Science.gov

Sample records for abnormal behavioral phenotype

  1. Behavioral phenotypes in genetic syndromes: genetic clues to human behavior.

    PubMed

    Cassidy, Suzanne B; Morris, Colleen A

    2002-01-01

    A behavioral phenotype is the characteristic cognitive, personality, behavioral, and psychiatric pattern that typifies a disorder. A number of genetic syndromes have been identified as having this type of distinctive and consistent behavior pattern. It may act as an important diagnostic sign, like a malformation or characteristic facial appearance. Such patterns are also useful for the physician's anticipatory guidance from an educational, rehabilitative, and parenting perspective. In addition, because they are the consequences of known genetic alterations, behavioral phenotypes can be potentially highly valuable clues to the identification of genes in the population that are important to determination of cognitive skills or deficits, personality determinants, behavioral abnormalities, or psychiatric disorders. The nature of a behavioral phenotype and its potential for genetic insight can be appreciated through the examples of Williams syndrome, Prader-Willi syndrome, and Angelman syndrome. The cognitive and behavioral characteristics of these disorders are distinctive. Williams syndrome is known for its association with remarkable conversational verbal abilities and excessive empathy, whereas Prader-Willi syndrome is known for temper tantrums and obsessive-compulsive features, and Angelman syndrome is associated with a constantly happy affect and hyperactivity. The genetic basis for each of these disorders is known, and the pathophysiology and genotype-phenotype correlations are beginning to provide insight into genes responsible for personality characteristics and behavioral abnormalities.

  2. Hypertriglyceridemic waist phenotype and metabolic abnormalities in hypertensive adults

    PubMed Central

    Chen, Shuang; Guo, Xiaofan; Yu, Shasha; Yang, Hongmei; Sun, Guozhe; Li, Zhao; Sun, Yingxian

    2016-01-01

    Abstract The aim of this study was to evaluate the relationship between the hypertriglyceridemic waist (HTGW) phenotype and metabolic abnormalities in hypertensive adults. A cross-sectional study, with a sample of 5919 hypertensive adults (2892 men and 3027 women) aged 35 years or older, was recruited from rural areas of China. The participants underwent anthropometric measurements and laboratory examinations. The self-reported information was collected by trained personnel. The HTGW phenotype was defined as elevated triglycerides and elevated waist circumference. The logistic regression analysis was used to evaluate the associations of interest. Hypertensive adults with the HTGW phenotype had significantly higher prevalences of all cardiometabolic risk factors than those without the HTGW phenotype (P < 0.001). Compared with the normal waist normal triglyceride (NWNT) group, hypertensive adults with the HTGW phenotype had much higher possibilities to have all cardiometabolic risk factors, especially for 8.35 times more likely of having ≥3 cardiometabolic risk factors [95% confidence interval (95% CI) 5.92–11.79], 6.14 times more likely of having low HDL cholesterol (95% CI 4.98–7.58), 5.49 times more likely of having hyperuricemia (95% CI 4.40–6.86), and 4.32 times more likely of having 1 to 2 cardiometabolic risk factors (95% CI 3.68–5.07) (P < 0.001). Multivariate analysis indicated that the HTGW phenotype was positively associated with metabolic abnormalities (P < 0.05). This study concluded that the HTGW phenotype was positively associated with metabolic abnormalities in hypertensive adults. The HTGW phenotype showed to be an important tool for monitoring of hypertensive adults with metabolic abnormalities, which is low cost, simple, and useful in clinical practice, especially in primary health care in the rural area of China. PMID:27930589

  3. Cranial base abnormalities in osteogenesis imperfecta: phenotypic and genotypic determinants.

    PubMed

    Cheung, Moira S; Arponen, Heidi; Roughley, Peter; Azouz, Michel E; Glorieux, Francis H; Waltimo-Sirén, Janna; Rauch, Frank

    2011-02-01

    Cranial base abnormalities are an important complication of osteogenesis imperfecta (OI), a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. To elucidate which clinical characteristics are associated with the occurrence of cranial base abnormalities in OI, we compared cephalometric results of 187 OI patients (median age 12.0 years, range 3.4 to 47 years; 96 female) with those of 191 healthy subjects and related findings to clinical descriptors of the disease. Overall, 41 patients (22%) had at least one unambiguously abnormal skull base measure. Multivariate logistic regression analysis in patients with OI types I, III, and IV (n = 169) revealed that height Z-score [odds ratio (OR) = 0.53, 95% confidence interval (CI) 0.43-0.66, p < .001]--but not age, gender, scleral hue, lumbar spine areal bone mineral density, or a history of bisphosphonate treatment--was a significant independent determinant of skull base abnormalities. Among patients with a height Z-score below -3, 48% had a skull base abnormality regardless of whether they had received bisphosphonate treatment in the first year of life or not. Genotype-phenotype correlations were evaluated in patients with detectable mutations in COL1A1 or COL1A2, the genes coding for collagen type I (n = 140). Skull base abnormalities were present in 6% of patients with haploinsufficiency (frameshift or nonsense) mutations, in 43% of patients with helical glycine substitutions caused by COL1A1 mutations, in 32% of patients with helical glycine substitutions owing to COL1A2 mutations, and in 17% of patients with splice-site mutations affecting either COL1A1 or COL1A2. However, multivariate logistic regression analysis showed that height Z-score but not the type of collagen type I mutation was independently associated with the prevalence of skull base abnormalities. In conclusion, this study shows that clinical severity of OI, as expressed by the height Z-score, was

  4. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement.

    PubMed

    Al-Kateb, Hussam; Khanna, Geetika; Filges, Isabel; Hauser, Natalie; Grange, Dorothy K; Shen, Joseph; Smyser, Christopher D; Kulkarni, Shashikant; Shinawi, Marwan

    2014-05-01

    The typical chromosome 16p11.2 rearrangements are estimated to occur at a frequency of approximately 0.6% of all samples tested clinically and have been identified as a major cause of autism spectrum disorders, developmental delay, behavioral abnormalities, and seizures. Careful examination of patients with these rearrangements revealed association with abnormal head size, obesity, dysmorphism, and congenital abnormalities. In this report, we extend this list of phenotypic abnormalities to include scoliosis and vertebral anomalies. We present detailed characterization of phenotypic and radiological data of 10 new patients, nine with the 16p11.2 deletion and one with the duplication within the coordinates chr16:29,366,195 and 30,306,956 (hg19) with a minimal size of 555 kb. We discuss the phenotypical and radiological findings in our patients and review 5 previously reported patients with 16p11.2 rearrangement and similar skeletal abnormalities. Our data suggest that patients with the recurrent 16p11.2 rearrangement have increased incidence of scoliosis and vertebral anomalies. However, additional studies are required to confirm this observation and to establish the incidence of these anomalies. We discuss the potential implications of our findings on the diagnosis, surveillance and genetic counseling of patients with 16p11.2 rearrangement.

  5. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  6. A database of Caenorhabditis elegans behavioral phenotypes.

    PubMed

    Yemini, Eviatar; Jucikas, Tadas; Grundy, Laura J; Brown, André E X; Schafer, William R

    2013-09-01

    Using low-cost automated tracking microscopes, we have generated a behavioral database for 305 Caenorhabditis elegans strains, including 76 mutants with no previously described phenotype. The growing database currently consists of 9,203 short videos segmented to extract behavior and morphology features, and these videos and feature data are available online for further analysis. The database also includes summary statistics for 702 measures with statistical comparisons to wild-type controls so that phenotypes can be identified and understood by users.

  7. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  8. Neurobiology of social behavior abnormalities in autism and Williams syndrome

    PubMed Central

    Barak, B; Feng, G

    2016-01-01

    Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here, we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities. PMID:27116389

  9. Freud Was Right. . . about the Origins of Abnormal Behavior

    ERIC Educational Resources Information Center

    Muris, Peter

    2006-01-01

    Freud's psychodynamic theory is predominantly based on case histories of patients who displayed abnormal behavior. From a scientific point of view, Freud's analyses of these cases are unacceptable because the key concepts of his theory cannot be tested empirically. However, in one respect, Freud was totally right: most forms of abnormal behavior…

  10. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    2016-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  11. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

    PubMed

    Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K

    2013-12-19

    Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.

  12. Familial Constitutional Rearrangement of Chromosomes 4 & 8: Phenotypically Normal Mother and Abnormal Progeny

    PubMed Central

    Kunwar, Fulesh

    2016-01-01

    Balanced chromosome translocations carriers mostly do not have recognizable phenotypic expression but may have more risk of recurrent spontaneous abortions &/or children with serious birth defects due to unbalanced chromosome complements. Unbalanced chromosomal rearrangements have variable clinical expression and are rare. We present here a case report of three siblings affected with intellectual disability and minor dysmorphic features of face and limbs, born to a non-consanguineous couple in which mother had 5 abortions. The constitutional chromosome analysis revealed balanced translocation t (4;8) in mother and all the three siblings were karyotypically normal. Chromosomal microarray in one of the probands revealed partial monosomy 8pter-p23 and a partial trisomy 4pter-p16. Phenotypic features were recorded in 3 probands using Human Phenotype Ontology terms to query web-based tool Phenomizer. The harmonized description using globally accepted ontology is very important especially in case of rare genetic conditions and the heterogeneous phenotypes which make it even more challenging. The prevalence of sub-microscopic unbalanced translocations may be under-reported due to lesser use of molecular genetic analysis. The familial expression of abnormal phenotypes including intellectual disability make the individuals candidate for molecular genetic analysis and phenotyping to help defer the status of idiopathic mental retardation and identify sub-entity of genetic condition. PMID:27190830

  13. Personality theory, abnormal psychology, and psychological measurement. A psychological behaviorism.

    PubMed

    Staats, A W

    1993-01-01

    Behaviorism, because it has not had a theory of personality, has been separated from the rest of psychology, unable in large part to draw from or contribute to it. Traditional psychology has not had a theory of personality that says what personality is, how it comes about, or how it functions. An antagonism has resulted that weakens rather than complements each tradition. Psychological behaviorism presents a new type of theory of personality. Derived from experimentation, it is constructed from basic theories of emotion, language, and sensory-motor behavior. It says personality is composed of learned basic behavioral repertoires (BBRs) that affect behavior. Personality measurement instruments are analyzed in terms of the BBRs, beginning the behaviorization of this field and calling for much additional research. These multilevel developments are then basic in psychological behaviorism's theory of abnormal behavior and of clinical treatment. The approach opens many new avenues of empirical and theoretical work.

  14. Drosophila couch potato Mutants Exhibit Complex Neurological Abnormalities Including Epilepsy Phenotypes

    PubMed Central

    Glasscock, Edward; Tanouye, Mark A.

    2005-01-01

    RNA-binding proteins play critical roles in regulation of gene expression, and impairment can have severe phenotypic consequences on nervous system function. We report here the discovery of several complex neurological phenotypes associated with mutations of couch potato (cpo), which encodes a Drosophila RNA-binding protein. We show that mutation of cpo leads to bang-sensitive paralysis, seizure susceptibility, and synaptic transmission defects. A new cpo allele called cpoEG1 was identified on the basis of a bang-sensitive paralytic mutant phenotype in a sensitized genetic background (sda/+). In heteroallelic combinations with other cpo alleles, cpoEG1 shows an incompletely penetrant bang-sensitive phenotype with ∼30% of flies becoming paralyzed. In response to electroconvulsive shock, heteroallelic combinations with cpoEG1 exhibit seizure thresholds less than half that of wild-type flies. Finally, cpo flies display several neurocircuit abnormalities in the giant fiber (GF) system. The TTM muscles of cpo mutants exhibit long latency responses coupled with decreased following frequency. DLM muscles in cpo mutants show drastic reductions in following frequency despite exhibiting normal latency relationships. The labile sites appear to be the electrochemical GF-TTMn synapse and the chemical PSI-DLMn synapses. These complex neurological phenotypes of cpo mutants support an important role for cpo in regulating proper nervous system function, including seizure susceptibility. PMID:15687283

  15. Association between Indices of Body Composition and Abnormal Metabolic Phenotype in Normal-Weight Chinese Adults.

    PubMed

    Xia, Lili; Dong, Fen; Gong, Haiying; Xu, Guodong; Wang, Ke; Liu, Fen; Pan, Li; Zhang, Ling; Yan, Yuxiang; Gaisano, Herbert; He, Yan; Shan, Guangliang

    2017-04-07

    We aimed to determine the association of indices of body composition with abnormal metabolic phenotype, and to examine whether the strength of association was differentially distributed in different age groups in normal-weight Chinese adults. A total of 3015 normal-weight adults from a survey of Chinese people encompassing health and basic physiological parameters was included in this cross-sectional study. We investigated the association of body composition measured by bioelectrical impedance analysis and conventional body indices with metabolically unhealthy normal-weight (MUHNW) adults, divided by age groups and gender. Associations were assessed by multiple logistic regression analysis. We found abnormal metabolism in lean Chinese adults to be associated with higher adiposity indices (body mass index, BMI), waist circumference, and percentage body fat), lower skeletal muscle %, and body water %. Body composition was differentially distributed in age groups within the metabolically healthy normal weight (MHNW)/MUHNW groups. The impact of factors related to MUHNW shows a decreasing trend with advancing age in females and disparities of factors (BMI, body fat %, skeletal muscle %, and body water %) associated with the MUHNW phenotype in the elderly was noticed. Those factors remained unchanged in males throughout the age range, while the association of BMI, body fat %, skeletal muscle %, and body water % to MUHNW attenuated and grip strength emerged as a protective factor in elderly females. These results suggest that increased adiposity and decreased skeletal muscle mass are associated with unfavorable metabolic traits in normal-weight Chinese adults, and that MUHNW is independent of BMI, while increased waist circumference appears to be indicative of an abnormal metabolic phenotype in elderly females.

  16. Transient abnormal myelopoiesis in a phenotypically normal newborn with polyclonal trisomy 21.

    PubMed

    Corazza, Francesco; Astolfi, Annalisa; Libri, Virginia; Franzoni, Monica; Serravalle, Salvatore; Alessandroni, Rosina; Melchionda, Fraia; Pession, Andrea

    2014-06-01

    We report a rare case of transient abnormal myelopoiesis (TAM) in a phenotypically normal neonate. The presence of a palpable hepatomegaly prompted in-depth laboratory tests, which revealed the presence of severe hyperleukocytosis, with blast cells present in a peripheral blood smear. Although no signs of Down syndrome were present, we suspected TAM. Further analysis identified a mutation in GATA1 along with the unique finding of two different trisomic cell lines, detected upon karyotyping; one with trisomy 21 only, and one with trisomies 21 and 22, which was present in a subpopulation of peripheral blood cells. These genetic abnormalities disappeared by the age of 6 months. The presence of two different trisomic clones may be an evidence of the polyclonal nature of TAM in this patient.

  17. Sugar-Sweetened Beverages and Prevalence of the Metabolically Abnormal Phenotype in the Framingham Heart Study

    PubMed Central

    Green, Angela K.; Jacques, Paul F.; Rogers, Gail; Fox, Caroline S.; Meigs, James B.; McKeown, Nicola M.

    2014-01-01

    Objective The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. Design and Methods The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the Framingham Heart Study Offspring (1998–2001) and Third Generation (2002–2005) cohorts. Adults were classified as normal weight, overweight or obese and, within these categories, metabolic health was defined based on five criteria – hypertension, elevated fasting glucose, elevated triglycerides, low HDL cholesterol, and insulin resistance. Individuals without metabolic abnormalities were considered metabolically healthy. Logistic regression was used to examine the associations between categories of SSB consumption and risk of metabolic health after stratification by BMI. Results Comparing the highest category of SSB consumers (median of 7 SSB per week) to the lowest category (non-consumers), odds ratios (95% confidence intervals) for metabolically abnormal phenotypes, compared to the metabolically normal, were 1.9 (1.1–3.4) among the obese, 2.0 (1.4–2.9) among the overweight, and 1.9 (1.4–2.6) among the normal weight individuals. Conclusions In this cross-sectional analysis, it is observed that, irrespective of weight status, consumers of SSB were more likely to display metabolic abnormalities compared to non-consumers in a dose-dependent manner. PMID:24550031

  18. Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities.

    PubMed

    Rocha, C F; Paiva, C L A

    2014-03-31

    Prader-Willi syndrome (PWS) is caused by the lack of expression of genes located on paternal chromosome 15q11-q13. This lack of gene expression may be due to a deletion in this chromosomal segment, to maternal uniparental disomy of chromosome 15, or to a defect in the imprinting center on 15q11-q13. PWS is characterized by hypotonia during the neonatal stage and in childhood, accompanied by a delay in neuropsychomotor development. Overeating, obesity, and mental deficiency arise later on. The syndrome has a clinical overlap with other diseases, which makes it difficult to accurately diagnose. The purpose of this article is to review the Prader-Willi-like phenotype in the scientific literature from 2000 to 2013, i.e., to review the cases of PWS caused by chromosomal abnormalities different from those found on chromosome 15. A search was carried out using the "National Center for Biotechnology Information" (www.pubmed.com) and "Scientific Electronic Library Online (www.scielo.br) databases and combinations of key words such as "Prader-Willi-like phenotype" and "Prader-Willi syndrome phenotype". Editorials, letters, reviews, and guidelines were excluded. Articles chosen contained descriptions of patients diagnosed with the PWS phenotype but who were negative for alterations on 15q11-q13. Our search found 643 articles about PWS, but only 14 of these matched with the Prader-Willi-like phenotype and with the selected years of publication (2000-2013). If two or more articles reported the same chromosomal alterations for Prader-Willi-like phenotype, the most recent was chosen. Twelve articles of 14 were case reports and 2 reported series of cases.

  19. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    PubMed

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals.

  20. Rare E196K mutation in the PRNP gene of a patient exhibiting behavioral abnormalities.

    PubMed

    Béjot, Yannick; Osseby, Guy-Victor; Caillier, Marie; Moreau, Thibault; Laplanche, Jean-Louis; Giroud, Maurice

    2010-04-01

    Genetic transmissible spongiform encephalopathies (TSEs) account for approximately 10-15% of overall human prion diseases worldwide, but genotype-phenotype correlations remain incomplete. Here we report the case of an 80-year-old man who developed rapidly progressive behavioral abnormalities and myoclonus following a stroke. Repeated electroencephalography (EEG) revealed a general slowing of the basic activity, as well as several episodes of triphasic waves, with neither periodic activity nor recorded seizure. 14.3.3 protein was detected in cerebral cerebrospinal fluid, and direct sequencing of the PRNP gene showed an E196K mutation associated with homozygosity for methionine at codon 129. The patient was diagnosed with probable genetic prion disease with a Creutzfeldt-Jakob disease-like phenotype. The PRNP E196K mutation has only rarely been described in the literature, and generally patients exhibited an atypical initial phenotype, mainly involving abnormal behavioral features. Further observations are needed to confirm this particular clinical pattern associated with the mutation.

  1. Spent fuel behavior under abnormal thermal transients during dry storage

    SciTech Connect

    Stahl, D.; Landow, M.P.; Burian, R.J.; Pasupathi, V.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment was heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.

  2. Behavioral and neuroanatomical abnormalities in pleiotrophin knockout mice.

    PubMed

    Krellman, Jason W; Ruiz, Henry H; Marciano, Veronica A; Mondrow, Bracha; Croll, Susan D

    2014-01-01

    Pleiotrophin (PTN) is an extracellular matrix-associated protein with neurotrophic and neuroprotective effects that is involved in a variety of neurodevelopmental processes. Data regarding the cognitive-behavioral and neuroanatomical phenotype of pleiotrophin knockout (KO) mice is limited. The purpose of this study was to more fully characterize this phenotype, with emphasis on the domains of learning and memory, cognitive-behavioral flexibility, exploratory behavior and anxiety, social behavior, and the neuronal and vascular microstructure of the lateral entorhinal cortex (EC). PTN KOs exhibited cognitive rigidity, heightened anxiety, behavioral reticence in novel contexts and novel social interactions suggestive of neophobia, and lamina-specific decreases in neuronal area and increases in neuronal density in the lateral EC. Initial learning of spatial and other associative tasks, as well as vascular density in the lateral EC, was normal in the KOs. These data suggest that the absence of PTN in vivo is associated with disruption of specific cognitive and affective processes, raising the possibility that further study of PTN KOs might have implications for the study of human disorders with similar features.

  3. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    SciTech Connect

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggesting that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.

  4. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    SciTech Connect

    Brunner, H.G. ); Nelen, M.; Ropers, H.H.; van Oost, B.A. )

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.

  5. Towards a Behavioral Phenotype for Rett Syndrome.

    ERIC Educational Resources Information Center

    Mount, Rebecca H.; Hastings, Richard P.; Reilly, Sheena; Cass, Hilary; Charman, Tony

    2003-01-01

    A study compared 143 girls (ages 6-14) with Rett syndrome with 85 girls with severe mental retardation on the Developmental Behavior Checklist. Girls with Rett syndrome presented more "autistic relating" and fewer antisocial behaviors. When compared to children with autism, they did not present with classic autistic behavioral features.…

  6. Structural Brain Abnormalities and Suicidal Behavior in Borderline Personality Disorder

    PubMed Central

    Soloff, Paul H.; Pruitt, Patrick; Sharma, Mohit; Radwan, Jacqueline; White, Richard; Diwadkar, Vaibhav A.

    2012-01-01

    Background Structural brain abnormalities have been demonstrated in subjects with BPD in prefrontal and fronto-limbic regions involved in the regulation of emotion and impulsive behavior, executive cognitive function and episodic memory. Impairment in these cognitive functions is associated with increased vulnerability to suicidal behavior. We compared BPD suicide attempters and non-attempters, high and low lethality attempters to healthy controls to identify neural circuits associated with suicidal behavior in BPD. Methods Structural MRI scans were obtained on 68 BPD subjects (16 male, 52 female), defined by IPDE and DIB/R criteria, and 52 healthy controls (HC: 28 male, 24 female). Groups were compared by diagnosis, attempt status, and attempt lethality. ROIs were defined for areas reported to have structural or metabolic abnormalities in BPD, and included: mid-inf. orbitofrontal cortex, mid-sup temporal cortex, anterior cingulate, insula, hippocampus, amygdala, fusiform, lingual and parahippocampal gyri. Data were analyzed using optimized voxel-based morphometry implemented with DARTEL in SPM5, co-varied for age and gender, corrected for cluster extent (p<.001). Results Compared to HC, BPD attempters had significantly diminished gray matter concentrations in 8 of 9 ROIs, non-attempters in 5 of 9 ROIs. Within the BPD sample, attempters had diminished gray matter in Lt. insula compared to non-attempters. High lethality attempters had significant decreases in Rt. mid-sup. temporal gyrus, Rt. mid-inf. orbitofrontal gyrus, Rt. insular cortex, Lt. fusiform gyrus, Lt. lingual gyrus and Rt. parahippocampal gyrus compared to low lethality attempters. Conclusions Specific structural abnormalities discriminate BPD attempters from non-attempters and high from low lethality attempters. PMID:22336640

  7. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    PubMed

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike.

  8. Do preclinical findings of methamphetamine-induced motor abnormalities translate to an observable clinical phenotype?

    PubMed

    Caligiuri, Michael P; Buitenhuys, Casey

    2005-12-01

    This review summarizes the preclinical literature of the effects of methamphetamine (MA) on subcortical dopaminergic and GABAergic mechanisms underlying motor behavior with the goal of elucidating the clinical presentation of human MA-induced movement disorders. Acute and chronic MA exposure in laboratory animal can lead to a variety of motor dysfunctions including increased locomotor activity, stereotypies, diminished or enhanced response times, and parkinsonian-like features. With the exception of psychomotor impairment and hyperkinesia, MA-induced movement disorders are not well documented in humans. This review attempts to draw parallels between the animal and human changes in basal ganglia neurochemistry associated with MA exposure and offers explanations for why a parkinsonian phenotype is not apparent among individuals who use and abuse MA. Significant differences in the expression of neurotoxicity and presence of multiple environmental and pharmacologic confounds may account for the lack of a parkinsonian phenotype in humans despite evidence of altered dopamine function.

  9. Distinctive Phenotypic Abnormalities Associated with Submicroscopic 21q22 Deletion Including DYRK1A

    PubMed Central

    Oegema, R.; de Klein, A.; Verkerk, A.J.; Schot, R.; Dumee, B.; Douben, H.; Eussen, B.; Dubbel, L.; Poddighe, P.J.; van der Laar, I.; Dobyns, W.B.; van der Spek, P.J.; Lequin, M.H.; de Coo, I.F.M.; de Wit, M.-C.Y.; Wessels, M.W.; Mancini, G.M.S.

    2010-01-01

    Partial monosomy 21 has been reported, but the phenotypes described are variable with location and size of the deletion. We present 2 patients with a partially overlapping microdeletion of 21q22 and a striking phenotypic resemblance. They both presented with severe psychomotor delay, behavioral problems, no speech, microcephaly, feeding problems with frequent regurgitation, idiopathic thrombocytopenia, obesity, deep set eyes, down turned corners of the mouth, dysplastic ears, and small chin. Brain MRI showed cerebral atrophy mostly evident in frontal and temporal lobes, widened ventricles and thin corpus callosum in both cases, and in one patient evidence of a migration disorder. The first patient also presented with epilepsy and a ventricular septum defect. The second patient had a unilateral Peters anomaly. Microarray analysis showed a partially overlapping microdeletion spanning about 2.5 Mb in the 21q22.1–q22.2 region including the DYRK1A gene and excluding RUNX1. These patients present with a recognizable phenotype specific for this 21q22.1–q22.2 locus. We searched the literature for patients with overlapping deletions including the DYRK1A gene, in order to define other genes responsible for this presentation. PMID:21031080

  10. Behavioral diversity in microbes and low-dimensional phenotypic spaces

    PubMed Central

    Jordan, David; Kuehn, Seppe; Katifori, Eleni; Leibler, Stanislas

    2013-01-01

    Systematic studies of phenotypic diversity—required for understanding evolution—lag behind investigations of genetic diversity. Here we develop a quantitative approach to studying behavioral diversity, which we apply to swimming of the ciliate Tetrahymena. We measure the full-lifetime behavior of hundreds of individual organisms at high temporal resolution, over several generations and in diverse nutrient conditions. To characterize population diversity and temporal variability we introduce a unique statistical framework grounded in the notion of a phenotypic space of behaviors. We show that this space is effectively low dimensional with dimensions that correlate with a two-state “roaming and dwelling” model of swimming behavior. Temporal variability over the lifetime of an individual is correlated with the fraction of time spent roaming whereas diversity between individuals is correlated with the speed of roaming. Quantifying the dynamics of behavioral variation shows that behavior over the lifetime of an individual is strongly nonstationary. Analysis of behavioral dynamics between generations reveals complex patterns of behavioral heritability that point to the importance of considering correlations beyond mothers and daughters. Our description of a low-dimensional behavioral space should enable the systematic study of the evolutionary and ecological bases of phenotypic constraints. Future experimental and theoretical studies of behavioral diversity will have to account for the possibility of nonstationary and environmentally dependent behavioral dynamics that we observe. PMID:23898201

  11. Cortical Thickness and Behavior Abnormalities in Children Born Preterm

    PubMed Central

    Zubiaurre-Elorza, Leire; Soria-Pastor, Sara; Junque, Carme; Sala-Llonch, Roser; Segarra, Dolors; Bargallo, Nuria; Macaya, Alfons

    2012-01-01

    Aim To identify long-term effects of preterm birth and of periventricular leukomalacia (PVL) on cortical thickness (CTh). To study the relationship between CTh and cognitive-behavioral abnormalities. Methods We performed brain magnetic resonance imaging on 22 preterm children with PVL, 14 preterm children with no evidence of PVL and 22 full-term peers. T1-weighted images were analyzed with FreeSurfer software. All participants underwent cognitive and behavioral assessments by means of the Wechsler Intelligence Scales for Children-Fourth Edition (WISC-IV) and the Child Behavior Checklist (CBCL). Results We did not find global CTh differences between the groups. However, a thinner cortex was found in left postcentral, supramarginal, and caudal middle rostral gyri in preterm children with no evidence of PVL than in the full-term controls, while PVL preterm children showed thicker cortex in right pericalcarine and left rostral middle frontal areas than in preterm children with no evidence of PVL. In the PVL group, internalizing and externalizing scores correlated mainly with CTh in frontal areas. Attentional scores were found to be higher in PVL and correlated with CTh increments in right frontal areas. Interpretation The preterm group with no evidence of PVL, when compared with full-term children, showed evidence of a different pattern of regional thinning in the cortical gray matter. In turn, PVL preterm children exhibited atypical increases in CTh that may underlie their prevalent behavioral problems. PMID:22860067

  12. Abnormal magnetization behaviors in Sm-Ni-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Yang, W. Y.; Zhang, Y. F.; Zhao, H.; Chen, G. F.; Zhang, Y.; Du, H. L.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2016-06-01

    The magnetization behaviors in Sm-Ni-Fe-Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu5-type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu5-type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (Hcm) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10-15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion.

  13. The abnormal behavior analysis of single person on the road based on region and behavior features

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Runsheng; Chen, Yiwen

    2007-11-01

    In this paper, a method to detect whether the behavior of a single person in video sequence is abnormal is proposed. Firstly, after the pre-processing, the background model is gotten based on the Mixture Gaussian Model(GMM), at the same time the shadow is eliminated; then use the color-shape information and the Random Hough Transform (RHT) to abstract the zebra crossing and segment the background; Lastly, we use the rectangle and the centroid to judge whether the person's behavior is abnormal.

  14. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

  15. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  16. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice.

    PubMed

    Yu, Ping; Di Prospero, Nicholas A; Sapko, Michael T; Cai, Tao; Chen, Amy; Melendez-Ferro, Miguel; Du, Fu; Whetsell, William O; Guidetti, Paolo; Schwarcz, Robert; Tagle, Danilo A

    2004-08-01

    Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein. Total brain KAT activity and KYNA levels were reduced during the first month but returned to normal levels thereafter. In contrast, liver KAT activity and KYNA levels in mKat-2(-/-) mice were decreased by >90% throughout life, though no hepatic abnormalities were observed histologically. KYNA-associated metabolites kynurenine, 3-hydroxykynurenine, and quinolinic acid were unchanged in the brain and liver of knockout mice. mKat-2(-/-) mice began to manifest hyperactivity and abnormal motor coordination at 2 weeks of age but were indistinguishable from wild type after 1 month of age. Golgi staining of cortical and striatal neurons revealed enlarged dendritic spines and a significant increase in spine density in 3-week-old mKat-2(-/-) mice but not in 2-month-old animals. Our results show that gene targeting of mKat-2 in mice leads to early and transitory decreases in brain KAT activity and KYNA levels with commensurate behavioral and neuropathological changes and suggest that compensatory changes or ontogenic expression of another isoform may account for the normalization of KYNA levels in the adult mKat-2(-/-) brain.

  17. Improving the Identification of Phenotypic Abnormalities and Sexual Dimorphism in Mice When Studying Rare Event Categorical Characteristics.

    PubMed

    Karp, Natasha A; Heller, Ruth; Yaacoby, Shay; White, Jacqueline K; Benjamini, Yoav

    2017-02-01

    Biological research frequently involves the study of phenotyping data. Many of these studies focus on rare event categorical data, and functional genomics studies typically study the presence or absence of an abnormal phenotype. With the growing interest in the role of sex, there is a need to assess the phenotype for sexual dimorphism. The identification of abnormal phenotypes for downstream research is challenged by the small sample size, the rare event nature, and the multiple testing problem, as many variables are monitored simultaneously. Here, we develop a statistical pipeline to assess statistical and biological significance while managing the multiple testing problem. We propose a two-step pipeline to initially assess for a treatment effect, in our case example genotype, and then test for an interaction with sex. We compare multiple statistical methods and use simulations to investigate the control of the type-one error rate and power. To maximize the power while addressing the multiple testing issue, we implement filters to remove data sets where the hypotheses to be tested cannot achieve significance. A motivating case study utilizing a large scale high-throughput mouse phenotyping data set from the Wellcome Trust Sanger Institute Mouse Genetics Project, where the treatment is a gene ablation, demonstrates the benefits of the new pipeline on the downstream biological calls.

  18. Improving the Identification of Phenotypic Abnormalities and Sexual Dimorphism in Mice When Studying Rare Event Categorical Characteristics

    PubMed Central

    Karp, Natasha A.; Heller, Ruth; Yaacoby, Shay; White, Jacqueline K.; Benjamini, Yoav

    2017-01-01

    Biological research frequently involves the study of phenotyping data. Many of these studies focus on rare event categorical data, and functional genomics studies typically study the presence or absence of an abnormal phenotype. With the growing interest in the role of sex, there is a need to assess the phenotype for sexual dimorphism. The identification of abnormal phenotypes for downstream research is challenged by the small sample size, the rare event nature, and the multiple testing problem, as many variables are monitored simultaneously. Here, we develop a statistical pipeline to assess statistical and biological significance while managing the multiple testing problem. We propose a two-step pipeline to initially assess for a treatment effect, in our case example genotype, and then test for an interaction with sex. We compare multiple statistical methods and use simulations to investigate the control of the type-one error rate and power. To maximize the power while addressing the multiple testing issue, we implement filters to remove data sets where the hypotheses to be tested cannot achieve significance. A motivating case study utilizing a large scale high-throughput mouse phenotyping data set from the Wellcome Trust Sanger Institute Mouse Genetics Project, where the treatment is a gene ablation, demonstrates the benefits of the new pipeline on the downstream biological calls. PMID:27932544

  19. The behavioral phenotype of Mowat-Wilson syndrome.

    PubMed

    Evans, Elizabeth; Einfeld, Stewart; Mowat, David; Taffe, John; Tonge, Bruce; Wilson, Meredith

    2012-02-01

    Mowat-Wilson syndrome (MWS) is caused by a heterozygous mutation or deletion of the ZEB2 gene. It is characterized by a distinctive facial appearance in association with intellectual disability (ID) and variable other features including agenesis of the corpus callosum, seizures, congenital heart defects, microcephaly, short stature, hypotonia, and Hirschsprung disease. The current study investigated the behavioral phenotype of MWS. Parents and carers of 61 individuals with MWS completed the Developmental Behavior Checklist. Data were compared with those for individuals selected from an epidemiological sample of people with ID from other causes. The behaviors associated with MWS included a high rate of oral behaviors, an increased rate of repetitive behaviors, and an under-reaction to pain. Other aspects of the MWS behavioral phenotype are suggestive of a happy affect and sociable demeanor. Despite this, those with MWS displayed similarly high levels of behavioral problems as those with intellectual disabilities from other causes, with over 30% showing clinically significant levels of behavioral or emotional disturbance. These findings have the potential to expand our knowledge of the role of the ZEB2 gene during neurodevelopment. Furthermore, they are a foundation for informing interventions and management options to enhance the independence and quality of life for persons with MWS.

  20. Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications

    PubMed Central

    Lindgren, Valerie; McRae, Anne; Dineen, Richard; Saulsberry, Alexandria; Hoganson, George; Schrift, Michael

    2015-01-01

    We describe six individuals with microdeletions and microduplications in the distal 22q11.2 region detected by microarray. Five of the abnormalities have breakpoints in the low-copy repeats (LCR) in this region and one patient has an atypical rearrangement. Two of the six patients with abnormalities in the region between LCR22 D–E have hearing loss, which has previously been reported only once in association with these abnormalities. We especially note the behavioral/neuropsychiatric problems, including the severity and early onset, in patients with distal 22q11.2 rearrangements. Our patients add to the genotype–phenotype correlations which are still being generated for these chromosomal anomalies. PMID:26247050

  1. 6q22.33 microdeletion in a family with intellectual disability, variable major anomalies, and behavioral abnormalities.

    PubMed

    Mackenroth, Luisa; Hackmann, Karl; Beyer, Anke; Schallner, Jens; Novotna, Barbara; Klink, Barbara; Schröck, Evelin; Di Donato, Nataliya

    2015-11-01

    Interstitial deletions on the long arm of chromosome six have been described for several regions including 6q16, 6q22.1, and 6q21q22.1, and with variable phenotypes such as intellectual disability/developmental delay, growth retardation, major and minor facial anomalies. However, an isolated microdeletion of the sub-band 6q22.33 has not been reported so far and thus, no information about the specific phenotype associated with such a copy number variant is available. Here, we define the clinical picture of an isolated 6q22.33 microdeletion based on the phenotype of six members of one family with loss of approximately 1 Mb in this region. Main clinical features include mild intellectual disability and behavioral abnormalities as well as microcephaly, heart defect, and cleft lip and palate.

  2. Altered DNA methylation associated with an abnormal liver phenotype in a cattle model with a high incidence of perinatal pathologies

    PubMed Central

    Kiefer, Hélène; Jouneau, Luc; Campion, Évelyne; Rousseau-Ralliard, Delphine; Larcher, Thibaut; Martin-Magniette, Marie-Laure; Balzergue, Sandrine; Ledevin, Mireille; Prézelin, Audrey; Chavatte-Palmer, Pascale; Heyman, Yvan; Richard, Christophe; Le Bourhis, Daniel; Renard, Jean-Paul; Jammes, Hélène

    2016-01-01

    Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals. PMID:27958319

  3. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  4. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    involved in autism pathogenesis also occur in many children that do not develop ASD. This suggests there is an underlying vulnerability phenotype that...involved in autism pathogenesis occur in many more children than those that develop ASD. This suggests that there is an underlying vulnerability phenotype...hypothesis to explain the observations that the multiple environmental insults that have been suggested to be involved in autism pathogenesis occur in

  5. Behavioral Phenotype and Autism Spectrum Disorders in Cornelia de Lange Syndrome

    PubMed Central

    Parisi, Lucia; Di Filippo, Teresa; Roccella, Michele

    2015-01-01

    Cornelia de Lange syndrome (CdLS) is a congenital disorder characterized by distinctive facial features, growth retardation, limb abnormalities, intellectual disability, and behavioral problems. Cornelia de Lange syndrome is associated with abnormalities on chromosomes 5, 10 and X. Heterozygous point mutations in three genes (NIPBL, SMC3 and SMC1A), are responsible for approximately 50-60% of CdLS cases. CdLS is characterized by autistic features, notably excessive repetitive behaviors and expressive language deficits. The prevalence of autism spectrum disorder (ASD) symptomatology is comparatively high in CdLS. However, the profile and developmental trajectories of these ASD characteristics are potentially different to those observed in individuals with idiopathic ASD. A significantly higher prevalence of self-injury are evident in CdLS. Self-injury was associated with repetitive and impulsive behavior. This study describes the behavioral phenotype of four children with Cornelia de Lange syndrome and ASDs and rehabilitative intervention that must be implemented. PMID:26605036

  6. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the...

  7. Growth retardation, intellectual disability, facial anomalies, cataract, thoracic hypoplasia, and skeletal abnormalities: a novel phenotype.

    PubMed

    Shah, Hitesh; Bens, Susanne; Caliebe, Almuth; Graham, John M; Girisha, Katta Mohan

    2012-11-01

    We report on a 14-year-old girl with growth deficiency, microcephaly, intellectual disability, distinctive dysmorphic features (bulbous nose with wide nasal base, hypotelorism, deeply set eyes, protruding cupped ears, and thick lower lip), cataract, pigmentary retinopathy, hypoplastic thorax, kyphoscoliosis, and unusual skeletal changes but without chromosomal imbalances detected by array-CGH who probably represents a novel phenotype.

  8. Abnormal behavior and associated risk factors in captive baboons (Papio hamadryas spp.).

    PubMed

    Lutz, Corrine K; Williams, Priscilla C; Sharp, R Mark

    2014-04-01

    Abnormal behavior, ranging from motor stereotypies to self-injurious behavior, has been documented in captive nonhuman primates, with risk factors including nursery rearing, single housing, and veterinary procedures. Much of this research has focused on macaque monkeys; less is known about the extent of and risk factors for abnormal behavior in baboons. Because abnormal behavior can be indicative of poor welfare, either past or present, the purpose of this study was to survey the presence of abnormal behavior in captive baboons and to identify potential risk factors for these behaviors with an aim of prevention. Subjects were 144 baboons (119 females, 25 males) aged 3-29 (median = 9.18) years temporarily singly housed for research or clinical reasons. A 15-min focal observation was conducted on each subject using the Noldus Observer® program. Abnormal behavior was observed in 26% of the subjects, with motor stereotypy (e.g., pace, rock, swing) being the most common. Motor stereotypy was negatively associated with age when first singly housed (P < 0.005) while self-directed behavior (e.g., hair pull, self-bite) was positively associated with the lifetime number of days singly housed (P < 0.05) and the average number of blood draws per year (P < 0.05). In addition, abnormal appetitive behavior was associated with being male (P < 0.05). Although the baboons in this study exhibited relatively low levels of abnormal behavior, the risk factors for these behaviors (e.g., social restriction, routine veterinary procedures, and sex) appear to remain consistent across primate species.

  9. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease.

    PubMed

    Laforet, G A; Sapp, E; Chase, K; McIntyre, C; Boyce, F M; Campbell, M; Cadigan, B A; Warzecki, L; Tagle, D A; Reddy, P H; Cepeda, C; Calvert, C R; Jokel, E S; Klapstein, G J; Ariano, M A; Levine, M S; DiFiglia, M; Aronin, N

    2001-12-01

    Neurons in Huntington's disease exhibit selective morphological and subcellular alterations in the striatum and cortex. The link between these neuronal changes and behavioral abnormalities is unclear. We investigated relationships between essential neuronal changes that predict motor impairment and possible involvement of the corticostriatal pathway in developing behavioral phenotypes. We therefore generated heterozygote mice expressing the N-terminal one-third of huntingtin with normal (CT18) or expanded (HD46, HD100) glutamine repeats. The HD mice exhibited motor deficits between 3 and 10 months. The age of onset depended on an expanded polyglutamine length; phenotype severity correlated with increasing age. Neuronal changes in the striatum (nuclear inclusions) preceded the onset of phenotype, whereas cortical changes, especially the accumulation of huntingtin in the nucleus and cytoplasm and the appearance of dysmorphic dendrites, predicted the onset and severity of behavioral deficits. Striatal neurons in the HD mice displayed altered responses to cortical stimulation and to activation by the excitotoxic agent NMDA. Application of NMDA increased intracellular Ca(2+) levels in HD100 neurons compared with wild-type neurons. Results suggest that motor deficits in Huntington's disease arise from cumulative morphological and physiological changes in neurons that impair corticostriatal circuitry.

  10. Abnormal Nocturnal Behavior due to Hypoglycemia in a Patient with Type 2 Diabetes.

    PubMed

    Yang, Kwang Ik; Kim, Hyung Ki; Baek, Jeehun; Kim, Doh-Eui; Park, Hyung Kook

    2016-04-15

    Abnormal nocturnal behavior can have many causes, including primary sleep disorder, nocturnal seizures, and underlying medical or neurological disorders. A 79-year-old woman with type 2 diabetes was admitted for evaluation of abnormal nocturnal behavior. Every night at around 04:30 she was observed displaying abnormal behavior including leg shaking, fumbling with bedclothes, crawling around the room with her eyes closed, and non-responsiveness to verbal communication. Polysomnography with 20-channel electroencephalography (EEG) was performed. EEG showed that the posterior dominant rhythm was slower than that observed in the initial EEG, with diffuse theta and delta activities intermixed, and no epileptiform activity. The serum glucose level was 35 mg/dL at that time, and both the EEG findings and clinical symptoms were resolved after an intravenous injection of 50 mL of 50% glucose. These results indicate that nocturnal hypoglycemia should be considered as one of the possible etiologies in patients presenting with abnormal nocturnal behavior.

  11. Behavioral phenotyping of mouse models of Parkinson's Disease

    PubMed Central

    Taylor, Tonya N.; Greene, James G.; Miller, Gary W.

    2010-01-01

    Parkinson's disease (PD) is a common neurodegenerative movement disorder afflicting millions of people in the United States. The advent of transgenic technologies has contributed to the development of several new mouse models, many of which recapitulate some aspects of the disease; however, no model has been demonstrated to faithfully reproduce the full constellation of symptoms seen in human PD. This may be due in part to the narrow focus on the dopamine-mediated motor deficits. As current research continues to unmask PD as a multi-system disorder, animal models should similarly evolve to include the non-motor features of the disease. This requires that typically cited behavioral test batteries be expanded. The major non-motor symptoms observed in PD patients include hyposmia, sleep disturbances, gastrointestinal dysfunction, autonomic dysfunction, anxiety, depression, and cognitive decline. Mouse behavioral tests exist for all of these symptoms and while some models have begun to be reassessed for the prevalence of this broader behavioral phenotype, the majority has not. Moreover, all behavioral paradigms should be tested for their responsiveness to L-DOPA so these data can be compared to patient response and help elucidate which symptoms are likely not dopamine-mediated. Here, we suggest an extensive, yet feasible, battery of behavioral tests for mouse models of PD aimed to better assess both non-motor and motor deficits associated with the disease. PMID:20211655

  12. Autism-related behavioral phenotypes in an inbred rat substrain.

    PubMed

    Zhang-James, Yanli; Yang, Li; Middleton, Frank A; Yang, Lina; Patak, Jameson; Faraone, Stephen V

    2014-08-01

    Behavioral and genetic differences among Wistar-Kyoto (WKY) rats from different vendors and different breeders have long been observed, but generally overlooked. In our prior work, we found that two closely related WKY substrains, the WKY/NCrl and WKY/NHsd rats, differ in a small percentage of their genome which appeared to be highly enriched for autism risk genes. Although both substrains have been used widely in studies of hypertension, attention deficit/hyperactivity disorder (ADHD) and depression, they have not been tested for any autism-related behavioral phenotypes. Furthermore, these two substrains have often been used interchangeably in previous studies; no study has systematically examined the phenotypic differences that could be attributed by their small yet potentially meaningful genetic differences. In this paper we compared these two substrains on a battery of neurobehavioral tests. Although two substrains were similar in locomotor activity, WKY/NCrl rats were significantly different from WKY/NHsd rats in the elevated plus maze test, as well as measures of social interaction and ultrasonic vocalization. These strains were also compared with Sprague Dawley (SD) rats, a common outbred strain, and spontaneous hypertensive rats (SHR), an inbred rat model for ADHD and hypertension, which were derived from the same ancestor strain as the WKY strains. Our behavioral findings suggest that WKY/NCrl rats may be useful as a model autism spectrum disorders due to their lower social interest, lower ultrasonic vocalization and higher anxiety levels when WKY/NHsd rats are used as the control strain. Given the small genetic difference between the two inbred substrains, future studies to identify the exact gene and sequence variants that differ between the two may be useful for identifying the genetic mechanisms underlying these behaviors.

  13. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2010-10-14

    NOTES 14. ABSTRACT: We hypothesize that low systemic redox potential (GSH/GSSG; cysteine /cystine) reflects a vulnerability phenotype that is...modifications in DNA methylation and histone acetylation /methylation that are reversible with treatment to restore redox potential. In Aim 1 we will...couples GSH/GSSG and cysteine /cystine in blood samples and mouse tissue from Dr. Noble (ongoing; years 1-3). Progress: The preliminary results for

  14. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2009-10-01

    systemic redox potential (GSH/GSSG; cysteine /cystine) reflects a vulnerability phenotype that is associated with regressive autism and is predictive of... acetylation /methylation that are reversible with treatment to restore redox potential. In Aim 1 we will determine whether redox potential in immune cells...900) and mouse tissue analysis for GSH/GSSG and cysteine /cystine. Ongoing; years 1.5-3). The preliminary results for the GSH/GSSG

  15. Allergies: The Key to Many Childhood Behavior Abnormalities.

    ERIC Educational Resources Information Center

    Vass, Molly; Rasmussen, Betty

    1984-01-01

    Describes the role of allergies in childhood behavior problems and discusses the role of school counselors in identifying allergic responses. Includes a list of references and resources on allergies, nutrition, support groups, and environmental care units. (JAC)

  16. Abnormal motor phenotype in the SMNΔ7 mouse model of spinal muscular atrophy

    PubMed Central

    Butchbach, Matthew E. R.; Edwards, Jonathan D.; Burghes, Arthur H. M.

    2009-01-01

    Spinal muscular atrophy (SMA) is recessive motor neuron disease that affects motor neurons in the anterior horn of the spinal cord. SMA results from the reduction of SMN (survival motor neuron) protein. Even though SMN is ubiquitously expressed, motor neurons are more sensitive to the reduction in SMN than other cell types. We have previously generated mouse models of SMA with varying degrees of clinical severity. So as to more clearly understand the pathogenesis of motor neuron degeneration in SMA, we have characterized the phenotype of the SMNΔ7 SMA mouse which normally lives for 13.6 ± 0.7 days. These mice are smaller than their non-SMA littermates and begin to lose body mass at 10.4 ± 0.4 days. SMNΔ7 SMA mice exhibit impaired responses to surface righting, negative geotaxis and cliff aversion but not to tactile stimulation. Spontaneous motor activity and grip strength are also significantly impaired in SMNΔ7 SMA mice. In summary, we have demonstrated an impairment of neonatal motor responses in SMNΔ7 SMA mice. This phenotype characterization could be used to assess the effectiveness of potential therapies for SMA. PMID:17561409

  17. Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice.

    PubMed

    Han, Kihoon; Chen, Hogmei; Gennarino, Vincenzo A; Richman, Ronald; Lu, Hui-Chen; Zoghbi, Huda Y

    2015-04-01

    Silencing of fragile X mental retardation 1 (FMR1) gene and loss of fragile X mental retardation protein (FMRP) cause fragile X syndrome (FXS), a genetic disorder characterized by intellectual disability and autistic behaviors. FMRP is an mRNA-binding protein regulating neuronal translation of target mRNAs. Abnormalities in actin-rich dendritic spines are major neuronal features in FXS, but the molecular mechanism and identity of FMRP targets mediating this phenotype remain largely unknown. Cytoplasmic FMR1-interacting protein 2 (Cyfip2) was identified as an interactor of FMRP, and its mRNA is a highly ranked FMRP target in mouse brain. Importantly, Cyfip2 is a component of WAVE regulatory complex, a key regulator of actin cytoskeleton, suggesting that Cyfip2 could be implicated in the dendritic spine phenotype of FXS. Here, we generated and characterized Cyfip2-mutant (Cyfip2(+/-)) mice. We found that Cyfip2(+/-) mice exhibited behavioral phenotypes similar to Fmr1-null (Fmr1(-/y)) mice, an animal model of FXS. Synaptic plasticity and dendritic spines were normal in Cyfip2(+/-) hippocampus. However, dendritic spines were altered in Cyfip2(+/-) cortex, and the dendritic spine phenotype of Fmr1(-/y) cortex was aggravated in Fmr1(-/y); Cyfip2(+/-) double-mutant mice. In addition to the spine changes at basal state, metabotropic glutamate receptor (mGluR)-induced dendritic spine regulation was impaired in both Fmr1(-/y) and Cyfip2(+/-) cortical neurons. Mechanistically, mGluR activation induced mRNA translation-dependent increase of Cyfip2 in wild-type cortical neurons, but not in Fmr1(-/y) or Cyfip2(+/-) neurons. These results suggest that misregulation of Cyfip2 function and its mGluR-induced expression contribute to the neurobehavioral phenotypes of FXS.

