Sample records for abnormal brain mri

  1. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo. PMID:27626081

  2. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  3. Isolated cortical visual loss with subtle brain MRI abnormalities in a case of hypoxic-ischemic encephalopathy.

    PubMed

    Margolin, Edward; Gujar, Sachin K; Trobe, Jonathan D

    2007-12-01

    A 16-year-old boy who was briefly asystolic and hypotensive after a motor vehicle accident complained of abnormal vision after recovering consciousness. Visual acuity was normal, but visual fields were severely constricted without clear hemianopic features. The ophthalmic examination was otherwise normal. Brain MRI performed 11 days after the accident showed no pertinent abnormalities. At 6 months after the event, brain MRI demonstrated brain volume loss in the primary visual cortex and no other abnormalities. One year later, visual fields remained severely constricted; neurologic examination, including formal neuropsychometric testing, was normal. This case emphasizes the fact that hypoxic-ischemic encephalopathy (HIE) may cause enduring damage limited to primary visual cortex and that the MRI abnormalities may be subtle. These phenomena should be recognized in the management of patients with HIE.

  4. Fetal magnetic resonance imaging (MRI): a tool for a better understanding of normal and abnormal brain development.

    PubMed

    Saleem, Sahar N

    2013-07-01

    Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

  5. Clinical and mutational spectrum in Korean patients with Rubinstein-Taybi syndrome: the spectrum of brain MRI abnormalities.

    PubMed

    Lee, Jin Sook; Byun, Christine K; Kim, Hunmin; Lim, Byung Chan; Hwang, Hee; Choi, Ji Eun; Hwang, Yong Seung; Seong, Moon-Woo; Park, Sung Sup; Kim, Ki Joong; Chae, Jong-Hee

    2015-04-01

    Rubinstein-Taybi syndrome (RSTS) is one of the neurodevelopmental disorders caused by mutations of epigenetic genes. The CREBBP gene is the most common causative gene, encoding the CREB-binding protein with histone acetyltransferase (HAT) activity, an epigenetic modulator. To date, there have been few reports on the structural abnormalities of the brain in RSTS patients. In addition, there are no reports on the analysis of CREBBP mutations in Korean RSTS patients. We performed mutational analyses on 16 unrelated patients with RSTS, with diagnosis based on the typical clinical features. Their medical records and brain MRI images were reviewed retrospectively. Ten of 16 patients (62.5%) had mutations in the CREBBP gene. The mutations included five frameshift mutations (31.2%), two nonsense mutations (12.5%), and three multiexon deletions (18.8%). There were no remarkable significant differences in the clinical features between those with and without a CREBBP mutation, although brain MRI abnormalities were more frequently observed in those with a CREBBP mutation. Seven of 10 patients in whom brain imaging was performed had structural abnormalities, including Chiari malformation type 1, thinning of the corpus callosum, and delayed myelination. There were no differences in delayed development or cognitive impairment between those with and without abnormal brain images, while epilepsy was involved in two patients who had abnormalities on brain MRI images. We investigated the spectrum of CREBBP mutations in Korean patients with RSTS for the first time. Eight novel mutations extended the genetic spectrum of CREBBP mutations in RSTS patients. This is also the first study showing the prevalence and spectrum of abnormalities on brain MRI in RSTS patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Fish consumption and risk of subclinical brain abnormalities on MRI in older adults.

    PubMed

    Virtanen, J K; Siscovick, D S; Longstreth, W T; Kuller, L H; Mozaffarian, D

    2008-08-05

    To investigate the association between fish consumption and subclinical brain abnormalities. In the population-based Cardiovascular Health Study, 3,660 participants age > or =65 underwent an MRI scan in 1992-1994. Five years later, 2,313 were scanned. Neuroradiologists assessed MRI scans in a standardized and blinded manner. Food frequency questionnaires were used to assess dietary intakes. Participants with known cerebrovascular disease were excluded from the analyses. After adjustment for multiple risk factors, the risk of having one or more prevalent subclinical infarcts was lower among those consuming tuna/other fish > or =3 times/week, compared to <1/month (relative risk 0.74, 95% CI = 0.54-1.01, p = 0.06, p trend = 0.03). Tuna/other fish consumption was also associated with trends toward lower incidence of subclinical infarcts. Additionally, tuna/other fish intake was associated with better white matter grade, but not with sulcal and ventricular grades, markers of brain atrophy. No significant associations were found between fried fish consumption and any subclinical brain abnormalities. Among older adults, modest consumption of tuna/other fish, but not fried fish, was associated with lower prevalence of subclinical infarcts and white matter abnormalities on MRI examinations. Our results add to prior evidence that suggest that dietary intake of fish with higher eicosapentaenoic acid and docosahexaenoic acid content, and not fried fish intake, may have clinically important health benefits.

