise not only after fertilization but even earlier during meiotic maturation of human oocytes in culture. Since chromosomal analysis is simple in oocytes during meiotic maturation, the chromosomal status was analyzed in oocytes which remained unfertilized in a human in vitro fertilization program. In 50 fertilization attempts the chromosomes of 62 unfertilized oocytes could be analyzed; 45 of them were in the process of meiotic maturation. In three oocytes two small polar bodies were observed 16-18 hr after insemination in the absence of fertilization. In one oocyte abnormal chromosome behavior was found during the first meiotic division, and in four oocytes during metaphase of the second meiotic division. These data suggest that chromosomal analysis of unfertilized oocytes in human IVF may improve the understanding human oocyte maturation and fertilization.

  11. Phenotypic Analysis of Korean Patients with Abnormal Chromosomal Microarray in Patients with Unexplained Developmental Delay/Intellectual Disability.

    PubMed

    Kim, Hyo Jeong; Park, Chang Il; Lim, Jae Woo; Lee, Gyung Min; Cho, Eunhae; Kim, Hyon J

    2018-05-01

    The present study aimed to investigate chromosomal microarray (CMA) and clinical data in patients with unexplained developmental delay/intellectual disability (DD/ID) accompanying dysmorphism, congenital anomalies, or epilepsy. We also aimed to evaluate phenotypic clues in patients with pathogenic copy number variants (CNVs). We collected clinical and CMA data from patients at Konyang University Hospital between September 2013 and October 2014. We included patients who had taken the CMA test to evaluate the etiology of unexplained DD/ID. All of the 50 patients identified had DD/ID. Thirty-nine patients had dysmorphism, 19 patients suffered from epilepsy, and 12 patients had congenital anomalies. Twenty-nine of the 50 patients (58%) showed abnormal results. Eighteen (36%) were considered to have pathogenic CNVs. Dysmorphism (p=0.028) was significantly higher in patients with pathogenic CNVs than in those with normal CMA. Two or more clinical features were presented by 61.9% (13/21) of the patients with normal CMA and by 83.3% (15/18) of the patients with pathogenic CMA. Dysmorphism can be a phenotypic clue to pathogenic CNVs. Furthermore, pathogenic CNV might be more frequently found if patients have two or more clinical features in addition to DD/ID. © Copyright: Yonsei University College of Medicine 2018.

  12. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice.

    PubMed

    Kim, Ki Chan; Rhee, Jeehae; Park, Jong-Eun; Lee, Dong-Keun; Choi, Chang Soon; Kim, Ji-Woon; Lee, Han-Woong; Song, Mi-Ryoung; Yoo, Hee Jeong; Chung, ChiHye; Shin, Chan Young

    2016-12-01

    In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.

  13. Autism-like behavioral phenotypes in BTBR T+tf/J mice.

    PubMed

    McFarlane, H G; Kusek, G K; Yang, M; Phoenix, J L; Bolivar, V J; Crawley, J N

    2008-03-01

    Autism is a behaviorally defined neurodevelopmental disorder of unknown etiology. Mouse models with face validity to the core symptoms offer an experimental approach to test hypotheses about the causes of autism and translational tools to evaluate potential treatments. We discovered that the inbred mouse strain BTBR T+tf/J (BTBR) incorporates multiple behavioral phenotypes relevant to all three diagnostic symptoms of autism. BTBR displayed selectively reduced social approach, low reciprocal social interactions and impaired juvenile play, as compared with C57BL/6J (B6) controls. Impaired social transmission of food preference in BTBR suggests communication deficits. Repetitive behaviors appeared as high levels of self-grooming by juvenile and adult BTBR mice. Comprehensive analyses of procedural abilities confirmed that social recognition and olfactory abilities were normal in BTBR, with no evidence for high anxiety-like traits or motor impairments, supporting an interpretation of highly specific social deficits. Database comparisons between BTBR and B6 on 124 putative autism candidate genes showed several interesting single nucleotide polymorphisms (SNPs) in the BTBR genetic background, including a nonsynonymous coding region polymorphism in Kmo. The Kmo gene encodes kynurenine 3-hydroxylase, an enzyme-regulating metabolism of kynurenic acid, a glutamate antagonist with neuroprotective actions. Sequencing confirmed this coding SNP in Kmo, supporting further investigation into the contribution of this polymorphism to autism-like behavioral phenotypes. Robust and selective social deficits, repetitive self-grooming, genetic stability and commercial availability of the BTBR inbred strain encourage its use as a research tool to search for background genes relevant to the etiology of autism, and to explore therapeutics to treat the core symptoms.

  14. A survey of abnormal repetitive behaviors in North American river otters housed in zoos.

    PubMed

    Morabito, Paige; Bashaw, Meredith J

    2012-01-01

    Stereotypic behaviors, indicating poor welfare and studied in a variety of species (especially carnivores), appear related to characteristics of current and past environments. Although North American river otters (Lontra canadensis) often develop abnormal, repetitive, possibly stereotypic behaviors, no published reports describe otter housing and management or characterize how these variables relate to abnormal repetitive behavior (ARB) occurrence. The first author developed surveys to gather data on housing, individual history, management, and the prevalence of ARBs in otters housed in facilities accredited by the Association of Zoos and Aquariums. Consistent with anecdotal evidence that otters are prone to ARBs, 46% of river otters in the study exhibit them. ARBs were mostly locomotor and often preceded feeding. Exhibits where otters were fed and trained housed a greater percentage of nonhuman animals with ARBs. This study supports the Tarou, Bloomsmith, and Maple (2005) report that more hands-on management is associated with higher levels of ARBs because management efforts are only for animals with ARBs. Escape motivation, breeding season, feeding cues, and ability to forage may affect ARBs in river otters and should be investigated.

  15. Prevalence of abnormal eating behaviors in adolescents in Mexico: Mexican National Health and Nutrition Survey 2006.

    PubMed

    Barriguete-Meléndez, Jorge Armando; Unikel-Santoncini, Claudia; Aguilar-Salinas, Carlos; Córdoba-Villalobos, José Angel; Shamah, Teresa; Barquera, Simón; Rivera, Juan A; Hernández-Avila, Mauricio

    2009-01-01

    To describe the prevalence of abnormal eating behaviors in a population-based nationwide survey. A stratified, probabilistic, multistage design sampling process was used. The Brief Questionnaire for Risky Eating Behaviors was included in the Mexican Health and Nutrition Survey 2006 (ENSANUT 2006) and administered to participants 10-19 years old (n= 25 166). The study had the power to describe nationwide characteristics by age, regions and urban/rural settings. A high risk for having an eating disorder was found in 0.8% of the total participants (0.4% male adolescents and 1.0% female). Inhabitants in large cities showed higher risk for having an abnormal eating behavior compared to subjects living in other settings. The highest prevalences were found in males > 15 years old and females > 13 years old for all evaluated behaviors. Results show less prevalence of risky eating behaviors among adolescents in comparison to other populations. The female/male ratio was 3:1, far different from the 9:1 shown in a previous study in Mexico City, but similar to results from the US national eating disorders screening.

  16. Autism Spectrum and Obsessive–Compulsive Disorders: OC Behaviors, Phenotypes and Genetics

    PubMed Central

    Jacob, Suma; Landeros-Weisenberger, Angeli; Leckman, James F.

    2014-01-01

    Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive–compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive–compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual’s mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions. PMID:20029829

  17. Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome

    PubMed Central

    Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.

    1996-01-01

    To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591

  18. The broad autism phenotype predicts relationship outcomes in newly formed college roommates.

    PubMed

    Faso, Daniel J; Corretti, Conrad A; Ackerman, Robert A; Sasson, Noah J

    2016-05-01

    Although previous studies have reported that the broad autism phenotype is associated with reduced relationship quality within established relationships, understanding how this association emerges requires assessment prior to relationship development. In the present longitudinal study, college roommates with minimal familiarity prior to cohabitation (N = 162) completed the broad autism phenotype questionnaire and intermittently reported on their relationship quality and interpersonal behaviors toward their roommate over their first 10 weeks of living together. Actor-Partner Interdependence Models demonstrated that roommates mismatched on aloofness (one high and one low) had lower relationship satisfaction than those matched on it, with the interpersonal behavior of warmth mediating this association. Because relationship satisfaction remained high when both roommates were aloof, satisfaction does not appear predicated upon the presence of aloofness generally but rather reflects a product of dissimilarity in aloof profiles between roommates. In contrast, although participants reported less relationship satisfaction and commitment with roommates higher on pragmatic language abnormalities, mismatches on this broad autism phenotype trait, and on rigid personality, were less consequential. In sum, these findings suggest that complementary profiles of social motivation may facilitate relationship quality during the early course of relationship development. © The Author(s) 2015.

  19. A latent modeling approach to genotype-phenotype relationships: maternal problem behavior clusters, prenatal smoking, and MAOA genotype.

    PubMed

    McGrath, L M; Mustanski, B; Metzger, A; Pine, D S; Kistner-Griffin, E; Cook, E; Wakschlag, L S

    2012-08-01

    This study illustrates the application of a latent modeling approach to genotype-phenotype relationships and gene × environment interactions, using a novel, multidimensional model of adult female problem behavior, including maternal prenatal smoking. The gene of interest is the monoamine oxidase A (MAOA) gene which has been well studied in relation to antisocial behavior. Participants were adult women (N = 192) who were sampled from a prospective pregnancy cohort of non-Hispanic, white individuals recruited from a neighborhood health clinic. Structural equation modeling was used to model a female problem behavior phenotype, which included conduct problems, substance use, impulsive-sensation seeking, interpersonal aggression, and prenatal smoking. All of the female problem behavior dimensions clustered together strongly, with the exception of prenatal smoking. A main effect of MAOA genotype and a MAOA × physical maltreatment interaction were detected with the Conduct Problems factor. Our phenotypic model showed that prenatal smoking is not simply a marker of other maternal problem behaviors. The risk variant in the MAOA main effect and interaction analyses was the high activity MAOA genotype, which is discrepant from consensus findings in male samples. This result contributes to an emerging literature on sex-specific interaction effects for MAOA.

  20. Aberrant Proteostasis of BMAL1 Underlies Circadian Abnormalities in a Paradigmatic mTOR-opathy.

    PubMed

    Lipton, Jonathan O; Boyle, Lara M; Yuan, Elizabeth D; Hochstrasser, Kevin J; Chifamba, Fortunate F; Nathan, Ashwin; Tsai, Peter T; Davis, Fred; Sahin, Mustafa

    2017-07-25

    Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Prenatal β-catenin/Brn2/Tbr2 transcriptional cascade regulates adult social and stereotypic behaviors

    PubMed Central

    Belinson, H; Nakatani, J; Babineau, BA; Birnbaum, RY; Ellegood, J; Bershteyn, M; McEvilly, RJ; Long, JM; Willert, K; Klein, OD; Ahituv, N; Lerch, JP; Rosenfeld, GM; Wynshaw-Boris, A

    2015-01-01

    Social interaction is a fundamental behavior in all animal species, but the developmental timing of the social neural circuit formation and the cellular and molecular mechanisms governing its formation are poorly understood. We generated a mouse model with mutations in two Dishevelled genes, Dvl1 and Dvl3, that displays adult social and repetitive behavioral abnormalities associated with transient embryonic brain enlargement during deep layer cortical neuron formation. These phenotypes were mediated by the embryonic expansion of basal neural progenitor cells (NPCs) via deregulation of a β-catenin/Brn2/Tbr2 transcriptional cascade. Transient pharmacological activation of the canonical Wnt pathway during this period of early corticogenesis rescued the β-catenin/Brn2/Tbr2 transcriptional cascade and the embryonic brain phenotypes. Remarkably, this embryonic treatment prevented adult behavioral deficits and partially rescued abnormal brain structure in Dvl mutant mice. Our findings define a mechanism that links fetal brain development and adult behavior, demonstrating a fetal origin for social and repetitive behavior deficits seen in disorders such as autism. PMID:26830142

  2. Prenatal β-catenin/Brn2/Tbr2 transcriptional cascade regulates adult social and stereotypic behaviors.

    PubMed

    Belinson, H; Nakatani, J; Babineau, B A; Birnbaum, R Y; Ellegood, J; Bershteyn, M; McEvilly, R J; Long, J M; Willert, K; Klein, O D; Ahituv, N; Lerch, J P; Rosenfeld, M G; Wynshaw-Boris, A

    2016-10-01

    Social interaction is a fundamental behavior in all animal species, but the developmental timing of the social neural circuit formation and the cellular and molecular mechanisms governing its formation are poorly understood. We generated a mouse model with mutations in two Disheveled genes, Dvl1 and Dvl3, that displays adult social and repetitive behavioral abnormalities associated with transient embryonic brain enlargement during deep layer cortical neuron formation. These phenotypes were mediated by the embryonic expansion of basal neural progenitor cells (NPCs) via deregulation of a β-catenin/Brn2/Tbr2 transcriptional cascade. Transient pharmacological activation of the canonical Wnt pathway during this period of early corticogenesis rescued the β-catenin/Brn2/Tbr2 transcriptional cascade and the embryonic brain phenotypes. Remarkably, this embryonic treatment prevented adult behavioral deficits and partially rescued abnormal brain structure in Dvl mutant mice. Our findings define a mechanism that links fetal brain development and adult behavior, demonstrating a fetal origin for social and repetitive behavior deficits seen in disorders such as autism.

  3. [Behavioral phenotypes of autism spectrum disorder patients and their parents].

    PubMed

    Situ, Mingjing; Hu, Xiao; Cai, Jia; Guo, Kuifang; Huang, Yi

    2015-12-01

    To explore the relationship between the behavior phenotypes of patients with autism spectrum disorder (ASD) and their parents through family study. Forty-five core families with ASD and 30 control families from Chengdu area were examined using Autism Spectrum Quotient (AQ). Descriptive statistical analysis, correlation analysis, and Logistic regression analysis were used to investigate the effect of various factors, especially genetic factors that may affect the pathogenesis of ASD. The social skills factor and communication factor of the father's AQ scale, as well as the mother's age of childbearing and AQ social skills factor are related to whether children with ASD (R were 0.46, 0.39, 0.39 and 0.36, P<0.05). The communication factor of the parents' AQ and mother's attention to detail factor are related to whether children will show developmental anomaly before the age of 36 months (R were 0.55, 0.51 and 0.54, P<0.05). The social skill problems of parents and father's communication problems are risk factors for children with autism. ASD may be influenced by both genetic and environmental factors. The autistic behavior phenotype of parents is a risk factor for ASD and is associated with developmental anomalies of early childhood.

  4. Is it all the X: familial learning dysfunction and the impact of behavioral aspects of the phenotypic presentation of XXY?

    PubMed

    Samango-Sprouse, Carole A; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea L

    2013-02-15

    The behavioral phenotype of children with XXY has not been extensively studied until recently and this research has been confounded by insufficient study populations and ascertainment biases. The aim of the study was to expand the behavioral aspect of the XXY phenotype as well as investigate the role of existing familial learning disabilities (FLD) on behavioral problems. Behavioral phenotype of XXY includes social anxiety, ADHD, social communication, and atypical peer interactions. The Child Behavior Checklist (CBCL), Social Responsiveness Scale (SRS), and Gilliam Autism Rating Scale (GARS) were completed by the parents of 54 boys with XXY who had not received hormonal replacement prior to participation. Our findings suggest fewer behavioral deficits and lower severity in the general 47,XXY population than previously published and found significant differences between the groups with a positive FLD on the behavioral assessments. Findings demonstrate that boys with FLD exhibit an increased incidence and severity of behavioral problems. Our study expands on the findings of Samango-Sprouse et al. [Samango-Sprouse et al. (2012b) J Intellect Disabil Res] and the significant influence that FLD has on not only neurodevelopment, but also behavioral deficits. Our study suggests that part of the XXY phenotypic profile may be modulated by FLD. Further study is underway to examine the interaction between the many salient factors effecting behavioral and neurodevelopmental progression in XXY and variant forms. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  5. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    PubMed

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  6. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors

    PubMed Central

    Cussen, Victoria A.; Mench, Joy A.

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  7. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions.

    PubMed

    Hau, Michaela; Goymann, Wolfgang

    2015-01-01

    Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments. In the second part, we discuss types of quantitative

  8. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    PubMed

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome.

    PubMed

    Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich

    2009-07-29

    Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.

  10. Behavioral phenotype in adults with Prader-Willi syndrome.

    PubMed

    Sinnema, Margje; Einfeld, Stewart L; Schrander-Stumpel, Constance T R M; Maaskant, Marian A; Boer, Harm; Curfs, Leopold M G

    2011-01-01

    Prader-Willi syndrome (PWS) is characterized by temper tantrums, impulsivity, mood fluctuations, difficulty with change in routine, skinpicking, stubbornness and aggression. Many studies on behavior in PWS are limited by sample size, age range, a lack of genetically confirmed diagnosis of PWS and inconsistent assessment of behavior. The aim of this study was to explore systematically the relation between behavioral problems and age groups, genetic subtypes and BMI categories in an adult PWS population. Participants were contacted via the Dutch Prader-Willi Parent Association and through physicians specialized in persons with ID. Behaviors were studied using the Developmental Behavior Checklist for Adults (DBC-A). The forms were completed by the main caregivers of 98 adults with a genetically confirmed diagnosis of PWS. Differences between age groups were statistically significant (ANOVA, p=0.03). DBC-A total scores were higher in the consecutive age groups, with the most behavioral problems in the oldest age groups. Differences between genetic subtypes were also statistically significant (ANOVA, p<0.01). Persons with mUPD had higher total scores on the DBC-A than persons with a deletion. Those with a Type I deletion showed higher total DBC-A scores than persons with a Type II deletion. There were no statistically significant differences in DBC-A total scores between the different BMI categories. Individuals with a BMI<25 had higher scores on the self-absorbed subscale compared to persons with a BMI between 25 and 30. Unlike previous descriptions of the behavioral phenotype in adults with PWS, we did not find a reduction in behavioral problems in older adults. Therefore, special attention should be paid to behavioral problems as part of general management of adults with PWS. Longitudinal studies are warranted to gain more insight into the natural history and course of behavioral problems in adults and older people with PWS over the long term and possible risk and

  11. The inv dup(15) syndrome: a clinically recognizable syndrome with altered behavior, mental retardation, and epilepsy.

    PubMed

    Battaglia, A; Gurrieri, F; Bertini, E; Bellacosa, A; Pomponi, M G; Paravatou-Petsotas, M; Mazza, S; Neri, G

    1997-04-01

    The most common of the heterogeneous group of the extra structurally abnormal chromosomes (ESACs) is the inv dup(15), whose presence results in tetrasomy 15p and partial tetrasomy 15q. Inv dup(15), containing the Prader-Willi/Angelman syndrome (PWS/AS) region, are constantly associated with phenotypic abnormalities and mental retardation. We report on four additional patients with inv dup(15), whose behavioral pattern, and neurologic and physical findings further delineate the phenotype of this neurogenetic syndrome. We also provide FISH analyses on chromosomes of the observed ESACs and discuss the role of a number of genes located within the tetrasomic region.

  12. Ketoacidosis due to a Low-carbohydrate Diet in an Elderly Woman with Dementia and Abnormal Eating Behavior

    PubMed Central

    Iwata, Hitoshi; Tsuzuki, Seiichiro; Iwata, Mitsunaga; Terasawa, Teruhiko

    2017-01-01

    Strict restriction of carbohydrates can induce symptomatic ketoacidosis. We herein report a 76-year-old demented woman who developed ketoacidosis after 1 month of abnormal eating behavior involving selectively eating hamburger steak (estimated carbohydrate =12.7 g/day). Laboratory tests showed high-anion-gap metabolic acidosis with elevated blood ketone levels. She was successfully treated with intravenous fluids followed by oral intake of a regular diet. She remained relapse-free after correcting her eating habits. Healthcare providers should know that abnormal eating behavior in demented people can lead to an extremely-low-carbohydrate diet and cause atypical ketoacidosis unexplained by diabetes, heavy alcohol intake, or starvation conditions. PMID:28883241

  13. Ketoacidosis due to a Low-carbohydrate Diet in an Elderly Woman with Dementia and Abnormal Eating Behavior.

    PubMed

    Iwata, Hitoshi; Tsuzuki, Seiichiro; Iwata, Mitsunaga; Terasawa, Teruhiko

    2017-10-01

    Strict restriction of carbohydrates can induce symptomatic ketoacidosis. We herein report a 76-year-old demented woman who developed ketoacidosis after 1 month of abnormal eating behavior involving selectively eating hamburger steak (estimated carbohydrate =12.7 g/day). Laboratory tests showed high-anion-gap metabolic acidosis with elevated blood ketone levels. She was successfully treated with intravenous fluids followed by oral intake of a regular diet. She remained relapse-free after correcting her eating habits. Healthcare providers should know that abnormal eating behavior in demented people can lead to an extremely-low-carbohydrate diet and cause atypical ketoacidosis unexplained by diabetes, heavy alcohol intake, or starvation conditions.

  14. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior

    PubMed Central

    Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio

    2017-01-01

    Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410

  15. A latent modeling approach to genotype–phenotype relationships: maternal problem behavior clusters, prenatal smoking, and MAOA genotype

    PubMed Central

    Mustanski, B.; Metzger, A.; Pine, D. S.; Kistner-Griffin, E.; Cook, E.; Wakschlag, L. S.

    2013-01-01

    This study illustrates the application of a latent modeling approach to genotype–phenotype relationships and gene×environment interactions, using a novel, multidimensional model of adult female problem behavior, including maternal prenatal smoking. The gene of interest is the mono-amine oxidase A (MAOA) gene which has been well studied in relation to antisocial behavior. Participants were adult women (N=192) who were sampled from a prospective pregnancy cohort of non-Hispanic, white individuals recruited from a neighborhood health clinic. Structural equation modeling was used to model a female problem behavior phenotype, which included conduct problems, substance use, impulsive-sensation seeking, interpersonal aggression, and prenatal smoking. All of the female problem behavior dimensions clustered together strongly, with the exception of prenatal smoking. A main effect of MAOA genotype and a MAOA× physical maltreatment interaction were detected with the Conduct Problems factor. Our phenotypic model showed that prenatal smoking is not simply a marker of other maternal problem behaviors. The risk variant in the MAOA main effect and interaction analyses was the high activity MAOA genotype, which is discrepant from consensus findings in male samples. This result contributes to an emerging literature on sex-specific interaction effects for MAOA. PMID:22610759

  16. Identifying eating behavior phenotypes and their correlates: a novel direction toward improving weight management interventions

    PubMed Central

    Bouhlal, Sofia; McBride, Colleen M.; Trivedi, Niraj S.; Agurs-Collins, Tanya; Persky, Susan

    2017-01-01

    Common reports of over-response to food cues, difficulties with calorie restriction, and difficulty adhering to dietary guidelines suggest that eating behaviors could be interrelated in ways that influence weight management efforts. The feasibility of identifying robust eating phenotypes (showing face, content, and criterion validity) was explored based on well-validated individual eating behavior assessments. Adults (n=260; mean age 34 years) completed online questionnaires with measurements of nine eating behaviors including: appetite for palatable foods, binge eating, bitter taste sensitivity, disinhibition, food neophobia, pickiness and satiety responsiveness. Discovery-based visualization procedures that have the combined strengths of heatmaps and hierarchical clustering were used to investigate: 1) how eating behaviors cluster, 2) how participants can be grouped within eating behavior clusters, and 3) whether group clustering is associated with body mass index (BMI) and dietary self-efficacy levels. Two distinct eating behavior clusters and participant groups that aligned within these clusters were identified: one with higher drive to eat and another with food avoidance behaviors. Participants’ BMI (p=.0002) and dietary self-efficacy (p<.0001) were associated with cluster membership. Eating behavior clusters showed content and criterion validity based on their association with BMI (associated, but not entirely overlapping) and dietary self-efficacy. Identifying eating behavior phenotypes appears viable. These efforts could be expanded and ultimately inform tailored weight management interventions. PMID:28043857

  17. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3.

    PubMed

    Wang, Xiaoming; McCoy, Portia A; Rodriguiz, Ramona M; Pan, Yanzhen; Je, H Shawn; Roberts, Adam C; Kim, Caroline J; Berrios, Janet; Colvin, Jennifer S; Bousquet-Moore, Danielle; Lorenzo, Isabel; Wu, Gangyi; Weinberg, Richard J; Ehlers, Michael D; Philpot, Benjamin D; Beaudet, Arthur L; Wetsel, William C; Jiang, Yong-Hui

    2011-08-01

    SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density (PSD) of excitatory synapses. Small microdeletions and point mutations in SHANK3 have been identified in a small subgroup of individuals with autism spectrum disorder (ASD) and intellectual disability. SHANK3 also plays a key role in the chromosome 22q13.3 microdeletion syndrome (Phelan-McDermid syndrome), which includes ASD and cognitive dysfunction as major clinical features. To evaluate the role of Shank3 in vivo, we disrupted major isoforms of the gene in mice by deleting exons 4-9. Isoform-specific Shank3(e4-9) homozygous mutant mice display abnormal social behaviors, communication patterns, repetitive behaviors and learning and memory. Shank3(e4-9) male mice display more severe impairments than females in motor coordination. Shank3(e4-9) mice have reduced levels of Homer1b/c, GKAP and GluA1 at the PSD, and show attenuated activity-dependent redistribution of GluA1-containing AMPA receptors. Subtle morphological alterations in dendritic spines are also observed. Although synaptic transmission is normal in CA1 hippocampus, long-term potentiation is deficient in Shank3(e4-9) mice. We conclude that loss of major Shank3 species produces biochemical, cellular and morphological changes, leading to behavioral abnormalities in mice that bear similarities to human ASD patients with SHANK3 mutations.

  18. The Clinical Phenotype of Idiopathic Rapid Eye Movement Sleep Behavior Disorder at Presentation: A Study in 203 Consecutive Patients

    PubMed Central

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Santamaria, Joan

    2016-01-01

    Objective: To describe the clinical phenotype of idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) at presentation in a sleep center. Methods: Clinical history review of 203 consecutive patients with IRBD identified between 1990 and 2014. IRBD was diagnosed by clinical history plus video-polysomnographic demonstration of REM sleep with increased electromyographic activity linked to abnormal behaviors. Results: Patients were 80% men with median age at IRBD diagnosis of 68 y (range, 50–85 y). In addition to the already known clinical picture of IRBD, other important features were apparent: 44% of the patients were not aware of their dream-enactment behaviors and 70% reported good sleep quality. In most of these cases bed partners were essential to convince patients to seek medical help. In 11% IRBD was elicited only after specific questioning when patients consulted for other reasons. Seven percent did not recall unpleasant dreams. Leaving the bed occurred occasionally in 24% of subjects in whom dementia with Lewy bodies often developed eventually. For the correct diagnosis of IRBD, video-polysomnography had to be repeated in 16% because of insufficient REM sleep or electromyographic artifacts from coexistent apneas. Some subjects with comorbid obstructive sleep apnea reported partial improvement of RBD symptoms following continuous positive airway pressure therapy. Lack of therapy with clonazepam resulted in an increased risk of sleep related injuries. Synucleinopathy was frequently diagnosed, even in patients with mild severity or uncommon IRBD presentations (e.g., patients who reported sleeping well, onset triggered by a life event, nocturnal ambulation) indicating that the development of a neurodegenerative disease is independent of the clinical presentation of IRBD. Conclusions: We report the largest IRBD cohort observed in a single center to date and highlight frequent features that were not reported or not sufficiently emphasized in previous

  19. Phenotypic variability in Patau syndrome.

    PubMed

    Caba, Lavinia; Rusu, Cristina; Butnariu, Lacramioara; Panzaru, Monica; Braha, Elena; Volosciuc, M; Popescu, Roxana; Gramescu, Mihaela; Bujoran, C; Martiniuc, Violeta; Covic, M; Gorduza, E V

    2013-01-01

    Patau syndrome has an incidence of 1/10.000-20.000, the clinical diagnosis being suggested by the triad cleft lip and palate, microphthalmia/anophthalmia and postaxial polydactyly. Most frequent cytogenetic abnormality is free and homogeneous trisomy 13 (80.0%), rarely being detected trisomy mosaics or Robertsonian translocations. The objective of the study was to identify phenotypic features of trisomy 13. The retrospective study was conducted on a trial group of 14 cases diagnosed cytogenetically with trisomy 13 between January 2000 and December 2012 at lasi Medical Genetics Centre. Of the 14 cases, 3 were evaluated pathologically (two aborted foetuses and one stillborn), 8 cases were detected in the neonatal period, and 3 in infancy. Clinical diagnosis was supported by the identification of a model of abnormal development, mainly characterized by: maxillary cleft (lip and palate--5 cases; lip--1 case), ocular abnormalities (microphthalmia/anophthalmia--7 cases; cyclopia--1 case), postaxial polydactyly (7 cases), scalp defects (6 cases), congenital heart anomalies (10 cases, 6 patients with atrial septal defect), complete holoprosencephaly (4 cases), ear abnormalities (11 cases), broad nasal root (10 cases). An important issue in confirming the phenotypic variability of Patau syndrome is that the classic clinical triad was identified only in one case. Patau syndrome is a disease with variable expression and is characterized by a pattern of abnormal prenatal development characterized by facial dysmorphia, polydactyly and severe birth defects (heart, brain) that generate an increased in utero and perinatal mortality.

  20. Teaching a Course in Abnormal Psychology and Behavior Intervention Skills for Nursing Home Aides.

    ERIC Educational Resources Information Center

    Glenwick, David S.; Slutzsky, Mitchel R.; Garfinkel, Eric

    2001-01-01

    Describes an 11-week course given at a nursing home to nursing home aides that focused on abnormal psychology and behavior intervention skills. Discusses the course goals, class composition, and course description. Addresses the problems and issues encountered with teaching this course to a nontraditional population in an unconventional setting.…

  1. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  2. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  3. Identifying eating behavior phenotypes and their correlates: A novel direction toward improving weight management interventions.

    PubMed

    Bouhlal, Sofia; McBride, Colleen M; Trivedi, Niraj S; Agurs-Collins, Tanya; Persky, Susan

    2017-04-01

    Common reports of over-response to food cues, difficulties with calorie restriction, and difficulty adhering to dietary guidelines suggest that eating behaviors could be interrelated in ways that influence weight management efforts. The feasibility of identifying robust eating phenotypes (showing face, content, and criterion validity) was explored based on well-validated individual eating behavior assessments. Adults (n = 260; mean age 34 years) completed online questionnaires with measurements of nine eating behaviors including: appetite for palatable foods, binge eating, bitter taste sensitivity, disinhibition, food neophobia, pickiness and satiety responsiveness. Discovery-based visualization procedures that have the combined strengths of heatmaps and hierarchical clustering were used to investigate: 1) how eating behaviors cluster, 2) how participants can be grouped within eating behavior clusters, and 3) whether group clustering is associated with body mass index (BMI) and dietary self-efficacy levels. Two distinct eating behavior clusters and participant groups that aligned within these clusters were identified: one with higher drive to eat and another with food avoidance behaviors. Participants' BMI (p = 0.0002) and dietary self-efficacy (p < 0.0001) were associated with cluster membership. Eating behavior clusters showed content and criterion validity based on their association with BMI (associated, but not entirely overlapping) and dietary self-efficacy. Identifying eating behavior phenotypes appears viable. These efforts could be expanded and ultimately inform tailored weight management interventions. Published by Elsevier Ltd.

  4. A vestibular phenotype for Waardenburg syndrome?

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.

    2001-01-01

    OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.

  5. Amelioration of Behavioral Abnormalities in BH4-deficient Mice by Dietary Supplementation of Tyrosine

    PubMed Central

    Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.

    2013-01-01

    This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163

  6. Neurobehavioral phenotype in Prader-Willi syndrome.

    PubMed

    Whittington, Joyce; Holland, Anthony

    2010-11-15

    The focus of this article is on the lifetime development of people with Prader-Willi syndrome (PWS) and specifically on the neurobehavioral phenotype. We consider studies of this aspect of the phenotype (the "behavioral phenotype" of the syndrome) that have confirmed that there are specific behaviors and psychiatric disorders, the propensities to which are increased in those with PWS, and cannot be accounted for by other variables such as IQ or adaptive behavior. Beginning with a description of what is observed in people with PWS, we review the evolving PWS phenotype and consider how some aspects of the phenotype might be best explained, and how this complex phenotype may relate to the equally complex genotype. We then consider in more detail some of the neurobehavioral aspects of the phenotype listed above that raise the greatest management problems for parents and carers. © 2010 Wiley-Liss, Inc.

  7. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes.

    PubMed

    Stringer, Megan; Abeysekera, Irushi; Thomas, Jared; LaCombe, Jonathan; Stancombe, Kailey; Stewart, Robert J; Dria, Karl J; Wallace, Joseph M; Goodlett, Charles R; Roper, Randall J

    2017-08-01

    Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis

  8. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  9. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors

    PubMed Central

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W.; Potter, S. Steven; McKnight, Steven L.

    2004-01-01

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis. PMID:15347806

  10. [Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].

    PubMed

    Bonnet-Brilhault, F

    2011-02-01

    Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However

  11. Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results.

    PubMed

    Girdauskas, Evaldas; Geist, Lisa; Disha, Kushtrim; Kazakbaev, Iliaz; Groß, Tatiana; Schulz, Solveig; Ungelenk, Martin; Kuntze, Thomas; Reichenspurner, Hermann; Kurth, Ingo

    2017-07-01

    Genetic defects associated with bicuspid aortopathy have been infrequently analysed. Our goal was to examine the prevalence of rare genetic variants in patients with a bicuspid aortic valve (BAV) with a root phenotype using next-generation sequencing technology. We investigated a total of 124 patients with BAV with a root dilatation phenotype who underwent aortic valve ± proximal aortic surgery at a single institution (BAV database, n  = 812) during a 20-year period (1995-2015). Cross-sectional follow-up revealed 63 (51%) patients who were still alive and willing to participate. Systematic follow-up visits were scheduled from March to December 2015 and included aortic imaging as well as peripheral blood sampling for genetic testing. Next-generation sequencing libraries were prepared using a custom-made HaloPlex HS gene panel and included 20 candidate genes known to be associated with aortopathy and BAV. The primary end-point was the prevalence of genetic defects in our study cohort. A total of 63 patients (mean age 46 ± 10 years, 92% men) with BAV root phenotype and mean post-aortic valve replacement follow-up of 10.3 ± 4.9 years were included. Our genetic analysis yielded a wide spectrum of rare, potentially or likely pathogenic variants in 19 (30%) patients, with NOTCH1 variants being the most common ( n  = 6). Moreover, deleterious variants were revealed in AXIN1 ( n  = 3), NOS3 ( n  = 3), ELN ( n  = 2), FBN1 ( n  = 2) , FN1 ( n  = 2) and rarely in other candidate genes. Our preliminary study demonstrates a high prevalence and a wide spectrum of rare genetic variants in patients with the BAV root phenotype, indicative of the potentially congenital origin of associated aortopathy in this specific BAV cohort. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype

    PubMed Central

    State, Matthew W.; Greally, John M.; Cuker, Adam; Bowers, Peter N.; Henegariu, Octavian; Morgan, Thomas M.; Gunel, Murat; DiLuna, Michael; King, Robert A.; Nelson, Carol; Donovan, Abigail; Anderson, George M.; Leckman, James F.; Hawkins, Trevor; Pauls, David L.; Lifton, Richard P.; Ward, David C.

    2003-01-01

    Gilles de la Tourette syndrome (GTS) is a potentially debilitating neuropsychiatric disorder defined by the presence of both vocal and motor tics. Despite evidence that this and a related phenotypic spectrum, including chronic tics (CT) and Obsessive Compulsive Disorder (OCD), are genetically mediated, no gene involved in disease etiology has been identified. Chromosomal abnormalities have long been proposed to play a causative role in isolated cases of GTS spectrum phenomena, but confirmation of this hypothesis has yet to be forthcoming. We describe an i(18q21.1-q22.2) inversion in a patient with CT and OCD. We have fine mapped the telomeric aspect of the rearrangement to within 1 Mb of a previously reported 18q22 breakpoint that cosegregated in a family with GTS and related phenotypes. A comprehensive characterization of this genomic interval led to the identification of two transcripts, neither of which was found to be structurally disrupted. Analysis of the epigenetic characteristics of the region demonstrated a significant increase in replication asynchrony in the patient compared to controls, with the inverted chromosome showing delayed replication timing across at least a 500-kb interval. These findings are consistent with long-range functional dysregulation of one or more genes in the region. Our data support a link between chromosomal aberrations and epigenetic mechanisms in GTS and suggest that the study of the functional consequences of balanced chromosomal rearrangements is warranted in patients with phenotypes of interest, irrespective of the findings regarding structurally disrupted transcripts. PMID:12682296

  13. Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption.

    PubMed

    Pedron, Solène; Monnin, Julie; Haffen, Emmanuel; Sechter, Daniel; Van Waes, Vincent

    2014-03-01

    Successful available treatments to quit smoking remain scarce. Recently, the potential of transcranial direct current stimulation (tDCS) as a tool to reduce craving for nicotine has gained interest. However, there is no documented animal model to assess the neurobiological mechanisms of tDCS on addiction-related behaviors. To address this topic, we have developed a model of repeated tDCS in mice and used it to validate its effectiveness in relieving nicotine addiction. Anodal repeated tDCS was applied over the frontal cortex of Swiss female mice. The stimulation electrode (anode) was fixed directly onto the cranium, and the reference electrode was placed onto the ventral thorax. A 2 × 20 min/day stimulation paradigm for five consecutive days was used (0.2 mA). In the first study, we screened for behaviors altered by the stimulation. Second, we tested whether tDCS could alleviate abnormal behaviors associated with abstinence from nicotine consumption. In naive animals, repeated tDCS had antidepressant-like properties 3 weeks after the last stimulation, improved working memory, and decreased conditioned place preference for nicotine without affecting locomotor activity and anxiety-related behavior. Importantly, abnormal behaviors associated with chronic nicotine exposure (ie, depression-like behavior, increase in nicotine-induced place preference) were normalized by repeated tDCS. Our data show for the first time in an animal model that repeated tDCS is a promising, non-expensive clinical tool that could be used to reduce smoking craving and facilitate smoking cessation. Our animal model will be useful to investigate the mechanisms underlying the effects of tDCS on addiction and other psychiatric disorders.

  14. Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency

    PubMed Central

    Cheli, Verónica T.; Daniels, Richard W.; Godoy, Ruth; Hoyle, Diego J.; Kandachar, Vasundhara; Starcevic, Marta; Martinez-Agosto, Julian A.; Poole, Stephen; DiAntonio, Aaron; Lloyd, Vett K.; Chang, Henry C.; Krantz, David E.; Dell'Angelica, Esteban C.

    2010-01-01

    Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky–Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes. PMID:20015953

  15. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    NASA Astrophysics Data System (ADS)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  16. Multiple autism-like behaviors in a novel transgenic mouse model

    PubMed Central

    Hamilton, Shannon M.; Spencer, Corinne M.; Harrison, Wilbur R.; Yuva-Paylor, Lisa A.; Graham, Deanna F.; Daza, Ray A.M.; Hevner, Robert F.; Overbeek, Paul A.; Paylor, Richard

    2011-01-01

    Autism spectrum disorder (ASD) diagnoses are behaviorally-based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a noncoding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors. PMID:21093492

  17. CKD Self-management: Phenotypes and Associations With Clinical Outcomes.

    PubMed

    Schrauben, Sarah J; Hsu, Jesse Y; Rosas, Sylvia E; Jaar, Bernard G; Zhang, Xiaoming; Deo, Rajat; Saab, Georges; Chen, Jing; Lederer, Swati; Kanthety, Radhika; Hamm, L Lee; Ricardo, Ana C; Lash, James P; Feldman, Harold I; Anderson, Amanda H

    2018-03-24

    To slow chronic kidney disease (CKD) progression and its complications, patients need to engage in self-management behaviors. The objective of this study was to classify CKD self-management behaviors into phenotypes and assess the association of these phenotypes with clinical outcomes. Prospective cohort study. Adults with mild to moderate CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. 3,939 participants in the CRIC Study recruited between 2003 and 2008 served as the derivation cohort and 1,560 participants recruited between 2013 and 2015 served as the validation cohort. CKD self-management behavior phenotypes. CKD progression, atherosclerotic events, heart failure events, death from any cause. Latent class analysis stratified by diabetes was used to identify CKD self-management phenotypes based on measures of body mass index, diet, physical activity, blood pressure, smoking status, and hemoglobin A 1c concentration (if diabetic); Cox proportional hazards models. 3 identified phenotypes varied according to the extent of implementation of recommended CKD self-management behaviors: phenotype I characterized study participants with the most recommended behaviors; phenotype II, participants with a mixture of recommended and not recommended behaviors; and phenotype III, participants with minimal recommended behaviors. In multivariable-adjusted models for those with and without diabetes, phenotype III was strongly associated with CKD progression (HRs of 1.82 and 1.49), death (HRs of 1.95 and 4.14), and atherosclerotic events (HRs of 2.54 and 1.90; each P < 0.05). Phenotype II was associated with atherosclerotic events and death among those with and without diabetes. No consensus definition of CKD self-management; limited to baseline behavior data. There are potentially 3 CKD self-management behavior phenotypes that distinguish risk for clinical outcomes. These phenotypes may inform the development of studies and guidelines regarding optimal self

  18. Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers

    PubMed Central

    Pappas, Andrea L.; Bey, Alexandra L.; Wang, Xiaoming; Rossi, Mark; Kim, Yong Ho; Yan, Haidun; Porkka, Fiona; Duffney, Lara J.; Phillips, Samantha M.; Cao, Xinyu; Ding, Jin-dong; Rodriguiz, Ramona M.; Yin, Henry H.; Wetsel, William C.

    2017-01-01

    Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24–/– mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted. PMID:29046483

  19. Changes in the Autism Behavioral Phenotype during the Transition to Adulthood

    PubMed Central

    Taylor, Julie Lounds; Seltzer, Marsha Mailick

    2010-01-01

    We examined whether exiting high school was associated with alterations in rates of change in autism symptoms and maladaptive behaviors. Participants were 242 youth with ASD who had recently exited the school system and were part of our larger longitudinal study; data were collected at five time points over nearly 10 years. Results indicated overall improvement of autism symptoms and internalized behaviors over the study period, but slowing rates of improvement after exit. Youth who did not have an intellectual disability evidenced the greatest slowing in improvement. Lower family income was associated with less improvement. Our findings suggest that adult day activities may not be as intellectually stimulating as educational activities in school, reflected by less phenotypic improvement after exit. PMID:20361245

  20. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    ERIC Educational Resources Information Center

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2012-01-01

    Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…

  1. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model.