  18. The Cardiac Electrophysiologic Substrate Underlying the ECG Phenotype and Electrogram Abnormalities in Brugada Syndrome Patients

    PubMed Central

    Zhang, Junjie; Sacher, Frédéric; Hoffmayer, Kurt; O’Hara, Thomas; Strom, Maria; Cuculich, Phillip; Silva, Jennifer; Cooper, Daniel; Faddis, Mitchell; Hocini, Mélèze; Haïssaguerre, Michel; Scheinman, Melvin; Rudy, Yoram

    2015-01-01

    Background Brugada syndrome (BrS) is a highly arrhythmogenic cardiac disorder, associated with an increased incidence of sudden death. Its arrhythmogenic substrate in the intact human heart remains ill-defined. Methods and Results Using noninvasive ECG imaging (ECGI), we studied 25 BrS patients to characterize the electrophysiologic substrate, and 6 patients with right bundle branch block (RBBB) for comparison. Seven normal subjects provided control data. Abnormal substrate was observed exclusively in the right ventricular outflow tract (RVOT) with the following properties (compared to normal controls; p<0.005): (1)ST-segment elevation (STE) and inverted T-wave of unipolar electrograms (EGMs) (2.21±0.67 vs. 0 mV); (2)delayed RVOT activation (82±18 vs. 37±11 ms); (3)low amplitude (0.47±0.16 vs. 3.74±1.60 mV) and fractionated EGMs, suggesting slow discontinuous conduction; (4)prolonged recovery time (RT; 381±30 vs. 311±34 ms) and activation-recovery intervals (ARIs; 318±32 vs. 241±27 ms), indicating delayed repolarization; (5)steep repolarization gradients (ΔRT/Δx= 96±28 vs. 7±6 ms/cm, ΔARI/Δx= 105±24 vs. 7±5 ms/cm) at RVOT borders. With increased heart rate in 6 BrS patients, reduced STE and increased fractionation were observed. Unlike BrS, RBBB had delayed activation in the entire RV, without STE, fractionation, or repolarization abnormalities on EGMs. Conclusions The results indicate that both, slow discontinuous conduction and steep dispersion of repolarization are present in the RVOT of BrS patients. ECGI could differentiate between BrS and RBBB. PMID:25810336

  19. Possible relationships between trichinellosis and abnormal behavior in bears

    USGS Publications Warehouse

    Worley, David E.; Greer, Kenneth R.; Palmisciano, D.A.

    1983-01-01

    Data compiled from parasite studies of grizzly bears (Ursus arctos) and black bears (U. americanus) in the Yellowstone and Glacier National Park populations and surrounding areas of Montana and Wyoming during 1969-79 are reviewed with reference to the possible influence of infection with the muscleworm Trichinella sp. on bear behavior. In grizzly bears, the high prevalence of this parasite (61% of 254 bears infected), the elevated larval concentrations in sensitive anatomical sites such as the tongue (average, 51 larvae per gram of tissue), and the chronic nature of bear infections as indicated by the tendency for highest infection rates to occur in older age classes (> 16 yrs.), suggest a potential behavior-modifying effect might exist. However, retrospective analysis of recent human attacks by 4 grizzlies and 2 black bears in the northern Rocky Mountain region failed to demonstrate a consistent connection between erratic conduct and levels of Trichinella larvae (trichinae) in bear tissues. Clinical similarities of trichinellosis in bears and humans are hypothesized, and possible behavioral effects of ursine trichinellosis are discussed.

  20. Abnormal Nocturnal Behavior due to Hypoglycemia in a Patient with Type 2 Diabetes

    PubMed Central

    Yang, Kwang Ik; Kim, Hyung Ki; Baek, Jeehun; Kim, Doh-Eui; Park, Hyung Kook

    2016-01-01

    Abnormal nocturnal behavior can have many causes, including primary sleep disorder, nocturnal seizures, and underlying medical or neurological disorders. A 79-year-old woman with type 2 diabetes was admitted for evaluation of abnormal nocturnal behavior. Every night at around 04:30 she was observed displaying abnormal behavior including leg shaking, fumbling with bedclothes, crawling around the room with her eyes closed, and non-responsiveness to verbal communication. Polysomnography with 20-channel electroencephalography (EEG) was performed. EEG showed that the posterior dominant rhythm was slower than that observed in the initial EEG, with diffuse theta and delta activities intermixed, and no epileptiform activity. The serum glucose level was 35 mg/dL at that time, and both the EEG findings and clinical symptoms were resolved after an intravenous injection of 50 mL of 50% glucose. These results indicate that nocturnal hypoglycemia should be considered as one of the possible etiologies in patients presenting with abnormal nocturnal behavior. Citation: Yang KI, Kim HK, Baek J, Kim DE, Park HK. Abnormal nocturnal behavior due to hypoglycemia in a patient with type 2 diabetes. J Clin Sleep Med 2016;12(4):627–629. PMID:26943712

  1. p.Pro4Arg mutation in LMNA gene: a new atypical progeria phenotype without metabolism abnormalities.

    PubMed

    Guo, Hong; Luo, Na; Hao, Fei; Bai, Yun

    2014-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a typical presenile disorder, with mutation in the LMNA gene. Besides HGPS, mutations in LMNA gene have also been reported in atypical progeroid syndrome (APS). The objective of the study was to investigate the phenotype and molecular basis of APS in a Chinese family. LMNA gene mutations were also reviewed to identify the phenotypic and pathogenic differences among APS. Two siblings in a non-consanguineous Chinese family with atypical progeria were reported. The clinical features were observed, including presenile manifestations such as bird-like facial appearance, generalized lipodystrophy involving the extremities and mottled hyperpigmentation on the trunk and extremities. A heterozygous mutation c.11C>G (p.Pro4Arg) of the LMNA gene was detected in the two patients. 28 different variants of the LMNA gene have been reported in APS families, spreading over almost all the 12 exons of the LMNA gene with some hot-spot regions. This is the first detailed description of an APS family without metabolism abnormalities. APS patients share most of the clinical features, but there may be some distinct features in different ethnic groups.

  2. MCT8 Deficiency in Male Mice Mitigates the Phenotypic Abnormalities Associated With the Absence of a Functional Type 3 Deiodinase.

    PubMed

    Stohn, J Patrizia; Martinez, M Elena; Matoin, Kassey; Morte, Beatriz; Bernal, Juan; Galton, Valerie Anne; St Germain, Donald; Hernandez, Arturo

    2016-08-01

    Mice deficient in the type 3 deiodinase (D3KO mice) manifest impaired clearance of thyroid hormone (TH), leading to elevated levels of TH action during development. This alteration causes reduced neonatal viability, growth retardation, and central hypothyroidism. Here we examined how these phenotypes are affected by a deficiency in the monocarboxylate transporter 8 (MCT8), which is a major contributor to the transport of the active thyroid hormone, T3, into the cell. MCT8 deficiency eliminated the neonatal lethality of type 3 deiodinase (D3)-deficient mice and significantly ameliorated their growth retardation. Double-mutant newborn mice exhibited similar peripheral thyrotoxicosis and increased brain expression of T3-dependent genes as mice with D3 deficiency only. Later in neonatal life and adulthood, double-mutant mice manifested central and peripheral TH status similar to mice with single MCT8 deficiency, with low serum T4, elevated serum TSH and T3, and decreased T3-dependent gene expression in the hypothalamus. In double-mutant adult mice, both thyroid gland size and the hypothyroidism-induced rise in TSH were greater than those in mice with single D3 deficiency but less than those in mice with MCT8 deficiency alone. Our results demonstrate that the marked phenotypic abnormalities observed in the D3-deficient mouse, including perinatal mortality, growth retardation, and central hypothyroidism in adult animals, require expression of MCT8, confirming the interdependent relationship between the TH transport into cells and the deiodination processes.

  3. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: prevalence and potential influencing factors

    PubMed Central

    Jacobson, Sarah L.; Bloomsmith, Mollie A.

    2016-01-01

    Abnormal behaviors in captive animals are generally defined as behaviors that are atypical for the species and are often considered to be indicators of poor welfare. Although some abnormal behaviors have been empirically linked to conditions related to elevated stress and compromised welfare in primates, others have little or no evidence on which to base such a relationship. The objective of this study was to investigate a recent claim that abnormal behavior is endemic in the captive population by surveying a broad sample of chimpanzees (Pan troglodytes), while also considering factors associated with the origins of these behaviors. We surveyed animal care staff from 26 accredited zoos to assess the prevalence of abnormal behavior in a large sample of chimpanzees in the United States for which we had information on origin and rearing history. Our results demonstrated that 64% of this sample was reported to engage in some form of abnormal behavior in the past two years and 48% of chimpanzees engaged in abnormal behavior other than coprophagy. Logistic regression models were used to analyze the historical variables that best predicted the occurrence of all abnormal behavior, any abnormal behavior that was not coprophagy, and coprophagy. Rearing had opposing effects on the occurrence of coprophagy and the other abnormal behaviors such that mother-reared individuals were more likely to perform coprophagy, whereas non-mother-reared individuals were more likely to perform other abnormal behaviors. These results support the assertion that coprophagy may be classified separately when assessing abnormal behavior and the welfare of captive chimpanzees. This robust evaluation of the prevalence of abnormal behavior in our sample from the U.S. zoo population also demonstrates the importance of considering the contribution of historical variables to present behavior, in order to better understand the causes of these behaviors and any potential relationship to psychological

  4. Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice.

    PubMed

    Makarova, Elena N; Chepeleva, Elena V; Panchenko, Polina E; Bazhan, Nadezhda M

    2013-12-01

    Maternal obesity increases the risk of obesity in offspring, and obesity is accompanied by an increase in blood leptin levels. The "yellow" mutation at the mouse agouti locus (A(y)) increases blood leptin levels in C57BL preobese pregnant mice without affecting other metabolic characteristics. We investigated the influence of the A(y) mutation or leptin injection at the end of pregnancy in C57BL mice on metabolic phenotypes and the susceptibility to diet-induced obesity (DIO) in offspring. In both C57BL-A(y) and leptin-treated mice, the maternal effect was more pronounced in male offspring. Compared with males born to control mothers, males born to A(y) mothers displayed equal food intake (FI) but decreased body weight (BW) gain after weaning, equal glucose tolerance, and enhanced FI-to-BW ratios on the standard diet but the same FI and BW on the high-fat diet. Males born to A(y) mothers were less responsive to the anorectic effect of exogenous leptin and less resistant to fasting (were not hyperphagic and gained less weight during refeeding after food deprivation) compared with males born to control mothers. However, all progeny displayed equal hypothalamic expression of Agouti gene-related protein (AgRP), neuropeptide Y (NPY), and proopiomelanocortin (POMC) and equal plasma leptin and glucose levels after food deprivation. Leptin injections in C57BL mice on day 17 of pregnancy decreased BW in both male and female offspring but inhibited FI and DIO only in male offspring. Our results show that hyperleptinemia during pregnancy has sex-specific long-term effects on energy balance regulation in progeny and does not predispose offspring to developing obesity.

  5. Mice lacking TrkB in parvalbumin-positive cells exhibit sexually dimorphic behavioral phenotypes.

    PubMed

    Lucas, Elizabeth K; Jegarl, Anita; Clem, Roger L

    2014-11-01

    Activity-dependent brain-derived neurotrophic factor (BDNF) signaling through receptor tyrosine kinase B (TrkB) is required for cued fear memory consolidation and extinction. Although BDNF is primarily secreted from glutamatergic neurons, TrkB is expressed by other genetically defined cells whose contributions to the behavioral effects of BDNF remain poorly understood. Parvalbumin (PV)-positive interneurons, which are highly enriched in TrkB, are emerging as key regulators of fear memory expression. We therefore hypothesized that activity-dependent BDNF signaling in PV-interneurons may modulate emotional learning. To test this hypothesis, we utilized the LoxP/Cre system for conditional deletion of TrkB in PV-positive cells to examine the impact of cell-autonomous BDNF signaling on Pavlovian fear conditioning and extinction. However, behavioral abnormalities indicative of vestibular dysfunction precluded the use of homozygous conditional knockouts in tests of higher cognitive functioning. While vestibular dysfunction was apparent in both sexes, female conditional knockouts exhibited an exacerbated phenotype, including extreme motor hyperactivity and circling behavior, compared to their male littermates. Heterozygous conditional knockouts were spared of vestibular dysfunction. While fear memory consolidation was unaffected in heterozygotes of both sexes, males exhibited impaired extinction consolidation compared to their littermate controls. Our findings complement evidence from human and rodent studies suggesting that BDNF signaling promotes consolidation of extinction and point to PV-positive neurons as a discrete population that mediates these effects in a sex-specific manner.

  6. Exploring Links between Genotypes, Phenotypes, and Clinical Predictors of Response to Early Intensive Behavioral Intervention in Autism Spectrum Disorder

    PubMed Central

    Eapen, Valsamma; Črnčec, Rudi; Walter, Amelia

    2013-01-01

    Autism spectrum disorder (ASD) is amongst the most familial of psychiatric disorders. Twin and family studies have demonstrated a monozygotic concordance rate of 70–90%, dizygotic concordance of around 10%, and more than a 20-fold increase in risk for first-degree relatives. Despite major advances in the genetics of autism, the relationship between different aspects of the behavioral and cognitive phenotype and their underlying genetic liability is still unclear. This is complicated by the heterogeneity of autism, which exists at both genetic and phenotypic levels. Given this heterogeneity, one method to find homogeneous entities and link these with specific genotypes would be to pursue endophenotypes. Evidence from neuroimaging, eye tracking, and electrophysiology studies supports the hypothesis that, building on genetic vulnerability, ASD emerges from a developmental cascade in which a deficit in attention to social stimuli leads to impaired interactions with primary caregivers. This results in abnormal development of the neurocircuitry responsible for social cognition, which in turn adversely affects later behavioral and functional domains dependent on these early processes, such as language development. Such a model begets a heterogeneous clinical phenotype, and is also supported by studies demonstrating better clinical outcomes with earlier treatment. Treatment response following intensive early behavioral intervention in ASD is also distinctly variable; however, relatively little is known about specific elements of the clinical phenotype that may predict response to current behavioral treatments. This paper overviews the literature regarding genotypes, phenotypes, and predictors of response to behavioral intervention in ASD and presents suggestions for future research to explore linkages between these that would enable better identification of, and increased treatment efficacy for, ASD. PMID:24062668

  7. Positive reinforcement training moderates only high levels of abnormal behavior in singly housed rhesus macaques.

    PubMed

    Baker, Kate C; Bloomsmith, Mollie; Neu, Kimberly; Griffis, Caroline; Maloney, Margaret; Oettinger, Brooke; Schoof, Valerie A M; Martinez, Marni

    2009-01-01

    This study evaluated the application of positive reinforcement training (PRT) as an intervention for abnormal behaviors in singly housed laboratory rhesus macaques at 2 large primate facilities. Training involved basic control behaviors and body-part presentation. The study compared baseline behavioral data on 30 adult males and 33 adult females compared with 3 treatment phases presented in counterbalanced order: 6 min per week of PRT, 20 or 40 min per week of PRT, and 6 min per week of unstructured human interaction (HI). Within-subject parametric tests detected no main or interaction effects involving experimental phase. However, among a subset of subjects with levels of abnormal in the top quartile of the range (n = 15), abnormal behavior was reduced from 35% to 25% of samples with PRT but not with HI. These results suggest that short durations of PRT applied as enrichment for this species and in this context may not in itself be sufficient intervention for abnormal behavior because levels remained high. However, it may be appropriate as an adjunct to other interventions and may be best targeted to the most severely affected individuals.

  8. Positive Reinforcement Training Moderates Only High Levels of Abnormal Behavior in Singly Housed Rhesus Macaques

    PubMed Central

    Baker, Kate C.; Bloomsmith, Mollie; Neu, Kimberly; Griffis, Caroline; Maloney, Margaret; Oettinger, Brooke; Schoof, Valérie A. M.; Martinez, Marni

    2010-01-01

    This study evaluated the application of positive reinforcement training (PRT) as an intervention for abnormal behaviors in singly housed laboratory rhesus macaques at 2 large primate facilities. Training involved basic control behaviors and body-part presentation. The study compared baseline behavioral data on 30 adult males and 33 adult females compared with 3 treatment phases presented in counterbalanced order: 6 min per week of PRT, 20 or 40 min per week of PRT, and 6 min per week of unstructured human interaction (HI). Within-subject parametric tests detected no main or interaction effects involving experimental phase. However, among a subset of subjects with levels of abnormal in the top quartile of the range (n = 15), abnormal behavior was reduced from 35% to 25% of samples with PRT but not with HI. These results suggest that short durations of PRT applied as enrichment for this species and in this context may not in itself be sufficient intervention for abnormal behavior because levels remained high. However, it may be appropriate as an adjunct to other interventions and may be best targeted to the most severely affected individuals. PMID:20183477

  9. Family patterns of development dyslexia, Part II: Behavioral phenotypes

    SciTech Connect

    Wolff, P.H.; Melngailis, I.; Bedrosian, M.

    1995-12-18

    The motor control of bimanual coordination and motor speech was compared between first degree relatives from families with at least 2 dyslexic family members, and families where probands were the only affected family members. Half of affected relatives had motor coordination deficits; and they came from families in which probands also showed impaired motor coordination. By contrast, affected relatives without motor deficits came from dyslexia families where probands did not have motor deficits. Motor coordination deficits were more common and more severe among affected offspring in families where both parents were affected than among affected offspring in families where only one parent was affected. However, motor coordination deficits were also more common and more severe in affected parents when both parents were affected than among affected parents in families where only one parent was affected. We conclude that impaired temporal resolution in motor action identifies a behavioral phenotype in some subtypes of developmental dyslexia. The observed pattern of transmission for motor deficits and reading impairment in about half of dyslexia families was most congruent with a genetic model of dyslexia in which 2 codominant major genes cosegregate in dyslexia pedigrees where the proband is also motorically impaired. 54 refs., 5 figs., 5 tabs.

  10. Relative Role of Genetic Complement Abnormalities in Sporadic and Familial aHUS and Their Impact on Clinical Phenotype

    PubMed Central

    Caprioli, Jessica; Bresin, Elena; Mossali, Chiara; Pianetti, Gaia; Gamba, Sara; Daina, Erica; Fenili, Chiara; Castelletti, Federica; Sorosina, Annalisa; Piras, Rossella; Donadelli, Roberta; Maranta, Ramona; van der Meer, Irene; Conway, Edward M.; Zipfel, Peter F.; Goodship, Timothy H.; Remuzzi, Giuseppe

    2010-01-01

    Background and objectives: Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Most childhood cases are caused by Shiga toxin–producing bacteria. The other form, atypical HUS (aHUS), accounts for 10% of cases and has a poor prognosis. Genetic complement abnormalities have been found in aHUS. Design, setting, participants, and measurements: We screened 273 consecutive patients with aHUS for complement abnormalities and studied their role in predicting clinical phenotype and response to treatment. We compared mutation frequencies and localization and clinical outcome in familial (82) and sporadic (191) cases. Results: In >70% of sporadic and familial cases, gene mutations, disease-associated factor H (CFH) polymorphisms, or anti-CFH autoantibodies were found. Either mutations or CFH polymorphisms were also found in the majority of patients with secondary aHUS, suggesting a genetic predisposition. Familial cases showed a higher prevalence of mutations in SCR20 of CFH and more severe disease than sporadic cases. Patients with CFH or THBD (thrombomodulin) mutations had the earliest onset and highest mortality. Membrane-cofactor protein (MCP) mutations were associated with the best prognosis. Plasma therapy induced remission in 55 to 80% of episodes in patients with CFH, C3, or THBD mutations or autoantibodies, whereas patients with CFI (factor I) mutations were poor responders. aHUS recurred frequently after kidney transplantation except for patients with MCP mutations. Conclusions: Results underline the need of genetic screening for all susceptibility factors as part of clinical management of aHUS and for identification of patients who could safely benefit from kidney transplant. PMID:20595690

  11. Expanding the Phenotypic Spectrum and Variability of Endocrine Abnormalities Associated With TUBB3 E410K Syndrome

    PubMed Central

    Balasubramanian, Ravikumar; Chew, Sheena; MacKinnon, Sarah E.; Kang, Peter B.; Andrews, Caroline; Chan, Wai-Man

    2015-01-01

    Context: A heterozygous de novo c.1228G>A mutation (E410K) in the TUBB3 gene encoding the neuronal-specific β-tubulin isotype 3 (TUBB3) causes the TUBB3 E410K syndrome characterized by congenital fibrosis of the extraocular muscles (CFEOM), facial weakness, intellectual and social disabilities, and Kallmann syndrome (anosmia with hypogonadotropic hypogonadism). All TUBB3 E410K subjects reported to date are sporadic cases. Objective: This study aimed to report the clinical, genetic, and molecular features of a familial presentation of the TUBB3 E410K syndrome. Design: Case report of a mother and three affected children with clinical features of the TUBB3 E410K syndrome. Setting: Academic Medical Center. Main Outcome Measures: Genetic analysis of the TUBB3 gene and clinical evaluation of endocrine and nonendocrine phenotypes. Results: A de novo TUBB3 c.1228G>A mutation arose in a female proband who displayed CFEOM, facial weakness, intellectual and social disabilities, and anosmia. However, she underwent normal sexual development at puberty and had three spontaneous pregnancies with subsequent autosomal-dominant inheritance of the mutation by her three boys. All sons displayed nonendocrine features of the TUBB3 E410K syndrome similar to their mother but, in addition, had variable features suggestive of additional endocrine abnormalities. Conclusions: This first report of an autosomal-dominant inheritance of the TUBB3 c.1228G>A mutation in a family provides new insights into the spectrum and variability of endocrine phenotypes associated with the TUBB3 E410K syndrome. These observations emphasize the need for appropriate clinical evaluation and complicate genetic counseling of patients and families with this syndrome. PMID:25559402

  12. Olfaction in eating disorders and abnormal eating behavior: a systematic review

    PubMed Central

    Islam, Mohammed A.; Fagundo, Ana B.; Arcelus, Jon; Agüera, Zaida; Jiménez-Murcia, Susana; Fernández-Real, José M.; Tinahones, Francisco J.; de la Torre, Rafael; Botella, Cristina; Frühbeck, Gema; Casanueva, Felipe F.; Menchón, José M.; Fernandez-Aranda, Fernando

    2015-01-01

    The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior. The objective is to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insight with regard to the complex etiopathology of eating disorders (ED) and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct, and Web of Science) were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1352 articles, titles were first excluded by title (n = 64) and then by abstract and fulltext resulting in a final selection of 14 articles (820 patients and 385 control participants) for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6%) followed by BN patients (35.7%) and obese individuals (14.3%). Most studies were only conducted on females. The general findings support that olfaction is altered in AN and in obesity and indicates toward there being little to no difference in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior. PMID:26483708

  13. Teaching a Course in Abnormal Psychology and Behavior Intervention Skills for Nursing Home Aides.

    ERIC Educational Resources Information Center

    Glenwick, David S.; Slutzsky, Mitchel R.; Garfinkel, Eric

    2001-01-01

    Describes an 11-week course given at a nursing home to nursing home aides that focused on abnormal psychology and behavior intervention skills. Discusses the course goals, class composition, and course description. Addresses the problems and issues encountered with teaching this course to a nontraditional population in an unconventional setting.…

  14. Abnormal perilesional BOLD signal is not correlated with stroke patients’ behavior

    PubMed Central

    de Haan, Bianca; Rorden, Chris; Karnath, Hans-Otto

    2013-01-01

    Several functional magnetic resonance imaging (fMRI) studies of acute stroke have reported that patients with behavioral deficits show abnormal signal in intact regions of the damaged hemisphere close to the lesion border relative to homologous regions of the patient’s intact hemisphere (causing an interhemispheric imbalance) as well as analogous regions in healthy controls. These effects have been interpreted as demonstrating a causal relationship between the abnormal fMRI signal and the pathological behavior. Here we explore an alternative explanation: perhaps the abnormal Blood-Oxygenation Level Dependent (BOLD) fMRI signal is merely a function of distance from the acute lesion. To investigate this hypothesis, we examined three patients with an acute right hemisphere cortical stroke who did not show any overt behavioral deficits, as well as nine healthy elderly controls. We acquired fMRI data while the participants performed a simple visual orientation judgment task. In patients, we observed an abnormal interhemispheric balance consisting of lower levels of percent signal change in perilesional areas of the damaged hemisphere relative to homologous areas in neurologically healthy controls. This suggests that the physiological changes and corresponding interhemispheric imbalance detected by fMRI BOLD in acute stroke observed close to the lesion border may not necessarily reflect changes in the neural function, nor necessarily influence the individuals’ (e.g., attentional) behavior. PMID:24137123

  15. Olfaction in eating disorders and abnormal eating behavior: a systematic review.

    PubMed

    Islam, Mohammed A; Fagundo, Ana B; Arcelus, Jon; Agüera, Zaida; Jiménez-Murcia, Susana; Fernández-Real, José M; Tinahones, Francisco J; de la Torre, Rafael; Botella, Cristina; Frühbeck, Gema; Casanueva, Felipe F; Menchón, José M; Fernandez-Aranda, Fernando

    2015-01-01

    The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior. The objective is to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insight with regard to the complex etiopathology of eating disorders (ED) and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct, and Web of Science) were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1352 articles, titles were first excluded by title (n = 64) and then by abstract and fulltext resulting in a final selection of 14 articles (820 patients and 385 control participants) for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6%) followed by BN patients (35.7%) and obese individuals (14.3%). Most studies were only conducted on females. The general findings support that olfaction is altered in AN and in obesity and indicates toward there being little to no difference in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior.

  16. Neurocognitive abnormalities during comprehension of real-world goal-directed behaviors in schizophrenia.

    PubMed

    Sitnikova, Tatiana; Goff, Donald; Kuperberg, Gina R

    2009-05-01

    Origins of impaired adaptive functioning in schizophrenia remain poorly understood. Behavioral disorganization may arise from an abnormal reliance on common combinations between concepts stored in semantic memory. Avolition-apathy may be related to deficits in using goal-related requirements to flexibly plan behavior. The authors recorded event-related potentials (ERPs) in 16 patients with medicated schizophrenia and 16 healthy controls in a novel video paradigm presenting congruous or incongruous objects in real-world activities. All incongruous objects were contextually inappropriate, but the incongruous scenes varied in comprehensibility. Psychopathology was assessed with the Scales for the Assessment of Positive and Negative Symptoms (SAPS/SANS) and the Brief Psychiatric Rating Scale. In patients, an N400 ERP, thought to index activity in semantic memory, was abnormally enhanced to less comprehensible incongruous scenes, and larger N400 priming was associated with disorganization severity. A P600 ERP, which may index flexible object-action integration based on goal-related requirements, was abnormally attenuated in patients, and its smaller magnitude was associated with the SANS rating of impersistence at work or school (goal-directed behavior). Thus, distinct neurocognitive abnormalities may underlie disorganization and goal-directed behavior deficits in schizophrenia.

  17. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection.

    PubMed

    Li, Yu-Cheng; Liu, Ya-Min; Shen, Ji-Duo; Chen, Jun-Jie; Pei, Yang-Yi; Fang, Xiao-Yan

    2016-10-13

    Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg) by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg), fluoxetine (20 mg/kg) and pioglitazone (10 mg/kg) were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  18. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype.

    PubMed

    Arsenault, Jason; Gholizadeh, Shervin; Niibori, Yosuke; Pacey, Laura K; Halder, Sebok K; Koxhioni, Enea; Konno, Ayumu; Hirai, Hirokazu; Hampson, David R

    2016-12-01

    Fragile X mental retardation protein (FMRP) is absent or highly reduced in Fragile X Syndrome, a genetic disorder causing cognitive impairment and autistic behaviors. Previous proof-of-principle studies have demonstrated that restoring FMRP in the brain using viral vectors can improve pathological abnormalities in mouse models of fragile X. However, unlike small molecule drugs where the dose can readily be adjusted during treatment, viral vector-based biological therapeutic drugs present challenges in terms of achieving optimal dosing and expression levels. The objective of this study was to investigate the consequences of expressing varying levels of FMRP selectively in neurons of Fmr1 knockout and wild-type (WT) mice. A wide range of neuronal FMRP transgene levels was achieved in individual mice after intra-cerebroventricular administration of adeno-associated viral vectors coding for FMRP. In all treated knockout mice, prominent FMRP transgene expression was observed in forebrain structures, whereas lower levels were present in more caudal regions of the brain. Reduced levels of the synaptic protein PSD-95, elevated levels of the transcriptional modulator MeCP2, and abnormal motor activity, anxiety, and acoustic startle responses in Fmr1 knockout mice were fully or partially rescued after expression of FMRP at about 35-115% of WT expression, depending on the brain region examined. In the WT mouse, moderate FMRP over-expression of up to about twofold had little or no effect on PSD-95 and MeCP2 levels or on behavioral endophenotypes. In contrast, excessive over-expression in the Fmr1 knockout mouse forebrain (approximately 2.5-6-fold over WT) induced pathological motor hyperactivity and suppressed the startle response relative to WT mice. These results delineate a range of FMRP expression levels in the central nervous system that confer phenotypic improvement in fragile X mice. Collectively, these findings are pertinent to the development of long-term curative

  19. Hemostatic and hematological abnormalities in gain-of-function fps/fes transgenic mice are associated with the angiogenic phenotype.

    PubMed

    Sangrar, W; Senis, Y; Samis, J A; Gao, Y; Richardson, M; Lee, D H; Greer, P A

    2004-11-01

    The Fps/Fes tyrosine kinase has been implicated in the regulation of hematopoiesis and inflammation. Mice expressing an activated variant of Fps/Fes (MFps) encoded by a gain-of-function mutant transgenic fps/fes allele (fps(MF)) exhibited hematological phenotypes, which suggested that Fps/Fes can direct hematopoietic lineage output. These mice also displayed marked hypervascularity and multifocal-hemangiomas which implicated this kinase in the regulation of angiogenesis. Here we explored the potential involvement of Fps/Fes in the regulation of hemostasis through effects on blood cells and the vascular endothelium. Hematological parameters of fps(MF) mice were characterized by peripheral blood analysis, histology, and transmission electron microscopy. Hemostasis parameters and platelet functions were assessed by flow cytometry and measurements of activated partial thromboplastin time, prothrombin time, thrombin clot time, platelet aggregation, bleeding times and in vitro fibrinolytic assays. Hematological and morphological analyses showed that fps(MF) mice displayed mild thrombocytopenia, anemia, red cell abnormalities and numerous hemostatic defects, including hypofibrinogenemia, hyper-fibrinolysis, impaired whole blood aggregation and a mild bleeding diathesis. fps(MF) mice displayed a complex array of hemostatic perturbations which are reminiscent of hemostatic disorders such as disseminated intravascular coagulation (DIC) and of hemangioma-associated pathologies such as Kasabach-Merritt phenomenon (KMS). These studies suggest that Fps/Fes influences both angiogenic and hemostatic function through regulatory effects on the endothelium.

  20. Myotubular myopathy caused by multiple abnormal splicing variants in the MTM1 RNA in a patient with a mild phenotype

    PubMed Central

    Vasli, Nasim; Laugel, Vincent; Böhm, Johann; Lannes, Béatrice; Biancalana, Valérie; Laporte, Jocelyn

    2012-01-01

    Mutations impacting on the splicing of pre-mRNA are one important cause of genetically inherited diseases. However, detection of splice mutations, that are mainly due to intronic variations, and characterization of their effects are usually not performed as a first approach during genetic diagnosis. X-linked recessive myotubular myopathy is a severe congenital myopathy due to mutations in the MTM1 gene encoding myotubularin. Here, we screened a male patient showing an unusually mild phenotype without respiratory distress by western blot with specific myotubularin antibodies and detected a strong reduction of the protein level.The disease was subsequently linked to a hemizygous point mutation affecting the acceptor splice site of exon 8 of MTM1, proven by protein, transcript and genomic DNA analysis. Detailed analysis of the MTM1 mRNA by RT-PCR, sequencing and quantitative PCR revealed multiple abnormal transcripts with retention of a truncated exon 8, and neighboring exons 7 and 9 but exclusion of several other exons, suggesting a complex effect of this mutation on the splicing of non-adjacent exons. We conclude that the analysis of RNA by RT-PCR and sequencing is an important step to characterize the precise impact of detected splice variants. It is likely that complex splice aberrations due to a single mutation also account for unsolved cases in other diseases. PMID:22258523

  1. Fibroblast prostaglandin E2 synthesis. Persistence of an abnormal phenotype after short-term exposure to mononuclear cell products.

    PubMed

    Korn, J H

    1983-05-01

    Acquired abnormalities of connective tissue metabolism in inflammatory diseases often persist when lesional tissue is maintained in in vitro culture. Although connective tissue cells are exposed to inflammatory cell-derived mediators in vivo and such mediators have been shown to alter connective tissue cell behavior, it is unclear whether the persistence of metabolic defects in vitro could result from remote in vivo exposure to these mediators. An in vitro model was used to test whether transient exposure of normal fibroblasts to inflammatory mediators could lead to metabolic alterations that persist during in vitro culture. Short-term exposure of human foreskin fibroblasts in vitro to supernates of mitogen-activated peripheral blood mononuclear cells led to persistent abnormalities of prostaglandin E2 (PGE2) metabolism. Fibroblasts previously exposed to mononuclear cell products synthesized more than twice as much PGE2 when stimulated compared with similarly stimulated but previously unexposed control fibroblasts of the same strain. The enhanced PGE2 synthesis persisted for as long as 20 wk and 19 cell generations after the original exposure to mononuclear cell products. Exposure of fibroblast populations to mononuclear cell products may, thus, lead to metabolite alterations that are still evident after multiple cell generations.

  2. Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans.

    PubMed

    Wang, D-Y; Wang, Y

    2008-04-01

    To examine the possible phenotypic defects from barium exposure, a model organism, Caenorhabditis elegans, was chosen to analyze the multiple toxicities in barium-exposed animals. Endpoints of life span, body size, brood size, generation time, head thrash, and body bend were selected for the assessment of barium toxicity. High concentrations (75 microM and 200 microM) of barium exposure caused severe life-span defects. Body sizes of exposed animals were markedly reduced compared to the controls, and high concentrations of barium exposure (75 microM and 200 microM) caused the appearance of vulva abnormality. In addition, barium exposure resulted in severe defects in reproductive capacity and reproductive speed. Body bends and head thrashes were also severely impaired after barium exposure. Furthermore, the stress responses to barium exposure suggest severe barium toxicity. The observed severe locomotion behavior and life-span defects in nematodes might be largely due to the deposition of barium toxicity in the muscle and intestine systems, respectively. Our data suggest that barium exposure could cause multiple biological defects by affecting the life span, development, reproduction, and locomotion behaviors. These multiple biological defects provide a new evaluation system to monitor the toxicity from barium exposure.

  3. Autistic-spectrum disorders in Down syndrome: further delineation and distinction from other behavioral abnormalities.

    PubMed

    Carter, John C; Capone, George T; Gray, Robert M; Cox, Christiane S; Kaufmann, Walter E

    2007-01-05

    The present study extends our previous work characterizing the behavioral features of autistic-spectrum disorder (ASD) in Down syndrome (DS) using the Aberrant Behavior Checklist (ABC) and Autism Behavior Checklist (AutBehav). We examined which specific behaviors distinguished the behavioral phenotype of DS + ASD from other aberrant behavior disorders in DS, by determining the relative contribution of ABC and AutBehav subscales and items to the diagnosis of ASD. A total of 127 subjects (aged 2-24 years; mean age: 8.4 years; approximately 70% male), comprising: a cohort of 64 children and adolescents with DS and co-morbid ASD (DS + ASD), 19 with DS and stereotypic movement disorder (DS + SMD), 18 with DS and disruptive behaviors (DS + DB), and 26 with DS and no co-morbid behavior disorders (DS + none) were examined using the aforementioned measures of aberrant behavior. We found that subjects with DS + ASD showed the most severe aberrant behavior, especially stereotypy compared to DS + none and lethargy/social withdrawal and relating problems compared to DS + SMD. Specifically, relatively simple stereotypic behavior differentiated DS + ASD from DS + DB, whereas odd/bizarre stereotypic and anxious behavior characterized DS + ASD relative to DS + SMD and DS + none. Additionally, in a subset of subjects with DS + ASD and anxiety, social withdrawal was particularly pronounced. Overall, our findings indicate that a diagnosis of DS + ASD represents a distinctive set of aberrant behaviors marked by characteristic odd/bizarre stereotypic behavior, anxiety, and social withdrawal.

  4. [Behavioral and neurobiological abnormalities induced by social isolation as a useful animal model of schizophrenia].

    PubMed

    Lei, Ming; Luo, Lu; Ma, Shi-Qi; Zhang, Yan; Wu, Xi-Hong; Li, Liang

    2013-02-25

    Social isolation influences the development of the brain, causing dysfunctions at behavioral, cellular and molecular levels. The present paper summarizes the abnormalities induced by social isolation in behaviors, neurotransmitters and cell apoptosis. At the behavioral level, social isolation induces hyperlocomotion, abnormalities in startle reflex and prepulse inhibition (PPI), and dysfunctions in conditioned learning, reversal learning and memory. Moreover, social isolation causes changes of neurotransmitters, such as the increase of dopamine in the nucleus accumbens, the amygdala and other brain regions in the limbic system, the decrease of dopamine in medial prefrontal cortex, the decrease of 5-HT in the nucleus accumbens and the hippocampus, and changes of glutamine in the prefrontal cortex. Finally, social isolation affects cell apoptosis in different brain areas, such as the medial prefrontal cortex, amygdala, nucleus accumbens, and hippocampus. Both the changes in neurotransmitters and cell apoptosis may contribute to the behavioral dysfunctions in social isolated rats. Since schizophrenic patients have similar abnormalities in behaviors and neurotransmitters, isolation rearing can be used as a useful animal model of schizophrenia.

  5. Rescue of the abnormal skeletal phenotype in Ts65Dn Down syndrome mice using genetic and therapeutic modulation of trisomic Dyrk1a.

    PubMed

    Blazek, Joshua D; Abeysekera, Irushi; Li, Jiliang; Roper, Randall J

    2015-10-15

    Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a.

  6. Behavioral and Psychiatric Phenotypes in 22q11.2 Deletion Syndrome

    PubMed Central

    Tang, Kerri L; Antshel, Kevin M; Fremont, Wanda P.

    2015-01-01

    22q11.2DS is a chromosomal microdeletion that affects approximately 40–50 genes, and impacts various organs and systems throughout the body. Detection is typically achieved by fluorescence in-situ hybridization following diagnosis of one of the major features of the deletion or via chromosomal microarray or non-invasive prenatal testing. The physical phenotype can include congenital heart defects, palatal and pharyngeal anomalies, hypocalcemia/hypoparathyroidism, skeletal abnormalities, and cranial/brain anomalies, although prevalence rates of all of these features are variable. Cognitive function is impaired to some degree in most individuals, with prevalence rates of greater than 90% for motor/speech delays and learning disabilities. Attention, executive function, working memory, visual spatial abilities, motor skills, and social cognition/social skills are affected. The deletion is also associated with an increased risk for behavioral disorders and psychiatric illness. The early onset of psychiatric symptoms common to 22q11.2DS disrupts the development and quality of life of individuals with the syndrome, and is also a potential risk factor for later development of a psychotic disorder. This review discusses prevalence, phenotypic features, and management of psychiatric disorders commonly diagnosed in children and adolescents with 22q11.2DS, including autism spectrum disorders, attention deficit/hyperactivity disorder, anxiety disorders, mood disorders, and schizophrenia/psychotic disorders. Guidelines for the clinical assessment and management of psychiatric disorders in youth with this syndrome are provided, as are treatment guidelines for the use of psychiatric medications. PMID:26372046

  7. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens.

    PubMed

    Brunberg, Emma I; Rodenburg, T Bas; Rydhmer, Lotta; Kjaer, Joergen B; Jensen, Per; Keeling, Linda J

    2016-01-01

    Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain-gut-microbiota axis.

  8. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens

    PubMed Central

    Brunberg, Emma I.; Rodenburg, T. Bas; Rydhmer, Lotta; Kjaer, Joergen B.; Jensen, Per; Keeling, Linda J.

    2016-01-01

    Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain–gut–microbiota axis. PMID:27500137

  9. Cnga2 Knockout Mice Display Alzheimer's-Like Behavior Abnormities and Pathological Changes.

    PubMed

    Xie, Ao-Ji; Liu, En-Jie; Huang, He-Zhou; Hu, Yu; Li, Ke; Lu, Youming; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2016-09-01

    Olfactory dysfunction is recognized as a potential risk factor for Alzheimer's disease (AD). We have reported previously that olfactory deprivation by olfactory bulbectomy (OBX) induced Alzheimer's-like pathological changes and behavioral abnormalities. However, the acute OBX model undergoes surgical-induced brain parenchyma loss and unexpected massive hemorrhage so that it cannot fully mimic the progressive olfactory loss and neurodegeneration in AD. Here, we employed the mice loss of cyclic nucleotide-gated channel alpha 2 (Cnga2) which is critical for olfactory sensory transduction, to investigate the role of olfactory dysfunction in AD pathological process. We found that impaired learning and memory abilities, loss of dendrite spines, as well as decrement of synaptic proteins were displayed in Cnga2 knockout mice. Moreover, Aβ overproduction, tau hyperphosphorylation, and somatodendritic translocation were also found in Cnga2 knockout mice. Our findings suggest that progressive olfactory loss leads to Alzheimer's-like behavior abnormities and pathological changes.

  10. Studies of planning behavior of aircraft pilots in normal, abnormal and emergency situations

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of planning is presented and the results of applying the methodology within two experimental investigations of planning behavior of aircraft pilots in normal, abnormal, and emergency situations are discussed. Beyond showing that the methodology yields consistent results, these experiments also lead to concepts in terms of a dichotomy between event driven and time driven planning, subtle effects of automation on planning, and the relationship of planning to workload and flight performance.

  11. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen L A; Ferres, Millie A; Graham, Leah C; Wick, Heather C; Miczek, Klaus A; Slonim, Donna K; Bianchi, Diana W

    2015-09-01

    Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.

  12. The Fetal Brain Transcriptome and Neonatal Behavioral Phenotype in the Ts1Cje Mouse Model of Down syndrome

    PubMed Central

    Guedj, Faycal; Pennings, Jeroen L. A.; Ferres, Millie A.; Graham, Leah C.; Wick, Heather C.; Miczek, Klaus A.; Slonim, Donna K.; Bianchi, Diana W.

    2016-01-01

    Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3–21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and post-natal neurocognition. PMID:25975229

  13. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  14. Phenotypic integration between antipredator behavior and camouflage pattern in juvenile sticklebacks.

    PubMed

    Kim, Sin-Yeon; Velando, Alberto

    2015-03-01

    Predation is a strong selective force that promotes the evolution of antipredator behaviors and camouflage in prey animals. However, the independent evolution of single traits cannot explain how observed phenotypic variations of these traits are maintained within populations. We studied genetic and phenotypic correlations between antipredator behaviors (shoaling and risk-taking) and morphology traits (pigmentation and size) in juvenile three-spined sticklebacks by using pedigree-based quantitative genetic analysis to test phenotypic integration (or complex phenotype) as an evolutionary response to predation risk. Individuals with strongly melanized (i.e., camouflaged) phenotype and genotype were less sociable to conspecifics, but bolder during foraging under predation risk. Individuals with faster growing phenotype and genotype were bolder, and those with lager eyes were more fearful. These phenotypic integrations were not confounded with correlated plastic responses to predation risk because the phenotypes were measured in naïve fish born in the laboratory, but originated from a natural population with predation pressure. Consistent selection for particular combinations of traits under predation pressure or pleiotropic genes might influence the maintenance of the genetic (co)variations and polymorphism in melanin color, growth trajectory, and behavior patterns.

  15. Minos-insertion mutant of the Drosophila GBA gene homologue showed abnormal phenotypes of climbing ability, sleep and life span with accumulation of hydroxy-glucocerebroside.

    PubMed

    Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Takahara, Tsubasa; Goto-Inoue, Naoko; Setou, Mitsutoshi; Sakata, Kazuki; Ishida, Norio

    2017-03-07

    Gaucher's disease in humans is considered a deficiency of glucocerebrosidase (GlcCerase) that result in the accumulation of its substrate, glucocerebroside (GlcCer). Although mouse models of Gaucher's disease have been reported from several laboratories, these models are limited due to the perinatal lethality of GlcCerase gene. Here, we examined phenotypes of Drosophila melanogaster homologues genes of the human Gaucher's disease gene by using Minos insertion. One of two Minos insertion mutants to unknown function gene (CG31414) accumulates the hydroxy-GlcCer in whole body of Drosophila melanogaster. This mutant showed abnormal phenotypes of climbing ability and sleep, and short lifespan. These abnormal phenotypes are very similar to that of Gaucher's disease in human. In contrast, another Minos insertion mutant (CG31148) and its RNAi line did not show such severe phenotype as observed in CG31414 gene mutation. The data suggests that Drosophila CG31414 gene mutation might be useful for unraveling the molecular mechanism of Gaucher's disease.

  16. Antisocial behavior, psychopathic features and abnormalities in reward and punishment processing in youth.

    PubMed

    Byrd, Amy L; Loeber, Rolf; Pardini, Dustin A

    2014-06-01

    A better understanding of what leads youth to initially engage in antisocial behavior (ASB) and more importantly persist with such behaviors into adulthood has significant implications for prevention and intervention efforts. A considerable number of studies using behavioral and neuroimaging techniques have investigated abnormalities in reward and punishment processing as potential causal mechanisms underlying ASB. However, this literature has yet to be critically evaluated, and there are no comprehensive reviews that systematically examine and synthesize these findings. The goal of the present review is twofold. The first aim is to examine the extent to which youth with ASB are characterized by abnormalities in (1) reward processing; (2) punishment processing; or (3) both reward and punishment processing. The second aim is to evaluate whether aberrant reward and/or punishment processing is specific to or most pronounced in a subgroup of antisocial youth with psychopathic features. Studies utilizing behavioral methods are first reviewed, followed by studies using functional magnetic resonance imaging. An integration of theory and research across multiple levels of analysis is presented in order to provide a more comprehensive understanding of reward and punishment processing in antisocial youth. Findings are discussed in terms of developmental and contextual considerations, proposed future directions and implications for intervention.

  17. Antisocial Behavior, Psychopathic Features and Abnormalities in Reward and Punishment Processing in Youth

    PubMed Central

    Byrd, Amy L.; Loeber, Rolf; Pardini, Dustin A.

    2017-01-01

    A better understanding of what leads youth to initially engage in antisocial behavior (ASB) and more importantly persist with such behaviors into adulthood has significant implications for prevention and intervention efforts. A considerable number of studies using behavioral and neuroimaging techniques have investigated abnormalities in reward and punishment processing as potential causal mechanisms underlying ASB. However, this literature has yet to be critically evaluated, and there are no comprehensive reviews that systematically examine and synthesize these findings. The goal of the present review is twofold. The first aim is to examine the extent to which youth with ASB are characterized by abnormalities in (1) reward processing; (2) punishment processing; or (3) both reward and punishment processing. The second aim is to evaluate whether aberrant reward and/or punishment processing is specific to or most pronounced in a subgroup of antisocial youth with psychopathic features. Studies utilizing behavioral methods are first reviewed, followed by studies using functional magnetic resonance imaging. An integration of theory and research across multiple levels of analysis is presented in order to provide a more comprehensive understanding of reward and punishment processing in antisocial youth. Findings are discussed in terms of developmental and contextual considerations, proposed future directions and implications for intervention. PMID:24357109

  18. Abnormal animal behavior prior to the Vrancea (Romania) major subcrustal earthquakes

    NASA Astrophysics Data System (ADS)

    Constantin, Angela; Pantea, Aurelian

    2013-04-01

    The goal of this paper is to present some observations about abnormal animal behavior prior and during of some Romanian subcrustal earthquakes. The major Vrancea earthquakes of 4 March 1977 (Mw = 7.4, Imax = IX-X MSK), 30 August 1986 (Mw = 7.1, Io = VIII-IX MSK) and 30 May 1990 (Mw = 6.9, Io = VIII MSK), were preceded by extensive occurrences of anomalous animal behavior. These data were collected immediately after the earthquakes from the areas affected by these. Some species of animals became excited, nervous and panicked before and during the earthquakes, such as: dogs (barking and running in panic), cats, snakes, mice and rats (came into the houses and have lost their fear), birds (hens, geese, parrots), horses, fishes etc. These strange manifestations of the animals were observed on the entire territory of country, especially in the extra-Carpathian area. This unusual behavior was noticed within a few hours to days before the seismic events, but for the most of cases the time of occurrence was within two hours of the quakes. We can hope that maybe one day the abnormal animal behavior will be used as a reliable seismic precursor for the intermediate depth earthquakes.

  19. Long-Term Evaluation of Abnormal Behavior in Adult Ex-laboratory Chimpanzees (Pan troglodytes) Following Re-socialization

    PubMed Central

    Kalcher-Sommersguter, Elfriede; Franz-Schaider, Cornelia; Preuschoft, Signe; Crailsheim, Karl

    2013-01-01

    Adverse rearing conditions are considered a major factor in the development of abnormal behavior. We investigated the overall levels, the prevalence and the diversity of abnormal behavior of 18 adult former laboratory chimpanzees, who spent about 20 years single caged, over a two-year period following re-socialization. According to the onset of deprivation, the individuals were classified as early deprived (EDs, mean: 1.2 years) or late deprived (LDs, mean: 3.6 years). The results are based on 187.5 hours of scan sampling distributed over three sample periods: subsequent to re-socialization and during the first and second year of group-living. While the overall levels and the diversity of abnormal behavior remained stable over time in this study population, the amplifying effects of age at onset of deprivation became apparent as the overall levels of abnormal behavior of EDs were far above those of LDs in the first and second year of group-living, but not immediately after re-socialization. The most prevalent abnormal behaviors, including eating disorders and self-directed behaviors, however, varied in their occurrence within subjects across the periods. Most important, the significance of social companionship became obvious as the most severe forms of abnormal behavior, such as dissociative and self-injurious behaviors declined. PMID:25379228

  20. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes

    PubMed Central

    Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P.

    2017-01-01

    The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number. PMID:28045139

  1. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype

    PubMed Central

    Arsenault, Jason; Gholizadeh, Shervin; Niibori, Yosuke; Pacey, Laura K.; Halder, Sebok K.; Koxhioni, Enea; Konno, Ayumu; Hirai, Hirokazu; Hampson, David R.

    2016-01-01

    Fragile X mental retardation protein (FMRP) is absent or highly reduced in Fragile X Syndrome, a genetic disorder causing cognitive impairment and autistic behaviors. Previous proof-of-principle studies have demonstrated that restoring FMRP in the brain using viral vectors can improve pathological abnormalities in mouse models of fragile X. However, unlike small molecule drugs where the dose can readily be adjusted during treatment, viral vector–based biological therapeutic drugs present challenges in terms of achieving optimal dosing and expression levels. The objective of this study was to investigate the consequences of expressing varying levels of FMRP selectively in neurons of Fmr1 knockout and wild-type (WT) mice. A wide range of neuronal FMRP transgene levels was achieved in individual mice after intra-cerebroventricular administration of adeno-associated viral vectors coding for FMRP. In all treated knockout mice, prominent FMRP transgene expression was observed in forebrain structures, whereas lower levels were present in more caudal regions of the brain. Reduced levels of the synaptic protein PSD-95, elevated levels of the transcriptional modulator MeCP2, and abnormal motor activity, anxiety, and acoustic startle responses in Fmr1 knockout mice were fully or partially rescued after expression of FMRP at about 35–115% of WT expression, depending on the brain region examined. In the WT mouse, moderate FMRP over-expression of up to about twofold had little or no effect on PSD-95 and MeCP2 levels or on behavioral endophenotypes. In contrast, excessive over-expression in the Fmr1 knockout mouse forebrain (approximately 2.5–6-fold over WT) induced pathological motor hyperactivity and suppressed the startle response relative to WT mice. These results delineate a range of FMRP expression levels in the central nervous system that confer phenotypic improvement in fragile X mice. Collectively, these findings are pertinent to the development of long

  2. Behavioral Phenotype in Adults with Prader-Willi Syndrome

    ERIC Educational Resources Information Center

    Sinnema, Margje; Einfeld, Stewart L.; Schrander-Stumpel, Constance T. R. M.; Maaskant, Marian A.; Boer, Harm; Curfs, Leopold M. G.