  7. Cerebral perfusion abnormalities in therapy-resistant epilepsy in childhood: comparison between EEG, MRI and 99Tcm-ECD brain SPET.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Volterrani, D; Vella, A

    1996-01-01

    We performed 99Tcm-ethyl cysteinate dimer (ECD) interictal single photon emission tomography (SPET) in 26 children with severe therapy-resistant epilepsy. All the children underwent a detailed clinical examination, an electroencephalogram (EEG) investigation and brain magnetic resonance imaging (MRI). In 21 of the 26 children, SPET demonstrated brain blood flow abnormalities, in 13 cases in the same territories that showed EEG alterations. MRI showed structural lesions in 6 of the 26 children, while SPET imaging confirmed these abnormalities in only 5 children. The lesion not detected on SPET was shown to be 3 mm thick on MRI. Five symptomatic patients had normal SPET. In one of these patients, the EEG findings were normal and MRI revealed a small calcific nodule (4 mm thick); in the others, the EEG showed non-focal but diffuse abnormalities. These data confirm that brain SPET is sensitive in detecting and localizing hypoperfused areas that could be associated with epileptic foci in this group of patients, even when the MRI image is normal.

  8. Urea cycle disorders: brain MRI and neurological outcome.

    PubMed

    Bireley, William R; Van Hove, Johan L K; Gallagher, Renata C; Fenton, Laura Z

    2012-04-01

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions.

  9. Frequency of brain MRI abnormalities in neuromyelitis optica spectrum disorder at presentation: A cohort of Latin American patients.

    PubMed

    Carnero Contentti, Edgar; Daccach Marques, Vanessa; Soto de Castillo, Ibis; Tkachuk, Veronica; Antunes Barreira, Amilton; Armas, Elizabeth; Chiganer, Edson; de Aquino Cruz, Camila; Di Pace, José Luis; Hryb, Javier Pablo; Lavigne Moreira, Carolina; Lessa, Carmen; Molina, Omaira; Perassolo, Monica; Soto, Arnoldo; Caride, Alejandro

    2018-01-01

    Brain magnetic resonance imaging (BMRI) lesions were classically not reported in neuromyelitis optica (NMO). However, BMRI lesions are not uncommon in NMO spectrum disorder (NMOSD) patients. To report BMRI characteristic abnormalities (location and configuration) in NMOSD patients at presentation. Medical records and BMRI characteristics of 79 patients with NMOSD (during the first documented attack) in Argentina, Brazil and Venezuela were reviewed retrospectively. BMRI abnormalities were observed in 81.02% of NMOSD patients at presentation. Forty-two patients (53.1%) showed typical-NMOSD abnormalities. We found BMRI abnormalities at presentation in the brainstem/cerebellum (n = 26; 32.9%), optic chiasm (n = 16; 20.2%), area postrema (n = 13; 16.4%), thalamus/hypothalamus (n = 11; 13.9%), corpus callosum (n = 11; 13.9%), periependymal-third ventricle (n = 9; 11.3%), corticospinal tract (n = 7; 8.8%), hemispheric white matter (n = 1; 1.2%) and nonspecific areas (n = 49; 62.03%). Asymptomatic BMRI lesions were more common. The frequency of brain MRI abnormalities did not differ between patients who were positive and negative for aquaporin 4 antibodies at presentation. Typical brain MRI abnormalities are frequent in NMOSD at disease onset. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Utility of brain MRI in children with sleep-disordered breathing.

    PubMed

    Selvadurai, Sarah; Al-Saleh, Suhail; Amin, Reshma; Zweerink, Allison; Drake, James; Propst, Evan J; Narang, Indra

    2017-02-01

    To investigate the utility of a brain magnetic resonance imaging (MRI) in children with sleep-disordered breathing (SDB), classified as isolated obstructive sleep apnea (OSA) in the absence of adenotonsillar hypertrophy, persistent OSA following adenotonsillectomy, isolated central sleep apnea (CSA) of unclear etiology, OSA with coexisting CSA of unclear etiology, or unexplained nocturnal hypoventilation (NH). Retrospective chart review of polysomnography (PSG) and brain MRI data. Children with PSG evidence of SDB, as described above, and who subsequently had their first brain MRI, were included. PSG, MRI data, and subsequent interventions were recorded. A total of 59 of 6,087 (1%) children met inclusion criteria. Of those, 28 of 59 (47%) were nonsyndromic children and 31 of 59 (53%) were syndromic children with an underlying medical disorder. Abnormal brain MRI findings were observed in 19 of 59 (32%) children, where eight of 19 (42%) were nonsyndromic and 11 of 19 (58%) were syndromic. Abnormal brain MRI findings were most common in syndromic children with combined OSA and CSA without adenotonsillar hypertrophy. Isolated OSA was also a common PSG finding associated with an abnormal brain MRI. Of the nonsyndromic children with an abnormal brain MRI, the most common abnormal brain MRI finding was Chiari malformation (CM), observed in 88% of the group. A brainstem tumor was identified in one nonsyndromic child. Interventions following brain MRI included neurosurgery, chemotherapy, and noninvasive positive pressure ventilation (NiPPV). A brain MRI is an important diagnostic tool in syndromic and nonsyndromic children, especially in children with either isolated OSA or combined OSA and CSA without a clear etiology. 4. Laryngoscope, 2016 127:513-519, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Brain MRI signal abnormalities and right-to-left shunting in asymptomatic military divers.