    PubMed

    Goebel-Goody, S M; Wilson-Wallis, E D; Royston, S; Tagliatela, S M; Naegele, J R; Lombroso, P J

    2012-07-01

    Fragile X syndrome (FXS), the most common inherited form of intellectual disability and prevailing known genetic basis of autism, is caused by an expansion in the Fmr1 gene that prevents transcription and translation of fragile X mental retardation protein (FMRP). FMRP binds to and controls translation of mRNAs downstream of metabotropic glutamate receptor (mGluR) activation. Recent work shows that FMRP interacts with the transcript encoding striatal-enriched protein tyrosine phosphatase (STEP; Ptpn5). STEP opposes synaptic strengthening and promotes synaptic weakening by dephosphorylating its substrates, including ERK1/2, p38, Fyn and Pyk2, and subunits of N-methyl-d-aspartate (NMDA) and AMPA receptors. Here, we show that basal levels of STEP are elevated and mGluR-dependent STEP synthesis is absent in Fmr1(KO) mice. We hypothesized that the weakened synaptic strength and behavioral abnormalities reported in FXS may be linked to excess levels of STEP. To test this hypothesis, we reduced or eliminated STEP genetically in Fmr1(KO) mice and assessed mice in a battery of behavioral tests. In addition to attenuating audiogenic seizures and seizure-induced c-Fos activation in the periaqueductal gray, genetically reducing STEP in Fmr1(KO) mice reversed characteristic social abnormalities, including approach, investigation and anxiety. Loss of STEP also corrected select nonsocial anxiety-related behaviors in Fmr1(KO) mice, such as light-side exploration in the light/dark box. Our findings indicate that genetically reducing STEP significantly diminishes seizures and restores select social and nonsocial anxiety-related behaviors in Fmr1(KO) mice, suggesting that strategies to inhibit STEP activity may be effective for treating patients with FXS. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  2. Oral acetate supplementation attenuates N-methyl D-aspartate receptor hypofunction-induced behavioral phenotypes accompanied by restoration of acetyl-histone homeostasis.

    PubMed

    Singh, Seema; Choudhury, Arnab; Gusain, Priya; Parvez, Suhel; Palit, Gautam; Shukla, Shubha; Ganguly, Surajit

    2016-04-01

    Aberrations in cellular acetate-utilization processes leading to global histone hypoacetylation have been implicated in the etiology of neuropsychiatric disorders like schizophrenia. Here, we investigated the role of acetate supplementation in the form of glyceryl triacetate (GTA) for the ability to restore the N-methyl D-aspartate (NMDA) receptor-induced histone hypoacetylation and to ameliorate associated behavioral phenotypes in mice. Taking cues from the studies in SH-SY5Y cells, we monitored acetylation status of specific lysine residues of histones H3 and H4 (H3K9 and H4K8) to determine the impact of oral GTA supplementation in vivo. Mice treated chronically with MK-801 (10 days; 0.15 mg/kg daily) induced hypoacetylation of H3K9 and H4K8 in the hippocampus. Daily oral supplementation of GTA (2.9 g/kg) was able to prevent this MK801-induced hypoacetylation significantly. Though MK-801-stimulated decreases in acetyl-H3K9 and acetyl-H4K8 were found to be associated with ERK1/2 activation, GTA seemed to act independent of this pathway. Simultaneously, GTA administration was able to attenuate the chronic MK-801-induced cognitive behavior phenotypes in elevated plus maze and novel object recognition tests. Not only MK-801, GTA also demonstrated protective effects against behavioral phenotypes generated by another NMDA receptor antagonist, ketamine. Acute (single injection) ketamine-mediated hyperactivity phenotype and chronic (10 days treatment) ketamine-induced phenotype of exaggerated immobility in forced swim test were ameliorated by GTA. The signature behavioral phenotypes induced by acute and chronic regimen of NMDA receptor antagonists seemed to be attenuated by GTA. This study thus provides a therapeutic paradigm of using dietary acetate supplement in psychiatric disorders.

  3. Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

    PubMed Central

    Keays, David A.; Tian, Guoling; Poirier, Karine; Huang, Guo-Jen; Siebold, Christian; Cleak, James; Oliver, Peter L.; Fray, Martin; Harvey, Robert J.; Molnár, Zoltán; Piñon, Maria C.; Dear, Neil; Valdar, William; Brown, Steve D.M.; Davies, Kay E.; Rawlins, J. Nicholas P.; Cowan, Nicholas J.; Nolan, Patrick; Chelly, Jamel; Flint, Jonathan

    2007-01-01

    Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders. PMID:17218254

  4. Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes.

    PubMed

    Rocca, Maria A; Vacchi, Laura; Rodegher, Mariaemma; Meani, Alessandro; Martinelli, Vittorio; Possa, Francesca; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-10-01

    Using fMRI during a face encoding (FE) task, we investigated the behavioral and fMRI correlates of FE in patients with relapse-onset multiple sclerosis (MS) at different stages of the disease and their relation with attentive-executive performance and structural MRI measures of disease-related damage. A fMRI FE task was administered to 75 MS patients (11 clinically isolated syndromes - CIS, 40 relapsing-remitting - RRMS - and 24 secondary progressive - SPMS) and 22 healthy controls (HC). fMRI activity during the face encoding condition was correlated with behavioral, clinical, neuropsychological and structural MRI variables. All study subjects activated brain regions belonging to face perception and encoding network, and deactivated areas of the default-mode network. Compared to HC, MS patients had the concomitant presence of areas of increased and decreased activations as well as increased and decreased deactivations. Compared to HC or RRMS, CIS patients experienced an increased recruitment of posterior-visual areas. Thalami, para-hippocampal gyri and right anterior cingulum were more activated in RRMS vs CIS or SPMS patients, while an increased recruitment of frontal areas was observed in SPMS vs RRMS. Areas of abnormal activations were significantly correlated with clinical, cognitive-behavioral and structural MRI measures. Abnormalities of FE network occur in MS and vary across disease clinical phenotypes. Early in the disease, an increased recruitment of areas typically devoted to face perception and encoding occurs. In SPMS patients, abnormal functional recruitment of frontal lobe areas might contribute to the severity of clinical manifestations.

  5. Integrated Behavioral Z-Scoring Increases the Sensitivity and Reliability of Behavioral Phenotyping in mice: Relevance to Emotionality and Sex

    PubMed Central

    Guilloux, Jean-Philippe; Seney, Marianne; Edgar, Nicole; Sibille, Etienne

    2011-01-01

    Defining anxiety- and depressive-like states in mice (“emotionality”) is best characterized by the use of complementary tests, leading sometimes to puzzling discrepancies and lack of correlation between similar paradigms. To address this issue, we hypothesized that integrating measures along the same behavioral dimensions in different tests would reduce the intrinsic variability of single tests and provide a robust characterization of the underlying “emotionality” of individual mouse, similarly as mood and related syndromes are defined in humans through various related symptoms over time. We describe the use of simple mathematical and integrative tools to help phenotype animals across related behavioral tests (syndrome diagnosis) and experiments (meta-analysis). We applied z-normalization across complementary measures of emotionality in different behavioral tests after unpredictable chronic mild stress (UCMS) or prolonged corticosterone exposure - two approaches to induce anxious-/depressive-like states in mice. Combining z-normalized test values, lowered the variance of emotionality measurement, enhanced the reliability of behavioral phenotyping, and increased analytical opportunities. Comparing integrated emotionality scores across studies revealed a robust sexual dimorphism in the vulnerability to develop high emotionality, manifested as higher UCMS-induced emotionality z-scores, but lower corticosterone-induced scores in females compared to males. Interestingly, the distribution of individual z-scores revealed a pattern of increased baseline emotionality in female mice, reminiscent of what is observed in humans. Together, we show that the z-scoring method yields robust measures of emotionality across complementary tests for individual mice and experimental groups, hence facilitating the comparison across studies and refining the translational applicability of these models. PMID:21277897

  6. Studies of planning behavior of aircraft pilots in normal, abnormal and emergency situations

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of planning is presented and the results of applying the methodology within two experimental investigations of planning behavior of aircraft pilots in normal, abnormal, and emergency situations are discussed. Beyond showing that the methodology yields consistent results, these experiments also lead to concepts in terms of a dichotomy between event driven and time driven planning, subtle effects of automation on planning, and the relationship of planning to workload and flight performance.

  7. Changes in food intake and abnormal behavior using a puzzle feeder in newly acquired sub-adult rhesus monkeys (Macaca mulatta): a short term study.

    PubMed

    Lee, Jae-Il; Lee, Chi-Woo; Kwon, Hyouk-Sang; Kim, Young-Tae; Park, Chung-Gyu; Kim, Sang-Joon; Kang, Byeong-Cheol

    2008-10-01

    The majority of newly acquired nonhuman primates encounter serious problems adapting themselves to new environments or facilities. In particular, loss of appetite and abnormal behavior can occur in response to environmental stresses. These adaptation abnormalities can ultimately have an affect on the animal's growth and well-being. In this study, we evaluated the affects of a puzzle feeder on the food intake and abnormal behavior of newly acquired rhesus monkeys for a short period. The puzzle feeder was applied to 47- to 58-month-old animals that had never previously encountered one. We found that there was no difference in the change of food intake between the bucket condition and the puzzle feeder condition. In contrast, the time spent for consumption of food was three times longer in the puzzle feeder condition than in the bucket condition. Two monkeys initially exhibited stereotypic behavior. One showed a decreasing, and the other an increasing pattern of abnormal behavior after introduction of the puzzle feeder. In conclusion, this result suggests that over a short period, the puzzle feeder can only affect the time for food consumption since it failed to affect the food intake and did not consistently influence stereotypic behaviors in newly acquired rhesus monkeys.

  8. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens

    PubMed Central

    Brunberg, Emma I.; Rodenburg, T. Bas; Rydhmer, Lotta; Kjaer, Joergen B.; Jensen, Per; Keeling, Linda J.

    2016-01-01

    Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain–gut–microbiota axis. PMID:27500137

  9. Change in the Behavioral Phenotype of Adolescents and Adults with FXS: Role of the Family Environment.

    PubMed

    Smith, Leann E; Hong, Jinkuk; Greenberg, Jan S; Mailick, Marsha R

    2016-05-01

    The present study examined trajectories of adaptive behavior, behavior problems, psychological symptoms, and autism symptoms in adolescents and adults with fragile X syndrome (n = 147) over a three-year period. Adaptive behavior significantly increased over time, particularly for adolescents, and the severity of behavior problems decreased over time. Family environmental factors predicted phenotypic variables net of gender, intellectual disability status, and medication use. Maternal warmth was associated with higher levels of adaptive behavior, lower levels of autism symptoms, and decreases in behavior problems over time. Maternal depressive symptoms and criticism were associated with higher levels of psychological symptoms. Implications for interventions are discussed.

  10. Detection of Structural Abnormalities Using Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.

    1996-01-01

    This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.

  11. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  12. Connectome-Wide Phenotypical and Genotypical Associations in Focal Dystonia

    PubMed Central

    Fuertinger, Stefan

    2017-01-01

    Isolated focal dystonia is a debilitating movement disorder of unknown pathophysiology. Early studies in focal dystonias have pointed to segregated changes in brain activity and connectivity. Only recently has the notion that dystonia pathophysiology may lie in abnormalities of large-scale brain networks appeared in the literature. Here, we outline a novel concept of functional connectome-wide alterations that are linked to dystonia phenotype and genotype. Using a neural community detection strategy and graph theoretical analysis of functional MRI data in human patients with the laryngeal form of dystonia (LD) and healthy controls (both males and females), we identified an abnormally widespread hub formation in LD, which particularly affected the primary sensorimotor and parietal cortices and thalamus. Left thalamic regions formed a delineated functional community that highlighted differences in network topology between LD patients with and without family history of dystonia. Conversely, marked differences in the topological organization of parietal regions were found between phenotypically different forms of LD. The interface between sporadic genotype and adductor phenotype of LD yielded four functional communities that were primarily governed by intramodular hub regions. Conversely, the interface between familial genotype and abductor phenotype was associated with numerous long-range hub nodes and an abnormal integration of left thalamus and basal ganglia. Our findings provide the first comprehensive atlas of functional topology across different phenotypes and genotypes of focal dystonia. As such, this study constitutes an important step toward defining dystonia as a large-scale network disorder, understanding its causative pathophysiology, and identifying disorder-specific markers. SIGNIFICANCE STATEMENT The architecture of the functional connectome in focal dystonia was analyzed in a large population of patients with laryngeal dystonia. Breaking with the

  13. Redefining Aging in HIV Infection Using Phenotypes.

    PubMed

    Stoff, David M; Goodkin, Karl; Jeste, Dilip; Marquine, Maria

    2017-10-01

    This article critically reviews the utility of "phenotypes" as behavioral descriptors in aging/HIV research that inform biological underpinnings and treatment development. We adopt a phenotypic redefinition of aging conceptualized within a broader context of HIV infection and of aging. Phenotypes are defined as dimensions of behavior, closely related to fundamental mechanisms, and, thus, may be more informative than chronological age. Primary emphasis in this review is given to comorbid aging and cognitive aging, though other phenotypes (i.e., disability, frailty, accelerated aging, successful aging) are also discussed in relation to comorbid aging and cognitive aging. The main findings that emerged from this review are as follows: (1) the phenotypes, comorbid aging and cognitive aging, are distinct from each other, yet overlapping; (2) associative relationships are the rule in HIV for comorbid and cognitive aging phenotypes; and (3) HIV behavioral interventions for both comorbid aging and cognitive aging have been limited. Three paths for research progress are identified for phenotype-defined aging/HIV research (i.e., clinical and behavioral specification, biological mechanisms, intervention targets), and some important research questions are suggested within each of these research paths.

  14. Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice.

    PubMed

    Steinmetz, Adam B; Stern, Sarah A; Kohtz, Amy S; Descalzi, Giannina; Alberini, Cristina M

    2018-01-24

    Autism spectrum disorder (ASD) is a developmental disability characterized by impairments in social interaction and repetitive behavior, and is also associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASD symptomatology; thus, identifying novel therapies is urgently needed. We used male BTBR T + Itpr3 tf /J (BTBR) mice, a model that reproduces most of the core behavioral phenotypes of ASD, to test the effects of systemic administration of insulin-like growth factor II (IGF-II), a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-II treatments reverse the typical defects in social interaction, cognitive/executive functions, and repetitive behaviors reflective of ASD-like phenotypes. In BTBR mice, IGF-II, via IGF-II receptor, but not via IGF-I receptor, reverses the abnormal levels of the AMPK-mTOR-S6K pathway and of active translation at synapses. Thus, IGF-II may represent a novel potential therapy for ASD. SIGNIFICANCE STATEMENT Currently, there is no effective treatment for autism spectrum disorder (ASD), a developmental disability affecting a high number of children. Using a mouse model that expresses most of the key core as well as associated behavioral deficits of ASD, that are, social, cognitive, and repetitive behaviors, we report that a systemic administration of the polypeptide insulin-like growth factor II (IGF-II) reverses all these deficits. The effects of IGF-II occur via IGF-II receptors, and not IGF-I receptors, and target both basal and learning-dependent molecular abnormalities found in several ASD mice models, including those of identified genetic mutations. We suggest that IGF-II represents a potential novel therapeutic target for ASD. Copyright © 2018 the authors 0270-6474/18/371015-15$15.00/0.

  15. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule

    PubMed Central

    2014-01-01

    Background Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. Methods and results We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 μM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. Conclusion These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy. PMID:25079250

  16. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome.

    PubMed

    Bischof, Jocelyn M; Stewart, Colin L; Wevrick, Rachel

    2007-11-15

    Prader-Willi syndrome (PWS) is an imprinted genetic obesity disorder characterized by abnormalities of growth and metabolism. Multiple mouse models with deficiency of one or more PWS candidate genes have partially correlated individual genes with aspects of the PWS phenotype, although the genetic origin of defects in growth and metabolism has not been elucidated. Gene-targeted mutation of the PWS candidate gene Magel2 in mice causes altered circadian rhythm output and reduced motor activity. We now report that Magel2-null mice exhibit neonatal growth retardation, excessive weight gain after weaning, and increased adiposity with altered metabolism in adulthood, recapitulating fundamental aspects of the PWS phenotype. Magel2-null mice provide an important opportunity to examine the physiological basis for PWS neonatal failure to thrive and post-weaning weight gain and for the relationships among circadian rhythm, feeding behavior, and metabolism.

  17. The after-hours circadian mutant has reduced phenotypic plasticity in behaviors at multiple timescales and in sleep homeostasis.

    PubMed

    Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter

    2017-12-19

    Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.

  18. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: Expanding the phenotype associated with the recurrent 3q13.2-q13.31 microdeletion.

    PubMed

    Quintela, Ines; Gomez-Guerrero, Lorena; Fernandez-Prieto, Montse; Resches, Mariela; Barros, Francisco; Carracedo, Angel

    2015-12-01

    In recent years, the advent of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and its use as a first genetic test for the diagnosis of patients with neurodevelopmental phenotypes has allowed the identification of novel submicroscopic chromosomal abnormalities (namely, copy number variants or CNVs), imperceptible by conventional cytogenetic techniques. The 3q13.31 microdeletion syndrome (OMIM #615433) has been defined as a genomic disorder mainly characterized by developmental delay, postnatal overgrowth, hypotonia, genital abnormalities in males, and characteristic craniofacial features. Although the 3q13.31 CNVs are variable in size, a 3.4 Mb recurrently altered region at 3q13.2-q13.31 has been recently described and non-allelic homologous recombination (NAHR) mediated by flanking human endogenous retrovirus (HERV-H) elements has been suggested as the mechanism of deletion formation. We expand the phenotypic spectrum associated with this recurrent deletion performing the clinical description of a 9-year-old female patient with autistic disorder, total absence of language, intellectual disability, anxiety disorder and disruptive, and compulsive eating behaviors. The array-based molecular karyotyping allowed the identification of a de novo recurrent 3q13.2-q13.31 deletion encompassing 25 genes. In addition, we compare her clinical phenotype with previous reports of patients with neurodevelopmental and behavioral disorders and proximal 3q microdeletions. Finally, we also review the candidate genes proposed so far for these phenotypes. © 2015 Wiley Periodicals, Inc.

  19. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    PubMed Central

    Köhler, Sebastian; Doelken, Sandra C.; Mungall, Christopher J.; Bauer, Sebastian; Firth, Helen V.; Bailleul-Forestier, Isabelle; Black, Graeme C. M.; Brown, Danielle L.; Brudno, Michael; Campbell, Jennifer; FitzPatrick, David R.; Eppig, Janan T.; Jackson, Andrew P.; Freson, Kathleen; Girdea, Marta; Helbig, Ingo; Hurst, Jane A.; Jähn, Johanna; Jackson, Laird G.; Kelly, Anne M.; Ledbetter, David H.; Mansour, Sahar; Martin, Christa L.; Moss, Celia; Mumford, Andrew; Ouwehand, Willem H.; Park, Soo-Mi; Riggs, Erin Rooney; Scott, Richard H.; Sisodiya, Sanjay; Vooren, Steven Van; Wapner, Ronald J.; Wilkie, Andrew O. M.; Wright, Caroline F.; Vulto-van Silfhout, Anneke T.; de Leeuw, Nicole; de Vries, Bert B. A.; Washingthon, Nicole L.; Smith, Cynthia L.; Westerfield, Monte; Schofield, Paul; Ruef, Barbara J.; Gkoutos, Georgios V.; Haendel, Melissa; Smedley, Damian; Lewis, Suzanna E.; Robinson, Peter N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online. PMID:24217912

  20. The Distribution of Obesity Phenotypes in HIV-Infected African Population

    PubMed Central

    Nguyen, Kim Anh; Peer, Nasheeta; de Villiers, Anniza; Mukasa, Barbara; Matsha, Tandi E.; Mills, Edward J.; Kengne, Andre Pascal

    2016-01-01

    The distribution of body size phenotypes in people with human immunodeficiency virus (HIV) infection has yet to be characterized. We assessed the distribution of body size phenotypes overall, and according to antiretroviral therapy (ART), diagnosed duration of the infection and CD4 count in a sample of HIV infected people recruited across primary care facilities in the Western Cape Province, South Africa. Adults aged ≥ 18 years were consecutively recruited using random sampling procedures, and their cardio-metabolic profile were assessed during March 2014 and February 2015. They were classified across body mass index (BMI) categories as normal-weight (BMI < 25 kg/m2), overweight (25 ≤ BMI < 30 kg/m2), and obese (BMI ≥ 30 kg/m2), and further classified according to their metabolic status as “metabolically healthy” vs. “metabolically abnormal” if they had less than two vs. two or more of the following abnormalities: high blood glucose, raised blood pressure, raised triglycerides, and low HDL-cholesterol. Their cross-classification gave the following six phenotypes: normal-weight metabolically healthy (NWMH), normal-weight metabolically abnormal (NWMA), overweight metabolically healthy (OvMH), overweight metabolically abnormal (OvMA), obese metabolically healthy (OMH), and obese metabolically abnormal (OMA). Among the 748 participants included (median age 38 years (25th–75th percentiles: 32–44)), 79% were women. The median diagnosed duration of HIV was five years; the median CD4 count was 392 cells/mm3 and most participants were on ART. The overall distribution of body size phenotypes was the following: 31.7% (NWMH), 11.7% (NWMA), 13.4% (OvMH), 9.5% (OvMA), 18.6% (OMH), and 15.1% (OMA). The distribution of metabolic phenotypes across BMI levels did not differ significantly in men vs. women (p = 0.062), in participants below vs. those at or above median diagnosed duration of HIV infection (p = 0.897), in participants below vs. those at or above median

  1. Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome.

    PubMed

    Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Fukuda, Hiroshi; Mori, Etsuro

    2013-05-01

    Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder and is generally regarded as a genetic model of obesity. Individuals with PWS exhibit behavioral symptoms including temper tantrums, rigid thinking, and compulsive behavior. The most striking feature of PWS is abnormal eating behavior, including hyperphagia, intense preoccupation with food, and incessant food seeking. To explore brain regions associated with the behavioral symptoms of PWS, we investigated differences in resting-state regional cerebral blood flow (rCBF) between individuals with PWS and healthy controls. Correlation analyses were also performed to examine the relationship between rCBF and altered eating behavior in PWS individuals. Twelve adults with PWS and 13 age- and gender-matched controls underwent resting-state single photon emission computerized tomography (SPECT) with N-isopropyl-p-[(123)I] iodoamphetamine (IMP). The rCBF data were analyzed on a voxel-by-voxel basis using SPM5 software. The results demonstrated that compared with controls, individuals with PWS had significantly lower rCBF in the right thalamus, left insular cortex, bilateral lingual gyrus, and bilateral cerebellum. They had significantly higher rCBF in the right inferior frontal gyrus, left middle/inferior frontal gyrus (anterior and posterior clusters), and bilateral angular gyrus. Additionally, rCBF in the left insula, which was significantly lower in PWS individuals, was negatively correlated with the eating behavior severity score. These results suggest that specific brain regions, particularly the left insula, may be partly responsible for the behavioral symptoms in PWS. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders.

    PubMed

    Sukoff Rizzo, Stacey J; Crawley, Jacqueline N

    2017-02-08

    Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.

  3. A new case of interstitial 6q16.2 deletion in a patient with Prader-Willi-like phenotype and investigation of SIM1 gene deletion in 87 patients with syndromic obesity.

    PubMed

    Varela, Monica C; Simões-Sato, Alex Y; Kim, Chong A; Bertola, Débora R; De Castro, Claudia I E; Koiffmann, Celia P

    2006-01-01

    The association of obesity, phenotypic abnormalities and mental retardation characterizes syndromic obesity. Its most common form is the Prader-Willi syndrome (PWS-- neonatal hypotonia, poor sucking, delayed psychomotor development, hyperphagia, severe obesity, short stature, small hands and feet, hypogonadism, mild to moderate mental retardation and behavioral disorders). A PWS-like phenotype has been described in patients with chromosome abnormalities involving the chromosome region 6q16.2 that includes the SIM1 gene. Herein we report cytogenetic and gene studies including a screening for the SIM1 gene deletion, performed on 87 patients with PWS-like phenotype, and describe the fifth case of syndromic obesity with an interstitial deletion of the chromosome segment 6q16-q21 and suggest that mutational analysis and further studies of the parental origin of chromosome alterations of 6q16.2 in patients with and without PWS-like phenotype are needed to evaluate possible imprinting effects of SIM1 gene and establish the contribution that alterations in this gene makes to the etiology of syndromic and non-syndromic obesity.

  4. Autistic-spectrum disorders in Down syndrome: further delineation and distinction from other behavioral abnormalities.

    PubMed

    Carter, John C; Capone, George T; Gray, Robert M; Cox, Christiane S; Kaufmann, Walter E

    2007-01-05

    The present study extends our previous work characterizing the behavioral features of autistic-spectrum disorder (ASD) in Down syndrome (DS) using the Aberrant Behavior Checklist (ABC) and Autism Behavior Checklist (AutBehav). We examined which specific behaviors distinguished the behavioral phenotype of DS + ASD from other aberrant behavior disorders in DS, by determining the relative contribution of ABC and AutBehav subscales and items to the diagnosis of ASD. A total of 127 subjects (aged 2-24 years; mean age: 8.4 years; approximately 70% male), comprising: a cohort of 64 children and adolescents with DS and co-morbid ASD (DS + ASD), 19 with DS and stereotypic movement disorder (DS + SMD), 18 with DS and disruptive behaviors (DS + DB), and 26 with DS and no co-morbid behavior disorders (DS + none) were examined using the aforementioned measures of aberrant behavior. We found that subjects with DS + ASD showed the most severe aberrant behavior, especially stereotypy compared to DS + none and lethargy/social withdrawal and relating problems compared to DS + SMD. Specifically, relatively simple stereotypic behavior differentiated DS + ASD from DS + DB, whereas odd/bizarre stereotypic and anxious behavior characterized DS + ASD relative to DS + SMD and DS + none. Additionally, in a subset of subjects with DS + ASD and anxiety, social withdrawal was particularly pronounced. Overall, our findings indicate that a diagnosis of DS + ASD represents a distinctive set of aberrant behaviors marked by characteristic odd/bizarre stereotypic behavior, anxiety, and social withdrawal.

  5. Integrated behavioral z-scoring increases the sensitivity and reliability of behavioral phenotyping in mice: relevance to emotionality and sex.

    PubMed

    Guilloux, Jean-Philippe; Seney, Marianne; Edgar, Nicole; Sibille, Etienne

    2011-04-15

    Defining anxiety- and depressive-like states in mice (emotionality) is best characterized by the use of complementary tests, leading sometimes to puzzling discrepancies and lack of correlation between similar paradigms. To address this issue, we hypothesized that integrating measures along the same behavioral dimensions in different tests would reduce the intrinsic variability of single tests and provide a robust characterization of the underlying "emotionality" of individual mouse, similarly as mood and related syndromes are defined in humans through various related symptoms over time. We describe the use of simple mathematical and integrative tools to help phenotype animals across related behavioral tests (syndrome diagnosis) and experiments (meta-analysis). We applied z-normalization across complementary measures of emotionality in different behavioral tests after unpredictable chronic mild stress (UCMS) or prolonged corticosterone exposure - two approaches to induce anxious-/depressive-like states in mice. Combining z-normalized test values, lowered the variance of emotionality measurement, enhanced the reliability of behavioral phenotyping, and increased analytical opportunities. Comparing integrated emotionality scores across studies revealed a robust sexual dimorphism in the vulnerability to develop high emotionality, manifested as higher UCMS-induced emotionality z-scores, but lower corticosterone-induced scores in females compared to males. Interestingly, the distribution of individual z-scores revealed a pattern of increased baseline emotionality in female mice, reminiscent of what is observed in humans. Together, we show that the z-scoring method yields robust measures of emotionality across complementary tests for individual mice and experimental groups, hence facilitating the comparison across studies and refining the translational applicability of these models. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: Distinct effects of lithium chloride and clozapine.

    PubMed

    Deslauriers, Jessica; Belleville, Karine; Beaudet, Nicolas; Sarret, Philippe; Grignon, Sylvain

    2016-03-15

    Schizophrenia patients show a high rate of premature mortality due to suicide. The pathophysiological mechanisms of these suicidal behaviors in schizophrenia do not appear to involve serotonergic neurotransmission as found in the general population. Our aim was to develop an in vivo model of schizophrenia presenting suicide-trait-related behaviors such as aggressiveness, impulsivity, anxiety and helplessness. We opted for a two-hit model: C57BL/6 dams were injected with polyI:C on gestational day 12. The pups were submitted to social isolation for 4weeks after weaning. During the last week of social isolation and 30min before behavioral testing, the mice received vehicle, lithium chloride or clozapine. Lithium chloride is well known for its suicide preventive effects in the non-schizophrenic population, while clozapine is the antipsychotic with the best-established suicide preventive effect. The two-hit model induced several schizophrenia-related and suicide-trait-related behaviors in male, but not female, mice. Additionally, lithium chloride improved prepulse inhibition, aggressiveness, impulsivity and anxiety-like behavior in socially isolated mice only, whereas clozapine prevented behavioral abnormalities mainly in mice prenatally exposed to polyI:C and submitted to isolated rearing. The distinct effects of lithium chloride and clozapine suggested that mice prenatally exposed to polyI:C and submitted to social isolation presented a distinct phenotype from that of mice submitted to social isolation only. Because diagnosing suicidal risk in patients is a challenge for psychiatrists given the lack of specific clinical predictors, our in vivo model could help in gaining a better understanding of the mechanisms underlying suicidal behavior in the context of schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease

    PubMed Central

    Shin, Rick; Kobayashi, Katsunori; Hagihara, Hideo; Kogan, Jeffrey H; Miyake, Shinichi; Tajinda, Katsunori; Walton, Noah M; Gross, Adam K; Heusner, Carrie L; Chen, Qian; Tamura, Kouichi; Miyakawa, Tsuyoshi; Matsumoto, Mitsuyuki

    2013-01-01

    Objectives There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. Methods Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. Results The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. Conclusions Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the

  8. The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease.

    PubMed

    Shin, Rick; Kobayashi, Katsunori; Hagihara, Hideo; Kogan, Jeffrey H; Miyake, Shinichi; Tajinda, Katsunori; Walton, Noah M; Gross, Adam K; Heusner, Carrie L; Chen, Qian; Tamura, Kouichi; Miyakawa, Tsuyoshi; Matsumoto, Mitsuyuki

    2013-06-01

    There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy

  9. PRIMARY CILIARY DYSKINESIA: DIAGNOSTIC AND PHENOTYPIC FEATURES

    EPA Science Inventory

    Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. We hypothesized that the major clinical and biologic phenotypic markers of the disease could be evaluated by studying a cohort of subjects suspected of having PCD. ...

  10. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    PubMed

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  11. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. © 2013 Wiley Periodicals, Inc.

  12. Trans-generational Effects of Early Life Stress: The Role of Maternal Behavior

    PubMed Central

    Schmauss, Claudia; Lee-McDermott, Zoe; Medina, Liorimar Ramos

    2014-01-01

    Using a rodent paradigm of early life stress, infant maternal separation (IMS), we examined whether IMS-triggered behavioral and epigenetic phenotypes of the stress-susceptible mouse strain Balb/c are propagated across generations. These phenotypes include impaired emotional behavior and deficits in executive cognitive functions in adulthood, and they are associated with increased acetylation of histone H4K12 protein (acH4K12) in the forebrain neocortex. These behavioral and epigenetic phenotypes are transmitted to the first progeny of IMS Balb/c mothers, but not fathers, and cross-fostering experiments revealed that this transmission is triggered by maternal behavior and modulated by the genetic background of the pups. In the continued absence of the original stressor, this transmission fades in later progenies. An adolescent treatment that lowers the levels of acH4K12 in IMS Balb/c mice augments their emotional abnormality but abolishes their cognitive deficits. Conversely, a treatment that further elevates the levels of acH4K12 improved the emotional phenotype but had no effects on the cognitive deficits. Moreover, treatments that prevent the emergence of either emotional or cognitive deficits in the mother also prevent the establishment of such deficits in her offspring, indicating that trans-generational effects of early life stress can be prevented. PMID:24786242

  13. Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder.

    PubMed

    Chaudhry, A; Noor, A; Degagne, B; Baker, K; Bok, L A; Brady, A F; Chitayat, D; Chung, B H; Cytrynbaum, C; Dyment, D; Filges, I; Helm, B; Hutchison, H T; Jeng, L J B; Laumonnier, F; Marshall, C R; Menzel, M; Parkash, S; Parker, M J; Raymond, L F; Rideout, A L; Roberts, W; Rupps, R; Schanze, I; Schrander-Stumpel, C T R M; Speevak, M D; Stavropoulos, D J; Stevens, S J C; Thomas, E R A; Toutain, A; Vergano, S; Weksberg, R; Scherer, S W; Vincent, J B; Carter, M T

    2015-09-01

    Studies of genomic copy number variants (CNVs) have identified genes associated with autism spectrum disorder (ASD) and intellectual disability (ID) such as NRXN1, SHANK2, SHANK3 and PTCHD1. Deletions have been reported in PTCHD1 however there has been little information available regarding the clinical presentation of these individuals. Herein we present 23 individuals with PTCHD1 deletions or truncating mutations with detailed phenotypic descriptions. The results suggest that individuals with disruption of the PTCHD1 coding region may have subtle dysmorphic features including a long face, prominent forehead, puffy eyelids and a thin upper lip. They do not have a consistent pattern of associated congenital anomalies or growth abnormalities. They have mild to moderate global developmental delay, variable degrees of ID, and many have prominent behavioral issues. Over 40% of subjects have ASD or ASD-like behaviors. The only consistent neurological findings in our cohort are orofacial hypotonia and mild motor incoordination. Our findings suggest that hemizygous PTCHD1 loss of function causes an X-linked neurodevelopmental disorder with a strong propensity to autistic behaviors. Detailed neuropsychological studies are required to better define the cognitive and behavioral phenotype. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction

    PubMed Central

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Parvaz, Muhammad A.; Alia-Klein, Nelly; Volkow, Nora D.; Goldstein, Rita Z.

    2012-01-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) which was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction. PMID:22775285

  15. [Abnormal cervicovaginal cytology in women with rheumatoid arthritis].

    PubMed

    Mercado, Ulises

    2010-02-01

    Patients with rheumatoid arthritis (RA) are at increased risk of infections and cancer. A link between RA and abnormal cervicovaginal cytology has rarely been reported. The aim of this study was to review cervicovaginal cytology results in women with RA and compare them with a control population. Sexual behavior also was investigated. Cervicovaginal cytology results of 95 women with RA were compared to those of a control population of 1,719 women attending at the same hospital and followed until June 2009. Records of RA patients were reviewed to obtain clinical data, particularly sexual behavior. Of 95 RA patients, 13/95 had an abnormal cervicovaginal cytology result, compared with 120/1,719 controls. Twelve/13 had squamous intraepithelial lesions (SIL), compared with 27/120 controls. There was no significant difference in sexual partners between women with RA and controls. Women with RA without abnormal cervicovaginal cytology had less sexual partners than those with RA and abnormal cytology. Two women with RA and abnormal cervicovaginal cytology had a history of condylomata and herpes genital. Three/13 women with RA developed abnormal cervicovaginal cytology after 12 to 36 months initiating their illness. None from them had ever received immunosuppressants. Women with RA have an increased prevalence of abnormal cervical cytology, compared with a control population. It may be related to chronic inflammatory disease and sexual behavior.

  16. Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure.

    PubMed

    Song, Hailong; Konan, Landry M; Cui, Jiankun; Johnson, Catherine E; Langenderfer, Martin; Grant, DeAna; Ndam, Tina; Simonyi, Agnes; White, Tommi; Demirci, Utkan; Mott, David R; Schwer, Doug; Hubler, Graham K; Cernak, Ibolja; DePalma, Ralph G; Gu, Zezong

    2018-07-16

    Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10 -3  ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  18. Autistic Traits and Abnormal Sensory Experiences in Adults

    ERIC Educational Resources Information Center

    Horder, Jamie; Wilson, C. Ellie; Mendez, M. Andreina; Murphy, Declan G.

    2014-01-01

    Sensory processing abnormalities are common in autism spectrum disorders (ASD), and now form part of the "Diagnostic and Statistical Manual 5th Edition" (DSM-5) diagnostic criteria, but it is unclear whether they characterize the "broader phenotype" of the disorder. We recruited adults (n = 772) with and without an ASD and…

  19. Validation and implementation of a novel high-throughput behavioral phenotyping instrument for mice

    PubMed Central

    Brodkin, Jesse; Frank, Dana; Grippo, Ryan; Hausfater, Michal; Gulinello, Maria; Achterholt, Nils; Gutzen, Christian

    2015-01-01

    Background Behavioral assessment of mutant mouse models and novel candidate drugs is a slow and labor intensive process. This limitation produces a significant impediment to CNS drug discovery. New method By combining video and vibration analysis we created an automated system that provides the most detailed description of mouse behavior available. Our system (The Behavioral Spectrometer) allowed for the rapid assessment of behavioral abnormalities in the BTBR model of Autism, the restraint model of stress and the irritant model of inflammatory pain. Results We found that each model produced a unique alteration of the spectrum of behavior emitted by the mice. BTBR mice engaged in more grooming and less rearing behaviors. Prior restraint stress produced dramatic increases in grooming activity at the expense of locomotor behavior. Pain produced profound decreases in emitted behavior that were reversible with analgesic treatment. Comparison with existing method(s) We evaluated our system through a direct comparison on the same subjects with the current “gold standard” of human observation of video recordings. Using the same mice evaluated over the same range of behaviors, the Behavioral Spectrometer produced a quantitative categorization of behavior that was highly correlated with the scores produced by trained human observers (r=0.97). Conclusions Our results show that this new system is a highly valid and sensitive method to characterize behavioral effects in mice. As a fully automated and easily scalable instrument the Behavioral Spectrometer represents a high-throughput behavioral tool that reduces the time and labor involved in behavioral research. PMID:24384067

  20. Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    PubMed Central

    Brown, Euan R.; Leccia, Nicola I.; Squarzoni, Paola; Tarallo, Raffaella; Alfano, Christian; Caputi, Luigi; D'Ambrosio, Palmira; Daniele, Paola; D'Aniello, Enrico; D'Aniello, Salvatore; Maiella, Sylvie; Miraglia, Valentina; Russo, Monia Teresa; Sorrenti, Gerarda; Branno, Margherita; Cariello, Lucio; Cirino, Paola; Locascio, Annamaria; Spagnuolo, Antonietta; Zanetti, Laura; Ristoratore, Filomena

    2008-01-01

    Background The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Methodology/Principal Findings Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Conclusions/Significance Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity. PMID:18523552

  1. [Behavioral phenotypes: cognitive and emotional explanation].

    PubMed

    Pérez-Alvarez, F; Timoneda-Gallart, C

    We present a series of Behavioural phenotypes treated with neurocognitive and neuroemotional procedure. A sample of 26 cases were selected according to qualitative methodology from neuropediatric patients. The method was based on using the PASS theory of intelligence to approach the cognitive problem and the theory of masquerade behaviour as self-defence to solve the emotional problem. Both theories have neurological bases. DN:CAS battery was utilized for assessment of cognitive processes. On the other hand, analysis of cases was carried out doing data analysis with video recorder device. All cases were considered responder cases although in different degree. The responder was defined as the patient which reached better intellectual achievement with respect to cognitive function and which gave up, at least partially, masquerade Behaviour with respect to emotional function. The Behaviour of the Behavioural phenotypes has neurological rationale. The PASS theory and the planning, in particular, supported by prefrontal cortex justifies consistently some behaviours. The masquerade Behaviour theory is explained by the fear emotional response mechanism which means emotion is a cerebral processing with neurological rationale. The Behavioural phenotypes are Behaviours and every Behaviour can be explained by neurological reasons both cognitive and emotional reasons. So, they can be treated by a cognitive and emotional procedure understood in the light of the neurology.

  2. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia.

    PubMed

    Matsumoto, Mitsuyuki; Straub, Richard E; Marenco, Stefano; Nicodemus, Kristin K; Matsumoto, Shun-Ichiro; Fujikawa, Akihiko; Miyoshi, Sosuke; Shobo, Miwako; Takahashi, Shinji; Yarimizu, Junko; Yuri, Masatoshi; Hiramoto, Masashi; Morita, Shuji; Yokota, Hiroyuki; Sasayama, Takeshi; Terai, Kazuhiro; Yoshino, Masayasu; Miyake, Akira; Callicott, Joseph H; Egan, Michael F; Meyer-Lindenberg, Andreas; Kempf, Lucas; Honea, Robyn; Vakkalanka, Radha Krishna; Takasaki, Jun; Kamohara, Masazumi; Soga, Takatoshi; Hiyama, Hideki; Ishii, Hiroyuki; Matsuo, Ayako; Nishimura, Shintaro; Matsuoka, Nobuya; Kobori, Masato; Matsushime, Hitoshi; Katoh, Masao; Furuichi, Kiyoshi; Weinberger, Daniel R

    2008-04-22

    The G protein-coupled receptor (GPCR) family is highly diversified and involved in many forms of information processing. SREB2 (GPR85) is the most conserved GPCR throughout vertebrate evolution and is expressed abundantly in brain structures exhibiting high levels of plasticity, e.g., the hippocampal dentate gyrus. Here, we show that SREB2 is involved in determining brain size, modulating diverse behaviors, and potentially in vulnerability to schizophrenia. Mild overexpression of SREB2 caused significant brain weight reduction and ventricular enlargement in transgenic (Tg) mice as well as behavioral abnormalities mirroring psychiatric disorders, e.g., decreased social interaction, abnormal sensorimotor gating, and impaired memory. SREB2 KO mice showed a reciprocal phenotype, a significant increase in brain weight accompanying a trend toward enhanced memory without apparent other behavioral abnormalities. In both Tg and KO mice, no gross malformation of brain structures was observed. Because of phenotypic overlap between SREB2 Tg mice and schizophrenia, we sought a possible link between the two. Minor alleles of two SREB2 SNPs, located in intron 2 and in the 3' UTR, were overtransmitted to schizophrenia patients in a family-based sample and showed an allele load association with reduced hippocampal gray matter volume in patients. Our data implicate SREB2 as a potential risk factor for psychiatric disorders and its pathway as a target for psychiatric therapy.