    2011-01-01

    Prader-Willi syndrome (PWS) is characterized by temper tantrums, impulsivity, mood fluctuations, difficulty with change in routine, skinpicking, stubbornness and aggression. Many studies on behavior in PWS are limited by sample size, age range, a lack of genetically confirmed diagnosis of PWS and inconsistent assessment of behavior. The aim of…

  3. Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption.

    PubMed

    Pedron, Solène; Monnin, Julie; Haffen, Emmanuel; Sechter, Daniel; Van Waes, Vincent

    2014-03-01

    Successful available treatments to quit smoking remain scarce. Recently, the potential of transcranial direct current stimulation (tDCS) as a tool to reduce craving for nicotine has gained interest. However, there is no documented animal model to assess the neurobiological mechanisms of tDCS on addiction-related behaviors. To address this topic, we have developed a model of repeated tDCS in mice and used it to validate its effectiveness in relieving nicotine addiction. Anodal repeated tDCS was applied over the frontal cortex of Swiss female mice. The stimulation electrode (anode) was fixed directly onto the cranium, and the reference electrode was placed onto the ventral thorax. A 2 × 20 min/day stimulation paradigm for five consecutive days was used (0.2 mA). In the first study, we screened for behaviors altered by the stimulation. Second, we tested whether tDCS could alleviate abnormal behaviors associated with abstinence from nicotine consumption. In naive animals, repeated tDCS had antidepressant-like properties 3 weeks after the last stimulation, improved working memory, and decreased conditioned place preference for nicotine without affecting locomotor activity and anxiety-related behavior. Importantly, abnormal behaviors associated with chronic nicotine exposure (ie, depression-like behavior, increase in nicotine-induced place preference) were normalized by repeated tDCS. Our data show for the first time in an animal model that repeated tDCS is a promising, non-expensive clinical tool that could be used to reduce smoking craving and facilitate smoking cessation. Our animal model will be useful to investigate the mechanisms underlying the effects of tDCS on addiction and other psychiatric disorders.

  4. Quantitative characterization of planarian wild-type behavior as a platform for screening locomotion phenotypes.

    PubMed

    Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Changes in animal behavior resulting from genetic or chemical intervention are frequently used for phenotype characterizations. The majority of these studies are qualitative in nature, especially in systems that go beyond the classical model organisms. Here, we introduce a quantitative method to characterize behavior in the freshwater planarian Schmidtea mediterranea. Wild-type locomotion in confinement was quantified using a wide set of parameters, and the influences of intrinsic intra-worm versus inter-worm variability on our measurements was studied. We also examined the effect of substrate, confinement geometry and the interactions with the boundary on planarian behavior. The method is based on a simple experimental setup, using automated center-of-mass tracking and image analysis, making it an easily implemented alternative to current methods for screening planarian locomotion phenotypes. As a proof of principle, two drug-induced behavioral phenotypes were generated to show the capacity of this method.

  5. A survey of abnormal repetitive behaviors in North American river otters housed in zoos.

    PubMed

    Morabito, Paige; Bashaw, Meredith J

    2012-01-01

    Stereotypic behaviors, indicating poor welfare and studied in a variety of species (especially carnivores), appear related to characteristics of current and past environments. Although North American river otters (Lontra canadensis) often develop abnormal, repetitive, possibly stereotypic behaviors, no published reports describe otter housing and management or characterize how these variables relate to abnormal repetitive behavior (ARB) occurrence. The first author developed surveys to gather data on housing, individual history, management, and the prevalence of ARBs in otters housed in facilities accredited by the Association of Zoos and Aquariums. Consistent with anecdotal evidence that otters are prone to ARBs, 46% of river otters in the study exhibit them. ARBs were mostly locomotor and often preceded feeding. Exhibits where otters were fed and trained housed a greater percentage of nonhuman animals with ARBs. This study supports the Tarou, Bloomsmith, and Maple (2005) report that more hands-on management is associated with higher levels of ARBs because management efforts are only for animals with ARBs. Escape motivation, breeding season, feeding cues, and ability to forage may affect ARBs in river otters and should be investigated.

  6. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  7. Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures

    PubMed Central

    Castelhano, Adelisandra Silva Santos; Cassane, Gustavo dos Santos Teada; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo

    2013-01-01

    Neonatal seizures are the most common manifestation of neurological dysfunction in the neonate. The prognosis of neonatal seizures is highly variable, and the controversy remains whether the severity, duration, or frequency of seizures may contribute to brain damage independently of its etiology. Animal data indicates that seizures during development are associated with a high probability of long-term adverse effects such as learning and memory impairment, behavioral changes and even epilepsy, which is strongly age dependent, as well as the severity, duration, and frequency of seizures. In preliminary studies, we demonstrated that adolescent male rats exposed to one-single neonatal status epilepticus (SE) episode showed social behavior impairment, and we proposed the model as relevant for studies of developmental disorders. Based on these facts, the goal of this study was to verify the existence of a persistent deficit and if the anxiety-related behavior could be associated with that impairment. To do so, male Wistar rats at 9 days postnatal were submitted to a single episode of SE by pilocarpine injection (380 mg/kg, i.p.) and control animals received saline (0.9%, 0.1 mL/10 g). It was possible to demonstrate that in adulthood, animals exposed to neonatal SE displayed low preference for social novelty, anxiety-related behavior, and increased stereotyped behavior in anxiogenic environment with no locomotor activity changes. On the balance, these data suggests that neonatal SE in rodents leads to altered anxiety-related and abnormal social behaviors. PMID:23675329

  8. Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes.

    PubMed

    Yeshurun, Shlomo; Short, Annabel K; Bredy, Timothy W; Pang, Terence Y; Hannan, Anthony J

    2017-03-01

    Recent studies have demonstrated that paternal stress in rodents can result in modification of offspring behavior. Environmental enrichment, which enhances cognitive stimulation and physical activity, modifies various behaviors and reduces stress responses in adult rodents. We investigated the transgenerational influence of paternal environmental enrichment on offspring behavior and physiological stress response. Adult C57BL/6J male mice (F0) were exposed to either environmental enrichment or standard housing for four weeks and then pair-mated with naïve females. The F2 generation was generated using F1 male offspring. Male and female F1 and F2 offspring were tested for anxiety using the elevated-plus maze and large open field at 8 weeks of age. Depression-related behavior was assessed using the forced-swim test. Hypothalamic-pituitary-adrenal (HPA) axis function was determined by quantification of serum corticosterone and adrenocorticotropic hormone (ACTH) levels at baseline and after forced-swim stress. Paternal environmental enrichment was associated with increased body weights of male F1 and F2 offspring. There was no significant effect on F1 offspring anxiety and depression-related behaviors. There were no changes in anxiety-related behaviors in the F2 offspring, however these mice displayed a reduced latency to immobility in the forced-swim test. Furthermore, F2 females had significantly higher serum corticosterone levels post-stress, but not ACTH. These results show that paternal environmental enrichment exerts a sex-specific transgenerational impact on the behavioral and physiological response to stress. Our findings have implications for the modelling of psychiatric disorders in rodents.

  9. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition

    PubMed Central

    2012-01-01

    Background In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. Results In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. Conclusions These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia. PMID:22463818

  10. Behavioral Phenotype of Fragile X Syndrome in Adolescence and Adulthood

    ERIC Educational Resources Information Center

    Smith, Leann E.; Barker, Erin T.; Seltzer, Marsha Mailick; Abbeduto, Leonard; Greenberg, Jan S.

    2012-01-01

    The present study explored the behavioral profile of individuals with fragile X syndrome during adolescence and adulthood. Individuals with both fragile X syndrome and autism (n = 30) were compared with (a) individuals diagnosed with fragile X syndrome (but not autism; n = 106) and (b) individuals diagnosed with autism (but not fragile X syndrome;…

  11. Environmental Influences on the Behavioral Phenotype of Angelman Syndrome

    ERIC Educational Resources Information Center

    Horsler, Kate; Oliver, Chris

    2006-01-01

    Using observational methods, we examined the social influences on laughing and smiling behavior in children with Angelman syndrome by systematically manipulating aspects of social interaction. Seven boys and 4 girls who were between 4 and 11 years of age and who had a confirmed maternal deletion of chromosome 15q11-q13 completed the study. Each…

  12. Who should report abnormal behavior at preschool age? The case of behavioral inhibition.

    PubMed

    Ballespí, Sergi; Jané, M Claustre; Riba, M Dolors

    2012-02-01

    Children who are behaviorally "inhibited"-a condition at the extreme of the behavioral inhibition dimension-experience distress in uncertain social situations. Although parents and teachers are in the best position to detect this condition, they rarely agree. This study aims to analyze the agreement between parents and teachers and to examine the relations between ratings made by parents and teachers and assessments made by clinicians and researchers. Parents, teachers and clinicians rated the behavioral inhibition of 365 preschoolers. Seventy-three randomly selected participants were observed using an adaptation of the Behavioral Inhibition Paradigm. Parent-teacher correlations on 34 items and different clusters were, on average, r = .3. The degree of convergence between observational measures and ratings by parents and teachers was moderate-low and did not improve when considering only subsamples from the ends of the distributions. Discriminant analysis suggests that both parents and teachers tend to have a moderate-low ability to detect "inhibited" children.

  13. The microbiota modulates gut physiology and behavioral abnormalities associated with autism

    PubMed Central

    Hsiao, Elaine Y.; McBride, Sara W.; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R.; McCue, Tyler; Codelli, Julian A.; Chow, Janet; Reisman, Sarah E.; Petrosino, Joseph F.; Patterson, Paul H.; Mazmanian, Sarkis K.

    2014-01-01

    SUMMARY Although autism spectrum disorder (ASD) is defined by core behavioral impairments, gastrointestinal (GI) symptoms are commonly reported. Subsets of ASD individuals display dysbiosis of the gut microbiota, and some exhibit increased intestinal permeability. Here we demonstrate GI barrier defects and microbiota alterations in a mouse model displaying features of ASD, maternal immune activation (MIA). Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition and ameliorates ASD-related defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naïve mice with a metabolite that is increased by MIA and restored by B. fragilis causes behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in ASD and identify a potential probiotic therapy for GI and behavioral symptoms of autism. PMID:24315484

  14. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia.

    PubMed

    Miyakawa, Tsuyoshi; Leiter, Lorene M; Gerber, David J; Gainetdinov, Raul R; Sotnikova, Tatyana D; Zeng, Hongkui; Caron, Marc G; Tonegawa, Susumu

    2003-07-22

    Calcineurin (CN), a calcium- and calmodulin-dependent protein phosphatase, plays a significant role in the central nervous system. Previously, we reported that forebrain-specific CN knockout mice (CN mutant mice) have impaired working memory. To further analyze the behavioral effects of CN deficiency, we subjected CN mutant mice to a comprehensive behavioral test battery. Mutant mice showed increased locomotor activity, decreased social interaction, and impairments in prepulse inhibition and latent inhibition. In addition, CN mutant mice displayed an increased response to the locomotor stimulating effects of MK-801. Collectively, the abnormalities of CN mutant mice are strikingly similar to those described for schizophrenia. We propose that alterations affecting CN signaling could comprise a contributing factor in schizophrenia pathogenesis.

  15. An autopsy case of cortical superficial siderosis with persistent abnormal behavior.

    PubMed

    Torii, Youta; Iritani, Shuji; Fujishiro, Hiroshige; Sekiguchi, Hirotaka; Habuchi, Chikako; Umeda, Kentaro; Matsunaga, Shinji; Mimuro, Maya; Ozaki, Norio; Yoshida, Mari; Fujita, Kiyoshi

    2016-12-01

    In recent years, MRI has revealed cortical superficial siderosis (cSS), which exhibits hemosiderin deposition in only the cortical surface. However, the associations between the histological findings and clinical symptoms of cSS remain unclear. We herein report an autopsy case of a 75-year-old Japanese man with cSS with persistent abnormal behavior according to cognitive impairment, hallucination and delusion. At 73 years of age, the patient presented with unusual behavior that indicated auditory hallucination and delusion. One year later, he was admitted to the hospital for malignant lymphoma. On admission, cognitive impairment was detected by a screening test. Soon after hospitalization, he presented with active delirium including visual hallucination and delusion. The patient's excited behavior was improved by the administration of a major tranquilizer. However, the abnormal behavior and cognitive impairment persisted. At 75 years of age, he died of heart failure. A neuropathological investigation revealed hemosiderin depositions in the superficial layer of the cortex in the medial and lateral frontal lobe, the lateral temporal lobe, the parietal lobe, and the medial and lateral occipital lobe. Neuritic plaques and diffuse plaques were extensively observed, which corresponded to Braak stage C and CERAD B, although NFTs were observed that corresponded to Braak stage II. Cortical amyloid angiopathy was not observed in any regions. Ischemic change of brain was also mild. Our report suggests that localized deposition of hemosiderin in the cortex might affect the manifestation of cognitive impairments and hallucination. Further clinicopathological studies are needed to clarify the clinical manifestations of patients with cSS.

  16. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    PubMed

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity.

  17. Abnormal behavior of supercooled liquid region in bulk-forming metallic glasses

    NASA Astrophysics Data System (ADS)

    Park, E. S.; Na, J. H.; Kim, D. H.

    2010-09-01

    A metallic glass is often viewed as an amorphous alloy exhibiting a single endothermic reaction in the supercooled liquid region (SCLR, ΔTx=Tx-Tg). Here we discuss the origin and consequences of abnormal behavior of SCLR in various bulk-forming metallic glasses (BMGs). The two-stage-like endothermic reaction in Ni-based, Cu-based, Zr-based, and Mg-based BMGs can originate from the local immiscibility of liquids, which is closely related to chemical heterogeneity in as-cast BMG. These inflections can be attributed to the overlap of the exothermic reaction for the formation and growth of clusters in SCLR. The abnormal behavior of SCLR can be modulated by controlling cooling rate as well as by tailoring alloy composition, with the consequence that the modulated local heterogeneity in these BMGs can lead to enhanced flexibility of the BMGs. This correlation assists in understanding toughening mechanism and in guiding alloy design to alleviate brittleness of BMGs.

  18. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2.

    PubMed

    Hoffman, Ellen J; Turner, Katherine J; Fernandez, Joseph M; Cifuentes, Daniel; Ghosh, Marcus; Ijaz, Sundas; Jain, Roshan A; Kubo, Fumi; Bill, Brent R; Baier, Herwig; Granato, Michael; Barresi, Michael J F; Wilson, Stephen W; Rihel, Jason; State, Matthew W; Giraldez, Antonio J

    2016-02-17

    Autism spectrum disorders (ASDs) are a group of devastating neurodevelopmental syndromes that affect up to 1 in 68 children. Despite advances in the identification of ASD risk genes, the mechanisms underlying ASDs remain unknown. Homozygous loss-of-function mutations in Contactin Associated Protein-like 2 (CNTNAP2) are strongly linked to ASDs. Here we investigate the function of Cntnap2 and undertake pharmacological screens to identify phenotypic suppressors. We find that zebrafish cntnap2 mutants display GABAergic deficits, particularly in the forebrain, and sensitivity to drug-induced seizures. High-throughput behavioral profiling identifies nighttime hyperactivity in cntnap2 mutants, while pharmacological testing reveals dysregulation of GABAergic and glutamatergic systems. Finally, we find that estrogen receptor agonists elicit a behavioral fingerprint anti-correlative to that of cntnap2 mutants and show that the phytoestrogen biochanin A specifically reverses the mutant behavioral phenotype. These results identify estrogenic compounds as phenotypic suppressors and illuminate novel pharmacological pathways with relevance to autism.

  19. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family.

  20. Canine Behavioral Genetics: Pointing Out the Phenotypes and Herding up the Genes

    PubMed Central

    Spady, Tyrone C.; Ostrander, Elaine A.

    2008-01-01

    An astonishing amount of behavioral variation is captured within the more than 350 breeds of dog recognized worldwide. Inherent in observations of dog behavior is the notion that much of what is observed is breed specific and will persist, even in the absence of training or motivation. Thus, herding, pointing, tracking, hunting, and so forth are likely to be controlled, at least in part, at the genetic level. Recent studies in canine genetics suggest that small numbers of genes control major morphologic phenotypes. By extension, we hypothesize that at least some canine behaviors will also be controlled by small numbers of genes that can be readily mapped. In this review, we describe our current understanding of a representative subset of canine behaviors, as well as approaches for phenotyping, genome-wide scans, and data analysis. Finally, we discuss the applicability of studies of canine behavior to human genetics. PMID:18179880

  1. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    PubMed

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects.

  2. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A

    2017-02-21

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs.

  3. Inactivation of Ceramide Synthase 6 in Mice Results in an Altered Sphingolipid Metabolism and Behavioral Abnormalities*

    PubMed Central

    Ebel, Philipp; vom Dorp, Katharina; Petrasch-Parwez, Elisabeth; Zlomuzica, Armin; Kinugawa, Kiyoka; Mariani, Jean; Minich, David; Ginkel, Christina; Welcker, Jochen; Degen, Joachim; Eckhardt, Matthias; Dere, Ekrem; Dörmann, Peter; Willecke, Klaus

    2013-01-01

    The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain. PMID:23760501

  4. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities.

    PubMed

    Ebel, Philipp; Vom Dorp, Katharina; Petrasch-Parwez, Elisabeth; Zlomuzica, Armin; Kinugawa, Kiyoka; Mariani, Jean; Minich, David; Ginkel, Christina; Welcker, Jochen; Degen, Joachim; Eckhardt, Matthias; Dere, Ekrem; Dörmann, Peter; Willecke, Klaus

    2013-07-19

    The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain.

  5. Reproductive and behavioral abnormalities in tree swallows with high levels of PCB contamination

    SciTech Connect

    McCarty, J. |; Secord, A.; Tillitt, D.

    1995-12-31

    Tree Swallows (Tachycineta bicolor) breeding along the Hudson River forage extensively on PCB contaminated insects that emerge from the river. The authors studied the reproductive ecology and behavior of tree swallows breeding at several sites along the Hudson River. These sites vary in the severity of PCB contamination. PCB levels in both eggs and chicks were found to be among the highest ever reported in this species, with concentrations comparable to those found in aquatic organisms in the Hudson River. In 1994 reproductive success at PCB contaminated sites was significantly impaired, relative to other sites in New York. Reduced reproductive success was largely attributed to high levels of nest abandonment during incubation and reduced hatchability of eggs. Growth and development of nestlings was not significantly impaired. Abnormal nest building behavior was also noted in 1994, and this was studied in detail in 1995. Nests from contaminated areas are significantly smaller than those at a nearby reference site and at other sites in New York. The authors suggest that the reduced reproductive outputs at these sites are, in large part, a result of effects on the behavior of incubating females. The population-level implications of these patterns are unknown.

  6. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    ERIC Educational Resources Information Center

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2012-01-01

    Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…

  7. Evidence for a discrete behavioral phenotype in the oculocerebrorenal syndrome of Lowe

    SciTech Connect

    Kenworthy, L.; Charnas, L.

    1995-11-20

    The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by congenital cataracts, cognitive impairment, and renal tubular dysfunction. Although there is a wide range of intellectual function in affected individuals, it is often compromised by a high prevalence of maladaptive behaviors, including tantrums, stubbornness, and stereotypy. Whether these behaviors simply reflect the multiple disabilities found in some developmentally impaired individuals with or without OCRL, or a specific genetically-determined behavioral phenotype of OCRL, is unknown. Controls were matched for sex, age, visual impairment, and adaptive functioning and compared with OCRL patients on three standardized measures of adaptive/maladaptive behaviors. Forty-three matched pairs of OCRL and control subjects were identified. Both groups were similar in communication, daily living, socialization, and motor skills, in socioeconomic status, and in measures of parental stress. Individuals with OCRL displayed significantly more severe maladaptive behaviors than control boys, as measured by the Vineland Adaptive Behavior Scales (VABS), with 41% of the difference between the two groups attributable to the diagnosis of OCRL. Twelve maladaptive behaviors measured on the VABS appeared more frequently in OCRL than in controls. Five of these 12 behaviors, i.e., temper tantrums, irritability, complex repetitive behaviors (stereotypy)/mannerisms, obsessions/unusual preoccupations, and negativism, were identified by discriminant function analysis to significantly distinguish between controls and OCRL individuals. The diagnosis of OCRL is associated with a behavioral phenotype consisting of temper tantrums, stereotypy, stubbornness, and obsessions/unusual preoccupations. This phenotype cannot be attributed solely to the visual, motor, and intellectual disabilities characteristic of OCRL, and may represent a specific effect of the OCRL gene on the central nervous system. 57 refs., 5 tabs.

  8. Rats overexpressing the dopamine transporter display behavioral and neurobiological abnormalities with relevance to repetitive disorders

    PubMed Central

    Hadar, Ravit; Edemann-Callesen, Henriette; Reinel, Claudia; Wieske, Franziska; Voget, Mareike; Popova, Elena; Sohr, Reinhard; Avchalumov, Yosef; Priller, Josef; van Riesen, Christoph; Puls, Imke; Bader, Michael; Winter, Christine

    2016-01-01

    The dopamine transporter (DAT) plays a pivotal role in maintaining optimal dopamine signaling. DAT-overactivity has been linked to various neuropsychiatric disorders yet so far the direct pathological consequences of it has not been fully assessed. We here generated a transgenic rat model that via pronuclear microinjection overexpresses the DAT gene. Our results demonstrate that DAT-overexpression induces multiple neurobiological effects that exceeded the expected alterations in the corticostriatal dopamine system. Furthermore, transgenic rats specifically exhibited behavioral and pharmaco-therapeutic profiles phenotypic of repetitive disorders. Together our findings suggest that the DAT rat model will constitute a valuable tool for further investigations into the pathological influence of DAT overexpression on neural systems relevant to neuropsychiatric disorders. PMID:27974817

  9. Characterization of a 5.8-Mb interstitial deletion of chromosome 3p in a girl with 46,XX,inv(7)dn karyotype and phenotypic abnormalities.

    PubMed

    Morales, C; Mademont-Soler, I; Armengol, L; Milà, M; Badenas, C; Andrés, S; Soler, A; Sánchez, A

    2009-01-01

    Interstitial deletions of the short arm of chromosome 3 are rare, and a specific clinical phenotype has not been defined. We report the first isolated cryptic proximal interstitial 3p deletion, del(3)(p12.3p13), assessed by array-based comparative genomic hybridization in a girl with an inversion of chromosome 7, whose phenotype includes neurodevelopmental delay, growth retardation, dysmorphic facial features, hypophysis hypoplasia, gastroesophageal reflux, clinodactyly, preauricular appendix, and myopia. Her features are similar to those observed in the previously reported cases of proximal 3p deletions overlapping with our imbalance, indicating that her clinical manifestations are likely to be due to the deletion. As our patient's imbalance is the first non-cytogenetically visible proximal interstitial 3p deletion uncomplicated by other imbalances, its characterization has allowed us to narrow the minimal deletion interval associated with growth retardation and neurodevelopmental delay to the 3p12.3-p13 region. Among the genes found in this region, ROBO1, ROBO2, PDZRN3 and CNTN3 might play a role in the neurodevelopmental delay of the patient. This study provides additional evidence that cryptic imbalances anywhere along the genome can be found in patients with phenotypic abnormalities and a balanced chromosome rearrangement.

  10. Autism Spectrum and Obsessive–Compulsive Disorders: OC Behaviors, Phenotypes and Genetics

    PubMed Central

    Jacob, Suma; Landeros-Weisenberger, Angeli; Leckman, James F.

    2014-01-01

    Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive–compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive–compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual’s mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions. PMID:20029829

  11. Research Review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype.

    PubMed

    Martens, Marilee A; Wilson, Sarah J; Reutens, David C

    2008-06-01

    This review critically examines the research findings which characterize the cognitive, behavioral, and neuroanatomical features of Williams syndrome (WS). This article analyzes 178 published studies in the WS literature covering the following areas: 1) General intelligence, 2) Language skills, 3) Visuospatial and face processing skills, 4) Behavior patterns and hypersociability, 5) Musical abilities, and 6) Brain structure and function. We identify methodological issues relating to small sample size, use and type of control groups, and multiple measures of task performance. Previously described 'peaks' within the cognitive profile are closely examined to assess their veracity. This review highlights the need for methodologically sound studies that utilize multiple comparison groups, developmental trajectories, and longitudinal analyses to examine the WS phenotype, as well as those that link brain structure and function to the cognitive and behavioral phenotype of WS individuals.

  12. Expression of the phenotypic abnormality of platelet-type von Willebrand disease in a recombinant glycoprotein Ib alpha fragment.

    PubMed Central

    Murata, M; Russell, S R; Ruggeri, Z M; Ware, J

    1993-01-01

    The platelet GP Ib-IX receptor supports platelet adhesion and activation by binding to vWf in the exposed subendothelial matrix. An abnormal GP Ib-IX complex exists in platelet-type or pseudo-von Willebrand disease and has a characteristic increased affinity for soluble vWf resulting in impaired hemostatic function due to the removal of larger vWf multimers from the circulation. Genetic studies within an afflicted family have demonstrated that the disease is linked to a Gly233-->Val amino acid substitution within the alpha-subunit of the oligomeric GP Ib-IX complex (Miller, J.L., D. Cunningham, V.A. Lyle, and C. L. Finch. 1991. Proc. Natl. Acad. Sci. USA. 88:4761-4765). To evaluate the functional consequences of this mutation, we constructed a recombinant analogue of the alpha-subunit of GP Ib containing Val233. Experiments comparing molecules with either Gly233 or Val233 revealed that the Val substitution generates a molecule with increased affinity for vWf. The recombinant fragment reproduces the functional abnormality of the GP Ib-IX complex in platelet-type von Willebrand disease, thus establishing the molecular basis of the bleeding disorder within this family. Moreover, it becomes apparent that structural elements responsible for the regulation of hemostasis through modulation of vWf affinity for platelets reside within the alpha-subunit of the GP Ib-IX complex. Images PMID:8486780

  13. Normal and Abnormal Development of Motor Behavior: Lessons From Experiments in Rats

    PubMed Central

    Gramsbergen, Albert

    2001-01-01

    In this essay a few relevant aspects of the neural and behavioral development of the brain in the human and in the rat are reviewed and related to the consequences of lesions in the central and peripheral nervous system at early and later age. Movements initially are generated by local circuits in the spinal cord and without the involvement of descending projections. After birth, both in humans and in rats it seems that the devlopment of postural control is the limiting factor for several motor behaviors to mature. Strong indications exist that the cerebellum is significantly involved in this control. Lesions in the CNS at early stages interfere with fundamental processes of neural development, such as the establishment of fiber connections and cell death patterns. Consequently, the functional effects are strongly dependent on the stage of development. The young and undisturbed CNS, on the other hand, has a much greater capacity than the adult nervous system for compensating abnormal reinnervation in the peripheral nervous system. Animal experiments indicated that the cerebellar cortex might play an important part in this compensation. This possibility should be investigated further as it might offer important perspectives for treatment in the human. PMID:11530886

  14. Opposite variations in fumarate and malate dominate metabolic phenotypes of Arabidopsis salicylate mutants with abnormal biomass under chilling.

    PubMed

    Scott, Ian M; Ward, Jane L; Miller, Sonia J; Beale, Michael H

    2014-12-01

    In chilling conditions (5°C), salicylic acid (SA)-deficient mutants (sid2, eds5 and NahG) of Arabidopsis thaliana produced more biomass than wild type (Col-0), whereas the SA overproducer cpr1 was extremely stunted. The hypothesis that these phenotypes were reflected in metabolism was explored using 600 MHz (1) H nuclear magnetic resonance (NMR) analysis of unfractionated polar shoot extracts. Biomass-related metabolic phenotypes were identified as multivariate data models of these NMR 'fingerprints'. These included principal components that correlated with biomass. Also, partial least squares-regression models were found to predict the relative size of plants in previously unseen experiments in different light intensities, or relative size of one genotype from the others. The dominant signal in these models was fumarate, which was high in SA-deficient mutants, intermediate in Col-0 and low in cpr1 at 5°C. Among signals negatively correlated with biomass, malate was prominent. Abundance of transcripts of the FUM2 cytosolic fumarase (At5g50950) showed strong positive correlation with fumarate levels and with biomass, whereas no significant differences were found for the FUM1 mitochondrial fumarase (At2g47510). It was confirmed that the morphological effects of SA under chilling find expression in the metabolome, with a role of fumarate highlighted.

  15. Generating Phenotypical Erroneous Human Behavior to Evaluate Human-automation Interaction Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.

    2012-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914

  16. Humans display a reduced set of consistent behavioral phenotypes in dyadic games.

    PubMed

    Poncela-Casasnovas, Julia; Gutiérrez-Roig, Mario; Gracia-Lázaro, Carlos; Vicens, Julian; Gómez-Gardeñes, Jesús; Perelló, Josep; Moreno, Yamir; Duch, Jordi; Sánchez, Angel

    2016-08-01

    Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals' behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals' actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications.

  17. Humans display a reduced set of consistent behavioral phenotypes in dyadic games

    PubMed Central

    Poncela-Casasnovas, Julia; Gutiérrez-Roig, Mario; Gracia-Lázaro, Carlos; Vicens, Julian; Gómez-Gardeñes, Jesús; Perelló, Josep; Moreno, Yamir; Duch, Jordi; Sánchez, Angel

    2016-01-01

    Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals’ behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals’ actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications. PMID:27532047

  18. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities

    PubMed Central

    Wöhr, M; Orduz, D; Gregory, P; Moreno, H; Khan, U; Vörckel, K J; Wolfer, D P; Welzl, H; Gall, D; Schiffmann, S N; Schwaller, B

    2015-01-01

    Gene mutations and gene copy number variants are associated with autism spectrum disorders (ASDs). Affected gene products are often part of signaling networks implicated in synapse formation and/or function leading to alterations in the excitation/inhibition (E/I) balance. Although the network of parvalbumin (PV)-expressing interneurons has gained particular attention in ASD, little is known on PV's putative role with respect to ASD. Genetic mouse models represent powerful translational tools for studying the role of genetic and neurobiological factors underlying ASD. Here, we report that PV knockout mice (PV−/−) display behavioral phenotypes with relevance to all three core symptoms present in human ASD patients: abnormal reciprocal social interactions, impairments in communication and repetitive and stereotyped patterns of behavior. PV-depleted mice also showed several signs of ASD-associated comorbidities, such as reduced pain sensitivity and startle responses yet increased seizure susceptibility, whereas no evidence for behavioral phenotypes with relevance to anxiety, depression and schizophrenia was obtained. Reduced social interactions and communication were also observed in heterozygous (PV+/−) mice characterized by lower PV expression levels, indicating that merely a decrease in PV levels might be sufficient to elicit core ASD-like deficits. Structural magnetic resonance imaging measurements in PV−/− and PV+/− mice further revealed ASD-associated developmental neuroanatomical changes, including transient cortical hypertrophy and cerebellar hypoplasia. Electrophysiological experiments finally demonstrated that the E/I balance in these mice is altered by modification of both inhibitory and excitatory synaptic transmission. On the basis of the reported changes in PV expression patterns in several, mostly genetic rodent models of ASD, we propose that in these models downregulation of PV might represent one of the points of convergence, thus

  19. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish.

    PubMed

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-02-15

    At date the major neuroreceptors i.e. gamma-aminobutyric acid(A) (GABA(A)R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA(A)R agonist (muscimol, MUS; 0.1 microg/g body weight) and/or its antagonist bicuculline (BIC; 1 microg/g body weight) have corroborated a GABA(A)ergic role on motor behaviors. In particular, MUS induced moderate (p<0.05) and great (p<0.01) increases of swimming towards food sources and resting states after 24 (1 dose) and 96 (4 doses) h treatment sessions, respectively, when compared to controls. Conversely, BIC caused a very strong (p<0.001) reduction of the former behavior and in some cases convulsive swimming. From the correlation of BIC-dependent behavioral changes to neuronal morphological and ORXR transcriptional variations, it appeared that the disinhibitory action of GABA(A)R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS+BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA(A)R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  20. [Abnormal behavior and adaptation problems in dogs and cats and their pharmacologic control].

    PubMed

    Jöchle, W

    1998-11-01

    Small animal practitioners are increasingly confronted with patients showing adaptation related problems (ARP) which are expressed as disturbed or abnormal behavior (DAB). As a result, practitioners are asked increasingly to euthanize animals which seemingly cannot be socialized. In healthy dogs and cats, three main causes for DAB can be detected: refusal of obedience because of the drive for dominance; anxiety and frustration; and geriatric DAB. Increasingly, disease conditions not readily diagnosed can cause DAB, especially hypothyroidism. Influencing and contributing factors to DAB are breed, sex, experiences as a puppy, behavior of owners, changes in the pet's environment. ARPs may also cause disturbances in the condition of skin and fur, e.g. atopic dermatitis, pruritus sine materia, lick granuloma, and of the intestinal organs (vomiting, irritated bowel syndrome) and may result in an immune deficiency. Therapeutic approaches include behavioral therapy, surgical or hormonal castration with progestins or antiandrogens, substitution with thyroxin in cases with hypothyroidism, and/or the use of psychopharmaca, most prominently of modern antidepressiva like amitriptyline; buspirone; clomipramine and fluoxetine, but also of selegiline, a mono-aminoxydase inhibitor. These compounds, among other effects, are elevating prolactin levels. This seems to allow to formulate a working hypothesis: in the canine species, prolactin is obviously a hormone enabling socialization; hence all drugs which safely cause an increase in prolactin production might be suitable to manage or control ARPs and DAB in the dog, but also in the cat. Higher levels of prolactin than those required for socialization, as seen in nursing bitches or some clinically overt cases of pseudopregnancy, may cause maternal aggression and can be controlled with prolactin inhibitors, if needed.

  1. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    SciTech Connect

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-02-15

    At date the major neuroreceptors i.e. gamma-aminobutyric acid{sub A} (GABA{sub A}R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA{sub A}R agonist (muscimol, MUS; 0,1 mug/g body weight) and/or its antagonist bicuculline (BIC; 1 mug/g body weight) have corroborated a GABA{sub A}ergic role on motor behaviors. In particular, MUS induced moderate (p < 0.05) and great (p < 0.01) increases of swimming towards food sources and resting states after 24 (1 dose) and 96 (4 doses) h treatment sessions, respectively, when compared to controls. Conversely, BIC caused a very strong (p < 0.001) reduction of the former behavior and in some cases convulsive swimming. From the correlation of BIC-dependent behavioral changes to neuronal morphological and ORXR transcriptional variations, it appeared that the disinhibitory action of GABA{sub A}R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA{sub A}R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  2. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    SciTech Connect

    Kaisho, Yoshihiko . E-mail: Kaisho_Yoshihiko@takeda.co.jp; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-05-13

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.

  3. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions

    PubMed Central

    2015-01-01

    Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments. In the second part, we discuss types of quantitative

  4. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  5. Behavioral and Neurotransmitter Abnormalities in Mice Deficient for Parkin, DJ-1 and Superoxide Dismutase

    PubMed Central

    Hennis, Meghan R.; Seamans, Katherine W.; Marvin, Marian A.; Casey, Bradford H.; Goldberg, Matthew S.

    2013-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin-/-DJ-1-/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities. PMID:24386432

  6. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder.

    PubMed

    Blackmon, Karen; Ben-Avi, Emma; Wang, Xiuyuan; Pardoe, Heath R; Di Martino, Adriana; Halgren, Eric; Devinsky, Orrin; Thesen, Thomas; Kuzniecky, Ruben

    2016-01-01

    Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD) than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typically developing controls (TDC). Data from a primary sample of 48 children/young adults with ASD and 48 age-, and gender-matched TDCs, selected from the Autism Brain Imaging Data Exchange (ABIDE) open-access database, were analyzed to compare groups on (1) blinded review of high-resolution T1-weighted research sequences; and (2) quantitative measurement of white matter hypointensity (WMH) volume calculated from the same T1-weighted scans. Groupwise WMH volume comparisons were repeated in an independent, multi-site sample (80 ASD/80 TDC), also selected from ABIDE. Visual review resulted in equivalent proportions of imaging abnormalities in the ASD and TDC group. However, quantitative analysis revealed elevated periventricular and deep subcortical WMH volumes in ASD. This finding was replicated in the independent, multi-site sample. Periventricular WMH volume was not associated with age but was associated with greater restricted repetitive behaviors on both parent-reported and clinician-rated assessment inventories. Thus, findings demonstrate that periventricular WMH volume is elevated in ASD and associated with a higher degree of repetitive behaviors and restricted interests. Although the etiology of focal WMH clusters is unknown, the absence of age effects suggests that they may reflect a static anomaly.

  7. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder

    PubMed Central

    Blackmon, Karen; Ben-Avi, Emma; Wang, Xiuyuan; Pardoe, Heath R.; Di Martino, Adriana; Halgren, Eric; Devinsky, Orrin; Thesen, Thomas; Kuzniecky, Ruben

    2015-01-01

    Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD) than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typically developing controls (TDC). Data from a primary sample of 48 children/young adults with ASD and 48 age-, and gender-matched TDCs, selected from the Autism Brain Imaging Data Exchange (ABIDE) open-access database, were analyzed to compare groups on (1) blinded review of high-resolution T1-weighted research sequences; and (2) quantitative measurement of white matter hypointensity (WMH) volume calculated from the same T1-weighted scans. Groupwise WMH volume comparisons were repeated in an independent, multi-site sample (80 ASD/80 TDC), also selected from ABIDE. Visual review resulted in equivalent proportions of imaging abnormalities in the ASD and TDC group. However, quantitative analysis revealed elevated periventricular and deep subcortical WMH volumes in ASD. This finding was replicated in the independent, multi-site sample. Periventricular WMH volume was not associated with age but was associated with greater restricted repetitive behaviors on both parent-reported and clinician-rated assessment inventories. Thus, findings demonstrate that periventricular WMH volume is elevated in ASD and associated with a higher degree of repetitive behaviors and restricted interests. Although the etiology of focal WMH clusters is unknown, the absence of age effects suggests that they may reflect a static anomaly. PMID:26693400

  8. Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

    PubMed

    Wu, Jian; Kakoola, Dorothy N; Lenchik, Nataliya I; Desiderio, Dominic M; Marshall, Dana R; Gerling, Ivan C

    2012-01-01

    Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse--a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (~90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes.

  9. Compound heterozygous desmoplakin mutations result in a phenotype with a combination of myocardial, skin, hair, and enamel abnormalities.

    PubMed

    Mahoney, My G; Sadowski, Sara; Brennan, Donna; Pikander, Pekka; Saukko, Pekka; Wahl, James; Aho, Heikki; Heikinheimo, Kristiina; Bruckner-Tuderman, Leena; Fertala, Andrzej; Peltonen, Juha; Uitto, Jouni; Peltonen, Sirkku

    2010-04-01

    Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses.

  10. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2

    PubMed Central

    Hoffman, Ellen J.; Turner, Katherine J.; Fernandez, Joseph M.; Cifuentes, Daniel; Ghosh, Marcus; Ijaz, Sundas; Jain, Roshan A.; Kubo, Fumi; Bill, Brent R.; Baier, Herwig; Granato, Michael; Barresi, Michael J. F.; Wilson, Stephen W.; Rihel, Jason; State, Matthew W.; Giraldez, Antonio J.

    2016-01-01

    Summary Autism spectrum disorders (ASD) are a group of devastating neurodevelopmental syndromes that affect up to 1 in 68 children. Despite advances in the identification of ASD risk genes, the mechanisms underlying ASD remain unknown. Homozygous loss-of-function mutations in Contactin Associated Protein-like 2 (CNTNAP2) are strongly linked to ASD. Here we investigate the function of Cntnap2 and undertake pharmacological screens to identify phenotypic suppressors. We find that zebrafish cntnap2 mutants display GABAergic deficits particularly in the forebrain and sensitivity to drug-induced seizures. High-throughput behavioral profiling identifies nighttime hyperactivity in cntnap2 mutants, while pharmacological testing reveals dysregulation of GABAergic and glutamatergic systems. Finally, we find that estrogen receptor agonists elicit a behavioral fingerprint anti-correlative to that of cntnap2 mutants and show that the phytoestrogen biochanin A specifically reverses the mutant behavioral phenotype. These results identify estrogenic compounds as phenotypic suppressors and illuminate novel pharmacological pathways with relevance to autism. PMID:26833134

  11. Abnormal MicroRNA Expression in Ts65Dn Hippocampus and Whole Blood: Contributions to Down Syndrome Phenotypes

    PubMed Central

    Keck-Wherley, Jennifer; Grover, Deepak; Bhattacharyya, Sharmistha; Xu, Xiufen; Holman, Derek; Lombardini, Eric D.; Verma, Ranjana; Biswas, Roopa; Galdzicki, Zygmunt

    2011-01-01

    Down syndrome (DS; trisomy 21) is one of the most common genetic causes of intellectual disability, which is attributed to triplication of genes located on chromosome 21. Elevated levels of several microRNAs (miRNAs) located on chromosome 21 have been reported in human DS heart and brain tissues. The Ts65Dn mouse model is the most investigated DS model with a triplicated segment of mouse chromosome 16 harboring genes orthologous to those on human chromosome 21. Using ABI TaqMan miRNA arrays, we found a set of miRNAs that were significantly up- or downregulated in the Ts65Dn hippocampus compared to euploid controls. Furthermore, miR-155 and miR-802 showed significant overexpression in the Ts65Dn hippocampus, thereby confirming results of previous studies. Interestingly, miR-155 and miR-802 were also overexpressed in the Ts65Dn whole blood but not in lung tissue. We also found overexpression of the miR-155 precursors, pri- and pre-miR-155 derived from the miR-155 host gene, known as B cell integration cluster, suggesting enhanced biogenesis of miR-155. Bioinformatic analysis revealed that neurodevelopment, differentiation of neuroglia, apoptosis, cell cycle, and signaling pathways including ERK/MAPK, protein kinase C, phosphatidylinositol 3-kinase, m-TOR and calcium signaling are likely targets of these miRNAs. We selected some of these potential gene targets and found downregulation of mRNA encoding Ship1, Mecp2 and Ezh2 in Ts65Dn hippocampus. Interestingly, the miR-155 target gene Ship1 (inositol phosphatase) was also downregulated in Ts65Dn whole blood but not in lung tissue. Our findings provide insights into miRNA-mediated gene regulation in Ts65Dn mice and their potential contribution to impaired hippocampal synaptic plasticity and neurogenesis, as well as hemopoietic abnormalities observed in DS. PMID:22042248

  12. Phenotyping of aggressive behavior in golden retriever dogs with a questionnaire.

    PubMed

    van den Berg, L; Schilder, M B H; de Vries, H; Leegwater, P A J; van Oost, B A

    2006-11-01

    Reliable and valid phenotyping is crucial for our study of genetic factors underlying aggression in Golden Retriever dogs. A mail questionnaire based on the Canine Behavioral Assessment and Research Questionnaire (CBARQ; Hsu and Serpell, 2003, JAVMA 223(9):1293-1300) was used to assess behavioral phenotypes. Owners of 228 Golden Retrievers completed the questionnaire. These dogs had been referred to our clinic for aggression problems several years earlier or they were related to aggressive dogs. In this paper, three sets of results are presented, which indicate that behavior scores from the CBARQ can be applied to genetic studies. First, factor analysis demonstrated that CBARQ items can be grouped into 10 behavioral traits, including three types of aggression: stranger-directed aggression, owner-directed aggression, and dog-directed aggression. The results were remarkably similar to those reported by Hsu and Serpell. The aggression scores showed considerable variation in our dog families, which is a prerequisite for genetic studies. Second, retrospective questions enabled us to study changes in the aggressive behavior of the dogs in the course of time. After an average time interval of 4.3 years, over 50% of the dogs had become less aggressive. Third, we analyzed data obtained with an aggression test of 83 dogs. Two out of the three CBARQ aggression factors were also found in the aggression test data.

  13. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish

    PubMed Central

    Grone, Brian P.; Marchese, Maria; Hamling, Kyla R.; Kumar, Maneesh G.; Krasniak, Christopher S.; Sicca, Federico; Santorelli, Filippo M.; Patel, Manisha; Baraban, Scott C.

    2016-01-01

    Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations. PMID:26963117

  14. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction.

    PubMed

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Parvaz, Muhammad A; Alia-Klein, Nelly; Volkow, Nora D; Goldstein, Rita Z

    2012-10-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie the maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction.

  15. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction

    PubMed Central

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Parvaz, Muhammad A.; Alia-Klein, Nelly; Volkow, Nora D.; Goldstein, Rita Z.

    2012-01-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) which was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction. PMID:22775285

  16. The Spectrum of the Behavioral Phenotype in Boys and Adolescents 47,XXY (Klinefelter Syndrome)

    PubMed Central

    Tartaglia, Nicole; Cordeiro, Lisa; Howell, Susan; Wilson, Rebecca; Janusz, Jennifer

    2013-01-01

    The behavioral phenotype of 47,XXY (Klinefelter syndrome) includes increased risks for developmental delays, language-based learning disabilities, executive dysfunction/ADHD, and social-emotional difficulties. However there is significant variability between individuals with 47,XXY, and many children and adolescents have minimal or no behavioral features while others have quite significant involvement. This paper describes behavioral features in a cohort of 57 children and adolescents with 47,XXY, including results on standardized measures of behavior (BASC-2), attention (Conner’s Rating Scales), and social skills (Social Responsiveness Scale). A subset was directly assessed for autism spectrum disorders using the ADOS and ADI-R. We discuss our results within the context of previous literature, including implications for genetic counseling, recommendations for care, and areas for future research. PMID:21217607

  17. The behavioral phenotype in MECP2 duplication syndrome: A comparison to idiopathic autism

    PubMed Central

    Peters, Sarika U.; Hundley, R. J.; Wilson, A.K.; Warren, Z.; Vehorn, A.; Carvalho, C.; Lupski, J.R.; Ramocki, M.B.

    2012-01-01

    Alterations in the X-linked gene MECP2 encoding the methyl-CpG-binding protein 2 (MeCP2) have been linked to autism spectrum disorders (ASD). Most recently, data suggest that overexpression of MECP2 may be related to ASD. To better characterize the relevance of MECP2 overexpression to ASD-related behaviors, we compared the core symptoms of ASD in MECP2 duplication syndrome to nonverbal-mental-age-matched boys with idiopathic ASD. Within the MECP2 duplication group we further delineated aspects of the behavioral phenotype, and also examined how duplication size and gene content corresponded to clinical severity. We compared 10 males with MECP2 duplication syndrome (ages 3–10) to a chronological and mental age-matched sample of 9 nonverbal males with idiopathic ASD. Our results indicate that boys with MECP2 duplication syndrome share the core behavioral features of ASD (e.g. social affect, restricted/repetitive behaviors). Direct comparisons of ASD profiles revealed that a majority of boys with MECP2 duplication syndrome are similar to idiopathic ASD; they have impairments in social affect (albeit to a lesser degree than idiopathic ASD) and similar severity in restricted/repetitive behaviors. Nonverbal mental age did not correlate with severity of social impairment or repetitive behaviors. Within the MECP2 duplication group, breakpoint size does not predict differences in clinical severity. In addition to social withdrawal and stereotyped behaviors, we also found that hyposensitivity to pain/temperature are part of the behavioral phenotype of MECP2 duplication syndrome. Our results illustrate that overexpression/increased dosage of MECP2 is related to core features of ASD. PMID:23169761

  18. The Clinical Phenotype of Idiopathic Rapid Eye Movement Sleep Behavior Disorder at Presentation: A Study in 203 Consecutive Patients

    PubMed Central

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Santamaria, Joan

    2016-01-01

    Objective: To describe the clinical phenotype of idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) at presentation in a sleep center. Methods: Clinical history review of 203 consecutive patients with IRBD identified between 1990 and 2014. IRBD was diagnosed by clinical history plus video-polysomnographic demonstration of REM sleep with increased electromyographic activity linked to abnormal behaviors. Results: Patients were 80% men with median age at IRBD diagnosis of 68 y (range, 50–85 y). In addition to the already known clinical picture of IRBD, other important features were apparent: 44% of the patients were not aware of their dream-enactment behaviors and 70% reported good sleep quality. In most of these cases bed partners were essential to convince patients to seek medical help. In 11% IRBD was elicited only after specific questioning when patients consulted for other reasons. Seven percent did not recall unpleasant dreams. Leaving the bed occurred occasionally in 24% of subjects in whom dementia with Lewy bodies often developed eventually. For the correct diagnosis of IRBD, video-polysomnography had to be repeated in 16% because of insufficient REM sleep or electromyographic artifacts from coexistent apneas. Some subjects with comorbid obstructive sleep apnea reported partial improvement of RBD symptoms following continuous positive airway pressure therapy. Lack of therapy with clonazepam resulted in an increased risk of sleep related injuries. Synucleinopathy was frequently diagnosed, even in patients with mild severity or uncommon IRBD presentations (e.g., patients who reported sleeping well, onset triggered by a life event, nocturnal ambulation) indicating that the development of a neurodegenerative disease is independent of the clinical presentation of IRBD. Conclusions: We report the largest IRBD cohort observed in a single center to date and highlight frequent features that were not reported or not sufficiently emphasized in previous

  19. Generational Association Studies of Dopaminergic Genes in Reward Deficiency Syndrome (RDS) Subjects: Selecting Appropriate Phenotypes for Reward Dependence Behaviors

    PubMed Central

    Blum, Kenneth; Chen, Amanda L. C.; Oscar-Berman, Marlene; Chen, Thomas J. H.; Lubar, Joel; White, Nancy; Lubar, Judith; Bowirrat, Abdalla; Braverman, Eric; Schoolfield, John; Waite, Roger L.; Downs, Bernard W.; Madigan, Margaret; Comings, David E.; Davis, Caroline; Kerner, Mallory M.; Knopf, Jennifer; Palomo, Tomas; Giordano, John J.; Morse, Siobhan A.; Fornari, Frank; Barh, Debmalya; Femino, John; Bailey, John A.

    2011-01-01

    Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific “reward” phenotype may

  20. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions?

    PubMed Central

    Hall, F. Scott; Perona, Maria T. G.

    2012-01-01

    This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448

  1. Defining the Social Phenotype in Williams Syndrome: A Model for Linking Gene, the Brain, and Behavior

    PubMed Central

    Järvinen-Pasley, Anna; Bellugi, Ursula; Reilly, Judy; Mills, Debra L.; Galaburda, Albert; Reiss, Allan L.; Korenberg, Julie R.

    2010-01-01

    Research into phenotype-genotype correlations in neurodevelopmental disorders has greatly elucidated the contribution of genetic and neurobiological factors to variations in typical and atypical development. Etiologically relatively homogeneous disorders, such as Williams syndrome (WS), provide unique opportunities for elucidating gene-brain-behavior relationships. WS is a neurogenetic disorder, caused by a hemizygous deletion of approximately 25 genes on chromosome 7q11.23. This results in a cascade of physical, cognitive-behavioral, affective, and neurobiological aberrations. WS is associated with a markedly uneven neurocognitive profile, and the mature state cognitive profile of WS is relatively well developed. Although anecdotally, individuals with WS have been frequently described as unusually friendly and sociable, personality remains a considerably less well-studied area. This paper investigates genetic influences, cognitive-behavioral characteristics, aberrations in brain structure and function, and environmental and biological variables that influence the social outcomes of individuals with WS. We bring together a series of findings across multiple levels of scientific enquiry to examine the social phenotype in WS, reflecting the journey from gene to the brain to behavior. Understanding the complex multilevel scientific perspective in WS has implications for understanding typical social development by identifying important developmental events and markers, as well as helping to define the boundaries of psychopathology. PMID:18211726

  2. Serotonergic involvement in the amelioration of behavioral abnormalities in dopamine transporter knockout mice by nicotine.