    PubMed

    Gempp, Emmanuel; Sbardella, Fabrice; Stephant, Eric; Constantin, Pascal; De Maistre, Sebastien; Louge, Pierre; Blatteau, Jean-Eric

    2010-11-01

    We conducted a controlled study to assess the prevalence of brain MRI hyperintense signals and their correlation with right-to-left shunting (RLS) in military divers. We prospectively enrolled 32 asymptomatic military divers under 41 yr of age and 32 non-diving healthy subjects matched with respect to age and vascular disease risk factors. We examined both groups with a 3-Tesla brain MRI; RLS was detected using transcranial pulsed Doppler in divers only. Hyperintense spots were observed in 43.7% of the divers and 21.8% of the control subjects. In particular, divers with significant shunting exhibited a higher prevalence of hyperintensities compared to those with slight or no RLS (75% vs. 25%, respectively). Linear trend analysis also revealed a positive correlation between focal white matter changes, determined using a validated visual rating scale and the RLS grade. Healthy military divers with a hemodynamically relevant RLS have an increased likelihood of cerebral hyperintense spots compared to age-matched normal subjects. The clinical relevance of these MRI signal abnormalities and their causal relationship with diving remain unclear.

  12. MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders?

    PubMed

    Zeglam, Adel M; Al-Ogab, Marwa F; Al-Shaftery, Thouraya

    2015-09-01

    To evaluate the routine usage of Magnetic Resonance Imaging (MRI) of brain and estimate the prevalence of brain abnormalities in children presenting to the Neurodevelopment Clinic of Al-Khadra Hospital (NDC-KH), Tripoli, Libya with autistic spectrum disorders (ASD). The records of all children with ASD presented to NDC-KH over 4-year period (from January 2009 to December 2012) were reviewed. All MRIs were acquired with a 1.5-T Philips (3-D T1, T2, FLAIR coronal and axial sequences). MRIs were reported to be normal, abnormal or no significant abnormalities by a consultant neuroradiologist. One thousand and seventy-five children were included in the study. Seven hundred and eighty-two children (72.7 %) had an MRI brain of whom 555 (71 %) were boys. 26 children (24 males and 2 females) (3.3 %) demonstrated MRI abnormalities (8 leukodystrophic changes, 4 periventricular leukomalacia, 3 brain atrophy, 2 tuberous sclerosis, 2 vascular changes, 1 pineoblastoma, 1 cerebellar angioma, 1 cerebellar hypoplasia, 3 agenesis of corpus callosum, 1 neuro-epithelial cyst). An unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in children with autism. These results could contribute to further research into the pathogenesis of autistic spectrum disorder.

  13. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  14. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study.

    PubMed

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-02-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7-20 years. White matter lesions (WMLs) were rated by semi-quantitative method, the signal intensity of white matter poster-superior to trigones (WMPST) by reference to standard images and brain atrophy by ventricular/brain ratio (VBR). At the end of MRI follow-up, the scores relative to lobar, temporal and periventricular WMLs, to WMPST signal intensity and to VBR were significantly increased compared to baseline, and MRI changes were more evident in some families than in others. No correlation was found between the MRI changes and age, onset, disease duration, muscular involvement, CTG repetition and follow-up duration. These results demonstrated that white matter involvement and brain atrophy were progressive in DM1 and suggested that progression rate varied from patient to patient, regardless of age, disease duration and genetic defect. © The Author(s) 2016.

  15. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review.