  4. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    NASA Technical Reports Server (NTRS)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  5. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  6. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  7. Musculo-Skeletal Abnormalities in Patients with Marfan Syndrome

    PubMed Central

    Al Kaissi, Ali; Zwettler, Elisabeth; Ganger, Rudolf; Schreiner, Simone; Klaushofer, Klaus; Grill, Franz

    2013-01-01

    Background A leptosomic body type is tall and thin with long hands. Marfanoid features may be familial in nature or pathological, as occurs in congenital contractual arachnodactyly (Beal’s syndrome) and Shprintzen-Goldberg syndrome mimicking some of the changes of Marfan syndrome, although not accompanied by luxation of lens and dissecting aneurysm of aorta. Methods In this article we collected eight patients who were consistent with the diagnosis of Marfan syndrome via phenotypic and genotypic characterization. Results Our patients manifested a constellation of variable presentations of musculo-skeletal abnormalities ranging from developmental dysplasia of the hip, protrusio acetabuli, leg length inequality, patellar instability, scoliosis, to early onset osteoarthritis. Each abnormality has been treated accordingly. Conclusion This is the first paper which includes the diagnosis and the management of the associated musculo-skeletal abnormalities in patients with Marfan syndrome, stressing that patients with Marfan syndrome are exhibiting great variability in the natural history and the severity of musculo-skeletal abnormalities. PMID:23399831

  8. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its) correlations to physiological and behavioral traits

    PubMed Central

    Quillet, Edwige; Bégout, Marie-Laure; Aupérin, Benoit; Khaw, Hooi Ling; Millot, Sandie; Valotaire, Claudiane; Kernéis, Thierry; Labbé, Laurent; Prunet, Patrick; Dupont-Nivet, Mathilde

    2017-01-01

    Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight) and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months), the plasma cortisol response to confinement stress (3 challenges) and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV) for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol) was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity. PMID:29253015

  9. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction.

    PubMed

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Parvaz, Muhammad A; Alia-Klein, Nelly; Volkow, Nora D; Goldstein, Rita Z

    2012-10-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie the maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction. © 2012 Published 2012. This article is a US Government work and is in the public domain in the USA.

  10. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    PubMed

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.

  11. Abnormal sleep architecture is an early feature in the E46K familial synucleinopathy.

    PubMed

    Zarranz, Juan J; Fernández-Bedoya, Anabel; Lambarri, Imanol; Gómez-Esteban, Juan C; Lezcano, Elena; Zamacona, Javier; Madoz, Pedro

    2005-10-01

    We examined 7 patients from a family harboring a novel mutation in the alpha-synuclein gene (E46K) that segregated with a phenotype of parkinsonism and dementia with Lewy bodies. An abnormal restless sleep was the presenting symptom in 2 of them. Polysomnographic (PSG) studies were performed in 4 of the 7 patients and in 2 asymptomatic carriers of the mutation. A severe loss of both rapid eye movement (REM) and non-REM sleep was observed in 2 patients complaining of insomnia and in a third parkinsonian member of the family who did not complain of trouble with sleeping. Another parkinsonian family member had a mild disorganization of the sleep architecture. The 2 asymptomatic carriers also had minor changes in the PSG findings. Episodes of bizarre behavior at night were reported historically in the 2 symptomatic patients, but we did not observed the behaviors during the PSG studies. REM sleep behavior disorder could not be recorded in any case. Our findings expand the spectrum of sleep disorders reported in synucleinopathies whether sporadic or familial. Copyright (c) 2005 Movement Disorder Society.

  12. Circadian abnormalities in mouse models of Smith-Magenis syndrome: evidence for involvement of RAI1.

    PubMed

    Lacaria, Melanie; Gu, Wenli; Lupski, James R

    2013-07-01

    Smith-Magenis syndrome (SMS; OMIM 182290) is a genomic disorder characterized by multiple congenital anomalies, intellectual disability, behavioral abnormalities, and disordered sleep resulting from an ~3.7 Mb deletion copy number variant (CNV) on chromosome 17p11.2 or from point mutations in the gene RAI1. The reciprocal duplication of this region results in another genomic disorder, Potocki-Lupski syndrome (PTLS; OMIM 610883), characterized by autism, intellectual disability, and congenital anomalies. We previously used chromosome-engineering and gene targeting to generate mouse models for PTLS (Dp(11)17/+), and SMS due to either deletion CNV or gene knock-out (Df(11)17-2/+ and Rai1(+/-) , respectively) and we observed phenotypes in these mouse models consistent with their associated human syndromes. To investigate the contribution of individual genes to the circadian phenotypes observed in SMS, we now report the analysis of free-running period lengths in Rai1(+/-) and Df(11)17-2/+ mice, as well as in mice deficient for another known circadian gene mapping within the commonly deleted/duplicated region, Dexras1, and we compare these results to those previously observed in Dp(11)17/+ mice. Reduced free-running period lengths were seen in Df(11)17-2/+, Rai1(+/-) , and Dexras1(-/-) , but not Dexras1(+/-) mice, suggesting that Rai1 may be the primary gene underlying the circadian defects in SMS. However, we cannot rule out the possibility that cis effects between multiple haploinsufficient genes in the SMS critical interval (e.g., RAI1 and DEXRAS1) either exacerbate the circadian phenotypes observed in SMS patients with deletions or increase their penetrance in certain environments. This study also confirms a previous report of abnormal circadian function in Dexras1(-/-) mice. Copyright © 2013 Wiley Periodicals, Inc.

  13. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    PubMed

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Adapting Phonological Awareness Interventions for Children with Down Syndrome Based on the Behavioral Phenotype: A Promising Approach?

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; King, Seth A.; Davidson, Kimberly A.; Puranik, Cynthia S.; Fulmer, Deborah; Mrachko, Alicia A.; Partanen, Jane; Al Otaiba, Stephanie; Fidler, Deborah J.

    2015-01-01

    Many children with Down syndrome demonstrate deficits in phonological awareness, a prerequisite to learning to read in an alphabetic language. The purpose of this study was to determine whether adapting a commercially available phonological awareness program to better align with characteristics associated with the behavioral phenotype of Down…

  15. GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction.

    PubMed

    Gandal, M J; Sisti, J; Klook, K; Ortinski, P I; Leitman, V; Liang, Y; Thieu, T; Anderson, R; Pierce, R C; Jonak, G; Gur, R E; Carlson, G; Siegel, S J

    2012-07-17

    Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30-80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory-inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1(neo-/-) mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABA(B)-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.

  16. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    PubMed

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.

  17. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum

    PubMed Central

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-01-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694

  18. Genetic deletion of regulator of G-protein signaling 4 (RGS4) rescues a subset of fragile X related phenotypes in the FMR1 knockout mouse.

    PubMed

    Pacey, Laura K K; Doss, Lilian; Cifelli, Carlo; van der Kooy, Derek; Heximer, Scott P; Hampson, David R

    2011-03-01

    Fragile X syndrome (FXS), the most common cause of inherited mental retardation, is caused by the loss of the mRNA binding protein, FMRP. Persons with FXS also display epileptic seizures, social anxiety, hyperactivity, and autistic behaviors. The metabotropic glutamate receptor theory of FXS postulates that in the absence of FMRP, enhanced signaling though G-protein coupled group I metabotropic glutamate receptors in the brain contributes to many of the abnormalities observed in the disorder. However, recent evidence suggests that alterations in cellular signaling through additional G-protein coupled receptors may also be involved in the pathogenesis of FXS, thus providing impetus for examining downstream molecules. One group of signaling molecules situated downstream of the receptors is the regulator of G-protein signaling (RGS) proteins. Notably, RGS4 is highly expressed in brain and has been shown to negatively regulate signaling through Group I mGluRs and GABA(B) receptors. To examine the potential role for RGS4 in the pathogenesis of FXS, we generated FXS/RGS4 double knockout mice. Characterization of these mice revealed that a subset of FXS related phenotypes, including increased body weight, altered synaptic protein expression, and abnormal social behaviors, were rescued in the double knockout mice. Other phenotypes, such as hyperactivity and macroorchidism, were not affected by the loss of RGS4. These findings suggest that tissue and cell-type specific differences in GPCR signaling and RGS function may contribute to the spectrum of phenotypic differences observed in FXS. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Phenotypic plasticity in a population of odonates.

    PubMed

    Bowman, Randi M; Schmidt, Sharol; Weeks, Chelsea; Clark, Hunter; Brown, Christopher; Latta, Leigh C; Edgehouse, Michael

    2018-05-31

    The maintenance of phenotypic plasticity within a species ensures survival through environmental flux. Plastic strategies are increasingly important given the number and magnitude of modern anthropogenic threats to the environment. We tested for phenotypic plasticity in the odonate Argia vivida in response to resource limitation. By limiting food availability, effectively inducing hunger, we were able to quantify shifts in agonistic behavior during intraspecific interactions. Scoring behavior in one-on-one combat trials after 1 and 4 days without food revealed phenotypic plasticity. Three classes of genotypes were identified, genotypes exhibiting either increased aggression, decreased aggression, or no phenotypic plasticity, in response to resource limitation. The variable plastic strategies in this population of odonates likely aids in maintaining fitness in fluctuating environments.

  20. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    PubMed Central

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  1. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.

  2. Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: Role of mitochondria and innate immunity in developmental toxicity.

    PubMed

    Amiri, Shayan; Yousefi-Ahmadipour, Aliakbar; Hosseini, Mir-Jamal; Haj-Mirzaian, Arya; Momeny, Majid; Hosseini-Chegeni, Heshmat; Mokhtari, Tahmineh; Kharrazi, Sharmin; Hassanzadeh, Gholamreza; Amini, Seyed Mohammad; Jafarinejad, Somayeh; Ghazi-Khansari, Mahmoud

    2018-05-01

    Silver nanoparticles (Ag-NPs) are currently used in a wide range of consumer products. Considering the small size of Ag-NPs, they are able to pass through variety of biological barriers and exert their effects. In this regard, the unique physicochemical properties of Ag-NPs along with its high application in the industry have raised concerns about their negative effects on human health. Therefore, it investigated whether prenatal exposure to low doses of Ag-NPs is able to induce any abnormality in the cognitive and behavioral performance of adult offspring. We gavaged pregnant NMRI mice with, 1) Deionized water as vehicle, 2) Ag-NPs 10 nm (0.26 mg/kg/day), 3) Ag-NPs 30 nm (0.26 mg/kg/day), and 4) AgNO 3 (0.26 mg/kg/day) from gestational day (GD) 0 until delivery day. At the postnatal day (PD) 1, our results showed that high concentration of silver is present in the brain of pups. Further, we observed mitochondrial dysfunction and upregulation of the genes relevant to innate immune system in the brain. At PD 60, results revealed that prenatal exposure to Ag-NPs provoked severe cognitive and behavioral abnormalities in male offspring. In addition, we found that prenatal exposure to Ag-NPs was associated with abnormal mitochondrial function and significant up-regulation of the genes relevant to innate immunity in the brain. Although the Ag-NPs have been considered as safe compounds at low doses, our results indicate that prenatal exposure to low doses of Ag-NPs is able to induce behavioral and cognitive abnormalities in adulthood. Also, we found that these effects are at least partly associated with hippocampal mitochondrial dysfunction and the activation of sterile inflammation during early stages of life. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    PubMed Central

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  4. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats.

    PubMed

    Wang, Yi-Qun; Tu, Zhi-Cai; Xu, Xing-Yuan; Li, Rui; Qu, Wei-Min; Urade, Yoshihiro; Huang, Zhi-Li

    2012-01-01

    In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Clinical management of behavioral characteristics of Prader-Willi syndrome.

    PubMed

    Ho, Alan Y; Dimitropoulos, Anastasia

    2010-05-06

    Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by an abnormality on the long arm of chromosome 15 (q11-q13) that results in a host of phenotypic characteristics, dominated primarily by hyperphagia and insatiable appetite. Characteristic behavioral disturbances in PWS include excessive interest in food, skin picking, difficulty with a change in routine, temper tantrums, obsessive and compulsive behaviors, and mood fluctuations. Individuals with PWS typically have intellectual disabilities (borderline to mild/moderate mental retardation) and exhibit a higher overall behavior disturbance compared to individuals with similar intellectual disability. Due to its multisystem disorder, family members, caregivers, physicians, dieticians, and speech-language pathologists all play an important role in the management and treatment of symptoms in an individual with PWS. This article reviews current research on behavior and cognition in PWS and discusses management guidelines for this disorder.

  6. The Family Context of Autism Spectrum Disorders: Influence on the Behavioral Phenotype and Quality of Life

    PubMed Central

    Smith, Leann E.; Greenberg, Jan; Mailick, Marsha R.

    2013-01-01

    Synopsis In this review, we report the findings from our longitudinal program of research examining the bidirectional influences of the family environment on the behavioral phenotype of autism, and describe a newly developed family psychoeducation program, titled Transitioning Together, designed to reduce family stress, address behavior problems, and improve the overall quality of life of adolescents with autism and their families. In our search for characteristics of the family environment that influence the behavioral phenotype of adolescents and adults with autism, we focus on both positive dimensions of family life, such as warmth and positive remarks that may promote adaptive behavior in individuals with autism, as well as negative dimensions, such as high levels of criticism that may result in an escalation of behavior problems. We find that high levels of maternal warmth and positive remarks are associated with the abatement of behavior problems over time, while high levels of maternal criticism are associated with increasing levels of behavior problems in adolescents and adults with autism. These patterns of relationships have been replicated in a longitudinal study of families of children and adolescents with fragile X syndrome, and are consistent with other studies examining the impact of the family on the behavior of children with developmental disabilities. These findings suggest that the family environment is an important target for interventions not only to reduce family stress but also to improve the behavioral functioning of children, adolescents or adults with ASD. Building upon a well-developed intervention for families of individuals with psychiatric conditions, we report on the development of Transitioning Together, a psychoeducation program targeted to families with adolescents with autism who are approaching high school exit, a difficult transition stage for individuals with autism that is often marked by negative changes in behavior problems

  7. Association between molecular markers and behavioral phenotypes in the immatures of a butterfly.

    PubMed

    De Nardin, Janaína; Buffon, Vanessa; Revers, Luís Fernando; de Araújo, Aldo Mellender

    2018-01-01

    Newly hatched caterpillars of the butterfly Heliconius erato phyllis routinely cannibalize eggs. In a manifestation of kin recognition they cannibalize sibling eggs less frequently than unrelated eggs. Previous work has estimated the heritability of kin recognition in H. erato phyllis to lie between 14 and 48%. It has furthermore been shown that the inheritance of kin recognition is compatible with a quantitative model with a threshold. Here we present the results of a preliminary study, in which we tested for associations between behavioral kin recognition phenotypes and AFLP and SSR markers. We implemented two experimental approaches: (1) a cannibalism test using sibling eggs only, which allowed for only two behavioral outcomes (cannibal and non-cannibal), and (2) a cannibalism test using two sibling eggs and one unrelated egg, which allowed four outcomes [cannibal who does not recognize siblings, cannibal who recognizes siblings, "super-cannibal" (cannibal of both eggs), and "super non-cannibal" (does not cannibalize eggs at all)]. Single-marker analyses were performed using χ2 tests and logistic regression with null markers as covariates. Results of the χ2 tests identified 72 associations for experimental design 1 and 73 associations for design 2. Logistic regression analysis of the markers found to be significant in the χ2 test resulted in 20 associations for design 1 and 11 associations for design 2. Experiment 2 identified markers that were more frequently present or absent in cannibals who recognize siblings and super non-cannibals; i.e. in both phenotypes capable of kin recognition.

  8. Association between molecular markers and behavioral phenotypes in the immatures of a butterfly

    PubMed Central

    De Nardin, Janaína; Buffon, Vanessa; Revers, Luís Fernando; de Araújo, Aldo Mellender

    2018-01-01

    Abstract Newly hatched caterpillars of the butterfly Heliconius erato phyllis routinely cannibalize eggs. In a manifestation of kin recognition they cannibalize sibling eggs less frequently than unrelated eggs. Previous work has estimated the heritability of kin recognition in H. erato phyllis to lie between 14 and 48%. It has furthermore been shown that the inheritance of kin recognition is compatible with a quantitative model with a threshold. Here we present the results of a preliminary study, in which we tested for associations between behavioral kin recognition phenotypes and AFLP and SSR markers. We implemented two experimental approaches: (1) a cannibalism test using sibling eggs only, which allowed for only two behavioral outcomes (cannibal and non-cannibal), and (2) a cannibalism test using two sibling eggs and one unrelated egg, which allowed four outcomes [cannibal who does not recognize siblings, cannibal who recognizes siblings, “super-cannibal” (cannibal of both eggs), and “super non-cannibal” (does not cannibalize eggs at all)]. Single-marker analyses were performed using χ2 tests and logistic regression with null markers as covariates. Results of the χ2 tests identified 72 associations for experimental design 1 and 73 associations for design 2. Logistic regression analysis of the markers found to be significant in the χ2 test resulted in 20 associations for design 1 and 11 associations for design 2. Experiment 2 identified markers that were more frequently present or absent in cannibals who recognize siblings and super non-cannibals; i.e. in both phenotypes capable of kin recognition. PMID:29583155

  9. Chromosome abnormalities and the genetics of congenital corneal opacification.

    PubMed

    Mataftsi, A; Islam, L; Kelberman, D; Sowden, J C; Nischal, K K

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed.

  10. Wistar audiogenic rats display abnormal behavioral traits associated with artificial selection for seizure susceptibility.

    PubMed

    Castro, Gabriel Perfeito; Medeiros, Daniel de Castro; Guarnieri, Leonardo de Oliveira; Mourão, Flávio Afonso Gonçalves; Pinto, Hyorrana Priscila Pereira; Pereira, Grace Schenatto; Moraes, Márcio Flávio Dutra

    2017-06-01

    Accumulating evidence from different animal models has contributed to the understanding of the bidirectional comorbidity associations between the epileptic condition and behavioral abnormalities. A strain of animals inbred to enhance seizure predisposition to high-intensity sound stimulation, the Wistar audiogenic rat (WAR), underwent several behavioral tests: forced swim test (FST), open-field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), social preference (SP), marble burying test (MBT), inhibitory avoidance (IAT), and two-way active avoidance (TWAA). The choice of tests aimed to investigate the correlation between underlying circuits believed to be participating in both WAR's innate susceptibility to sound-triggered seizures and the neurobiological substrates associated with test performance. Comparing WAR with its Wistar counterpart (i.e., resistant to audiogenic seizures) showed that WARs present behavioral despair traits (e.g., increased FST immobility) but no evidence of anhedonic behavior (e.g., increased sucrose consumption in SPT) or social impairment (e.g., no difference regarding juvenile exploration in SP). In addition, tests suggested that WARs are unable to properly evaluate degrees of aversiveness (e.g., performance on OFT, EPM, MBT, IAT, and TWAA). The particularities of the WAR model opens new venues to further untangle the neurobiology underlying the co-morbidity of behavioral disorders and epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The Clinical Phenotype of Idiopathic Rapid Eye Movement Sleep Behavior Disorder at Presentation: A Study in 203 Consecutive Patients.

    PubMed

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Santamaria, Joan

    2016-01-01

    To describe the clinical phenotype of idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) at presentation in a sleep center. Clinical history review of 203 consecutive patients with IRBD identified between 1990 and 2014. IRBD was diagnosed by clinical history plus video-polysomnographic demonstration of REM sleep with increased electromyographic activity linked to abnormal behaviors. Patients were 80% men with median age at IRBD diagnosis of 68 y (range, 50-85 y). In addition to the already known clinical picture of IRBD, other important features were apparent: 44% of the patients were not aware of their dream-enactment behaviors and 70% reported good sleep quality. In most of these cases bed partners were essential to convince patients to seek medical help. In 11% IRBD was elicited only after specific questioning when patients consulted for other reasons. Seven percent did not recall unpleasant dreams. Leaving the bed occurred occasionally in 24% of subjects in whom dementia with Lewy bodies often developed eventually. For the correct diagnosis of IRBD, video-polysomnography had to be repeated in 16% because of insufficient REM sleep or electromyographic artifacts from coexistent apneas. Some subjects with comorbid obstructive sleep apnea reported partial improvement of RBD symptoms following continuous positive airway pressure therapy. Lack of therapy with clonazepam resulted in an increased risk of sleep related injuries. Synucleinopathy was frequently diagnosed, even in patients with mild severity or uncommon IRBD presentations (e.g., patients who reported sleeping well, onset triggered by a life event, nocturnal ambulation) indicating that the development of a neurodegenerative disease is independent of the clinical presentation of IRBD. We report the largest IRBD cohort observed in a single center to date and highlight frequent features that were not reported or not sufficiently emphasized in previous publications. Physicians should be aware of

  12. Δ9-tetrahydrocannabinol (Δ9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice.

    PubMed

    Rodríguez, Guadalupe; Neugebauer, Nichole M; Yao, Katherine Lan; Meltzer, Herbert Y; Csernansky, John G; Dong, Hongxin

    2017-08-01

    The clinical onset of schizophrenia often coincides with cannabis use in adolescents and young adults. However, the neurobiological consequences of this co-morbidity are not well understood. In this study, we examined the effects of Δ9-THC exposure during early adulthood on schizophrenia-related behaviors using a developmental mouse model of schizophrenia. Phencyclidine (PCP) or saline was administered once in neonatal mice (at P7; 10mg/kg). In turn, Δ9-THC or saline was administered sub-acutely later in life to cohorts of animals who had received either PCP or saline (P55-80, 5mg/kg). Mice who were administered PCP alone displayed behavioral changes in the Morris water waze (MWM) and pre-pulse inhibition (PPI) task paradigm that were consistent with schizophrenia-related phenotypes, but not in the locomotor activity or novel object recognition (NOR) task paradigms. Mice who were administered PCP and then received Δ9-THC later in life displayed behavioral changes in the locomotor activity paradigm (p<0.001) that was consistent with a schizophrenia-related phenotype, as well as potentiated changes in the NOR (p<0.01) and MWM (p<0.05) paradigms as compared to mice that received PCP alone. Decreased cortical receptor expression of NMDA receptor 1 subunit (NR1) was observed in mice that received PCP and PCP+Δ9-THC, while mice that received Δ9-THC and PCP+Δ9-THC displayed decreases in CB1 receptor expression. These findings suggest that administration of Δ9-THC during the early adulthood can potentiate the development of schizophrenia-related behavioral phenotypes induced by neonatal exposure to PCP in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Amelioration by aniracetam of abnormalities as revealed in choice reaction performance and shuttle behavior.

    PubMed

    Himori, N; Mishima, K

    1994-02-01

    To delineate the possible effects of aniracetam PO on abnormal behaviors, we analyzed disrupted shuttle behavior and choice reaction (CR) performance in both aged and juvenile animals subjected to an ischemic (permanent occlusion of both carotid arteries)-hypoxic (17-min exposure to 93% N2 and 7% O2 mixture gas) or ischemic (20-min occlusion of both carotid arteries) insult and/or treated with methamphetamine given IP. Aniracetam at single PO doses of 10 and 30 mg/kg significantly decreased the number of incorrect lever pressings induced by IP methamphetamine in young adult rats subjected to the CR test battery. A 21-day PO regimen with aniracetam (30 mg/kg/day) resulted in an increase in the number of correct responses and a decrease in the CR latency as detected in the CR task with young adult rats inflicted with an ischemic-hypoxic insult. Aniracetam (1-100 mg/kg PO) was also evaluated in the electrostimulation-induced hyperreactivity assay (an increase in the number of shuttle responses) in both juvenile and aged mice subjected to a 20-min ischemic insult; there again a significant improvement of performance was clearly observed. The outcomes of these behavioral pharmacological analyses suggest that aniracetam has the ability to normalize the disrupted behavior, cognition, and self-regulation or decision-making process in a comprehensive way.

  14. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment.

    PubMed

    Riboni, Daniele; Bettini, Claudio; Civitarese, Gabriele; Janjua, Zaffar Haider; Helaoui, Rim

    2016-02-01

    In an ageing world population more citizens are at risk of cognitive impairment, with negative consequences on their ability of independent living, quality of life and sustainability of healthcare systems. Cognitive neuroscience researchers have identified behavioral anomalies that are significant indicators of cognitive decline. A general goal is the design of innovative methods and tools for continuously monitoring the functional abilities of the seniors at risk and reporting the behavioral anomalies to the clinicians. SmartFABER is a pervasive system targeting this objective. A non-intrusive sensor network continuously acquires data about the interaction of the senior with the home environment during daily activities. A novel hybrid statistical and knowledge-based technique is used to analyses this data and detect the behavioral anomalies, whose history is presented through a dashboard to the clinicians. Differently from related works, SmartFABER can detect abnormal behaviors at a fine-grained level. We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Suggestive Linkage of the Child Behavior Checklist Juvenile Bipolar Disorder Phenotype to 1p21, 6p21, and 8q21

    ERIC Educational Resources Information Center

    Doyle, Alysa E.; Biederman, Joseph; Ferreira, Manuel A. R.; Wong, Patricia; Smoller, Jordan W.; Faraone, Stephen V.

    2010-01-01

    Objective: Several studies have documented a profile of elevated scores on the Attention Problems, Aggressive Behavior and Anxious/Depressed scales of the Child Behavior Checklist (CBCL) in youth with bipolar disorder. The sum of these scales, referred to as the CBCL Juvenile Bipolar Disorder (JBD) phenotype, has modest diagnostic utility, and…

  16. A phenotypic structure and neural correlates of compulsive behaviors in adolescents.

    PubMed

    Montigny, Chantale; Castellanos-Ryan, Natalie; Whelan, Robert; Banaschewski, Tobias; Barker, Gareth J; Büchel, Christian; Gallinat, Jürgen; Flor, Herta; Mann, Karl; Paillère-Martinot, Marie-Laure; Nees, Frauke; Lathrop, Mark; Loth, Eva; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Schumann, Gunter; Smolka, Michael N; Struve, Maren; Robbins, Trevor W; Garavan, Hugh; Conrod, Patricia J

    2013-01-01

    A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates. A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents' psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis. Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p ≤ 0.001), conscientiousness (r=0.171; p ≤ 0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p ≤ 0.001), novelty-seeking (r=0.451; p ≤ 0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri. Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum.

  17. Food intake does not differ between obese women who are metabolically healthy or abnormal.

    PubMed

    Kimokoti, Ruth W; Judd, Suzanne E; Shikany, James M; Newby, P K

    2014-12-01

    Metabolically healthy obesity may confer lower risk of adverse health outcomes compared with abnormal obesity. Diet and race are postulated to influence the phenotype, but their roles and their interrelations on healthy obesity are unclear. We evaluated food intakes of metabolically healthy obese women in comparison to intakes of their metabolically healthy normal-weight and metabolically abnormal obese counterparts. This was a cross-sectional study in 6964 women of the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Participants were aged 45-98 y with a body mass index (BMI; kg/m(2)) ≥18.5 and free of cardiovascular diseases, diabetes, and cancer. Food intake was collected by using a food-frequency questionnaire. BMI phenotypes were defined by using metabolic syndrome (MetS) and homeostasis model assessment of insulin resistance (HOMA-IR) criteria. Mean differences in food intakes among BMI phenotypes were compared by using ANCOVA. Approximately one-half of obese women (white: 45%; black: 55%) as defined by MetS criteria and approximately one-quarter of obese women (white: 28%; black: 24%) defined on the basis of HOMA-IR values were metabolically healthy. In age-adjusted analyses, healthy obesity and normal weight as defined by both criteria were associated with lower intakes of sugar-sweetened beverages compared with abnormal obesity among both white and black women (P < 0.05). HOMA-IR-defined healthy obesity and normal weight were also associated with higher fruit and low-fat dairy intakes compared with abnormal obesity in white women (P < 0.05). Results were attenuated and became nonsignificant in multivariable-adjusted models that additionally adjusted for BMI, marital status, residential region, education, annual income, alcohol intake, multivitamin use, cigarette smoking status, physical activity, television viewing, high-sensitivity C-reactive protein, menopausal status, hormone therapy, and food intakes. Healthy obesity was not

  18. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  19. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Metabolic risk assessment of Indian women with polycystic ovarian syndrome in relation to four Rotterdam criteria based phenotypes.

    PubMed

    Tripathy, Priyadarshini; Sahu, Asutosh; Sahu, Mahija; Nagy, Attila

    2018-05-01

    Though polycystic ovarian syndrome (PCOS) is associated with multiple metabolic abnormalities, the metabolic risk profile of various PCOS phenotypes is still debated. Here we sought to compare the clinical, biochemical and metabolic parameters among the different PCOS phenotypes and controls. A total of 394 newly diagnosed PCOS women and 108 controls were enrolled consecutively. PCOS women were divided into four phenotypes based on the presence of two of the following Rotterdam criteria: oligo/anovulation (O), hyperandrogenism (H), and polycystic ovaries (P): A (O + H + P), B (O + H), C (H + P), D (O + P). Phenotype A (55.8%) was the most common phenotype in the PCOS cohort. Prevalence of metabolic syndrome was highest in phenotype A and B compared to other two phenotypes and controls. The clinical, biochemical and metabolic characteristics, of phenotypes A and B, were similar, but phenotype A had higher hirsutism score and androgen level. Phenotype C had intermediate metabolic characteristics between A and controls whereas phenotype D had the mildest metabolic abnormalities among the four phenotypes. Significant predictors for metabolic syndrome within the PCOS cohort are waist circumference >80 cm, hypertension, fasting glucose >100 mg/dL, HDL-cholesterol <50 mg/dL and triglyceride >150 mg/dL (p < 0.001). Indian PCOS women with Phenotype A and B lie at increased metabolic risk compared to other phenotypes. Phenotypic classification of PCOS women may facilitate more effective application of screening and treatment strategies for high-risk metabolic phenotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii

    PubMed Central

    Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro

    2017-01-01

    Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975

  2. Chromosome abnormalities and the genetics of congenital corneal opacification

    PubMed Central

    Mataftsi, A.; Islam, L.; Kelberman, D.; Sowden, J.C.

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed. PMID:21738392

  3. A Systematic Review of the Huntington Disease-Like 2 Phenotype.

    PubMed

    Anderson, David G; Walker, Ruth H; Connor, Myles; Carr, Jonathan; Margolis, Russell L; Krause, Amanda

    2017-01-01

    Huntington Disease-like 2 (HDL2) is a neurodegenerative disorder similar to Huntington Disease (HD) in its clinical phenotype, genetic characteristics, neuropathology and longitudinal progression. Proposed specific differences include an exclusive African ancestry, lack of eye movement abnormalities, increased Parkinsonism, and acanthocytes in HDL2. The objective was to determine the similarities and differences between HD and HDL2 by establishing the clinical phenotype of HDL2 with the published cases. A literature review of all clinically described cases of HDL2 until the end of 2016 was performed and a descriptive analysis was carried out. Sixty-nine new cases were described between 2001 and 2016. All cases had likely African ancestry, and most were found in South Africa and the USA. Many features were found to be similar to HD, including a strong negative correlation between repeat length and age of onset. Chorea was noted in 48/57 cases (84%). Dementia was reported in 74% patients, and Parkinsonism in 37%. Psychiatric features were reported in 44 out of 47 cases. Patients with chorea had lower expanded repeat lengths compared to patients without chorea. Eye movements were described in 19 cases, 8 were abnormal. Acanthocytes were detected in 4 of the 13 patients tested. Nineteen out of 20 MRIs were reported as abnormal with findings similar to HD. This review clarifies some aspects of the HDL2 phenotype and highlights others which require further investigation. Features that are unique to HDL2 have been documented in a minority of subjects and require prospective validation.

  4. Auditory Phenotype of Smith-Magenis Syndrome

    ERIC Educational Resources Information Center

    Brendal, Megan A.; King, Kelly A.; Zalewski, Christopher K.; Finucane, Brenda M.; Introne, Wendy; Brewer, Carmen C.; Smith, Ann C. M.

    2017-01-01

    Purpose: The purpose of this study was to describe the auditory phenotype of a large cohort with Smith-Magenis syndrome (SMS), a rare disorder including physical anomalies, cognitive deficits, sleep disturbances, and a distinct behavioral phenotype. Method: Hearing-related data were collected for 133 individuals with SMS aged 1-49 years. Audiogram…

  5. Brief Report: Impact of Child Problem Behaviors and Parental Broad Autism Phenotype Traits on Substance Use among Parents of Children with ASD

    ERIC Educational Resources Information Center

    Wade, Jordan L.; Cox, Neill Broderick; Reeve, Ronald E.; Hull, Michael

    2014-01-01

    Using data from the Simons Simplex Collection, the present study examined the impact of child externalizing behavior and parental broad autism phenotype traits on substance use among parents of children with autism spectrum disorder (n = 2,388). For both fathers and mothers, child externalizing behaviors predicted tobacco use (OR = 1.01 and OR =…

  6. The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness.

    PubMed

    Ortega, Francisco B; Lee, Duck-Chul; Katzmarzyk, Peter T; Ruiz, Jonatan R; Sui, Xuemei; Church, Timothy S; Blair, Steven N

    2013-02-01

    Current knowledge on the prognosis of metabolically healthy but obese phenotype is limited due to the exclusive use of the body mass index to define obesity and the lack of information on cardiorespiratory fitness. We aimed to test the following hypotheses: (i) metabolically healthy but obese individuals have a higher fitness level than their metabolically abnormal and obese peers; (ii) after accounting for fitness, metabolically healthy but obese phenotype is a benign condition, in terms of cardiovascular disease and mortality. Fitness was assessed by a maximal exercise test on a treadmill and body fat per cent (BF%) by hydrostatic weighing or skinfolds (obesity = BF% ≥ 25 or ≥ 30%, men or women, respectively) in 43 265 adults (24.3% women). Metabolically healthy was considered if meeting 0 or 1 of the criteria for metabolic syndrome. Metabolically healthy but obese participants (46% of the obese subsample) had a better fitness than metabolically abnormal obese participants (P < 0.001). When adjusting for fitness and other confounders, metabolically healthy but obese individuals had lower risk (30-50%, estimated by hazard ratios) of all-cause mortality, non-fatal and fatal cardiovascular disease, and cancer mortality than their metabolically unhealthy obese peers; while no significant differences were observed between metabolically healthy but obese and metabolically healthy normal-fat participants. (i) Higher fitness should be considered a characteristic of metabolically healthy but obese phenotype. (ii) Once fitness is accounted for, the metabolically healthy but obese phenotype is a benign condition, with a better prognosis for mortality and morbidity than metabolically abnormal obese individuals.

  7. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    PubMed Central

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  8. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients.

    PubMed

    Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro

    2017-01-11

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.

  9. Neurologic abnormalities in murderers.

    PubMed

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  10. Short stature, unusual face, delta phalanx, and abnormal vertebrae and ribs in a girl born to half-siblings.

    PubMed

    Pogue, Robert; Marques, Felipe A; Kopacek, Cristiane; Rosa, Rosana C M; Dorfman, Luiza E; Mazzeu, Juliana F; Flores, José A M; Zen, Paulo R G; Rosa, Rafael F M

    2017-05-01

    Delta phalanx is a rare abnormality typically associated with additional features. We describe a patient with a phenotype resembling Catel-Manzke syndrome, but with delta phalanx and abnormal vertebrae and ribs. The patient was the only child of half siblings born with a marked prenatal growth deficiency. At 10 years of age, she had a short stature, long face, long and tubular nose with small alae nasi, high palate, short and broad thorax, and short index fingers with radial deviation. There were hyperpigmentations following Blaschko's lines. Radiology showed a proximal delta phalanx in the index finger of hands, abnormal vertebrae, and fused and small ribs. GTG-Banding karyotype and microarray analysis yielded normal results. Exome sequencing identified 25 genes that harbored homozygous variants, but none of these is assumed to be a good candidate to explain (part of) the phenotype. The here described patient may have a new condition, possibly following an autosomal recessive pattern of inheritance, although due to the high degree of consanguinity a compound etiology of the phenotype by variants in various genes may be present as well. © 2017 Wiley Periodicals, Inc.

  11. Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species

    PubMed Central

    Kinnison, Michael T.

    2017-01-01

    Abstract Phenotypic plasticity is often an adaptation of organisms to cope with temporally or spatially heterogenous landscapes. Like other adaptations, one would predict that different species, populations, or sexes might thus show some degree of parallel evolution of plasticity, in the form of parallel reaction norms, when exposed to analogous environmental gradients. Indeed, one might even expect parallelism of plasticity to repeatedly evolve in multiple traits responding to the same gradient, resulting in integrated parallelism of plasticity. In this study, we experimentally tested for parallel patterns of predator-mediated plasticity of size, shape, and behavior of 2 species and sexes of mosquitofish. Examination of behavioral trials indicated that the 2 species showed unique patterns of behavioral plasticity, whereas the 2 sexes in each species showed parallel responses. Fish shape showed parallel patterns of plasticity for both sexes and species, albeit males showed evidence of unique plasticity related to reproductive anatomy. Moreover, patterns of shape plasticity due to predator exposure were broadly parallel to what has been depicted for predator-mediated population divergence in other studies (slender bodies, expanded caudal regions, ventrally located eyes, and reduced male gonopodia). We did not find evidence of phenotypic plasticity in fish size for either species or sex. Hence, our findings support broadly integrated parallelism of plasticity for sexes within species and less integrated parallelism for species. We interpret these findings with respect to their potential broader implications for the interacting roles of adaptation and constraint in the evolutionary origins of parallelism of plasticity in general. PMID:29491997

  12. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  13. Stabilization of the wheel running phenotype in mice.

    PubMed

    Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P

    2016-03-01

    Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13

  14. Developmental Coordination Disorder in a Patient with Mental Disability and a Mild Phenotype Carrying Terminal 6q26-qter Deletion

    PubMed Central

    De Cinque, Marianna; Palumbo, Orazio; Mazzucco, Ermelinda; Simone, Antonella; Palumbo, Pietro; Ciavatta, Renata; Maria, Giuliana; Ferese, Rosangela; Gambardella, Stefano; Angiolillo, Antonella; Carella, Massimo; Garofalo, Silvio

    2017-01-01

    Terminal deletion of chromosome 6q is a rare chromosomal abnormality associated with variable phenotype spectrum. Although intellectual disability, facial dysmorphism, seizures and brain abnormalities are typical features of this syndrome, genotype–phenotype correlation needs to be better understood. We report the case of a 6-year-old Caucasian boy with a clinical diagnosis of intellectual disability, delayed language development and dyspraxia who carries an approximately 8 Mb de novo heterozygous microdeletion in the 6q26-q27 locus identified by karyotype and defined by high-resolution SNP-array analysis. This patient has no significant structural brain or other organ malformation, and he shows a very mild phenotype compared to similar 6q26-qter deletion. The patient phenotype also suggests that a dyspraxia susceptibility gene is located among the deleted genes. PMID:29270193

  15. Genetic and phenotypic relationships of feeding behavior and temperament with performance, feed efficiency, ultrasound, and carcass merit of beef cattle.

    PubMed

    Nkrumah, J D; Crews, D H; Basarab, J A; Price, M A; Okine, E K; Wang, Z; Li, C; Moore, S S

    2007-10-01

    Feeding behavior and temperament may be useful in genetic evaluations either as indicator traits for other economically relevant traits or because the behavior traits may have a direct economic value. We determined the variation in feeding behavior and temperament of beef cattle sired by Angus, Charolais, or Hybrid bulls and evaluated their associations with performance, efficiency, and carcass merit. The behavior traits were daily feeding duration, feeding head down (HD) time, feeding frequency (FF), and flight speed (FS, as a measure of temperament). A pedigree file of 813 animals forming 28 paternal half-sib families with about 20 progeny per sire was used. Performance, feeding behavior, and efficiency records were available on 464 animals of which 381 and 302 had records on carcass merit and flight speed, respectively. Large SE reflect the number of animals used. Direct heritability estimates were 0.28 +/- 0.12 for feeding duration, 0.33 +/- 0.12 for HD, 0.38 +/- 0.13 for FF, and 0.49 +/- 0.18 for FS. Feeding duration had a weak positive genetic (r(g)) correlation with HD (r(g) = 0.25 +/- 0.32) and FS (r(g) = 0.42 +/- 0.26) but a moderate negative genetic correlation with FF (r(g) = -0.40 +/- 0.30). Feeding duration had positive phenotypic (r(p)) and genetic correlations with DMI (r(p) = 0.27; r(g) = 0.56 +/- 0.20) and residual feed intake (RFI; r(p) = 0.49; r(g) = 0.57 +/- 0.28) but was unrelated phenotypically with feed conversion ratio [FCR; which is the reciprocal of the efficiency of growth (G:F)]. Feeding duration was negatively correlated with FCR (r(g) = -0.25 +/- 0.29). Feeding frequency had a moderate to high negative genetic correlation with DMI (r(g) = -0.74 +/- 0.15), FCR (r(g) = -0.52 +/- 0.21), and RFI (r(g) = -0.77 +/- 0.21). Flight speed was negatively correlated phenotypically with DMI (r(p) = -0.35) but was unrelated phenotypically with FCR or RFI. On the other hand, FS had a weak negative genetic correlation with DMI (r(g) = -0.11 +/- 0

  16. A Phenotypic Structure and Neural Correlates of Compulsive Behaviors in Adolescents

    PubMed Central

    Montigny, Chantale; Castellanos-Ryan, Natalie; Whelan, Robert; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Gallinat, Jürgen; Flor, Herta; Mann, Karl; Paillère-Martinot, Marie-Laure; Nees, Frauke; Lathrop, Mark; Loth, Eva; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Schumann, Gunter; Smolka, Michael N.; Struve, Maren; Robbins, Trevor W.; Garavan, Hugh; Conrod, Patricia J.

    2013-01-01

    Background A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates. Method A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents’ psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis. Results Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p≤0.001), conscientiousness (r=0.171; p≤0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p≤0.001), novelty-seeking (r=0.451; p≤0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri. Conclusions Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum. PMID:24244633

  17. Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.

    PubMed

    Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim

    2013-10-04

    Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.