    PubMed

    Uchiumi, Osamu; Kasahara, Yoshiyuki; Fukui, Asami; Hall, F Scott; Uhl, George R; Sora, Ichiro

    2013-01-01

    Dopamine transporter knockout (DAT KO) mice exhibit elevated extracellular dopamine levels in brain regions that include the striatum and the nucleus accumbens, but not the prefrontal cortex. DAT KO mice model some aspects of psychiatric disorders, including schizophrenia. Smoking is more common in patients with schizophrenia, suggesting that nicotine might ameliorate aspects of the behavioral abnormalities and/or treatment side effects seen in these individuals. We report nicotine-induced normalization of effects on locomotion and prepulse inhibition of acoustic startle (PPI) in DAT KO mice that require intact serotonin 5-HT1A systems. First, we observed that the marked hyperactivity displayed by DAT KO mice was reduced by administration of nicotine. This nicotine effect was blocked by pretreatment with the non-specific nicotinic acetylcholine (nACh) receptor antagonist mecamylamine, or the 5-HT1A antagonist WAY100635. Secondly, we examined the effects of nicotine on PPI in DAT KO mice. Treatment with nicotine significantly ameliorated the PPI deficits observed in DAT KO mice. The ameliorating action of nicotine on PPI deficits in DAT KO mice was blocked by mecamylamine, the α₇ nACh receptor antagonist methyllycaconitine or WAY100635, while the α₄β₂ nACh receptor antagonist dihydro-β-erythroidinehydrobromide (DHβE) produced only a non-significant trend toward attenuation of nicotine effects. Finally, we observed that administration of the 5-HT1A receptor agonist 8-OH-DPAT also ameliorated the deficit in PPI observed in DAT KO mice. This amelioration was antagonized by pretreatment with WAY100635. These data support the idea that nicotine might ameliorate some of the cognitive dysfunctions found in schizophrenia in a 5-HT1A-dependent fashion. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  3. High cognitive functioning and behavioral phenotype in Pallister-Killian syndrome.

    PubMed

    Stalker, Heather J; Gray, B A; Bent-Williams, A; Zori, R T

    2006-09-15

    Pallister-Killian syndrome (PKS) is a rare syndrome of multiple congenital anomalies attributable to the presence of a mosaic supernumerary isochromosome 12p. The syndrome presents with a recognizable pattern of findings including: pigmentary skin changes, characteristic facial features (sparse anterior scalp hair, flattened midface, macrostomia, and coarsening of the facial features), and developmental delay. The developmental phenotype of PKS is quite variable, but most are considered to fall into the profound range of developmental retardation. We report on an individual with classical features of PKS with development significantly better than that reported in the literature. Developmental and behavioral testing in this individual alters the range of developmental expectation in PKS, and highlights the need for consideration of chromosomal analysis in individuals with normal or near-normal intelligence if other physical phenotypic features of PKS are present.

  4. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

    PubMed Central

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634

  5. The Family Context of Autism Spectrum Disorders: Influence on the Behavioral Phenotype and Quality of Life

    PubMed Central

    Smith, Leann E.; Greenberg, Jan; Mailick, Marsha R.

    2013-01-01

    Synopsis In this review, we report the findings from our longitudinal program of research examining the bidirectional influences of the family environment on the behavioral phenotype of autism, and describe a newly developed family psychoeducation program, titled Transitioning Together, designed to reduce family stress, address behavior problems, and improve the overall quality of life of adolescents with autism and their families. In our search for characteristics of the family environment that influence the behavioral phenotype of adolescents and adults with autism, we focus on both positive dimensions of family life, such as warmth and positive remarks that may promote adaptive behavior in individuals with autism, as well as negative dimensions, such as high levels of criticism that may result in an escalation of behavior problems. We find that high levels of maternal warmth and positive remarks are associated with the abatement of behavior problems over time, while high levels of maternal criticism are associated with increasing levels of behavior problems in adolescents and adults with autism. These patterns of relationships have been replicated in a longitudinal study of families of children and adolescents with fragile X syndrome, and are consistent with other studies examining the impact of the family on the behavior of children with developmental disabilities. These findings suggest that the family environment is an important target for interventions not only to reduce family stress but also to improve the behavioral functioning of children, adolescents or adults with ASD. Building upon a well-developed intervention for families of individuals with psychiatric conditions, we report on the development of Transitioning Together, a psychoeducation program targeted to families with adolescents with autism who are approaching high school exit, a difficult transition stage for individuals with autism that is often marked by negative changes in behavior problems

  6. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    PubMed Central

    Donti, Taraka R.; Stromberger, Carmen; Ge, Ming; Eldin, Karen W.; Craigen, William J.; Graham, Brett H.

    2014-01-01

    ABSTRACT Mutations in subunits of succinyl-CoA synthetase/ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo), which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%). However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs) demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction. PMID:24271779

  7. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    PubMed

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  8. Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype.

    PubMed

    Pacelli, Consiglia; Coluccia, Addolorata; Grattagliano, Ignazio; Cocco, Tiziana; Petrosillo, Giuseppe; Paradies, Giuseppe; De Nitto, Emanuele; Massaro, Antonio; Persichella, Michele; Borracci, Pietro; Portincasa, Piero; Carratù, Maria Rosaria

    2010-06-01

    Dietary choline deprivation (CD) is associated with behavioral changes, but mechanisms underlying these detrimental effects are not well characterized. For instance, no literature data are available concerning the CD effects on brain mitochondrial function related to impairment in cognition. Therefore, we investigated brain mitochondrial function and redox status in male Wistar rats fed a CD diet for 28 d. Moreover, the CD behavioral phenotype was characterized. Compared with rats fed a control diet (CTRL), CD rats showed lower NAD-dependent mitochondrial state III and state IV respiration, 40% lower complex I activity, and significantly higher reactive oxygen species production. Total glutathione was oxidatively consumed more in CD than in CTRL rats and the rate of protein oxidation was 40% higher in CD than in CTRL rats, reflecting an oxidative stress condition. The mitochondrial concentrations of cardiolipin, a phospholipid required for optimal activity of complex I, was 20% lower in CD rats than in CTRL rats. Compared with CTRL rats, the behavioral phenotype of CD rats was characterized by impairment in motor coordination and motor learning assessed with the rotarod/accelerod test. Furthermore, compared with CTRL rats, CD rats were less capable of learning the active avoidance task and the number of attempts they made to avoid foot shock was fewer. The results suggest that CD-induced dysfunction in brain mitochondria may be responsible for impairment in cognition and underline that, similar to the liver, the brain also needs an adequate choline supply for its normal functioning.

  9. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities

    PubMed Central

    Sago, Haruhiko; Carlson, Elaine J.; Smith, Desmond J.; Kilbridge, Joshua; Rubin, Edward M.; Mobley, William C.; Epstein, Charles J.; Huang, Ting-Ting

    1998-01-01

    A mouse model for Down syndrome, Ts1Cje, has been developed. This model has made possible a step in the genetic dissection of the learning, behavioral, and neurological abnormalities associated with segmental trisomy for the region of mouse chromosome 16 homologous with the so-called “Down syndrome region” of human chromosome segment 21q22. Tests of learning in the Morris water maze and assessment of spontaneous locomotor activity reveal distinct learning and behavioral abnormalities, some of which are indicative of hippocampal dysfunction. The triplicated region in Ts1Cje, from Sod1 to Mx1, is smaller than that in Ts65Dn, another segmental trisomy 16 mouse, and the learning deficits in Ts1Cje are less severe than those in Ts65Dn. In addition, degeneration of basal forebrain cholinergic neurons, which was observed in Ts65Dn, was absent in Ts1Cje. PMID:9600952

  10. Mapping Loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype.

    PubMed

    Kukekova, Anna V; Trut, Lyudmila N; Chase, Kevin; Kharlamova, Anastasiya V; Johnson, Jennifer L; Temnykh, Svetlana V; Oskina, Irina N; Gulevich, Rimma G; Vladimirova, Anastasiya V; Klebanov, Simon; Shepeleva, Darya V; Shikhevich, Svetlana G; Acland, Gregory M; Lark, Karl G

    2011-07-01

    During the second part of the twentieth century, Belyaev selected tame and aggressive foxes (Vulpes vulpes), in an effort known as the "farm-fox experiment", to recapitulate the process of animal domestication. Using these tame and aggressive foxes as founders of segregant backcross and intercross populations we have employed interval mapping to identify a locus for tame behavior on fox chromosome VVU12. This locus is orthologous to, and therefore validates, a genomic region recently implicated in canine domestication. The tame versus aggressive behavioral phenotype was characterized as the first principal component (PC) of a PC matrix made up of many distinct behavioral traits (e.g. wags tail; comes to the front of the cage; allows head to be touched; holds observer's hand with its mouth; etc.). Mean values of this PC for F1, backcross and intercross populations defined a linear gradient of heritable behavior ranging from tame to aggressive. The second PC did not follow such a gradient, but also mapped to VVU12, and distinguished between active and passive behaviors. These data suggest that (1) there are at least two VVU12 loci associated with behavior; (2) expression of these loci is dependent on interactions with other parts of the genome (the genome context) and therefore varies from one crossbred population to another depending on the individual parents that participated in the cross.

  11. Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype

    PubMed Central

    Kukekova, Anna V; Trut, Lyudmila N.; Chase, Kevin; Kharlamova, Anastasiya V.; Johnson, Jennifer L.; Temnykh, Svetlana V.; Oskina, Irina N.; Gulevich, Rimma G.; Vladimirova, Anastasiya V.; Klebanov, Simon; Shepeleva, Darya V.; Shikhevich, Svetlana G.; Acland, Gregory M.; Lark, Karl G.

    2011-01-01

    During the second part of the 20th century, Belyaev selected tame and aggressive foxes (Vulpes vulpes), in an effort known as the “farm-fox experiment”, to recapitulate the process of animal domestication. Using these tame and aggressive foxes as founders of segregant backcross and intercross populations we have employed interval mapping to identify a locus for tame behavior on fox chromosome VVU12. This locus is orthologous to, and therefore validates, a genomic region recently implicated in canine domestication. The tame versus aggressive behavioral phenotype was characterized as the first principal component (PC) of a PC matrix made up of many distinct behavioral traits (e.g. wags tail; comes to the front of the cage; allows head to be touched; holds observer’s hand with its mouth; etc.). Mean values of this PC for F1, backcross and intercross populations defined a linear gradient of heritable behavior ranging from tame to aggressive. The second PC did not follow such a gradient, but also mapped to VVU12, and distinguished between active and passive behaviors. These data suggest that 1) there are at least two VVU12 loci associated with behavior; 2) expression of these loci is dependent on interactions with other parts of the genome (the genome context) and therefore varies from one crossbred population to another depending on the individual parents that participated in the cross. PMID:21153916

  12. Comprehensive Behavioral Phenotyping of Ts65Dn Mouse Model of Down Syndrome: Activation of β1-Adrenergic Receptor by Xamoterol as a Potential Cognitive Enhancer

    PubMed Central

    Faizi, Mehrdad; Bader, Patrick L.; Tun, Christine; Encarnacion, Angelo; Kleschevnikov, Alexander; Belichenko, Pavel; Saw, Nay; Priestley, Matthew; Tsien, Richard W; Mobley, William C; Shamloo, Mehrdad

    2012-01-01

    Down Syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down Syndrome display cognitive deficits which is mediated by imbalance in noradrenergic

  13. Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down syndrome: activation of β1-adrenergic receptor by xamoterol as a potential cognitive enhancer.

    PubMed

    Faizi, Mehrdad; Bader, Patrick L; Tun, Christine; Encarnacion, Angelo; Kleschevnikov, Alexander; Belichenko, Pavel; Saw, Nay; Priestley, Matthew; Tsien, Richard W; Mobley, William C; Shamloo, Mehrdad

    2011-08-01

    Down syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals. In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: (i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), (ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and (iii) social behavior. Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist. In conclusion, our results demonstrate that this mouse model of Down syndrome displays cognitive deficits which are mediated by an imbalance in the

  14. Phenotypic correlates of melanization in two Sceloporus occidentalis (Phrynosomatidae) populations: Behavior, androgens, stress reactivity, and ectoparasites.

    PubMed

    Seddon, Ryan J; Hews, Diana K

    2016-09-01

    Mechanisms underlying production of animal coloration can affect key traits besides coloration. Melanin, and molecules regulating melanin, can directly and indirectly affect other phenotypic traits including aggression, stress-reactivity, and immune function. We studied correlation of melanization with these other traits, comparing within- and between-population differences of adult male western fence lizards, Sceloporus occidentalis. We compared one high- and one low-elevation population in California where individuals are increasingly darker at higher elevations, working during comparable periods of the breeding season at each site (first egg clutch). We measured agonistic behaviors of free-ranging males in response to staged territorial intrusions (STIs). In other sets of males we measured baseline testosterone and corticosterone levels, and hormonal-reactivity to a stress handling paradigm. We counted ectoparasite loads for all males. There were no significant associations between individual variation in melanization and individual variation in any of the variables measured. However, analysis of behavior from the STIs revealed that males in the darker high-elevation population responded with more aggressive behavior compared to males in the lighter low-elevation population. Males in the low-elevation population had significantly higher mean baseline testosterone, but the two populations did not differ in adrenal function (baseline corticosterone or corticosterone after 1-h confinement stress). Males in the darker high-elevation population had higher mean mite loads compared to males in the lighter population. This array of phenotypic differences between the two populations, and the absence of trait associations when assessing individual variation, do not parallel the patterns in other vertebrates. We describe potential differences in selective regimes that could produce these different patterns across vertebrates. These data suggest that hormonal pleiotropy

  15. Is it all the X: familial learning dysfunction and the impact of behavioral aspects of the phenotypic presentation of XXY?

    PubMed

    Samango-Sprouse, Carole A; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea L

    2013-02-15

    The behavioral phenotype of children with XXY has not been extensively studied until recently and this research has been confounded by insufficient study populations and ascertainment biases. The aim of the study was to expand the behavioral aspect of the XXY phenotype as well as investigate the role of existing familial learning disabilities (FLD) on behavioral problems. Behavioral phenotype of XXY includes social anxiety, ADHD, social communication, and atypical peer interactions. The Child Behavior Checklist (CBCL), Social Responsiveness Scale (SRS), and Gilliam Autism Rating Scale (GARS) were completed by the parents of 54 boys with XXY who had not received hormonal replacement prior to participation. Our findings suggest fewer behavioral deficits and lower severity in the general 47,XXY population than previously published and found significant differences between the groups with a positive FLD on the behavioral assessments. Findings demonstrate that boys with FLD exhibit an increased incidence and severity of behavioral problems. Our study expands on the findings of Samango-Sprouse et al. [Samango-Sprouse et al. (2012b) J Intellect Disabil Res] and the significant influence that FLD has on not only neurodevelopment, but also behavioral deficits. Our study suggests that part of the XXY phenotypic profile may be modulated by FLD. Further study is underway to examine the interaction between the many salient factors effecting behavioral and neurodevelopmental progression in XXY and variant forms. © 2013 Wiley Periodicals, Inc.

  16. Insomnia Phenotypes Based on Objective Sleep Duration in Adolescents: Depression Risk and Differential Behavioral Profiles

    PubMed Central

    Fernandez-Mendoza, Julio; Calhoun, Susan L.; Vgontzas, Alexandros N.; Li, Yun; Gaines, Jordan; Liao, Duanping; Bixler, Edward O.

    2016-01-01

    Based on previous studies on the role of objective sleep duration in predicting morbidity in individuals with insomnia, we examined the role of objective sleep duration in differentiating behavioral profiles in adolescents with insomnia symptoms. Adolescents from the Penn State Child Cohort (n = 397, ages 12–23, 54.7% male) underwent a nine-hour polysomnography (PSG), clinical history, physical examination and psychometric testing, including the Child or Adult Behavior Checklist and Pediatric Behavior Scale. Insomnia symptoms were defined as a self-report of difficulty falling and/or staying asleep and objective “short” sleep duration as a PSG total sleep time ≤7 h. A significant interaction showed that objective short sleep duration modified the association of insomnia symptoms with internalizing problems. Consistently, adolescents with insomnia symptoms and short sleep duration were characterized by depression, rumination, mood dysregulation and social isolation, while adolescents with insomnia symptoms and normal sleep duration were characterized by rule-breaking and aggressive behaviors and, to a lesser extent, rumination. These findings indicate that objective sleep duration is useful in differentiating behavioral profiles among adolescents with insomnia symptoms. The insomnia with objective short sleep duration phenotype is associated with an increased risk of depression earlier in the lifespan than previously believed. PMID:27983580

  17. Postanesthetic Effects of Isoflurane on Behavioral Phenotypes of Adult Male C57BL/6J Mice

    PubMed Central

    Asakura, Ayako; Kobayashi, Ayako; Takase, Kenkichi; Goto, Takahisa

    2015-01-01

    Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depression test battery, sociability test battery, attention test battery, and learning test battery, which were started 7 days after anesthesia with 1.8% isoflurane. In addition to the control group, we included a yoked control group that was exposed to the same stress of handling as the isoflurane-treated animals before being anesthetized. Our comprehensive behavioral test batteries revealed impaired latent inhibition in the isoflurane-treated group, but the concentration of residual isoflurane in the brain was presumably negligible. The yoked control group and isoflurane-treated group exhibited higher anxiety in the elevated plus-maze test and impaired learning function in the cued fear conditioning test. No influences were observed in sensory functions, motor functions, antidepressant behaviors, and social behaviors. A number of papers have reported an effect of isoflurane on animal behaviors, but no systematic investigation has been performed. To the best of our knowledge, this study is the first to systematically investigate the general health, neurological reflexes, sensory functions, motor functions, and higher behavioral functions of mice exposed to isoflurane as adults. Our results suggest that the postanesthetic effect of isoflurane causes attention deficit in mice. Therefore, isoflurane must be used with great care in the clinical setting and veterinary anesthesia. PMID:25806517

  18. Instructors' Use of Trigger Warnings and Behavior Warnings in Abnormal Psychology

    ERIC Educational Resources Information Center

    Boysen, Guy A.; Wells, Anna Mae; Dawson, Kaylee J.

    2016-01-01

    College students have been increasingly demanding warnings and accommodations in relation to course topics they believe will elicit strong, negative emotions. These "trigger warnings" are highly relevant to Abnormal Psychology because of the sensitive topics covered in the course (e.g., suicide, trauma, sex). A survey of Abnormal…

  19. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    PubMed

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  20. Mice genetically depleted of brain serotonin do not display a depression-like behavioral phenotype.

    PubMed

    Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Herrera-Mundo, Nieves; Sykes, Catherine E; Francescutti, Dina M; Kuhn, Donald M

    2014-10-15

    Reductions in function within the serotonin (5HT) neuronal system have long been proposed as etiological factors in depression. Selective serotonin reuptake inhibitors (SSRIs) are the most common treatment for depression, and their therapeutic effect is generally attributed to their ability to increase the synaptic levels of 5HT. Tryptophan hydroxylase 2 (TPH2) is the initial and rate-limiting enzyme in the biosynthetic pathway of 5HT in the CNS, and losses in its catalytic activity lead to reductions in 5HT production and release. The time differential between the onset of 5HT reuptake inhibition by SSRIs (minutes) and onset of their antidepressant efficacy (weeks to months), when considered with their overall poor therapeutic effectiveness, has cast some doubt on the role of 5HT in depression. Mice lacking the gene for TPH2 are genetically depleted of brain 5HT and were tested for a depression-like behavioral phenotype using a battery of valid tests for affective-like disorders in animals. The behavior of TPH2(-/-) mice on the sucrose preference test, tail suspension test, and forced swim test and their responses in the unpredictable chronic mild stress and learned helplessness paradigms was the same as wild-type controls. While TPH2(-/-) mice as a group were not responsive to SSRIs, a subset responded to treatment with SSRIs in the same manner as wild-type controls with significant reductions in immobility time on the tail suspension test, indicative of antidepressant drug effects. The behavioral phenotype of the TPH2(-/-) mouse questions the role of 5HT in depression. Furthermore, the TPH2(-/-) mouse may serve as a useful model in the search for new medications that have therapeutic targets for depression that are outside of the 5HT neuronal system.

  1. Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits

    PubMed Central

    Santin, L.J.; Bilbao, A.; Pedraza, C.; Matas-Rico, E.; López-Barroso, D.; Castilla-Ortega, E.; Sánchez-López, J.; Riquelme, R.; Varela-Nieto, I.; de la Villa, P.; Suardíaz, M.; Chun, J.; De Fonseca, F. Rodriguez; Estivill-Torrús, G.

    2016-01-01

    Lysophosphatidic acid (LPA) has emerged as a new regulatory molecule in the brain. Recently, some studies have demonstrated a role for this molecule and its LPA1 receptor in the regulation of plasticity and neurogenesis in the adult brain. However, no systematic studies have been conducted to investigate whether the LPA1 receptor is involved in behavior. Here we studied the phenotype of maLPA1–null mice, which bear a targeted deletion at the lpa1 locus, in a battery of tests examining neurologic performance, habituation in exploratory behavior in response to low and mild anxiety environments and spatial memory. MaLPA1-null mutants showed deficits in both olfaction and somesthesis, but not in retinal or auditory functions. Sensorimotor coordination was impaired only in the equilibrium and grasping reflexes. The mice also showed impairments in neuromuscular strength and analgesic response. No additional differences were observed in the rest of the tests used to study sensoriomotor orientation, limb reflexes, and coordinated limb use. At behavioral level, maLPA1-null mice showed an impaired exploration in the open field and increased anxiety-like response when exposed to the elevated plus maze. Furthermore, the mice exhibit impaired spatial memory retention and reduced use of spatial strategies in the Morris water maze. We propose that the LPA1 receptor may play a major role in both spatial memory and response to anxiety-like conditions. PMID:19689455

  2. Presence of XIST specific sequences and apparent failure of X dosage compensation by inactivation in a patient with a severe Turner phenotype and mosaicism for X chromosome abnormalities

    SciTech Connect

    Bent-Williams, A.H.; Felton, S.M.; Driscoll, D.J.

    1994-09-01

    An XIST FISH analysis and a late replication chromosome study was performed for a 10 year old female with Turner stigmata, mental retardation, multiple congenital anomalies and a cytogenetic mosaicism of 45,X,inv(9)(p11q13)/46,X,del(X)(q22),inv(9)(p11q13)/46,X,+mar,inv(9)(p11q13). The X chromosomes from a cell line in which one was deleted for the distal long arm segment (breakpoint of Xq22), observed in 6% of metaphase cells from peripheral blood and 23.3% of metaphase cells from skin fibroblasts, did not demonstrate an asynchronous or differential staining pattern by BrDU techniques. However, both the normal X chromosome and the deleted X chromosome were demonstrated to contain XIST specific sequences by FISH analysis. A very small marker chromosome, observed in 6% of metaphase cells from peripheral blood and 3.3% of metaphase cells from skin fibroblasts, appeared to consist exclusively of X chromosome alpha satellite centromeric material (DXZ1). This finding was consistent with the morphology of the marker chromosome as observed by conventional G-banding. Due to its small size and low level frequency, analysis by late replication BrDU techniques was not possible. The predominate cell line containing a signal X chromosome was observed in 88% of metaphase cells from peripheral blood and 73.3% of metaphase cells from skin fibroblasts. This case is significant because: (1) it represents another case of an X chromosome abnormality in which XIST is apparently present but not expressed; and (2) the more severe phenotype expressed is probably attributable to the failure of X gene dosage compensation by inactivation.

  3. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    PubMed

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  4. Revealing Behavioral Learning Deficit Phenotypes Subsequent to In Utero Exposure to Benzo(a)pyrene.

    PubMed

    McCallister, Monique M; Li, Zhu; Zhang, Tongwen; Ramesh, Aramandla; Clark, Ryan S; Maguire, Mark; Hutsell, Blake; Newland, M Christopher; Hood, Darryl B

    2016-01-01

    To characterize behavioral deficits in pre-adolescent offspring exposed in utero to Benzo(a)pyrene [B(a)P], timed-pregnant Long Evans Hooded rats were treated with B(a)P (150, 300, 600, and 1200 µg/kg BW) or peanut oil (vehicle) on E14, 15, 16, and 17. Following birth, during the pre-weaning period, B(a)P metabolites were examined in plasma and whole brain or cerebral cortex from exposed and control offspring. Tissue concentrations of B(a)P metabolites were (1) dose-dependent and (2) followed a time-dependence for elimination with ∼60% reduction by PND5 in the 1200 µg/kg BW experimental group. Spatial discrimination-reversal learning was utilized to evaluate potential behavioral neurotoxicity in P40-P60 offspring. Late-adolescent offspring exposed in utero to 600 and 1200 µg/kg BW were indistinguishable from their control counterparts for ability to acquire an original discrimination (OD) and reach criterion. However, a dose-dependent effect of in utero B(a)P-exposure was evident upon a discrimination reversal as exposed offspring perseverated on the previously correct response. This newly characterized behavioral deficit phenotype for the first reversal was not apparent in either the (1) OD or (2) subsequent reversal sessions relative to the respective control offspring. Furthermore, the expression of activity related-cytoskeletal-associated protein (Arc), an experience-dependent cortical protein marker known to be up-regulated in response to acquisition of a novel behavior, was greater in B(a)P-exposed offspring included in the spatial discrimination cohort versus home cage controls. Collectively, these findings support the hypothesis that in utero exposure to B(a)P during critical windows of development representing peak periods of neurogenesis results in behavioral deficits in later life.

  5. Revealing Behavioral Learning Deficit Phenotypes Subsequent to In Utero Exposure to Benzo(a)pyrene

    PubMed Central

    McCallister, Monique M.; Li, Zhu; Zhang, Tongwen; Ramesh, Aramandla; Clark, Ryan S.; Maguire, Mark; Hutsell, Blake; Newland, M. Christopher; Hood, Darryl B.

    2016-01-01

    To characterize behavioral deficits in pre-adolescent offspring exposed in utero to Benzo(a)pyrene [B(a)P], timed-pregnant Long Evans Hooded rats were treated with B(a)P (150, 300, 600, and 1200 µg/kg BW) or peanut oil (vehicle) on E14, 15, 16, and 17. Following birth, during the pre-weaning period, B(a)P metabolites were examined in plasma and whole brain or cerebral cortex from exposed and control offspring. Tissue concentrations of B(a)P metabolites were (1) dose-dependent and (2) followed a time-dependence for elimination with ∼60% reduction by PND5 in the 1200 µg/kg BW experimental group. Spatial discrimination-reversal learning was utilized to evaluate potential behavioral neurotoxicity in P40–P60 offspring. Late-adolescent offspring exposed in utero to 600 and 1200 µg/kg BW were indistinguishable from their control counterparts for ability to acquire an original discrimination (OD) and reach criterion. However, a dose-dependent effect of in utero B(a)P-exposure was evident upon a discrimination reversal as exposed offspring perseverated on the previously correct response. This newly characterized behavioral deficit phenotype for the first reversal was not apparent in either the (1) OD or (2) subsequent reversal sessions relative to the respective control offspring. Furthermore, the expression of activity related-cytoskeletal-associated protein (Arc), an experience-dependent cortical protein marker known to be up-regulated in response to acquisition of a novel behavior, was greater in B(a)P-exposed offspring included in the spatial discrimination cohort versus home cage controls. Collectively, these findings support the hypothesis that in utero exposure to B(a)P during critical windows of development representing peak periods of neurogenesis results in behavioral deficits in later life. PMID:26420751

  6. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    PubMed Central

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization

  7. Anxiogenic-Like Behavioral Phenotype of Mice Deficient in Phosphodiesterase 4B (PDE4B)

    PubMed Central

    Zhang, Han-Ting; Huang, Ying; Masood, Anbrin; Stolinski, Lisa R; Li, Yunfeng; Zhang, Lei; Dlaboga, Daniel; Jin, S-L Catherine; Conti, Marco; O’Donnell, James M

    2009-01-01

    Phosphodiesterase-4 (PDE4), an enzyme that catalyzes the hydrolysis of cyclic AMP and plays a critical role in controlling its intracellular concentration, has been implicated in depression- and anxiety-like behaviors. However, the functions of the four PDE4 subfamilies (PDE4A, PDE4B, PDE4C, and PDE4D) remain largely unknown. In animal tests sensitive to anxiolytics, antidepressants, memory enhancers, or analgesics, we examined the behavioral phenotype of mice deficient in PDE4B (PDE4B−/−). Immunoblot analysis revealed loss of PDE4B expression in the cerebral cortex and amygdala of PDE4B−/− mice. The reduction of PDE4B expression was accompanied by decreases in PDE4 activity in the brain regions of PDE4B−/− mice. Compared to PDE4B + / + littermates, PDE4B−/− mice displayed anxiogenic-like behavior, as evidenced by decreased head-dips and time spent in head-dipping in the holeboard test, reduced transitions and time on the light side in the light–dark transition test, and decreased initial exploration and rears in the open-field test. Consistent with anxiogenic-like behavior, PDE4B−/− mice displayed increased levels of plasma corticosterone. In addition, these mice also showed a modest increase in the proliferation of neuronal cells in the hippocampal dentate gyrus. In the forced-swim test, PDE4B−/− mice exhibited decreased immobility; however, this was not supported by the results from the tail-suspension test. PDE4B−/− mice did not display changes in memory, locomotor activity, or nociceptive responses. Taken together, these results suggest that the PDE4B subfamily is involved in signaling pathways that contribute to anxiogenic-like effects on behavior PMID:17700644

  8. Behavioral phenotypes of impulsivity related to the ANKK1 gene are independent of an acute stressor

    PubMed Central

    White, Melanie J; Morris, C Phillip; Lawford, Bruce R; Young, Ross McD

    2008-01-01

    Background The A1 allele of the ANKK1 TaqIA polymorphism (previously reported as located in the D2 dopamine receptor (DRD2) gene) is associated with reduced DRD2 density in the striatum and with clinical disorders, particularly addiction. It was hypothesized that impulsivity represents an endophenotype underlying these associations with the TaqIA and that environmental stress would moderate the strength of the gene-behavior relationship. Methods TaqIA genotyping was conducted on 72 healthy young adults who were randomly allocated to either an acute psychosocial stress or relaxation induction condition. Behavioral phenotypes of impulsivity were measured using a card-sorting index of reinforcement sensitivity and computerized response inhibition and delay discounting tasks. Results Separate analyses of variance revealed associations between the A1 allele and two laboratory measures of impulsivity. The presence of the TaqIA allele (A1+) was associated with slower card-sorting in the presence of small financial reinforcers, but was overcome in a second administration after either a five-minute rest or psychosocial stress induction. A1+ participants also demonstrated significantly poorer response inhibition and faster response times on a computerized stop inhibition task, independent of acute stress exposure. Conclusion These findings indicate the A1 allele is associated with an endophenotype comprising both a "rash impulsive" behavioral style and reinforcement-related learning deficits. These effects are independent of stress. PMID:19025655

  9. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    PubMed

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  10. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes.

    PubMed

    Song, Ning; Kou, Liang; Lu, Xiao-Wen; Sugawara, Atsunori; Shimizu, Yutaka; Wu, Min-Ke; Du, Li; Wang, Hang; Sato, Soh; Shen, Jie-Fei

    2015-02-13

    Derived from mature adipocytes, dedifferentiated fat (DFAT) cells represent a special group of multipotent cells. However, their phenotype and cellular nature remain unclear. Our study found that human DFAT cells adopted perivascular characteristics and behaviors. Flow cytometry and immunofluorescent staining revealed that human DFAT cells positively expressed markers highly related to perivascular cell lineages, such as CD140b, NG2 and desmin, but were negative for common endothelial markers, including CD31, CD34, and CD309. Furthermore, DFAT cells displayed vascular network formation ability in Matrigel, and they noticeably promoted and stabilized the vessel structures formed by human umbilical vascular endothelial cells (HUVECs) in vitro. These results provide novel evidence on the pericyte nature of human DFAT cells, further supporting the recent model for the perivascular origin of adult stem cells, in which tissue-specific progenitor cells in mesenchymal tissues associate with blood vessels, exhibiting perivascular characteristics and functions.

  11. Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes

    PubMed Central

    Nagy, Corina; Turecki, Gustavo

    2017-01-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183

  12. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice.

    PubMed

    Ago, Yukio; Araki, Ryota; Tanaka, Tatsunori; Sasaga, Asuka; Nishiyama, Saki; Takuma, Kazuhiro; Matsuda, Toshio

    2013-07-01

    Isolation-reared male rodents show abnormal behaviors such as hyperlocomotion, aggressive behaviors, deficits of prepulse inhibition, and depression- and anxiety-like behaviors, but the neurochemical mechanism for the effects of psychological stress in these animals is not fully understood. This study examined the effects of social interactions between isolation-reared mice and intruder mice on brain monoaminergic systems. A cage was divided into two compartments by a mesh partition to prevent direct physical interactions. The 20-min encounter with an intruder elicited a restless and hyperexcitable state (hyperactivity) in male, but not in female, isolation-reared mice, whereas encounters with a sleeping intruder or a novel object did not. Although the encounter did not affect prefrontal neuronal-activity-marker c-Fos expression, dopamine (DA) levels, or serotonin (5-HT) levels in male group-reared mice or female isolation-reared mice, it increased prefrontal c-Fos expression, DA levels, and 5-HT levels in male isolation-reared mice. Furthermore, encounter-induced increases in c-Fos expression in the dorsal raphe nucleus and ventral tegmental area, but not in the nucleus accumbens shell, were much greater in isolation-reared than group-reared male mice. A 5-HT1A receptor agonist, a metabotropic glutamate 2/3 receptor agonist, and a gamma-aminobutyric acid A receptor agonist attenuated isolation-induced aggressive behaviors and encounter-induced hyperactivity, c-Fos expression in the prefrontal cortex and dorsal raphe nucleus, and increases in prefrontal 5-HT levels. These findings suggest that the prefrontal DA and 5-HT systems are activated by encounter stimulation in male isolation-reared mice, and the encounter-induced activation of 5-HT system triggers the induction of some abnormal behaviors in male isolation-reared mice. Furthermore, this study implies that the encounter stimulation-induced signal has a pharmacological significance.

  13. Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells

    PubMed Central

    Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo

    2016-01-01

    cells, decreased numbers of cells at the G0-G1 phase and a higher apoptosis rate. However, PDGF significantly rescued these phenomena caused by siRNA against Rab5a. These results indicated that Rab5a-mediated autophagy may regulate the phenotype transition and cell behavior of VSMCs through the activation of the extracellular-regulated kinase 1/2 signaling pathway. PMID:27666726

  14. 76 FR 22925 - Assumption Buster Workshop: Abnormal Behavior Detection Finds Malicious Actors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... card. Fraud detection algorithms (based on user behavior models) and procedures immediately set off... unusual behavior on the part of authorized users. The fraud detection algorithms use the financial... sets of values to be analyzed with well understood algorithms. For example, credit card purchases...

  15. Schizophrenia and abnormal brain network hubs.

    PubMed

    Rubinov, Mikail; Bullmore, Ed

    2013-09-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.

  16. A Phenotypic Structure and Neural Correlates of Compulsive Behaviors in Adolescents

    PubMed Central

    Montigny, Chantale; Castellanos-Ryan, Natalie; Whelan, Robert; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Gallinat, Jürgen; Flor, Herta; Mann, Karl; Paillère-Martinot, Marie-Laure; Nees, Frauke; Lathrop, Mark; Loth, Eva; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Schumann, Gunter; Smolka, Michael N.; Struve, Maren; Robbins, Trevor W.; Garavan, Hugh; Conrod, Patricia J.

    2013-01-01

    Background A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates. Method A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents’ psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis. Results Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p≤0.001), conscientiousness (r=0.171; p≤0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p≤0.001), novelty-seeking (r=0.451; p≤0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri. Conclusions Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum. PMID:24244633

  17. MEG premotor abnormalities in children with Asperger's syndrome: determinants of social behavior?

    PubMed

    Hauswald, Anne; Weisz, Nathan; Bentin, Shlomo; Kissler, Johanna

    2013-07-01

    Children with Asperger's syndrome show deficits in social functioning while their intellectual and language development is intact suggesting a specific dysfunction in mechanisms mediating social cognition. An action observation/execution matching system might be one such mechanism. Recent studies indeed showed that electrophysiological modulation of the "Mu-rhythm" in the 10-12Hz range is weaker when individuals with Asperger's syndrome observe actions performed by others compared to controls. However, electrophysiological studies typically fall short in revealing the neural generators of this activity. To fill this gap we assessed magnetoencephalographic Mu-modulations in Asperger's and typically developed children, while observing grasping movements. Mu-power increased at frontal and central sensors during movement observation. This modulation was stronger in typical than in Asperger children. Source localization revealed stronger sources in premotor cortex, the intraparietal lobule (IPL) and the mid-occipito-temporal gyrus (MOTG) and weaker sources in prefrontal cortex in typical participants compared to Asperger. Activity in premotor regions, IPL and MOTG correlated positively with social competence, whereas prefrontal Mu-sources correlated negatively with social competence. No correlation with intellectual ability was found at any of these sites. These findings localize abnormal Mu-activity in the brain of Asperger children providing evidence which associates motor-system abnormalities with social-function deficits.

  18. White-matter tract abnormalities and antisocial behavior: A systematic review of diffusion tensor imaging studies across development.

    PubMed

    Waller, Rebecca; Dotterer, Hailey L; Murray, Laura; Maxwell, Andrea M; Hyde, Luke W

    2017-01-01

    Antisocial behavior (AB), including aggression, violence, and theft, is thought be underpinned by abnormal functioning in networks of the brain critical to emotion processing, behavioral control, and reward-related learning. To better understand the abnormal functioning of these networks, research has begun to investigate the structural connections between brain regions implicated in AB using diffusion tensor imaging (DTI), which assesses white-matter tract microstructure. This systematic review integrates findings from 22 studies that examined the relationship between white-matter microstructure and AB across development. In contrast to a prior hypothesis that AB is associated with greater diffusivity specifically in the uncinate fasciculus, findings suggest that adult AB is associated with greater diffusivity across a range of white-matter tracts, including the uncinate fasciculus, inferior fronto-occipital fasciculus, cingulum, corticospinal tract, thalamic radiations, and corpus callosum. The pattern of findings among youth studies was inconclusive with both higher and lower diffusivity found across association, commissural, and projection and thalamic tracts.

  19. Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert

    2012-02-01

    One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.

  20. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku

    2016-07-16

    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer's disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency.

  1. A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: Distinct effects of lithium chloride and clozapine.

    PubMed

    Deslauriers, Jessica; Belleville, Karine; Beaudet, Nicolas; Sarret, Philippe; Grignon, Sylvain

    2016-03-15

    Schizophrenia patients show a high rate of premature mortality due to suicide. The pathophysiological mechanisms of these suicidal behaviors in schizophrenia do not appear to involve serotonergic neurotransmission as found in the general population. Our aim was to develop an in vivo model of schizophrenia presenting suicide-trait-related behaviors such as aggressiveness, impulsivity, anxiety and helplessness. We opted for a two-hit model: C57BL/6 dams were injected with polyI:C on gestational day 12. The pups were submitted to social isolation for 4weeks after weaning. During the last week of social isolation and 30min before behavioral testing, the mice received vehicle, lithium chloride or clozapine. Lithium chloride is well known for its suicide preventive effects in the non-schizophrenic population, while clozapine is the antipsychotic with the best-established suicide preventive effect. The two-hit model induced several schizophrenia-related and suicide-trait-related behaviors in male, but not female, mice. Additionally, lithium chloride improved prepulse inhibition, aggressiveness, impulsivity and anxiety-like behavior in socially isolated mice only, whereas clozapine prevented behavioral abnormalities mainly in mice prenatally exposed to polyI:C and submitted to isolated rearing. The distinct effects of lithium chloride and clozapine suggested that mice prenatally exposed to polyI:C and submitted to social isolation presented a distinct phenotype from that of mice submitted to social isolation only. Because diagnosing suicidal risk in patients is a challenge for psychiatrists given the lack of specific clinical predictors, our in vivo model could help in gaining a better understanding of the mechanisms underlying suicidal behavior in the context of schizophrenia.

  2. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1.

    PubMed

    Ribeiro, Maria J; Violante, Inês R; Bernardino, Inês; Edden, Richard A E; Castelo-Branco, Miguel

    2015-03-01

    Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and

  3. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    NASA Astrophysics Data System (ADS)

    Hunt, Walter A.; Joseph, James A.; Rabin, Bernard M.

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  4. Adapting Phonological Awareness Interventions for Children with Down Syndrome Based on the Behavioral Phenotype: A Promising Approach?

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; King, Seth A.; Davidson, Kimberly A.; Puranik, Cynthia S.; Fulmer, Deborah; Mrachko, Alicia A.; Partanen, Jane; Al Otaiba, Stephanie; Fidler, Deborah J.

    2015-01-01

    Many children with Down syndrome demonstrate deficits in phonological awareness, a prerequisite to learning to read in an alphabetic language. The purpose of this study was to determine whether adapting a commercially available phonological awareness program to better align with characteristics associated with the behavioral phenotype of Down…

  5. Behavioral Phenotype of Fmr1 Knock-Out Mice during Active Phase in an Altered Light/Dark Cycle.

    PubMed

    Saré, R Michelle; Levine, Merlin; Smith, Carolyn Beebe

    2016-01-01

    Fragile X syndrome (FXS) is the most commonly inherited form of intellectual disability and is a disorder that is also highly associated with autism. FXS occurs as a result of an expanded CGG repeat sequence leading to transcriptional silencing. In an animal model of FXS in which Fmr1 is knocked out (Fmr1 KO), many physical, physiological, and behavioral characteristics of the human disease are recapitulated. Prior characterization of the mouse model was conducted during the day, the inactive phase of the circadian cycle. Circadian rhythms are an important contributor to behavior and may play a role in the study of disease phenotype. Moreover, changes in the parameters of circadian rhythm are known to occur in FXS animal models. We conducted an investigation of key behavioral phenotypes in Fmr1 KO mice during their active phase. We report that phase did not alter the Fmr1 KO phenotype in open field activity, anxiety, and learning and memory. There was a slight effect of phase on social behavior as measured by time in chamber, but not by time spent sniffing. Our data strengthen the existing data characterizing the phenotype of Fmr1 KO mice, indicating that it is independent of circadian phase.

  6. Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD.

    PubMed

    Cheng, Jia; Liu, Aiyi; Shi, Michael Y; Yan, Zhen

    2017-02-08

    Spontaneously hypertensive rats (SHR) are the most widely used animal model for the study of attention deficit hyperactivity disorder (ADHD). Here we sought to reveal the neuronal circuits and molecular basis of ADHD and its potential treatment using SHR. Combined electrophysiological, biochemical, pharmacological, chemicogenetic and behavioral approaches were utilized. We found that AMPAR-mediated synaptic transmission in pyramidal neurons of prefrontal cortex (PFC) was diminished in SHR, which was correlated with the decreased surface expression of AMPAR subunits. Administration of methylphenidate (a psychostimulant drug used to treat ADHD), which blocks dopamine transporters and norepinephrine transporters, ameliorated the behavioral deficits of adolescent SHR and restored AMPAR-mediated synaptic function. Activation of PFC pyramidal neurons with a CaMKII-driven Gq-coupled DREADD (designer receptor exclusively activated by designer drug) also led to the elevation of AMPAR function and the normalization of ADHD-like behaviors in SHR. These results suggest that the disrupted function of AMPARs in PFC may underlie the behavioral deficits in adolescent SHR and enhancing PFC activity could be a treatment strategy for ADHD.Neuropsychopharmacology accepted article preview online, 08 February 2017. doi:10.1038/npp.2017.30.

  7. Behavioral, Neurochemical and Neuroendocrine Effects of Abnormal Savda Munziq in the Chronic Stress Mice

    PubMed Central

    Amat, Nurmuhammat; Hoxur, Parida; Ming, Dang; Matsidik, Aynur; Kijjoa, Anake; Upur, Halmurat

    2012-01-01

    Oral administration of Abnormal Savda Munsiq (ASMq), a herbal preparation used in Traditional Uighur Medicine, was found to exert a memory-enhancing effect in the chronic stressed mice, induced by electric foot-shock. The memory improvement of the stressed mice was shown by an increase of the latency time in the step-through test and the decrease of the latency time in the Y-maze test. Treatment with ASMq was found to significantly decrease the serum levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and β-endorphin (β-EP) as well as the brain and serum level of norepinephrine (NE). Furthermore, ASMq was able to significantly reverse the chronic stress by decreasing the brain and serum levels of the monoamine neurotransmitters dopamine (DA), 5-hydroxytryptamine (5-HT) and 3,4-dihydroxyphenylalanine (DOPAC). The results obtained from this study suggested that the memory-enhancing effect of ASMq was mediated through regulations of neurochemical and neuroendocrine systems. PMID:22919413

  8. Activity Suppression Behavior Phenotype in SULT4A1 Frameshift Mutant Zebrafish

    PubMed Central

    Crittenden, Frank; Thomas, Holly R.; Parant, John M.

    2015-01-01

    Since its identification in 2000, sulfotransferase (SULT) 4A1 has presented an enigma to the field of cytosolic SULT biology. SULT4A1 is exclusively expressed in neural tissue, is highly conserved, and has been identified in every vertebrate studied to date. Despite this singular level of conservation, no substrate or function for SULT4A1 has been identified. Previous studies demonstrated that SULT4A1 does not bind the obligate sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate, yet SULT4A1 is classified as a SULT superfamily member based on sequence and structural similarities to the other SULTs. In this study, transcription activator-like effector nucleases were used to generate heritable mutations in the SULT4A1 gene of zebrafish. The mutation (SULT4A1Δ8) consists of an 8-nucleotide deletion within the second exon of the gene, resulting in a frameshift mutation and premature stop codon after 132 AA. During early adulthood, casual observations were made that mutant zebrafish were exhibiting excessively sedentary behavior during the day. These observations were inconsistent with published reports on activity in zebrafish that are largely diurnal organisms and are highly active during the day. Thus, a decrease in activity during the day represents an abnormal behavior and warranted further systematic analysis. EthoVision video tracking software was used to monitor activity levels in wild-type (WT) and SULT4A1Δ8/Δ8 fish over 48 hours of a normal light/dark cycle. SULT4A1Δ8/Δ8 fish were shown to exhibit increased inactivity bout length and frequency as well as a general decrease in daytime activity levels when compared with their WT counterparts. PMID:25934576

  9. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  10. Abnormal response to emotional stimulus in male adolescents with violent behavior in China.

    PubMed

    Qiao, Yi; Xie, Bin; Du, Xiaoxia

    2012-04-01

    The objective of the study is to explore the characteristics of emotional stimulus in adolescents with violent behavior and to identify the correlated dysfunctional regions of the brain. An event-related functional magnetic resonance imaging was obtained while the participants passively viewed pictures with neutral or negative affective valence. 15 male adolescents with violent behavior, ranging in age from 12 to 18 years old, and 16 healthy age-matched control subjects were enrolled in the study. While looking at neutral pictures, several brain regions were activated more intensely in the violent group than the control one. After digitally subtracting the control group, these areas included the bilateral amygdala, left orbital gyrus, bilateral fusiform gyrus, and left visual cortex. While passively viewing negative pictures, the right inferior frontal gyrus and the middle frontal gyrus were less activated in the violent group than the control group. Male adolescents with violent behaviors have some dysfunctions during the processing and evaluation of information from external emotional stimulus. These individuals are inclined to interpret neutral information as threatening stimulus.

  11. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies.

    PubMed

    Titman, Penny; Pink, Elizabeth; Skucek, Emily; O'Hanlon, Katherine; Cole, Tim J; Gaspar, Jane; Xu-Bayford, Jinhua; Jones, Alison; Thrasher, Adrian J; Davies, E Graham; Veys, Paul A; Gaspar, H Bobby

    2008-11-01

    Hematopoietic stem cell transplantation (HSCT) is a highly successful treatment for severe congenital immunodeficiencies. However, some studies have suggested that children may experience cognitive difficulties after HSCT. This large-scale study assessed cognitive and behavioral function for the cohort of children treated by HSCT at one center between 1979 and 2003 to determine the frequency and severity of problems and to identify risk factors. A total of 105 patients were assessed on standardized measures of cognitive and emotional and behavioral function together with a control group of unaffected siblings. The average IQ for the cohort was 85 (95% confidence interval, 81-90), significantly lower than both the population average of 100 (P < .001) and unaffected siblings. Multivariate analysis indicated that the underlying genetic defect, diagnosis of adenosine deaminase-deficient severe combined immunodeficiency, and consanguinity were associated with worse outcome but that age at transplantation and chemotherapy conditioning were not. Children treated by HSCT for severe immunodeficiency have an increased risk of long-term cognitive difficulties and associated emotional and behavioral difficulties. The specific genetic diagnosis, consanguinity, and severe clinical course are associated with poor outcome. Long-term follow-up of these patients should include screening to identify and manage these problems more effectively.

  12. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression.

    PubMed

    Milekic, M H; Xin, Y; O'Donnell, A; Kumar, K K; Bradley-Moore, M; Malaspina, D; Moore, H; Brunner, D; Ge, Y; Edwards, J; Paul, S; Haghighi, F G; Gingrich, J A

    2015-08-01

    Advanced paternal age (APA) has been shown to be a significant risk factor in the offspring for neurodevelopmental psychiatric disorders, such as schizophrenia and autism spectrum disorders. During aging, de novo mutations accumulate in the male germline and are frequently transmitted to the offspring with deleterious effects. In addition, DNA methylation during spermatogenesis is an active process, which is susceptible to errors that can be propagated to subsequent generations. Here we test the hypothesis that the integrity of germline DNA methylation is compromised during the aging process. A genome-wide DNA methylation screen comparing sperm from young and old mice revealed a significant loss of methylation in the older mice in regions associated with transcriptional regulation. The offspring of older fathers had reduced exploratory and startle behaviors and exhibited similar brain DNA methylation abnormalities as observed in the paternal sperm. Offspring from old fathers also had transcriptional dysregulation of developmental genes implicated in autism and schizophrenia. Our findings demonstrate that DNA methylation abnormalities arising in the sperm of old fathers are a plausible mechanism to explain some of the risks that APA poses to resulting offspring.

  13. Fat discrimination: a phenotype with potential implications for studying fat intake behaviors and obesity.

    PubMed

    Liang, Lisa C H; Sakimura, Johannah; May, Daniel; Breen, Cameron; Driggin, Elissa; Tepper, Beverly J; Chung, Wendy K; Keller, Kathleen L

    2012-01-18

    Variations in fat preference and intake across humans are poorly understood in part because of difficulties in studying this behavior. The objective of this study was to develop a simple procedure to assess fat discrimination, the ability to accurately perceive differences in the fat content of foods, and assess the associations between this phenotype and fat ingestive behaviors and adiposity. African-American adults (n=317) were tested for fat discrimination using 7 forced choice same/different tests with Italian salad dressings that ranged in fat-by-weight content from 5 to 55%. Performance on this procedure was determined by tallying the number of trials in which a participant correctly identified the pair of samples as "same" or "different" across all test pairs (ranging from 1 to 7). Individuals who received the lowest scores on this task (≤3 out of 7 correct) were classified as fat non-discriminators (n=33) and those who received the highest scores (7 out of 7 correct) were classified as fat discriminators (n=59). These 2 groups were compared for the primary outcome variables: reported food intake, preferences, and adiposity. After adjusting for BMI, sex, age, and dietary restraint and disinhibition, fat non-discriminators reported greater consumption of both added fats and reduced fat foods (p<0.05 for both). Fat non-discriminators also had greater abdominal adiposity compared to fat discriminators (p<0.05). Test-retest scores performed in a subset of participants (n=40) showed moderate reliability of the fat discrimination test (rho=0.53; p<0.01). If these results are replicated, fat discrimination may serve as clinical research tool to identify participants who are at risk for obesity and other chronic diseases due to increased fat intake.