  18. Food Intake Does Not Differ between Obese Women Who Are Metabolically Healthy or Abnormal1234

    PubMed Central

    Kimokoti, Ruth W; Judd, Suzanne E; Shikany, James M; Newby, PK

    2014-01-01

    Background: Metabolically healthy obesity may confer lower risk of adverse health outcomes compared with abnormal obesity. Diet and race are postulated to influence the phenotype, but their roles and their interrelations on healthy obesity are unclear. Objective: We evaluated food intakes of metabolically healthy obese women in comparison to intakes of their metabolically healthy normal-weight and metabolically abnormal obese counterparts. Methods: This was a cross-sectional study in 6964 women of the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Participants were aged 45–98 y with a body mass index (BMI; kg/m2) ≥18.5 and free of cardiovascular diseases, diabetes, and cancer. Food intake was collected by using a food-frequency questionnaire. BMI phenotypes were defined by using metabolic syndrome (MetS) and homeostasis model assessment of insulin resistance (HOMA-IR) criteria. Mean differences in food intakes among BMI phenotypes were compared by using ANCOVA. Results: Approximately one-half of obese women (white: 45%; black: 55%) as defined by MetS criteria and approximately one-quarter of obese women (white: 28%; black: 24%) defined on the basis of HOMA-IR values were metabolically healthy. In age-adjusted analyses, healthy obesity and normal weight as defined by both criteria were associated with lower intakes of sugar-sweetened beverages compared with abnormal obesity among both white and black women (P < 0.05). HOMA-IR–defined healthy obesity and normal weight were also associated with higher fruit and low-fat dairy intakes compared with abnormal obesity in white women (P < 0.05). Results were attenuated and became nonsignificant in multivariable-adjusted models that additionally adjusted for BMI, marital status, residential region, education, annual income, alcohol intake, multivitamin use, cigarette smoking status, physical activity, television viewing, high-sensitivity C-reactive protein, menopausal status, hormone therapy

  19. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome.

    PubMed

    Danti, Federica Rachele; Galosi, Serena; Romani, Marta; Montomoli, Martino; Carss, Keren J; Raymond, F Lucy; Parrini, Elena; Bianchini, Claudia; McShane, Tony; Dale, Russell C; Mohammad, Shekeeb S; Shah, Ubaid; Mahant, Neil; Ng, Joanne; McTague, Amy; Samanta, Rajib; Vadlamani, Gayatri; Valente, Enza Maria; Leuzzi, Vincenzo; Kurian, Manju A; Guerrini, Renzo

    2017-04-01

    To describe better the motor phenotype, molecular genetic features, and clinical course of GNAO1 -related disease. We reviewed clinical information, video recordings, and neuroimaging of a newly identified cohort of 7 patients with de novo missense and splice site GNAO1 mutations, detected by next-generation sequencing techniques. Patients first presented in early childhood (median age of presentation 10 months, range 0-48 months), with a wide range of clinical symptoms ranging from severe motor and cognitive impairment with marked choreoathetosis, self-injurious behavior, and epileptic encephalopathy to a milder phenotype, featuring moderate developmental delay associated with complex stereotypies, mainly facial dyskinesia and mild epilepsy. Hyperkinetic movements were often exacerbated by specific triggers, such as voluntary movement, intercurrent illnesses, emotion, and high ambient temperature, leading to hospital admissions. Most patients were resistant to drug intervention, although tetrabenazine was effective in partially controlling dyskinesia for 2/7 patients. Emergency deep brain stimulation (DBS) was life saving in 1 patient, resulting in immediate clinical benefit with complete cessation of violent hyperkinetic movements. Five patients had well-controlled epilepsy and 1 had drug-resistant seizures. Structural brain abnormalities, including mild cerebral atrophy and corpus callosum dysgenesis, were evident in 5 patients. One patient had a diffuse astrocytoma (WHO grade II), surgically removed at age 16. Our findings support the causative role of GNAO1 mutations in an expanded spectrum of early-onset epilepsy and movement disorders, frequently exacerbated by specific triggers and at times associated with self-injurious behavior. Tetrabenazine and DBS were the most useful treatments for dyskinesia.

  20. Etiologic Ischemic Stroke Phenotypes in the NINDS Stroke Genetics Network

    PubMed Central

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Robert D.; Chapman, Sherita N.; Cole, John W.; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P.; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J.; Kleindorfer, Dawn O.; Labovitz, Daniel L.; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S.; McArdle, Patrick F.; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M.; Rhodes, David; Rich, Stephen S.; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M.; Rundek, Tatjana; Sacco, Ralph L.; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B.; Meschia, James F.

    2014-01-01

    Background and Purpose NINDS Stroke Genetics Network (SiGN) is an international consortium of ischemic stroke studies that aims to generate high quality phenotype data to identify the genetic basis of etiologic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. Methods Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major etiologic groups without weighting towards the most likely cause) and causative ischemic stroke subtypes in 16,954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded re-adjudication of 1509 randomly selected cases. Results The distribution of etiologic categories varied by study, age, sex, and race (p<0.001 for each). Overall, only 40% to 54% of cases with a given major ischemic stroke etiology (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (kappa 0.72, 95%CI:0.69-0.75) and phenotypic classifications (kappa 0.73, 95%CI:0.70-0.75). Conclusions This study demonstrates that etiologic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a stroke patient does not necessarily mean that it is the cause of stroke. PMID:25378430

  1. Chromosomal abnormalities in a psychiatric population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awarenessmore » to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.« less

  2. Reduced Tissue Levels of Noradrenaline Are Associated with Behavioral Phenotypes of the TgCRND8 Mouse Model of Alzheimer's Disease

    PubMed Central

    Francis, Beverly M; Yang, Jimao; Hajderi, Enid; Brown, Mary E; Michalski, Bernadeta; McLaurin, JoAnne; Fahnestock, Margaret; Mount, Howard T J

    2012-01-01

    Noradrenergic cell loss is well documented in Alzheimer's disease (AD). We have measured the tissue levels of catecholamines in an amyloid precursor protein-transgenic ‘TgCRND8' mouse model of AD and found reductions in noradrenaline (NA) within hippocampus, temporoparietal and frontal cortices, and cerebellum. An age-related increase in cortical NA levels was observed in non-Tg controls, but not in TgCRND8 mice. In contrast, NA levels declined with aging in the TgCRND8 hippocampus. Dopamine levels were unaffected. Reductions in the tissue content of NA were found to coincide with altered expression of brain-derived neurotrophic factor (BDNF) mRNA and to precede the onset of object memory impairment and behavioral despair. To test whether these phenotypes might be associated with diminished NA, we treated mice with dexefaroxan, an antagonist of presynaptic inhibitory α2-adrenoceptors on noradrenergic and cholinergic terminals. Mice 12 weeks of age were infused systemically for 28 days with dexefaroxan or rivastigmine, a cholinesterase inhibitor. Both dexefaroxan and rivastigmine improved TgCRND8 behavioral phenotypes and increased BDNF mRNA expression without affecting amyloid-β peptide levels. Our results highlight the importance of noradrenergic depletion in AD-like phenotypes of TgCRND8 mice. PMID:22491352

  3. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  4. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats

    PubMed Central

    Gonzalez, M. M. C.; Aston-Jones, G.

    2008-01-01

    Light is an important environmental factor for regulation of mood. There is a high frequency of seasonal affective disorder in high latitudes where light exposure is limited, and bright light therapy is a successful antidepressant treatment. We recently showed that rats kept for 6 weeks in constant darkness (DD) have anatomical and behavioral features similar to depressed patients, including dysregulation of circadian sleep–waking rhythms and impairment of the noradrenergic (NA)-locus coeruleus (LC) system. Here, we analyzed the cell viability of neural systems related to the pathophysiology of depression after DD, including NA-LC, serotoninergic-raphe nuclei and dopaminergic-ventral tegmental area neurons, and evaluated the depressive behavioral profile of light-deprived rats. We found increased apoptosis in the three aminergic systems analyzed when compared with animals maintained for 6 weeks in 12:12 light-dark conditions. The most apoptosis was observed in NA-LC neurons, associated with a significant decrease in the number of cortical NA boutons. Behaviorally, DD induced a depression-like condition as measured by increased immobility in a forced swim test (FST). DD did not appear to be stressful (no effect on adrenal or body weights) but may have sensitized responses to subsequent stressors (increased fecal number during the FST). We also found that the antidepressant desipramine decreases these neural and behavioral effects of light deprivation. These findings indicate that DD induces neural damage in monoamine brain systems and this damage is associated with a depressive behavioral phenotype. Our results suggest a mechanism whereby prolonged limited light intensity could negatively impact mood. PMID:18347342

  5. Abnormal elastic modulus behavior in a crystalline-amorphous core-shell nanowire system.

    PubMed

    Lee, Jeong Hwan; Choi, Su Ji; Kwon, Ji Hwan; Van Lam, Do; Lee, Seung Mo; Kim, An Soon; Baik, Hion Suck; Ahn, Sang Jung; Hong, Seong Gu; Yun, Yong Ju; Kim, Young Heon

    2018-06-13

    We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.

  6. Abnormal bipolar resistive switching behavior in a Pt/GaO{sub 1.3}/Pt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, D. Y.; Wu, Z. P.; Zhang, L. J.

    2015-07-20

    A stable and repeatable abnormal bipolar resistive switching behavior was observed in a Pt/GaO{sub 1.3}/Pt sandwich structure without an electroforming process. The low resistance state (LRS) and the high resistance state (HRS) of the device can be distinguished clearly and be switched reversibly under a train of the voltage pulses. The LRS exhibits a conduction of electron tunneling, while the HRS shows a conduction of Schottky-type. The observed phenomena are considered to be related to the migration of oxygen vacancies which changes the space charge region width of the metal/semiconductor interface and results in a different electron transport mechanism.

  7. Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert

    2012-02-01

    One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.

  8. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    PubMed

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  9. A community-based exercise intervention transitions metabolically abnormal obese adults to a metabolically healthy obese phenotype

    PubMed Central

    Dalleck, Lance C; Van Guilder, Gary P; Richardson, Tara B; Bredle, Donald L; Janot, Jeffrey M

    2014-01-01

    Background Lower habitual physical activity and poor cardiorespiratory fitness are common features of the metabolically abnormal obese (MAO) phenotype that contribute to increased cardiovascular disease risk. The aims of the present study were to determine 1) whether community-based exercise training transitions MAO adults to metabolically healthy, and 2) whether the odds of transition to metabolically healthy were larger for obese individuals who performed higher volumes of exercise and/or experienced greater increases in fitness. Methods and results Metabolic syndrome components were measured in 332 adults (190 women, 142 men) before and after a supervised 14-week community-based exercise program designed to reduce cardiometabolic risk factors. Obese (body mass index ≥30 kg · m2) adults with two to four metabolic syndrome components were classified as MAO, whereas those with no or one component were classified as metabolically healthy but obese (MHO). After community exercise, 27/68 (40%) MAO individuals (P<0.05) transitioned to metabolically healthy, increasing the total number of MHO persons by 73% (from 37 to 64). Compared with the lowest quartiles of relative energy expenditure and change in fitness, participants in the highest quartiles were 11.6 (95% confidence interval: 2.1–65.4; P<0.05) and 7.5 (95% confidence interval: 1.5–37.5; P<0.05) times more likely to transition from MAO to MHO, respectively. Conclusion Community-based exercise transitions MAO adults to metabolically healthy. MAO adults who engaged in higher volumes of exercise and experienced the greatest increase in fitness were significantly more likely to become metabolically healthy. Community exercise may be an effective model for primary prevention of cardiovascular disease. PMID:25120373

  10. Using Machine Learning to Discover Latent Social Phenotypes in Free-Ranging Macaques

    PubMed Central

    Madlon-Kay, Seth; Brent, Lauren J. N.; Heller, Katherine A.; Platt, Michael L.

    2017-01-01

    Investigating the biological bases of social phenotypes is challenging because social behavior is both high-dimensional and richly structured, and biological factors are more likely to influence complex patterns of behavior rather than any single behavior in isolation. The space of all possible patterns of interactions among behaviors is too large to investigate using conventional statistical methods. In order to quantitatively define social phenotypes from natural behavior, we developed a machine learning model to identify and measure patterns of behavior in naturalistic observational data, as well as their relationships to biological, environmental, and demographic sources of variation. We applied this model to extensive observations of natural behavior in free-ranging rhesus macaques, and identified behavioral states that appeared to capture periods of social isolation, competition over food, conflicts among groups, and affiliative coexistence. Phenotypes, represented as the rate of being in each state for a particular animal, were strongly and broadly influenced by dominance rank, sex, and social group membership. We also identified two states for which variation in rates had a substantial genetic component. We discuss how this model can be extended to identify the contributions to social phenotypes of particular genetic pathways. PMID:28754001

  11. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    PubMed

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  12. Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes

    PubMed Central

    Nagy, Corina; Turecki, Gustavo

    2017-01-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183

  13. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain.

    PubMed

    Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru

    2018-05-10

    Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.

  14. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  15. The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness

    PubMed Central

    Ortega, Francisco B.; Lee, Duck-chul; Katzmarzyk, Peter T.; Ruiz, Jonatan R.; Sui, Xuemei; Church, Timothy S.; Blair, Steven N.

    2013-01-01

    Aims Current knowledge on the prognosis of metabolically healthy but obese phenotype is limited due to the exclusive use of the body mass index to define obesity and the lack of information on cardiorespiratory fitness. We aimed to test the following hypotheses: (i) metabolically healthy but obese individuals have a higher fitness level than their metabolically abnormal and obese peers; (ii) after accounting for fitness, metabolically healthy but obese phenotype is a benign condition, in terms of cardiovascular disease and mortality. Methods and results Fitness was assessed by a maximal exercise test on a treadmill and body fat per cent (BF%) by hydrostatic weighing or skinfolds (obesity = BF% ≥25 or ≥30%, men or women, respectively) in 43 265 adults (24.3% women). Metabolically healthy was considered if meeting 0 or 1 of the criteria for metabolic syndrome. Metabolically healthy but obese participants (46% of the obese subsample) had a better fitness than metabolically abnormal obese participants (P < 0.001). When adjusting for fitness and other confounders, metabolically healthy but obese individuals had lower risk (30–50%, estimated by hazard ratios) of all-cause mortality, non-fatal and fatal cardiovascular disease, and cancer mortality than their metabolically unhealthy obese peers; while no significant differences were observed between metabolically healthy but obese and metabolically healthy normal-fat participants. Conclusions (i) Higher fitness should be considered a characteristic of metabolically healthy but obese phenotype. (ii) Once fitness is accounted for, the metabolically healthy but obese phenotype is a benign condition, with a better prognosis for mortality and morbidity than metabolically abnormal obese individuals. PMID:22947612

  16. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    PubMed Central

    Kron, Miriam; Lang, Min; Adams, Ian T.; Sceniak, Michael; Longo, Frank; Katz, David M.

    2014-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal

  17. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.

    PubMed

    Notaro, Marco; Schubach, Max; Robinson, Peter N; Valentini, Giorgio

    2017-10-12

    The prediction of human gene-abnormal phenotype associations is a fundamental step toward the discovery of novel genes associated with human disorders, especially when no genes are known to be associated with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of the abnormalities associated with human diseases. While the problem of the prediction of gene-disease associations has been widely investigated, the related problem of gene-phenotypic feature (i.e., HPO term) associations has been largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively inaccurate predictions. We present two hierarchical ensemble methods that we formally prove to provide biologically consistent predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that consists in a "flat" learning first step and a hierarchical combination of the predictions in the second step, allows the predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity. Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms predictions starting from virtually any flat learning method. The implementation of the proposed methods is available as an R package from the CRAN repository.

  18. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury

    PubMed Central

    Ryan, Nicholas P.; Catroppa, Cathy; Beare, Richard; Silk, Timothy J.; Crossley, Louise; Beauchamp, Miriam H.; Yeates, Keith Owen; Anderson, Vicki A.

    2016-01-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the ‘social brain network’ (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2–8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. PMID:26796967

  19. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management. © 2014 Wiley Periodicals, Inc.

  20. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  1. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction

    PubMed Central

    Sowers, L. P.; Loo, L.; Wu, Y.; Campbell, E.; Ulrich, J. D.; Wu, S.; Paemka, L.; Wassink, T.; Meyer, K.; Bing, X.; El-Shanti, H.; Usachev, Y. M.; Ueno, N.; Manak, R. J.; Shepherd, A. J.; Ferguson, P. J.; Darbro, B. W.; Richerson, G. B.; Mohapatra, D. P.; Wemmie, J. A.; Bassuk, A. G.

    2014-01-01

    Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post synaptic density 95 (PSD-95). Here we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities, and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number, and post-synaptic density size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs. PMID:23711981

  2. Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

    PubMed Central

    Brielmaier, Jennifer; Matteson, Paul G.; Silverman, Jill L.; Senerth, Julia M.; Kelly, Samantha; Genestine, Matthieu; Millonig, James H.

    2012-01-01

    ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders. PMID:22829897

  3. Are ECG abnormalities in Noonan syndrome characteristic for the syndrome?

    PubMed

    Raaijmakers, R; Noordam, C; Noonan, J A; Croonen, E A; van der Burgt, C J A M; Draaisma, J M T

    2008-12-01

    Of all patients with Noonan syndrome, 50-90% have one or more congenital heart defects. The most frequent occurring are pulmonary stenosis (PS) and hypertrophic cardiomyopathy. The electrocardiogram (ECG) of a patient with Noonan syndrome often shows a characteristic pattern, with a left axis deviation, abnormal R/S ratio over the left precordium, and an abnormal Q wave. The objective of this study was to determine if these ECG characteristics are an independent feature of the Noonan syndrome or if they are related to the congenital heart defect. A cohort study was performed with 118 patients from two university hospitals in the United States and in The Netherlands. All patients were diagnosed with definite Noonan syndrome and had had an ECG and echocardiography. Sixty-nine patients (58%) had characteristic abnormalities of the ECG. In the patient group without a cardiac defect (n = 21), ten patients had a characteristic ECG abnormality. There was no statistical relationship between the presence of a characteristic ECG abnormality and the presence of a cardiac defect (p = 0.33). Patients with hypertrophic cardiomyopathy had more ECG abnormalities in total (p = 0.05), without correlation with a specific ECG abnormality. We conclude that the ECG features in patients with Noonan syndrome are characteristic for the syndrome and are not related to a specific cardiac defect. An ECG is very useful in the diagnosis of Noonan syndrome; every child with a Noonan phenotype should have an ECG and echocardiogram for evaluation.

  4. High-throughput behavioral phenotyping of drug and alcohol susceptibility traits in the expanded panel of BXD recombinant inbred strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Vivek M; Ansah, T; Blaha, C,

    Genetic reference populations, particularly the BXD recombinant inbred strains, are a valuable resource for the discovery of the bio-molecular substrates and genetic drivers responsible for trait variation and co- ariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic co-regulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium havemore » obtained behavioral phenotype data from 260 measures related to multiple behavioral assays across several domains: self-administration, response to, and withdrawal from cocaine, MDMA, morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity; and sleep/wake cycles. All traits have been measured in both sexes and the recently expanded panel of 69 additional BXD recombinant inbred strains (N=69). Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent BXD RI lines was performed. Primary data is publicly available for heritability, sex difference and genetic analyses using www.GeneNetwork.org. These analyses include QTL detection and genetic analysis of gene expression. Stored results from these analyses are available at http://ontologicaldiscovery.org for comparison to other genomic analysis results. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.« less

  5. Are There Gender-Specific Pathways from Early Adolescence Psychological Distress Symptoms toward the Development of Substance Use and Abnormal Eating Behavior?

    ERIC Educational Resources Information Center

    Beato-Fernandez, Luis; Rodriguez-Cano, Teresa; Pelayo-Delgado, Esther; Calaf, Myralys

    2007-01-01

    The aim of the present longitudinal community study was to test whether psychological distress at 13 years of age predicted reported substance use problems in boys and abnormal eating behavior in girls 2 years later. The sample consisted of 500 male and 576 female students. The use of substances was evaluated using a semi-structured interview,…

  6. Assessment of Glutamate Transporter GLAST (EAAT1)-Deficient Mice for Phenotypes Relevant to the Negative and Executive/Cognitive Symptoms of Schizophrenia

    PubMed Central

    Karlsson, Rose-Marie; Tanaka, Kohichi; Saksida, Lisa M; Bussey, Timothy J; Heilig, Markus; Holmes, Andrew

    2012-01-01

    Glutamatergic dysfunction is increasingly implicated in the pathophysiology of schizophrenia. Current models postulate that dysfunction of glutamate and its receptors underlie many of the symptoms in this disease. However, the mechanisms involved are not well understood. Although elucidating the role for glutamate transporters in the disease has been limited by the absence of pharmacological tools that selectively target the transporter, we recently showed that glial glutamate and aspartate transporter (GLAST; excitatory amino-acid transporter 1) mutant mice exhibit abnormalities on behavioral measures thought to model the positive symptoms of schizophrenia, some of which were rescued by treatment with either haloperidol or the mGlu2/3 agonist, LY379268 the mGlu2/3 agonist, LY379268. To further determine the role of GLAST in schizophrenia-related behaviors we tested GLAST mutant mice on a series of behavioral paradigms associated with the negative (social withdrawal, anhedonia), sensorimotor gating (prepulse inhibition of startle), and executive/cognitive (discrimination learning, extinction) symptoms of schizophrenia. GLAST knockout (KO) mice showed poor nesting behavior and abnormal sociability, whereas KO and heterozygous (HET) both demonstrated lesser preference for a novel social stimulus compared to wild-type littermate controls. GLAST KO, but not HET, had a significantly reduced acoustic startle response, but no significant deficit in prepulse inhibition of startle. GLAST KO and HET showed normal sucrose preference. In an instrumental visual discrimination task, KO showed impaired learning. By contrast, acquisition and extinction of a simple instrumental response was normal. The mGlu2/3 agonist, LY379268, failed to rescue the discrimination impairment in KO mice. These findings demonstrate that gene deletion of GLAST produces select phenotypic abnormalities related to the negative and cognitive symptoms of schizophrenia. PMID:19078949

  7. Further expansion of the mutational spectrum of spondylo-meta-epiphyseal dysplasia with abnormal calcification.

    PubMed

    Ürel-Demir, Gizem; Simsek-Kiper, Pelin Ozlem; Akgün-Doğan, Özlem; Göçmen, Rahşan; Wang, Zheng; Matsumoto, Naomichi; Miyake, Noriko; Utine, Gülen Eda; Nishimura, Gen; Ikegawa, Shiro; Boduroglu, Koray

    2018-06-08

    Spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type, is a rare autosomal recessive disorder of the skeleton characterized by disproportionate short stature with narrow chest and dysmorphic facial features. The skeletal manifestations include platyspondyly, short flared ribs, short tubular bones with abnormal metaphyses and epiphyses, severe brachydactyly, and premature stippled calcifications in the cartilage. The abnormal calcifications are so distinctive as to point to the definitive diagnosis. However, they may be too subtle to attract diagnostic attention in infancy. Homozygous variants in DDR2 cause this disorder. We report on a 5-year-old girl with the classic phenotype of SMED, SL-AC in whom a novel homozygous nonsense mutation in DDR2 was detected using exome sequencing.

  8. Family patterns of development dyslexia, Part II: Behavioral phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, P.H.; Melngailis, I.; Bedrosian, M.

    1995-12-18

    The motor control of bimanual coordination and motor speech was compared between first degree relatives from families with at least 2 dyslexic family members, and families where probands were the only affected family members. Half of affected relatives had motor coordination deficits; and they came from families in which probands also showed impaired motor coordination. By contrast, affected relatives without motor deficits came from dyslexia families where probands did not have motor deficits. Motor coordination deficits were more common and more severe among affected offspring in families where both parents were affected than among affected offspring in families where onlymore » one parent was affected. However, motor coordination deficits were also more common and more severe in affected parents when both parents were affected than among affected parents in families where only one parent was affected. We conclude that impaired temporal resolution in motor action identifies a behavioral phenotype in some subtypes of developmental dyslexia. The observed pattern of transmission for motor deficits and reading impairment in about half of dyslexia families was most congruent with a genetic model of dyslexia in which 2 codominant major genes cosegregate in dyslexia pedigrees where the proband is also motorically impaired. 54 refs., 5 figs., 5 tabs.« less

  9. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case

    PubMed Central

    Abdala, Virginia

    2016-01-01

    Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40–42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework. PMID:26925340

  11. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis

    PubMed Central

    Fletcher, Phillip D.; Downey, Laura E.; Golden, Hannah L.; Clark, Camilla N.; Slattery, Catherine F.; Paterson, Ross W.; Schott, Jonathan M.; Rohrer, Jonathan D.; Rossor, Martin N.; Warren, Jason D.

    2015-01-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music (‘musicophilia’) occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717

  12. Proportionate Responses to Life Events Influence Clinicians’ Judgments Of Psychological Abnormality

    PubMed Central

    Kim, Nancy S.; Paulus, Daniel J.; Gonzalez, Jeffrey S.; Khalife, Danielle

    2012-01-01

    Psychological abnormality is a fundamental concept in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; APA, 2000) and in all clinical evaluations. How do practicing clinical psychologists use the context of life events to judge the abnormality of a person’s current behaviors? The appropriate role of life-event context in assessment has long been the subject of intense debate and scrutiny among clinical theorists, yet relatively little is known about clinicians’ own judgments in practice. We propose a proportionate-response hypothesis, such that judgments of abnormality are influenced by whether the behaviors are a disproportionate response to past events, rendering them difficult to understand or explain. We presented licensed, practicing clinical psychologists (N=77) with vignettes describing hypothetical people’s behaviors (disordered, mildly distressed, or unaffected) that had been preceded by either traumatic or mildly distressing events. Experts’ judgments of abnormality were strongly and systematically influenced by the degree of mismatch between the past event and current behaviors in strength and valence, such that the greater the mismatch, the more abnormal the person seemed. A separate, additional group of clinical psychologists (N=20) further confirmed that the greater the degree of mismatch, the greater the perceived difficulty in understanding the patient. These findings held true across clinicians of different theoretical orientations and in disorders for which these patterns of judgments ran contrary to formal recommendations in the DSM-IV-TR (APA, 2000). The rationality of these effects and implications for clinical decision science are discussed. PMID:22142425

  13. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.

    PubMed

    Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa

    2015-01-01

    The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.

  14. [Hysteroscopic polypectomy, treatment of abnormal uterine bleeding].

    PubMed

    de Los Rios, P José F; López, R Claudia; Cifuentes, P Carolina; Angulo, C Mónica; Palacios-Barahona, Arlex U

    2015-07-01

    To evaluate the effectiveness of the hysteroscopic polypectomy in terms of the decrease of the abnormal uterine bleeding. A cross-sectional and analytical study was done with patients to whom a hysteroscopic polypectomy was done for treating the abnormal uterine bleeding, between January 2009 and December 2013. The response to the treatment was evaluated via a survey given to the patients about the behavior of the abnormal uterine bleeding after the procedure and about overall satisfaction. The results were obtained after a hysteroscopic polypectomy done to 128 patients and were as follows. The average time from the polypectomy applied until the survey was 30.5 months, with a standard deviation of 18 months. 67.2% of the patients reported decreased abnormal uterine bleeding and the 32.8% reported a persistence of symptoms. On average 82.8% of the. patients were satisfied with the treatment. Bivariate and multivariate analysis showed no association between the variables studied and no improvement of abnormal uterine bleeding after surgery (polypectomy). There were no complications. Hysteroscopic polypectomy is a safe surgical treatment, which decreases on two of three patients the abnormal uterine bleeding in the presence of endometrial polyps, with an acceptable level of satisfaction.

  15. Developmental abnormalities of the posterior pituitary gland.

    PubMed

    di Iorgi, Natascia; Secco, Andrea; Napoli, Flavia; Calandra, Erika; Rossi, Andrea; Maghnie, Mohamad

    2009-01-01

    While the molecular mechanisms of anterior pituitary development are now better understood than in the past, both in animals and in humans, little is known about the mechanisms regulating posterior pituitary development. The posterior pituitary gland is formed by the evagination of neural tissue from the floor of the third ventricle. It consists of the distal axons of the hypothalamic magnocellular neurones that shape the neurohypophysis. After its downward migration, it is encapsulated together with the ascending ectodermal cells of Rathke's pouch which form the anterior pituitary. By the end of the first trimester, this development is completed and vasopressin and oxytocin can be detected in neurohypophyseal tissue. Abnormal posterior pituitary migration such as the ectopic posterior pituitary lobe appearing at the level of median eminence or along the pituitary stalk have been reported in idiopathic GH deficiency or in subjects with HESX1, LHX4 and SOX3 gene mutations. Another intriguing feature of abnormal posterior pituitary development involves genetic forms of posterior pituitary neurodegeneration that have been reported in autosomal-dominant central diabetes insipidus and Wolfram disease. Defining the phenotype of the posterior pituitary gland can have significant clinical implications for management and counseling, as well as providing considerable insight into normal and abnormal mechanisms of posterior pituitary development in humans.

  16. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice

    PubMed Central

    Powell, David R.; Gay, Jason P.; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V.; Lanthorn, Thomas H.; Read, Robert; Vogel, Peter; Hansen, Gwenn M.; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  17. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    PubMed

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes.

    PubMed

    Reid, Emma S; Papandreou, Apostolos; Drury, Suzanne; Boustred, Christopher; Yue, Wyatt W; Wedatilake, Yehani; Beesley, Clare; Jacques, Thomas S; Anderson, Glenn; Abulhoul, Lara; Broomfield, Alex; Cleary, Maureen; Grunewald, Stephanie; Varadkar, Sophia M; Lench, Nick; Rahman, Shamima; Gissen, Paul; Clayton, Peter T; Mills, Philippa B

    2016-11-01

    Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice

    PubMed Central

    Sungur, A. Özge; Stemmler, Lea; Wöhr, Markus; Rust, Marco B.

    2018-01-01

    Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for

  20. X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, H.G.; Nelen, M.R.; Zandvoort, P. van

    The authors have identified a large Dutch kindred with a new form of X-linked nondysmorphic mild mental retardation. All affected males in this family show very characteristic abnormal behavior, in particular aggressive and sometimes violent behavior. Other types of impulsive behavior include arson, attempted rape, and exhibitionism. Attempted suicide has been reported in a single case. The locus for this disorder could be assigned to the Xp11-21 interval between DXS7 and DXS77 by linkage analysis using markers spanning the X chromosome. A maximal multipoint lod score of 3.69 was obtained at the monoamine oxidase type A (MAOA) monoamine metabolism. Thesemore » data are compatible with a primary defect in the structural gene for MAOA and/or monoamine oxidase type B (MAOB). Normal platelet MAOB activity suggests that the unusual behavior pattern in this family may be caused by isolated MAOA deficiency. 34 refs., 4 figs., 4 tabs.« less

  1. Behavioural phenotyping assays for mouse models of autism

    PubMed Central

    Silverman, Jill L.; Yang, Mu; Lord, Catherine; Crawley, Jacqueline N.

    2011-01-01

    Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100–150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of austism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders. PMID:20559336

  2. Repint of "Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity".

    PubMed

    Tordjman, S; Cohen, D; Anderson, G M; Botbol, M; Canitano, R; Coulon, N; Roubertoux, P L

    2018-06-01

    Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2018. Published by Elsevier Ltd.

  3. Dandy-Walker malformation, genitourinary abnormalities, and intellectual disability in two families.

    PubMed

    Zaki, Maha S; Masri, Amira; Gregor, Anne; Gleeson, Joseph G; Rosti, Rasim Ozgur

    2015-11-01

    We report on two families, each with documented consanguinity and two affected with overlapping features of Dandy-Walker malformation, genitourinary abnormalities, intellectual disability, and hearing deficit. This phenotype shares similar findings with many well-known syndromes. However, the clinical findings of this syndrome categorize this as a new syndrome as compared with the phenotype of already established syndromes. Due to parental consanguinity, occurrence in siblings of both genders and the absence of manifestations in obligate carrier parents, an autosomal recessive pattern of inheritance is more likely. The authors believe that these families suggest a novel autosomal recessive cerebello-genital syndrome. Array CGH analyses of an affected did not show pathological deletions or duplications. © 2015 Wiley Periodicals, Inc.

  4. Dandy–Walker Malformation, Genitourinary Abnormalities, and Intellectual Disability in Two Families

    PubMed Central

    Gregor, Anne; Gleeson, Joseph G.; Rosti, Rasim Ozgur

    2016-01-01

    We report on two families, each with documented consanguinity and two affected with overlapping features of Dandy-Walker malformation, genitourinary abnormalities, intellectual disability, and hearing deficit. This phenotype shares similar findings with many well-known syndromes. However, the clinical findings of this syndrome categorize this as a new syndrome as compared with the phenotype of already established syndromes. Due to parental consanguinity, occurrence in siblings of both genders and the absence of manifestations in obligate carrier parents, an autosomal recessive pattern of inheritance is more likely. The authors believe that these families suggest a novel autosomal recessive cerebello–genital syndrome. Array CGH analyses of an affected did not show pathological deletions or duplications. PMID:26109232

  5. Phenotypic and genetic relationships of feeding behavior with feed intake, growth performance, feed efficiency, and carcass merit traits in Angus and Charolais steers.

    PubMed

    Chen, L; Mao, F; Crews, D H; Vinsky, M; Li, C

    2014-03-01

    Feeding behavior traits including daily feeding duration (FD), daily feeding head down time (HD), average feeding duration per feeding event (FD_AVE), average feeding head down time per feeding event (HD_AVE), feeding frequency (FF), and meal eating rate (ER) were analyzed to estimate their phenotypic and genetic correlations with feed intake, growth performance, residual feed intake (RFI), ultrasound, and carcass merit traits in Angus and Charolais finishing steers. Heritability estimates for FD, HD, FD_AVE, HD_AVE, FF, and ER were 0.27 ± 0.09 (SE), 0.25 ± 0.09, 0.19 ± 0.06, 0.11 ± 0.05, 0.24 ± 0.08, and 0.38 ± 0.10, respectively, in the Angus population and 0.49 ± 0.12, 0.38 ± 0.11, 0.31 ± 0.09, 0.29 ± 0.10, 0.43 ± 0.11, and 0.56 ± 0.13, respectively, in the Charolais population. In both the Angus and Charolais steer populations, FD and HD had relatively stronger phenotypic (0.17 ± 0.06 to 0.32 ± 0.04) and genetic (0.29 ± 0.17 to 0.54 ± 0.18) correlations with RFI in comparison to other feeding behavior traits investigated, suggesting the potential of FD and HD as indicators in assessing variation of RFI. In general, feeding behavior traits had weak phenotypic correlations with most of the ultrasound and carcass merit traits; however, estimated genetic correlations of the feeding behavior traits with some fat deposition related traits were moderate to moderately strong but differed in magnitude or sign between the Angus and Charolais steer populations, likely reflecting their different biological types. Genetic parameter estimation studies involving feeding behavior traits in beef cattle are lacking and more research is needed to better characterize the relationships between feeding behavior and feed intake, growth, feed utilization, and carcass merit traits, in particular with respect to different biological types of cattle.

  6. DISTINCT BEHAVIORAL PHENOTYPES IN MALE MICE LACKING THE THYROID HORMONE RECEPTOR α1 OR β ISOFORMS

    PubMed Central

    Vasudevan, Nandini; Morgan, Maria; Pfaff, Donald; Ogawa, Sonoko

    2013-01-01

    Thyroid hormones influence both neuronal development and anxiety via the thyroid hormone receptors (TRs). The TRs are encoded by two different genes, TRα and TRβ. The loss of TRα1 is implicated in increased anxiety in males, possibly via a hippocampal increase in GABAergic activity. We compared both social behaviors and two underlying and related non-social behaviors, state anxiety and responses to acoustic and tactile startle in the gonadally intact TRα1 knockout (α1KO) and TRβ (βKO) male mice to their wild-type counterparts. For the first time, we show an opposing effect of the two TR isoforms, TRα1 and TRβ, in the regulation of state anxiety, with α1 knockout animals (α1KO) showing higher levels of anxiety and βKO males showing less anxiety compared to respective wild-type mice. At odds with the increased anxiety in non-social environments, α1KO males also show lower levels of responsiveness to acoustic and tactile startle stimuli. Consistent with the data that T4 is inhibitory to lordosis in female mice, we show subtly increased sex behavior in α1KO male mice. These behaviors support the idea that TRα1 could be inhibitory to ERα driven transcription that ultimately impacts ERα driven behaviors such as lordosis. The behavioral phenotypes point to novel roles for the TRs, particularly in non-social behaviors such as state anxiety and startle. PMID:23567476

  7. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  8. Analysis of cell cycle-related proteins in gastric intramucosal differentiated-type cancers based on mucin phenotypes: a novel hypothesis of early gastric carcinogenesis based on mucin phenotype

    PubMed Central

    2010-01-01

    Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401

  9. Genotype- phenotype correlation in trisomy X: a retrospective study of a selected group of 36 patients and review of literature.

    PubMed

    Butnariu, Lăcrămioara; Rusu, Cristina; Caba, Lavinia; Pânzaru, Monica; Braha, Elena; Grămescu, Mihaela; Popescu, Roxana; Bujoranu, C; Gorduza, E V

    2013-01-01

    Trisomy X (47,XXX) is a gonosomal aneuploidy characterized by the presence of an extra X chromosome in a female person. Usually the diagnosis is established made postnatally by chromosome analysis in patients with suggestive clinical signs. Clinical signs vary by age. In prepubertal patients have a growth retardation associated with uncharacteristic facial dysmorphism, mild mental retardation with behavioral disorders, plus clinical signs of ovarian dysgenesis, postpubertal. We analyzed retrospectively the genotype - phenotype correlations for a selected group of 36 patients diagnosed with trisomy X (homogeneous or mosaic) by cytogenetic methods (X chromatin and karyotype). Analysis of the clinical data of 36 patients diagnosed with trisomy X and correlation with the results of X chromatin and karyotype. Clinical signs detected in patients with homogeneous trisomy X 47,XXX (22.22%), mosaic 46,XX/47,XXX (16.66%) or 47,XXX/48,XXXX (5.55%) were prepubertal, growth retardation associated with dysmorphic facial (upslanted palpebral fissure, epichantus, thin lips) and postpubertal, signs of ovarian dysgenesis (secondary amenorrhea, early menopause). The phenotype of patients with different gonosomal mosaic corresponding to Turner syndrome, incorporating a cell line with trisomy X (55.55%) was variable, correlated with the type of chromosomal abnormalities detected. The results of our study are similar to those obtained in other studies and emphasizes that phenotypic variability of patients with trisomy X feature makes it difficult to genotype - phenotype correlations.

  10. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay.

    PubMed

    Karvat, Golan; Kimchi, Tali

    2012-08-01

    Three core symptoms of autistic spectrum disorders are stereotypic movements, resistance to change in routines and deficits in social interaction. In order to understand their neuronal mechanisms, there is a dire need for behavioral paradigms to assess those symptoms in rodents. Here we present a novel method which is based on positive reward in a customized wheel-running apparatus to assess these symptoms. As a proof of concept, 4 mouse strains were tested in the new behavioral paradigm; 2 control lines (C57BL/6 and ICR) and 2 mouse-models of autism (BTBR T+ tf/J and Nlgn3(tm1Sud)). We found that the C57BL/6, ICR and Nlgn3(tm1Sud) mice showed a significant reduction in stereotypical behavior in the presence of the running wheel, ability to forfeit the running habit when the running-wheel was jammed, and preference of interacting with a social stimulus over the jammed running-wheel. No difference was found between genotypes of the Nlgn3(tm1Sud) mice. On the other hand, the BTBR mice exhibited persistent, elevated levels of stereotypical behavior. In addition, they presented a deficit in their ability to adjust to a changing environment, as manifested in persistence to interact with the wheel even when it was jammed. Lastly, the BTBR mice exhibited no significant preference to interact with the stranger mouse over the jammed running-wheel. These results were validated by a set of commonly used behavioral tests. Overall, our novel behavioral paradigm detects multiple components of autistic-like phenotypes, including cognitive rigidity, stereotypic behavior and social deficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  12. Abnormal kinetic behavior of cytochrome oxidase in a case of Leigh disease.

    PubMed Central

    Glerum, M; Robinson, B H; Spratt, C; Wilson, J; Patrick, D

    1987-01-01

    Cultured skin fibroblasts from a child with fatal lacticacidemia displayed an abnormally high lactate:pyruvate ratio of 77:1, compared with control values of 22:1-27:1. When protease-treated isolated mitochondria were used, activity of the respiratory-chain enzymes was found to be approximately 60% of normal, and adenosine triphosphate synthesis was found to be normal with all substrates tested. In mitochondria prepared by means of digitonin treatment, adenosine triphosphate synthesis was depressed with all substrates tested, suggesting a defect in the operation of the cytochrome oxidase complex. In disrupted whole cells from the patient, cytochrome oxidase activity was 56% of the activity in the control cell line with the lowest activity. In the presence of a twofold excess of oxidized cytochrome c, patient cells showed 31% of the activity in controls. Cytochrome oxidase activity in both sonicated whole-cell preparations and in sonicated mitochondria displayed abnormal kinetics with regard to the substrate-reduced cytochrome c, which was particularly evident in the presence of excess oxidized cytochrome c. We believe that kinetically abnormal cytochrome oxidase complex is responsible for the biochemical and clinical abnormalities present in this patient. PMID:2821802

  13. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia?

    PubMed

    Gandal, M J; Anderson, R L; Billingslea, E N; Carlson, G C; Roberts, T P L; Siegel, S J

    2012-08-01

    Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1(neo-/-) mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition (PPI) and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice showed behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced PPI, auditory-evoked response N1 latency delay and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDAR hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural

  14. COLORcation: A new application to phenotype exploratory behavior models of anxiety in mice.

    PubMed

    Dagan, Shachar Y; Tsoory, Michael M; Fainzilber, Mike; Panayotis, Nicolas

    2016-09-01

    Behavioral analyses in rodents have successfully delineated the function of many genes and signaling pathways in the brain. Behavioral testing uses highly defined experimental conditions to identify abnormalities in a given mouse strain or genotype. The open field (OF) is widely used to assess both locomotion and anxiety in rodents. In this test, the more a mouse explores and spend time in the center of the arena, the less anxious it is considered to be. However, the simplistic distinction between center and border substantially reduces the information content of the analysis and may fail to detect biologically meaningful differences. Here we describe COLORcation, a new application for improved analyses of mouse behavior in the OF. The application analyses animal exploration patterns in detailed spatial resolution (e.g. 10×10 bins) to provide a color-encoded heat map of mouse activity. In addition, COLORcation provides new parameters to track activity and locomotion of the test animals. We demonstrate the use of COLORcation in different experimental paradigms, including pharmacological and restraint-based induction of stress and anxiety. COLORcation is compatible with multiple acquisition systems, giving users the option to make the most of their raw data organized text files containing time and coordinates of animal locations as input. These analyses validate the utility of the software and establish its reliability and potential as a new tool to analyze OF data. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  16. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    NASA Astrophysics Data System (ADS)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target

  17. Effect of chromosome constitution variations on the expression of Turner phenotype.

    PubMed

    Bispo, A V S; Dos Santos, L O; Burégio-Frota, P; Galdino, M B; Duarte, A R; Leal, G F; Araújo, J; Gomes, B; Soares-Ventura, E M; Muniz, M T C; Santos, N

    2013-03-13

    Turner syndrome (TS) is a chronic disease related to haploinsufficiency of genes that are normally expressed in both X chromosomes in patients with female phenotype that is associated with a wide range of somatic malformations. We made detailed cytogenetic and clinical analysis of 65 patients with TS from the region of Recife, Brazil, to determine the effects of different chromosome constitutions on expression of the TS phenotype. Overall, patients with X-monosomy exhibited a tendency to have more severe phenotypes with higher morbidity, showing its importance in TS prognosis. Additionally, we found rare genetic and phenotypic abnormalities associated with this syndrome. To the best of our knowledge, this is the first case of 45,X,t(11;12)(q22;q22) described as a TS karyotype. Turner patients usually have normal intelligence; however, moderate to severe levels of mental retardation were found in 5 TS cases, which is considerate a very uncommon feature in this syndrome.

  18. Maternal uniparental disomy 14 syndrome demonstrates prader-willi syndrome-like phenotype.

    PubMed

    Hosoki, Kana; Kagami, Masayo; Tanaka, Touju; Kubota, Masaya; Kurosawa, Kenji; Kato, Mitsuhiro; Uetake, Kimiaki; Tohyama, Jun; Ogata, Tsutomu; Saitoh, Shinji

    2009-12-01

    To delineate the significance of maternal uniparental disomy 14 (upd(14)mat) and related disorders in patients with a Prader-Willi syndrome (PWS)-like phenotype. We examined 78 patients with PWS-like phenotype who lacked molecular defects for PWS. The MEG3 methylation test followed by microsatellite polymorphism analysis of chromosome 14 was performed to detect upd(14)mat or other related abnormalities affecting the 14q32.2-imprinted region. We identified 4 patients with upd(14)mat and 1 patient with an epimutation in the 14q32.2 imprinted region. Of the 4 patients with upd(14)mat, 3 had full upd(14)mat and 1 was mosaic. Upd(14)mat and epimutation of 14q32.2 represent clinically discernible phenotypes and should be designated "upd(14)mat syndrome." This syndrome demonstrates a PWS-like phenotype particularly during infancy. The MEG3 methylation test can detect upd(14)mat syndrome defects and should therefore be performed for all undiagnosed infants with hypotonia.

  19. Advances in research on the neurological and neuropsychiatric phenotype of Klinefelter syndrome.

    PubMed

    Savic, Ivanka

    2012-04-01

    Klinefelter syndrome, 47,XXY is the most common chromosomal aberration among men. It represents a naturally occurring human model for studies of both X-chromosome gene expression and potential androgen effects on brain development and function. The aim of this review is to combine available brain imaging and behavioral data to provide an overview of what we have learned about the neural underpinnings of cognitive, emotional and behavioral dysunctions in Klinefelter syndrome. The behavioral phenotype of 47,XXY is characterized by language, executive and psychomotor dysfunction, as well as socioemotional impairment. The prevalence of schizophrenia, attention deficit hyperactivity disorder, autism spectrum disorders and affective regulation problems is increased. Neuroimaging studies of children and adults with Klinefelter syndrome syndrome show characteristic structural changes from typical individuals. There are increases in the grey matter volume of the sensorimotor and parietooccipital regions, as well as significant reductions in amygdala, hippocampal, insular, temporal and inferior-frontal grey matter volumes. Widespread white matter abnormalities have been revealed, with reductions in some areas (including anterior cingulate, bilaterally) but increases in others (such as left parietal lobe). Mechanisms underlying these developmental anomalies could include imbalance in gene dosage relative to typical men or women, as well as the potential consequence of endocrinological deficits. Studies of Klinefelter syndrome could generate important information about the impact of anomalies in sex chromosome gene regulation on the development of cerebral grey and white matter and, ultimately, on human behavior.

  20. B-cell acute lymphoblastic leukemia with mature phenotype and MLL rearrangement: report of five new cases and review of the literature.

    PubMed

    Sajaroff, Elisa Olga; Mansini, Adrian; Rubio, Patricia; Alonso, Cristina Noemí; Gallego, Marta S; Coccé, Mariela C; Eandi-Eberle, Silvia; Bernasconi, Andrea Raquel; Ampatzidou, Maria; Paterakis, George; Papadhimitriou, Stefanos I; Petrikkos, Loizos; Papadakis, Vassilios; Polychronopoulou, Sophia; Rossi, Jorge G; Felice, Maria Sara

    2016-10-01

    The association between mature-B phenotype and MLL abnormalities in acute lymphoblastic leukemia (ALL) is a very unusual finding; only 14 pediatric cases have been reported so far. We describe the clinical and biological characteristics and outcome of five pediatric cases of newly diagnosed B lineage ALL with MLL abnormalities and mature immunophenotype based on light chain restriction and surface Ig expression. Blasts showed variable expression of CD10/CD34/TdT. MLL abnormalities with no MYC involvement were detected in all patients by G-banding, FISH, and/or RT-PCR. Three patients were treated according to Interfant protocol, one to ALLIC-09, and one received B-NHL-BFM-2004. All patients achieved complete remission and three of them relapsed. Despite the small cohort size, it could be postulated that B lineage ALL with MLL abnormalities and mature phenotype is a distinct entity that differs both from the typical Pro B ALL observed in infants and mature B-ALL with high MYC expression.

  1. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    PubMed

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Proportionate Responses to Life Events Influence Clinicians' Judgments of Psychological Abnormality

    ERIC Educational Resources Information Center

    Kim, Nancy S.; Paulus, Daniel J.; Gonzalez, Jeffrey S.; Khalife, Danielle

    2012-01-01

    Psychological abnormality is a fundamental concept in the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM-IV-TR"; American Psychiatric Association, 2000) and in all clinical evaluations. How do practicing clinical psychologists use the context of life events to judge the abnormality of a person's current behaviors? The appropriate…

  3. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype.

    PubMed

    Yang, Shaowei; Sun, Yexiao; Geng, Zhijun; Ma, Kui; Sun, Xiaoyan; Fu, Xiaobing

    2016-05-01

    The majority of studies on scar formation have mainly focused on the dermis and little is known of the involvement of the epidermis. Previous research has demonstrated that the scar tissue-derived keratinocytes are different from normal cells at both the genetic and cell biological levels; however, the mechanisms responsible for the fundamental abnormalities in keratinocytes during scar development remain elusive. For this purpose, in this study, we used normal, wound edge and hypertrophic scar tissue to examine the morphological changes which occur during epidermal regeneration as part of the wound healing process and found that the histological structure of hypertrophic scar tissues differed from that of normal skin, with a significant increase in epidermal thickness. Notably, staining of the basement membrane (BM) appeared to be absent in the scar tissues. Moreover, immunofluorescence staining for cytokeratin (CK)10, CK14, CK5, CK19 and integrin-β1 indicated the differential expression of cell markers in the epidermal keratinocytes among the normal, wound edge and hypertrophic scar tissues, which corresponded with the altered BM structures. By using a panel of proteins associated with BM components, we validated our hypothesis that the BM plays a significant role in regulating the cell fate decision of epidermal keratinocytes during skin wound healing. Alterations in the structure of the BM promote basal keratinocytes to adopt a proliferative phenotype both in vivo and in vitro.

  4. Neural Progenitor Cells Rptor Ablation Impairs Development but Benefits to Seizure-Induced Behavioral Abnormalities.

    PubMed

    Chen, Ling-Lin; Wu, Mei-Ling; Zhu, Feng; Kai, Jie-Jing; Dong, Jing-Yin; Wu, Xi-Mei; Zeng, Ling-Hui

    2016-12-01

    Previous study suggests that mTOR signaling pathway may play an important role in epileptogenesis. The present work was designed to explore the contribution of raptor protein to the development of epilepsy and comorbidities. Mice with conditional knockout of raptor protein were generated by cross-bred Rptor flox/flox mice with nestin-CRE mice. The expression of raptor protein was analyzed by Western blotting in brain tissue samples. Neuronal death and mossy fiber sprouting were detected by FJB staining and Timm staining, respectively. Spontaneous seizures were recorded by EEG-video system. Morris water maze, open field test, and excitability test were used to study the behaviors of Rptor CKO mice. As the consequence of deleting Rptor, downstream proteins of raptor in mTORC1 signaling were partly blocked. Rptor CKO mice exhibited decrease in body and brain weight under 7 weeks old and accordingly, cortical layer thickness. After kainic acid (KA)-induced status epilepticus, overactivation of mTORC1 signaling was markedly reversed in Rptor CKO mice. Although low frequency of spontaneous seizure and seldom neuronal cell death were observed in both Rptor CKO and control littermates, KA seizure-induced mossy fiber spouting were attenuated in Rptor CKO mice. Additionally, cognitive-deficit and anxiety-like behavior after KA-induced seizures were partly reversed in Rptor CKO mice. Loss of the Rptor gene in mice neural progenitor cells affects normal development in young age and may contribute to alleviate KA seizure-induced behavioral abnormalities, suggesting that raptor protein plays an important role in seizure comorbidities. © 2016 John Wiley & Sons Ltd.

  5. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  6. Neuroendocrine-Immune Circuits, Phenotypes, and Interactions

    PubMed Central

    Ashley, Noah T.; Demas, Gregory E.

    2016-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499

  7. Neuroendocrine-immune circuits, phenotypes, and interactions.

    PubMed

    Ashley, Noah T; Demas, Gregory E

    2017-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Quantifying the eating abnormalities in frontotemporal dementia.

    PubMed

    Ahmed, Rebekah M; Irish, Muireann; Kam, Jonathan; van Keizerswaard, Jolanda; Bartley, Lauren; Samaras, Katherine; Hodges, John R; Piguet, Olivier

    2014-12-01

    Presence of eating abnormalities is one of the core criteria for the diagnosis of behavioral variant frontotemporal dementia (bvFTD), yet their occurrence in other subtypes of frontotemporal dementia (FTD) and effect on metabolic health is not known. To define and quantify patterns of eating behavior and energy, sugar, carbohydrate, protein, and fat intake, as well as indices of metabolic health in patients with bvFTD and semantic dementia (SD) compared with patients with Alzheimer disease (AD) and healthy control participants. Prospective case-controlled study involving patient and caregiver completion of surveys. Seventy-five participants with dementia (21 with bvFTD, 26 with SD, and 28 with AD) and 18 age- and education-matched healthy controls were recruited from FRONTIER, the FTD research clinic at Neuroscience Research Australia in Sydney. Caregivers of patients with FTD and AD completed validated questionnaires on appetite, eating behaviors, energy consumption, and dietary macronutrient composition. All participants completed surveys on hunger and satiety. Body mass index and weight measurements were prospectively collected. The bvFTD group had significant abnormalities in the domains of appetite (U = 111.0, z = 2.7, P = .007), eating habits (U = 69.5, z = 3.8, P = .001), food preferences (U = 57.0, z = 4.1, P = .001), swallowing (U = 109.0, z = 3.0, P = .003), and other oral behaviors (U = 141.0, z = 2.6, P = .009) compared with the AD group. The bvFTD and SD groups tended to have increased energy consumption. Compared with controls, the bvFTD group had significantly increased carbohydrate intake (251 vs 170 g/d; P = .05) and the SD group had significantly increased sugar intake (114 vs 76 g/d; P = .049). No significant differences in total fat or protein intake between the groups were found. Despite similar energy intake, the SD group had lower hunger and satiety scores compared with the bvFTD group. In contrast, hunger and satiety scores did not differ

  9. Relationship of sleep abnormalities to patient genotypes in Prader-Willi syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vgontzas, A.N.; Kales, A.; Bixler, E.O.

    To assess whether sleep abnormalities are related to the genetic abnormalities in Prader-Willi Syndrome (PWS), we performed polysomnographic studies (nighttime and daytime) and determined the chromosome 15 genotypes in eight patients with PWS. Four patients demonstrated sleep onset REM periods (SOREM), and five met the objective polysomnographic criteria for severe or moderate excessive daytime sleepiness (EDS). Three of the four patients with SOREM displayed a paternally derived deletion of chromosome 15q11-q13, whereas the fourth exhibited maternal uniparental heterodisomy in this chromosomal region (UPD). Two of the four patients that did not display SOREM carried paternally derived deletions; the remaining twomore » demonstrated UPD. Four of the five patients with EDS displayed paternal deletions, and the fifth exhibited UPD. One of three patients without evidence of EDS demonstrated paternal deletion; the remaining two showed UPD. Although neither EDS nor SOREM was not consistently associated with a specific genetic abnormality, these phenotypes may be more common in patients with paternal deletions than in those with UPD. Sleep abnormalities in PWS cannot be explained by a single genetic model. 32 refs., 1 tab.« less

  10. White blood cell count may identify abnormal cardiometabolic phenotype and preclinical organ damage in overweight/obese children.

    PubMed

    Di Bonito, P; Pacifico, L; Chiesa, C; Invitti, C; Miraglia Del Giudice, E; Baroni, M G; Moio, N; Pellegrin, M C; Tomat, M; Licenziati, M R; Manco, M; Maffeis, C; Valerio, G

    2016-06-01

    Subclinical inflammation is a central component of cardiometabolic disease risk in obese subjects. The aim of the study was to evaluate whether the white blood cell count (WBCc) may help to identify an abnormal cardiometabolic phenotype in overweight (Ow) or obese (Ob) children. A cross-sectional sample of 2835 Ow/Ob children and adolescents (age 6-18 years) was recruited from 10 Italian centers for the care of obesity. Anthropometric and biochemical variables were assessed in the overall sample. Waist to height ratio (WhtR), alanine aminotransferase (ALT), lipids, 2 h post-load plasma glucose (2hPG), left ventricular (LV) geometry and carotid intima-media thickness (cIMT) were assessed in 2128, 2300, 1834, 535 and 315 children, respectively. Insulin resistance and whole body insulin sensitivity index (WBISI) were analyzed using homeostatic model assessment (HOMA-IR) and Matsuda's test. Groups divided in quartiles of WBCc significantly differed for body mass index, WhtR, 2hPG, HOMA-IR, WBISI, lipids, ALT, cIMT, LV mass and relative wall thickness. Children with high WBCc (≥8700 cell/mm(3)) showed a 1.3-2.5 fold increased probability of having high normal 2hPG, high ALT, high cIMT, or LV remodeling/concentric LV hypertrophy, after adjustment for age, gender, pubertal status, BMI and centers. This study shows that WBCc is associated with early derangements of glucose metabolism and preclinical signs of liver, vascular and cardiac damage. The WBCc may be an effective and low-cost tool for identifying Ow and Ob children at the greatest risk of potential complications. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  11. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    PubMed

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  12. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    PubMed Central

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  13. Genetic and environmental relationships of metabolic and weight phenotypes to metabolic syndrome and diabetes: the healthy twin study.

    PubMed

    Song, Yun-Mi; Sung, Joohon; Lee, Kayoung

    2015-02-01

    We aimed to examine the relationships, including genetic and environmental correlations, between metabolic and weight phenotypes and factors related to diabetes and metabolic syndrome. Participants of the Healthy Twin Study without diabetes (n=2687; 895 monozygotic and 204 dizygotic twins, and 1588 nontwin family members; mean age, 42.5±13.1 years) were stratified according to body mass index (BMI) (<25 vs. ≥25 kg/m(2)) and metabolic syndrome categories at baseline. The metabolic traits, namely diabetes and metabolic syndrome, metabolic syndrome components, glycated hemoglobin (HbA1c) level, and homeostasis model assessment of insulin resistance (HOMA-IR), were assessed after 2.5±2.1 years. In a multivariate-adjusted model, those who had metabolic syndrome or overweight phenotypes at baseline were more likely to have higher HbA1C and HOMA-IR levels and abnormal metabolic syndrome components at follow-up as compared to the metabolically healthy normal weight subgroup. The incidence of diabetes was 4.4-fold higher in the metabolically unhealthy but normal weight individuals and 3.3-fold higher in the metabolically unhealthy and overweight individuals as compared with the metabolically healthy normal weight individuals. The heritability of the metabolic syndrome/weight phenotypes was 0.40±0.03. Significant genetic and environmental correlations were observed between the metabolic syndrome/weight phenotypes at baseline and the metabolic traits at follow-up, except for incident diabetes, which only had a significant common genetic sharing with the baseline phenotypes. The genetic and environmental relationships between the metabolic and weight phenotypes at baseline and the metabolic traits at follow-up suggest pleiotropic genetic mechanisms and the crucial role of lifestyle and behavioral factors.

  14. Fetal, infant, adolescent and adult phenotypes of polycystic ovary syndrome in prenatally androgenized female rhesus monkeys

    PubMed Central

    Abbott, David H; Tarantal, Alice F; Dumesic, Daniel A

    2010-01-01

    Old World monkeys provide naturally-occurring and experimentally-induced phenotypes closely resembling the highly prevalent polycystic ovary syndrome (PCOS) in women. In particular, experimentally-induced fetal androgen excess in female rhesus monkeys produces a comprehensive adult PCOS-like phenotype that includes both reproductive and metabolic dysfunction found in PCOS women. Such a reliable experimental approach enables the use of the prenatally androgenized (PA) female rhesus monkey model to (1) examine fetal, infant and adolescent antecedents of adult pathophysiology, gaining valuable insight into early phenotypic expression of PCOS, and (2) to understand adult pathophysiology from a mechanistic perspective. Elevated circulating luteinizing hormone (LH) levels are the earliest indication of reproductive dysfunction in late gestation nonhuman primate fetuses and infants exposed to androgen excess during early (late first to second trimester) gestation. Such early gestation-exposed PA infants also are hyperandrogenic, with both LH hypersecretion and hyperandrogenism persisting in early gestation-exposed PA adults. Similarly, subtle metabolic abnormalities appearing in young nonhuman primate infants and adolescents precede the abdominal adiposity, hyperliplidemia, and increased incidence of type 2 diabetes that characterize early gestated-exposed PA adults. These new insights into the developmental origins of PCOS, and progression of the pathophysiology from infancy to adulthood, provide opportunities for clinical intervention to ameliorate the PCOS phenotype thus providing a preventive health care approach to PCOS-related abnormalities. For example, PCOS-like traits in PA monkeys, as in PCOS women, can improve with better insulin-glucose homeostasis, suggesting that lifestyle interventions preventing increased adiposity in adolescent daughters of PCOS mothers also may reduce their risk of acquiring many PCOS-related metabolic abnormalities in adulthood. PMID

  15. Behavioral Actions of Alcohol: Phenotypic Relations from Multivariate Analysis of Mutant Mouse Data

    PubMed Central

    Blednov, Yuri A.; Mayfield, R. Dayne; Belknap, John; Harris, R. Adron

    2012-01-01

    Behavioral studies of genetically diverse mice have proven powerful for determining relationships between phenotypes and have been widely used in alcohol research. Most of these studies rely on naturally occurring genetic polymorphisms among inbred strains and selected lines. Another approach is to introduce variation by engineering single gene mutations in mice. We have tested 37 different mutant mice and their wild type controls for a variety (31) of behaviors and have mined this dataset by K-means clustering and analysis of correlations. We found a correlation between a stress-related response (activity in a novel environment) and alcohol consumption and preference for saccharin. We confirmed several relationships detected in earlier genetic studies including positive correlation of alcohol consumption with saccharin consumption, and negative correlations with conditioned taste aversion and alcohol withdrawal severity. Introduction of single gene mutations either eliminated or greatly diminished these correlations. The three tests of alcohol consumption used (continuous two bottle choice, and two limited access tests: Drinking In the Dark and Sustained High Alcohol Consumption) share a relationship with saccharin consumption, but differ from each other in their correlation networks. We suggest that alcohol consumption is controlled by multiple physiological systems where single gene mutations can disrupt the networks of such systems. PMID:22405477

  16. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency

    PubMed Central

    2013-01-01

    Background 22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is a neurodevelopmental disorder characterized by intellectual disability, hypotonia, delayed or absent speech, and autistic features. SHANK3 has been identified as the critical gene in the neurological and behavioral aspects of this syndrome. The phenotype of SHANK3 deficiency has been described primarily from case studies, with limited evaluation of behavioral and cognitive deficits. The present study used a prospective design and inter-disciplinary clinical evaluations to assess patients with SHANK3 deficiency, with the goal of providing a comprehensive picture of the medical and behavioral profile of the syndrome. Methods A serially ascertained sample of patients with SHANK3 deficiency (n = 32) was evaluated by a team of child psychiatrists, neurologists, clinical geneticists, molecular geneticists and psychologists. Patients were evaluated for autism spectrum disorder using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule-G. Results Thirty participants with 22q13.3 deletions ranging in size from 101 kb to 8.45 Mb and two participants with de novo SHANK3 mutations were included. The sample was characterized by high rates of autism spectrum disorder: 27 (84%) met criteria for autism spectrum disorder and 24 (75%) for autistic disorder. Most patients (77%) exhibited severe to profound intellectual disability and only five (19%) used some words spontaneously to communicate. Dysmorphic features, hypotonia, gait disturbance, recurring upper respiratory tract infections, gastroesophageal reflux and seizures were also common. Analysis of genotype-phenotype correlations indicated that larger deletions were associated with increased levels of dysmorphic features, medical comorbidities and social communication impairments related to autism. Analyses of individuals with small deletions or point mutations identified features related to SHANK3 haploinsufficiency

  17. Close pathological correlations between chronic kidney disease and reproductive organ-associated abnormalities in female cotton rats.

    PubMed

    Ichii, Osamu; Nakamura, Teppei; Irie, Takao; Kouguchi, Hirokazu; Sotozaki, Kozue; Horino, Taro; Sunden, Yuji; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2018-03-01

    Cotton rat ( Sigmodon hispidus) is a useful experimental rodent for the study of human infectious diseases. We previously clarified that cotton rats, particularly females, developed chronic kidney disease characterized by cystic lesions, inflammation, and fibrosis. The present study investigated female-associated factors for chronic kidney disease development in cotton rats. Notably, female cotton rats developed separation of the pelvic symphysis and hypertrophy in the vaginal parts of the cervix with age, which strongly associated with pyometra. The development of pyometra closely associated with the deterioration of renal dysfunction or immunological abnormalities was indicated by blood urea nitrogen and serum creatinine or spleen weight and serum albumin/globulin ratio, respectively. These parameters for renal dysfunction and immunological abnormalities were statistically correlated. These phenotypes found in the female reproductive organs were completely inhibited by ovariectomy. Further, the female cotton rats with pyometra tended to show more severe chronic kidney disease phenotypes and immunological abnormalities than those without pyometra; these changes were inhibited in ovariectomized cotton rats. With regard to renal histopathology, cystic lesions, inflammation, and fibrosis were ameliorated by ovariectomy. Notably, the immunostaining intensity of estrogen receptor α and estrogen receptor β were weak in the healthy kidneys, but both estrogen receptors were strongly induced in the renal tubules showing cystic changes. In conclusion, the close correlations among female reproductive organ-associated abnormalities, immunological abnormalities, and renal dysfunction characterize the chronic kidney disease features of female cotton rats. Thus, the cotton rat is a unique rodent model to elucidate the pathological crosstalk between chronic kidney disease and sex-related factors. Impact statement The increasing number of elderly individuals in the overall

  18. Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation.

    PubMed

    Vuillermot, Stephanie; Luan, Wei; Meyer, Urs; Eyles, Darryl

    2017-01-01

    Prenatal exposure to infection is a recognized environmental risk factor for neuropsychiatric disorders of developmental origins such as autism or schizophrenia. Experimental work in animals indicates that this link is mediated by maternal immune activation (MIA) involving interactions between cytokine-associated inflammatory events, oxidative stress, and other pathophysiological processes such as hypoferremia and zinc deficiency. Maternal administration of the viral mimic polyriboinosinic-polyribocytidylic acid (poly(I:C)) in mice produces several behavioral phenotypes in adult offspring of relevance to autism spectrum disorder (ASD) and other neurodevelopmental disorders. Here, we investigated whether some of these phenotypes might also present in juveniles. In addition, given the known immunomodulatory and neuroprotective effects of vitamin D, we also investigated whether the co-administration of vitamin D could block MIA-induced ASD-related behaviors. We co-administered the hormonally active form of vitamin D, 1α,25 dihydroxy vitamin D3 (1,25OHD), simultaneously with poly(I:C) and examined (i) social interaction, stereotyped behavior, emotional learning and memory, and innate anxiety-like behavior in juveniles and (ii) the levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in maternal plasma and fetal brains. We show that like adult offspring that were exposed to MIA, juveniles display similar deficits in social approach behavior. Juvenile MIA offspring also show abnormal stereotyped digging and impaired acquisition and expression of tone-cued fear conditioning. Importantly, our study reveals that prenatal administration of 1,25OHD abolishes all these behavioral deficits in poly(I:C)-treated juveniles. However, prenatal administration of vitamin D had no effect on pro-inflammatory cytokine levels in dams or in fetal brains suggesting the anti-inflammatory actions of vitamin D are not the critical mechanism for its preventive actions in this ASD

  19. Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection.

    PubMed

    Yun, Kangsun; Perantoni, Alan O

    The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection. Published by Elsevier B.V.

  20. Phenotypes Associated with SHOX Deficiency.

    PubMed

    Ross, J L; Scott, C; Marttila, P; Kowal, K; Nass, A; Papenhausen, P; Abboudi, J; Osterman, L; Kushner, H; Carter, P; Ezaki, M; Elder, F; Wei, F; Chen, H; Zinn, A R

    2001-12-01

    Leri-Weill dyschondrosteosis (LWD) (MIM 127300) is a dominantly inherited skeletal dysplasia characterized phenotypically by Madelung wrist deformity, mesomelia, and short stature. LWD can now be defined genetically by haploinsufficiency of the SHOX (short stature homeobox-containing) gene. We have studied 21 LWD families (43 affected LWD subjects, including 32 females and 11 males, ages 3-56 yr) with confirmed SHOX abnormalities. We investigated the relationship between SHOX mutations, height deficit, and Madelung deformity to determine the contribution of SHOX haploinsufficiency to the LWD and Turner syndrome (TS) phenotypes. Also, we examined the effects of age, gender, and female puberty (estrogen) on the LWD phenotype. SHOX deletions were present in affected individuals from 17 families (81%), and point mutations were detected in 4 families (19%). In the LWD subjects, height deficits ranged from -4.6 to +0.6 SD (mean +/- SD = -2.2 +/- 1.0). There were no statistically significant effects of age, gender, pubertal status, or parental origin of SHOX mutations on height z-score. The height deficit in LWD is approximately two thirds that of TS. Madelung deformity was present in 74% of LWD children and adults and was more frequent and severe in females than males. The prevalence of the Madelung deformity was higher in the LWD vs. a TS population. The prevalence of increased carrying angle, high arched palate, and scoliosis was similar in the two populations. In conclusion, SHOX deletions or mutations accounted for all of our LWD cases. SHOX haploinsufficiency accounts for most, but not all, of the TS height deficit. The LWD phenotype shows some gender- and age-related differences.

  1. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    PubMed Central

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization

  2. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    PubMed

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  3. Revealing Behavioral Learning Deficit Phenotypes Subsequent to In Utero Exposure to Benzo(a)pyrene

    PubMed Central

    McCallister, Monique M.; Li, Zhu; Zhang, Tongwen; Ramesh, Aramandla; Clark, Ryan S.; Maguire, Mark; Hutsell, Blake; Newland, M. Christopher; Hood, Darryl B.

    2016-01-01

    To characterize behavioral deficits in pre-adolescent offspring exposed in utero to Benzo(a)pyrene [B(a)P], timed-pregnant Long Evans Hooded rats were treated with B(a)P (150, 300, 600, and 1200 µg/kg BW) or peanut oil (vehicle) on E14, 15, 16, and 17. Following birth, during the pre-weaning period, B(a)P metabolites were examined in plasma and whole brain or cerebral cortex from exposed and control offspring. Tissue concentrations of B(a)P metabolites were (1) dose-dependent and (2) followed a time-dependence for elimination with ∼60% reduction by PND5 in the 1200 µg/kg BW experimental group. Spatial discrimination-reversal learning was utilized to evaluate potential behavioral neurotoxicity in P40–P60 offspring. Late-adolescent offspring exposed in utero to 600 and 1200 µg/kg BW were indistinguishable from their control counterparts for ability to acquire an original discrimination (OD) and reach criterion. However, a dose-dependent effect of in utero B(a)P-exposure was evident upon a discrimination reversal as exposed offspring perseverated on the previously correct response. This newly characterized behavioral deficit phenotype for the first reversal was not apparent in either the (1) OD or (2) subsequent reversal sessions relative to the respective control offspring. Furthermore, the expression of activity related-cytoskeletal-associated protein (Arc), an experience-dependent cortical protein marker known to be up-regulated in response to acquisition of a novel behavior, was greater in B(a)P-exposed offspring included in the spatial discrimination cohort versus home cage controls. Collectively, these findings support the hypothesis that in utero exposure to B(a)P during critical windows of development representing peak periods of neurogenesis results in behavioral deficits in later life. PMID:26420751

  4. [The battery of tests for behavioral phenotyping of aging animals in the experiment].

    PubMed

    Gorina, Ya V; Komleva, Yu K; Lopatina, O L; Volkova, V V; Chernykh, A I; Shabalova, A A; Semenchukov, A A; Olovyannikova, R Ya; Salmina, A B

    2017-01-01

    The purpose of the study was to develop a battery of tests to study social and cognitive impairments for behavioral phenotyping of aging experimental animals with physiological neurodegeneration. Object of the study were outbred CD1 mice in the following groups: 1st group - 12-month old male mice (physiological aging); 2nd group - 2-month old male mice (control group). Social recognition test, elevated plus maze test (EPM), open field test, light-dark box test, and Fear conditioning protocol were used to estimate the neurological status of experimental animals. We found that aging male mice in a contrast to young ones have demonstrated lower social interest to female mice in the social recognition task. EPM and light-dark box tests showed increased level of anxiety in the group of aged mice comparing to the control group. Fear conditioning protocol revealed impairment of associative learning and memory in the group of aged mice, particularly, fear memory consolidation was dramatically suppressed. Analysis of behavioral factors, social interactions and anxiety level in the experimental mice has confirmed age-related neurodegeneration in the 1st group. We found that the most informative approach to identifying neurological impairments in aging mice (social interaction deficit, limitation of interests, increased level of anxiety) should be based on the open field test light-dark box test, and Fear conditioning protocol. Such combination allows obtaining new data on behavioral alterations in the age-associated of neurodegeneration and to develop novel therapeutic strategies for the treatment of age-related brain pathology.

  5. Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress

    PubMed Central

    Licznerski, Pawel; Duric, Vanja; Banasr, Mounira; Alavian, Kambiz N.; Ota, Kristie T.; Kang, Hyo Jung; Jonas, Elizabeth A.; Ursano, Robert; Krystal, John H.; Duman, Ronald S.

    2015-01-01

    Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology. PMID:26506154

  6. Divergent sensory phenotypes in nonspecific arm pain: comparisons with cervical radiculopathy.

    PubMed

    Moloney, Niamh; Hall, Toby; Doody, Catherine

    2015-02-01

    To investigate whether distinct sensory phenotypes were identifiable in individuals with nonspecific arm pain (NSAP) and whether these differed from those in people with cervical radiculopathy. A secondary question considered whether the frequency of features of neuropathic pain, kinesiophobia, high pain ratings, hyperalgesia, and allodynia differed according to subgroups of sensory phenotypes. Cross-sectional study. Higher education institution. Forty office workers with NSAP, 17 people with cervical radiculopathy, and 40 age- and sex-matched healthy controls (N=97). Not applicable. Participants were assessed using quantitative sensory testing (QST) comprising thermal and vibration detection thresholds and thermal and pressure pain thresholds; clinical examination; and relevant questionnaires. Sensory phenotypes were identified for each individual in the patient groups using z-score transformation of the QST data. Individuals with NSAP and cervical radiculopathy present with a spectrum of sensory abnormalities; a dominant sensory phenotype was not identifiable in individuals with NSAP. No distinct pattern between clinical features and questionnaire results across sensory phenotypes was identified in either group. When considering sensory phenotypes, neither individuals with NSAP nor individuals with cervical radiculopathy should be considered homogeneous. Therefore, people with either condition may warrant different intervention approaches according to their individual sensory phenotype. Issues relating to the clinical identification of sensory hypersensitivity and the validity of QST are highlighted. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Multivariate Associations Among Behavioral, Clinical, and Multimodal Imaging Phenotypes in Patients With Psychosis.

    PubMed

    Moser, Dominik A; Doucet, Gaelle E; Lee, Won Hee; Rasgon, Alexander; Krinsky, Hannah; Leibu, Evan; Ing, Alex; Schumann, Gunter; Rasgon, Natalie; Frangou, Sophia

    2018-04-01

    Alterations in multiple neuroimaging phenotypes have been reported in psychotic disorders. However, neuroimaging measures can be influenced by factors that are not directly related to psychosis and may confound the interpretation of case-control differences. Therefore, a detailed characterization of the contribution of these factors to neuroimaging phenotypes in psychosis is warranted. To quantify the association between neuroimaging measures and behavioral, health, and demographic variables in psychosis using an integrated multivariate approach. This imaging study was conducted at a university research hospital from June 26, 2014, to March 9, 2017. High-resolution multimodal magnetic resonance imaging data were obtained from 100 patients with schizophrenia, 40 patients with bipolar disorder, and 50 healthy volunteers; computed were cortical thickness, subcortical volumes, white matter fractional anisotropy, task-related brain activation (during working memory and emotional recognition), and resting-state functional connectivity. Ascertained in all participants were nonimaging measures pertaining to clinical features, cognition, substance use, psychological trauma, physical activity, and body mass index. The association between imaging and nonimaging measures was modeled using sparse canonical correlation analysis with robust reliability testing. Multivariate patterns of the association between nonimaging and neuroimaging measures in patients with psychosis and healthy volunteers. The analyses were performed in 92 patients with schizophrenia (23 female [25.0%]; mean [SD] age, 27.0 [7.6] years), 37 patients with bipolar disorder (12 female [32.4%]; mean [SD] age, 27.5 [8.1] years), and 48 healthy volunteers (20 female [41.7%]; mean [SD] age, 29.8 [8.5] years). The imaging and nonimaging data sets showed significant covariation (r = 0.63, P < .001), which was independent of diagnosis. Among the nonimaging variables examined, age (r = -0.53), IQ (r = 0

  8. Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder

    PubMed Central

    van Enkhuizen, Jordy; Geyer, Mark A.; Halberstadt, Adam L.; Zhuang, Xiaoxi; Young, Jared W.

    2014-01-01

    Background Patients with BD suffer from multifaceted symptoms, including hyperactive and psychomotor agitated behaviors. Previously, we quantified hyperactivity, increased exploration, and straighter movements of patients with BD mania in the human Behavioral Pattern Monitor (BPM). A similar BPM profile is observed in mice that are hyperdopaminergic due to reduced dopamine transporter (DAT) functioning. We hypothesized that dopamine depletion through alpha-methyl-p-tyrosine (AMPT) administration would attenuate this mania-like profile. Methods Male and female DAT wild-type (WT; n=26) and knockdown (KD; n=28) mice on a C57BL/6 background were repeatedly tested in the BPM to assess profile robustness and stability. The optimal AMPT dose was identified by treating male C57BL/6 mice (n=39) with vehicle or AMPT (10, 30, or 100 mg/kg) at 24, 20, and 4 h prior to testing in the BPM. Then, male and female DAT WT (n=40) and KD (n=37) mice were tested in the BPM after vehicle or AMPT (30 mg/kg) treatment. Results Compared to WT littermates, KD mice exhibited increased activity, exploration, straighter movement, and disorganized behavior. AMPT-treatment reduced hyperactivity and increased path organization, but potentiated specific exploration in KD mice without affecting WT mice. Limitations AMPT is not specific to dopamine and also depletes norepinephrine. Conclusions KD mice exhibit abnormal exploration in the BPM similar to patients with BD mania. AMPT-induced dopamine depletion attenuated some, but potentiated other, aspects of this mania-like profile in mice. Future studies should extend these findings into other aspects of mania to determine the suitability of AMPT as a treatment for BD mania. PMID:24287168

  9. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the...

  10. Sebaceous Gland, Hair Shaft, and Epidermal Barrier Abnormalities in Keratosis Pilaris with and without Filaggrin Deficiency

    PubMed Central

    Gruber, Robert; Sugarman, Jeffrey L.; Crumrine, Debra; Hupe, Melanie; Mauro, Theodora M.; Mauldin, Elizabeth A.; Thyssen, Jacob P.; Brandner, Johanna M.; Hennies, Hans-Christian; Schmuth, Matthias; Elias, Peter M.

    2016-01-01

    Although keratosis pilaris (KP) is common, its etiopathogenesis remains unknown. KP is associated clinically with ichthyosis vulgaris and atopic dermatitis and molecular genetically with filaggrin-null mutations. In 20 KP patients and 20 matched controls, we assessed the filaggrin and claudin 1 genotypes, the phenotypes by dermatoscopy, and the morphology by light and transmission electron microscopy. Thirty-five percent of KP patients displayed filaggrin mutations, demonstrating that filaggrin mutations only partially account for the KP phenotype. Major histologic and dermatoscopic findings of KP were hyperkeratosis, hypergranulosis, mild T helper cell type 1-dominant lymphocytic inflammation, plugging of follicular orifices, striking absence of sebaceous glands, and hair shaft abnormalities in KP lesions but not in unaffected skin sites. Changes in barrier function and abnormal paracellular permeability were found in both interfollicular and follicular stratum corneum of lesional KP, which correlated ultrastructurally with impaired extracellular lamellar bilayer maturation and organization. All these features were independent of filaggrin genotype. Moreover, ultrastructure of corneodesmosomes and tight junctions appeared normal, immunohistochemistry for claudin 1 showed no reduction in protein amounts, and molecular analysis of claudin 1 was unremarkable. Our findings suggest that absence of sebaceous glands is an early step in KP pathogenesis, resulting in downstream hair shaft and epithelial barrier abnormalities. PMID:25660180

  11. The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions

    PubMed Central

    Hallman, Troy M.; Peng, Min; Meade, Ray; Hancock, Wayne W.; Madaio, Michael P.; Gasser, David L.

    2008-01-01

    Interstitial nephritis occurs spontaneously in kd/kd mice, but the mechanisms leading to this disease have not been fully elucidated. The earliest manifestation of a phenotype is the appearance of ultrastructural defects in the mitochondria of mice as young as 42 days of age. To examine the influence of the environment on the phenotype, homozygous B6.kd/kd mice were transferred from specific pathogen-free (SPF) conditions to a germfree (GF) environment, and the development of the disease was observed. The GF state resulted in a highly significant reduction in the frequency of tubulointerstitial nephritis. In addition, GF conditions markedly reduced the appearance of the mitochondrial phenotype, with no sign of mitochondrial abnormalities in GF mice of up to 155 days of age. These results suggest that environmental factors are involved in the progression of all known manifestations of this disease phenotype. PMID:16337774

  12. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice.

    PubMed

    Huang, Huang; Nie, Sipei; Cao, Min; Marshall, Charles; Gao, Junying; Xiao, Na; Hu, Gang; Xiao, Ming

    2016-08-01

    Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.

  13. Distinctive Menkes disease variant with occipital horns: Delineation of natural history and clinical phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proud, V.K.; Mussell, H.G.; Percy, A.K.

    1996-10-02

    To delineate further the clinical spectrum of Menkes disease, an X-linked recessive disorder of copper transport, we studied 4 related males, ranging in age from 4-38 years, with a unique phenotype that combines manifestations of classical and mild Menkes disease and occipital horn syndrome (OHS). The propositus, an 18-year-old man, was evaluated following an intracerebral hemorrhage at age 15 years and was noted to have marked hypotonia, motor delay with mental retardation, bladder diverticula, failure to thrive, and diarrhea from infancy; seizures from age 3 years; and abnormal hair (pili torti) and face, cutis laxa, and multiple joint dislocations. Radiographicmore » abnormalities included occipital exostoses, tortuous cerebral blood vessels with multiple branch occlusions, and hammer-shaped clavicles. Biochemical studies demonstrated reduced copper and ceruloplasmin levels in serum, and abnormal plasma catecholamine ratios. We reported previously the molecular defect in this family, a splice-site mutation that predicts formation of approximately 20% of the normal Menkes gene product. Here, we detail the clinical course and physical features and radiographic findings in these 4 individuals, and compare their phenotype with classical and mild Menkes and OHS. Unusual Menkes disease variants such as this may escape recognition due to anomalies that appear inconsistent with the diagnosis, particularly prolonged survival and later onset of seizures. Males with mental retardation and connective tissue abnormalities should be evaluated for biochemical evidence of defective copper transport. 28 refs., 8 figs.« less

  14. Pleiotropy in microdeletion syndromes: Neurologic and spermatogenic abnormalities in mice homozygous for the p{sup 6H} deletion are likely due to dysfunction of a single gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinchik, E.M.; Carpenter, D.A.; Handel, M.A.

    1995-07-03

    Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p{sup 6H} deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p{sup 6H} deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profoundmore » abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p{sup 6H} deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p{sup 6H} deletion homozygotes. Because etNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p{sup 6H} deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans. 29 refs., 3 figs., 1 tab.« less

  15. Broad Autism Phenotypic Traits and the Relationship to Sexual Orientation and Sexual Behavior.

    PubMed

    Qualls, Lydia R; Hartmann, Kathrin; Paulson, James F

    2018-04-03

    Individuals with higher levels of the broad autism phenotype (BAP) have some symptoms of autism spectrum disorder (ASD). Like individuals with ASD, people with higher-BAP may have fewer sexual experiences and may experience more same-sex attraction. This study measured BAP traits, sexual experiences, and sexual orientation in typically developing (TD) individuals to see if patterns of sexual behavior and sexual orientation in higher-BAP resemble those in ASD. Although BAP characteristics did not predict sexual experiences, one BAP measure significantly predicted sexual orientation, β = 0.22, t = 2.72, p = .007, controlling for demographic variables (R 2 change = .04, F = 7.41, p = .007), showing individuals with higher-BAP also reported increased same-sex attraction. This finding supports the hypothesis that individuals with higher-BAP resemble ASD individuals in being more likely than TD individuals to experience same-sex attraction.