  14. Abnormal vocal behavior predicts executive and memory deficits in Alzheimer's disease.

    PubMed

    Ranasinghe, Kamalini G; Gill, Jeevit S; Kothare, Hardik; Beagle, Alexander J; Mizuiri, Danielle; Honma, Susanne M; Gorno-Tempini, Maria Luisa; Miller, Bruce L; Vossel, Keith A; Nagarajan, Srikantan S; Houde, John F

    2017-04-01

    Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19) compared to an age-matched control group (n = 16). We measured the degree of behavioral compensation (peak compensation) and the extent of the adaptive response (pitch-response persistence). Healthy-controls reached a peak compensation of 18.7 ± 0.8 cents, and demonstrated a sustained compensation at 8.9 ± 0.69 cents. AD patients, in contrast, demonstrated a significantly elevated peak compensation (22.4 ± 1.2 cents, p < 0.05), and a reduced sustained response (pitch-response persistence, 4.5 ± 0.88 cents, p < 0.001). The degree of increased peak compensation predicted executive dysfunction, while the degree of impaired pitch-response persistence predicted memory dysfunction, in AD patients. The current study demonstrates pitch reflex as a sensitive behavioral index of impaired prefrontal modulation of sensorimotor integration, and compromised plasticity mechanisms of memory, in AD.

  15. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    PubMed Central

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence

  16. Cognitive-behavioral therapy for sleep abnormalities of chronic pain patients.

    PubMed

    Tang, Nicole K Y

    2009-12-01

    Chronic pain and insomnia often occur simultaneously, with the vast majority of chronic pain patients complaining of interrupted or poor quality sleep. The need to improve sleep in these patients is clear, given increasing evidence that sleep disturbance is associated with heightened pain sensitivity and elevated disability. This article evaluates the efficacy of pain management programs (PMPs) based on cognitive-behavioral therapy (CBT) principles and CBT for primary insomnia (CBT-I) in treating pain-related insomnia. Although PMPs effectively enhance pain management skills in patients, they do not adequately address insomnia. CBT-I has demonstrated strong efficacy in treating pain-related insomnia, but sleep improvement is not followed by pain reduction. As both CBT approaches involve strengths and limitations, a hybrid form of treatment is needed that simultaneously addresses pain and sleep.

  17. Lesch-Nyhan syndrome: The saga of metabolic abnormalities and self-injurious behavior

    PubMed Central

    Tewari, Nitesh; Mathur, Vijay Prakash; Sardana, Divesh; Bansal, Kalpana

    2017-01-01

    Summary Lesch-Nyhan syndrome (LNS) is an X-linked recessive disorder of purine metabolism caused by a mutation in Xq26.2-q26.3 (OMIM 308000.0004). The presence of the diagnostic triad, i.e. signs of self-injurious behavior (SIB) and results of pedigree analysis and novel molecular biology & genetic testing, confirms the diagnosis of LNS. With a level of hypoxanthine guanine phosphoribosyl-transferase 1 (HPRT1) enzyme activity < 2%, patients develop neurological, neurocognitive, and neuromotor symptoms along with SIB. Described here is a case of 4-year-old boy who was diagnosed with LNS. The boy displayed SIB, i.e. biting of the lips and fingers, and he had cerebral venous sinus thrombosis caused by LNS. PMID:28357186

  18. Behavioral phenotypic properties of a natural occurring rat model of congenital stationary night blindness with Cacna1f mutation.

    PubMed

    An, Jing; Wang, Li; Guo, Qun; Li, Li; Xia, Feng; Zhang, Zuoming

    2012-09-01

    Cacna1f gene mutation could lead to incomplete congenital stationary night blindness (iCSNB) disease. The CSNB-like phenotype rat is a spontaneous rat model caused by Cacna1f gene mutation. The present study explored the phenotypic properties of behavior performance in CSNB rats further. The vision-related behaviors of CSNB rats were assessed with a Morris water maze (MWM), passive avoidance tests, and open-field test. Motor ability was evaluated with a rotarod test and a wire hang test, and mechanical pain and thermalgia were used to evaluate sensory system function. Electroretinograms (ERGs) were recorded to evaluate the function of the retina. The vision-related results showed that longer latencies of escape and reduced probe trial in MWM for CSNB rats. There were more errors in avoidance test; CSNB rats were more active in the open field and presented a different pattern of exploration. The locomotor-related behaviors showed shorter falling latencies in the rotarod test and shorter gripping time in CSNB rats. And mechanical thresholds of pain increased in CSNB rats. The ERGs indicated that both the amplitude and latency of rod and cone systems were impaired in the CSNB rats. In summary, Cacna1f gene mutation changed the performance of various behaviors in the CSNB rat aside from vision-related phenotype. Cacna1f gene might play a role in a wide range of responses in the organism. These results confirm the importance of a comprehensive profile for understanding the behavior phenotype of Cacna1f gene mutation in CSNB rat.

  19. Methylphenidate ('Ritalin') can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia.

    PubMed

    Rahman, Shibley; Robbins, Trevor W; Hodges, John R; Mehta, Mitul A; Nestor, Peter J; Clark, Luke; Sahakian, Barbara J

    2006-03-01

    The frontal variant of frontotemporal dementia is a significant neurological condition worldwide. There exist few treatments available for the cognitive and behavioural sequelae of fvFTD. Previous research has shown that these patients display risky decision-making, and numerous studies have now demonstrated pathology affecting the orbitofrontal cortex. The present study uses a within-subjects, double-blind, placebo-controlled procedure to investigate the effects of a single dose of methylphenidate (40 mg) upon a range of different cognitive processes including those assessing prefrontal cortex integrity. Methylphenidate was effective in 'normalizing' the decision-making behavior of patients, such that they became less risk taking on medication, although there were no significant effects on other aspects of cognitive function, including working memory, attentional set shifting, and reversal learning. Moreover, there was an absence of the normal subjective and autonomic responses to methylphenidate seen in elderly subjects. The results are discussed in terms of the 'somatic marker' hypothesis of impaired decision-making following orbitofrontal dysfunction.

  20. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia.

    PubMed

    Hadar, R; Bikovski, L; Soto-Montenegro, M L; Schimke, J; Maier, P; Ewing, S; Voget, M; Wieske, F; Götz, T; Desco, M; Hamani, C; Pascau, J; Weiner, I; Winter, C

    2017-04-04

    The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia's neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.52.

  1. High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice.

    PubMed

    Arnold, Steven E; Lucki, Irwin; Brookshire, Bethany R; Carlson, Gregory C; Browne, Caroline A; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F; Kim, Sangwon F

    2014-07-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17days or a moderate high fat diet (HFD, 45% kcal by fat) for 8weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3β with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS(616)), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors.

  2. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice

    PubMed Central

    Arnold, Steven E.; Lucki, Irwin; Brookshire, Bethany R.; Carlson, Gregory C.; Browne, Carolyn A.; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F.; Kim, Sangwon F.

    2014-01-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17 days or a moderate high fat diet (HFD, 45% kcal by fat) for 8 weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3β with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS616), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors. PMID:24686304

  3. Abnormal Stomatal Behavior and Hormonal Imbalance in flacca, a Wilty Mutant of Tomato

    PubMed Central

    Tal, M.; Imber, D.

    1970-01-01

    The wilty tomato mutant, flacca, and the control variety, Rheinlands Ruhm, were compared with regard to the endogenous activity and concentration of auxin- and abscisic acid-like substances during ontogeny. The mutant wilts fast under water deficit because of inability to close its stomata. Symptoms characteristic of excessive auxin are evident in the developing mutant. Among these symptoms are branch and leaf epinasty, excessive rooting along the stem, and increased apical dominance. By using a leucine-incorporation assay, spray of whole plants with 2,4-dichlorophenoxyacetic acid, and wheat coleoptile bioassay, indications were found of an excess of activity and concentration of auxin-like substances in shoots of young and mature mutant plants. The wheat coleoptile bioassay also revealed a much lower amount of substances with abscisic acid-like activity in the mutant compared with the normal plant. In contrast to the appearance during ontogeny of morphological symptoms characteristic of auxin excess in the mutant, the absolute amount of auxin-like substances and their activity in incorporation of leucine decreased with age. A parallel decrease of the concentration and activity of auxin-like compounds was also found in the normal plant. The concentration of abscisic acid-like substances increased with age in both genotypes. The disagreement between the increasing morphological symptoms and the decrease of auxin-like activity and concentration is discussed, together with the possibility of a causal relationship between auxin-and abscisic acid-like activity and stomatal behavior. PMID:16657470

  4. Abnormal Stomatal Behavior and Hormonal Imbalance in flacca, a Wilty Mutant of Tomato

    PubMed Central

    Tal, M.; Imber, D.; Itai, C.

    1970-01-01

    The wilty tomato mutant, flacca, and the normal variety, Rheinlands Ruhm, were compared for kinetin-like activity in ontogeny. The mutant wilts easily because its stomata resist closure. This stomatal resistance decreases with age. The occurrence of a root factor which induces stomatal opening was inferred from grafting experiments. It was hypothesized that the excessive stomatal openings in the mutant may result from excess of kinetin-like activity in the leaf of that plant. In addition, it was suggested that the closure of stomata in the aging mutant is due to a decrease of kinetin-like activity with age. Kinetin-like activity in the leaf was determined by incorporation of labeled leucine. The concentration of cytokinins in root exudate and leaf extract was determined by the soybean callus assay. Evidence was presented of higher kinetin-like activity in the leaves of the mutant and higher cytokinin concentration in its root exudate. Cytokinin concentration in the shoot was found to be only slightly higher in the mutant than in the normal plants. Kinetin-like activity in the leaf and cytokinin concentration of root exudate decreased with age in both mutant and normal plants. Kinetin-like activity in the leaves of mutant plants, which phenocopy the normal variety as a result of continuous application of abscisic acid, was lower than in control mutant plants. The significance of these findings per se and in connection with stomatal behavior is discussed. PMID:16657469

  5. Disruption of Visc-2, a Brain-Expressed Conserved Long Noncoding RNA, Does Not Elicit an Overt Anatomical or Behavioral Phenotype

    PubMed Central

    Oliver, Peter L.; Chodroff, Rebecca A.; Gosal, Amrit; Edwards, Benjamin; Cheung, Amanda F.P.; Gomez-Rodriguez, Julio; Elliot, Gene; Garrett, Lisa J.; Lickiss, Tom; Szele, Francis; Green, Eric D.; Molnár, Zoltán; Ponting, Chris P.

    2015-01-01

    Although long noncoding RNAs (lncRNAs) are proposed to play essential roles in mammalian neurodevelopment, we know little of their functions from their disruption in vivo. Combining evidence for evolutionary constraint and conserved expression data, we previously identified candidate lncRNAs that might play important and conserved roles in brain function. Here, we demonstrate that the sequence and neuronal transcription of lncRNAs transcribed from the previously uncharacterized Visc locus are conserved across diverse mammals. Consequently, one of these lncRNAs, Visc-2, was selected for targeted deletion in the mouse, and knockout animals were subjected to an extremely detailed anatomical and behavioral characterization. Despite a neurodevelopmental expression pattern of Visc-2 that is highly localized to the cortex and sites of neurogenesis, anomalies in neither cytoarchitecture nor neuroproliferation were identified in knockout mice. In addition, no abnormal motor, sensory, anxiety, or cognitive behavioral phenotypes were observed. These results are important because they contribute to a growing body of evidence that lncRNA loci contribute on average far less to brain and biological functions than protein-coding loci. A high-throughput knockout program focussing on lncRNAs, similar to that currently underway for protein-coding genes, will be required to establish the distribution of their organismal functions. PMID:25209608

  6. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities.

    PubMed

    Kearney, J A; Plummer, N W; Smith, M R; Kapur, J; Cummins, T R; Waxman, S G; Goldin, A L; Meisler, M H

    2001-01-01

    The GAL879-881QQQ mutation in the cytoplasmic S4-S5 linker of domain 2 of the rat brain IIA sodium channel (Na(v)1.2) results in slowed inactivation and increased persistent current when expressed in Xenopus oocytes. The neuron-specific enolase promoter was used to direct in vivo expression of the mutated channel in transgenic mice. Three transgenic lines exhibited seizures, and line Q54 was characterized in detail. The seizures in these mice began at two months of age and were accompanied by behavioral arrest and stereotyped repetitive behaviors. Continuous electroencephalogram monitoring detected focal seizure activity in the hippocampus, which in some instances generalized to involve the cortex. Hippocampal CA1 neurons isolated from presymptomatic Q54 mice exhibited increased persistent sodium current which may underlie hyperexcitability in the hippocampus. During the progression of the disorder there was extensive cell loss and gliosis within the hippocampus in areas CA1, CA2, CA3 and the hilus. The lifespan of Q54 mice was shortened and only 25% of the mice survived beyond six months of age. Four independent transgenic lines expressing the wild-type sodium channel were examined and did not exhibit any abnormalities. The transgenic Q54 mice provide a genetic model that will be useful for testing the effect of pharmacological intervention on progression of seizures caused by sodium channel dysfunction. The human ortholog, SCN2A, is a candidate gene for seizure disorders mapped to chromosome 2q22-24.

  7. A Testosterone-Related Structural Brain Phenotype Predicts Aggressive Behavior From Childhood to Adulthood

    PubMed Central

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon

    2015-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805

  8. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    PubMed Central

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2011-01-01

    Background Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior genetic analyses. Method Participants (N=970) were drawn from the Wisconsin Twin Project, a population-based sample of twins and their families. Mothers completed a sensory responsivity checklist when their offspring were on average 7 years old, followed by a diagnostic interview (Diagnostic Interview Schedule for Children; DISC) within 6 – 12 months. We examined the incidence of DISC diagnoses - ADHD, Conduct Disorder, Oppositional Defiance Disorder, Agoraphobia, General Anxiety, OCD, Panic disorder, Separation Anxiety, Social Phobia, Specific Phobia, Depression, Enuresis, Trichtolloma, Tics, selective mutism, and Pica -among children with SOR, and vice-versa. Children with Autism or PDD were excluded from the present study. Additionally, we examined parent reported physical health diagnoses among non-diagnosed children and three groups of children with SOR and/or DISC diagnoses. Biometric models explored common underlying genetic and environmental influences on symptoms of SOR and psychopathology. Results A majority of individuals who screened positive for SOR did not qualify for a DISC diagnosis (58.2%), and vice versa (68.3%). Children who screened positive for SOR only and typical children had similar rates of physical health problems. Turning to a dimensional approach, multivariate twin models of demonstrated that modest covariation between SOR and DISC symptoms could be entirely accounted for by common underlying genetic effects. Conclusions Our results suggest that SOR occurs independently of recognized childhood psychiatric diagnoses but is also a relatively frequent comorbid condition with recognized diagnoses. Genetic

  9. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  10. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses

    PubMed Central

    Pildervasser, João V. N.; Abrahao, Karina P.; Souza-Formigoni, Maria L. O.

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties. PMID:25152719

  11. X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism

    SciTech Connect

    Brunner, H.G.; Nelen, M.R.; Zandvoort, P. van; Abeling, N.G.G.M.; Gennip, A.H. van; Ropers, H.H.; Oost, B.A. van ); Wolters, E.C.; Kuiper, M.A. )

    1993-06-01

    The authors have identified a large Dutch kindred with a new form of X-linked nondysmorphic mild mental retardation. All affected males in this family show very characteristic abnormal behavior, in particular aggressive and sometimes violent behavior. Other types of impulsive behavior include arson, attempted rape, and exhibitionism. Attempted suicide has been reported in a single case. The locus for this disorder could be assigned to the Xp11-21 interval between DXS7 and DXS77 by linkage analysis using markers spanning the X chromosome. A maximal multipoint lod score of 3.69 was obtained at the monoamine oxidase type A (MAOA) monoamine metabolism. These data are compatible with a primary defect in the structural gene for MAOA and/or monoamine oxidase type B (MAOB). Normal platelet MAOB activity suggests that the unusual behavior pattern in this family may be caused by isolated MAOA deficiency. 34 refs., 4 figs., 4 tabs.

  12. Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior

    PubMed Central

    Grote, Jessica; Krysciak, Dagmar

    2015-01-01

    Phenotypic heterogeneity describes the occurrence of “nonconformist” cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations. PMID:26025903

  13. Are There Gender-Specific Pathways from Early Adolescence Psychological Distress Symptoms toward the Development of Substance Use and Abnormal Eating Behavior?

    ERIC Educational Resources Information Center

    Beato-Fernandez, Luis; Rodriguez-Cano, Teresa; Pelayo-Delgado, Esther; Calaf, Myralys

    2007-01-01

    The aim of the present longitudinal community study was to test whether psychological distress at 13 years of age predicted reported substance use problems in boys and abnormal eating behavior in girls 2 years later. The sample consisted of 500 male and 576 female students. The use of substances was evaluated using a semi-structured interview,…

  14. Duplication of the EFNB1 Gene in Familial Hypertelorism: Imbalance in Ephrin-B1 Expression and Abnormal Phenotypes in Humans and Mice

    PubMed Central

    Babbs, Christian; Stewart, Helen S; Williams, Louise J; Connell, Lyndsey; Goriely, Anne; Twigg, Stephen RF; Smith, Kim; Lester, Tracy; Wilkie, Andrew OM

    2011-01-01

    Familial hypertelorism, characterized by widely spaced eyes, classically shows autosomal dominant inheritance (Teebi type), but some pedigrees are compatible with X-linkage. No mechanism has been described previously, but clinical similarity has been noted to craniofrontonasal syndrome (CFNS), which is caused by mutations in the X-linked EFNB1 gene. Here we report a family in which females in three generations presented with hypertelorism, but lacked either craniosynostosis or a grooved nasal tip, excluding CFNS. DNA sequencing of EFNB1 was normal, but further analysis revealed a duplication of 937 kb including EFNB1 and two flanking genes: PJA1 and STARD8. We found that the X chromosome bearing the duplication produces ∼1.6-fold more EFNB1 transcript than the normal X chromosome and propose that, in the context of X-inactivation, this difference in expression level of EFNB1 results in abnormal cell sorting leading to hypertelorism. To support this hypothesis, we provide evidence from a mouse model carrying a targeted human EFNB1 cDNA, that abnormal cell sorting occurs in the cranial region. Hence, we propose that X-linked cases resembling Teebi hypertelorism may have a similar mechanism to CFNS, and that cellular mosaicism for different levels of ephrin-B1 (as well as simple presence/absence) leads to craniofacial abnormalities. Hum Mutat 32:1–9, 2011. © 2011 Wiley-Liss, Inc. PMID:21542058

  15. Change in the Behavioral Phenotype of Adolescents and Adults with FXS: Role of the Family Environment

    ERIC Educational Resources Information Center

    Smith, Leann E.; Hong, Jinkuk; Greenberg, Jan S.; Mailick, Marsha R.

    2016-01-01

    The present study examined trajectories of adaptive behavior, behavior problems, psychological symptoms, and autism symptoms in adolescents and adults with fragile X syndrome (n = 147) over a three-year period. Adaptive behavior significantly increased over time, particularly for adolescents, and the severity of behavior problems decreased over…

  16. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  17. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  18. Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG.

    PubMed

    Bammens, Riet; Mehta, Nickita; Race, Valérie; Foulquier, François; Jaeken, Jaak; Tiemeyer, Michael; Steet, Richard; Matthijs, Gert; Flanagan-Steet, Heather

    2015-06-01

    The congenital disorders of glycosylation (CDG), a group of inherited diseases characterized by aberrant glycosylation, encompass a wide range of defects, including glycosyltransferases, glycosidases, nucleotide-sugar transporters as well as proteins involved in maintaining Golgi architecture, pH and vesicular trafficking. Mutations in a previously undescribed protein, TMEM165, were recently shown to cause a new form of CDG, termed TMEM165-CDG. TMEM165-CDG patients exhibit cartilage and bone dysplasia and altered glycosylation of serum glycoproteins. We utilized a morpholino knockdown strategy in zebrafish to investigate the physiologic and pathogenic functions of TMEM165. Inhibition of tmem165 expression in developing zebrafish embryos caused craniofacial abnormalities, largely attributable to fewer chondrocytes. Decreased expression of several markers of cartilage and bone development suggests that Tmem165 deficiency alters both chondrocyte and osteoblast differentiation. Glycomic analysis of tmem165 morphants also revealed altered initiation, processing and extension of N-glycans, paralleling some of the glycosylation changes noted in human patients. Collectively, these findings highlight the utility of zebrafish to elucidate pathogenic mechanisms associated with glycosylation disorders and suggest that the cartilage and bone dysplasia manifested in TMEM165-CDG patients may stem from abnormal development of chondrocytes and osteoblasts.

  19. Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG

    PubMed Central

    Bammens, Riet; Mehta, Nickita; Race, Valérie; Foulquier, François; Jaeken, Jaak; Tiemeyer, Michael; Steet, Richard; Matthijs, Gert; Flanagan-Steet, Heather

    2015-01-01

    The congenital disorders of glycosylation (CDG), a group of inherited diseases characterized by aberrant glycosylation, encompass a wide range of defects, including glycosyltransferases, glycosidases, nucleotide-sugar transporters as well as proteins involved in maintaining Golgi architecture, pH and vesicular trafficking. Mutations in a previously undescribed protein, TMEM165, were recently shown to cause a new form of CDG, termed TMEM165-CDG. TMEM165-CDG patients exhibit cartilage and bone dysplasia and altered glycosylation of serum glycoproteins. We utilized a morpholino knockdown strategy in zebrafish to investigate the physiologic and pathogenic functions of TMEM165. Inhibition of tmem165 expression in developing zebrafish embryos caused craniofacial abnormalities, largely attributable to fewer chondrocytes. Decreased expression of several markers of cartilage and bone development suggests that Tmem165 deficiency alters both chondrocyte and osteoblast differentiation. Glycomic analysis of tmem165 morphants also revealed altered initiation, processing and extension of N-glycans, paralleling some of the glycosylation changes noted in human patients. Collectively, these findings highlight the utility of zebrafish to elucidate pathogenic mechanisms associated with glycosylation disorders and suggest that the cartilage and bone dysplasia manifested in TMEM165-CDG patients may stem from abnormal development of chondrocytes and osteoblasts. PMID:25609749

  20. Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: an illustration of the 4P's modeling approach.

    PubMed

    Garner, Joseph P; Thogerson, Collette M; Dufour, Brett D; Würbel, Hanno; Murray, James D; Mench, Joy A

    2011-06-01

    The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders.

  1. Persistent Effects of Peer Rearing on Abnormal and Species-Appropriate Activities but Not Social Behavior in Group-Housed Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Bauer, Sharon A; Baker, Kate C

    2016-01-01

    Nursery rearing of rhesus macaques (Macaca mulatta) alters behaviors but may be necessitated by maternal rejection or death, for research protocols, or for derivation of SPF colonies. The Tulane National Primate Research Center maintains a nursery-reared colony that is free from 9 pathogens as well as a mother-reared colony free from 4 pathogens, thus affording an opportunity to assess the outcomes of differential rearing. Nursery-reared macaques had continuous contact with 2 peers and an artificial surrogate (peer rearing). Focal sampling (432 h) was collected on the behavior of 32 peer-reared and 40 mother-reared subjects (age, 1 to 10 y; immature group, younger than 4 y; adult group 4 y or older). All animals were housed outdoors in like-reared social groups of 3 to 8 macaques. Contrary to expectation, no rearing effects on affiliative or agonistic social behaviors were detected. Compared with mother-reared subjects, peer-reared macaques in both age classes had elevated levels of abnormal appetitive, abnormal self-directed, and eating behaviors and lower levels of locomoting and vigilance (highly alert to activities in surrounding environment); a trend toward reduced foraging was detected. Immature but not adult peer-reared monkeys demonstrated more enrichment-directed behavior and drinking and a trend toward more anxiety-related behavior and inactivity. No new rearing effects were detected in adults that had not been detected in immature subjects. Results suggest that modern peer-rearing practices may not result in inevitable perturbations in aggressive, rank-related, sexual, and emotional behavior. However, abnormal behaviors may be lifelong issues once they appear. PMID:27053567

  2. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. V. Female phenotypic expression on natural genetic backgrounds and in natural environments.

    PubMed

    Templeton, A R; Hollocher, H; Johnston, J S

    1993-06-01

    The abnormal abdomen (aa) syndrome in Drosophila mercatorum depends on the presence of R1 inserts in a third or more of the X-linked 28S rDNA genes and the absence of selective underreplication of inserted repeats in polytene tissues that is controlled by an X-linked locus (ur) half a map unit from the rDNA complex. This syndrome affects both life history and morphology in the laboratory. Because abnormal morphologies are rarely encountered in nature, the purpose of this study is to see if the female life history traits are still affected under more natural genetic backgrounds and environmental conditions. Two outbred stocks were extracted from the natural population living near Kamuela, Hawaii: KaaX that has only X chromosomes with uraa alleles, and K+X that has only ur+ alleles. These two stocks have nonoverlapping distributions of insert proportions, indicating strong disequilibrium between the ur locus and the rDNA complex. The KaaX stock had almost no morphological penetrance of uraa, indicating that genetic background is important. KaaX expressed longer female egg-to-adult developmental times, increased early adult female fecundity, and decreased female adult longevity compared with K+X. By bagging natural rots of the cactus Opuntia megacantha near Kamuela, Hawaii, it was shown that egg-to-adult developmental time is slowed down by 0.92 days in females bearing uraa alleles in nature, with no detectable slowdown in uraa males. The bagged rot data also indicate that females bearing uraa alleles have a strong fecundity advantage in nature under some ecological conditions but not others.

  3. High-throughput behavioral phenotyping of drug and alcohol susceptibility traits in the expanded panel of BXD recombinant inbred strains

    SciTech Connect

    Philip, Vivek M; Ansah, T; Blaha, C,; Cook, Melloni N.; Hamre, Kristin M.; Lariviere, William R; Matthews, Douglas B; Goldowitz, Daniel; Chesler, Elissa J

    2010-01-01

    Genetic reference populations, particularly the BXD recombinant inbred strains, are a valuable resource for the discovery of the bio-molecular substrates and genetic drivers responsible for trait variation and co- ariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic co-regulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium have obtained behavioral phenotype data from 260 measures related to multiple behavioral assays across several domains: self-administration, response to, and withdrawal from cocaine, MDMA, morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity; and sleep/wake cycles. All traits have been measured in both sexes and the recently expanded panel of 69 additional BXD recombinant inbred strains (N=69). Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent BXD RI lines was performed. Primary data is publicly available for heritability, sex difference and genetic analyses using www.GeneNetwork.org. These analyses include QTL detection and genetic analysis of gene expression. Stored results from these analyses are available at http://ontologicaldiscovery.org for comparison to other genomic analysis results. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.

  4. Positive affect: phenotypic and etiologic associations with prosocial behaviors and internalizing problems in toddlers.

    PubMed

    Wang, Manjie; Saudino, Kimberly J

    2015-01-01

    Despite evidence for the associations of positive affect to prosocial behaviors and internalizing problems, relatively little is known about the underlying etiology. The sample comprised over 300 twin pairs at age 3. Positive affect, prosocial behaviors, and internalizing problems were assessed using the Toddler Behavior Assessment Questionnaire (Goldsmith, 1996), the Revised Rutter Parent Scale for Preschool Children (Hogg et al., 1997), and the Child Behavior Checklist for ages 1.5-5 (Achenbach, 1991), respectively. Positive affect correlated positively with prosocial behaviors, and negatively with internalizing problems. Prosocial behaviors were negatively associated with internalizing problems. The relations of positive affect to prosocial behaviors and internalizing problems were due to environmental effects (shared and non-shared). In contrast, the link between prosocial behaviors and internalizing problems was entirely explained by genetic effects. The current study has moved beyond prior emphasis on negative affect and elucidated the less understood etiology underlying the associations between positive affect, prosocial behaviors, and internalizing problems. This study could guide the development of programs for promoting prosocial behaviors and alleviating internalizing problems in children.

  5. Suppression of the abnormal phenotype of Salmonella typhimurium rfaH mutants by mutations in the gene for transcription termination factor Rho.

    PubMed Central

    Farewell, A; Brazas, R; Davie, E; Mason, J; Rothfield, L I

    1991-01-01

    Mutations in the rfaH gene have previously been shown to cause premature termination of transcription of the traYZ operon of the F factor and also to prevent expression of the rfaGBIJ gene cluster of Salmonella typhimurium. In the present study, mutants were selected for their ability to restore the normal pattern of rfaGBIJ function. On the basis of this initial section, several classes of extragenic suppressor mutants were isolated that completely or partially corrected the Tra- and Rfa- phenotypes of the prototype rfaH mutant. The suppressor mutations included mutations in rho and mutations that mapped in or close to rpoBC. Other suppressor mutations were located elsewhere on the chromosome, presumably identifying other genes that play a role in the RfaH-mediated transcriptional regulation. PMID:1860828

  6. Behavioral barcoding in the cloud: Embracing data-intensive digital phenotyping in neuropharmacology

    PubMed Central

    Kokel, David; Rennekamp, Andrew J.; Shah, Asmi H.; Liebel, Urban; Peterson, Randall T.

    2012-01-01

    Summary For decades, studying the behavioral effects of individual drugs and genetic mutations has been at the heart of efforts to understand and treat nervous system disorders. High-throughput technologies adapted from other disciplines (e.g. high-throughput chemical screening, genomics) are changing the scale of data acquisition in behavioral neuroscience. Massive behavioral datasets are beginning to emerge, particularly from zebrafish labs, where behavioral assays can be performed rapidly and reproducibly in 96-well, high-throughput format. Mining these datasets and making comparisons across different assays are major challenges for the field. Here, we review behavioral barcoding, a process by which complex behavioral assays are reduced to a string of numeric features, facilitating analysis and comparison within and across datasets. PMID:22652049

  7. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  8. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  9. Evidence of a Distinct Behavioral Phenotype in Young Boys with Fragile X Syndrome and Autism

    ERIC Educational Resources Information Center

    Wolff, Jason J.; Bodfish, James W.; Hazlett, Heather C.; Lightbody, Amy A.; Reiss, Allan L.; Piven, Joseph

    2012-01-01

    Objective: How does the behavioral expression of autism in fragile X syndrome (FXS + Aut) compare with idiopathic autism (iAut)? Although social impairments and restricted, repetitive behaviors are common to these variants of autism, closer examination of these symptom domains may reveal meaningful similarities and differences. To this end, the…

  10. [Behavioral characteristics of children with Prader-Willi syndrome in preschool and school age: an exploratory study on ritualistic behavior].

    PubMed

    Sarimski, Klaus; Ebner, Sarah; Wördemann, Claudia

    2012-01-01

    Parents of 64 children and youths with Prader-Willi syndrome (PWS) describe their children's behaviour on the "Temperament and Atypical Behavior Scale" (TABS) and the German version of the "Developmental Behavior Checklist" (VFE). In the younger age group, there are no specific behavioural abnormalities which characterize a behavioral phenotype. In the older age group the data reveal elevated levels of abnormal behaviors (communication disturbance, social relations and disruptive behaviors). Parents stress ritualistic behaviors as especially challenging. The results concerning form and age-dependency of abnormal behaviors are discussed in the context of prevention and treatment options.

  11. IgG (Gm) allotypes and multiple sclerosis in a French population: phenotype distribution and quantitative abnormalities in CSF with respect to sex, disease severity, and presence of intrathecal antibodies.

    PubMed

    Sesboüé, R; Daveau, M; Degos, J D; Martin-Mondiere, C; Goust, J M; Schuller, E; Rivat-Peran, L; Coquerel, A; Dujardin, M; Salier, J P

    1985-11-01

    The association of a given Gm allotype or phenotype with MS susceptibility, as previously described in some Caucasian populations, was not observed in a large French MS group, whether or not considering the possible influence of sex or disease severity. This result could be related to variations in geographical distribution of Gm alleles and MS susceptibility gene(s) or suggests the simultaneous involvement of Gm and other genetic system(s). In contrast, the corresponding CSFs exhibited already known MS-associated abnormalities of IgG1 (G1m) allotype contents, which therefore did not merely result from a Gm-associated MS susceptibility. These quantitative abnormalities were not sex dependent, but may fluctuate with MS severity. The G1m allotype levels in each CSF were not correlated with titers of various intrathecal antibodies but with the number of antibody specificities detected, a picture arguing for a polyclonal, non-antigen-specific activation of G1m allotype-producing B cells present in MS brain.

  12. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    PubMed Central

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  13. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay.

    PubMed

    Karvat, Golan; Kimchi, Tali

    2012-08-01

    Three core symptoms of autistic spectrum disorders are stereotypic movements, resistance to change in routines and deficits in social interaction. In order to understand their neuronal mechanisms, there is a dire need for behavioral paradigms to assess those symptoms in rodents. Here we present a novel method which is based on positive reward in a customized wheel-running apparatus to assess these symptoms. As a proof of concept, 4 mouse strains were tested in the new behavioral paradigm; 2 control lines (C57BL/6 and ICR) and 2 mouse-models of autism (BTBR T+ tf/J and Nlgn3(tm1Sud)). We found that the C57BL/6, ICR and Nlgn3(tm1Sud) mice showed a significant reduction in stereotypical behavior in the presence of the running wheel, ability to forfeit the running habit when the running-wheel was jammed, and preference of interacting with a social stimulus over the jammed running-wheel. No difference was found between genotypes of the Nlgn3(tm1Sud) mice. On the other hand, the BTBR mice exhibited persistent, elevated levels of stereotypical behavior. In addition, they presented a deficit in their ability to adjust to a changing environment, as manifested in persistence to interact with the wheel even when it was jammed. Lastly, the BTBR mice exhibited no significant preference to interact with the stranger mouse over the jammed running-wheel. These results were validated by a set of commonly used behavioral tests. Overall, our novel behavioral paradigm detects multiple components of autistic-like phenotypes, including cognitive rigidity, stereotypic behavior and social deficiency.

  14. Stability and change: Stress responses and the shaping of behavioral phenotypes over the life span.

    PubMed

    Hennessy, Michael B; Kaiser, Sylvia; Tiedtke, Tobias; Sachser, Norbert

    2015-01-01

    In mammals, maternal signals conveyed via influences on hypothalamic-pituitary-adrenal (HPA) activity may shape behavior of the young to be better adapted for prevailing environmental conditions. However, the mother's influence extends beyond classic stress response systems. In guinea pigs, several hours (h) of separation from the mother activates not only the HPA axis, but also the innate immune system, which effects immediate behavioral change, as well as modifies behavioral responsiveness in the future. Moreover, the presence of the mother potently suppresses the behavioral consequences of this innate immune activation. These findings raise the possibility that long-term adaptive behavioral change can be mediated by the mother's influence on immune-related activity of her pups. Furthermore, the impact of social partners on physiological stress responses and their behavioral outcomes are not limited to the infantile period. A particularly crucial period for social development in male guinea pigs is that surrounding the attainment of sexual maturation. At this time, social interactions with adults can dramatically affect circulating cortisol concentrations and social behavior in ways that appear to prepare the male to best cope in its likely future social environment. Despite such multiple social influences on the behavior of guinea pigs at different ages, inter-individual differences in the magnitude of the cortisol response remain surprisingly stable over most of the life span. Together, it appears that throughout the life span, physiological stress responses may be regulated by social stimuli. These influences are hypothesized to adjust behavior for predicted environmental conditions. In addition, stable individual differences might provide a means of facilitating adaptation to less predictable conditions.

  15. Brief Report: Impact of Child Problem Behaviors and Parental Broad Autism Phenotype Traits on Substance Use among Parents of Children with ASD

    ERIC Educational Resources Information Center

    Wade, Jordan L.; Cox, Neill Broderick; Reeve, Ronald E.; Hull, Michael

    2014-01-01

    Using data from the Simons Simplex Collection, the present study examined the impact of child externalizing behavior and parental broad autism phenotype traits on substance use among parents of children with autism spectrum disorder (n = 2,388). For both fathers and mothers, child externalizing behaviors predicted tobacco use (OR = 1.01 and OR =…

  16. Suggestive Linkage of the Child Behavior Checklist Juvenile Bipolar Disorder Phenotype to 1p21, 6p21, and 8q21

    ERIC Educational Resources Information Center

    Doyle, Alysa E.; Biederman, Joseph; Ferreira, Manuel A. R.; Wong, Patricia; Smoller, Jordan W.; Faraone, Stephen V.

    2010-01-01

    Objective: Several studies have documented a profile of elevated scores on the Attention Problems, Aggressive Behavior and Anxious/Depressed scales of the Child Behavior Checklist (CBCL) in youth with bipolar disorder. The sum of these scales, referred to as the CBCL Juvenile Bipolar Disorder (JBD) phenotype, has modest diagnostic utility, and…

  17. The effect of otolith malformation on behavior and cortisol levels in juvenile red drum fish (Sciaenops ocellatus).

    PubMed

    Browning, Zoe S; Wilkes, Allison A; Moore, Erica J; Lancon, Trevor W; Clubb, Fred J

    2012-08-01

    Captive-raised red drum fish were observed with phenotypic abnormalities, including deformities of the spine, jaw, and cephalic region, that were consistent with vitamin C deficiency during the larval stage. In light of their visible exterior skeletal abnormalities, we suspected that the affected fish would also have abnormal otoliths. Otoliths are dense calcareous structures that function in fish hearing. We hypothesized that abnormal fish would have irregular otoliths that would alter behavior and cortisol levels as compared with those of phenotypically normal fish. The normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses.

  18. Phenotypic heterogeneity influences the behavior of rat aortic smooth muscle cells in collagen lattice

    SciTech Connect

    Orlandi, Augusto . E-mail: orlandi@uniroma2.it; Ferlosio, Amedeo; Gabbiani, Giulio; Spagnoli, Luigi Giusto; Ehrlich, Paul H.

    2005-12-10

    Phenotypic modulation of vascular smooth muscle cells (SMCs) in atherosclerosis and restenosis involves responses to the surrounding microenvironment. SMCs obtained by enzymatic digestion from tunica media of newborn, young adult (YA) and old rats and from the thickened intima (TI) and underlying media of young adult rat aortas 15 days after ballooning were entrapped in floating populated collagen lattice (PCL). TI-SMCs elongated but were poor at PCL contraction and remodeling and expressed less {alpha}2 integrin compared to other SMCs that appeared more dendritic. During early phases of PCL contraction, SMCs showed a marked decrease in the expression of {alpha}-smooth muscle actin and myosin. SMCs other than TI-SMCs required 7 days to re-express {alpha}-smooth muscle actin and myosin. Only TI-SMCs in PCL were able to divide in 48 h, with a greater proportion in S and G2-M cell cycle phases compared to other SMCs. Anti-{alpha}2 integrin antibody markedly inhibited contraction but not proliferation in YA-SMC-PLCs; anti-{alpha}1 and anti-{alpha}2 integrin antibodies induced a similar slight inhibition in TI-SMC-PCLs. Finally, TI-SMCs rapidly migrated from PCL on plastic reacquiring their epithelioid phenotype. Heterogeneity in proliferation and cytoskeleton as well the capacity to remodel the extracellular matrix are maintained, when SMCs are suspended in PCLs.

  19. The relationship between DRD4 polymorphisms and phenotypic correlations of behaviors in the collared flycatcher

    PubMed Central

    Garamszegi, László Z; Mueller, Jakob C; Markó, Gábor; Szász, Eszter; Zsebők, Sándor; Herczeg, Gábor; Eens, Marcel; Török, János

    2014-01-01

    There is increasing evidence that the genetic architecture of exploration behavior includes the dopamine receptor D4 gene (DRD4). Such a link implies that the within-individual consistency in the same behavior has a genetic basis. Behavioral consistency is also prevalent in the form of between-individual correlation of functionally different behaviors; thus, the relationship between DRD4 polymorphism and exploration may also be manifested for other behaviors. Here, in a Hungarian population of the collared flycatcher, Ficedula albicollis, we investigate how males with distinct DRD4 genotypes differ in the consistent elements of their behavioral displays during the courtship period. In completely natural conditions, we assayed novelty avoidance, aggression and risk-taking, traits that were previously shown repeatable over time and correlate with each other, suggesting that they could have a common mechanistic basis. We identified two single-nucleotide polymorphisms (SNP554 and SNP764) in the exon 3 of the DRD4 gene by sequencing a subsample, then we screened 202 individuals of both sexes for these SNPs. Focusing on the genotypic variation in courting males, we found that “AC” heterozygote individuals at the SNP764 take lower risk than the most common “AA” homozygotes (the “CC” homozygotes were not represented in our subsample of males). We also found a considerable effect size for the relationship between SNP554 polymorphism and novelty avoidance. Therefore, in addition to exploration, DRD4 polymorphisms may also be associated with the regulation of behaviors that may incur fear or stress. Moreover, polymorphisms at the two SNPs were not independent indicating a potential role for genetic constraints or another functional link, which may partially explain behavioral correlations. PMID:24834341

  20. The relationship between DRD4 polymorphisms and phenotypic correlations of behaviors in the collared flycatcher.

    PubMed

    Garamszegi, László Z; Mueller, Jakob C; Markó, Gábor; Szász, Eszter; Zsebők, Sándor; Herczeg, Gábor; Eens, Marcel; Török, János

    2014-04-01

    There is increasing evidence that the genetic architecture of exploration behavior includes the dopamine receptor D4 gene (DRD4). Such a link implies that the within-individual consistency in the same behavior has a genetic basis. Behavioral consistency is also prevalent in the form of between-individual correlation of functionally different behaviors; thus, the relationship between DRD4 polymorphism and exploration may also be manifested for other behaviors. Here, in a Hungarian population of the collared flycatcher, Ficedula albicollis, we investigate how males with distinct DRD4 genotypes differ in the consistent elements of their behavioral displays during the courtship period. In completely natural conditions, we assayed novelty avoidance, aggression and risk-taking, traits that were previously shown repeatable over time and correlate with each other, suggesting that they could have a common mechanistic basis. We identified two single-nucleotide polymorphisms (SNP554 and SNP764) in the exon 3 of the DRD4 gene by sequencing a subsample, then we screened 202 individuals of both sexes for these SNPs. Focusing on the genotypic variation in courting males, we found that "AC" heterozygote individuals at the SNP764 take lower risk than the most common "AA" homozygotes (the "CC" homozygotes were not represented in our subsample of males). We also found a considerable effect size for the relationship between SNP554 polymorphism and novelty avoidance. Therefore, in addition to exploration, DRD4 polymorphisms may also be associated with the regulation of behaviors that may incur fear or stress. Moreover, polymorphisms at the two SNPs were not independent indicating a potential role for genetic constraints or another functional link, which may partially explain behavioral correlations.

  1. Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome.

    PubMed

    Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich

    2009-07-29

    Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.

  2. Generation of membrane-bound catechol-O-methyl transferase deficient mice with disctinct sex dependent behavioral phenotype.

    PubMed

    Tammimaki, A; Aonurm-Helm, A; Zhang, F P; Poutanen, M; Duran-Torres, G; Garcia-Horsman, A; Mannisto, P T

    2016-12-01

    Catechol-O-methyltransferase (COMT) has two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-MT), anchored to intracellular membranes. COMT is involved in the O-methylation of L-DOPA, dopamine and other catechols. The exact role of MB-COMT is still mostly unclear. We wanted to create a novel genetically modified mouse model that specifically lacks MB-COMT activity and to study their behavioral phenotype. MB-COMT knock-in mutant mice were generated by introducing two point mutations in exon 2 of the Comt gene (ATGCTG->GAGCTC disabling the function of the P2 promoter and allowing only the P1-regulated S-COMT transcription. The first mutation changes methionine to glutamic acid whereas the second one does not affect coding. The expression of the two COMT isoforms, total COMT activity in several areas of the brain and peripheral tissues and extracellular dopamine concentrations after L-DOPA (10 mg/kg) and carbidopa (30 mg/kg) subcutaneous administration were assessed. A battery of behavioral tests was performed to compare MB-COMT deficient mice and their wild type littermates of both sexes. MB-COMT deficient mice were seemingly normal, bred usually and had unaltered COMT activity in the brain and periphery despite a complete lack of the MB-COMT protein. MB-COMT deficient male mice showed higher extracellular dopamine levels than their wild-type littermates in the striatum, but not in the mPFC. In addition, the MB-COMT deficient male mice exhibited a distinct endophenotype characterized by schizophrenia-related behaviors like aggressive behavior and reduced prepulse inhibition. They also had prolonged immobility in the tail suspension test. Both sexes were sensitized to acute pain and had normal motor activity but disturbed short-term memory. Hence the behavioral phenotype was not limited to schizophrenia-related endophenotype and some behavioural findings were not sex-dependent. Our findings indicate that MB-COMT is critical for

  3. Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features

    PubMed Central

    Ross, J. L.; Tartaglia, N.; Merry, D. E.; Dalva, M.; Zinn, A. R.

    2016-01-01

    The male sex chromosome disorder, 47,XYY syndrome (XYY), is associated with increased risk for social-emotional difficulties, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We hypothesize that increased Y chromosome gene copy number in XYY leads to overexpression of Y-linked genes related to brain development and function, thereby increasing risk for these phenotypes. We measured expression in blood of two Y genes NLGN4Y and RPS4Y in 26 boys with XYY and 11 male controls and evaluated whether NLGN4Y expression correlates with anxiety, ADHD, depression and autistic behaviors (from questionnaires) in boys with XYY. The XYY cohort had increased risk of ASD behaviors on the social responsiveness scale (SRS) and increased attention deficits on the Conners’ DSM-IV inattention and hyperactive scales. In contrast, there was no increase in reported symptoms of anxiety or depression by the XYY group. Peripheral expression of two Y genes in boys with XYY vs. typically developing controls was increased twofold in the XYY group. Results from the SRS total and autistic mannerisms scales, but not from the attention, anxiety or depression measures, correlated with peripheral expression of NLGN4Y in boys with XYY. Males with XYY have social phenotypes that include increased risk for autism-related behaviors and ADHD. Expression of NLGN4Y , a gene that may be involved in synaptic function, is increased in boys with XYY, and the level of expression correlates with overall social responsiveness and autism symptoms. Thus, further investigation of NLGN4Y as a plausible ASD risk gene in XYY is warranted. PMID:25558953

  4. Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features.

    PubMed

    Ross, J L; Tartaglia, N; Merry, D E; Dalva, M; Zinn, A R

    2015-02-01

    The male sex chromosome disorder, 47,XYY syndrome (XYY), is associated with increased risk for social-emotional difficulties, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We hypothesize that increased Y chromosome gene copy number in XYY leads to overexpression of Y-linked genes related to brain development and function, thereby increasing risk for these phenotypes. We measured expression in blood of two Y genes NLGN4Y and RPS4Y in 26 boys with XYY and 11 male controls and evaluated whether NLGN4Y expression correlates with anxiety, ADHD, depression and autistic behaviors (from questionnaires) in boys with XYY. The XYY cohort had increased risk of ASD behaviors on the social responsiveness scale (SRS) and increased attention deficits on the Conners' DSM-IV inattention and hyperactive scales. In contrast, there was no increase in reported symptoms of anxiety or depression by the XYY group. Peripheral expression of two Y genes in boys with XYY vs. typically developing controls was increased twofold in the XYY group. Results from the SRS total and autistic mannerisms scales, but not from the attention, anxiety or depression measures, correlated with peripheral expression of NLGN4Y in boys with XYY. Males with XYY have social phenotypes that include increased risk for autism-related behaviors and ADHD. Expression of NLGN4Y, a gene that may be involved in synaptic function, is increased in boys with XYY, and the level of expression correlates with overall social responsiveness and autism symptoms. Thus, further investigation of NLGN4Y as a plausible ASD risk gene in XYY is warranted.

  5. Positive effects of early androgen therapy on the behavioral phenotype of boys with 47,XXY.

    PubMed

    Samango-Sprouse, Carole; Stapleton, Emily J; Lawson, Patrick; Mitchell, Francie; Sadeghin, Teresa; Powell, Sherida; Gropman, Andrea L

    2015-06-01

    47, XXY occurs in up to 1 in 650 male births and is associated with androgen deficiency, neurodevelopmental delays, and atypical social-behaviors. Previously, we showed that young boys with 47, XXY who received early hormonal therapy (EHT) had significantly improved neurodevelopment. The objective of this follow-up study was to examine the effects of EHT on social behavior in boys with 47, XXY. The study consisted of boys prenatally diagnosed with 47, XXY who were referred for evaluations. Twenty-nine boys received three injections of 25 mg testosterone enanthate and 57 controls did not receive EHT. Behavioral functioning was assessed using the Behavior Rating Inventory of Executive Function, Social Responsiveness Scale, 2nd Ed., and the Child Behavior Checklist for Ages 6-18. The hypothesis that EHT may affect behavior was formulated prior to data collection. Questionnaire data was prospectively obtained and analyzed to test for significance between two groups. Significant differences were identified between group's scores over time in Social Communication (P=0.007), Social Cognition (P=0.006), and Total T-score (P=0.001) on the SRS-2; Initiation (P=0.05) on the BRIEF; and Externalizing Problems (P=0.024), Affective Problems (P=0.05), and Aggressive Behaviors (P=0.031) on the CBCL. This is the third study revealing positive effects of EHT on boys with XXY. There was a significant improvements associated with the 47, XXY genotype in boys who received EHT. Research is underway on the neurobiological mechanisms, and later developmental effects of EHT.

  6. A Cross-Sectional Study of Major Repeaters: A Distinct Phenotype of Suicidal Behavior

    PubMed Central

    Jaussent, Isabelle; Olié, Emilie; Béziat, Severine; Guillaume, Sebastien; Artieda-Urrutia, Paula; Baca-Garcia, Enrique; de Leon, Jose; Courtet, Philippe

    2014-01-01

    Objective: The characterization of major repeaters (individuals with ≥ 5 lifetime suicide attempts) is a neglected area of research. Our aim was to establish whether or not major repeaters are a distinctive suicidal phenotype, taking into account a wide range of potential competing risks including sociodemographic characteristics, personal and familial history, psychiatric diagnoses, and personality traits. Method: This cross-sectional study included 372 suicide attempters admitted to a specialized unit for suicide attempters in Montpellier University Hospital, Montpellier, France, between October 12, 2000, and June 10, 2010. Logistic regression models controlling for potential confounders were used. Results: When compared with subjects who attempted suicide < 5 times, major repeaters were more likely to be female (odds ratio [OR] = 5.54; 95% CI, 1.41–21.81), to have a lower educational level (OR = 5.1; 95% CI, 1.55–17.2), to have lifetime diagnoses of anorexia nervosa (OR = 3.45; 95% CI, 1.10–10.84) and substance dependence (OR = 5.00; 95% CI, 1.37–18.27), and to have lower levels of anger expressed outward (OR = 0.17; 95% CI, 0.06–0.47) and higher levels of trait anger (OR = 2.82; 95% CI, 1.18–6.75). Major repeaters had significantly higher suicide risk (lethality) scores (OR = 2.14; 95% CI, 1.08–4.23). Conclusion: Major repeaters are a distinctive suicidal phenotype characterized by a distinctive sociodemographic (ie, female gender, low education) and clinical profile (ie, trait anger, substance dependence, anorexia nervosa). If our results are replicated, specific preventive plans should be tailored to major repeaters. PMID:25664212

  7. An open-source toolbox for automated phenotyping of mice in behavioral tasks

    PubMed Central

    Patel, Tapan P.; Gullotti, David M.; Hernandez, Pepe; O'Brien, W. Timothy; Capehart, Bruce P.; Morrison, Barclay; Bass, Cameron; Eberwine, James E.; Abel, Ted; Meaney, David F.