  16. Phenotypic expression of polycystic ovary syndrome in South Asian women.

    PubMed

    Mehta, Jaya; Kamdar, Vikram; Dumesic, Daniel

    2013-03-01

    Polycystic ovary syndrome (PCOS) occurs in 6% to 10% of women and, as the most common worldwide endocrinopathy of reproductive-aged women, is linked to a constellation of reproductive and metabolic abnormalities, including anovulatory infertility, hirsutism, acne, and insulin resistance in association with metabolic syndrome. Despite a genetic component to PCOS, ethnicity plays an important role in the phenotypic expression of PCOS, with South Asian PCOS women having more severe reproductive and metabolic symptoms than other ethnic groups. South Asians with PCOS seek medical care at an earlier age for reproductive abnormalities; have a higher degree of hirsutism, infertility, and acne; and experience lower live birth rates following in vitro fertilization than do whites with PCOS. Similarly, South Asians with PCOS have a higher prevalence of insulin resistance and metabolic syndrome than do other PCOS-related ethnic groups of a similar body mass index. Inheritance of PCOS appears to have a complex genetic basis, including genetic differences based on ethnicity, which interact with lifestyle and other environmental factors to affect PCOS phenotypic expression. Obstetricians and Gynecologists, Family Physicians Learning Objectives: After completing this CME activity, physicians should be better able to state an ethnic difference in reproductive dysfunction between South Asian and white women with polycystic ovary syndrome (PCOS), state an ethnic difference in metabolic dysfunction between South Asian and white women with PCOS, identify a genetic abnormality found in South Asian women with PCOS, and list 2 environmental factors that predispose South Asian women to metabolic dysfunction.

  17. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    PubMed Central

    Drapeau, Elodie; Dorr, Nate P.; Elder, Gregory A.; Buxbaum, Joseph D.

    2014-01-01

    Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent. PMID:24652766

  18. [Liver enzyme abnormalities among oil refinery workers].

    PubMed

    Carvalho, Fernando Martins; Silvany Neto, Annibal Muniz; Mendes, João Luiz Barberino; Cotrim, Helma Pinchemel; Nascimento, Ana Lísia Cunha; Lima Júnior, Alberto Soares; Cunha, Tatiana Oliveira Bernardo da

    2006-02-01

    Occupational exposure typical of an oil refinery may alter liver function among the workers. Thus, the objective of the study was to identify risk factors for liver enzyme abnormalities among oil refinery workers. The workers at an oil refinery in Northeastern Brazil underwent routine annual medical examination from 1982 to 1998. This case-control study investigated all the 150 cases of individuals with simultaneous gamma-glutamyltransferase and alanine aminotransferase abnormalities of at least 10% above reference levels. As controls, 150 workers without any liver enzyme or bilirubin abnormalities since starting to work there were selected. Odds ratios and the respective 95% confidence intervals were calculated from logistic regression models. In all the production sectors, the risk of liver enzyme abnormalities was significantly higher than in the administrative sector (OR=5.7; 95% CI: 1.7-18.4), even when the effects of alcohol, obesity and medical history of hepatitis were controlled for. During the period from 1992 to 1994, 88 out of the 89 cases occurred among workers from the various production sectors. Occupational exposure plays an important role in causing liver enzyme abnormalities among oil refinery workers. This is in addition to the specifically biological and/or behavioral risk factors such as obesity and alcohol consumption.

  19. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    PubMed

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  20. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype

    PubMed Central

    YANG, SHAOWEI; SUN, YEXIAO; GENG, ZHIJUN; MA, KUI; SUN, XIAOYAN; FU, XIAOBING

    2016-01-01

    The majority of studies on scar formation have mainly focused on the dermis and little is known of the involvement of the epidermis. Previous research has demonstrated that the scar tissue-derived keratinocytes are different from normal cells at both the genetic and cell biological levels; however, the mechanisms responsible for the fundamental abnormalities in keratinocytes during scar development remain elusive. For this purpose, in this study, we used normal, wound edge and hypertrophic scar tissue to examine the morphological changes which occur during epidermal regeneration as part of the wound healing process and found that the histological structure of hypertrophic scar tissues differed from that of normal skin, with a significant increase in epidermal thickness. Notably, staining of the basement membrane (BM) appeared to be absent in the scar tissues. Moreover, immunofluorescence staining for cytokeratin (CK)10, CK14, CK5, CK19 and integrin-β1 indicated the differential expression of cell markers in the epidermal keratinocytes among the normal, wound edge and hypertrophic scar tissues, which corresponded with the altered BM structures. By using a panel of proteins associated with BM components, we validated our hypothesis that the BM plays a significant role in regulating the cell fate decision of epidermal keratinocytes during skin wound healing. Alterations in the structure of the BM promote basal keratinocytes to adopt a proliferative phenotype both in vivo and in vitro. PMID:26986690

  1. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background.

    PubMed

    Jaramillo, Thomas C; Escamilla, Christine Ochoa; Liu, Shunan; Peca, Lauren; Birnbaum, Shari G; Powell, Craig M

    2018-02-01

    Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein that interacts with presynaptic ligands including neurexin-1 (NRXN1) [Ichtchenko et al., Journal of Biological Chemistry, 271, 2676-2682, 1996]. Mice harboring a mutation in the NLGN3 gene (NL3R451C) mimicking a mutation found in two brothers with autism spectrum disorder (ASD) were previously generated and behaviorally phenotyped for autism-related behaviors. In these NL3R451C mice generated and tested on a hybrid C57BL6J/129S2/SvPasCrl background, we observed enhanced spatial memory and reduced social interaction [Tabuchi et al., Science, 318, 71-76, 2007]. Curiously, an independently generated second line of mice harboring the same mutation on a C57BL6J background exhibited minimal aberrant behavior, thereby providing apparently discrepant results. To investigate the origin of the discrepancy, we previously replicated the original findings of Tabuchi et al. by studying the same NL3R451C mutation on a pure 129S2/SvPasCrl genetic background. Here we complete the behavioral characterization of the NL3R451C mutation on a pure C57BL6J genetic background to determine if background genetics play a role in the discrepant behavioral outcomes involving NL3R451C mice. NL3R451C mutant mice on a pure C57BL6J background did not display spatial memory enhancements or social interaction deficits. We only observed a decreased startle response and mildly increased locomotor activity in these mice suggesting that background genetics influences behavioral outcomes involving the NL3R451C mutation. Autism Res 2018, 11: 234-244. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Behavioral symptoms of autism can be highly variable, even in cases that involve identical genetic mutations. Previous studies in mice with a mutation of the Neuroligin-3 gene showed enhanced learning and social deficits. We replicated these findings on the same and different genetic backgrounds. In this study, however, the

  2. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits

    PubMed Central

    Grønli, Janne; Clegern, William C.; Schmidt, Michelle A.; Nemri, Rahmi S.; Rempe, Michael J.; Gallitano, Amelia L.; Wisor, Jonathan P.

    2016-01-01

    Study Objective: The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Methods: Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Results: Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1–3 Hz power) and in quiet wakefulness (elevated 3–8 Hz and 15–35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1–4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Conclusion: Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. Citation: Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP. Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient

  3. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that

  5. Prioritizing Genetic Testing in Patients With Kallmann Syndrome Using Clinical Phenotypes

    PubMed Central

    Costa-Barbosa, Flavia Amanda; Balasubramanian, Ravikumar; Keefe, Kimberly W.; Shaw, Natalie D.; Al-Tassan, Nada; Plummer, Lacey; Dwyer, Andrew A.; Buck, Cassandra L.; Choi, Jin-Ho; Seminara, Stephanie B.; Quinton, Richard; Monies, Dorota; Meyer, Brian; Hall, Janet E.; Pitteloud, Nelly

    2013-01-01

    Context: The complexity of genetic testing in Kallmann syndrome (KS) is growing and costly. Thus, it is important to leverage the clinical evaluations of KS patients to prioritize genetic screening. Objective: The objective of the study was to determine which reproductive and nonreproductive phenotypes of KS subjects have implications for specific gene mutations. Subjects: Two hundred nineteen KS patients were studied: 151 with identified rare sequence variants (RSVs) in 8 genes known to cause KS (KAL1, NELF, CHD7, HS6ST1, FGF8/FGFR1, or PROK2/PROKR2) and 68 KS subjects who remain RSV negative for all 8 genes. Main Outcome Measures: Reproductive and nonreproductive phenotypes within each genetic group were measured. Results: Male KS subjects with KAL1 RSVs displayed the most severe reproductive phenotype with testicular volumes (TVs) at presentation of 1.5 ± 0.1 mL vs 3.7 ± 0.3 mL, P < .05 vs all non-KAL1 probands. In both sexes, synkinesia was enriched but not unique to patients with KAL1 RSVs compared with KAL1-negative probands (43% vs 12%; P < .05). Similarly, dental agenesis and digital bone abnormalities were enriched in patients with RSVs in the FGF8/FGFR1 signaling pathway compared with all other gene groups combined (39% vs 4% and 23% vs 0%; P < .05, respectively). Hearing loss marked the probands with CHD7 RSVs (40% vs 13% in non-CHD7 probands; P < .05). Renal agenesis and cleft lip/palate did not emerge as statistically significant phenotypic predictors. Conclusions: Certain clinical features in men and women are highly associated with genetic causes of KS. Synkinesia (KAL1), dental agenesis (FGF8/FGFR1), digital bony abnormalities (FGF8/FGFR1), and hearing loss (CHD7) can be useful for prioritizing genetic screening. PMID:23533228

  6. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  7. New insights into genotype–phenotype correlation for GLI3 mutations

    PubMed Central

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent- Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues. PMID:24736735

  8. New insights into genotype-phenotype correlation for GLI3 mutations.

    PubMed

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent-Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype-phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype-phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.

  9. Behavioral Analysis of Genetically Modified Mice Indicates Essential Roles of Neurosteroidal Estrogen

    PubMed Central

    Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro

    2011-01-01

    Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807

  10. Comprehensive behavioral phenotyping of a new Semaphorin 3 F mutant mouse.

    PubMed

    Matsuda, Ikuo; Shoji, Hirotaka; Yamasaki, Nobuyuki; Miyakawa, Tsuyoshi; Aiba, Atsu

    2016-02-09

    tests for assessing motor function, pain sensitivity, startle response to an acoustic stimulus, sensorimotor gating, or spatial reference memory, there were no significant behavioral differences between Sema3F KO and WT mice. These results suggest that Sema3F deficiency induces decreased locomotor activity and possibly abnormal anxiety-related behaviors and also enhances contextual memory and generalized fear in mice. Thus, our findings suggest that Sema3F plays important roles in the development of neuronal circuitry underlying the regulation of some aspects of anxiety and fear responses.

  11. The Nutritional Phenotype in the Age of Metabolomics

    PubMed Central

    Zeisel, S. H.; Freake, H. C.; Bauman, D. E.; Bier, D. M.; Burrin, D. G.; German, J. B.; Klein, S.; Marquis, G. S.; Milner, J. A.; Pelto, G. H.; Rasmussen, K. M.

    2008-01-01

    The concept of the nutritional phenotype is proposed as a defined and integrated set of genetic, proteomic, metabolomic, functional, and behavioral factors that, when measured, form the basis for assessment of human nutritional status. The nutritional phenotype integrates the effects of diet on disease/wellness and is the quantitative indication of the paths by which genes and environment exert their effects on health. Advances in technology and in fundamental biological knowledge make it possible to define and measure the nutritional phenotype accurately in a cross section of individuals with various states of health and disease. This growing base of data and knowledge could serve as a resource for all scientific disciplines involved in human health. Nutritional sciences should be a prime mover in making key decisions that include: what environmental inputs (in addition to diet) are needed; what genes/proteins/metabolites should be measured; what end-point phenotypes should be included; and what informatics tools are available to ask nutritionally relevant questions. Nutrition should be the major discipline establishing how the elements of the nutritional phenotype vary as a function of diet. Nutritional sciences should also be instrumental in linking the elements that are responsive to diet with the functional outcomes in organisms that derive from them. As the first step in this initiative, a prioritized list of genomic, proteomic, and metabolomic as well as functional and behavioral measures that defines a practically useful subset of the nutritional phenotype for use in clinical and epidemiological investigations must be developed. From this list, analytic platforms must then be identified that are capable of delivering highly quantitative data on these endpoints. This conceptualization of a nutritional phenotype provides a concrete form and substance to the recognized future of nutritional sciences as a field addressing diet, integrated metabolism, and health

  12. Phenotype- and Genotype-Specific Structural Alterations in Spasmodic Dysphonia

    PubMed Central

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F.; Frucht, Steven J.; Blitzer, Andrew; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Methods Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Results Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Conclusions Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. PMID:28186656

  13. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.

    PubMed

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina

    2017-04-01

    Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  14. Female Mecp2+/− mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies

    PubMed Central

    Samaco, Rodney C.; McGraw, Christopher M.; Ward, Christopher S.; Sun, Yaling; Neul, Jeffrey L.; Zoghbi, Huda Y.

    2013-01-01

    Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2). Typical RTT primarily affects girls and is characterized by a brief period of apparently normal development followed by the loss of purposeful hand skills and language, the onset of anxiety, hand stereotypies, autistic features, seizures and autonomic dysfunction. Mecp2 mouse models have extensively been studied to demonstrate the functional link between MeCP2 dysfunction and RTT pathogenesis. However, the majority of studies have focused primarily on the molecular and behavioral consequences of the complete absence of MeCP2 in male mice. Studies of female Mecp2+/− mice have been limited because of potential phenotypic variability due to X chromosome inactivation effects. To determine whether reproducible and reliable phenotypes can be detected Mecp2+/− mice, we analyzed Mecp2+/− mice of two different F1 hybrid isogenic backgrounds and at young and old ages using several neurobehavioral and physiological assays. Here, we report a multitude of phenotypes in female Mecp2+/− mice, some presenting as early as 5 weeks of life. We demonstrate that Mecp2+/− mice recapitulate several aspects of typical RTT and show that mosaic expression of MeCP2 does not preclude the use of female mice in behavioral and molecular studies. Importantly, we uncover several behavioral abnormalities that are present in two genetic backgrounds and report on phenotypes that are unique to one background. These findings provide a framework for pre-clinical studies aimed at improving the constellation of phenotypes in a mouse model of RTT. PMID:23026749

  15. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facciolo, Rosa Maria, E-mail: rm.facciolo@unical.i; Crudo, Michele; Giusi, Giuseppina

    2010-02-15

    At date the major neuroreceptors i.e. gamma-aminobutyric acid{sub A} (GABA{sub A}R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA{sub A}R agonist (muscimol, MUS; 0,1 mug/g body weight) and/or its antagonist bicuculline (BIC; 1 mug/g body weight) have corroborated a GABA{sub A}ergic role on motor behaviors. In particular, MUS induced moderate (p < 0.05) and great (p < 0.01) increases of swimming towards food sources and resting states after 24 (1 dose) and 96 (4 doses) h treatmentmore » sessions, respectively, when compared to controls. Conversely, BIC caused a very strong (p < 0.001) reduction of the former behavior and in some cases convulsive swimming. From the correlation of BIC-dependent behavioral changes to neuronal morphological and ORXR transcriptional variations, it appeared that the disinhibitory action of GABA{sub A}R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA{sub A}R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.« less

  16. Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP

    PubMed Central

    Silverman, Jill L; Tolu, Seda S; Barkan, Charlotte L; Crawley, Jacqueline N

    2010-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including well-replicated deficits in reciprocal social interactions and social approach, unusual patterns of ultrasonic vocalization, and high levels of repetitive self-grooming. These phenotypes offer straightforward behavioral assays for translational investigations of pharmacological compounds. Two suggested treatments for autism were evaluated in the BTBR mouse model. Methyl-6-phenylethynyl-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, blocks aberrant phenotypes in the Fmr1 mouse model of Fragile X, a comorbid neurodevelopmental disorder with autistic features. Risperidone has been approved by the United States Food and Drug Administration for the treatment of irritability, tantrums, and self-injurious behavior in autistic individuals. We evaluated the actions of MPEP and risperidone on two BTBR phenotypes, low sociability and high repetitive self-grooming. Open field activity served as an independent control for non-social exploratory activity and motor functions. C57BL/6J (B6), an inbred strain with high sociability and low self-grooming, served as the strain control. MPEP significantly reduced repetitive self-grooming in BTBR, at doses that had no sedating effects on open field activity. Risperidone reduced repetitive self-grooming in BTBR, but only at doses that induced sedation in both strains. No overall improvements in sociability were detected in BTBR after treatment with either MPEP or risperidone. Our findings suggest that antagonists of mGluR5 receptors may have selective therapeutic efficacy in treating repetitive behaviors in autism. PMID:20032969

  17. Animal biometrics: quantifying and detecting phenotypic appearance.

    PubMed

    Kühl, Hjalmar S; Burghardt, Tilo

    2013-07-01

    Animal biometrics is an emerging field that develops quantified approaches for representing and detecting the phenotypic appearance of species, individuals, behaviors, and morphological traits. It operates at the intersection between pattern recognition, ecology, and information sciences, producing computerized systems for phenotypic measurement and interpretation. Animal biometrics can benefit a wide range of disciplines, including biogeography, population ecology, and behavioral research. Currently, real-world applications are gaining momentum, augmenting the quantity and quality of ecological data collection and processing. However, to advance animal biometrics will require integration of methodologies among the scientific disciplines involved. Such efforts will be worthwhile because the great potential of this approach rests with the formal abstraction of phenomics, to create tractable interfaces between different organizational levels of life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis

    PubMed Central

    Jaligot, Estelle; Adler, Sophie; Debladis, Émilie; Beulé, Thierry; Richaud, Frédérique; Ilbert, Pascal; Finnegan, E. Jean; Rival, Alain

    2011-01-01

    Background The large-scale clonal propagation of oil palm (Elaeis guineensis) is being stalled by the occurrence of the mantled somaclonal variation. Indeed, this abnormality which presents a homeotic-like conversion of male floral organs into carpelloid structures, hampers oil production since the supernumerary female organs are either sterile or produce fruits with poor oil yields. Scope In the last 15 years, the prevailing point of view on the origin of the mantled floral phenotype has evolved from a random mutation event triggered by in vitro culture to a hormone-dependent dysfunction of gene regulation processes. In this review, we retrace the history of the research on the mantled variation in the light of the parallel advances made in the understanding of plant development regulation in model systems and more specifically in the role of epigenetic mechanisms. An overview of the current state of oil palm genomic and transcriptomic resources, which are key to any comparison with model organisms, is given. We show that, while displaying original characteristics, the mantled phenotype of oil palm is morphologically, and possibly molecularly, related to MADS-box genes mutants described in model plants. We also discuss the occurrence of comparable floral phenotypes in other palm species. Conclusions Beyond its primary interest in the search for discriminating markers against an economically crippling phenotype, the study of the mantled abnormality also provides a unique opportunity to investigate the regulation of reproductive development in a perennial tropical palm. On the basis of recent results, we propose that future efforts should concentrate on the epigenetic regulation targeting MADS-box genes and transposable elements of oil palm, since both types of sequences are most likely to be involved in the mantled variant phenotype. PMID:21224269

  19. Environmentally toxicant exposures induced intragenerational transmission of liver abnormalities in mice

    PubMed Central

    Al-Griw, Mohamed A.; Treesh, Soad A.; Alghazeer, Rabia O.; Regeai, Sassia O.

    2017-01-01

    Environmental toxicants such as chemicals, heavy metals, and pesticides have been shown to promote transgenerational inheritance of abnormal phenotypes and/or diseases to multiple subsequent generations following parental and/or ancestral exposures. This study was designed to examine the potential transgenerational action of the environmental toxicant trichloroethane (TCE) on transmission of liver abnormality, and to elucidate the molecular etiology of hepatocyte cell damage. A total of thirty two healthy immature female albino mice were randomly divided into three equal groups as follows: a sham group, which did not receive any treatment; a vehicle group, which received corn oil alone, and TCE treated group (3 weeks, 100 μg/kg i.p., every 4th day). The F0 and F1 generation control and TCE populations were sacrificed at the age of four months, and various abnormalities histpathologically investigated. Cell death and oxidative stress indices were also measured. The present study provides experimental evidence for the inheritance of environmentally induced liver abnormalities in mice. The results of this study show that exposure to the TCE promoted adult onset liver abnormalities in F0 female mice as well as unexposed F1 generation offspring. It is the first study to report a transgenerational liver abnormalities in the F1 generation mice through maternal line prior to gestation. This finding was based on careful evaluation of liver histopathological abnormalities, apoptosis of hepatocytes, and measurements of oxidative stress biomarkers (lipid peroxidation, protein carbonylation, and nitric oxide) in control and TCE populations. There was an increase in liver histopathological abnormalities, cell death, and oxidative lipid damage in F0 and F1 hepatic tissues of TCE treated group. In conclusion, this study showed that the biological and health impacts of environmental toxicant TCE do not end in maternal adults, but are passed on to offspring generations. Hence

  20. Strategy Revealing Phenotypic Differences among Synthetic Oscillator Designs

    PubMed Central

    2015-01-01

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested. PMID:25019938

  1. From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency.

    PubMed

    Bortolato, Marco; Floris, Gabriele; Shih, Jean C

    2018-05-10

    The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct. Building on this discovery, subsequent studies were focused on the characterization of the role of MAOA in the neurobiology of antisocial conduct. MAO A knockout mice were found to display high levels of intermale aggression; however, further analyses of these mutants unveiled additional behavioral abnormalities mimicking the core symptoms of autism-spectrum disorder. These findings were strikingly confirmed in newly reported cases of Brunner syndrome. The role of MAOB in behavioral regulation remains less well-understood, even though Maob-deficient mice have been found to exhibit greater behavioral disinhibition and risk-taking responses, supporting previous clinical studies showing associations between low MAO B activity and impulsivity. Furthermore, lack of MAOB was found to exacerbate the severity of psychopathological deficits induced by concurrent MAOA deficiency. Here, we summarize how the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals, which encompass a broad spectrum of neurodevelopmental problems. This emerging knowledge poses novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.

  2. Phenotypic heterogeneity associated with a novel mutation (Gly112Glu) in the Norrie disease protein.

    PubMed

    Allen, R C; Russell, S R; Streb, L M; Alsheikheh, A; Stone, E M

    2006-02-01

    To determine the molecular pathology and clinical severity of two pedigrees with a history of early retinal detachment and peripheral retinal vascular abnormalities. Longitudinal cohort study. A longitudinal clinical study and DNA analysis was performed on 49 family members of two pedigrees. Nine individuals were found to be hemizygous for a mutation at codon 112 (Gly112Glu) of the Norrie disease protein (NDP) in one pedigree. Significant phenotypic heterogeneity was found. The proband presented with a unilateral subtotal retinal detachment at the age of 3 years, and subsequently developed a slowly progressive tractional retinal detachment involving the macula in the contralateral eye at the age of 4 years. One individual had only mild peripheral retinal pigmentary changes with normal vision at the age of 79 years. The remaining seven individuals had varying degrees of peripheral retinal vascular abnormalities and anterior segment findings. Seven affected members of a second pedigree affected by a previously reported mutation, Arg74Cys, also demonstrated wide ocular phenotypic variation. A novel mutation (Gly112Glu), which represents the most carboxy located, NDP mutation reported, results in significant phenotypic heterogeneity. These data support the contention that the spectrum of ocular disease severity associated with these NDP mutations is broad. Use of terms that characterize this entity by phenotypic appearance, such as familial exudative vitreoretinopathy, do not adequately communicate the potential spectrum of severity of this disorder to affected or carrier family members.

  3. Effect of phenotype on health care costs in Crohn's disease: A European study using the Montreal classification.

    PubMed

    Odes, Selwyn; Vardi, Hillel; Friger, Michael; Wolters, Frank; Hoie, Ole; Moum, Bjørn; Bernklev, Tomm; Yona, Hagit; Russel, Maurice; Munkholm, Pia; Langholz, Ebbe; Riis, Lene; Politi, Patrizia; Bondini, Paolo; Tsianos, Epameinondas; Katsanos, Kostas; Clofent, Juan; Vermeire, Severine; Freitas, João; Mouzas, Iannis; Limonard, Charles; O'Morain, Colm; Monteiro, Estela; Fornaciari, Giovanni; Vatn, Morten; Stockbrugger, Reinhold

    2007-12-01

    Crohn's disease (CD) is a chronic inflammation of the gastrointestinal tract associated with life-long high health care costs. We aimed to determine the effect of disease phenotype on cost. Clinical and economic data of a community-based CD cohort with 10-year follow-up were analyzed retrospectively in relation to Montreal classification phenotypes. In 418 patients, mean total costs of health care for the behavior phenotypes were: nonstricturing-nonpenetrating 1690, stricturing 2081, penetrating 3133 and penetrating-with-perianal-fistula 3356 €/patient-phenotype-year (P<0.001), and mean costs of surgical hospitalization 215, 751, 1293 and 1275 €/patient-phenotype-year respectively (P<0.001). Penetrating-with-perianal-fistula patients incurred significantly greater expenses than penetrating patients for total care, diagnosis and drugs, but not surgical hospitalization. Total costs were similar in the location phenotypes: ileum 1893, colon 1748, ileo-colonic 2010 and upper gastrointestinal tract 1758 €/patient-phenotype-year, but surgical hospitalization costs differed significantly, 558, 209, 492 and 542 €/patient-phenotype-year respectively (P<0.001). By multivariate analysis, the behavior phenotype significantly impacted total, medical and surgical hospitalization costs, whereas the location phenotype affected only surgical costs. Younger age at diagnosis predicted greater surgical expenses. Behavior is the dominant phenotype driving health care cost. Use of the Montreal classification permits detection of cost differences caused by perianal fistula.

  4. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats.

    PubMed

    Saddoris, Michael P; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M

    2016-01-06

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in

  5. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    PubMed Central

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence

  6. Growth retardation, intellectual disability, facial anomalies, cataract, thoracic hypoplasia and skeletal abnormalities: a novel phenotype

    PubMed Central

    Shah, Hitesh; Bens, Susanne; Caliebe, Almuth; Graham, John M.; Girisha, Katta Mohan

    2012-01-01

    We report a fourteen year old adolescent girl with growth deficiency, microcephaly, intellectual disability, distinctive dysmorphic features (bulbous nose with wide nasal base, hypotelorism, deeply set eyes, protruding cupped ears and thick lips), cataract, pigmentary retinopathy, hypoplastic thorax, kyphoscoliosis and unusual skeletal changes but without chromosomal imbalances detected by array-CGH who probably represents a novel phenotype. PMID:22987502

  7. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment?

    PubMed

    Gładysz, Dominika; Krzywdzińska, Amanda; Hozyasz, Kamil K

    2018-01-06

    Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.

  8. Nontraditional risk factors for cardiovascular disease and visceral adiposity index among different body size phenotypes.

    PubMed

    Du, T; Zhang, J; Yuan, G; Zhang, M; Zhou, X; Liu, Z; Sun, X; Yu, X

    2015-01-01

    Increased cardiovascular disease and mortality risk in metabolically healthy obese (MHO) individuals remain highly controversial. Several studies suggested risk while others do not. The traditional cardiovascular risk factors may be insufficient to demonstrate the complete range of metabolic abnormalities in MHO individuals. Hence, we aimed to compare the prevalence of elevated lipoprotein (a), apolipoprotein B, and uric acid (UA) levels, apolipoprotein B/apolipoprotein A1 ratio, and visceral adiposity index (VAI) scores, and low apolipoprotein A1 levels among 6 body size phenotypes (normal weight with and without metabolic abnormalities, overweight with and without metabolic abnormalities, and obese with or without metabolic abnormalities). We conducted a cross-sectional analysis of 7765 Chinese adults using data from the nationwide China Health and Nutrition Survey 2009. MHO persons had intermediate prevalence of elevated apolipoprotein B and UA levels, apolipoprotein B/apolipoprotein A1 ratio and VAI scores, and low apolipoprotein A1 levels between metabolically healthy normal-weight (MHNW) and metabolically abnormal obese individuals (P < 0.001 for all comparisons). Elevated apolipoprotein B and UA concentrations, apolipoprotein B/apolipoprotein A1 ratio, and VAI scores were all strongly associated with the MHO phenotype (all P < 0.01). Prevalence of elevated apolipoprotein B and UA levels, apolipoprotein B/apolipoprotein A1 ratio and VAI scores, and low levels of apolipoprotein A1 was higher among MHO persons than among MHNW individuals. The elevated levels of the nontraditional risk factors and VAI scores in MHO persons could contribute to the increased cardiovascular disease risk observed in long-term studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  10. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    PubMed

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  11. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome

    PubMed Central

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-01-01

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481

  12. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11

    PubMed Central

    Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark

    2014-01-01

    Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486

  13. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.

    PubMed

    Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy

    2013-12-07

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target

  14. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  15. The contributions of oxytocin and vasopressin pathway genes to human behavior.

    PubMed

    Ebstein, Richard P; Knafo, Ariel; Mankuta, David; Chew, Soo Hong; Lai, Poh San

    2012-03-01

    Arginine vasopressin (AVP) and oxytocin (OXT) are social hormones and mediate affiliative behaviors in mammals and as recently demonstrated, also in humans. There is intense interest in how these simple nonapeptides mediate normal and abnormal behavior, especially regarding disorders of the social brain such as autism that are characterized by deficits in social communication and social skills. The current review examines in detail the behavioral genetics of the first level of human AVP-OXT pathway genes including arginine vasopressin 1a receptor (AVPR1a), oxytocin receptor (OXTR), AVP (AVP-neurophysin II [NPII]) and OXT (OXT neurophysin I [NPI]), oxytocinase/vasopressinase (LNPEP), ADP-ribosyl cyclase (CD38) and arginine vasopressin 1b receptor (AVPR1b). Wherever possible we discuss evidence from a variety of research tracks including molecular genetics, imaging genomics, pharmacology and endocrinology that support the conclusions drawn from association studies of social phenotypes and detail how common polymorphisms in AVP-OXT pathway genes contribute to the behavioral hard wiring that enables individual Homo sapiens to interact successfully with conspecifics. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Advanced transgenic approaches to understand alcohol-related phenotypes in animals.

    PubMed

    Bilbao, Ainhoa

    2013-01-01

    During the past two decades, the use of genetically manipulated animal models in alcohol research has greatly improved the understanding of the mechanisms underlying alcohol addiction. In this chapter, we present an overview of the progress made in this field by summarizing findings obtained from studies of mice harboring global and conditional mutations in genes that influence alcohol-related phenotypes. The first part reviews behavioral paradigms for modeling the different phases of the alcohol addiction cycle and other alcohol-induced behavioral phenotypes in mice. The second part reviews the current data available using genetic models targeting the main neurotransmitter and neuropeptide systems involved in the reinforcement and stress pathways, focusing on the phenotypes modeling the alcohol addiction cycle. Finally, the third part will discuss the current findings and future directions, and proposes advanced transgenic mouse models for their potential use in alcohol research.

  17. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  18. Further investigation of phenotypes and confounding factors of progressive ratio performance and feeding behavior in the BACHD rat model of Huntington disease

    PubMed Central

    Clemensson, Laura Emily; Fabry, Benedikt; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    Huntington disease is an inherited neurodegenerative disorder characterized by motor, cognitive, psychiatric and metabolic symptoms. We recently published a study describing that the BACHD rat model of HD shows an obesity phenotype, which might affect their motivation to perform food-based behavioral tests. Further, we argued that using a food restriction protocol based on matching BACHD and wild type rats’ food consumption rates might resolve these motivational differences. In the current study, we followed up on these ideas in a longitudinal study of the rats’ performance in a progressive ratio test. We also investigated the phenotype of reduced food consumption rate, which is typically seen in food-restricted BACHD rats, in greater detail. In line with our previous study, the BACHD rats were less motivated to perform the progressive ratio test compared to their wild type littermates, although the phenotype was no longer present when the rats’ food consumption rates had been matched. However, video analysis of food consumption tests suggested that the reduced consumption rate found in the BACHD rats was not entirely based on differences in hunger, but likely involved motoric impairments. Thus, restriction protocols based on food consumption rates are not appropriate when working with BACHD rats. As an alternative, we suggest that studies where BACHD rats are used should investigate how the readouts of interest are affected by motivational differences, and use appropriate control tests to avoid misleading results. In addition, we show that BACHD rats display distinct behavioral changes in their progressive ratio performance, which might be indicative of striatal dysfunction. PMID:28273120

  19. Further investigation of phenotypes and confounding factors of progressive ratio performance and feeding behavior in the BACHD rat model of Huntington disease.

    PubMed

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Fabry, Benedikt; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    Huntington disease is an inherited neurodegenerative disorder characterized by motor, cognitive, psychiatric and metabolic symptoms. We recently published a study describing that the BACHD rat model of HD shows an obesity phenotype, which might affect their motivation to perform food-based behavioral tests. Further, we argued that using a food restriction protocol based on matching BACHD and wild type rats' food consumption rates might resolve these motivational differences. In the current study, we followed up on these ideas in a longitudinal study of the rats' performance in a progressive ratio test. We also investigated the phenotype of reduced food consumption rate, which is typically seen in food-restricted BACHD rats, in greater detail. In line with our previous study, the BACHD rats were less motivated to perform the progressive ratio test compared to their wild type littermates, although the phenotype was no longer present when the rats' food consumption rates had been matched. However, video analysis of food consumption tests suggested that the reduced consumption rate found in the BACHD rats was not entirely based on differences in hunger, but likely involved motoric impairments. Thus, restriction protocols based on food consumption rates are not appropriate when working with BACHD rats. As an alternative, we suggest that studies where BACHD rats are used should investigate how the readouts of interest are affected by motivational differences, and use appropriate control tests to avoid misleading results. In addition, we show that BACHD rats display distinct behavioral changes in their progressive ratio performance, which might be indicative of striatal dysfunction.

  20. [EXOSKELETON ABNORMALITIES IN TAIGA TICK FEMALES FROM POPULATIONS OF THE ASIATIC PART OF RUSSIA].

    PubMed

    Nikitin, A Ya; Morozov, I M

    2016-01-01

    Studies of the phenotypic structure of Ixodes persulcatus (Schulze, 1930) populations in relation to their exoskeleton abnormalities are important in both theoretical and practical respects. The data on the species' population structure in Asiatic part of Russia are fragmentary. The goal of the study was to describe taiga tick population structure based on the pattern of females' exoskeleton abnormalities revealed in Asiatic part of Russia. A total of 3872 I. persulcatus females from 16 geographically remote sites of Far Eastern, Siberian, and Ural Federal Districts (FEFD, SFD, and UFD accordingly) were studied. It was demonstrated that all the populations possessed specimens with exoskeleton abnormalities. The «shagreen skin» abnormality was dominant in all these areas. At the same time, the percentage of abnormalities among the specimens collected to the north of 55°N is considerably higher (63.4 ± 3.39 %) than that of samples from the SFD southward territories (33.1 ± 3.43 %). The frequency of abnormalities in its turn is lower (24.4 ± 1.93 %) in the females from the territories with moderate monsoon and moderate continental climate (FEFD) than that in specimens from SFD and UFD areas with sharp continental climate. Thus, such polymorphism of the females' exoskeleton structure may reflect the natural phenogeographical variability of the character rather than the result of the anthropogenic impact. 403

  1. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  2. Delineation of behavioral phenotypes in genetic syndromes: characteristics of autism spectrum disorder, affect and hyperactivity.

    PubMed

    Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

    2011-08-01

    We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in CdLS and FXS. High levels of impulsivity were seen in SMS, AS, CdCS, FXS and adults with CdLS. Negative affect was prominent in adults with CdLS, while positive affect was prominent in adults with AS and FXS. Heightened levels of overactivity and impulsivity were identified in FXS, AS and SMS while low levels were identified in PWS. These findings confirm and extend previously reported behavioral phenotypes.

  3. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis

    PubMed Central

    Kozol, Robert A.; Cukier, Holly N.; Zou, Bing; Mayo, Vera; De Rubeis, Silvia; Cai, Guiqing; Griswold, Anthony J.; Whitehead, Patrice L.; Haines, Jonathan L.; Gilbert, John R.; Cuccaro, Michael L.; Martin, Eden R.; Baker, James D.; Buxbaum, Joseph D.; Pericak-Vance, Margaret A.; Dallman, Julia E.

    2015-01-01

    Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1–2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes. PMID:25882707

  4. Developmental heterochrony and the evolution of autistic perception, cognition and behavior.

    PubMed

    Crespi, Bernard

    2013-05-02

    Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly represent simple delays or non-completion of typical childhood developmental trajectories is evaluated. A comprehensive review of the literature indicates that, with regard to the four phenotypes of (1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the differences between autistic individuals and typically developing individuals closely parallel the differences between younger and older children. The results of this study are concordant with a model of 'developmental heterochrony', and suggest that evolutionary extension of child development along the human lineage has potentiated and structured genetic risk for autism and the expression of autistic perception, cognition and behavior.

  5. Pheno-phenotypes: a holistic approach to the psychopathology of schizophrenia.

    PubMed

    Stanghellini, Giovanni; Rossi, Rodolfo

    2014-05-01

    Mental disorders are mainly characterized via symptom assessment. Symptoms are state-like macroscopic anomalies of behaviour, experience, and expression that are deemed relevant for diagnostic purposes. An alternative approach is based on the concept of endophenotypes, which are physiological or behavioural measures occupying the terrain between symptoms and risk genotypes. We will critically discuss these two approaches, and later focus on the concept of pheno-phenotype as it is revealed by recent phenomenological research on schizophrenia. Several studies have been recently published on the schizophrenic pheno-phenotype mainly addressing self-disorders, as well as disorders of time and bodily experience. The mainstream approach to psychopathological phenotypes is focussed on easy-to-assess operationalizable symptoms. Thinness of phenotypes and simplification of clinical constructs are the consequences of this. Also, this approach has not been successful in investigating the biological causes of mental disorders. An integrative approach is based on the concept of 'endophenotype'. Endophenotypes were conceptualized as a supportive tool for the genetic dissection of psychiatric disorders. The underlying rationale states that disease-specific phenotypes should be the upstream phenotypic manifestation of a smaller genotype than the whole disease-related genotype. Psychopathological phenotypes can also be characterized in terms of pheno-phenotypes. This approach aims at delineating the manifold phenomena experienced by patients in all of their concrete and distinctive features, so that the features of a pathological condition emerge, while preserving their peculiar feel, meaning, and value for the patient. Systematic explorations of anomalies in the patients' experience, for example, of time, space, body, self, and otherness, may provide a useful integration to the symptom-based and endophenotype-based approaches. These abnormal phenomena can be used as pointers to the

  6. Cardiac phenotyping in ex vivo murine embryos using microMRI.

    PubMed

    Cleary, Jon O; Price, Anthony N; Thomas, David L; Scambler, Peter J; Kyriakopoulou, Vanessa; McCue, Karen; Schneider, Jürgen E; Ordidge, Roger J; Lythgoe, Mark F

    2009-10-01

    Microscopic MRI (microMRI) is an emerging technique for high-throughput phenotyping of transgenic mouse embryos, and is capable of visualising abnormalities in cardiac development. To identify cardiac defects in embryos, we have optimised embryo preparation and MR acquisition parameters to maximise image quality and assess the phenotypic changes in chromodomain helicase DNA-binding protein 7 (Chd7) transgenic mice. microMRI methods rely on tissue penetration with a gadolinium chelate contrast agent to reduce tissue T(1), thus improving signal-to-noise ratio (SNR) in rapid gradient echo sequences. We investigated 15.5 days post coitum (dpc) wild-type CD-1 embryos fixed in gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) solutions for either 3 days (2 and 4 mM) or 2 weeks (2, 4, 8 and 16 mM). To assess penetration of the contrast agent into heart tissue and enable image contrast simulations, T(1) and T(*) (2) were measured in heart and background agarose. Compared to 3-day, 2-week fixation showed reduced mean T(1) in the heart at both 2 and 4 mM concentrations (p < 0.0001), resulting in calculated signal gains of 23% (2 mM) and 29% (4 mM). Using T(1) and T(*) (2) values from 2-week concentrations, computer simulation of heart and background signal, and ex vivo 3D gradient echo imaging, we demonstrated that 2-week fixed embryos in 8 mM Gd-DTPA in combination with optimised parameters (TE/TR/alpha/number of averages: 9 ms/20 ms/60 degrees /7) produced the largest SNR in the heart (23.2 +/- 1.0) and heart chamber contrast-to-noise ratio (CNR) (27.1 +/- 1.6). These optimised parameters were then applied to an MRI screen of embryos heterozygous for the gene Chd7, implicated in coloboma of the eye, heart defects, atresia of the choanae, retardation of growth, genital/urinary abnormalities, ear abnormalities and deafness (CHARGE) syndrome (a condition partly characterised by cardiovascular birth defects in humans). A ventricular septal defect was readily identified

  7. Rab5a‑mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells.

    PubMed

    Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo

    2016-11-01

    migrated cells, decreased numbers of cells at the G0‑G1 phase and a higher apoptosis rate. However, PDGF significantly rescued these phenomena caused by siRNA against Rab5a. These results indicated that Rab5a‑mediated autophagy may regulate the phenotype transition and cell behavior of VSMCs through the activation of the extracellular‑regulated kinase 1/2 signaling pathway.

  8. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection.

    PubMed

    Brooks, R; Endler, J A

    2001-08-01

    Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.

  9. Sleep and Sex: What Can Go Wrong? A Review of the Literature on Sleep Related Disorders and Abnormal Sexual Behaviors and Experiences

    PubMed Central

    Schenck, Carlos H.; Arnulf, Isabelle; Mahowald, Mark W.

    2007-01-01

    Study Objectives: To formulate the first classification of sleep related disorders and abnormal sexual behaviors and experiences. Design: A computerized literature search was conducted, and other sources, such as textbooks, were searched. Results: Many categories of sleep related disorders were represented in the classification: parasomnias (confusional arousals/sleepwalking, with or without obstructive sleep apnea; REM sleep behavior disorder); sleep related seizures; Kleine-Levin syndrome (KLS); severe chronic insomnia; restless legs syndrome; narcolepsy; sleep exacerbation of persistent sexual arousal syndrome; sleep related painful erections; sleep related dissociative disorders; nocturnal psychotic disorders; miscellaneous states. Kleine-Levin syndrome (78 cases) and parasomnias (31 cases) were most frequently reported. Parasomnias and sleep related seizures had overlapping and divergent clinical features. Thirty-one cases of parasomnias (25 males; mean age, 32 years) and 7 cases of sleep related seizures (4 males; mean age, 38 years) were identified. A full range of sleep related sexual behaviors with self and/or bed partners or others were reported, including masturbation, sexual vocalizations, fondling, sexual intercourse with climax, sexual assault/rape, ictal sexual hyperarousal, ictal orgasm, and ictal automatism. Adverse physical and/or psychosocial effects from the sleepsex were present in all parasomnia and sleep related seizure cases, but pleasurable effects were reported by 5 bed partners and by 3 patients with sleep related seizures. Forensic consequences were common, occurring in 35.5% (11/31) of parasomnia cases, with most (9/11) involving minors. All parasomnias cases reported amnesia for the sleepsex, in contrast to 28.6% (2/7) of sleep related seizure cases. Polysomnography (without penile tumescence monitoring), performed in 26 of 31 parasomnia cases, documented sexual moaning from slow wave sleep in 3 cases and sexual intercourse during

  10. Familial Risk for Insomnia Is Associated With Abnormal Cortisol Response to Stress.

    PubMed

    Drake, Christopher L; Cheng, Philip; Almeida, David M; Roth, Thomas

    2017-10-01

    Abnormalities in the stress system have been implicated in insomnia. However, studies examining physiological stress regulation in insomnia have not consistently detected differences in the hypothalamic-pituitary-adrenal (HPA)-axis response to stress. One explanation may be that deficits in the stress system are associated specifically with a biological vulnerability to insomnia rather than the phenotypic expression of insomnia. To examine stress response as a function of vulnerability to insomnia, this study tested response to the Trier Social Stress Test in a sample of healthy sleepers with varying familial risks for insomnia. Thirty-five healthy individuals with and without familial risk for insomnia were recruited to complete a laboratory stressor. Participants with one or both biological parents with insomnia were categorized as positive for familial risk, whereas those without biological parents with insomnia were categorized as negative for familial risk. Participants completed the Trier Social Stress Test in the laboratory, and psychological and physiological (autonomic and HPA-axis) responses were compared. Despite self-reported increases in anxiety, those positive for familial risk exhibited a blunted cortisol response relative to those without familial risk for insomnia. Individuals with blunted cortisol also reported heightened reactivity to personal life stressors, including increased sleep disturbances, elevated cognitive intrusions, and more behavioral avoidance. Findings from this study provide initial evidence that abnormal stress regulation may be a biological predisposing factor conferred via familial risk for insomnia. This deficit may also predict negative consequences over time, including insomnia and the associated psychiatric comorbidities. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Evaluation of tributyltin toxicity in Chinese rare minnow larvae by abnormal behavior, energy metabolism and endoplasmic reticulum stress.

    PubMed

    Li, Zhi-Hua; Li, Ping

    2015-02-05

    Tributyltin (TBT) is a ubiquitous contaminant in aquatic environment, but the detailed mechanisms underlying the toxicity of TBT have not been fully understood. In this study, the effects of TBT on behavior, energy metabolism and endoplasmic reticulum (ER) stress were investigated by using Chinese rare minnow larvae. Fish larvae were exposed at sublethal concentrations of TBT (100, 400 and 800 ng/L) for 7 days. Compared with the control, energy metabolic parameters (RNA/DNA ratio, Na(+)-K(+)-ATPase) were significantly inhibited in fish exposed at highest concentration (800 ng/L), as well as abnormal behaviors observed. Moreover, we found that the PERK (PKR-like ER kinase)-eIF2α (eukaryotic translation initiation factor 2α) pathway, as the main branch was activated by TBT exposure in fish larvae. In short, TBT-induced physiological, biochemical and molecular responses in fish larvae were reflected in parameters measured in this study, which suggest that these biomarkers could be used as potential indicators for monitoring organotin compounds present in aquatic environment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Abnormal development of floral meristem triggers defective morphogenesis of generative system in transgenic tomatoes.

    PubMed

    Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena

    2018-04-21

    Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.

  13. Cuticular Drusen: Clinical Phenotypes and Natural History Defined Using Multimodal Imaging.

    PubMed

    Balaratnasingam, Chandrakumar; Cherepanoff, Svetlana; Dolz-Marco, Rosa; Killingsworth, Murray; Chen, Fred K; Mendis, Randev; Mrejen, Sarah; Too, Lay Khoon; Gal-Or, Orly; Curcio, Christine A; Freund, K Bailey; Yannuzzi, Lawrence A

    2018-01-01

    To define the range and life cycles of cuticular drusen phenotypes using multimodal imaging and to review the histologic characteristics of cuticular drusen. Retrospective, observational cohort study and experimental laboratory study. Two hundred forty eyes of 120 clinic patients with a cuticular drusen phenotype and 4 human donor eyes with cuticular drusen (n = 2), soft drusen (n = 1), and hard drusen (n = 1). We performed a retrospective review of clinical and multimodal imaging data of patients with a cuticular drusen phenotype. Patients had undergone imaging with various combinations of color photography, fluorescein angiography, indocyanine green angiography, near-infrared reflectance, fundus autofluorescence, high-resolution OCT, and ultrawide-field imaging. Human donor eyes underwent processing for high-resolution light and electron microscopy. Appearance of cuticular drusen in multimodal imaging and the topography of a cuticular drusen distribution; age-dependent variations in cuticular drusen phenotypes, including the occurrence of retinal pigment epithelium (RPE) abnormalities, choroidal neovascularization, acquired vitelliform lesions (AVLs), and geographic atrophy (GA); and ultrastructural and staining characteristics of druse subtypes. The mean age of patients at the first visit was 57.9±13.4 years. Drusen and RPE changes were seen in the peripheral retina, anterior to the vortex veins, in 21.8% of eyes. Of eyes with more than 5 years of follow-up, cuticular drusen disappeared from view in 58.3% of eyes, drusen coalescence was seen in 70.8% of eyes, and new RPE pigmentary changes developed in 56.2% of eyes. Retinal pigment epithelium abnormalities, AVLs, neovascularization, and GA occurred at a frequency of 47.5%, 24.2%, 12.5%, and 25%, respectively, and were significantly more common in patients older than 60 years of age (all P < 0.015). Occurrence of GA and neovascularization were important determinants of final visual acuity in eyes with the

  14. Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.

    PubMed

    Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth

    2011-10-01

    The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.

  15. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice

    PubMed Central

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A.; Hays, Seth A.; Paylor, Richard; Worley, Paul F.; Szumlinski, Karen K.

    2016-01-01

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5R/R) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5R/R mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical

  16. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice.

    PubMed

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A; Hays, Seth A; Paylor, Richard; Worley, Paul F; Szumlinski, Karen K; Huber, Kimberly M

    2016-02-17

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and

  17. Structure and composition of the courtship phenotype in the bird of paradise Parotia lawesii (Aves: Paradisaeidae).

    PubMed

    Scholes, Edwin

    2008-01-01

    Ethology is rooted in the idea that behavior is composed of discrete units and sub-units that can be compared among taxa in a phylogenetic framework. This means that behavior, like morphology and genes, is inherently modular. Yet, the concept of modularity is not well integrated into how we envision the behavioral components of phenotype. Understanding ethological modularity, and its implications for animal phenotype organization and evolution, requires that we construct interpretive schemes that permit us to examine it. In this study, I describe the structure and composition of a complex part of the behavioral phenotype of Parotia lawesii Ramsay, 1885--a bird of paradise (Aves: Paradisaeidae) from the forests of eastern New Guinea. I use archived voucher video clips, photographic ethograms, and phenotype ontology diagrams to describe the modular units comprising courtship at various levels of integration. Results show P. lawesii to have 15 courtship and mating behaviors (11 males, 4 females) hierarchically arranged within a complex seven-level structure. At the finest level examined, male displays are comprised of 49 modular sub-units (elements) differentially employed to form more complex modular units (phases and versions) at higher-levels of integration. With its emphasis on hierarchical modularity, this study provides an important conceptual framework for understanding courtship-related phenotypic complexity and provides a solid basis for comparative study of the genus Parotia.

  18. Age-related behavioral phenotype of an astrocytic monoamine oxidase-B transgenic mouse model of Parkinson's disease.

    PubMed

    Lieu, Christopher A; Chinta, Shankar J; Rane, Anand; Andersen, Julie K

    2013-01-01

    We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson's disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions.

  19. Explaining the disease phenotype of intergenic SNP through predicted long range regulation

    PubMed Central

    Chen, Jingqi; Tian, Weidong

    2016-01-01

    Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978

  20. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  1. Instructors' Use of Trigger Warnings and Behavior Warnings in Abnormal Psychology

    ERIC Educational Resources Information Center

    Boysen, Guy A.; Wells, Anna Mae; Dawson, Kaylee J.

    2016-01-01

    College students have been increasingly demanding warnings and accommodations in relation to course topics they believe will elicit strong, negative emotions. These "trigger warnings" are highly relevant to Abnormal Psychology because of the sensitive topics covered in the course (e.g., suicide, trauma, sex). A survey of Abnormal…

  2. Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Chen, Yingbing; Yuan, De; Jia, Weiyao; Zhang, Qiaoming; Xiong, Zuhong

    2016-09-01

    Anomalous temperature dependent magneto-electroluminescence was observed at low and high magnetic field strength from organic planar heterojunction devices incorporated common phosphorescent host materials of N,N'-dicarbazolyl-3,5-benzene (mCP) or 4,4'-N,N'-dicarbazole-biphenyl (CBP) as an emissive layer. We found that intersystem crossing became stronger with decreasing temperature and that triplet-triplet annihilation (TTA) occurred at room temperature but ceased at low temperature. Analyses of the electroluminescence spectra of these devices and their temperature dependences indicated that the population of exciplex states increased at low temperature, which caused the abnormal behavior of intersystem crossing. Additionally, long lifetime of the excitons within mCP or CBP layer may allow TTA to occur at room temperature, while the reduced population of excitons at low temperature may account for the disappearance of TTA even though the excitons had increased lifetime.

  3. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome.

    PubMed

    Hodges, Jennifer L; Yu, Xinzhu; Gilmore, Anthony; Bennett, Hannah; Tjia, Michelle; Perna, James F; Chen, Chia-Chien; Li, Xiang; Lu, Ju; Zuo, Yi

    2017-07-15

    Fragile X syndrome (FXS) is the most common type of mental retardation attributable to a single-gene mutation. It is caused by FMR1 gene silencing and the consequent loss of its protein product, fragile X mental retardation protein. Fmr1 global knockout (KO) mice recapitulate many behavioral and synaptic phenotypes associated with FXS. Abundant evidence suggests that astrocytes are important contributors to neurological diseases. This study investigates astrocytic contributions to the progression of synaptic abnormalities and learning impairments associated with FXS. Taking advantage of the Cre-lox system, we generated and characterized mice in which fragile X mental retardation protein is selectively deleted or exclusively expressed in astrocytes. We performed in vivo two-photon imaging to track spine dynamics/morphology along dendrites of neurons in the motor cortex and examined associated behavioral defects. We found that adult astrocyte-specific Fmr1 KO mice displayed increased spine density in the motor cortex and impaired motor-skill learning. The learning defect coincided with a lack of enhanced spine dynamics in the motor cortex that normally occurs in response to motor skill acquisition. Although spine density was normal at 1 month of age in astrocyte-specific Fmr1 KO mice, new spines formed at an elevated rate. Furthermore, fragile X mental retardation protein expression in only astrocytes was insufficient to rescue most spine or behavioral defects. Our work suggests a joint astrocytic-neuronal contribution to FXS pathogenesis and reveals that heightened spine formation during adolescence precedes the overabundance of spines and behavioral defects found in adult Fmr1 KO mice. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Variable patterns of obesity and cardiometabolic phenotypes and their association with lifestyle factors in the Di@bet.es study.

    PubMed

    Gutiérrez-Repiso, Carolina; Soriguer, Federico; Rojo-Martínez, Gemma; García-Fuentes, Eduardo; Valdés, Sergio; Goday, Albert; Calle-Pascual, Alfonso; López-Alba, Alfonso; Castell, Conxa; Menéndez, Edelmiro; Bordiú, Elena; Delgado, Elías; Ortega, Emilio; Pascual-Manich, Gemma; Urrutia, Inés; Mora-Peces, Inmaculada; Vendrell, Joan; Vázquez, José Antonio; Franch, Josep; Girbés, Juan; Castaño, Luis; Serrano-Ríos, Manuel; Martínez-Larrad, María Teresa; Catalá, Miguel; Carmena, Rafael; Gomis, Ramón; Casamitjana, Roser; Gaztambide, Sonia

    2014-09-01

    Prevalence rates of "metabolically healthy obese" (MHO) subjects vary depending on the criteria used. This study examined the prevalence and characteristics of MHO subjects and metabolically abnormal normal-weight subjects and compared the findings with the NHANES 1999-2004 study. The aims of the present study were, first, to determine the prevalence rates of MHO and MNHNO subjects using the same criteria as those of the National Health and Nutrition Examination Survey (NHANES) (1999-2004) study, and second to compare the prevalence and correlates of obese subjects who are resistant to the development of adiposity-associated cardiometabolic abnormalities (CA) and normal-weight individuals who display cardiometabolic risk factor clustering between the Spanish and the US populations. Di@bet.es study is a national, cross-sectional population-based survey of 5728 adults conducted in 2009-2010. Clinical, metabolic, sociodemographic, and anthropometric data and information about lifestyle habits, such as physical activity, smoking habit, alcohol intake and food consumption, were collected. Subjects were classified according to their body mass index (BMI) (normal-weight, <25 kg/m(2); overweight, 25-29.9 kg/m(2); and obese, >30 kg/m(2)). CA included elevated blood pressure; elevated levels of triglycerides, fasting glucose, and high-sensitivity C-reactive protein (hs-CRP); and elevated homeostasis model assessment of insulin resistance (HOMA-IR) value and low high-density lipoprotein cholesterol (HDL-c) level. Two phenotypes were defined: metabolically healthy phenotype (0-1 CA) and metabolically abnormal phenotype (≥2 CA). The prevalence of metabolically abnormal normal-weight phenotype was slightly lower in the Spanish population (6.5% vs. 8.1%). The prevalence of metabolically healthy overweight and MHO subjects was 20.9% and 7.0%, respectively, while in NHANES study it was 17.9% and 9.7%, respectively. Cigarette smoking was associated with CA in each phenotype, while

  5. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X): A Comparison with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girls with Trisomy X), 58 children with ASD and 106…

  6. Abnormal illness behavior and Internet addiction severity: The role of disease conviction, irritability, and alexithymia

    PubMed Central

    Scimeca, Giuseppe; Bruno, Antonio; Crucitti, Manuela; Conti, Claudio; Quattrone, Diego; Pandolfo, Gianluca; Zoccali, Rocco Antonio; Muscatello, Maria Rosaria Anna

    2017-01-01

    Background and aims While the association between health anxiety and maladaptive Internet use is a well-established finding, no studies have been performed to examine the possible effect of abnormal illness behavior (AIB). AIB is a maladaptive manner of experiencing, evaluating, or acting in response to health and illness that is disproportionate to evident pathology. The aim of this study was to investigate the association between AIB and Internet addiction (IA) severity in a sample of Italian University students. The possible effect of alexithymia, anxiety, and depression was also taken into account. Methods Participants were 115 men and 163 women (mean age = 23.62 ± 4.38 years); AIB was measured via the Illness Behavior Questionnaire (IBQ), and IA severity by the Internet Addiction Test (IAT). Results The most powerful IBQ factor predicting IA severity scores was disease conviction. Irritability was the only emotional IBQ factor associated with IA severity. Nevertheless, disease conviction and alexithymia remained the only significant predictors of IAT scores when hierarchical regression analysis was executed. Discussion and conclusions Our results support previous findings showing that those characterized by health anxiety are more prone to an excessive and maladaptive use of Internet. Moreover, this study showed that irritability was the only emotional aspect of AIB predicting IA severity. This finding is consistent with the cognitive model of hypochondria, which states that cognitive factors (dysfunctional beliefs and assumptions) play a major role in the explanation of this psychopathological condition. PMID:28245678

  7. Abnormal illness behavior and Internet addiction severity: The role of disease conviction, irritability, and alexithymia.

    PubMed

    Scimeca, Giuseppe; Bruno, Antonio; Crucitti, Manuela; Conti, Claudio; Quattrone, Diego; Pandolfo, Gianluca; Zoccali, Rocco Antonio; Muscatello, Maria Rosaria Anna

    2017-03-01

    Background and aims While the association between health anxiety and maladaptive Internet use is a well-established finding, no studies have been performed to examine the possible effect of abnormal illness behavior (AIB). AIB is a maladaptive manner of experiencing, evaluating, or acting in response to health and illness that is disproportionate to evident pathology. The aim of this study was to investigate the association between AIB and Internet addiction (IA) severity in a sample of Italian University students. The possible effect of alexithymia, anxiety, and depression was also taken into account. Methods Participants were 115 men and 163 women (mean age = 23.62 ± 4.38 years); AIB was measured via the Illness Behavior Questionnaire (IBQ), and IA severity by the Internet Addiction Test (IAT). Results The most powerful IBQ factor predicting IA severity scores was disease conviction. Irritability was the only emotional IBQ factor associated with IA severity. Nevertheless, disease conviction and alexithymia remained the only significant predictors of IAT scores when hierarchical regression analysis was executed. Discussion and conclusions Our results support previous findings showing that those characterized by health anxiety are more prone to an excessive and maladaptive use of Internet. Moreover, this study showed that irritability was the only emotional aspect of AIB predicting IA severity. This finding is consistent with the cognitive model of hypochondria, which states that cognitive factors (dysfunctional beliefs and assumptions) play a major role in the explanation of this psychopathological condition.

  8. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    PubMed

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  9. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee.

    PubMed

    Hong, Yunkyung; Kim, Hyunsoo; Lee, Seunghoon; Jin, Yunho; Choi, Jeonghyun; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2017-11-14

    Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-level analyses were performed in the cartilage, synovium, bone, and gastrocnemius muscle. Primary cultured chondrocytes repeatedly exposed to TNF-α were used in an in vitro study. The symptoms of OA include gait disturbance, osteophyte formation, and abnormal metabolism of the extracellular matrix (ECM) of the cartilage. Low-level expression of clock genes was accompanied by aberrant changes in cartilage specimens. Nanomolar doses of melatonin restored the expression of clock-controlled genes and corrected the abnormal chondrocyte phenotype. Melatonin combined with or without exercise prevented periarticular muscle damage as well as cartilage degeneration. But prolonged melatonin administration promoted the proteolytic cleavage of RANKL protein in the synovium, leading to severe subchondral bone erosion. These musculoskeletal changes apparently occurred via the regulation of molecular clock components, suggesting a role of melatonin as a switch-like regulator for the OA phenotype.

  10. Abnormal movements in first-episode, nonaffective psychosis: dyskinesias, stereotypies, and catatonic-like signs

    PubMed Central

    Compton, Michael T.; Fantes, Francisco; Wan, Claire Ramsay; Johnson, Stephanie; Walker, Elaine F.

    2015-01-01

    Motor abnormalities represent a neurobehavioral domain of signs intrinsic to schizophrenia-spectrum disorders, though they are commonly attributed to medication side effects and remain understudied. Individuals with first-episode psychosis represent an ideal group to study innate movement disorders due to minimal prior antipsychotic exposure. We measured dyskinesias, stereotypies, and catatonic-like signs and examined their associations with: (1) age at onset psychotic symptoms and duration of untreated psychosis; (2) positive, negative, and disorganized symptoms; (3) neurocognition; and (4) neurological soft signs. Among 47 predominantly African American first-episode psychosis patients in a public-sector hospital, the presence and severity of dyskinesias, stereotypies, and catatonic-like features were assessed using approximately 30-minute video recordings. Movement abnormalities were rated utilizing three scales (Dyskinesia Identification System Condensed User Scale, Stereotypy Checklist, and Catatonia Rating Scale). Correlational analyses were conducted. Scores for each of three movement abnormality types were modestly inter-correlated (r=.29-.40). Stereotypy score was significantly associated with age at onset of psychotic symptoms (r=.32) and positive symptom severity scores (r=.29–.41). There were no meaningful or consistent associations with negative symptom severity, neurocognition, or neurological soft signs. Abnormal movements appear to represent a relatively distinct phenotypic domain deserving of further research. PMID:25619434

  11. Unusual Phenotypic Features in a Patient with a Novel Splice Mutation in the GHRHR Gene

    PubMed Central

    Hilal, Latifa; Hajaji, Yassir; Vie-Luton, Marie-Pierre; Ajaltouni, Zeina; Benazzouz, Bouchra; Chana, Maha; Chraïbi, Adelmajid; Kadiri, Abdelkrim; Amselem, Serge; Sobrier, Marie-Laure

    2008-01-01

    Isolated growth hormone deficiency (IGHD) may be of genetic origin. One of the few genes involved in that condition encodes the growth hormone releasing hormone receptor (GHRHR) that, through its ligand (GHRH), plays a pivotal role in the GH synthesis and secretion by the pituitary. Our objective is to describe the phenotype of two siblings born to a consanguineous union presenting with short stature (IGHD) and Magnetic Resonance Imaging (MRI) abnormalities, and to identify the molecular basis of this condition. Our main outcome measures were clinical and endocrinological investigations, MRI of the pituitary region, study of the GHRHR gene sequence and transcripts. In both patients, the severe growth retardation (−5SD) was combined with anterior pituitary hypoplasia. In addition to these classical phenotypic features for IGHD, one of the patients had a Chiari I malformation, an arachnoid cyst, and a dysmorphic anterior pituitary. A homozygous sequence variation in the consensus donor splice site of intron 1 (IVS1 + 2T > G) of the GHRHR gene was identified in both patients. Using in vitro transcription assay, we showed that this mutation results in abnormal splicing of GHRHR transcripts. In this report, which broadens the phenotype associated with GHRHR defects, we discuss the possible role of the GHRHR in the proper development of extrapituitary structures, through a mechanism that could be direct or secondary to severe GH deficiency. PMID:18297129

  12. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome.

    PubMed

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-08-06

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Can the Five Factor Model of Personality Account for the Variability of Autism Symptom Expression? Multivariate Approaches to Behavioral Phenotyping in Adult Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Schwartzman, Benjamin C.; Wood, Jeffrey J.; Kapp, Steven K.

    2016-01-01

    The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828;…

  14. Patient-derived iPSCs show premature neural differentiation and neuron-type specific phenotypes relevant to neurodevelopment

    PubMed Central

    Yeh, Erika; Dao, Dang Q.; Wu, Zhi Y.; Kandalam, Santoshi M.; Camacho, Federico M.; Tom, Curtis; Zhang, Wandong; Krencik, Robert; Rauen, Katherine A.; Ullian, Erik M.; Weiss, Lauren A.

    2017-01-01

    Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events. PMID:29158583

  15. Response mechanisms to joint exposure of triclosan and its chlorinated derivatives on zebrafish (Danio rerio) behavior.

    PubMed

    Liu, Jinfeng; Sun, Limei; Zhang, Hongqin; Shi, Mengru; Dahlgren, Randy A; Wang, Xuedong; Wang, Huili

    2018-02-01

    Triclosan (TCS), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,4-dichlorophenol (2,4-DCP) frequently co-exist in real-world aquatic environments; the latter two contaminants contributing to TCS photolytic products or chlorinated derivatives. There is a paucity of information regarding their joint toxicity to aquatic organisms leading us to study their effects on the swimming behavior of zebrafish (Danio rerio). Herein, we reported that 0.28 mg/L TDT exposure (mixtures of TCS, 2,4,6-TCP and 2,4-DCP) enhanced 24-hpf embryonic spontaneous movement frequency, 96-hpf larval activity; however, the 0.56 and 1.12 mg/L TDT treatments decreased all of these behavioral endpoints. All adult behavioral tests demonstrated that chronic TDT exposure (0.14 mg/L) led to hyperactivity and restlessness in adult zebrafish. A 0.14 mg/L TD DATE /@ "M/d/yyyy" 11/21/2017T treatment led to anxiety-like behavior in a bottom dwelling test and excessive panic and low hedging capacity in a conditioned place preference test. Social interaction test demonstrated that zebrafish preferred quiet and isolated space in response to TDT stress. Zebrafish memory was significantly decreased in a T-maze experiment. Whole mount in situ hybridization of pax2a and bcl2l11 genes revealed that their differential expression in the brain and skeleton were related to the corresponding phenotypic behavioral abnormality. A series of biomarker and estrogen receptor assays demonstrated that TDT acute exposure caused abnormal energy metabolism and neurological diseases. AO staining revealed that TDT exposure produced vascular ablation in the head, as well as the occurrence of massive apoptosis in the brain. TEM observation showed pyknosis of nucleus following TDT exposure. These results allow assessment of mechanisms for zebrafish abnormal behavior in response to TDT exposure, and are useful for early intervention and gene therapy of contaminant-induced diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Achondroplasia-hypochondroplasia complex and abnormal pulmonary anatomy.

    PubMed

    Bober, Michael B; Taylor, Megan; Heinle, Robert; Mackenzie, William

    2012-09-01

    Achondroplasia and hypochondroplasia are two of the most common forms of skeletal dysplasia. They are both caused by activating mutations in FGFR3 and are inherited in an autosomal dominant manner. Our patient was born to parents with presumed achondroplasia, and found on prenatal testing to have p.G380R and p.N540K FGFR3 mutations. In addition to having typical problems associated with both achondroplasia and hypochondroplasia, our patient had several atypical findings including: abnormal lobulation of the lungs with respiratory insufficiency, C1 stenosis, and hypoglycemia following a Nissen fundoplication. After his reflux and aspiration were treated, the persistence of the tachypnea and increased respiratory effort indicated this was not the primary source of the respiratory distress. Our subsequent hypothesis was that primary restrictive lung disease was the cause of his respiratory distress. A closer examination of his chest circumference did not support this conclusion either. Following his death, an autopsy found the right lung had 2 lobes while the left lung had 3 lobes. A literature review demonstrates that other children with achondroplasia-hypochondroplasia complex have been described with abnormal pulmonary function and infants with thanatophoric dysplasia have similar abnormal pulmonary anatomy. We hypothesize that there may be a primary pulmonary phenotype associated with FGFR3-opathies, unrelated to chest size which leads to the consistent finding of increased respiratory signs and symptoms in these children. Further observation of respiratory status, combined with the macroscopic and microscopic analysis of pulmonary branching anatomy and alveolar structure in this patient population will be important to explore this hypothesis. Copyright © 2012 Wiley Periodicals, Inc.

  17. Developmental heterochrony and the evolution of autistic perception, cognition and behavior

    PubMed Central

    2013-01-01

    Background Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly represent simple delays or non-completion of typical childhood developmental trajectories is evaluated. Discussion A comprehensive review of the literature indicates that, with regard to the four phenotypes of (1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the differences between autistic individuals and typically developing individuals closely parallel the differences between younger and older children. Summary The results of this study are concordant with a model of ‘developmental heterochrony’, and suggest that evolutionary extension of child development along the human lineage has potentiated and structured genetic risk for autism and the expression of autistic perception, cognition and behavior. PMID:23639054

  18. Differential Hemispheric Predilection of Microstructural White Matter and Functional Connectivity Abnormalities between Respectively Semantic and Behavioral Variant Frontotemporal Dementia.

    PubMed

    Meijboom, Rozanna; Steketee, Rebecca M E; Ham, Leontine S; van der Lugt, Aad; van Swieten, John C; Smits, Marion

    2017-01-01

    Semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD), subtypes of frontotemporal dementia, are characterized by distinct clinical symptoms and neuroimaging features, with predominant left temporal grey matter (GM) atrophy in SD and bilateral or right frontal GM atrophy in bvFTD. Such differential hemispheric predilection may also be reflected by other neuroimaging features, such as brain connectivity. This study investigated white matter (WM) microstructure and functional connectivity differences between SD and bvFTD, focusing on the hemispheric predilection of these differences. Eight SD and 12 bvFTD patients, and 17 controls underwent diffusion tensor imaging and resting state functional MRI at 3T. Whole-brain WM microstructure was assessed to determine distinct WM tracts affected in SD and bvFTD. For these tracts, diffusivity measures and lateralization indices were calculated. Functional connectivity was established for GM regions affected in early stage SD or bvFTD. Results of a direct comparison between SD and bvFTD are reported. Whole-brain WM microstructure abnormalities were more pronounced in the left hemisphere in SD and bilaterally- with a slight predilection for the right- in bvFTD. Lateralization of tract-specific abnormalities was seen in SD only, toward the left hemisphere. Functional connectivity of disease-specific regions was mainly decreased bilaterally in SD and in the right hemisphere in bvFTD. SD and bvFTD show WM microstructure and functional connectivity abnormalities in different regions, that are respectively more pronounced in the left hemisphere in SD and in the right hemisphere in bvFTD. This indicates differential hemispheric predilection of brain connectivity abnormalities between SD and bvFTD.

  19. Mice Behavioral Phenotype Changes after Administration of Anani (Symphonia globulifera, Clusiaceae), an Alternative Latin American and African Medicine.

    PubMed

    Suffredini, Ivana Barbosa; Paciencia, Mateus Luís Barradas; Díaz, Ingrit E C; Frana, Sergio Alexandre; Bernardi, Maria Martha

    2017-01-01

    Anani , ( Symphonia globulifera , Clusiaceae), known as chewstick, is a traditional plant occurring in Africa and in Central and South Americas that is used against parasites and microorganisms. Although its use is popular in some of these countries, there is a lack of information related to its influence over behavioral phenotype (BP). The objective of this study is to evaluate the influence of the administration of the extract obtained from the aerial organs of Anani (EB1257) to male Balb-c mice over BP. Open cage observation, open field, and elevated-plus maze apparatuses were used. Evaluations were done 15, 30, 60, 120, and 180 min after intraperitoneal administration of Anani extract. Impairment of general behavior activity, response to touch, tail squeeze, defecation, locomotion and rearing frequency were observed although no signs of hemorrhage or macroscopical alterations of internal organs. Anani is harmful, but not toxic if used in the appropriate doses, yet to be determined to male mice. Impairment of locomotion and defecation was observed, indicating some degree of influence over locomotion, but no alterations in anxiety levels were assessed. Three compounds were previously found in the plant-lupeol (1), β-amyrin (2) and 3-β-hydroxyglutin-5-ene (3), and one is being described for the first time to occur in the species: oleanolic acid (4). The present work contributes in the support of the rational use of Anani , an important Latin American and African alternative medicine, presenting findings that are being reported for the first time. Symphonia globulifera impairs locomotion and defecatin in behavior analysesNo alterations in anxiety was observedOleanolic acid occurs in the species. Abbreviations used: BP: Behavioral phenotype; OF: Open field, EPM: Elevated-plus maze, MMA/ICMBio/SISBIO: Ministério do Meio Ambiente/Instituto Chico Mendes de Conservação da Biodiversidade/Sistema de Autorização e Informação em Biodiversidade, IBAMA

  20. IGF-1 intranasal administration rescues Huntington's disease phenotypes in YAC128 mice.

    PubMed

    Lopes, Carla; Ribeiro, Márcio; Duarte, Ana I; Humbert, Sandrine; Saudou, Frederic; Pereira de Almeida, Luís; Hayden, Michael; Rego, A Cristina

    2014-06-01

    Huntington's disease (HD) is an autosomal dominant disease caused by an expansion of CAG repeats in the gene encoding for huntingtin. Brain metabolic dysfunction and altered Akt signaling pathways have been associated with disease progression. Nevertheless, conflicting results persist regarding the role of insulin-like growth factor-1 (IGF-1)/Akt pathway in HD. While high plasma levels of IGF-1 correlated with cognitive decline in HD patients, other data showed protective effects of IGF-1 in HD striatal neurons and R6/2 mice. Thus, in the present study, we investigated motor phenotype, peripheral and central metabolic profile, and striatal and cortical signaling pathways in YAC128 mice subjected to intranasal administration of recombinant human IGF-1 (rhIGF-1) for 2 weeks, in order to promote IGF-1 delivery to the brain. We show that IGF-1 supplementation enhances IGF-1 cortical levels and improves motor activity and both peripheral and central metabolic abnormalities in YAC128 mice. Moreover, decreased Akt activation in HD mice brain was ameliorated following IGF-1 administration. Upregulation of Akt following rhIGF-1 treatment occurred concomitantly with increased phosphorylation of mutant huntingtin on Ser421. These data suggest that intranasal administration of rhIGF-1 ameliorates HD-associated glucose metabolic brain abnormalities and mice phenotype.

  1. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis

    PubMed Central

    Wu, Xiaofeng; Cao, Lei; Li, Fan; Ma, Chao; Liu, Guangwang; Wang, Qiugen

    2018-01-01

    As a main cause of morbidity in the aged population, osteoarthritis (OA) is characterized by cartilage destruction, synovium inflammation, osteophytes, and subchondral bone sclerosis. To date its etiology remains elusive. Recent data highlight an important role of subchondral bone in the onset and progression of OA. Therefore, elucidating the mechanisms underlying abnormal subchondral bone could be of importance in the treatment of OA. Interleukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes. Although in vitro and in vivo studies have indicated that IL-6 is an important cytokine in the physiopathogenesis of OA, its effects on subchondral bone have not been studied in OA animal models. In this study, we aimed to i) investigate the role of IL-6 in the pathological phenotypes of OA subchondral bone MSCs including increase in cell numbers, mineralization disorder and abnormal type I collagen production; ii) explore whether the systemic blockade of IL-6 signaling could alleviate the pathological phenotypes of experimental OA. We found that IL-6 was over-secreted by OA subchondral bone MSCs compared with normal MSCs and IL-6/STAT3 signaling was over-activated in subchondral bone MSCs, which contributed to the pathological phenotypes of OA subchondral bone MSCs. More importantly, systemic inhibition of IL-6/STAT3 signaling with IL-6 antibody or STAT3 inhibitor AG490 decreased the severity of pathological phenotypes of OA subchondral bone MSCs and cartilage lesions in OA. Our findings provide strong evidence for a pivotal role for IL-6 signaling in OA and open up new therapeutic perspectives. PMID:29736207

  2. Cardio-facio-cutaneous syndrome: Does genotype predict phenotype?

    PubMed Central

    Allanson, Judith E; Annerén, Göran; Aoki, Yoki; Armour, Christine M; Bondeson, Marie-Louise; Cave, Helene; Gripp, Karen W; Kerr, Bronwyn; Nystrom, Anna-Maja; Sol-Church, Katia; Verloes, Alain; Zenker, Martin

    2011-01-01

    Cardio-facio-cutaneous syndrome is a sporadic multiple congenital anomalies/mental retardation condition principally caused by mutations in BRAF, MEK1, and MEK2. Mutations in KRAS and SHOC2 lead to a phenotype with overlapping features. In approximately 10–30% of individuals with a clinical diagnosis of cardio-facio-cutaneous, a mutation in one of these causative genes is not found. Cardinal features of cardio-facio-cutaneous include congenital heart defects, a characteristic facial appearance, and ectodermal abnormalities. Additional features include failure to thrive with severe feeding problems, moderate to severe intellectual disability and short stature with relative macrocephaly. First described in 1986, more than 100 affected individuals are reported. Following the discovery of the causative genes, more information has emerged on the breadth of clinical features. Little, however, has been published on genotype-phenotype correlations. This clinical study of 186 children and young adults with mutation-proven cardio-facio-cutaneous syndrome is the largest reported to date. BRAF mutations are documented in 140 individuals (~75%), while 46 (~25%) have a mutation in MEK 1 or MEK 2. The age range is 6 months to 32 years, the oldest individual being a female from the original report [Reynolds et al., 1986]. While some clinical data on 136 are in the literature, fifty are not previously published. We provide new details of the breadth of phenotype and discuss the frequency of particular features in each genotypic group. Pulmonary stenosis is the only anomaly that demonstrates a statistically significant genotype-phenotype correlation, being more common in individuals with a BRAF mutation. PMID:21495173

  3. Novel NR2F1 variants likely disrupt DNA binding: molecular modeling in two cases, review of published cases, genotype–phenotype correlation, and phenotypic expansion of the Bosch–Boonstra–Schaaf optic atrophy syndrome

    PubMed Central

    Zimmermann, Michael T.; Ferber, Matthew J.; Niu, Zhiyv; Urrutia, Raul A.; Klee, Eric W.; Babovic-Vuksanovic, Dusica

    2017-01-01

    Bosch–Boonstra–Schaaf optic atrophy syndrome (BBSOAS) is a recently described autosomal dominant disorder caused by mutations in the NR2F1 gene. There are presently 28 cases of BBSOAS described in the literature. Its common features include developmental delay, intellectual disability, hypotonia, optic nerve atrophy, attention deficit disorder, autism spectrum disorder, seizures, hearing defects, spasticity, and thinning of the corpus callosum. Here we report two unrelated probands with novel, de novo, missense variants in NR2F1. The first is a 14-yr-old male patient with hypotonia, intellectual disability, optic nerve hypoplasia, delayed bone age, short stature, and altered neurotransmitter levels on cerebrospinal fluid testing. The second is a 5-yr-old female with severe developmental delay, motor and speech delay, and repetitive motion behavior. Whole-exome sequencing identified a novel missense NR2F1 variant in each case, Cys86Phe in the DNA-binding domain in Case 1, and a Leu372Pro in the ligand-binding domain in Case 2. The presence of clinical findings compatible with BBSOAS along with structural analysis at atomic resolution using homology-based molecular modeling and molecular dynamic simulations, support the pathogenicity of these variants for BBSOAS. Short stature, abnormal CNS neurotransmitters, and macrocephaly have not been previously reported for this syndrome and may represent a phenotypic expansion of BBSOAS. A review of published cases along with new evidence from this report support genotype–phenotype correlations for this disorder. PMID:28963436

  4. The Therapeutic Function of the Instructor in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  5. Abnormal grain growth in AISI 304L stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir; Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir; Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersivemore » X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.« less

  6. Clinical phenotype of ASD-associated DYRK1A haploinsufficiency.

    PubMed

    Earl, Rachel K; Turner, Tychele N; Mefford, Heather C; Hudac, Caitlin M; Gerdts, Jennifer; Eichler, Evan E; Bernier, Raphael A

    2017-01-01

    DYRK1A is a gene recurrently disrupted in 0.1-0.5% of the ASD population. A growing number of case reports with DYRK1A haploinsufficiency exhibit common phenotypic features including microcephaly, intellectual disability, speech delay, and facial dysmorphisms. Phenotypic information from previously published DYRK1A cases ( n  = 51) and participants in an ongoing study at the University of Washington (UW, n  = 10) were compiled. Frequencies of recurrent phenotypic features in this population were compared to features observed in a large sample with idiopathic ASD from the Simons Simplex Collection ( n  = 1981). UW DYRK1A cases were further characterized quantitatively and compared to a randomly subsampled set of idiopathic ASD cases matched on age and gender ( n  = 10) and to cases with an ASD-associated disruptive mutation to CHD8 ( n  = 12). Contribution of familial genetic background to clinical heterogeneity was assessed by comparing head circumference, IQ, and ASD-related symptoms of UW DYRK1A cases to their unaffected parents. DYRK1A haploinsufficiency results in a common phenotypic profile including intellectual disability, speech and motor difficulties, microcephaly, feeding difficulties, and vision abnormalities. Eighty-nine percent of DYRK1A cases ascertained for ASD presented with a constellation of five or more of these symptoms. When compared quantitatively, DYRK1A cases presented with significantly lower IQ and adaptive functioning compared to idiopathic cases and significantly smaller head size compared to both idiopathic and CHD8 cases. Phenotypic variability in parental head circumference, IQ, and ASD-related symptoms corresponded to observed variability in affected child phenotype. Results confirm a core clinical phenotype for DYRK1A disruptions, with a combination of features that is distinct from idiopathic ASD. Cases with DYRK1A mutations are also distinguishable from disruptive mutations to CHD8 by head size. Measurable, quantitative

  7. The neuropsychiatric phenotype in Darier disease.

    PubMed

    Gordon-Smith, K; Jones, L A; Burge, S M; Munro, C S; Tavadia, S; Craddock, N

    2010-09-01

    Darier disease (DD) is a rare autosomal dominantly inherited skin disorder in which co-occurrence of neuropsychiatric abnormalities has been frequently reported by dermatologists. It is caused by mutations in a single gene, ATP2A2, which is expressed in the skin and brain. To conduct the first systematic investigation of the neuropsychiatric phenotype in DD. One hundred unrelated individuals with DD were assessed using a battery of standardized neuropsychiatric measures. Data were also obtained on a number of clinical features of DD. Individuals with DD were found to have high lifetime rates of mood disorders (50%), specifically major depression (30%) and bipolar disorder (4%), and suicide attempts (13%) and suicidal thoughts (31%). These were more common in DD when compared with general population data. The prevalence of epilepsy (3%) in the sample was also higher than the prevalence in the general population. There was no consistent association of specific dermatological features of DD and presence of psychiatric features. These findings highlight the need for clinicians to assess and recognize neuropsychiatric symptoms in DD. The results do not suggest that neuropsychiatric symptoms are simply a psychological reaction to having a skin disease, but are consistent with the pleiotropy hypothesis that mutations in the ATP2A2 gene, in addition to causing DD, confer susceptibility to neuropsychiatric features. Further research is needed to investigate genotype-phenotype correlations between the types and/or locations of pathogenic mutations within ATP2A2 and the expressed neuropsychiatric phenotypes. © 2010 The Authors. Journal Compilation © 2010 British Association of Dermatologists.