    2014-01-01

    Classifying behavior patterns in mouse models of neurological, psychiatric and neurodevelopmental disorders is critical for understanding disease causality and treatment. However, complete characterization of behavior is time-intensive, prone to subjective scoring, and often requires specialized equipment. Although several reports describe automated home-cage monitoring and individual task scoring methods, we report the first open source, comprehensive toolbox for automating the scoring of several common behavior tasks used by the neuroscience community. We show this new toolbox is robust and achieves equal or better consistency when compared to manual scoring methods. We use this toolbox to study the alterations in behavior that occur following blast-induced traumatic brain injury (bTBI), and study if these behavior patterns are altered following genetic deletion of the transcription factor Ets-like kinase 1 (Elk-1). Due to the role of Elk-1 in neuronal survival and proposed role in synaptic plasticity, we hypothesized that Elk-1 deletion would improve some neurobehavioral deficits, while impairing others, following blast exposure. In Elk-1 knockout (KO) animals, deficits in open field, spatial object recognition (SOR) and elevated zero maze performance after blast exposure disappeared, while new significant deficits appeared in spatial and associative memory. These are the first data suggesting a molecular mediator of anxiety deficits following bTBI, and represent the utility of the broad screening tool we developed. More broadly, we envision this open-source toolbox will provide a more consistent and rapid analysis of behavior across many neurological diseases, promoting the rapid discovery of novel pathways mediating disease progression and treatment. PMID:25339878

  8. Behavioral phenotype in a child with Prader-Willi syndrome and comorbid 47, XYY

    PubMed Central

    Palkar, Pooja; Kabasakalian, Anahid; Taylor, Bonnie; Doernberg, Ellen; Ferretti, Casara Jean; Uzunova, Genoveva; Hollander, Eric

    2016-01-01

    Summary We report a 12-year-old male with Prader-Willi syndrome (PWS) and 47, XYY syndrome. Genetic work up revealed 47, XYY karyotype. PWS diagnosis was made by polymerase chain reaction methylation and maternal uniparental disomy (mUPD) was determined to be the etiology. Review of distinct behavioral features, possible interplay between the two syndromes and considerations for diagnoses are presented. To our knowledge, this is the first report of behavioral features in PWS with comorbid 47, XYY. PMID:27672550

  9. Williams Syndrome: A Critical Review of the Cognitive, Behavioral, and Neuroanatomical Phenotype

    ERIC Educational Resources Information Center

    Martens, Marilee A.; Wilson, Sarah J.; Reutens, David C.

    2008-01-01

    This review critically examines the research findings which characterize the cognitive, behavioral, and neuroanatomical features of Williams syndrome (WS). This article analyzes 178 published studies in the WS literature covering the following areas: 1) General intelligence, 2) Language skills, 3) Visuospatial and face processing skills, 4)…

  10. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems.

  11. Behavioral Phenotyping of Juvenile Long-Evans and Sprague-Dawley Rats: Implications for Preclinical Models of Autism Spectrum Disorders

    PubMed Central

    Ku, Katherine M.; Weir, Ruth K.; Silverman, Jill L.; Berman, Robert F.; Bauman, Melissa D.

    2016-01-01

    The laboratory rat is emerging as an attractive preclinical animal model of autism spectrum disorder (ASD), allowing investigators to explore genetic, environmental and pharmacological manipulations in a species exhibiting complex, reciprocal social behavior. The present study was carried out to compare two commonly used strains of laboratory rats, Sprague-Dawley (SD) and Long-Evans (LE), between the ages of postnatal day (PND) 26–56 using high-throughput behavioral phenotyping tools commonly used in mouse models of ASD that we have adapted for use in rats. We detected few differences between young SD and LE strains on standard assays of exploration, sensorimotor gating, anxiety, repetitive behaviors, and learning. Both SD and LE strains also demonstrated sociability in the 3-chamber social approach test as indexed by spending more time in the social chamber with a constrained age/strain/sex matched novel partner than in an identical chamber without a partner. Pronounced differences between the two strains were, however, detected when the rats were allowed to freely interact with a novel partner in the social dyad paradigm. The SD rats in this particular testing paradigm engaged in play more frequently and for longer durations than the LE rats at both juvenile and young adult developmental time points. Results from this study that are particularly relevant for developing preclinical ASD models in rats are threefold: (i) commonly utilized strains exhibit unique patterns of social interactions, including strain-specific play behaviors, (ii) the testing environment may profoundly influence the expression of strain-specific social behavior and (iii) simple, automated measures of sociability may not capture the complexities of rat social interactions. PMID:27351457

  12. No delayed behavioral and phenotypic responses to experimental early-life lead exposure in great tits (Parus major).

    PubMed

    Ruuskanen, Suvi; Eeva, Tapio; Kotitalo, Päivi; Stauffer, Janina; Rainio, Miia

    2015-02-01

    Early-life exposure to pollutants, such as lead, may have long-lasting consequences on health, behavior, and cognition. However, experiments on delayed effects of specific pollutants are very rare in wild animals. We experimentally exposed wild nestling great tits (Parus major) to dietary lead (high, low, or control group) in levels relevant to exposure levels of wild populations in Europe and studied delayed effects on phenotypic and behavioral traits in captivity. We also included a group of birds from a vicinity of a copper smelter, exposed to a mixture of toxic metals and altered food supply during development. This experimental setup allowed us to compare the strength of direct (exposure to lead per se) and indirect (pollution-related changes in diet) effects of pollutants. Our experimental lead treatment significantly increased lead levels in bone and feces compared with controls. However, we found no carry-over effect of early-life dietary lead on morphology, plumage coloration, or heat shock proteins. Treatment did not affect activity, exploration, neophobia, or success in learning and spatial memory task. We conclude that with the exposure levels and relatively short exposure period used, delayed effects on the measured traits were not found. However, it is important to further study other types of behavioral traits and ultimately fitness effects.

  13. Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations

    PubMed Central

    Simonet, Jacqueline C.; Sunnen, C. Nicole; Wu, Jue; Golden, Jeffrey A.; Marsh, Eric D.

    2015-01-01

    Mutations in the Aristaless-Related Homeobox (ARX) gene cause structural anomalies of the brain, epilepsy, and neurocognitive deficits in children. During forebrain development, Arx is expressed in both pallial and subpallial progenitor cells. We previously demonstrated that elimination of Arx from subpallial-derived cortical interneurons generates an epilepsy phenotype with features overlapping those seen in patients with ARX mutations. In this report, we have selectively removed Arx from pallial progenitor cells that give rise to the cerebral cortical projection neurons. While no discernable seizure activity was recorded, these mice exhibited a peculiar constellation of behaviors. They are less anxious, less social, and more active when compared with their wild-type littermates. The overall cortical thickness was reduced, and the corpus callosum and anterior commissure were hypoplastic, consistent with a perturbation in cortical connectivity. Taken together, these data suggest that some of the structural and behavioral anomalies, common in patients with ARX mutations, are specifically due to alterations in pallial progenitor function. Furthermore, our data demonstrate that some of the neurobehavioral features found in patients with ARX mutations may not be due to on-going seizures, as is often postulated, given that epilepsy was eliminated as a confounding variable in these behavior analyses. PMID:24794919

  14. Adapting Phonological Awareness Interventions for Children With Down Syndrome Based on the Behavioral Phenotype: A Promising Approach?

    PubMed

    Lemons, Christopher J; King, Seth A; Davidson, Kimberly A; Puranik, Cynthia S; Fulmer, Deborah; Mrachko, Alicia A; Partanen, Jane; Al Otaiba, Stephanie; Fidler, Deborah J

    2015-08-01

    Many children with Down syndrome demonstrate deficits in phonological awareness, a prerequisite to learning to read in an alphabetic language. The purpose of this study was to determine whether adapting a commercially available phonological awareness program to better align with characteristics associated with the behavioral phenotype of Down syndrome would increase children's learning of phonological awareness, letter sounds, and words. Five children with Down syndrome, ages 6 to 8 years, participated in a multiple baseline across participants single case design experiment in which response to an adapted phonological awareness intervention was compared with response to the nonadapted program. Results indicate a functional relation between the adapted program and phonological awareness. Suggestions for future research and implications for practice are provided.

  15. An allele of sequoia dominantly enhances a trio mutant phenotype to influence Drosophila larval behavior.

    PubMed

    Dean, Kathryn E; Fields, April; Geer, Marcus J; King, Eric C; Lynch, Brian T; Manohar, Rohan R; McCall, Julianne R; Palozola, Katherine C; Zhang, Yan; Liebl, Eric C

    2013-01-01

    The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency.

  16. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  17. Executive Function Deficits and Social-Behavioral Abnormality in Mice Exposed to a Low Dose of Dioxin In Utero and via Lactation

    PubMed Central

    Endo, Toshihiro; Kakeyama, Masaki; Uemura, Yukari; Haijima, Asahi; Okuno, Hiroyuki; Bito, Haruhiko; Tohyama, Chiharu

    2012-01-01

    An increasing prevalence of mental health problems has been partly ascribed to abnormal brain development that is induced upon exposure to environmental chemicals. However, it has been extremely difficult to detect and assess such causality particularly at low exposure levels. To address this question, we here investigated higher brain function in mice exposed to dioxin in utero and via lactation by using our recently developed automated behavioral flexibility test and immunohistochemistry of neuronal activation markers Arc, at the 14 brain areas. Pregnant C57BL/6 mice were given orally a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a dose of either 0, 0.6 or 3.0 µg/kg on gestation day 12.5. When the pups reached adulthood, they were group-housed in IntelliCage to assess their behavior. As a result, the offspring born to dams exposed to 0.6 µg TCDD/kg were shown to have behavioral inflexibility, compulsive repetitive behavior, and dramatically lowered competitive dominance. In these mice, immunohistochemistry of Arc exhibited the signs of hypoactivation of the medial prefrontal cortex (mPFC) and hyperactivation of the amygdala. Intriguingly, mice exposed to 3.0 µg/kg were hardly affected in both the behavioral and neuronal activation indices, indicating that the robust, non-monotonic dose-response relationship. In conclusion, this study showed for the first time that perinatal exposure to a low dose of TCDD in mice develops executive function deficits and social behavioral abnormality accompanied with the signs of imbalanced mPFC-amygdala activation. PMID:23251380

  18. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  19. Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder.

    PubMed

    Kulak, Anita; Cuenod, Michel; Do, Kim Q

    2012-01-15

    Redox-dysregulation represents a common pathogenic mechanism in schizophrenia (SZ) and bipolar disorder (BP). It may in part arise from a genetically compromised synthesis of glutathione (GSH), the major cellular antioxidant and redox-regulator. Allelic variants of the genes coding for the rate-limiting GSH synthesizing enzyme glutamate-cysteine-ligase modifier (GCLM) and/or catalytic (GCLC) subunit have been associated with SZ and BP. Using mice knockout (KO) for GCLM we have previously shown that impaired GSH synthesis is associated with morphological, functional and neurochemical anomalies similar to those in patients. Here we asked whether GSH deficit is also associated with SZ- and BP-relevant behavioral and cognitive anomalies. Accordingly, we subjected young adult GCLM-wildtype (WT), heterozygous and KO males to a battery of standard tests. Compared to WT, GCLM-KO mice displayed hyperlocomotion in the open field and forced swim test but normal activity in the home cage, suggesting that hyperlocomotion was selective to environmental novelty and mildly stressful situations. While spatial working memory and latent inhibition remained unaffected, KO mice showed a potentiated hyperlocomotor response to an acute amphetamine injection, impaired sensorymotor gating in the form of prepulse inhibition and altered social behavior compared to WT. These anomalies resemble important aspects of both SZ and the manic component of BP. As such our data support the notion that redox-dysregulation due to GSH deficit is implicated in both disorders. Moreover, our data propose the GCLM-KO mouse as a valuable model to study the behavioral and cognitive consequences of redox dysregulation in the context of psychiatric disease.

  20. Overexpression of Reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder.

    PubMed

    Teixeira, Cátia M; Martín, Eduardo D; Sahún, Ignasi; Masachs, Nuria; Pujadas, Lluís; Corvelo, André; Bosch, Carles; Rossi, Daniela; Martinez, Albert; Maldonado, Rafael; Dierssen, Mara; Soriano, Eduardo

    2011-11-01

    Despite the impact of schizophrenia and mood disorders, which in extreme cases can lead to death, recent decades have brought little progress in the development of new treatments. Recent studies have shown that Reelin, an extracellular protein that is critical for neuronal development, is reduced in schizophrenia and bipolar disorder patients. However, data on a causal or protective role of Reelin in psychiatric diseases is scarce. In order to study the direct influence of Reelin's levels on behavior, we subjected two mouse lines, in which Reelin levels are either reduced (Reelin heterozygous mice) or increased (Reelin overexpressing mice), to a battery of behavioral tests: open-field, black-white box, novelty-suppressed-feeding, forced-swim-test, chronic corticosterone treatment followed by forced-swim-test, cocaine sensitization and pre-pulse inhibition (PPI) deficits induced by N-methyl-D-aspartate (NMDA) antagonists. These tests were designed to model some aspects of psychiatric disorders such as schizophrenia, mood, and anxiety disorders. We found no differences between Reeler heterozygous mice and their wild-type littermates. However, Reelin overexpression in the mouse forebrain reduced the time spent floating in the forced-swim-test in mice subjected to chronic corticosterone treatment, reduced behavioral sensitization to cocaine, and reduced PPI deficits induced by a NMDA antagonist. In addition, we demonstrate that while stress increased NMDA NR2B-mediated synaptic transmission, known to be implicated in depression, Reelin overexpression significantly reduced it. Together, these results point to the Reelin signaling pathway as a relevant drug target for the treatment of a range of psychiatric disorders.

  1. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    PubMed

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology.

  2. Behavioral phenotypes in schizophrenic animal models with multiple combinations of genetic and environmental factors.

    PubMed

    Hida, Hirotake; Mouri, Akihiro; Noda, Yukihiro

    2013-01-01

    Schizophrenia is a multifactorial psychiatric disorder in which both genetic and environmental factors play a role. Genetic [e.g., Disrupted-in-schizophrenia 1 (DISC1), Neuregulin-1 (NRG1)] and environmental factors (e.g., maternal viral infection, obstetric complications, social stress) may act during the developmental period to increase the incidence of schizophrenia. In animal models, interactions between susceptibility genes and the environment can be controlled in ways not possible in humans; therefore, such models are useful for investigating interactions between or within factors in the pathogenesis and pathophysiology of schizophrenia. We provide an overview of schizophrenic animal models investigating interactions between or within factors. First, we reviewed gene-environment interaction animal models, in which schizophrenic candidate gene mutant mice were subjected to perinatal immune activation or adolescent stress. Next, environment-environment interaction animal models, in which mice were subjected to a combination of perinatal immune activation and adolescent administration of drugs, were described. These animal models showed interaction between or within factors; behavioral changes, which were obscured by each factor, were marked by interaction of factors and vice versa. Appropriate behavioral approaches with such models will be invaluable for translational research on novel compounds, and also for providing insight into the pathogenesis and pathophysiology of schizophrenia.

  3. Microduplications of 3p26.3p26.2 containing CRBN gene in patients with intellectual disability and behavior abnormalities.

    PubMed

    Papuc, Sorina M; Hackmann, Karl; Andrieux, Joris; Vincent-Delorme, Catherine; Budişteanu, Magdalena; Arghir, Aurora; Schrock, Evelin; Ţuţulan-Cuniţă, Andreea C; Di Donato, Nataliya

    2015-05-01

    We report on the clinical data and molecular cytogenetic findings in three unrelated patients presenting with intellectual disability and behavior abnormalities. An overlapping microduplication involving 3p26.2-26.3 was identified in these patients. All three aberrations were confirmed and proven to be parentally inherited. The sizes of the duplications were different, with a common minimal region of 423,754 bp containing two genes - TRNT1 and CRBN. Here, we hypothesize that the copy number gain of CRBN gene might be responsible for developmental delay/intellectual disability.

  4. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice.

    PubMed

    Bhattacharya, Aditi; Kaphzan, Hanoch; Alvarez-Dieppa, Amanda C; Murphy, Jaclyn P; Pierre, Philippe; Klann, Eric

    2012-10-18

    Fragile X syndrome (FXS) is the leading inherited cause of autism and intellectual disability. Aberrant synaptic translation has been implicated in the etiology of FXS, but most lines of research on therapeutic strategies have targeted protein synthesis indirectly, far upstream of the translation machinery. We sought to perturb p70 ribosomal S6 kinase 1 (S6K1), a key translation initiation and elongation regulator, in FXS model mice. We found that genetic reduction of S6K1 prevented elevated phosphorylation of translational control molecules, exaggerated protein synthesis, enhanced mGluR-dependent long-term depression (LTD), weight gain, and macro-orchidism in FXS model mice. In addition, S6K1 deletion prevented immature dendritic spine morphology and multiple behavioral phenotypes, including social interaction deficits, impaired novel object recognition, and behavioral inflexibility. Our results support the model that dysregulated protein synthesis is the key causal factor in FXS and that restoration of normal translation can stabilize peripheral and neurological function in FXS.

  5. Differentiation of rodent behavioral phenotypes and methylphenidate action in sustained and flexible attention tasks.

    PubMed

    Chu, Richard; Shumsky, Jed; Waterhouse, Barry D

    2016-06-15

    Methyphenidate (MPH) is the primary drug treatment of choice for ADHD. It is also frequently used off-label as a cognitive enhancer by otherwise healthy individuals from all age groups and walks of life. Military personnel, students, and health professionals use MPH illicitly to increase attention and improve workplace performance over extended periods of work activity. Despite the frequency of its use, the efficacy of MPH to enhance cognitive function across individuals and in a variety of circumstances is not well characterized. We sought to better understand MPH׳s cognitive enhancing properties in two different rodent models of attention. We found that MPH could enhance performance in a sustained attention task, but that its effects in this test were subject dependent. More specifically, MPH increased attention in low baseline performing rats but had little to no effect on high performing rats. MPH exerted a similar subject specific effect in a test of flexible attention, i.e. the attention set shifting task. In this test MPH increased behavioral flexibility in animals with poor flexibility but impaired performance in more flexible animals. Overall, our results indicate that the effects of MPH are subject-specific and depend on the baseline level of performance. Furthermore, good performance in in the sustained attention task was correlated with good performance in the flexible attention task; i.e. animals with better vigilance exhibited greater behavioral flexibility. The findings are discussed in terms of potential neurobiological substrates, in particular noradrenergic mechanisms, that might underlie subject specific performance and subject specific responses to MPH. This article is part of a Special Issue entitled SI: Noradrenergic System.

  6. Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of neotropical parabiotic ants.

    PubMed

    Emery, Virginia J; Tsutsui, Neil D

    2013-01-01

    Social organisms rank among the most abundant and ecologically dominant species on Earth, in part due to exclusive recognition systems that allow cooperators to be distinguished from exploiters. Exploiters, such as social parasites, manipulate their hosts' recognition systems, whereas cooperators are expected to minimize interference with their partner's recognition abilities. Despite our wealth of knowledge about recognition in single-species social nests, less is known of the recognition systems in multi-species nests, particularly involving cooperators. One uncommon type of nesting symbiosis, called parabiosis, involves two species of ants sharing a nest and foraging trails in ostensible cooperation. Here, we investigated recognition cues (cuticular hydrocarbons) and recognition behaviors in the parabiotic mixed-species ant nests of Camponotus femoratus and Crematogaster levior in North-Eastern Amazonia. We found two sympatric, cryptic Cr. levior chemotypes in the population, with one type in each parabiotic colony. Although they share a nest, very few hydrocarbons were shared between Ca. femoratus and either Cr. levior chemotype. The Ca. femoratus hydrocarbons were also unusually long-chained branched alkenes and dienes, compounds not commonly found amongst ants. Despite minimal overlap in hydrocarbon profile, there was evidence of potential interspecific nestmate recognition -Cr. levior ants were more aggressive toward Ca. femoratus non-nestmates than Ca. femoratus nestmates. In contrast to the prediction that sharing a nest could weaken conspecific recognition, each parabiotic species also maintains its own aggressive recognition behaviors to exclude conspecific non-nestmates. This suggests that, despite cohabitation, parabiotic ants maintain their own species-specific colony odors and recognition mechanisms. It is possible that such social symbioses are enabled by the two species each using their own separate recognition cues, and that interspecific nestmate

  7. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates

    PubMed Central

    Petkov, Christopher I.; Jarvis, Erich D.

    2012-01-01

    Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species. PMID:22912615

  8. Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model.

    PubMed

    Lieu, Christopher A; Dewey, Colleen M; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Batir, Sean; Kim, Yong-Hwan; Andersen, Julie K

    2014-12-03

    Lithium has long been used as a treatment for the psychiatric disease bipolar disorder. However, previous studies suggest that lithium provides neuroprotective effects in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease. The exact mechanism by which lithium exerts these effects still remains unclear. In the present study, we evaluated the effects of low-dose lithium treatment in an aged mouse model expressing a parkin mutation within dopaminergic neurons. We found that low-dose lithium treatment prevented motor impairment as demonstrated by the open field test, pole test, and rearing behavior. Furthermore, lithium prevented dopaminergic striatal degeneration in parkin animals. We also found that parkin-induced striatal astrogliosis and microglial activation were prevented by lithium treatment. Our results further corroborate the use of this parkin mutant transgenic mouse line as a model for PD for testing novel therapeutics. The findings of the present study also provide further validation that lithium could be re-purposed as a therapy for PD and suggest that anti-inflammatory effects may contribute to its neuroprotective mechanisms.

  9. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    PubMed Central

    Kron, Miriam; Lang, Min; Adams, Ian T.; Sceniak, Michael; Longo, Frank; Katz, David M.

    2014-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal

  10. Disrupted mGluR5-Homer scaffolds mediate abnormal mGluR5 signaling, circuit function and behavior in a mouse model of Fragile X Syndrome

    PubMed Central

    Ronesi, Jennifer A.; Collins, Katie A.; Hays, Seth A.; Tsai, Nien-Pei; Guo, Weirui; Birnbaum, Shari G.; Hu, Jia-Hua; Worley, Paul F.; Gibson, Jay R.; Huber, Kimberly M.

    2012-01-01

    Enhanced mGluR5 function is causally associated with the pathophysiology of Fragile X Syndrome (FXS), a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the FXS mouse model, Fmr1 KO. In Fmr1 KO mice mGluR5 is less associated with long Homer isoforms, but more associated with the short Homer1a. Genetic deletion of Homer1a restores mGluR5- long Homer scaffolds and corrects multiple phenotypes in Fmr1 KO mice including altered mGluR5 signaling, neocortical circuit dysfunction, and behavior. Acute, peptide-mediated disruption of mGluR5-Homer scaffolds in wildtype mice mimics many Fmr1 KO phenotypes. In contrast, Homer1a deletion does not rescue altered mGluR-dependent long-term synaptic depression or translational control of FMRP target mRNAs. Our findings reveal novel functions for mGluR5-Homer interactions in the brain and delineate distinct mechanisms of mGluR5 dysfunction in a mouse model of cognitive dysfunction and autism. PMID:22267161

  11. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X): A Comparison with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girls with Trisomy X), 58 children with ASD and 106…

  12. Can the Five Factor Model of Personality Account for the Variability of Autism Symptom Expression? Multivariate Approaches to Behavioral Phenotyping in Adult Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Schwartzman, Benjamin C.; Wood, Jeffrey J.; Kapp, Steven K.

    2016-01-01

    The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828;…

  13. Genetic damage and the expression of behavioral abnormalities in the progeny of male rats exposed to ionizing radiation

    SciTech Connect

    Lowery, M.C.

    1987-01-01

    To determine the possible genetic nature of behavioral anomalies, an identifiable genetic endpoint, inherited chromosome translocations in the offspring, was selected to evaluate the relationship to behavior. Young adult male Fischer 344 rats were exposed to 50-300 rads of ionizing radiation. Two weeks following their irradiation, the males were mated with four virgin females for one week. During this time, fertilizing sperm were derived from post-meiotic spermatids, the stage of the spermatogenic cycle most sensitive to the mutagenic effects of radiation. Behavioral analyses of the resulting 390 offspring consisted of both motor reflex and motor coordination measurements as well as learning and retention parameters. Significant differences in performance were seen in several of the motor reflex measurements in progeny of males exposed to some of the higher doses of irradiation. A similar phenomenon was observed in the performance of a single learned behavior.

  14. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease.

    PubMed

    Galeano, Pablo; Martino Adami, Pamela V; Do Carmo, Sonia; Blanco, Eduardo; Rotondaro, Cecilia; Capani, Francisco; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2014-01-01

    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg(+/-)) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg(+/-) rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg(+/-) rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in

  15. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease

    PubMed Central

    Galeano, Pablo; Martino Adami, Pamela V.; Do Carmo, Sonia; Blanco, Eduardo; Rotondaro, Cecilia; Capani, Francisco; Castaño, Eduardo M.; Cuello, A. Claudio; Morelli, Laura

    2014-01-01

    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg+/−) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg+/− rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg+/− rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in

  16. Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells

    PubMed Central

    Jia, Yun-Fang; Song, Ning-Ning; Mao, Rong-Rong; Li, Jin-Nan; Zhang, Qiong; Huang, Ying; Zhang, Lei; Han, Hui-Li; Ding, Yu-Qiang; Xu, Lin

    2014-01-01

    Dysfunction of central serotonin (5-HT) system has been proposed to be one of the underlying mechanisms for anxiety and depression, and the association of diabetes mellitus and psychiatric disorders has been noticed by the high prevalence of anxiety/depression in patients with diabetes mellitus. This promoted us to examine these behaviors in central 5-HT-deficient mice and those also suffering with diabetes mellitus. Mice lacking either 5-HT or central serotonergic neurons were generated by conditional deletion of Tph2 or Lmx1b respectively. Simultaneous depletion of both central serotonergic neurons and pancreatic islet cells was achieved by administration of diphtheria toxin (DT) in Pet1-Cre;Rosa26-DT receptor (DTR) mice. The central 5-HT-deficient mice showed reduced anxiety-like behaviors as they spent more time in and entered more often into the light box in the light/dark box test compared with controls; similar results were observed in the elevated plus maze test. However, they displayed no differences in the immobility time of the forced swimming and tail suspension tests suggesting normal depression-like behaviors in central 5-HT-deficient mice. As expected, DT-treated Pet1-Cre;Rosa26-DTR mice lacking both central serotonergic neurons and pancreatic islet endocrine cells exhibited several classic diabetic symptoms. Interestingly, they displayed increased anxiety-like behaviors but reduced immobility time in the forced swimming and tail suspension tests. Furthermore, the hippocampal neurogenesis was dramatically enhanced in these mice. These results suggest that the deficiency of central 5-HT may not be sufficient to induce anxiety/depression-like behaviors in mice, and the enhanced hippocampal neurogenesis may contribute to the altered depression-like behaviors in the 5-HT-deficient mice with diabetes. Our current investigation provides understanding the relationship between diabetes mellitus and psychiatric disorders. PMID:25294992

  17. Modulation of RhoGTPases improves the behavioral phenotype and reverses astrocytic deficits in a mouse model of Rett syndrome.

    PubMed

    De Filippis, Bianca; Fabbri, Alessia; Simone, Daiana; Canese, Rossella; Ricceri, Laura; Malchiodi-Albedi, Fiorella; Laviola, Giovanni; Fiorentini, Carla

    2012-04-01

    RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.

  18. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells.

    PubMed

    Su, Liling; Wei, Xiaoxia; Xu, Zhengping; Chen, Guangdi

    2017-04-01

    Despite many years of studies, the debate on genotoxic effects of radiofrequency electromagnetic fields (RF-EMF) continues. To systematically evaluate genotoxicity of RF-EMF, this study examined effects of RF-EMF on DNA damage and cellular behavior in different neurogenic cells. Neurogenic A172, U251, and SH-SY5Y cells were intermittently (5 min on/10 min off) exposed to 1800 MHz RF-EMF at an average specific absorption rate (SAR) of 4.0 W/kg for 1, 6, or 24 h. DNA damage was evaluated by quantification of γH2AX foci, an early marker of DNA double-strand breaks. Cell cycle progression, cell proliferation, and cell viability were examined by flow cytometry, hemocytometer, and cell counting kit-8 assay, respectively. Results showed that exposure to RF-EMF at an SAR of 4.0 W/kg neither significantly induced γH2AX foci formation in A172, U251, or SH-SY5Y cells, nor resulted in abnormal cell cycle progression, cell proliferation, or cell viability. Furthermore, prolonged incubation of these cells for up to 48 h after exposure did not significantly affect cellular behavior. Our data suggest that 1800 MHz RF-EMF exposure at 4.0 W/kg is unlikely to elicit DNA damage or abnormal cellular behaviors in neurogenic cells. Bioelectromagnetics. 38:175-185, 2017. © 2016 Wiley Periodicals, Inc.

  19. Variability in Post-Error Behavioral Adjustment Is Associated with Functional Abnormalities in the Temporal Cortex in Children with ADHD

    ERIC Educational Resources Information Center

    Spinelli, Simona; Vasa, Roma A.; Joel, Suresh; Nelson, Tess E.; Pekar, James J.; Mostofsky, Stewart H.

    2011-01-01

    Background: Error processing is reflected, behaviorally, by slower reaction times (RT) on trials immediately following an error (post-error). Children with attention-deficit hyperactivity disorder (ADHD) fail to show RT slowing and demonstrate increased intra-subject variability (ISV) on post-error trials. The neural correlates of these behavioral…

  20. Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of Cynomolgus monkeys.

    PubMed

    Zhou, Lisheng; Wang, Zhi; Zhou, Hui; Liu, Ting; Lu, Fudin; Wang, Shouping; Li, Jing; Peng, Shuling; Zuo, Zhiyi

    2015-06-05

    Results of animal studies have raised a significant concern that commonly used general anesthetics may induce neurotoxicity in children. It may be difficult to resolve this concern with human studies because randomizing children only for testing anesthetic toxicity may not be feasible. We randomized 6-day old male Cynomolgus monkeys to receive or not to receive sevoflurane anesthesia at surgical plane for 5 h. Sevoflurane is the most commonly used general anesthetic in children in the U.S.A. Here, we showed that sevoflurane anesthesia did not affect the behavior evaluated by holding cage method when the monkeys were 3 and 7 months old. However, there was an age-dependent decrease in the frequency of stress events and environmental exploration behavior during the test. Sevoflurane also did not affect the learning and memory of the monkeys when they were assessed from the age of 7 months. Finally, sevoflurane did not affect the expression of multiple neuron-specific proteins in the hippocampus and cerebral cortex of 10-month old monkeys after all behavioral and cognitive tests were completed. These results suggest that exposure of neonatal monkey to sevoflurane may not affect cognition, behavior and neuronal structures in childhood, indicating the safety of sevoflurane anesthesia in children.

  1. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  2. Abnormal pre-attentive arousal in young children with autism spectrum disorder contributes to their atypical auditory behavior: an ERP study.

    PubMed

    Stroganova, Tatiana A; Kozunov, Vladimir V; Posikera, Irina N; Galuta, Ilia A; Gratchev, Vitaliy V; Orekhova, Elena V

    2013-01-01

    Auditory sensory modulation difficulties and problems with automatic re-orienting to sound are well documented in autism spectrum disorders (ASD). Abnormal preattentive arousal processes may contribute to these deficits. In this study, we investigated components of the cortical auditory evoked potential (CAEP) reflecting preattentive arousal in children with ASD and typically developing (TD) children aged 3-8 years. Pairs of clicks ('S1' and 'S2') separated by a 1 sec S1-S2 interstimulus interval (ISI) and much longer (8-10 sec) S1-S1 ISIs were presented monaurally to either the left or right ear. In TD children, the P50, P100 and N1c CAEP components were strongly influenced by temporal novelty of clicks and were much greater in response to the S1 than the S2 click. Irrespective of the stimulation side, the 'tangential' P100 component was rightward lateralized in TD children, whereas the 'radial' N1c component had higher amplitude contralaterally to the stimulated ear. Compared to the TD children, children with ASD demonstrated 1) reduced amplitude of the P100 component under the condition of temporal novelty (S1) and 2) an attenuated P100 repetition suppression effect. The abnormalities were lateralized and depended on the presentation side. They were evident in the case of the left but not the right ear stimulation. The P100 abnormalities in ASD correlated with the degree of developmental delay and with the severity of auditory sensory modulation difficulties observed in early life. The results suggest that some rightward-lateralized brain networks that are crucially important for arousal and attention re-orienting are compromised in children with ASD and that this deficit contributes to sensory modulation difficulties and possibly even other behavioral deficits in ASD.

  3. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders

    PubMed Central

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  4. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome.

    PubMed

    Portmann, Thomas; Yang, Mu; Mao, Rong; Panagiotakos, Georgia; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L; Grueter, Brad A; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L; Zhengqui, Zhou; Miller, Michael A; Lerch, Jason P; Henkelman, R Mark; Shamloo, Mehrdad; Malenka, Robert C; Crawley, Jacqueline N; Dolmetsch, Ricardo E

    2014-05-22

    A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2(+)) and fewer dopamine-sensitive (Drd1(+)) neurons in deep layers of cortex. Electrophysiological recordings of Drd2(+) MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11(+/-) mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11(+/-) mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  5. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  6. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  7. Hierarchical representation and machine learning from faulty jet engine behavioral examples to detect real time abnormal conditions

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1988-01-01

    The theoretical basis and operation of LEBEX, a machine-learning system for jet-engine performance monitoring, are described. The behavior of the engine is modeled in terms of four parameters (the rotational speeds of the high- and low-speed sections and the exhaust and combustion temperatures), and parameter variations indicating malfunction are transformed into structural representations involving instances and events. LEBEX extracts descriptors from a set of training data on normal and faulty engines, represents them hierarchically in a knowledge base, and uses them to diagnose and predict faults on a real-time basis. Diagrams of the system architecture and printouts of typical results are shown.

  8. Sleep and Sex: What Can Go Wrong? A Review of the Literature on Sleep Related Disorders and Abnormal Sexual Behaviors and Experiences

    PubMed Central

    Schenck, Carlos H.; Arnulf, Isabelle; Mahowald, Mark W.

    2007-01-01

    Study Objectives: To formulate the first classification of sleep related disorders and abnormal sexual behaviors and experiences. Design: A computerized literature search was conducted, and other sources, such as textbooks, were searched. Results: Many categories of sleep related disorders were represented in the classification: parasomnias (confusional arousals/sleepwalking, with or without obstructive sleep apnea; REM sleep behavior disorder); sleep related seizures; Kleine-Levin syndrome (KLS); severe chronic insomnia; restless legs syndrome; narcolepsy; sleep exacerbation of persistent sexual arousal syndrome; sleep related painful erections; sleep related dissociative disorders; nocturnal psychotic disorders; miscellaneous states. Kleine-Levin syndrome (78 cases) and parasomnias (31 cases) were most frequently reported. Parasomnias and sleep related seizures had overlapping and divergent clinical features. Thirty-one cases of parasomnias (25 males; mean age, 32 years) and 7 cases of sleep related seizures (4 males; mean age, 38 years) were identified. A full range of sleep related sexual behaviors with self and/or bed partners or others were reported, including masturbation, sexual vocalizations, fondling, sexual intercourse with climax, sexual assault/rape, ictal sexual hyperarousal, ictal orgasm, and ictal automatism. Adverse physical and/or psychosocial effects from the sleepsex were present in all parasomnia and sleep related seizure cases, but pleasurable effects were reported by 5 bed partners and by 3 patients with sleep related seizures. Forensic consequences were common, occurring in 35.5% (11/31) of parasomnia cases, with most (9/11) involving minors. All parasomnias cases reported amnesia for the sleepsex, in contrast to 28.6% (2/7) of sleep related seizure cases. Polysomnography (without penile tumescence monitoring), performed in 26 of 31 parasomnia cases, documented sexual moaning from slow wave sleep in 3 cases and sexual intercourse during

  9. Voluntary exercise contributed to an amelioration of abnormal feeding behavior, locomotor activity and ghrelin production concomitantly with a weight reduction in high fat diet-induced obese rats.

    PubMed

    Mifune, Hiroharu; Tajiri, Yuji; Nishi, Yoshihiro; Hara, Kento; Iwata, Shimpei; Tokubuchi, Ichiro; Mitsuzono, Ryouichi; Yamada, Kentaro; Kojima, Masayasu

    2015-09-01

    In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity.

  10. Abnormal Deformation Behavior of Oxygen-Modified β-Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cong, Xin; Cho, Ken; Boehlert, Carl J.; Khademi, Vahid

    2017-01-01

    Oxygen was added to the biomedical β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ, mass pct) in order to improve its strength, while keeping its Young's modulus low. Conventionally, with an increase in the oxygen content, an alloy's tensile strength increases, while its tensile elongation-to-failure decreases. However, an abnormal deformation behavior has been reported in the case of oxygen-modified TNTZ alloys in that their strength increases monotonically while their elongation-to-failure initially decreases and then increases with the increase in the oxygen content. In this study, this abnormal tensile deformation behavior of oxygen-modified TNTZ alloys was investigated systematically. A series of TNTZ-(0.1, 0.3, and 0.7 mass pct)O alloy samples was prepared, treated thermomechanically, and finally solution treated; these samples are denoted as 0.1ST, 0.3ST, and 0.7ST, respectively. The main tensile deformation mechanisms in 0.1ST are a deformation-induced α″-martensitic transformation and {332}<113> mechanical twinning. The large elongation-to-failure of 0.1ST is attributable to multiple deformation mechanisms, including the deformation-induced martensitic transformation and mechanical twinning as well as dislocation glide. In both 0.3ST and 0.7ST, dislocation glide is the predominant deformation mode. 0.7ST shows more homogeneous and extensive dislocation glide along with multiple slip systems and a higher frequency of cross slip. As a result, it exhibits a higher work-hardening rate and greater resistance to local stress concentration, both of which contribute to its elongation-to-failure being greater than that of 0.3ST.

  11. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis

    PubMed Central

    Lee, Elaine C.; Kim, Heejung; Ditano, Jennifer; Manion, Dacie; King, Benjamin L.; Strange, Kevin

    2016-01-01

    Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs. PMID:27111894

  12. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn.

    PubMed

    Kida, Elizabeth; Rabe, Ausma; Walus, Marius; Albertini, Giorgio; Golabek, Adam A

    2013-02-01

    Running may affect the mood, behavior and neurochemistry of running animals. In the present study, we investigated whether voluntary daily running, sustained over several months, might improve cognition and motor function and modify the brain levels of selected proteins (SOD1, DYRK1A, MAP2, APP and synaptophysin) in Ts65Dn mice, a mouse model for Down syndrome (DS). Ts65Dn and age-matched wild-type mice, all females, had free access to a running wheel either from the time of weaning (post-weaning cohort) or from around 7 months of age (adult cohort). Sedentary female mice were housed in similar cages, without running wheels. Behavioral testing and evaluation of motor performance showed that running improved cognitive function and motor skills in Ts65Dn mice. However, while a dramatic improvement in the locomotor functions and learning of motor skills was observed in Ts65Dn mice from both post-weaning and adult cohorts, improved object memory was seen only in Ts65Dn mice that had free access to the wheel from weaning. The total levels of APP and MAP2ab were reduced and the levels of SOD1 were increased in the runners from the post-weaning cohort, while only the levels of MAP2ab and α-cleaved C-terminal fragments of APP were reduced in the adult group in comparison with sedentary trisomic mice. Hence, our study demonstrates that Ts65Dn females benefit from sustained voluntary physical exercise, more prominently if running starts early in life, providing further support to the idea that a properly designed physical exercise program could be a valuable adjuvant to future pharmacotherapy for DS.

  13. Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity.

    PubMed

    Uran, S L; Gómez-Casati, M E; Guelman, L R

    2014-10-01

    Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway

  14. Burden and Socio-Behavioral Correlates of Uncontrolled Abnormal Glucose Metabolism in an Urban Population of India

    PubMed Central

    Mahapatra, Tanmay; Chakraborty, Kaushik; Mahapatra, Sanchita; Mahapatra, Umakanta; Pandey, Naren; Thomson, Peter L.; Musk, Arthur W.; Mitra, Ramendra N.

    2016-01-01

    Background Progressive burden of diabetes mellitus is a major concern in India. Data on the predictors of poor glycemic control among diabetics are scanty. A population-based cross-sectional study nested in an urban cohort was thus conducted in West Bengal, India to determine the burden and correlates of total and uncontrolled abnormalities in glucose metabolism (AGM) in a representative population. Methods From 9046 adult cohort-members, 269 randomly selected consenting subjects (non-response = 7.24%) were interviewed, examined [blood pressure (BP), anthropometry], tested for fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1C). Those having pre-diagnosed diabetes or FPG ≥126 or HbA1c≥6.5 were defined as diabetic. Among non-diabetics, subjects with FPG (mg/dl) = 100–125 or HbA1C(%) = 5.7–6.4 were defined as pre-diabetic. Pre-diagnosed cases with current FPG ≥126 were defined as uncontrolled AGM. Descriptive and regression analyses were conducted using SAS-9.3.2. Results Among participants, 28.62% [95% Confidence Interval (95%CI) = 23.19–34.06)] were overweight [body mass index(BMI) = (25–29.99)kg/meter2], 7.81% (4.58–11.03) were obese(BMI≥30kg/meter2), 20.82% (15.93–25.70) were current smokers, 12.64% (8.64–16.64) were current alcohol-drinkers and 46.32% of responders (39.16–53.47) had family history of diabetes. 17.84% (13.24–22.45) had stage-I [140≤average systolic BP (AvSBP in mm of mercury)<160 or 90≤average diastolic BP (AvDBP)<100] and 12.64% (8.64–16.64) had stage-II (AvSBP≥160 or AvDBP≥160) hypertension. Based on FPG and HbA1c, 10.41% (6.74–14.08) were diabetic and 27.88% (22.49–33.27) were pre-diabetic. Overall prevalence of diabetes was 15.61% (11.25–19.98). Among pre-diagnosed cases, 46.43% (26.74–66.12) had uncontrolled AGM. With one year increase in age [Odds Ratio(OR) = 1.05(1.03–1.07)], retired subjects [OR = 9.14(1.72–48.66)], overweight[OR = 2.78(1.37–5.64)], ex-drinkers [OR = 4

  15. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    PubMed

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  16. Methylphenidate (‘Ritalin’) can Ameliorate Abnormal Risk-Taking Behavior in the Frontal Variant of Frontotemporal Dementia

    PubMed Central

    Rahman, Shibley; Robbins, Trevor W; Hodges, John R; Mehta, Mitul A; Nestor, Peter J; Clark, Luke; Sahakian, Barbara J

    2007-01-01

    The frontal variant of frontotemporal dementia is a significant neurological condition worldwide. There exist few treatments available for the cognitive and behavioural sequelae of fvFTD. Previous research has shown that these patients display risky decision-making, and numerous studies have now demonstrated pathology affecting the orbitofrontal cortex. The present study uses a within-subjects, double-blind, placebo-controlled procedure to investigate the effects of a single dose of methylphenidate (40 mg) upon a range of different cognitive processes including those assessing prefrontal cortex integrity. Methylphenidate was effective in ‘normalizing’ the decision-making behavior of patients, such that they became less risk taking on medication, although there were no significant effects on other aspects of cognitive function, including working memory, attentional set shifting, and reversal learning. Moreover, there was an absence of the normal subjective and autonomic responses to methylphenidate seen in elderly subjects. The results are discussed in terms of the ‘somatic marker’ hypothesis of impaired decision-making following orbitofrontal dysfunction. PMID:16160709

  17. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice

    PubMed Central

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life. PMID:27071011

  18. Deletion of densin-180 results in abnormal behaviors associated with mental illness and reduces mGluR5 and DISC1 in the postsynaptic density fraction

    PubMed Central

    Carlisle, Holly J.; Luong, Tinh N.; Medina-Marino, Andrew; Schenker, Leslie; Khorosheva, Eugenia; Indersmitten, Tim; Gunapala, Keith M.; Steele, Andrew D.; O'Dell, Thomas J.; Patterson, Paul H.; Kennedy, Mary B.

    2011-01-01

    Densin is an abundant scaffold protein in the postsynaptic density (PSD) that forms a high affinity complex with αCaMKII and α-actinin. To assess the function of densin, we created a mouse line with a null mutation in the gene encoding it (LRRC7). Homozygous knockout mice display a wide variety of abnormal behaviors that are often considered endophenotypes of schizophrenia and autism spectrum disorders. At the cellular level, loss of densin results in reduced levels of α-actinin in the brain and selective reduction in the localization of mGluR5 and DISC1 in the PSD fraction; whereas, the amounts of ionotropic glutamate receptors and other prominent PSD proteins are unchanged. In addition, deletion of densin results in impairment of mGluR- and NMDA receptor-dependent forms of long-term depression (LTD), alters the early dynamics of regulation of CaMKII by NMDA-type glutamate receptors (NMDARs), and produces a change in spine morphology. These results indicate that densin influences the function of mGluRs and CaMKII at synapses, and contributes to localization of mGluR5 and DISC1 in the PSD fraction. They are consistent with the hypothesis that mutations that disrupt the organization and/or dynamics of postsynaptic signaling complexes in excitatory synapses can cause behavioral endophenotypes of mental illness. PMID:22072671

  19. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus

  20. Feeding behavior, ruminal fermentation, and performance of pregnant beef cows differing in phenotypic residual feed intake offered grass silage.

    PubMed

    Fitzsimons, C; Kenny, D A; Fahey, A G; McGee, M

    2014-05-01

    This study examined the relationship of residual feed intake (RFI) and performance with feeding behavior and ruminal fermentation variables in pregnant beef cows offered a grass silage diet. Individual grass silage DMI (dry matter digestibility = 666 g/kg) was recorded on 47 gestating (mean gestation d 166, SD = 26 d) Simmental and Simmental × Holstein-Friesian beef cows for a period of 80 d. Cow BW, BCS, skeletal measurements, ultrasonically scanned muscle and fat depth, visual muscular score, ruminal fermentation, blood metabolites, and feeding behavior were measured. Phenotypic RFI was calculated as actual DMI minus expected DMI. Expected DMI was computed for each animal by regressing DMI on conceptus-adjusted mean BW(0.75) and ADG over an 80-d period. Within breed, cows were ranked by RFI into low (efficient), medium, or high groups. Overall mean (SD) values for DMI (kg/d), RFI, initial conceptus-adjusted BW, and conceptus-adjusted ADG were 8.41 (1.09) kg/d, 0.01 (0.13) kg/d, 646 (70) kg, and -0.07 (0.32) kg, respectively. High-RFI cows ate 25% and 8% more than low- and medium-RFI cows, respectively. Live weight and ADG were not correlated (P > 0.05), and DMI was positively correlated (r = 0.80; P < 0.001) with RFI. The low- and high-RFI groups had similar (P > 0.05) BW, ADG, BCS, visual muscular scores, skeletal measurements, blood metabolites, calf birth weight, and calving difficulty scores. All ultrasonic fat and muscle depth measurements were similar (P > 0.05) for low- and high-RFI cows except for back fat thickness change, where low-RFI cows gained less fat (P < 0.05) than high-RFI cows. Low-RFI cows had greater pH and lower ammonia concentrations in ruminal fluid compared to their high-RFI contemporaries. Low-RFI cows had fewer (P < 0.001) daily feeding events, but these were of longer (P < 0.001) duration (min·feed event(-1)·d(-1)). Despite this, total daily duration of feeding was shorter (P < 0.001; min/d) for low- compared to high-RFI cows. High

  1. Brief report: impact of child problem behaviors and parental broad autism phenotype traits on substance use among parents of children with ASD.

    PubMed

    Wade, Jordan L; Cox, Neill Broderick; Reeve, Ronald E; Hull, Michael

    2014-10-01

    Using data from the Simons Simplex Collection, the present study examined the impact of child externalizing behavior and parental broad autism phenotype traits on substance use among parents of children with autism spectrum disorder (n = 2,388). For both fathers and mothers, child externalizing behaviors predicted tobacco use (OR = 1.01 and OR = 1.02, respectively), whereas rigidity increased risk of tobacco use for fathers (OR = 1.29) but not mothers. Additionally, among mothers, child externalizing behaviors increased risk of illegal substance use (OR = 1.04), whereas maternal rigidity decreased risk of alcohol use (OR = .83). Collectively, results suggest that child externalizing behaviors and parental rigidity may have differing impacts on the types of substances used by parents.

  2. Repetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging (DTI/DKI), Histopathology, and Behavior.

    PubMed

    Yu, Fengshan; Shukla, Dinesh K; Armstrong, Regina C; Marion, Christina M; Radomski, Kryslaine L; Selwyn, Reed G; Dardzinski, Bernard J

    2016-12-20

    Noninvasive detection of mild traumatic brain injury (mTBI) is important for evaluating acute through chronic effects of head injuries, particularly after repetitive impacts. To better detect abnormalities from mTBI, we performed longitudinal studies (baseline, 3, 6, and 42 days) using magnetic resonance diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) in adult mice after repetitive mTBI (r-mTBI; daily × 5) or sham procedure. This r-mTBI produced righting reflex delay and was first characterized in the corpus callosum to demonstrate low levels of axon damage, astrogliosis, and microglial activation, without microhemorrhages. High-resolution DTI-DKI was then combined with post-imaging pathological validation along with behavioral assessments targeted for the impact regions. In the corpus callosum, only DTI fractional anisotropy at 42 days showed significant change post-injury. Conversely, cortical regions under the impact site (M1-M2, anterior cingulate) had reduced axial diffusivity (AD) at all time points with a corresponding increase in axial kurtosis (Ka) at 6 days. Post-imaging neuropathology showed microglial activation in both the corpus callosum and cortex at 42 days after r-mTBI. Increased cortical microglial activation correlated with decreased cortical AD after r-mTBI (r = -0.853; n = 5). Using Thy1-YFP-16 mice to fluorescently label neuronal cell bodies and processes revealed low levels of axon damage in the cortex after r-mTBI. Finally, r-mTBI produced social deficits consistent with the function of this anterior cingulate region of cortex. Overall, vulnerability of cortical regions is demonstrated after mild repetitive injury, with underlying differences of DTI and DKI, microglial activation, and behavioral deficits.

  3. Working Memory and Response Inhibition as One Integral Phenotype of Adult ADHD? A Behavioral and Imaging Correlational Investigation

    ERIC Educational Resources Information Center

    Schecklmann, Martin; Ehlis, Ann-Christine; Plichta, Michael M.; Dresler, Thomas; Heine, Monika; Boreatti-Hummer, Andrea; Romanos, Marcel; Jacob, Christian; Pauli, Paul; Fallgatter, Andreas J.

    2013-01-01

    Objective: It is an open question whether working memory (WM) and response inhibition (RI) constitute one integral phenotype in attention deficit hyperactivity disorder (ADHD). Method: The authors investigated 45 adult ADHD patients and 41 controls comparable for age, gender, intelligence, and education during a letter n-back and a stop-signal…

  4. Further investigation of phenotypes and confounding factors of progressive ratio performance and feeding behavior in the BACHD rat model of Huntington disease.

    PubMed

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Fabry, Benedikt; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    Huntington disease is an inherited neurodegenerative disorder characterized by motor, cognitive, psychiatric and metabolic symptoms. We recently published a study describing that the BACHD rat model of HD shows an obesity phenotype, which might affect their motivation to perform food-based behavioral tests. Further, we argued that using a food restriction protocol based on matching BACHD and wild type rats' food consumption rates might resolve these motivational differences. In the current study, we followed up on these ideas in a longitudinal study of the rats' performance in a progressive ratio test. We also investigated the phenotype of reduced food consumption rate, which is typically seen in food-restricted BACHD rats, in greater detail. In line with our previous study, the BACHD rats were less motivated to perform the progressive ratio test compared to their wild type littermates, although the phenotype was no longer present when the rats' food consumption rates had been matched. However, video analysis of food consumption tests suggested that the reduced consumption rate found in the BACHD rats was not entirely based on differences in hunger, but likely involved motoric impairments. Thus, restriction protocols based on food consumption rates are not appropriate when working with BACHD rats. As an alternative, we suggest that studies where BACHD rats are used should investigate how the readouts of interest are affected by motivational differences, and use appropriate control tests to avoid misleading results. In addition, we show that BACHD rats display distinct behavioral changes in their progressive ratio performance, which might be indicative of striatal dysfunction.

  5. Further investigation of phenotypes and confounding factors of progressive ratio performance and feeding behavior in the BACHD rat model of Huntington disease

    PubMed Central

    Clemensson, Laura Emily; Fabry, Benedikt; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    Huntington disease is an inherited neurodegenerative disorder characterized by motor, cognitive, psychiatric and metabolic symptoms. We recently published a study describing that the BACHD rat model of HD shows an obesity phenotype, which might affect their motivation to perform food-based behavioral tests. Further, we argued that using a food restriction protocol based on matching BACHD and wild type rats’ food consumption rates might resolve these motivational differences. In the current study, we followed up on these ideas in a longitudinal study of the rats’ performance in a progressive ratio test. We also investigated the phenotype of reduced food consumption rate, which is typically seen in food-restricted BACHD rats, in greater detail. In line with our previous study, the BACHD rats were less motivated to perform the progressive ratio test compared to their wild type littermates, although the phenotype was no longer present when the rats’ food consumption rates had been matched. However, video analysis of food consumption tests suggested that the reduced consumption rate found in the BACHD rats was not entirely based on differences in hunger, but likely involved motoric impairments. Thus, restriction protocols based on food consumption rates are not appropriate when working with BACHD rats. As an alternative, we suggest that studies where BACHD rats are used should investigate how the readouts of interest are affected by motivational differences, and use appropriate control tests to avoid misleading results. In addition, we show that BACHD rats display distinct behavioral changes in their progressive ratio performance, which might be indicative of striatal dysfunction. PMID:28273120

  6. The MTHFR 677C-->T polymorphism and behaviors in children with autism: exploratory genotype-phenotype correlations.

    PubMed

    Goin-Kochel, Robin P; Porter, Anne E; Peters, Sarika U; Shinawi, Marwan; Sahoo, Trilochan; Beaudet, Arthur L

    2009-04-01

    New evidence suggests that autism may be associated with (a) varied behavioral responses to folate therapy and (b) metabolic anomalies, including those in folate metabolism, that contribute to hypomethylation of DNA. We hypothesized that children with autism who are homozygous for the MTHFR 677 T allele (TT) and, to a lesser extent those with the CT variant, would exhibit more behavioral problems and/or more severe problematic behaviors than homozygous wild-type (CC) individuals because of difficulties in effectively converting 5,10-MTHF to 5-MTHF. Data from the Autism Genetic Resource Exchange (AGRE) collection were analyzed for all children who met strict criteria for autism per the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) and who had been genotyped for the 677 C to T MTHFR polymorphism (n=147). Chi-square tests, logistic regression, and one-way ANOVAs were used to determine whether differences existed among MTHFR genotypes for specific behaviors on the ADI-R and indices for level of functioning. Exploratory results indicated four behaviors from the ADI-R that were more common and problematic (95% CI) among those with at least one copy of the T allele as compared to homozygous wild-type individuals: direct gaze, current complex body movements, a history of self-injurious behavior, and current overactivity (ORs=2.72, 2.33, 2.12, 2.47, respectively). No differences existed among genotypes for level of functioning as measured with the Peabody Picture Vocabulary Test-Third Edition, Ravens Colored Progressive Matrices, or the Vineland Adaptive Behavior Scales. Findings call for further investigation of the relationship between folate metabolism and problem behaviors among children with autism.

  7. Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian.

    PubMed

    Ruiz-Aravena, Manuel; Gonzalez-Mendez, Avia; Estay, Sergio A; Gaitán-Espitia, Juan D; Barria-Oyarzo, Ismael; Bartheld, José L; Bacigalupe, Leonardo D

    2014-12-01

    When dispersal is not an option to evade warming temperatures, compensation through behavior, plasticity, or evolutionary adaptation is essential to prevent extinction. In this work, we evaluated whether there is physiological plasticity in the thermal performance curve (TPC) of maximum jumping speed in individuals acclimated to current and projected temperatures and whether there is an opportunity for behavioral thermoregulation in the desert landscape where inhabits the northernmost population of the endemic frog Pleurodema thaul. Our results indicate that individuals acclimated to 20°C and 25°C increased the breath of their TPCs by shifting their upper limits with respect to when they were acclimated at 10°C. In addition, even when dispersal is not possible for this population, the landscape is heterogeneous enough to offer opportunities for behavioral thermoregulation. In particular, under current climatic conditions, behavioral thermoregulation is not compulsory as available operative temperatures are encompassed within the population TPC limits. However, for severe projected temperatures under climate change, behavioral thermoregulation will be required in the sunny patches. In overall, our results suggest that this population of Pleurodema thaul will be able to endure the worst projected scenario of climate warming as it has not only the physiological capacities but also the environmental opportunities to regulate its body temperature behaviorally.

  8. Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian

    PubMed Central

    Ruiz-Aravena, Manuel; Gonzalez-Mendez, Avia; Estay, Sergio A; Gaitán-Espitia, Juan D; Barria-Oyarzo, Ismael; Bartheld, José L; Bacigalupe, Leonardo D

    2014-01-01

    When dispersal is not an option to evade warming temperatures, compensation through behavior, plasticity, or evolutionary adaptation is essential to prevent extinction. In this work, we evaluated whether there is physiological plasticity in the thermal performance curve (TPC) of maximum jumping speed in individuals acclimated to current and projected temperatures and whether there is an opportunity for behavioral thermoregulation in the desert landscape where inhabits the northernmost population of the endemic frog Pleurodema thaul. Our results indicate that individuals acclimated to 20°C and 25°C increased the breath of their TPCs by shifting their upper limits with respect to when they were acclimated at 10°C. In addition, even when dispersal is not possible for this population, the landscape is heterogeneous enough to offer opportunities for behavioral thermoregulation. In particular, under current climatic conditions, behavioral thermoregulation is not compulsory as available operative temperatures are encompassed within the population TPC limits. However, for severe projected temperatures under climate change, behavioral thermoregulation will be required in the sunny patches. In overall, our results suggest that this population of Pleurodema thaul will be able to endure the worst projected scenario of climate warming as it has not only the physiological capacities but also the environmental opportunities to regulate its body temperature behaviorally. PMID:25512843

  9. Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia.

    PubMed

    Huang, Ching-Hsun; Pei, Ju-Chun; Luo, Da-Zhong; Chen, Ching; Chen, Yi-Wen; Lai, Wen-Sung

    2014-01-01

    Accumulating evidence from human genetic studies has suggested several functional candidate genes that might contribute to susceptibility to schizophrenia, including AKT1 and neuregulin 1 (NRG1). Recent findings also revealed that NRG1 stimulates the PI3-kinase/AKT signaling pathway, which might be involved in the functional outcomes of some schizophrenic patients. The aim of this study was to evaluate the effect of Akt1-deficiency and Nrg1-deficiency alone or in combination in the regulation of behavioral phenotypes, cognition, and social functions using genetically modified mice as a model. Male Akt1 (+/-), Nrg1 (+/-), and double mutant mice were bred and compared with their wild-type (WT) littermate controls. In Experiment 1, general physical examination revealed that all mutant mice displayed a normal profile of body weight during development and a normal brain activity with microPET scan. In Experiment 2, no significant genotypic differences were found in our basic behavioral phenotyping, including locomotion, anxiety-like behavior, and sensorimotor gating function. However, both Nrg1 (+/-) and double mutant mice exhibited impaired episodic-like memory. Double mutant mice also had impaired sociability. In Experiment 3, a synergistic epistasis between Akt1 and Nrg1 was further confirmed in double mutant mice in that they had impaired social interaction compared to the other 3 groups, especially encountering with a novel male or an ovariectomized female. Double mutant and Nrg1 (+/-) mice also emitted fewer female urine-induced ultrasonic vocalization calls. Collectively, our results indicate that double deficiency of Akt1 and Nrg1 can result in the impairment of social cognitive functions, which might be pertinent to the pathogenesis of schizophrenia-related social cognition.

  10. Alzheimer Abnormalities of the Amygdala With Klüver-Bucy Syndrome Symptoms

    PubMed Central

    Kile, Shawn J.; Ellis, William G.; Olichney, John M.; Farias, Sarah; DeCarli, Charles

    2010-01-01

    Background Neurofibrillary tangles and β-amyloid plaques have been observed in the amygdala in Alzheimer disease. A disproportionate abundance of this abnormality in the amygdala may cause behavioral symptoms similar to Klüver-Bucy syndrome. Objectives To describe an atypical behavioral presentation of Alzheimer disease and to review the literature on the subject. Design Case study. Setting Outpatient specialty clinic. Patient A 70-year-old man with progressive behavioral symptoms of hyperorality, hypersexuality, hypermetamorphosis, visual agnosia, hyperphagia, and apathy who died at age 77 of asphyxiation on a foreign object. Main Outcome Measures Clinical symptomatology, brain imaging, and neuropathology. Results The pathologic diagnosis was Alzheimer disease with abundant tangles and plaques in the lateral amygdala. Conclusions This case represents a variant of Alzheimer disease with prominent amygdala abnormalities and a Klüver-Bucy phenotype that was misdiagnosed as frontotemporal dementia. Clinical and imaging findings that may aid in accurate diagnosis are reviewed. PMID:19139311

  11. The role of the area postrema in the anorectic effects of amylin and salmon calcitonin: behavioral and neuronal phenotyping.

    PubMed

    Braegger, Fiona E; Asarian, Lori; Dahl, Kirsten; Lutz, Thomas A; Boyle, Christina N

    2014-10-01

    Amylin reduces meal size by activating noradrenergic neurons in the area postrema (AP). Neurons in the AP also mediate the eating-inhibitory effects of salmon calcitonin (sCT), a potent amylin agonist, but the phenotypes of the neurons mediating its effect are unknown. Here we investigated whether sCT activates similar neuronal populations to amylin, and if its anorectic properties also depend on AP function. Male rats underwent AP lesion (APX) or sham surgery. Meal patterns were analysed under ad libitum and post-deprivation conditions. The importance of the AP in mediating the anorectic action of sCT was examined in feeding experiments of dose-response effects of sCT in APX vs. sham rats. The effect of sCT to induce Fos expression was compared between surgery groups, and relative to amylin. The phenotype of Fos-expressing neurons in the brainstem was examined by testing for the co-expression of dopamine beta hydroxylase (DBH) or tryptophan hydroxylase (TPH). By measuring the apposition of vesicular glutamate transporter-2 (VGLUT2)-positive boutons, potential glutamatergic input to amylin- and sCT-activated AP neurons was compared. Similar to amylin, an intact AP was necessary for sCT to reduce eating. Further, co-expression between Fos activation and DBH after amylin or sCT did not differ markedly, while co-localization of Fos and TPH was minor. Approximately 95% of neurons expressing Fos and DBH after amylin or sCT treatment were closely apposed to VGLUT2-positive boutons. Our study suggests that the hindbrain pathways engaged by amylin and sCT share many similarities, including the mediation by AP neurons.

  12. Using Task Analytic Models and Phenotypes of Erroneous Human Behavior to Discover System Failures Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.

    2011-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in ways unanticipated by analysts or designers. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. This paper presents a method for automatically generating task analytic models encompassing both erroneous and normative human behavior from normative task models. The resulting model can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human automation-interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. This method is illustrated with a case study: the operation of a radiation therapy machine. In this example, a problem resulting from a generated erroneous human action is discovered. Future extensions of our method are discussed. PMID:25382961

  13. Daily oral intake of theanine prevents the decline of 5-bromo-2'-deoxyuridine incorporation in hippocampal dentate gyrus with concomitant alleviation of behavioral abnormalities in adult mice with severe traumatic stress.

    PubMed

    Takarada, Takeshi; Nakamichi, Noritaka; Kakuda, Takami; Nakazato, Ryota; Kokubo, Hiroshi; Ikeno, Shinsuke; Nakamura, Saki; Hinoi, Eiichi; Yoneda, Yukio

    2015-03-01

    Posttraumatic stress disorder is a long-lasting psychiatric disease with the consequence of hippocampal atrophy in humans exposed to severe fatal stress. We demonstrated a positive correlation between the transient decline of 5-bromo-2'-deoxyuridine (BrdU) incorporation in the hippocampal dentate gyrus (DG) and long-lasting behavioral abnormalities in mice with traumatic stress. Here, we investigated pharmacological properties of theanine on the declined BrdU incorporation and abnormal behaviors in mice with traumatic stress. Prior daily oral administration of theanine at 50-500 mg/kg for 5 days significantly prevented the decline of BrdU incorporation, while theanine significantly prevented the decline in the DG even when administered for 5 days after stress. Consecutive daily administration of theanine significantly inhibited the prolonged immobility in mice with stress in forced swimming test seen 14 days later. Although traumatic stress significantly increased spontaneous locomotor activity over 30 min even when determined 14 days later, the increased total locomotion was significantly ameliorated following the administration of theanine at 50 mg/kg for 14 days after stress. These results suggest that theanine alleviates behavioral abnormalities together with prevention of the transient decline of BrdU incorporation in the hippocampal DG in adult mice with severe traumatic stress.

  14. Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests.

    PubMed

    Matsuo, Naoki; Tanda, Koichi; Nakanishi, Kazuo; Yamasaki, Nobuyuki; Toyama, Keiko; Takao, Keizo; Takeshima, Hiroshi; Miyakawa, Tsuyoshi

    2009-01-01

    Dynamic regulation of the intracellular Ca2+ concentration is crucial for various neuronal functions such as synaptic transmission and plasticity, and gene expression. Ryanodine receptors (RyRs) are a family of intracellular calcium release channels that mediate calcium-induced calcium release from the endoplasmic reticulum. Among the three RyR isoforms, RyR3 is preferentially expressed in the brain especially in the hippocampus and striatum. To investigate the behavioral effects of RyR3 deficiency, we subjected RyR3 knockout (RyR3-/-) mice to a battery of behavioral tests. RyR3-/- mice exhibited significantly decreased social contact duration in two different social interaction tests, where two mice can freely move and make contacts with each other. They also exhibited hyperactivity and mildly impaired prepulse inhibition and latent inhibition while they did not show significant abnormalities in motor function and working and reference memory tests. These results indicate that RyR3 has an important role in locomotor activity and social behavior.

  15. Can the Five Factor Model of Personality Account for the Variability of Autism Symptom Expression? Multivariate Approaches to Behavioral Phenotyping in Adult Autism Spectrum Disorder.

    PubMed

    Schwartzman, Benjamin C; Wood, Jeffrey J; Kapp, Steven K

    2016-01-01

    The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828; nASD = 364) completed an online survey with an autism trait questionnaire and an FFM personality questionnaire. FFM facets accounted for 70 % of variance in autism trait scores. Neuroticism positively correlated with autism symptom severity, while extraversion, openness to experience, agreeableness, and conscientiousness negatively correlated with autism symptom severity. Four FFM subtypes emerged within adults with ASD, with three subtypes characterized by high neuroticism and none characterized by lower-than-average neuroticism.

  16. Winter day lengths enhance T lymphocyte phenotypes, inhibit cytokine responses, and attenuate behavioral symptoms of infection in laboratory rats.

    PubMed

    Prendergast, Brian J; Kampf-Lassin, August; Yee, Jason R; Galang, Jerome; McMaster, Nicholas; Kay, Leslie M

    2007-11-01

    Annual variations in day length (photoperiod) trigger changes in the immune and reproductive system of seasonally-breeding animals. The purpose of this study was to determine whether photoperiodic changes in immunity depend on concurrent photoperiodic responses in the reproductive system, or whether immunological responses to photoperiod occur independent of reproductive responses. Here we report photoperiodic changes in enumerative, functional, and behavioral aspects of the immune system, and in immunomodulatory glucocorticoid secretion, in reproductively non-photoperiodic Wistar rats. T-cell numbers (CD3+, CD8+, CD8+CD25+, CD4+CD25+) were higher in the blood of rats housed in short as opposed to long-day lengths for 10 weeks. Following a simulated bacterial infection (Escherichia coli LPS; 125 microg/kg) the severity of several acute-phase sickness behaviors (anorexia, cachexia, neophobia, and social withdrawal) were attenuated in short days. LPS-stimulated IL-1beta and IL-6 production were comparable between photoperiods, but plasma TNFalpha was higher in long-day relative to short-day rats. In addition, corticosterone concentrations were higher in short-day relative to long-day rats. The data are consistent with the hypothesis that photoperiodic regulation of the immune system can occur entirely independently of photoperiodic regulation of the reproductive system. In the absence of concurrent reproductive responses, short days increase the numbers of leukocytes capable of immunosurveillance and inhibition of inflammatory responses, increase proinflammatory cytokine production, increase immunomodulatory glucocorticoid secretion, and ultimately attenuate behavioral responses to infection. Seasonal changes in the host immune system, endocrine system, and behavior may contribute to the seasonal variability in disease outcomes, even in reproductively non-photoperiodic mammals.

  17. [The effect of bromantane on the behavior of inbred mouse strains with different phenotypes of emotional stress reaction].

    PubMed

    Seredenin, S B; Miramedova, A G; Kozlovskaia, M M

    1999-01-01

    Per os administration of bromantan (2-[n-bromphenyl]-aminoadamantan) in doses of 40-50 mg/kg prevents the fixed posture reaction and reduces the level of defecation in Balb/c mice in the "open field" test and activates their behavior in the "elevated plus maze" test. It increases the motor activity of C57B1/c mice in both tests. It is concluded that an anxiolytic effect is present in the spectrum of pharmacological properties of bromantan.

  18. Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant- and propsychotic-like behaviors following acute and repeated ketamine administration.

    PubMed

    Zhou, ZhiQiang; Zhang, GuangFen; Li, XiaoMin; Liu, XiaoYu; Wang, Nan; Qiu, LiLi; Liu, WenXue; Zuo, ZhiYi; Yang, JianJun

    2015-04-01

    Accumulating evidence has demonstrated that single subanesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant-like effects. Nevertheless, repeated subanesthetic doses of ketamine produce psychosis-like effects with dysfunction of parvalbumin (PV) interneurons. We hypothesized that PV interneurons play an important role in the antidepressant-like actions of ketamine, and different changes in PV interneurons occur with the antidepressant-like and propsychotic-like effects of ketamine. To test this hypothesis, ketamine's antidepressant-like effects were evaluated by the forced swimming test. Ketamine-induced stereotyped behaviors and hyperactivity actions and the function of PV interneurons were also assessed. We demonstrated that an acute dose of 10 mg/kg ketamine induced significant antidepressant-like effects and reduced the levels of PV and the gamma-aminobutyric acid (GABA)-producing enzyme GAD67 in the rat prefrontal cortex. Moreover, inhibition of ketamine-induced loss of PV by apocynin blocked these antidepressant-like effects. Repeated administration of 30 mg/kg ketamine elicited stereotyped behaviors and hyperactivity actions as well as a longer duration of PV and GAD67 loss, higher brain glutamate levels, and lower brain GABA levels than acute single dose of ketamine. Our results reveal that the loss of phenotype of PV interneurons in the prefrontal cortex contributes to the antidepressant-like actions and is also involved in the propsychotic-like behaviors following acute and repeated ketamine administration, which may be partially mediated by the disinhibition of glutamate signaling. The different degrees and durations of the actions on PV interneurons produced by the two regimens of ketamine may partly underline the behavioral variance between the antidepressant- and propsychotic-like effects.

  19. Eye abnormalities in Fryns syndrome.

    PubMed

    Pierson, Diane M; Taboada, Eugenio; Butler, Merlin G

    2004-03-15

    Fryns syndrome is a rare, generally lethal, autosomal recessive multiple congenital anomaly (MCA) syndrome first described in 1979. Patients with the syndrome present with the classical findings of cloudy cornea, brain malformations, diaphragmatic defects, and distal limb deformities. Over 70 patients have been reported revealing a wide variety of phenotypic features. Although initially considered a major feature of Fryns syndrome, cloudy cornea has been relegated as a minor diagnostic sign and not commonly reported in patients since the original description. However, eye findings per se are not uncommon. Abnormal eye findings occasionally reported in Fryns syndrome potentially result in amblyopia and blindness, profoundly affecting neurologic outcome of those who survive the neonatal period. We reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of the reported cases. In addition, we contribute three new patients with Fryns syndrome, one of which demonstrated unilateral microphthalmia and cloudy cornea.

  20. Neuroendocrine abnormalities in Parkinson's disease.

    PubMed

    De Pablo-Fernández, Eduardo; Breen, David P; Bouloux, Pierre M; Barker, Roger A; Foltynie, Thomas; Warner, Thomas T

    2017-02-01

    Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.

  1. Vestibular abnormalities in congenital disorders.

    PubMed

    Sando, I; Orita, Y; Miura, M; Balaban, C D

    2001-10-01

    This paper reviews the histopathologic features of vestibular abnormalities in congenital disorders affecting the inner ear, based upon a comprehensive literature survey and a review of cases in our temporal bone collection. The review proceeds in three systematic steps. First, we surveyed associated diseases with the major phenotypic features of congenital abnormalities of the inner ear (including the internal auditory canal and otic capsule). Second, the vestibular anomalies are examined specifically. Finally, the anomalies are discussed from a developmental perspective. Among vestibular anomalies, a hypoplastic endolymphatic duct and sac are observed most frequently. Anomalies of the semicircular canals are also often observed. From embryological and clinical viewpoints, many of these resemble the structural features from fetal stages and appear to be associated with vestibular dysfunction. It is expected that progress in genetic analysis and accumulation of temporal bone specimens with vestibular abnormalities in congenital diseases will provide crucial information not only for pathology of those diseases, but also for genetic factors that are responsible for the specific vestibular abnormalities.

  2. Autistic-like behavioral phenotypes in a mouse model with copy number variation of the CAPS2/CADPS2 gene.

    PubMed

    Sadakata, Tetsushi; Shinoda, Yo; Oka, Megumi; Sekine, Yukiko; Furuichi, Teiichi

    2013-01-04

    Ca²⁺-dependent activator protein for secretion 2 (CAPS2 or CADPS2) facilitates secretion and trafficking of dense-core vesicles. Recent genome-wide association studies of autism have identified several microdeletions due to copy number variation (CNV) in one of the chromosome 7q31.32 alleles on which the locus for CAPS2 is located in autistic patients. To evaluate the biological significance of reducing CAPS2 copy number, we analyzed CAPS2 heterozygous mice. Our present findings suggest that adequate levels of CAPS2 protein are critical for normal brain development and behavior, and that allelic changes due to CNV may contribute to autistic symptoms in combination with deficits in other autism-associated genes.

  3. Genotype vs. Phenotype and the Rise of Non-Communicable Diseases: The Importance of Lifestyle Behaviors During Childhood

    PubMed Central

    Skidmore, Paula M; Orta, Olivia R; Faulkner, James; Lambrick, Danielle; Signal, Leigh; Williams, Michelle A; Stoner, Lee

    2016-01-01

    Despite continued research and growing public awareness, the incidence of non-communicable diseases (NCD) continues to accelerate. While a person may have a genetic predisposition to certain NCDs, the rapidly changing epidemiology of NCDs points to the importance of environmental, social, and behavioural determinants of health. Specifically, three lifestyle behaviours expose children to important environmental cues and stressors: physical activity, nutritional intake, and sleep behaviour. Failure to expose children to proper gene-environment interactions, through the aforementioned lifestyle behaviours, can and will predispose children to the development of NCDs. Reengineering the environments of children can induce a paradigm shift, from a predominantly biomedical health model of treating symptomology, to a more holistic model based on encouraging appropriate behavioral decisions and optimal health. PMID:26918226

  4. Parenting behaviors of African American and Caucasian families: parent and child perceptions, associations with child weight, and ability to identify abnormal weight status.

    PubMed

    Polfuss, Michele; Frenn, Marilyn

    2012-06-01

    This study examined the agreement between parent and child perceptions of parenting behaviors, the relationship of the behaviors with the child's weight status, and the ability of the parent to correctly identify weight status in 176 parent-child dyads (89 Caucasian and 87 African American). Correlational and regression analyses were used. Findings included moderate to weak correlations in child and parent assessments of parenting behaviors. Caucasian dyads had higher correlations than African American dyads. Most parents correctly identified their own and their child's weight status. Parents of overweight children used increased controlling behaviors, but the number of controlling behaviors decreased when the parent expressed concern with their child's weight.

  5. Bioimaging for quantitative phenotype analysis.

    PubMed

    Chen, Weiyang; Xia, Xian; Huang, Yi; Chen, Xingwei; Han, Jing-Dong J

    2016-06-01

    With the development of bio-imaging techniques, an increasing number of studies apply these techniques to generate a myriad of image data. Its applications range from quantification of cellular, tissue, organismal and behavioral phenotypes of model organisms, to human facial phenotypes. The bio-imaging approaches to automatically detect, quantify, and profile phenotypic changes related to specific biological questions open new doors to studying phenotype-genotype associations and to precisely evaluating molecular changes associated with quantitative phenotypes. Here, we review major applications of bioimage-based quantitative phenotype analysis. Specifically, we describe the biological questions and experimental needs addressable by these analyses, computational techniques and tools that are available in these contexts, and the new perspectives on phenotype-genotype association uncovered by such analyses.

  6. Just how happy is the happy puppet? An emotion signaling and kinship theory perspective on the behavioral phenotype of children with Angelman syndrome.

    PubMed

    Brown, William M; Consedine, Nathan S

    2004-01-01

    The favored level of parental investment in a child may differ for genes of maternal and paternal origin in the child. This conflict can be expressed in the phenomenon of genomic imprinting that refers to situations in which the same gene is differentially expressed depending on its parent of origin. Two disorders that show the effects of genomic imprinting--both at 15q11-q13--are Angelman Syndrome (AS) which is due to the absence of expression of maternally-inherited genes and Prader-Willi syndromes (PWS) which is due to the absence of expression of paternally-inherited genes. However, although both disorders can arise from the deletion of the same genetic region, the gustatory, behavioral, and affective characteristics of AS and PWS children are remarkably distinct. Recent research inspired by kinship theory has suggested the origins of these phenotypic differences may lie in the differential investment of each parent's genome in the AS or PWS child. Specifically, it is thought that each set of parental genes have different 'ideas' regarding how the child should behave towards the mother and how much investment they should look to extract. In normal cases, the trade-off between the competing parental genomes produces a behavioral equilibrium in the child. However, in pathological instances, particularly where gene expression is one-sided, the evolved behavioral strategies favored by the contributing genome will dominate the child's behavior. To date, research in the area of genomic conflict in AS and PWS children has primarily focusing on differences in post-natal nutrition-related behaviors. The current paper extends this framework by offering an emotion and evolutionary signaling interpretation of the affective characteristics of AS children. A review of the affective characteristics of the two syndromes (PWS and AS) is presented before kinship and emotions theory are used to examine the functions that differential affect expression may serve in altering

  7. The neurobehavioral and molecular phenotype of Angelman Syndrome.

    PubMed

    Wink, Logan K; Fitzpatrick, Sarah; Shaffer, Rebecca; Melnyk, Sophia; Begtrup, Amber H; Fox, Emma; Schaefer, Tori L; Mathieu-Frasier, Lauren; Ray, Balmiki; Lahiri, Debomoy; Horn, Paul A; Erickson, Craig A

    2015-11-01

    Angelman Syndrome (AS) is a rare neurodevelopmental disorder associated with developmental delay, speech impairment, gait ataxia, and a unique behavioral profile. AS is caused by loss of maternal expression of the paternally imprinted UBE3A gene. In this study we aim to contribute to understanding of the neurobehavioral phenotype of AS with particular focus on the neuropsychiatric presentation of the disorder. We also undertake initial exploration of brain-derived neurotrophic factor (BDNF) plasma levels in AS. Twelve individuals ages 3 years or older with a confirmed genetic diagnosis of AS underwent detailed medical history, phenotypic characterization, and BDNF plasma sampling. The results of this study demonstrate that individuals with AS suffer from significant developmental delay, impaired adaptive behavior, and sleep disruption. Additionally, hyperactivity/impulsivity appears to be the primary behavioral domain noted in these individuals. The majority of individuals in this project met criteria for autism spectrum disorder on the Autism Diagnostic Observation Schedule (ADOS); however, a negative correlation was noted between ADOS score and developmental age. BDNF plasma levels in AS individuals were significantly elevated compared to neurotypical controls. This is the first report of abnormal BDNF levels in AS, and one that necessitates larger future studies. The results provide a clue to understanding abnormal neuronal development in AS and may help guide future AS research.

  8. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    PubMed

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  9. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  10. The Human Phenotype Ontology in 2017.

    PubMed

    Köhler, Sebastian; Vasilevsky, Nicole A; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M; Boerkoel, Cornelius F; Boycott, Kym M; Brudno, Michael; Buske, Orion J; Chinnery, Patrick F; Cipriani, Valentina; Connell, Laureen E; Dawkins, Hugh J S; DeMare, Laura E; Devereau, Andrew D; de Vries, Bert B A; Firth, Helen V; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A; James, Roger; Krause, Roland; F Laulederkind, Stanley J; Lochmüller, Hanns; Lyon, Gholson J; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H; Segal, Michael; Sergouniotis, Panagiotis I; Sever, Richard; Smith, Cynthia L; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W M; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O B; Groza, Tudor; Smedley, Damian; Mungall, Christopher J; Haendel, Melissa; Robinson, Peter N

    2017-01-04

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  11. Is There a Relationship between Restricted, Repetitive, Stereotyped Behaviors and Interests and Abnormal Sensory Response in Children with Autism Spectrum Disorders?

    ERIC Educational Resources Information Center

    Gabriels, Robin L.; Agnew, John A.; Miller, Lucy Jane; Gralla, Jane; Pan, Zhaoxing; Goldson, Edward; Ledbetter, James C.; Dinkins, Juliet P.; Hooks, Elizabeth

    2008-01-01

    This study examined the relation between restricted, repetitive, and stereotyped behaviors and interests (RBs) and sensory responses in a group of 70 children and adolescents diagnosed with an autism spectrum disorder (ASD). Caregivers completed the Repetitive Behavior Scale-Revised (RBS-R) and the Sensory Profile. Controlling for IQ and age,…

  12. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  13. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  14. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  15. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  16. Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap

    PubMed Central

    Chen, Guangbo; Rubinstein, Boris; Li, Rong

    2012-01-01

    Despite its wide existence, the adaptive role of aneuploidy (the abnormal state of having unequal number of different chromosomes) has been a subject of debate. Cellular aneuploidy has been associated with enhanced resistance to stress, whereas on the organismal level it is detrimental to multi-cellular species. Certain aneuploid karyotypes are deleterious for specific environments, but karyotype diversity in a population potentiates adaptive evolution. To reconcile these paradoxical observations, this review distinguishes the role of aneuploidy in cellular versus organismal evolution. Further, it proposes a population genetics perspective to examine the behavior of aneuploidy on a populational versus individual level. By altering the copy number of a significant portion of the genome, aneuploidy introduces large phenotypic leap that enables small cell populations to explore a wide phenotypic landscape, from which adaptive traits can be selected. The production of chromosome number variation can be further increased by stress- or mutation-induced chromosomal instability, fueling rapid cellular adaptation. PMID:22926916

  17. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  18. In utero and Lactational Exposure to Acetamiprid Induces Abnormalities in Socio-Sexual and Anxiety-Related Behaviors of Male Mice

    PubMed Central

    Sano, Kazuhiro; Isobe, Tomohiko; Yang, Jiaxin; Win-Shwe, Tin-Tin; Yoshikane, Mitsuha; Nakayama, Shoji F.; Kawashima, Takaharu; Suzuki, Go; Hashimoto, Shunji; Nohara, Keiko; Tohyama, Chiharu; Maekawa, Fumihiko

    2016-01-01

    Neonicotinoids, a widely used group of pesticides designed to selectively bind to insect nicotinic acetylcholine receptors, were considered relatively safe for mammalian species. However, they have been found to activate vertebrate nicotinic acetylcholine receptors and could be toxic to the mammalian brain. In the present study, we evaluated the developmental neurotoxicity of acetamiprid (ACE), one of the most widely used neonicotinoids, in C57BL/6J mice whose mothers were administered ACE via gavage at doses of either 0 mg/kg (control group), 1.0 mg/kg (low-dose group), or 10.0 mg/kg (high-dose group) from gestational day 6 to lactation day 21. The results of a battery of behavior tests for socio-sexual and anxiety-related behaviors, the numbers of vasopressin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and testosterone levels were used as endpoints. In addition, behavioral flexibility in mice was assessed in a group-housed environment using the IntelliCage, a fully automated mouse behavioral analysis system. In adult male mice exposed to ACE at both low and high doses, a significant reduction of anxiety level was found in the light-dark transition test. Males in the low-dose group also showed a significant increase in sexual and aggressive behaviors. In contrast, neither the anxiety levels nor the sexual behaviors of females were altered. No reductions in the testosterone level, the number of vasopressin-immunoreactive cells, or behavioral flexibility were detected in either sex. These results suggest the possibility that in utero and lactational ACE exposure interferes with the development of the neural circuits required for executing socio-sexual and anxiety-related behaviors in male mice specifically. PMID:27375407

  19. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP.

  20. Abnormal behavior of threshold voltage shift in bias-stressed a-Si:H thin film transistor under extremely high intensity illumination.

    PubMed

    Han, Sang Youn; Park, Kyung Tea; Kim, Cheolkyu; Jeon, Sanghyun; Yang, Sung-Hoon; Kong, Hyang-Shik

    2015-07-22

    We report on the unusual behavior of threshold voltage turnaround in a hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) when biased under extremely high intensity illumination. The threshold voltage shift changes from negative to positive gate bias direction after ∼30 min of bias stress even when the negative gate bias stress is applied under high intensity illumination (>400 000 Cd/cm(2)), which has not been observed in low intensity (∼6000 Cd/cm(2)). This behavior is more pronounced in a low work function gate metal structure (Al: 4.1-4.3 eV), compared to the high work function of Cu (4.5-5.1 eV). Also this is mainly observed in shorter wavelength of high photon energy illumination. However, this behavior is effectively prohibited by embedding the high energy band gap (∼8.6 eV) of SiOx in the gate insulator layer. These imply that this behavior could be originated from the injection of electrons from gate electrode, transported and trapped in the electron trap sites of the SiNx/a-Si:H interface, which causes the shift of threshold voltage toward positive gate bias direction. The results reported here can be applicable to the large-sized outdoor displays which are usually exposed to the extremely high intensity illumination.

  1. Effects of early or late prenatal immune activation in mice on behavioral and neuroanatomical abnormalities relevant to schizophrenia in the adulthood.

    PubMed

    da Silveira, Vivian T; Medeiros, Daniel de Castro; Ropke, Jivago; Guidine, Patricia A; Rezende, Gustavo H; Moraes, Marcio Flavio D; Mendes, Eduardo Mazoni A M; Macedo, Danielle; Moreira, Fabricio A; de Oliveira, Antonio Carlos P

    2017-05-01

    Maternal immune activation (MIA) during pregnancy in rodents increases the risk of the offspring to develop schizophrenia-related behaviors, suggesting a relationship between the immune system and the brain development. Here we tested the hypothesis that MIA induced by the viral mimetic polyinosinic-polycytidylic acid (poly I:C) in early or late gestation of mice leads to behavioral and neuroanatomical disorders in the adulthood. On gestational days (GDs) 9 or 17 pregnant dams were treated with poly I:C or saline via intravenous route and the offspring behaviors were measured during adulthood. Considering the progressive structural neuroanatomical alterations in the brain of individuals with schizophrenia, we used magnetic resonance imaging (MRI) to perform brain morphometric analysis of the offspring aged one year. MIA on GD9 or GD17 led to increased basal locomotor activity, enhanced motor responses to ketamine, a psychotomimetic drug, and reduced time spent in the center of the arena, suggesting an increased anxiety-like behavior. In addition, MIA on GD17 reduced glucose preference in the offspring. None of the treatments altered the relative volume of the lateral ventricles. However, a decrease in brain volume, especially for posterior structures, was observed for one-year-old animals treated with poly I:C compared with control groups. Thus, activation of the maternal immune system at different GDs lead to neuroanatomical and behavioral alterations possibly related to the positive and negative symptoms of schizophrenia. These results provide insights on neuroimmunonological and neurodevelopmental aspects of certain psychopathologies, such as schizophrenia.

  2. Effect of licofelone--a dual COX/5-LOX inhibitor in intracerebroventricular streptozotocin-induced behavioral and biochemical abnormalities in rats.

    PubMed

    Kumar, Ashok; Sharma, Sorabh; Prashar, Ashwani; Deshmukh, Rahul

    2015-03-01

    The present study was designed to investigate the effect of licofelone-a dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitor in intracerebroventricular streptozotocin (ICV-STZ)-induced cognitive deficit and biochemical abnormalities in rats. ICV-STZ is a widely used model of sporadic Alzheimer's disease. In this study, STZ was administered intracerebroventricular (i.c.v.)-bilaterally 3 mg/kg in rats. The STZ-injected rats were treated with different doses of licofelone (2.5, 5, and 10 mg/kg, p.o.) for 21 days. Cognitive functions were assessed by using Morris water maze and passive avoidance task. Levels of malondialdehyde (MDA), nitrite, reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were determined to check oxidative stress and cholinergic function. Cytokine levels (IL-1β and TNF-α) were also determined as markers of neuroinflammation. Administration of STZ caused a significant increase in AChE activity and cognitive dysfunction. Increased oxidative stress and the proinflammatory cytokine levels were also observed following STZ administration in rats. Licofelone treatment attenuated STZ-induced cholinergic hypofunction and cognitive deficit in rats. In addition, licofelone attenuated STZ-induced oxidative stress and elevated cytokine levels. The cognitive enhancement following licofelone administration in STZ rats may be due to its ability to restore cholinergic functions or its antioxidant activity. These observed results suggest the therapeutic potential of dual COX/5-LOX inhibitors in neurodegenerative disorders associated with oxidative stress and cognitive impairment.

  3. Phenotypic variation in LADD syndrome.

    PubMed Central

    Thompson, E; Pembrey, M; Graham, J M

    1985-01-01

    A mother and son are reported with chronic dacrocystitis, cup shaped ears, hearing loss, abnormal teeth, and poor formation of saliva and tears. They are similar to previously reported cases of lacrimo-auriculo-dento-digital (LADD) syndrome. The variability of expression of this autosomal dominant syndrome is discussed, and it is suggested that poor saliva and tear formation be added to the phenotype. Images PMID:4078868

  4. Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

    PubMed Central

    Keays, David A.; Tian, Guoling; Poirier, Karine; Huang, Guo-Jen; Siebold, Christian; Cleak, James; Oliver, Peter L.; Fray, Martin; Harvey, Robert J.; Molnár, Zoltán; Piñon, Maria C.; Dear, Neil; Valdar, William; Brown, Steve D.M.; Davies, Kay E.; Rawlins, J. Nicholas P.; Cowan, Nicholas J.; Nolan, Patrick; Chelly, Jamel; Flint, Jonathan

    2007-01-01

    Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders. PMID:17218254

  5. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    PubMed Central

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2014-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−26%, p=0.0001) and DEF+FLX (−32%, p=0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF+FLX rats exhibited significantly greater climbing behavior compared with CON+FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF+FLX rats exhibited significant elevations in climbing behavior. DEF+FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON+FLX rats. DEF+FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. PMID:24360505

  6. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  7. Global phenotypic characterization of bacteria

    PubMed Central

    Bochner, Barry R

    2009-01-01

    The measure of the quality of a systems biology model is how well it can reproduce and predict the behaviors of a biological system such as a microbial cell. In recent years, these models have been built up in layers, and each layer has been growing in sophistication and accuracy in parallel with a global data set to challenge and validate the models in predicting the content or activities of genes (genomics), proteins (proteomics), metabolites (metabolomics), and ultimately cell phenotypes (phenomics). This review focuses on the latter, the phenotypes of microbial cells. The development of Phenotype MicroArrays, which attempt to give a global view of cellular phenotypes, is described. In addition to their use in fleshing out and validating systems biology models, there are many other uses of this global phenotyping technology in basic and applied microbiology research, which are also described. PMID:19054113

  8. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  9. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency–Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus123

    PubMed Central

    Tran, Phu V; Kennedy, Bruce C; Pisansky, Marc T; Won, Kyoung-Jae; Gewirtz, Jonathan C; Simmons, Rebecca A; Georgieff, Michael K

    2016-01-01

    Background: Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. Objectives: We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring’s hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. Methods: Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. Results: Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. Conclusions: Fetal-neonatal iron deficiency

  10. A phenotype survey of 36 mutant mouse strains with gene-targeted defects in glycosyltransferases or glycan-binding proteins

    PubMed Central

    Orr, Sally L; Le, Dzung; Long, Jeffrey M; Sobieszczuk, Peter; Ma, Bo; Tian, Hua; Fang, Xiaoqun; Paulson, James C; Marth, Jamey D; Varki, Nissi

    2013-01-01

    The consortium for functional glycomics (CFG) was a large research initiative providing networking and resources for investigators studying the role of glycans and glycan-binding proteins in health and disease. Starting in 2001, six scientific cores were established to generate data, materials and new technologies. By the end of funding in 2011, the mouse phenotype core (MPC) submitted data to a website from the phenotype screen of 36 mutant mouse strains deficient in a gene for either a glycan-binding protein (GBP) or glycosyltransferase (GT). Each mutant strain was allotted three months for analysis and screened by standard phenotype assays used in the fields of immunology, histology, hematology, coagulation, serum chemistry, metabolism and behavior. Twenty of the deficient mouse strains had been studied in other laboratories, and additional tests were performed on these strains to confirm previous observations and discover new data. The CFG constructed 16 new homozygous mutant mouse strains and completed the initial phenotype screen of the majority of these new mutant strains. In total, >300 phenotype changes were observed, but considering the over 100 assays performed on each strain, most of the phenotypes were unchanged. Phenotype differences include abnormal testis morphology in GlcNAcT9- and Siglec-H-deficient mice and lethality in Pomgnt1-deficient mice. The numerous altered phenotypes discovered, along with the consideration of the significant findings of normality, will provide a platform for future characterization to understand the important roles of glycans and GBPs in the mechanisms of health and disease. PMID:23118208

  11. Single cell dynamic phenotyping

    PubMed Central

    Patsch, Katherin; Chiu, Chi-Li; Engeln, Mark; Agus, David B.; Mallick, Parag; Mumenthaler, Shannon M.; Ruderman, Daniel

    2016-01-01

    Live cell imaging has improved our ability to measure phenotypic heterogeneity. However, bottlenecks in imaging and image processing often make it difficult to differentiate interesting biological behavior from technical artifact. Thus there is a need for new methods that improve data quality without sacrificing throughput. Here we present a 3-step workflow to improve dynamic phenotype measurements of heterogeneous cell populations. We provide guidelines for image acquisition, phenotype tracking, and data filtering to remove erroneous cell tracks using the novel Tracking Aberration Measure (TrAM). Our workflow is broadly applicable across imaging platforms and analysis software. By applying this workflow to cancer cell assays, we reduced aberrant cell track prevalence from 17% to 2%. The cost of this improvement was removing 15% of the well-tracked cells. This enabled detection of significant motility differences between cell lines. Similarly, we avoided detecting a false change in translocation kinetics by eliminating the true cause: varied proportions of unresponsive cells. Finally, by systematically seeking heterogeneous behaviors, we detected subpopulations that otherwise could have been missed, including early apoptotic events and pre-mitotic cells. We provide optimized protocols for specific applications and step-by-step guidelines for adapting them to a variety of biological systems. PMID:27708391

  12. Structural abnormalities of corpus callosum and cortical axonal tracts accompanied by decreased anxiety-like behavior and lowered sociability in spock3- mutant mice.

    PubMed

    Yamamoto, Ayako; Uchiyama, Koji; Nara, Tomoka; Nishimura, Naomichi; Hayasaka, Michiko; Hanaoka, Kazunori; Yamamoto, Tatsuro

    2014-01-01

    Spock3/Testican-3 is a nervous system-expressed heparan sulfate proteoglycan belonging to a subgroup of the BM-40/SPARC/osteonectin family, the role of which in brain development is unclear. Because Spock1, a member of the Spock family, inhibits their attachment to substrates and the neurite outgrowth of cultured neuronal cells, Spock3 is also thought to be similarly involved in the neuronal development. In the present study, we established a Spock3-mutant mouse harboring a deletion extending from the presumptive upstream regulatory region to exon 4 of the Spock3 locus and performed histological and behavioral studies on these mutant mice. In wild-type (WT) mice, all Spock members were clearly expressed during brain development. In adults, intense Spock1 and Spock2 expressions were observed throughout the entire brain; whereas, Spock3 expression was no longer visible except in the thalamic nuclei. Thus, Spock3 expression is mostly confined to the developmental stage of the brain. In adult mutant mice, the cells of all cortical layers were swollen. The corpus callosum was narrowed around the central region along the rostral-caudal axis and many small spaces were observed without myelin sheaths throughout the entire corpus callosum. In addition, the cortical input and output fibers did not form into thick bundled fibers as well as the WT counterparts did. Moreover, a subpopulation of corticospinal axonal fibers penetrated into the dorsal striatum with moderately altered orientations. Consistent with these modifications of brain structures, the mutant mice exhibited decreased anxiety-like behavior and lowered sociability. Together, these results demonstrate that Spock3 plays an important role in the formation or maintenance of major neuronal structures in the brain.

  13. On the abnormal "forced hydration" behavior of P(MEA-co-OEGA) aqueous solutions during phase transition from infrared spectroscopic insights.

    PubMed

    Hou, Lei; Wu, Peiyi

    2016-06-21

    Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.

  14. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior.

    PubMed

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza; Strandgren, Charlotte; Pernold, Karin; Richard, Thibaud J C; Van Leeuwen, Fred W; Dantuma, Nico P; Damberg, Peter; Hultenby, Kjell; Ulfhake, Brun; Mugnaini, Enrico; Rozell, Björn; Eriksson, Maria

    2015-03-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin.

  15. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    PubMed Central

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza; Strandgren, Charlotte; Pernold, Karin; Richard, Thibaud J. C.; Van Leeuwen, Fred W.; Dantuma, Nico P.; Damberg, Peter; Hultenby, Kjell; Ulfhake, Brun; Mugnaini, Enrico; Rozell, Björn; Eriksson, Maria

    2015-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin. PMID:25343989

  16. Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ACh efflux and spatial behavior.

    PubMed

    Hall, Joseph M; Savage, Lisa M

    2016-04-01

    Exercise has been shown to improve cognitive functioning in a range of species, presumably through an increase in neurotrophins throughout the brain, but in particular the hippocampus. The current study assessed the ability of exercise to restore septohippocampal cholinergic functioning in the pyrithiamine-induced thiamine deficiency (PTD) rat model of the amnestic disorder Korsakoff Syndrome. After voluntary wheel running or sedentary control conditions (stationary wheel attached to the home cage), PTD and control rats were behaviorally tested with concurrent in vivo microdialysis, at one of two time points: 24-h or 2-weeks post-exercise. It was found that only after the 2-week adaption period did exercise lead to an interrelated sequence of events in PTD rats that included: (1) restored spatial working memory; (2) rescued behaviorally-stimulated hippocampal acetylcholine efflux; and (3) within the medial septum/diagonal band, the re-emergence of the cholinergic (choline acetyltransferase [ChAT+]) phenotype, with the greatest change occurring in the ChAT+/nestin+ neurons. Furthermore, in control rats, exercise followed by a 2-week adaption period improved hippocampal acetylcholine efflux and increased the number of neurons co-expressing the ChAT and nestin phenotype. These findings demonstrate a novel mechanism by which exercise can modulate the mature cholinergic/nestin neuronal phenotype leading to improved neurotransmitter function as well as enhanced learning and memory.

  17. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  18. Normal and abnormal lid function.

    PubMed

    Rucker, Janet C

    2011-01-01

    This chapter on lid function is comprised of two primary sections, the first on normal eyelid anatomy, neurological innervation, and physiology, and the second on abnormal eyelid function in disease states. The eyelids serve several important ocular functions, the primary objectives of which are protection of the anterior globe from injury and maintenance of the ocular tear film. Typical eyelid behaviors to perform these functions include blinking (voluntary, spontaneous, or reflexive), voluntary eye closure (gentle or forced), partial lid lowering during squinting, normal lid retraction during emotional states such as surprise or fear (startle reflex), and coordination of lid movements with vertical eye movements for maximal eye protection. Detailed description of the neurological innervation patterns and neurophysiology of each of these lid behaviors is provided. Abnormal lid function is divided by conditions resulting in excessive lid closure (cerebral ptosis, apraxia of lid opening, blepharospasm, oculomotor palsy, Horner's syndrome, myasthenia gravis, and mechanical) and those resulting in excessive lid opening (midbrain lid retraction, facial nerve palsy, and lid retraction due to orbital disease).

  19. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    PubMed

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.

  20. Behavioral Phenotypes and Special Education: Parent Report of Educational Issues for Children with Down Syndrome, Prader-Willi Syndrome, and Williams Syndrome.

    ERIC Educational Resources Information Center

    Fidler, Deborah J.; Hodapp, Robert M.; Dykens, Elizabeth M.

    2002-01-01

    A study examined the degree to which parents are informed about syndrome-based behaviors in children with Down syndrome (n=21), Prader-Willi syndrome (n=25), and Williams syndrome (n=21). Parents were informed about blatant behavioral features, especially maladaptive behaviors, but were less informed about certain subtle syndrome-based cognitive…

  1. PRIMARY CILIARY DYSKINESIA: DIAGNOSTIC AND PHENOTYPIC FEATURES

    EPA Science Inventory

    Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. We hypothesized that the major clinical and biologic phenotypic markers of the disease could be evaluated by studying a cohort of subjects suspected of having PCD. ...

  2. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.

    PubMed

    Wurzman, Rachel; Forcelli, Patrick A; Griffey, Christopher J; Kromer, Lawrence F

    2015-02-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms.

  3. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    PubMed

    Hölter, Sabine M; Stromberg, Mary; Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  4. A Broad Phenotypic Screen Identifies Novel Phenotypes Driven by a Single Mutant Allele in Huntington’s Disease CAG Knock-In Mice

    PubMed Central

    Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E.; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C.