  8. Richieri-Costa-Pereira syndrome: Expanding its phenotypic and genotypic spectrum.

    PubMed

    Bertola, D R; Hsia, G; Alvizi, L; Gardham, A; Wakeling, E L; Yamamoto, G L; Honjo, R S; Oliveira, L A N; Di Francesco, R C; Perez, B A; Kim, C A; Passos-Bueno, M R

    2018-04-01

    Richieri-Costa-Pereira syndrome is a rare autosomal recessive acrofacial dysostosis that has been mainly described in Brazilian individuals. The cardinal features include Robin sequence, cleft mandible, laryngeal anomalies and limb defects. A biallelic expansion of a complex repeated motif in the 5' untranslated region of EIF4A3 has been shown to cause this syndrome, commonly with 15 or 16 repeats. The only patient with mild clinical findings harbored a 14-repeat expansion in 1 allele and a point mutation in the other allele. This proband is described here in more details, as well as is his affected sister, and 5 new individuals with Richieri-Costa-Pereira syndrome, including a patient from England, of African ancestry. This study has expanded the phenotype in this syndrome by the observation of microcephaly, better characterization of skeletal abnormalities, less severe phenotype with only mild facial dysmorphisms and limb anomalies, as well as the absence of cleft mandible, which is a hallmark of the syndrome. Although the most frequent mutation in this study was the recurrent 16-repeat expansion in EIF4A3, there was an overrepresentation of the 14-repeat expansion, with mild phenotypic expression, thus suggesting that the number of these motifs could play a role in phenotypic delineation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for "Food Addiction"?

    PubMed

    Carlier, Nina; Marshe, Victoria S; Cmorejova, Jana; Davis, Caroline; Müller, Daniel J

    2015-12-01

    There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a 'pathological' drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a 'food addiction' phenotype as a valid, diagnosable disorder.

  10. A Behavior Analytic Approach to Exploratory Motor Behavior: How Can Caregivers Teach EM Behavior to Infants with Down Syndrome?

    ERIC Educational Resources Information Center

    Bauer, Sara M.; Jones, Emily A.

    2014-01-01

    Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…

  11. Sexual behavior and testis morphology in the BACHD rat model

    PubMed Central

    Novati, Arianna; Yu-Taeger, Libo; Gonzalez Menendez, Irene; Quintanilla Martinez, Leticia

    2018-01-01

    Background Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene, which results in brain neurodegeneration and peripheral pathology affecting different organs including testis. Patients with HD suffer from motor and cognitive impairment, and multiple psychiatric symptoms. Among behavioral abnormalities in HD, sexual disturbances have often been reported, but scarcely investigated in animal models. The BACHD rat model of HD carries the human full-length mutated HTT (mHTT) genomic sequence with 97 CAG-CAA repeats and displays HD-like alterations at neuropathological and behavioral level. Objective This study aims to phenotype the BACHD rats’ sexual behavior and performance as well as testis morphology because alterations in these aspects have been associated to HD. Methods Two rat cohorts at the age of 3 and 7 months were subjected to mating tests to assess different parameters of sexual behavior. Histological analyses for testis morphology were performed in different rat cohorts at 1.5, 7 and 12 months of age whereas immunohistochemical analyses were carried out at 7 and 12 months of age to visualize the presence of mHTT in testicular tissue. Furthermore, western blot analyses were used to assess HTT and mHTT expression levels in striatum and testis at three months of age. Results At 3 months, BACHD rats showed a decreased time exploring the female anogenital area (AGA), decreased latency to mount, increased number of intromissions and ejaculations and enhanced hit rate. At 7 months, all sexual parameters were comparable between genotypes with the exception that BACHD rats explored the AGA less than wild type rats. Testis analyses did not reveal any morphological alteration at any of the examined ages, but showed presence of mHTT limited to Sertoli cells in transgenic rats at both 7 and 12 months. BACHD rat HTT and mHTT expression levels in testis were lower than striatum at 3 months of age

  12. Autism beyond diagnostic categories: characterization of autistic phenotypes in schizophrenia.

    PubMed

    Kästner, Anne; Begemann, Martin; Michel, Tanja Maria; Everts, Sarah; Stepniak, Beata; Bach, Christiane; Poustka, Luise; Becker, Joachim; Banaschewski, Tobias; Dose, Matthias; Ehrenreich, Hannelore

    2015-05-13

    Behavioral phenotypical continua from health to disease suggest common underlying mechanisms with quantitative rather than qualitative differences. Until recently, autism spectrum disorders and schizophrenia were considered distinct nosologic entities. However, emerging evidence contributes to the blurring of symptomatic and genetic boundaries between these conditions. The present study aimed at quantifying behavioral phenotypes shared by autism spectrum disorders and schizophrenia to prepare the ground for biological pathway analyses. Specific items of the Positive and Negative Syndrome Scale were employed and summed up to form a dimensional autism severity score (PAUSS). The score was created in a schizophrenia sample (N = 1156) and validated in adult high-functioning autism spectrum disorder (ASD) patients (N = 165). To this end, the Autism Diagnostic Observation Schedule (ADOS), the Autism (AQ) and Empathy Quotient (EQ) self-rating questionnaires were applied back to back with the newly developed PAUSS. PAUSS differentiated between ASD, schizophrenia and a disease-control sample and substantially correlated with the Autism Diagnostic Observation Schedule. Patients with ADOS scores ≥12 obtained highest, those with scores <7 lowest PAUSS values. AQ and EQ were not found to vary dependent on ADOS diagnosis. ROC curves for ADOS and PAUSS resulted in AuC values of 0.9 and 0.8, whereas AQ and EQ performed at chance level in the prediction of ASD. This work underscores the convergence of schizophrenia negative symptoms and autistic phenotypes. PAUSS evolved as a measure capturing the continuous nature of autistic behaviors. The definition of extreme-groups based on the dimensional PAUSS may permit future investigations of genetic constellations modulating autistic phenotypes.

  13. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  14. Haptoglobin Phenotype Modifies Serum Iron Levels and the Effect of Smoking on Parkinson Disease Risk

    PubMed Central

    Costa-Mallen, Paola; Zabetian, Cyrus P.; Agarwal, Pinky; Hu, Shu-Ching; Yearout, Dora; Samii, Ali; Leverenz, James B.; Roberts, John W.; Checkoway, Harvey

    2015-01-01

    Introduction Haptoglobin is a hemoglobin-binding protein that exists in three functionally different phenotypes, and haptoglobin phenotype 2-1 has previously been associated with Parkinson disease (PD) risk, with mechanisms not elucidated. Some evidence is emerging that low levels of serum iron may increase PD risk. In this study we investigated whether PD patients have lower serum iron and ferritin than controls, and whether this is dependent on haptoglobin phenotype. We also investigated the effect of Hp phenotype as a modifier of the effect of smoking on PD risk. Methods The study population consisted of 128 PD patients and 226 controls. Serum iron, ferritin, and haptoglobin phenotype were determined, and compared between PD cases and controls. Stratified analysis by haptoglobin phenotype was performed to determine effect of haptoglobin phenotype on serum iron parameter differences between PD cases and controls and to investigate its role in the protective effect of smoking on PD risk. Results PD cases had lower serum iron than controls (83.28 ug/100ml vs 94.00 ug/100 ml, p 0.006), and in particular among subjects with phenotype 2-1. The protective effect of smoking on PD risk resulted stronger in subjects with phenotype 1-1 and 2-2, and weakest among subjects with phenotype 2-1. Ferritin levels were higher in PD cases than controls among subjects of White ethnicity. Conclusions Our results report for the first time that the haptoglobin phenotype may be a contributor of iron levels abnormalities in PD patients. The mechanisms for these haptoglobin-phenotype specific effects will have to be further elucidated. PMID:26228081

  15. Further insight into the phenotype associated with a mutation in the ORC6 gene, causing Meier-Gorlin syndrome 3.

    PubMed

    Shalev, Stavit Allon; Khayat, Morad; Etty, Daniel-Spiegl; Elpeleg, Orly

    2015-03-01

    Mutations in genes encoding the origin recognition complex subunits cause Meier-Gorlin syndrome. The disease manifests a triad of short stature, small ears, and small and/or absent patellae with variable expressivity. We report on the identification of a homozygous deleterious mutation in the ORC6 gene in previously described fetuses at the severe end of the Meier-Gorlin spectrum. The phenotype included severe intrauterine growth retardation, dislocation of knees, gracile bones, clubfeet, and small mandible and chest. To date, the clinical presentation of ORC6-associated Meier-Gorlin syndrome has been mild compared to other the phenotype associated with other loci. The present report expands the clinical phenotype associated with ORC6 mutations to include severely abnormal embryological development suggesting a possible genotype-phenotype correlation. © 2015 Wiley Periodicals, Inc.

  16. Explaining the disease phenotype of intergenic SNP through predicted long range regulation.

    PubMed

    Chen, Jingqi; Tian, Weidong

    2016-10-14

    Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  18. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis.

    PubMed

    Bellelli, Roberto; Borel, Valerie; Logan, Clare; Svendsen, Jennifer; Cox, Danielle E; Nye, Emma; Metcalfe, Kay; O'Connell, Susan M; Stamp, Gordon; Flynn, Helen R; Snijders, Ambrosius P; Lassailly, François; Jackson, Andrew; Boulton, Simon J

    2018-05-17

    DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4 -/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4 -/- p53 +/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer.

    PubMed

    Borniger, Jeremy C; Walker Ii, William H; Surbhi; Emmer, Kathryn M; Zhang, Ning; Zalenski, Abigail A; Muscarella, Stevie L; Fitzgerald, Julie A; Smith, Alexandra N; Braam, Cornelius J; TinKai, Tial; Magalang, Ulysses J; Lustberg, Maryam B; Nelson, Randy J; DeVries, A Courtney

    2018-05-14

    We investigated relationships among immune, metabolic, and sleep abnormalities in mice with non-metastatic mammary cancer. Tumor-bearing mice displayed interleukin-6 (IL-6)-mediated peripheral inflammation, coincident with altered hepatic glucose processing and sleep. Tumor-bearing mice were hyperphagic, had reduced serum leptin concentrations, and enhanced sensitivity to exogenous ghrelin. We tested whether these phenotypes were driven by inflammation using neutralizing monoclonal antibodies against IL-6; despite the reduction in IL-6 signaling, metabolic and sleep abnormalities persisted. We next investigated neural populations coupling metabolism and sleep, and observed altered activity within lateral-hypothalamic hypocretin/orexin (HO) neurons. We used a dual HO-receptor antagonist to test whether increased HO signaling was causing metabolic abnormalities. This approach rescued metabolic abnormalities and enhanced sleep quality in tumor-bearing mice. Peripheral sympathetic denervation prevented tumor-induced increases in serum glucose. Our results link metabolic and sleep abnormalities via the HO system, and provide evidence that central neuromodulators contribute to tumor-induced changes in metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Genotype-phenotype associations in WT1 glomerulopathy.

    PubMed

    Lipska, Beata S; Ranchin, Bruno; Iatropoulos, Paraskevas; Gellermann, Jutta; Melk, Anette; Ozaltin, Fatih; Caridi, Gianluca; Seeman, Tomas; Tory, Kalman; Jankauskiene, Augustina; Zurowska, Aleksandra; Szczepanska, Maria; Wasilewska, Anna; Harambat, Jerome; Trautmann, Agnes; Peco-Antic, Amira; Borzecka, Halina; Moczulska, Anna; Saeed, Bassam; Bogdanovic, Radovan; Kalyoncu, Mukaddes; Simkova, Eva; Erdogan, Ozlem; Vrljicak, Kristina; Teixeira, Ana; Azocar, Marta; Schaefer, Franz

    2014-05-01

    WT1 mutations cause a wide spectrum of renal and extrarenal manifestations. Here we evaluated disease prevalence, phenotype spectrum, and genotype-phenotype correlations of 61 patients with WT1-related steroid-resistant nephrotic syndrome relative to 700 WT1-negative patients, all with steroid-resistant nephrotic syndrome. WT1 patients more frequently presented with chronic kidney disease and hypertension at diagnosis and exhibited more rapid disease progression. Focal segmental glomerulosclerosis was equally prevalent in both cohorts, but diffuse mesangial sclerosis was largely specific for WT1 disease and was present in 34% of cases. Sex reversal and/or urogenital abnormalities (52%), Wilms tumor (38%), and gonadoblastoma (5%) were almost exclusive to WT1 disease. Missense substitutions affecting DNA-binding residues were associated with diffuse mesangial sclerosis (74%), early steroid-resistant nephrotic syndrome onset, and rapid progression to ESRD. Truncating mutations conferred the highest Wilms tumor risk (78%) but typically late-onset steroid-resistant nephrotic syndrome. Intronic (KTS) mutations were most likely to present as isolated steroid-resistant nephrotic syndrome (37%) with a median onset at an age of 4.5 years, focal segmental glomerulosclerosis on biopsy, and slow progression (median ESRD age 13.6 years). Thus, there is a wide range of expressivity, solid genotype-phenotype associations, and a high risk and significance of extrarenal complications in WT1-associated nephropathy. We suggest that all children with steroid-resistant nephrotic syndrome undergo WT1 gene screening.

  1. Phenotypic plasticity as an adaptation to a functional trade-off

    PubMed Central

    Yi, Xiao; Dean, Antony M

    2016-01-01

    We report the evolution of a phenotypically plastic behavior that circumvents the hardwired trade-off that exists when resources are partitioned between growth and motility in Escherichia coli. We propagated cultures in a cyclical environment, alternating between growth up to carrying capacity and selection for chemotaxis. Initial adaptations boosted overall swimming speed at the expense of growth. The effect of the trade-off was subsequently eased through a change in behavior; while individual cells reduced motility during exponential growth, the faction of the population that was motile increased as the carrying capacity was approached. This plastic behavior was produced by a single amino acid replacement in FliA, a regulatory protein central to the chemotaxis network. Our results illustrate how phenotypic plasticity potentiates evolvability by opening up new regions of the adaptive landscape. DOI: http://dx.doi.org/10.7554/eLife.19307.001 PMID:27692064

  2. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  3. Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats.

    PubMed

    Tulogdi, Aron; Tóth, Máté; Barsvári, Beáta; Biró, László; Mikics, Eva; Haller, József

    2014-01-01

    As previously shown, rats isolated from weaning develop abnormal social and aggressive behavior characterized by biting attacks targeting vulnerable body parts of opponents, reduced attack signaling, and increased defensive behavior despite increased attack counts. Here we studied whether this form of violent aggression could be reversed by resocialization in adulthood. During the first weak of resocialization, isolation-reared rats showed multiple social deficits including increased defensiveness and decreased huddling during sleep. Deficits were markedly attenuated in the second and third weeks. Despite improved social functioning in groups, isolated rats readily showed abnormal features of aggression in a resident-intruder test performed after the 3-week-long resocialization. Thus, post-weaning social isolation-induced deficits in prosocial behavior were eliminated by resocialization during adulthood, but abnormal aggression was resilient to this treatment. Findings are compared to those obtained in humans who suffered early social maltreatment, and who also show social deficits and dysfunctional aggression in adulthood. © 2013 Wiley Periodicals, Inc.

  4. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  5. Parental decisions to abort or continue a pregnancy following prenatal diagnosis of chromosomal abnormalities in a setting where termination of pregnancy is not legally available.

    PubMed

    Quadrelli, Roberto; Quadrelli, Andrea; Mechoso, Búrix; Laufer, Mauricio; Jaumandreu, Ciro; Vaglio, Alicia

    2007-03-01

    To learn about parental decisions to abort or continue a pregnancy after prenatal diagnosis of chromosomal abnormalities among the population in Uruguay. Between 1982 and 2003, 14 656 amniocentesis and 2740 chorionic villus samplings were performed in a referral Genetic Unit. Chromosomal anomalies were found in 376 cases (2.16%) and included Down syndrome, aneuploidies in which a severe prognosis was expected, sex chromosome aneuploidy and aneuploidies with a low risk of an abnormal clinical phenotype. The couples that received abnormal results were contacted by phone and asked if they had continued or interrupted the pregnancy after the diagnosis and genetic counseling. We contacted 207 couples (55%). When confronted with Down syndrome or an aneuploidy in which a severe prognosis was expected, 89% and 96% of patients, respectively, decided to terminate the pregnancy. When confronted with sex chromosome aneuploidy or aneuploidies with a low risk of an abnormal clinical phenotype, 79% and 90% of patients, respectively, decided to continue the pregnancy. The present study shows that when faced with an anomaly such as Down syndrome and aneuploidies in which a severe prognosis was expected, most of the couples decided to terminate the pregnancy, although TOP is not legally available in Uruguay. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. Clinical features of Friedreich's ataxia: classical and atypical phenotypes.

    PubMed

    Parkinson, Michael H; Boesch, Sylvia; Nachbauer, Wolfgang; Mariotti, Caterina; Giunti, Paola

    2013-08-01

    One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia. © 2013 International Society for Neurochemistry.

  7. Age-Related Behavioral Phenotype of an Astrocytic Monoamine Oxidase-B Transgenic Mouse Model of Parkinson’s Disease

    PubMed Central

    Lieu, Christopher A.; Chinta, Shankar J.; Rane, Anand; Andersen, Julie K.

    2013-01-01

    We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson’s disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions. PMID:23326597

  8. A subject with abnormally short stature from Imperial Rome.

    PubMed

    Ottini, L; Minozzi, S; Pantano, W B; Maucci, C; Gazzaniga, V; Angeletti, L R; Catalano, P; Mariani-Costantini, R

    2001-01-01

    In spite of the rich iconographic and literary documentation from ancient sources, the skeletal evidence concerning individuals of abnormally short stature in the Greco-Roman world is scarce. The necropolis of Viale della Serenissima/Via Basiliano in Rome, mostly referable to the II century AD, recently yielded the skeleton of an individual characterized by proportionate short stature, gracile features suggesting female gender, and delayed epiphysial closure, associated with full maturation of the permanent dentition. These characteristics could be compatible with the phenotype associated with female gonadal dysgenesis. The skeletal individual described here, although poorly preserved, represents the first evidence of a paleopathologic condition affecting skeletal growth documented for the population of ancient Rome.

  9. Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6.

    PubMed

    Nishigaki, Satsuki; Hamazaki, Takashi; Saito, Mika; Yamamoto, Toshiyuki; Seto, Toshiyuki; Shintaku, Haruo

    2015-01-01

    Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.

  10. A phenotype of early infancy predicts reactivity of the amygdala in male adults.

    PubMed

    Schwartz, C E; Kunwar, P S; Greve, D N; Kagan, J; Snidman, N C; Bloch, R B

    2012-10-01

    One of the central questions that has occupied those disciplines concerned with human development is the nature of continuities and discontinuities from birth to maturity. The amygdala has a central role in the processing of novelty and emotion in the brain. Although there is considerable variability among individuals in the reactivity of the amygdala to novel and emotional stimuli, the origin of these individual differences is not well understood. Four-month old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity and crying to specific unfamiliar visual, auditory and olfactory stimuli in the laboratory. Low-reactive infants show the complementary pattern. Here, we demonstrate that the HR infant phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. A prediction of individual differences in brain function at maturity can be made on the basis of a single behavioral assessment made in the laboratory at 4 months of age. This is the earliest known human behavioral phenotype that predicts individual differences in patterns of neural activity at maturity. These temperamental differences rooted in infancy may be relevant to understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. Males who were HR infants showed particularly high levels of reactivity to novel faces in the amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting that their amygdala is particularly prone to engagement by unfamiliar faces. These findings underline the importance of taking gender into account when studying the developmental neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and biologic intermediate phenotypes (or 'endophenotypes') indexing anxiety-proneness offers an important alternative to examining phenotypes based on clinically defined disorder. As the HR phenotype is characterized

  11. Association between brain structure and phenotypic characteristics in pedophilia.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Phenotypically heterogeneous populations in spatially heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2014-03-01

    The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.

  13. Amygdala abnormalities in first-degree relatives of individuals with schizophrenia unmasked by benzodiazepine challenge

    PubMed Central

    Wolf, Daniel H.; Satterthwaite, Theodore D.; Loughead, James; Pinkham, Amy; Overton, Eve; Elliott, Mark A.; Dent, Gersham W.; Smith, Mark A.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Rationale Impaired emotion processing in schizophrenia predicts broader social dysfunction and has been related to negative symptom severity and amygdala dysfunction. Pharmacological modulation of emotion-processing deficits and related neural abnormalities may provide useful phenotypes for pathophysiological investigation. Objectives We used an acute benzodiazepine challenge to identify and modulate potential emotion-processing abnormalities in 20 unaffected first-degree relatives of individuals with schizophrenia, compared to 25 control subjects without a family history of psychosis. Methods An oral 1mg dose of the short-acting anxiolytic benzodiazepine alprazolam was administered in a balanced crossover placebo-controlled double-blind design, preceding identical 3T fMRI sessions approximately 1 week apart. Primary outcomes included fMRI activity in amygdala and related regions during two facial emotion-processing tasks: emotion identification and emotion memory. Results Family members exhibited abnormally strong alprazolam-induced reduction in amygdala and hippocampus activation during emotion identification, compared to equal reduction in both groups for the emotion memory task. Conclusions GABAergic modulation with alprazolam produced differential responses in family members vs. controls, perhaps by unmasking underlying amygdalar and/or GABAergic abnormalities. Such pharmacological fMRI paradigms could prove useful for developing drugs targeting specific neural circuits to treat or prevent schizophrenia. PMID:21603892

  14. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  15. "Idiopathic" mental retardation and new chromosomal abnormalities

    PubMed Central

    2010-01-01

    Mental retardation is a heterogeneous condition, affecting 1-3% of general population. In the last few years, several emerging clinical entities have been described, due to the advent of newest genetic techniques, such as array Comparative Genomic Hybridization. The detection of cryptic microdeletion/microduplication abnormalities has allowed genotype-phenotype correlations, delineating recognizable syndromic conditions that are herein reviewed. With the aim to provide to Paediatricians a combined clinical and genetic approach to the child with cognitive impairment, a practical diagnostic algorithm is also illustrated. The use of microarray platforms has further reduced the percentage of "idiopathic" forms of mental retardation, previously accounted for about half of total cases. We discussed the putative pathways at the basis of remaining "pure idiopathic" forms of mental retardation, highlighting possible environmental and epigenetic mechanisms as causes of altered cognition. PMID:20152051

  16. Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities

    PubMed Central

    Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593

  17. Ovarian SAHA syndrome is associated with a more insulin-resistant profile and represents an independent risk factor for glucose abnormalities in women with polycystic ovary syndrome: a prospective controlled study.

    PubMed

    Dalamaga, Maria; Papadavid, Evangelia; Basios, Georgios; Vaggopoulos, Vassilios; Rigopoulos, Dimitrios; Kassanos, Dimitrios; Trakakis, Eftihios

    2013-12-01

    SAHA syndrome is characterized by the tetrad: seborrhea, acne, hirsutism, and androgenetic alopecia. No previous study has examined the prevalence of glucose abnormalities in ovarian SAHA and explored whether it may be an independent risk factor for glucose abnormalities. In a prospective controlled study, we investigated the spectrum of glucose abnormalities in ovarian SAHA and explored whether it is associated with a more insulin-resistant profile. In all, 316 patients with a diagnosis of polycystic ovary syndrome (PCOS) (56 with SAHA) and 102 age-matched healthy women were examined and underwent a 2-hour oral glucose tolerance test. Serum glucose homeostasis parameters, hormones, and adipokines were determined. SAHA prevalence was 17.7% in patients with PCOS and predominance of the severe PCOS phenotype. Ovarian SAHA was independently associated with a more insulin-resistant profile (higher homeostatic model assessment of insulin resistance score, lower quantitative insulin sensitivity check index [QUICKI] and MATSUDA indices, and relative hypoadiponectinemia), and represented an independent risk factor for glucose abnormalities regardless of anthropometric features, age, and PCOS phenotype. There was no performance of skin biopsies. The prompt recognition of SAHA syndrome in women with PCOS permits an earlier diagnosis and surveillance of metabolic abnormalities, especially in Mediterranean PCOS population exhibiting a lower prevalence of glucose abnormalities. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  18. [Current genetic issues and phenotypic variants in Kallmann syndrome].

    PubMed

    Gutiérrez-Amavizca, Bianca Ethel; Figuera, Luis E; Orozco-Castellanos, Ricardo

    2012-01-01

    Kallmann syndrome is characterized by hypogonadotropic hypogonadism and anosmia/hyposmia. The hypogonadotropic hypogonadism is due to deficiency of gonadotropin-releasing hormone, caused by a defect in the migration of neurons synthesizing gonadotropin-releasing hormone, and anosmia/hyposmia is related to the absence or hypoplasia of the olfactory bulb and tracts. Some patients may have other associated abnormalities such as renal agenesis, cleft palate, dental agenesis, synkinesis, shortening of metacarpal, sensory neural hearing loss and seizures. The aim of this paper is to present an updated review of the clinical and molecular basis, highlighting the relevance of knowledge of phenotypic variants in Kallmann syndrome.

  19. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  20. Abnormal movements in first-episode, nonaffective psychosis: dyskinesias, stereotypies, and catatonic-like signs.

    PubMed

    Compton, Michael T; Fantes, Francisco; Wan, Claire Ramsay; Johnson, Stephanie; Walker, Elaine F

    2015-03-30

    Motor abnormalities represent a neurobehavioral domain of signs intrinsic to schizophrenia-spectrum disorders, though they are commonly attributed to medication side effects and remain understudied. Individuals with first-episode psychosis represent an ideal group to study innate movement disorders due to minimal prior antipsychotic exposure. We measured dyskinesias, stereotypies, and catatonic-like signs and examined their associations with: (1) age at onset of psychotic symptoms and duration of untreated psychosis; (2) positive, negative, and disorganized symptoms; (3) neurocognition; and (4) neurological soft signs. Among 47 predominantly African American first-episode psychosis patients in a public-sector hospital, the presence and severity of dyskinesias, stereotypies, and catatonic-like features were assessed using approximately 30-min video recordings. Movement abnormalities were rated utilizing three scales (Dyskinesia Identification System Condensed User Scale, Stereotypy Checklist, and Catatonia Rating Scale). Correlational analyses were conducted. Scores for each of three movement abnormality types were modestly inter-correlated (r=0.29-0.40). Stereotypy score was significantly associated with age at onset of psychotic symptoms (r=0.32) and positive symptom severity scores (r=0.29-0.41). There were no meaningful or consistent associations with negative symptom severity, neurocognition, or neurological soft signs. Abnormal movements appear to represent a relatively distinct phenotypic domain deserving of further research. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice

    PubMed Central

    Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto

    1999-01-01

    Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457

  2. pitx2 Deficiency Results in Abnormal Ocular and Craniofacial Development in Zebrafish

    PubMed Central

    Liu, Yi; Semina, Elena V.

    2012-01-01

    Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6–8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates. PMID:22303467

  3. Prenatal diagnosis and molecular cytogenetic characterization of de novo pure partial trisomy 6p associated with microcephaly, craniosynostosis and abnormal maternal serum biochemistry.

    PubMed

    Chen, Chih-Ping; Chen, Ming; Chen, Chen-Yu; Chern, Schu-Rern; Wu, Peih-Shan; Chang, Shun-Ping; Kuo, Yu-Ling; Chen, Wen-Lin; Pan, Chen-Wen; Wang, Wayseen

    2014-02-25

    We present prenatal diagnosis and molecular cytogenetic characterization of de novo pure trisomy 6p22.3 → p25.3 encompassing BMP6 in a fetus associated with microcephaly and craniosynostosis on prenatal ultrasound, abnormal maternal serum biochemistry of a low PAPP-A level in the first-trimester combined test, and a karyotype of 46,XX,der(22)t(6;22)(p22.3;p13)dn. The present case demonstrates the usefulness of rapid prenatal identification of the origin of the extra chromosome material on the short arm of an acrocentric chromosome by spectral karyotyping, fluorescence in situ hybridization and array comparative genomic hybridization. We review the phenotypic abnormality of craniosynostosis in previously reported patients with partial trisomy 6p. We discuss the genotype-phenotype correlation of the involved gene of BMP6 in this case. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Dealing with Abnormal Behavior in the Classroom. Fastback 245.

    ERIC Educational Resources Information Center

    Romney, David M.

    This booklet discusses four of the more common classroom behavior disorders with which teachers must deal: hyperactivity, childhood depression, extreme shyness, and aggressive behavior. In the section on hyperactivity, three characteristics--excessive motor activity, inattentiveness, and impulsiveness--are listed as constituting the hyperactivity…

  5. Cardio-facio-cutaneous syndrome: does genotype predict phenotype?

    PubMed

    Allanson, Judith E; Annerén, Göran; Aoki, Yoki; Armour, Christine M; Bondeson, Marie-Louise; Cave, Helene; Gripp, Karen W; Kerr, Bronwyn; Nystrom, Anna-Maja; Sol-Church, Katia; Verloes, Alain; Zenker, Martin

    2011-05-15

    Cardio-facio-cutaneous (CFC) syndrome is a sporadic multiple congenital anomalies/mental retardation condition principally caused by mutations in BRAF, MEK1, and MEK2. Mutations in KRAS and SHOC2 lead to a phenotype with overlapping features. In approximately 10–30% of individuals with a clinical diagnosis of CFC, a mutation in one of these causative genes is not found. Cardinal features of CFC include congenital heart defects, a characteristic facial appearance, and ectodermal abnormalities. Additional features include failure to thrive with severe feeding problems, moderate to severe intellectual disability and short stature with relative macrocephaly. First described in 1986, more than 100 affected individuals are reported. Following the discovery of the causative genes, more information has emerged on the breadth of clinical features. Little, however, has been published on genotype–phenotype correlations. This clinical study of 186 children and young adults with mutation-proven CFC syndrome is the largest reported to date. BRAF mutations are documented in 140 individuals (approximately 75%), while 46 (approximately 25%) have a mutation in MEK 1 or MEK 2. The age range is 6 months to 32 years, the oldest individual being a female from the original report [Reynolds et al. (1986); Am J Med Genet 25:413–427]. While some clinical data on 136 are in the literature, 50 are not previously published. We provide new details of the breadth of phenotype and discuss the frequency of particular features in each genotypic group. Pulmonary stenosis is the only anomaly that demonstrates a statistically significant genotype–phenotype correlation, being more common in individuals with a BRAF mutation.

  6. Effects of MC4R, FTO, and NMB gene variants to obesity, physical activity, and eating behavior phenotypes.

    PubMed

    Kirac, Deniz; Kasimay Cakir, Ozgur; Avcilar, Tuba; Deyneli, Oguzhan; Kurtel, Hizir; Yazici, Dilek; Kaspar, Elif Cigdem; Celik, Nurgul; Guney, Ahmet Ilter

    2016-10-01

    Obesity is a major contributory factor of morbidity and mortality. It has been suggested that biological systems may be involved in the tendency to be and to remain physically inactive also behaviors such as food and beverage preferences and nutrient intake may at least partially genetically determined. Consequently, besides environment, genetic factors may also contribute to the level of physical activity and eating behaviors thus effect obesity. Therefore the aim of this study is to investigate the effect of various gene mutations on obesity, physical activity levels and eating behavior phenotypes. One hundred patients and 100 controls were enrolled to the study. Physical activity levels were measured with an actical acceloremeter device. Eating behaviors were evaluated using Three-Factor Eating questionnaire (TFEQ). Associations between eating behavior scores and physical characteristics were also evaluated. The information about other obesity risk factors were also collected. Mutations were investigated with PCR, direct sequencing and Real-Time PCR. rs1051168, rs8050146 -2778C > T mutations were found statistically significant in patients, rs1121980 was found statistically significant in controls. 21 mutations were found in MC4R and near MC4R of which 18 of them are novel and 8 of them cause amino acid change. In addition, it was found that, some obesity related factors and questions of TFEQ are associated with various investigated gene mutations. Any relation between gene mutations and physical activity levels were not detected. It is thought that, due to the genotype data and eating behaviors, it may be possible to recommend patients for proper eating patterns to prevent obesity. © 2016 IUBMB Life, 68(10):806-816, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  7. Imprinting center analysis in Prader-Willi and Angelman syndrome patients with typical and atypical phenotypes.

    PubMed

    Camprubí, Cristina; Coll, Maria Dolors; Villatoro, Sergi; Gabau, Elisabeth; Kamli, Amine; Martínez, Maria Jesus; Poyatos, David; Guitart, Miriam

    2007-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are genetic disorders caused by a deficiency of imprinted gene expression from the paternal or maternal chromosome 15, respectively. This deficiency is due to the deletion of the 15q11-q13 region, parental uniparental disomy of the chromosome 15, or imprinting defect (ID). Mutation of the UBE3A gene causes approximately 10% of AS cases. In this present study, we describe the molecular analysis and phenotypes of two PWS patients and four AS patients with ID. One of the PWS patients has a non-familial imprinting center (IC) deletion and displayed a severe phenotype with an atypical PWS appearance, hyperactivity and psychiatric vulnerability. The other PWS and AS patients did not present genetic abnormalities in the IC, suggesting an epimutation as the genetic cause. The methylation pattern of two AS patients showed a faint maternal band corresponding to a mosaic ID. One of these mosaic patients displayed a mild AS phenotype while the other displayed a PWS-like phenotype.

  8. Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique

    NASA Astrophysics Data System (ADS)

    Udayakumar, K.; Sujatha, N.

    2015-03-01

    Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.

  9. Overeating phenotypes in overweight and obese children.

    PubMed

    Boutelle, Kerri N; Peterson, Carol B; Crosby, Ross D; Rydell, Sarah A; Zucker, Nancy; Harnack, Lisa

    2014-05-01

    The purpose of this study was to identify overeating phenotypes and their correlates in overweight and obese children. One hundred and seventeen treatment-seeking overweight and obese 8-12year-old children and their parents completed the study. Children completed an eating in the absence of hunger (EAH) paradigm, the Eating Disorder Examination interview, and measurements of height and weight. Parents and children completed questionnaires that evaluated satiety responsiveness, food responsiveness, negative affect eating, external eating and eating in the absence of hunger. Latent profile analysis was used to identify heterogeneity in overeating phenotypes in the child participants. Latent classes were then compared on measures of demographics, obesity status and nutritional intake. Three latent classes of overweight and obese children were identified: High Satiety Responsive, High Food Responsive, and Moderate Satiety and Food Responsive. Results indicated that the High Food Responsive group had higher BMI and BMI-Z scores compared to the High Satiety Responsive group. No differences were found among classes in demographics or nutritional intake. This study identified three overeating phenotypes, supporting the heterogeneity of eating patterns associated with overweight and obesity in treatment-seeking children. These finding suggest that these phenotypes can potentially be used to identify high risk groups, inform prevention and intervention targets, and develop specific treatments for these behavioral phenotypes. Copyright © 2014. Published by Elsevier Ltd.

  10. Autism-related neuroligin-3 mutation alters social behavior and spatial learning.

    PubMed

    Jaramillo, Thomas C; Liu, Shunan; Pettersen, Ami; Birnbaum, Shari G; Powell, Craig M

    2014-04-01

    Multiple candidate genes have been identified for autism spectrum disorders. While some of these genes reach genome-wide significance, others, such as the R451C point mutation in the synaptic cell adhesion molecule neuroligin-3, appear to be rare. Interestingly, two brothers with the same R451C point mutation in neuroligin-3 present clinically on seemingly disparate sides of the autism spectrum. These clinical findings suggest genetic background may play a role in modifying the penetrance of a particular autism-associated mutation. Animal models may contribute additional support for such mutations as functionally relevant and can provide mechanistic insights. Previously, in collaboration with the Südhof laboratory, we reported that mice with an R451C substitution in neuroligin-3 displayed social deficits and enhanced spatial learning. While some of these behavioral abnormalities have since been replicated independently in the Südhof laboratory, observations from the Crawley laboratory failed to replicate these findings in a similar neuroligin-3 mutant mouse model and suggested that genetic background may contribute to variation in observations across laboratories. Therefore, we sought to replicate our findings in the neuroligin-3 R451C point mutant knock-in mouse model (NL3R451C) in a different genetic background. We backcrossed our NL3R451C mouse line onto a 129S2/SvPasCrl genetic background and repeated a subset of our previous behavioral testing. NL3R451C mice on a 129S2/SvPasCrl displayed social deficits, enhanced spatial learning, and increased locomotor activity. These data extend our previous findings that NL3R451C mice exhibit autism-relevant behavioral abnormalities and further suggest that different genetic backgrounds can modify this behavioral phenotype through epistatic genetic interactions. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  11. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses.

    PubMed

    Buxbaum, Joseph D; Bolshakova, Nadia; Brownfeld, Jessica M; Anney, Richard Jl; Bender, Patrick; Bernier, Raphael; Cook, Edwin H; Coon, Hilary; Cuccaro, Michael; Freitag, Christine M; Hallmayer, Joachim; Geschwind, Daniel; Klauck, Sabine M; Nurnberger, John I; Oliveira, Guiomar; Pinto, Dalila; Poustka, Fritz; Scherer, Stephen W; Shih, Andy; Sutcliffe, James S; Szatmari, Peter; Vicente, Astrid M; Vieland, Veronica; Gallagher, Louise

    2014-01-01

    There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children's or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the focus is on sequencing complete

  12. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses

    PubMed Central

    2014-01-01

    Background There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. Methods In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. Results Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children’s or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the

  13. Frontal behavioral syndromes in Prader-Willi syndrome.

    PubMed

    Ogura, Kaeko; Shinohara, Mayumi; Ohno, Kousaku; Mori, Etsuro

    2008-08-01

    Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder presenting with behavioral problems including hyperphagia, emotional aberration, and compulsion-like behaviors. This combination of behavioral problems is likely to be caused by damage to the orbitofrontal cortices and anterior temporal lobes or to circuits involving them. To investigate the prevalence of eating and non-eating behavioral disturbances in PWS by using assessment tools developed originally for patients with frontotemporal dementia and with frontal lobe injury. The questionnaire consisted of 35 questions related to three categories of behavior: eating behaviors (including four domains: appetite, food preference, eating habits, and other oral behaviors), stereotypy (including four domains: roaming, speaking, movements, and daily rhythm), and collecting behaviors. It was administered in Japan to the parents of 250 individuals aged 1-42 years with a clinical diagnosis of PWS. The prevalence rates of symptoms in all categories were high. Each domain involved in eating behaviors was significantly correlated with stereotypy and collecting behaviors. The prevalence rates and severity scores of some eating and non-eating behaviors were higher in the older groups. Abnormal eating behaviors, stereotyped behaviors, and collecting behaviors were common in the PWS subjects. There was also a potential link between abnormal eating and non-eating behaviors related to frontal behavioral syndromes. It is likely that these behavioral abnormalities reflect dysfunction of the orbitofrontal cortices and anterior temporal lobes.

  14. Huntington's Disease: Relationship Between Phenotype and Genotype.

    PubMed

    Sun, Yi-Min; Zhang, Yan-Bin; Wu, Zhi-Ying

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.

  15. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  16. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. Copyright © 2011 Wiley Periodicals, Inc.

  17. A cytoplasmically transmissible hypovirulence phenotype associated with mitochondrial DNA mutations in the chestnut blight fungus Cryphonectria parasitica.

    PubMed Central

    Monteiro-Vitorello, C B; Bell, J A; Fulbright, D W; Bertrand, H

    1995-01-01

    Mutations causing mitochondrial defects were induced in a virulent strain of the chestnut blight fungus Cryphonectria parasitica (Murr.) Barr. Virulence on apples and chestnut trees was reduced in four of six extensively characterized mutants. Relative to the virulent progenitor, the attenuated mutants had reduced growth rates, abnormal colony morphologies, and few asexual spores, and they resembled virus-infected strains. The respiratory defects and attenuated virulence phenotypes (hypovirulence) were transmitted from two mutants to a virulent strain by hyphal contact. The infectious transmission of hypovirulence occurred independently of the transfer of nuclei, did not involve a virus, and dynamically reflects fungal diseases caused by mitochondrial mutations. In these mutants, mitochondrial mutations are further implicated in generation of the attenuated state by (i) uniparental (maternal) inheritance of the trait, (ii) presence of high levels of cyanide-insensitive mitochondrial alternative oxidase activity, (iii) cytochrome deficiencies, and (iv) structural abnormalities in the mtDNA. Hence, cytoplasmically transmissible hypovirulence phenotypes found in virus-free strains of C. parasitica from recovering trees may be caused by mutant forms of mtDNA. Images Fig. 2 Fig. 4 PMID:11607549

  18. Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks

    PubMed Central

    Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed

    2006-01-01

    Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191

  19. Cognitive behavior therapy for eating disorders versus normalization of eating behavior.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Brodin, U; Zandian, M

    2017-05-15

    We examine the science and evidence supporting cognitive behavior therapy (CBT) for the treatment of bulimia nervosa and other eating disorders. Recent trials focusing on the abnormal cognitive and emotional aspects of bulimia have reported a remission rate of about 45%, and a relapse rate of about 30% within one year. However, an early CBT trial that emphasized the normalization of eating behavior had a better outcome than treatment that focused on cognitive intervention. In support of this finding, another treatment, that restores a normal eating behavior using mealtime feedback, has an estimated remission rate of about 75% and a relapse rate of about 10% over five years. Moreover, when eating behavior was normalized, cognitive and emotional abnormalities were resolved at remission without cognitive therapy. The critical aspect of the CBT treatment of bulimia nervosa therefore may actually have been the normalization of eating behavior. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Marfan syndrome-like phenotype caused by a neocentromeric supernumerary ring chromosome 15.

    PubMed

    Quinonez, Shane C; Gelehrter, Thomas D; Uhlmann, Wendy R

    2017-01-01

    Small supernumerary marker chromosomes (sSMC) are abnormal chromosomes that cannot be characterized by standard banding cytogenetic techniques. A minority of sSMC contain a neocentromere, which is an ectopic centromere lacking the characteristic alpha-satellite DNA. The phenotypic manifestations of sSMC and neocentromeric sSMC are variable and range from severe intellectual disability and multiple congenital anomalies to a normal phenotype. Here we report a patient with a diagnosis of Marfan syndrome and infertility found to have an abnormal karyotype consisting of a chromosome 15 deletion and a ring-type sSMC likely stabilized by a neocentromere derived via a mechanism initially described by Barbara McClintock in 1938. Analysis of the sSMC identified that it contained the deleted chromosome 15 material and also one copy of FBN1, the gene responsible for Marfan syndrome. We propose that the patient's diagnosis arose from disruption of the FBN1 allele on the sSMC. To date, a total of 29 patients have been reported with an sSMC derived from a chromosomal deletion. We review these cases with a specific focus on the resultant phenotypes and note significant difference between this class of sSMC and other types of sSMC. Through this review we also identified a patient with a clinical diagnosis of neurofibromatosis type 1 who lacked a family history of the condition but was found to have a chromosome 17-derived sSMC that likely contained NF1 and caused the patient's disorder. We also review the genetic counseling implications and recommendations for a patient or family harboring an sSMC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.