    2013-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing. PMID:24278347

  5. Electronic structures and abnormal phonon behaviors of cobalt-modified Na0.5Bi0.5TiO3-6%BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Huang, T.; Zhang, P.; Xu, L. P.; Chen, C.; Zhang, J. Z.; Hu, Z. G.; Luo, H. S.; Chu, J. H.

    2016-10-01

    Optical properties, electronic structures, and structural variations of x wt% cobalt (Co) doped Na0.5Bi0.5TiO3-6%BaTiO3 (x=0%, 0.5%, 0.8%) single crystals have been studied by temperature-dependent optical ellipsometry and Raman spectra from 250 to 650 K. Based on the temperature evolution of electronic transitions (Ecp1 and Ecp2) and the phonon modes involving Ti-O vibrations, two critical temperature points exhibit an increasing trend with Co dopants, which are related to structural variations for ferroelectric to anti-ferroelectric, and anti-ferroelectric to paraelectric transition, respectively. Additionally, distinguishing abnormal phonon behaviors can be observed from Raman spectra for the crystal of x=0.5% and 0.8%, which show reverse frequency shift of the modes involving Ti-O vibration. It can be ascribed to different relative concentration of Co2+ and Co3+ in the crystals, which has been confirmed by X-ray Photoelectron Spectroscopy data.

  6. Phenotypic Variability Associated with a Large Recurrent 1q21.1 Microduplication in a Three-Generation Family

    PubMed Central

    Verhagen, Judith M.A.; de Leeuw, Nicole; Papatsonis, Dimitri N.M.; Grijseels, Els W.M.; de Krijger, Ronald R.; Wessels, Marja W.

    2015-01-01

    Recurrent copy number variants of the q21.1 region of chromosome 1 have been associated with variable clinical features, including developmental delay, mild to moderate intellectual disability, psychiatric and behavioral problems, congenital heart malformations, and craniofacial abnormalities. A subset of individuals is clinically unaffected. We describe a unique 3-generation family with a large recurrent 1q21.1 microduplication (BP2-BP4). Our observations underline the incomplete penetrance and phenotypic variability of this rearrangement. We also confirm the association with congenital heart malformations, chronic depression, and anxiety. Furthermore, we report a broader range of dysmorphic features. The extreme phenotypic heterogeneity observed in this family suggests that additional factors modify the clinical phenotype. PMID:26279651

  7. [Y chromosome structural abnormalities and Turner's syndrome].

    PubMed

    Ravel, C; Siffroi, J-P

    2009-06-01

    Although specifically male, the human Y chromosome may be observed in female karyotypes, mostly in women with Turner syndrome stigmata. In women with isolated gonadal dysgenesis but otherwise normal stature, the testis determining factor or SRY gene may have been removed from the Y chromosome or may be mutated. In other women with Turner syndrome, the karyotype is usually abnormal and shows a frequent 45,X/46,XY mosaicism. In these cases, the phenotype depends on the ratio between Y positive and 45,X cell lines in the body. When in mosaicism, Y chromosomes are likely to carry structural abnormalities which explain mitotic instability, such as the existence of two centromeres. Dicentric Y isochromosomes for the short arm (idic[Yp]) or ring Y chromosomes (r[Y]) are the most frequent abnormal Y chromosomes found in infertile patients and in Turner syndrome in mosaic with 45,X cells. Although monocentric, deleted Y chromosomes for the long arm and those carrying microdeletions in the AZF region are also instable and are frequently associated with a 45,X cell line. Management of infertile patients carrying such abnormal Y chromosomes must take into account the risk and the consequences of a mosaicism in the offspring.

  8. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior.

    PubMed Central

    Hendrix, M. J.; Seftor, E. A.; Seftor, R. E.; Trevor, K. T.

    1997-01-01

    The expression of intermediate filament proteins is remarkably tissue specific, which suggests that the intermediate filament type(s) present in cells is somehow related to their biological function. However, in some cancers, particularly malignant breast carcinoma, there is a strong indication that vimentin is co-expressed with keratins, thus presenting as a dedifferentiated or interconverted (between epithelial and mesenchymal) phenotype. In the present study, we recapitulated the interconverted phenotype by developing stable transfectants of MCF-7 human breast cancer cells, termed MoVi clones, to express both vimentin and keratins. Overexpression of vimentin in these cells led to augmentation of motility and invasiveness in vitra. These activities could be transiently down-regulated by vimentin antisense oligonucleotides in MoVi clones and MDA-MB-231 cells (which constitutively co-express keratins and vimentin). Furthermore, in the MoVi experimental transfectants expressing the highest percentage of vimentin-positive cells, their proliferative capacity, clonogenic potential, and tumorigenicity increased. However, the metastatic ability of the MoVi transfectants remained unchanged compared with MCF-7neo controls. The MDA-MB-231 cells metastasized to axillary lymph nodes in a SCID mouse model. Finally, we explored the possibility that potential changes could occur with respect to cell surface integrins. These studies revealed a decrease in the alpha 2- and alpha 3-containing promiscuous integrins, in addition to beta 1 containing integrins, concomitant with an increase in the alpha 6-containing laminin receptor integrin. Further functional analysis of the alpha 6 observation showed an increase in the baptotactic migration of MoVi transfectants toward a laminin substrate. From these data, it is postulated that the ability to co-express vimentin and keratins confers a selective advantage to breast cancer cells in their interpretation of signaling cues from the

  9. Complex motivated behaviors for natural rewards following a binge-like regimen of morphine administration: mixed phenotypes of anhedonia and craving after short-term withdrawal

    PubMed Central

    Bai, Yunjing; Li, Yingying; Lv, Yaodi; Liu, Zhengkui; Zheng, Xigeng

    2014-01-01

    The anhedonia-like behaviors following about 1-week withdrawal from morphine were examined in the present study. Male rats were pretreated with either a binge-like morphine paradigm or daily saline injection for 5 days. Three types of natural reward were used, food reward (2.5, 4, 15, 30, 40, and 60% sucrose solutions), social reward (male rat) and sexual reward (estrous female rat). For each type of natural stimulus, consummatory behavior and motivational behaviors under varied testing conditions were investigated. The results showed that the morphine-treated rats significantly reduced their consumption of 2.5% sucrose solution during the 1-h consumption testing and their operant responding for 15, 30, and 40% sucrose solutions under a fixed ratio 1 (FR1) schedule. However, performance under a progressive ratio (PR) schedule increased in morphine-treated rats reinforced with 60% sucrose solution, but not in those reinforced with sucrose concentrations lower than 60%. Pretreatment with morphine significantly decreased the male rats' ejaculation frequency (EF) during the 1-h copulation testing, and impaired the maintenance of appetitive motivations to sexual and social stimuli under a free-approach condition. Moreover, the morphine-treated rats demonstrated a diminished motivation to approach social stimulus in the effort-based appetitive behavior test but showed a remarkable increase in motivation to approach sexual stimulus in the risky appetitive behavior test. These results demonstrated some complex motivated behaviors following about 1 week of morphine withdrawal: (1) The anhedonia-like behavior was consistently found in animals withdrawn from morphine. However, for a given reward, there was often a dissociation of the consummatory behaviors from the motivational behaviors, and whether the consummatory or the motivational anhedonia-like behaviors could be discovered heavily depended on the type and magnitude of the reward and the type of testing task; (2) These

  10. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  11. Autistic Traits and Abnormal Sensory Experiences in Adults

    ERIC Educational Resources Information Center

    Horder, Jamie; Wilson, C. Ellie; Mendez, M. Andreina; Murphy, Declan G.

    2014-01-01

    Sensory processing abnormalities are common in autism spectrum disorders (ASD), and now form part of the "Diagnostic and Statistical Manual 5th Edition" (DSM-5) diagnostic criteria, but it is unclear whether they characterize the "broader phenotype" of the disorder. We recruited adults (n = 772) with and without an ASD and…

  12. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  13. Auditory pathology in cri-du-chat (5p-) syndrome: phenotypic evidence for auditory neuropathy.

    PubMed

    Swanepoel, D

    2007-10-01

    5p-(cri-du-chat syndrome) is a well-defined clinical entity presenting with phenotypic and cytogenetic variability. Despite recognition that abnormalities in audition are common, limited reports on auditory functioning in affected individuals are available. The current study presents a case illustrating the auditory functioning in a 22-month-old patient diagnosed with 5p- syndrome, karyotype 46,XX,del(5)(p13). Auditory neuropathy was diagnosed based on abnormal auditory evoked potentials with neural components suggesting severe to profound hearing loss in the presence of cochlear microphonic responses and behavioral reactions to sound at mild to moderate hearing levels. The current case and a review of available reports indicate that auditory neuropathy or neural dys-synchrony may be another phenotype of the condition possibly related to abnormal expression of the protein beta-catenin mapped to 5p. Implications are for routine and diagnostic specific assessments of auditory functioning and for employment of non-verbal communication methods in early intervention.

  14. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  15. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  16. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  17. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  18. Prader-Willi-like phenotype: investigation of 1p36 deletion in 41 patients with delayed psychomotor development, hypotonia, obesity and/or hyperphagia, learning disabilities and behavioral problems.

    PubMed

    D'Angelo, Carla S; Da Paz, José A; Kim, Chong A; Bertola, Débora R; Castro, Claudia I E; Varela, Monica C; Koiffmann, Célia P

    2006-01-01

    Monosomy 1p36 is one of the most commonly observed mental retardation (MR) syndromes that results in a clinically recognizable phenotype including delayed psychomotor development and/or MR, hypotonia, epilepsy, hearing loss, growth delay, microcephaly, deep-set eyes, flat nasal bridge and pointed chin. Besides, a Prader-Willi syndrome (PWS)-like phenotype has been described in patients with 1p36 monosomy. Forty-one patients presenting hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who tested negative for PWS were investigated by FISH and/or microsatellite markers. Twenty-six were analyzed with a 1p-specific subtelomeric probe, and one terminal deletion was identified. Thirty patients (15 of which also studied by FISH) were investigated by microsatellite markers, and no interstitial 1p36 deletion was found. Our patient presenting the 1p36 deletion did not have the striking features of this monosomy, but her clinical and behavioral features were quite similar to those observed in patients with PWS, except for the presence of normal sucking at birth. The extent of the deletion could be limited to the most terminal 2.5 Mb of 1p36, within the chromosomal region 1p36.33-1p36.32, that is smaller than usually seen in monosomy 1p36 patients. Therefore, chromosome 1p36.33 deletion should be investigated in patients with hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who test negative for PWS.

  19. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  20. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  1. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice

    PubMed Central

    Alfieri, Julio A.; Silva, Pablo R.; Igaz, Lionel M.

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies. PMID:28066234

  2. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  3. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  4. Behaviorism

    ERIC Educational Resources Information Center

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  5. A vestibular phenotype for Waardenburg syndrome?

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.

    2001-01-01

    OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.

  6. Characterization of the Statistical Signatures of Micro-Movements Underlying Natural Gait Patterns in Children with Phelan McDermid Syndrome: Towards Precision-Phenotyping of Behavior in ASD

    PubMed Central

    Torres, Elizabeth B.; Nguyen, Jillian; Mistry, Sejal; Whyatt, Caroline; Kalampratsidou, Vilelmini; Kolevzon, Alexander

    2016-01-01

    Background: There is a critical need for precision phenotyping across neurodevelopmental disorders, especially in individuals who receive a clinical diagnosis of autism spectrum disorder (ASD). Phelan-McDermid deletion syndrome (PMS) is one such example, as it has a high penetrance of ASD. At present, no biometric characterization of the behavioral phenotype within PMS exists. Methods: We introduce a data-type and statistical framework that permits the personalized profiling of naturalistic behaviors. Walking patterns were assessed in 30 participants (16 PMS, 3 idiopathic-ASD and 11 age- and sex-matched controls). Each individual's micro-movement signatures were recorded at 240 Hz. We empirically estimated the parameters of the continuous Gamma family of probability distributions and calculated their ranges. These estimated stochastic signatures were then mapped on the Gamma plane to obtain several statistical indexes for each child. To help visualize complex patterns across the cohort, we introduce new tools that enable the assessment of connectivity and modularity indexes across the peripheral network of rotational joints. Results: Typical walking signatures are absent in all children with PMS as well as in the children with idiopathic-ASD (iASD). Underlying these patterns are atypical leg rotational acceleration signatures that render participants with PMS unstable with rotations that are much faster than controls. The median values of the estimated Gamma parameters serve as a cutoff to automatically separate children with PMS 5–7 years old from adolescents with PMS 12–16 years old, the former displaying more randomness and larger noise. The fluctuations in the arm's motions during the walking also have atypical statistics that separate males from females in PMS and show higher rates of noise accumulation in idiopathic ASD (iASD) children. Despite high heterogeneity, all iASD children have excess noise, a narrow range of probability-distribution shapes

  7. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  8. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  9. The high-throughput phenotyping of the viscoelastic behavior of whole mouse intervertebral discs using a novel method of dynamic mechanical testing.

    PubMed

    Liu, Jennifer W; Abraham, Adam C; Tang, Simon Y

    2015-07-16

    Intervertebral disc (IVD) degeneration is highly correlated with lower back pain, and thus understanding the mechanisms of IVD degeneration is critical for the treatment of this disease. Utilizing mouse models to probe the mechanisms of degeneration is especially attractive due to the ease of manipulating mouse models and the availability of transgenics. Yet characterizing the mechanical behavior of mice IVDs remain challenging due to their minute size (approximately 540 μm in height and 1080 μm(2) in cross sectional area). We have thus developed a simple method to dynamically characterize the mechanical properties of intact mouse IVDs. The IVDs were dissected with the endplates intact, and dynamically compressed in the axial direction at 1% and 5% peak strains at 1 Hz. Utilizing this novel approach, we examined the effects of in vitro ribosylation and trypsin digestion for 24 or 72 h on the viscoelastic behavior of the whole murine IVD. Trypsin treatment resulted in a decrease of proteoglycans and loss of disc height, while ribosylation had no effect on structure or proteoglycan composition. The 72 h ribosylation group exhibited a stiffening of the disc, and both treatments significantly reduced viscous behavior of the IVDs, with the effects being more pronounced at 5% strain. Here we demonstrate a novel high-throughput method to mechanically characterize murine IVDs and detect strain-dependent differences in the elastic and the viscous behavior of the treated IVDs due to ribose and trypsin treatments.

  10. Phenotypic plasticity: molecular mechanisms and adaptive significance.

    PubMed

    Kelly, Scott A; Panhuis, Tami M; Stoehr, Andrew M

    2012-04-01

    Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.

  11. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  12. Circadian abnormalities in mouse models of Smith-Magenis syndrome: evidence for involvement of RAI1.

    PubMed

    Lacaria, Melanie; Gu, Wenli; Lupski, James R

    2013-07-01

    Smith-Magenis syndrome (SMS; OMIM 182290) is a genomic disorder characterized by multiple congenital anomalies, intellectual disability, behavioral abnormalities, and disordered sleep resulting from an ~3.7 Mb deletion copy number variant (CNV) on chromosome 17p11.2 or from point mutations in the gene RAI1. The reciprocal duplication of this region results in another genomic disorder, Potocki-Lupski syndrome (PTLS; OMIM 610883), characterized by autism, intellectual disability, and congenital anomalies. We previously used chromosome-engineering and gene targeting to generate mouse models for PTLS (Dp(11)17/+), and SMS due to either deletion CNV or gene knock-out (Df(11)17-2/+ and Rai1(+/-) , respectively) and we observed phenotypes in these mouse models consistent with their associated human syndromes. To investigate the contribution of individual genes to the circadian phenotypes observed in SMS, we now report the analysis of free-running period lengths in Rai1(+/-) and Df(11)17-2/+ mice, as well as in mice deficient for another known circadian gene mapping within the commonly deleted/duplicated region, Dexras1, and we compare these results to those previously observed in Dp(11)17/+ mice. Reduced free-running period lengths were seen in Df(11)17-2/+, Rai1(+/-) , and Dexras1(-/-) , but not Dexras1(+/-) mice, suggesting that Rai1 may be the primary gene underlying the circadian defects in SMS. However, we cannot rule out the possibility that cis effects between multiple haploinsufficient genes in the SMS critical interval (e.g., RAI1 and DEXRAS1) either exacerbate the circadian phenotypes observed in SMS patients with deletions or increase their penetrance in certain environments. This study also confirms a previous report of abnormal circadian function in Dexras1(-/-) mice.

  13. Chromosomal abnormalities in a psychiatric population

    SciTech Connect

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W.

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  14. Phenotypic deconstruction of gene circuitry

    NASA Astrophysics Data System (ADS)

    Lomnitz, Jason G.; Savageau, Michael A.

    2013-06-01

    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  15. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  16. Hatching behavior of eastern long-necked turtles (Chelodina longicollis): The influence of asynchronous environments on embryonic heart rate and phenotype.

    PubMed

    McGlashan, Jessica K; Loudon, Fiona K; Thompson, Michael B; Spencer, Ricky-John

    2015-10-01

    Variable temperatures within a nest cause asynchronous development within clutches of freshwater turtle embryos, yet synchronous hatching occurs and is thought to be an important survival strategy for hatchlings. Metabolic compensation and circadian rhythms in heart rates of embryonic turtles indicate the potential of communication between embryos in a nest. Heart rates were used to identify metabolic circadian rhythms in clutches of an Australian freshwater turtle (Chelodina longicollis) and determine whether embryos metabolically compensate and hatch synchronously when incubated in asynchronous environments. The effects of a group environment during incubation on egg development and incubation period were also investigated during the final 3 weeks of development. Chelodina longicollis hatch synchronously and metabolically compensate so that less advanced embryos catch up to more advanced clutch-mates. Heart rates of embryos remained stable from week 4-7 in asynchronous (M=89 bpm) and synchronous (M=92 bpm) groups and declined in the final 2 weeks of incubation (M=72 and 77 bpm). Circadian rhythms were present throughout development and diel heart rates of embryos in asynchronous groups showed less deviation from the mean (M=-0.5 bpm) than synchronous groups (M=-4 bpm). Eggs incubated in groups had a significantly shorter incubation period than eggs incubated individually. Phenotypic traits including size, performance, and growth of all hatchlings were not affected. Egg position within a turtle nest is important for coordinating development throughout incubation and facilitating synchronous hatching.

  17. Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome.

    PubMed

    Ullrich, N J; Silvera, V M; Campbell, S E; Gordon, L B

    2012-09-01

    HGPS is a rare syndrome of segmental premature aging. Our goal was to expand the scope of structural bone and soft-tissue craniofacial abnormalities in HGPS through CT or MR imaging. Using The Progeria Research Foundation Medical and Research Database, 98 imaging studies on 25 patients, birth to 14.1 years of age, were comprehensively reviewed. Eight newly identified abnormalities involving the calvaria, skull base, and soft tissues of the face and orbits were present with prevalences between 43% and 100%. These included J-shaped sellas, a mottled appearance and increased vascular markings of the calvaria, abnormally configured mandibular condyles, hypoplastic articular eminences, small zygomatic arches, prominent parotid glands, and optic nerve kinking. This expanded craniofacial characterization helps link disease features and improves our ability to evaluate how underlying genetic and cellular abnormalities culminate in a disease phenotype.

  18. The Effect of Injury Severity on Behavior: A Phenotypic Study of Cognitive and Emotional Deficits after Mild, Moderate, and Severe Controlled Cortical Impact Injury in Mice

    PubMed Central

    Washington, Patricia M.; Forcelli, Patrick A.; Wilkins, Tiffany; Zapple, David N.; Parsadanian, Maia

    2012-01-01

    Abstract Traumatic brain injury (TBI) can cause a broad array of behavioral problems including cognitive and emotional deficits. Human studies comparing neurobehavioral outcomes after TBI suggest that cognitive impairments increase with injury severity, but emotional problems such as anxiety and depression do not. To determine whether cognitive and emotional impairments increase as a function of injury severity we exposed mice to sham, mild, moderate, or severe controlled cortical impact (CCI) and evaluated performance on a variety of neurobehavioral tests in the same animals before assessing lesion volume as a histological measure of injury severity. Increasing cortical impact depth successfully produced lesions of increasing severity in our model. We found that cognitive impairments in the Morris water maze increased with injury severity, as did the degree of contralateral torso flexion, a measure of unilateral striatal damage. TBI also caused deficits in emotional behavior as quantified in the forced swim test, elevated-plus maze, and prepulse inhibition of acoustic startle, but these deficits were not dependent on injury severity. Stepwise regression analyses revealed that Morris water maze performance and torso flexion predicted the majority of the variability in lesion volume. In summary, we find that cognitive deficits increase in relation to injury severity, but emotional deficits do not. Our data suggest that the threshold for emotional changes after experimental TBI is low, with no variation in behavioral deficits seen between mild and severe brain injury. PMID:22642287

  19. Opposing phenotypes in mice with Smith-Magenis deletion and Potocki-Lupski duplication syndromes suggest gene dosage effects on fluid consumption behavior.

    PubMed

    Heck, Detlef H; Gu, Wenli; Cao, Ying; Qi, Shuhua; Lacaria, Melanie; Lupski, James R

    2012-11-01

    A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.

  20. Beware of your mouse strain; differential effects of lithium on behavioral and neurochemical phenotypes in Harlan ICR mice bred in Israel or the USA.

    PubMed

    Sade, Yeala; Kara, Nirit Z; Toker, Lilach; Bersudsky, Yuly; Einat, Haim; Agam, Galila

    2014-09-01

    Animal models are crucial components in the search for better understanding of the biological basis of psychiatric disorders and for the development of novel drugs. Research, in general, and research with animal models, in particular, relies on the consistency of effects of investigated drugs or manipulations across experiments. In that context, it had been noted that behavioral responses to lithium in ICR (CD-1) mice from Harlan Israel have changed across the last years. To examine this change, the present study compared the effect of lithium treatment in ICR mice from Harlan Israel with the ICR mice from Harlan USA. The mice were treated with chronic oral lithium. Their lithium serum levels were measured and their behavior in the forced swim test (FST) was evaluated. The mice were also treated with [(3)H]-inositol ICV and lithium injection and their frontal cortex [(3)H]-phosphoinositols accumulation was measured. Results show that lithium serum levels in Israeli mice were significantly lower compared with the USA mice, that lithium had no behavioral effect in the Israeli mice but significantly reduced FST immobility time of the USA mice, and that phosphoinositols accumulation was much more strongly affected by lithium in the USA mice compared with the Israeli mice. These results suggest that the Israeli Harlan colony of ICR mice changed significantly from the original ICR colony in Harlan USA and that the differences might be related to absorption or secretion of lithium.

  1. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  2. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.

  3. Behavioral and pheromonal phenotypes associated with expression of loss-of-function mutations in the sex-lethal gene of Drosophila melanogaster.

    PubMed

    Tompkins, L; McRobert, S P

    1995-02-01

    We have shown that female-specific functions of the sex determination gene Sex-lethal (Sxl) regulate sexual behavior and synthesis of the three major sex pheromones that have been identified in normal, sexually mature Drosophilia melanogaster males and virgin females. Diplo-X flies, heterozygous in trans for two partial loss-of-function Sxl mutations, elicit less courtship than normal females and produce large quantities of the inhibitory pheromones that normal males synthesize. In addition, the mutant flies fail to synthesize the female-predominant aphrodisiac pheromone or make very small quantities of this compound.

  4. Different strategies of exploration and phenotypic variability of the locomotor behavior in new environment: Comparative study of the laboratory opossum (Monodelphis domestica) and Wistar rat (Rattus norvegicus).

    PubMed

    Klejbor, Ilona; Turlejski, Krzysztof

    2012-01-01

    Spontaneous locomotor activity of opossums and Wistar rats during a two-hour session in the open field has been recorded, assessed and behavior of individuals of the two species compared. Afterwards, groups of highly active (HA) and low active (LA) opossums and rats were selected on the basis of the distance traveled in the test. Differences between the selected groups were evaluated. Opossums were generally more active, moving faster and covering longer distance. They spent more time in the central part of the open field and traveled across the center more times than rats, therefore they showed also a lower level of anxiety. These data confirm our previous results indicating that opossums preferentially use the risky exploration strategy while rats mainly rely on the defensive behavior. Opossums showed a higher variability of the volume of locomotor activity than rats. Comparison of the HA and LA groups of opossums and rats showed that in each species they differed on another principle: the level of anxiety in Wistar rats and level of locomotor activity in opossums. Therefore results of the open field test might measure different parameters in different species.

  5. The broad autism phenotype predicts relationship outcomes in newly formed college roommates.

    PubMed

    Faso, Daniel J; Corretti, Conrad A; Ackerman, Robert A; Sasson, Noah J

    2016-05-01

    Although previous studies have reported that the broad autism phenotype is associated with reduced relationship quality within established relationships, understanding how this association emerges requires assessment prior to relationship development. In the present longitudinal study, college roommates with minimal familiarity prior to cohabitation (N = 162) completed the broad autism phenotype questionnaire and intermittently reported on their relationship quality and interpersonal behaviors toward their roommate over their first 10 weeks of living together. Actor-Partner Interdependence Models demonstrated that roommates mismatched on aloofness (one high and one low) had lower relationship satisfaction than those matched on it, with the interpersonal behavior of warmth mediating this association. Because relationship satisfaction remained high when both roommates were aloof, satisfaction does not appear predicated upon the presence of aloofness generally but rather reflects a product of dissimilarity in aloof profiles between roommates. In contrast, although participants reported less relationship satisfaction and commitment with roommates higher on pragmatic language abnormalities, mismatches on this broad autism phenotype trait, and on rigid personality, were less consequential. In sum, these findings suggest that complementary profiles of social motivation may facilitate relationship quality during the early course of relationship development.

  6. Mutant laboratory mice with abnormalities in pigmentation: annotated tables.

    PubMed

    Nakamura, Motonobu; Tobin, Desmond J; Richards-Smith, Beverly; Sundberg, John P; Paus, Ralf

    2002-01-01

    Mammalian pigment cell research has recently entered a phase of significantly increased activity due largely to the exploitation of the many mutant mouse stocks that are coming on stream. Numerous transgenic, targeted mutagenesis (so-called 'knockouts'), conditional (so-called 'gene switch') and spontaneous mutant mice develop abnormal coat color phenotypes. The number of mice that exhibit such abnormalities is increasing exponentially as genetic engineering methods become routine. Since defined abnormalities in such mutant mice provide important clues to the as yet often poorly understood functional roles of many gene products, this overview includes a corresponding, annotated table of mutant mice with pigmentation alterations. These range from early developmental defects via a large array of coat color abnormalities to a melanoma metastasis model. This overview should provide helpful pointers to investigators who are looking for mouse models to explore or to compare functional activities of genes of interest and for comparing coat color phenotypes of spontaneous or genetically engineered mouse mutants with novel ones. Secondly, this review includes a table of mouse models of specific human diseases with genetically defined pigmentation abnormalities. In summary, this annotated table should serve as a useful reference for anyone interested in the molecular controls of pigmentation.

  7. Abnormalities of T cell signaling in systemic lupus erythematosus

    PubMed Central

    2011-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease resulting from a loss of tolerance to multiple self antigens, and characterized by autoantibody production and inflammatory cell infiltration in target organs, such as the kidneys and brain. T cells are critical players in SLE pathophysiology as they regulate B cell responses and also infiltrate target tissues, leading to tissue damage. Abnormal signaling events link to defective gene transcription and altered cytokine production, contributing to the aberrant phenotype of T cells in SLE. Study of signaling and gene transcription abnormalities in SLE T cells has led to the identification of novel targets for therapy. PMID:21457530

  8. Discordant phenotypes and 45,X/46,X,idic(Y).

    PubMed Central

    Kelly, T E; Franko, J B; Rogol, A; Golden, W L

    1998-01-01

    Mosaicism introduces wide variability into the clinical expression of numerical and unbalanced structural chromosomal abnormalities. The phenotypic range of variability of 45,X/46,XY mosaicism extends from Turner syndrome to mixed gonadal dysgenesis to normal males. The specific phenotype is primarily dependent on the chromosomal constitution of the developing gonad. Similar phenotypic variability is observed with mosaicism for 45,X and a second cell line with an abnormal sex chromosome. This report describes a patient with Turner syndrome and a patient with mixed gonadal dysgenesis who have identical karyotypes, namely 45,X/46,X,idic(Y)(p11.2). While mosaicism alone might have accounted for the phenotypic differences, by PCR analysis the Turner syndrome patient was SRY and ZFY negative and the mixed gonadal dysgenesis patient was SRY and ZFY positive. Images PMID:9783714

  9. Discordant phenotypes and 45,X/46,X,idic(Y).

    PubMed

    Kelly, T E; Franko, J B; Rogol, A; Golden, W L

    1998-10-01

    Mosaicism introduces wide variability into the clinical expression of numerical and unbalanced structural chromosomal abnormalities. The phenotypic range of variability of 45,X/46,XY mosaicism extends from Turner syndrome to mixed gonadal dysgenesis to normal males. The specific phenotype is primarily dependent on the chromosomal constitution of the developing gonad. Similar phenotypic variability is observed with mosaicism for 45,X and a second cell line with an abnormal sex chromosome. This report describes a patient with Turner syndrome and a patient with mixed gonadal dysgenesis who have identical karyotypes, namely 45,X/46,X,idic(Y)(p11.2). While mosaicism alone might have accounted for the phenotypic differences, by PCR analysis the Turner syndrome patient was SRY and ZFY negative and the mixed gonadal dysgenesis patient was SRY and ZFY positive.

  10. Novel BAC mouse model of Huntington’s disease with 225 CAG repeats exhibits an early widespread and stable degenerative phenotype

    PubMed Central

    Wegrzynowicz, Michal; Bichell, Terry Jo; Soares, Barbara D.; Loth, Meredith K.; McGlothan, Jennifer L.; Alikhan, Fatima S.; Hua, Kegang; Coughlin, Jennifer M.; Holt, Hunter K.; Jetter, Christopher S.; Mori, Susumu; Pomper, Martin G.; Osmand, Alexander P.; Guilarte, Tomás R.; Bowman, Aaron B.

    2015-01-01

    BACKGROUND Unusually large CAG repeat expansions (>60) in exon one of Huntingtin (HTT) are invariably associated with a juvenile-onset form of Huntington’s disease (HD), characterized by a more extensive and rapidly progressing neuropathology than the more prevalent adult-onset form. However, existing mouse models of HD that express the full-length Htt gene with CAG repeat lengths associated with juvenile HD (ranging between ~75 to ~150 repeats in published models) exhibit selective neurodegenerative phenotypes more consistent with adult-onset HD. OBJECTIVE To determine if a very large CAG repeat (>200) in full-length Htt elicits neurodegenerative phenotypes consistent with juvenile HD. METHODS Using a bacterial artificial chromosome (BAC) system, we generated mice expressing full-length mouse Htt with ~225 CAG repeats under control of the mouse Htt promoter. Mice were characterized using behavioral, neuropathological, biochemical and brain imaging methods. RESULTS BAC-225Q mice exhibit phenotypes consistent with a subset of features seen in juvenile-onset HD: very early motor behavior abnormalities, reduced body weight, widespread and progressive increase in Htt aggregates, gliosis, and neurodegeneration. Early striatal pathology was observed, including reactive gliosis and loss of dopamine receptors, prior to detectable volume loss. HD-related blood markers of impaired energy metabolism and systemic inflammation were also increased. Aside from an age-dependent progression of diffuse nuclear aggregates at 6 months of age to abundant neuropil aggregates at 12 months of age, other pathological and motor phenotypes showed little to no progression. CONCLUSIONS The HD phenotypes present in animals 3 to 12 months of age make the BAC-225Q mice a unique and stable model of full-length mutant Htt associated phenotypes, including body weight loss, behavioral impairment and HD-like neurodegenerative phenotypes characteristic of juvenile-onset HD and/or late-stage adult

  11. Developmental pragmatics in normal and abnormal children.

    PubMed

    Bara, B G; Bosco, F M; Bucciarelli, M

    1999-07-01

    We propose a critical review of current theories of developmental pragmatics. The underlying assumption is that such a theory ought to account for both normal and abnormal development. From a clinical point of view, we are concerned with the effects of brain damage on the emergence of pragmatic competence. In particular, the paper deals with direct speech acts, indirect speech acts, irony, and deceit in children with head injury, closed head injury, hydrocephalus, focal brain damage, and autism. Since no single theory covers systematically the emergence of pragmatic capacity in normal children, it is not surprising that we have not found a systematic account of deficits in the communicative performance of brain injured children. In our view, the challenge for a pragmatic theory is the determination of the normal developmental pattern within which different pragmatic phenomena may find a precise role. Such a framework of normal behavior would then permit the systematic study of abnormal pragmatic development.

  12. Abnormal single or composite dissipative solitons generation

    NASA Astrophysics Data System (ADS)

    Zhong, Xianqiong; Liu, Dingyao; Cheng, Ke; Sheng, Jianan

    2016-12-01

    The evolution dynamics of the initial finite energy Airy pulses and Airy pulse pairs are numerically investigated in the cubic-quintic complex Ginzberg-Laudau equation governed dissipative system. Depending on different initial excitations and system parameters, abnormal double, triple, and quadruple composite dissipative solitons as well as single dissipative solitons can be observed. The composite dissipative solitons may consist of identical or different types of pulsating solitons. Moreover, the creeping solitons and the single ordinary pulsating solitons can even appear in the parameter regions where originally the other types of pulsating solitons exist. Besides, before evolving into each abnormal dissipative soliton, the initial finite energy Airy pulse or pulse pairs generally exhibit very interesting and unique early evolution behavior.

  13. Neurobehavioral phenotype observed in KBG syndrome caused by ANKRD11 mutations.

    PubMed

    Lo-Castro, Adriana; Brancati, Francesco; Digilio, Maria Cristina; Garaci, Francesco Giuseppe; Bollero, Patrizio; Alfieri, Paolo; Curatolo, Paolo

    2013-01-01

    KBG syndrome is a rare disease characterized by typical facial dysmorphism, macrodontia of upper central incisors, skeletal abnormalities, and developmental delay. Recently, mutations in ANKRD11 gene have been identified in a subset of patients with KBG syndrome, while a contiguous gene deletion syndrome involving 16q24.3 region (including ANKRD11) was delineated in patients with facial dysmorphism, autism, intellectual disability, and brain abnormalities. Although numerous evidences point to a central causative role of ANKRD11 in the neurologic features of these patients, their neurocognitive and behavior phenotypes are still poorly characterized. Herein, we report the complete neurological and psychiatric features observed in two patients with KBG syndrome due to ANKRD11 mutations. Both patients show intellectual disabilities, severe impairment in communication skills, deficits in several aspects of executive functions and working memory and anxious traits. Their features are compared with those of previously reported patients with KBG syndrome aiding in the delineation of neurocognitive phenotype associated to ANKRD11 mutations.

  14. Sleep Physiology Alterations Precede Plethoric Phenotypic Changes in R6/1 Huntington's Disease Mice.

    PubMed

    Lebreton, Fanny; Cayzac, Sebastien; Pietropaolo, Susanna; Jeantet, Yannick; Cho, Yoon H

    2015-01-01

    In hereditary neurodegenerative Huntington's disease (HD), there exists a growing consideration that sleep and circadian dysregulations may be important symptoms. It is not known, however, whether sleep abnormalities contribute to other behavioral deficits in HD patients and mouse models. To determine the precise chronology for sleep physiology alterations and other sensory, motor, psychiatric and cognitive symptoms of HD, the same R6/1 HD transgenics and their wild-type littermates were recorded monthly for sleep electroencephalogram (EEG) together with a wide range of behavioral tests according to a longitudinal plan. We found an early and progressive deterioration of both sleep architecture and EEG brain rhythms in R6/1 mice, which are correlated timely with their spatial working memory impairments. Sleep fragmentation and memory impairments were accompanied by the loss of delta (1-4 Hz) power in the transgenic mice, the magnitude of which increased with age and disease progression. These precocious sleep and cognitive impairments were followed by deficits in social behavior, sensory and motor abilities. Our data confirm the existence and importance of sleep physiology alterations in the widely used R6/1 mouse line and highlight their precedence over other plethoric phenotypic changes. The brainwave abnormalities, may represent a novel biomarker and point to innovative therapeutic interventions against HD.

  15. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  16. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  17. Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies

    PubMed Central

    Zheng, JiaLin C.; Tham, Chook Teng; Keatings, Kathleen; Fan, Steven; Liou, Angela Yen-Chun; Numata, Yuka; Allan, Douglas; Numata, Masayuki

    2014-01-01

    Secretory Carrier Membrane Proteins (SCAMPs) are a group of tetraspanning integral membrane proteins evolutionarily conserved from insects to mammals and plants. Mammalian genomes contain five SCAMP genes SCAMP1-SCAMP5 that regulate membrane dynamics, most prominently membrane-depolarization and Ca2+-induced regulated secretion, a key mechanism for neuronal and neuroendocrine signaling. However, the biological role of SCAMPs has remained poorly understood primarily owing to the lack of appropriate model organisms and behavior assays. Here we generate Drosophila Scamp null mutants and show that they exhibit reduced lifespan and behavioral abnormalities including impaired climbing, deficiency in odor associated long-term memory, and a susceptibility to heat-induced seizures. Neuron-specific restoration of Drosophila Scamp rescues all Scamp null behavioral phenotypes, indicating that the phenotypes are due to loss of neuronal Scamp. Remarkably, neuronal expression of human SCAMP genes rescues selected behavioral phenotypes of the mutants, suggesting the conserved function of SCAMPs across species. The newly developed Drosophila mutants present the first evidence that genetic depletion of SCAMP at the organismal level leads to varied behavioral abnormalities, and the obtained results indicate the importance of membrane dynamics in neuronal functions in vivo. PMID:25478561

  18. Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies.

    PubMed

    Zheng, JiaLin C; Tham, Chook Teng; Keatings, Kathleen; Fan, Steven; Liou, Angela Yen-Chun; Numata, Yuka; Allan, Douglas; Numata, Masayuki

    2014-01-01

    Secretory Carrier Membrane Proteins (SCAMPs) are a group of tetraspanning integral membrane proteins evolutionarily conserved from insects to mammals and plants. Mammalian genomes contain five SCAMP genes SCAMP1-SCAMP5 that regulate membrane dynamics, most prominently membrane-depolarization and Ca(2+)-induced regulated secretion, a key mechanism for neuronal and neuroendocrine signaling. However, the biological role of SCAMPs has remained poorly understood primarily owing to the lack of appropriate model organisms and behavior assays. Here we generate Drosophila Scamp null mutants and show that they exhibit reduced lifespan and behavioral abnormalities including impaired climbing, deficiency in odor associated long-term memory, and a susceptibility to heat-induced seizures. Neuron-specific restoration of Drosophila Scamp rescues all Scamp null behavioral phenotypes, indicating that the phenotypes are due to loss of neuronal Scamp. Remarkably, neuronal expression of human SCAMP genes rescues selected behavioral phenotypes of the mutants, suggesting the conserved function of SCAMPs across species. The newly developed Drosophila mutants present the first evidence that genetic depletion of SCAMP at the organismal level leads to varied behavioral abnormalities, and the obtained results indicate the importance of membrane dynamics in neuronal functions in vivo.

  19. The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity.

    PubMed

    Chen, Xiufang; Wang, Yue; Feng, Tianquan; Yi, Ming; Zhang, Xingan; Zhou, Da

    2016-02-07

    The paradigm of phenotypic plasticity indicates reversible relations of different cancer cell phenotypes, which extends the cellular hierarchy proposed by the classical cancer stem cell (CSC) theory. Since it is still questionable if the phenotypic plasticity is a crucial improvement to the hierarchical model or just a minor extension to it, it is worthwhile to explore the dynamic behavior characterizing the reversible phenotypic plasticity. In this study we compare the hierarchical model and the reversible model in predicting the cell-state dynamics observed in biological experiments. Our results show that the hierarchical model shows significant disadvantages over the reversible model in describing both long-term stability (phenotypic equilibrium) and short-term transient dynamics (overshoot) in cancer cell populations. In a very specific case in which the total growth of population due to each cell type is identical, the hierarchical model predicts neither phenotypic equilibrium nor overshoot, whereas the reversible model succeeds in predicting both of them. Even though the performance of the hierarchical model can be improved by relaxing the specific assumption, its prediction to the phenotypic equilibrium strongly depends on a precondition that may be unrealistic in biological experiments. Moreover, it still does not show as rich dynamics as the reversible model in capturing the overshoots of both CSCs and non-CSCs. By comparison, it is more likely for the reversible model to correctly predict the stability of the phenotypic mixture and various types of overshoot behavior.

  20. Incidence of abnormal offspring from cloning and other assisted reproductive technologies.

    PubMed

    Hill, Jonathan R

    2014-02-01

    In animals produced by assisted reproductive technologies, two abnormal phenotypes have been characterized. Large offspring syndrome (LOS) occurs in offspring derived from in vitro cultured embryos, and the abnormal clone phenotype includes placental and fetal changes. LOS is readily apparent in ruminants, where a large calf or lamb derived from in vitro embryo production or cloning may weigh up to twice the expected body weight. The incidence of LOS varies widely between species. When similar embryo culture conditions are applied to nonruminant species, LOS either is not as dramatic or may even be unapparent. Coculture with serum and somatic cells was identified in the 1990s as a risk factor for abnormal development of ruminant pregnancies. Animals cloned from somatic cells may display a combination of fetal and placental abnormalities that are manifested at different stages of pregnancy and postnatally. In highly interventional technologies, such as nuclear transfer (cloning), the incidence of abnormal offspring continues to be a limiting factor to broader application of the technique. This review details the breadth of phenotypes found in nonviable pregnancies, together with the phenotypes of animals that survive the transition to extrauterine life. The focus is on animals produced using in vitro embryo culture and nuclear transfer in comparison to naturally occurring phenotypes.

  1. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management.

  2. Understanding Genotypes and Phenotypes in Epileptic Encephalopathies

    PubMed Central

    Helbig, Ingo; Tayoun, Abou Ahmad N.

    2016-01-01

    Epileptic encephalopathies are severe often intractable seizure disorders where epileptiform abnormalities contribute to a progressive disturbance in brain function. Often, epileptic encephalopathies start in childhood and are accompanied by developmental delay and various neurological and non-neurological comorbidities. In recent years, this concept has become virtually synonymous with a group of severe childhood epilepsies including West syndrome, Lennox-Gastaut syndrome, Dravet syndrome, and several other severe childhood epilepsies for which genetic factors are increasingly recognized. In the last 5 years, the field has seen a virtual explosion of gene discovery, raising the number of bona fide genes and possible candidate genes for epileptic encephalopathies to more than 70 genes, explaining 20-25% of all cases with severe early-onset epilepsies that had otherwise no identifiable causes. This review will focus on the phenotypic variability as a characteristic aspect of genetic epilepsies. For many genetic epilepsies, the phenotypic presentation can be broad, even in patients with identical genetic alterations. Furthermore, patients with different genetic etiologies can have seemingly similar clinical presentations, such as in Dravet syndrome. While most patients carry mutations in SCN1A, similar phenotypes can be seen in patients with mutations in PCDH19, CHD2, SCN8A, or in rare cases GABRA1 and STXBP1. In addition to the genotypic and phenotypic heterogeneity, both benign phenotypes and severe encephalopathies have been recognized in an increasing number of genetic epilepsies, raising the question whether these conditions represent a fluid continuum or distinct entities. PMID:27781027

  3. Abnormal events detection in crowded scenes by trajectory cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zhang, Zhijiang; Zeng, Dan; Shen, Wei

    2015-02-01

    Abnormal events detection in crowded scenes has been a challenge due to volatility of the definitions for both normality and abnormality, the small number of pixels on the target, appearance ambiguity resulting from the dense packing, and severe inter-object occlusions. A novel framework was proposed for the detection of unusual events in crowded scenes using trajectories produced by moving pedestrians based on an intuition that the motion patterns of usual behaviors are similar to these of group activity, whereas unusual behaviors are not. First, spectral clustering is used to group trajectories with similar spatial patterns. Different trajectory clusters represent different activities. Then, unusual trajectories can be detected using these patterns. Furthermore, behavior of a mobile pedestrian can be defined by comparing its direction with these patterns, such as moving in the opposite direction of the group or traversing the group. Experimental results indicated that the proposed algorithm could be used to reliably locate the abnormal events in crowded scenes.

  4. Chromosomal abnormalities and mental illness.

    PubMed

    MacIntyre, D J; Blackwood, D H R; Porteous, D J; Pickard, B S; Muir, W J

    2003-03-01

    Linkage studies of mental illness have provided suggestive evidence of susceptibility loci over many broad chromosomal regions. Pinpointing causative gene mutations by conventional linkage strategies alone is problematic. The breakpoints of chromosomal abnormalities occurring in patients with mental illness may be more direct pointers to the relevant gene locus. Publications that describe patients where chromosomal abnormalities co-exist with mental illness are reviewed along with supporting evidence that this may amount to an association. Chromosomal abnormalities are considered to be of possible significance if (a) the abnormality is rare and there are independent reports of its coexistence with psychiatric illness, or (b) there is colocalisation of the abnormality with a region of suggestive linkage findings, or (c) there is an apparent cosegregation of the abnormality with psychiatric illness within the individual's family. Breakpoints have been described within many of the loci suggested by linkage studies and these findings support the hypothesis that shared susceptibility factors for schizophrenia and bipolar disorder may exist. If these abnormalities directly disrupt coding regions, then combining molecular genetic breakpoint cloning with bioinformatic sequence analysis may be a method of rapidly identifying candidate genes. Full karyotyping of individuals with psychotic illness especially where this coexists with mild learning disability, dysmorphism or a strong family history of mental disorder is encouraged.

  5. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  6. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  7. Chromosome abnormalities and the genetics of congenital corneal opacification

    PubMed Central

    Mataftsi, A.; Islam, L.; Kelberman, D.; Sowden, J.C.

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed. PMID:21738392

  8. Chromosome abnormalities and the genetics of congenital corneal opacification.

    PubMed

    Mataftsi, A; Islam, L; Kelberman, D; Sowden, J C; Nischal, K K

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed.

  9. Peripheral blood lymphocyte phenotype and function in multiple sclerosis.

    PubMed Central

    Hughes, P J; Compston, D A

    1988-01-01

    T suppressor cell function and phenotype are abnormal in patients with multiple sclerosis, especially during the chronic progressive phase but the sub-populations defined by mitogen stimulation and serological methods may not be identical. In this study, involving 45 patients with multiple sclerosis and 33 controls, there was no correlation between T suppressor function and CD8 cell phenotype in patients with multiple sclerosis or in controls. These phenotypic and functional studies cannot therefore be used interchangeably in the assessment of patients with multiple sclerosis since they provide different information about lymphocyte subpopulations. PMID:2976082

  10. Phenotype definition in epilepsy.

    PubMed

    Winawer, Melodie R

    2006-05-01

    Phenotype definition consists of the use of epidemiologic, biological, molecular, or computational methods to systematically select features of a disorder that might result from distinct genetic influences. By carefully defining the target phenotype, or dividing the sample by phenotypic characteristics, we can hope to narrow the range of genes that influence risk for the trait in the study population, thereby increasing the likelihood of finding them. In this article, fundamental issues that arise in phenotyping in epilepsy and other disorders are reviewed, and factors complicating genotype-phenotype correlation are discussed. Methods of data collection, analysis, and interpretation are addressed, focusing on epidemiologic studies. With this foundation in place, the epilepsy subtypes and clinical features that appear to have a genetic basis are described, and the epidemiologic studies that have provided evidence for the heritability of these phenotypic characteristics, supporting their use in future genetic investigations, are reviewed. Finally, several molecular approaches to phenotype definition are discussed, in which the molecular defect, rather than the clinical phenotype, is used as a starting point.

  11. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: Expanding the phenotype associated with the recurrent 3q13.2-q13.31 microdeletion.

    PubMed

    Quintela, Ines; Gomez-Guerrero, Lorena; Fernandez-Prieto, Montse; Resches, Mariela; Barros, Francisco; Carracedo, Angel

    2015-12-01

    In recent years, the advent of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and its use as a first genetic test for the diagnosis of patients with neurodevelopmental phenotypes has allowed the identification of novel submicroscopic chromosomal abnormalities (namely, copy number variants or CNVs), imperceptible by conventional cytogenetic techniques. The 3q13.31 microdeletion syndrome (OMIM #615433) has been defined as a genomic disorder mainly characterized by developmental delay, postnatal overgrowth, hypotonia, genital abnormalities in males, and characteristic craniofacial features. Although the 3q13.31 CNVs are variable in size, a 3.4 Mb recurrently altered region at 3q13.2-q13.31 has been recently described and non-allelic homologous recombination (NAHR) mediated by flanking human endogenous retrovirus (HERV-H) elements has been suggested as the mechanism of deletion formation. We expand the phenotypic spectrum associated with this recurrent deletion performing the clinical description of a 9-year-old female patient with autistic disorder, total absence of language, intellectual disability, anxiety disorder and disruptive, and compulsive eating behaviors. The array-based molecular karyotyping allowed the identification of a de novo recurrent 3q13.2-q13.31 deletion encompassing 25 genes. In addition, we compare her clinical phenotype with previous reports of patients with neurodevelopmental and behavioral disorders and proximal 3q microdeletions. Finally, we also review the candidate genes proposed so far for these phenotypes.

  12. Directly transmitted unbalanced chromosome abnormalities and euchromatic variants

    PubMed Central

    Barber, J

    2005-01-01

    In total, 200 families were reviewed with directly transmitted, cytogenetically visible unbalanced chromosome abnormalities (UBCAs) or euchromatic variants (EVs). Both the 130 UBCA and 70 EV families were divided into three groups depending on the presence or absence of an abnormal phenotype in parents and offspring. No detectable phenotypic effect was evident in 23/130 (18%) UBCA families ascertained mostly through prenatal diagnosis (group 1). In 30/130 (23%) families, the affected proband had the same UBCA as other phenotypically normal family members (group 2). In the remaining 77/130 (59%) families, UBCAs had consistently mild consequences (group 3). In the 70 families with established EVs of 8p23.1, 9p12, 9q12, 15q11.2, and 16p11.2, no phenotypic effect was apparent in 38/70 (54%). The same EV was found in affected probands and phenotypically normal family members in 30/70 families (43%) (group 2), and an EV co-segregated with mild phenotypic anomalies in only 2/70 (3%) families (group 3). Recent evidence indicates that EVs involve copy number variation of common paralogous gene and pseudogene sequences that are polymorphic in the normal population and only become visible at the cytogenetic level when copy number is high. The average size of the deletions and duplications in all three groups of UBCAs was close to 10 Mb, and these UBCAs and EVs form the "Chromosome Anomaly Collection" at http://www.ngrl.org.uk/Wessex/collection. The continuum of severity associated with UBCAs and the variability of the genome at the sub-cytogenetic level make further close collaboration between medical and laboratory staff essential to distinguish clinically silent variation from pathogenic rearrangement. PMID:16061560

  13. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  14. Molecular and phenotypic characterization of ring chromosome 22 in two unrelated patients.

    PubMed

    Hannachi, H; Mougou, S; Benabdallah, I; Soayh, N; Kahloul, N; Gaddour, N; Le Lorc'h, M; Sanlaville, D; El Ghezal, H; Saad, A

    2013-01-01

    We report on the cytogenetic and molecular characterization of a constitutional de novo ring chromosome 22 (r(22)) in 2 unrelated patients with emphasis on different hypotheses proposed to explain the phenotypic variability characterizing this genomic disorder. In both patients, molecular investigations using FISH and array-CGH techniques revealed a 22q terminal deletion involving the 22q13.33 critical region. The size of the deletion was estimated to at least 1.35 Mb in the first proband and to only 300 kb in the second. They both exhibited the major features of r(22) syndrome, but the first patient wa