    PubMed

    Khalil, A; Bennet, S; Thilaganathan, B; Paladini, D; Griffiths, P; Carvalho, J S

    2016-09-01

    Studies have shown an association between congenital heart defects (CHDs) and postnatal brain abnormalities and neurodevelopmental delay. Recent evidence suggests that some of these brain abnormalities are present before birth. The primary aim of this study was to perform a systematic review to quantify the prevalence of prenatal brain abnormalities in fetuses with CHDs. MEDLINE, EMBASE and The Cochrane Library were searched electronically. Reference lists within each article were hand-searched for additional reports. The outcomes observed included structural brain abnormalities (on magnetic resonance imaging (MRI)) and changes in brain volume (on MRI, three-dimensional (3D) volumetric MRI, 3D ultrasound and phase-contrast MRI), brain metabolism or maturation (on magnetic resonance spectroscopy and phase-contrast MRI) and brain blood flow (on Doppler ultrasound, phase-contrast MRI and 3D power Doppler ultrasound) in fetuses with CHDs. Cohort and case-control studies were included and cases of chromosomal or genetic abnormalities, case reports and editorials were excluded. Proportion meta-analysis was used for analysis. Between-study heterogeneity was assessed using the I(2) test. The search yielded 1943 citations, and 20 studies (n = 1175 cases) were included in the review. Three studies reported data on structural brain abnormalities, while data on altered brain volume, metabolism and blood flow were reported in seven, three and 14 studies, respectively. The three studies (221 cases) reporting on structural brain abnormalities were suitable for inclusion in a meta-analysis. The prevalence of prenatal structural brain abnormalities in fetuses with CHD was 28% (95% CI, 18-40%), with a similar prevalence (25% (95% CI, 14-39%)) when tetralogy of Fallot was considered alone. These abnormalities included ventriculomegaly (most common), agenesis of the corpus callosum, ventricular bleeding, increased extra-axial space, vermian hypoplasia, white

  16. Added Value of Including Entire Brain on Body Imaging With FDG PET/MRI.

    PubMed

    Franceschi, Ana M; Matthews, Robert; Bangiyev, Lev; Relan, Nand; Chaudhry, Ammar; Franceschi, Dinko

    2018-05-24

    FDG PET/MRI examination of the body is routinely performed from the skull base to the mid thigh. Many types of brain abnormalities potentially could be detected on PET/MRI if the head was included. The objective of this study was therefore to identify and characterize brain findings incidentally detected on PET/MRI of the body with the head included. We retrospectively identified 269 patients with FDG PET/MRI whole-body scans that included the head. PET/MR images of the brain were reviewed by a nuclear medicine physician and neuroradiologist, first individually and then concurrently. Both PET and MRI findings were identified, including abnormal FDG uptake, standardized uptake value, lesion size, and MRI signal characteristics. For each patient, relevant medical history and prior imaging were reviewed. Of the 269 subjects, 173 were women and 96 were men (mean age, 57.4 years). Only the initial PET/MR image of each patient was reviewed. A total of 37 of the 269 patients (13.8%) had abnormal brain findings noted on the PET/MRI whole-body scan. Sixteen patients (5.9%) had vascular disease, nine patients (3.3%) had posttherapy changes, and two (0.7%) had benign cystic lesions in the brain. Twelve patients (4.5%) had serious nonvascular brain abnormalities, including cerebral metastasis in five patients and pituitary adenomas in two patients. Only nine subjects (3.3%) had a new neurologic or cognitive symptom suggestive of a brain abnormality. Routine body imaging with FDG PET/MRI of the area from the skull base to the mid thigh may miss important brain abnormalities when the head is not included. The additional brain abnormalities identified on whole-body imaging may provide added clinical value to the management of oncology patients.

  17. [Ocular coloboma and results of brain MRI: preliminary results].

    PubMed

    Denis, D; Girard, N; Levy-Mozziconacci, A; Berbis, J; Matonti, F

    2013-03-01

    Congenital ocular colobomas are the result of a failure in closure of the embryonal fissure. We present a prospective study (2007-2011) in which we report brain MRI findings in children with ocular coloboma. Thirty-five children (54 eyes) were included; 15 boys, 20 girls with a median age of 24.0 months (1.0-96.0) at first presentation. Within 2 to 3 months following complete ophthalmologic examination, brain MRI was performed. Colobomas were bilateral in 19 cases and unilateral in 16 cases. Eleven different types of coloboma were identified. Of 54 eyes, 74% demonstrated optic nerve coloboma, of which 28 were severe. Of 35 MRI's performed, abnormalities were present in 86%: gyration abnormalities (n=21), lateral ventricular dilatation (n=17), dilatation of the Virchow-Robin and subarachnoid spaces (n=14), signal abnormalities and brain stem malformations (n=14), white matter signal abnormalities (n=11), corpus callosum abnormalities (n=10). Most of these abnormalities were related. Gyration abnormalities were the most frequent. There was no significant association between the severity of the coloboma and the abnormalities found (P=1.0). Likewise, there was no significant association of gyration abnormalities with the severity of coloboma in children (P=1.0). This study shows, for the first time, the existence of frequent cerebral abnormalities on MRI in children with ocular coloboma. The most common abnormality being gyration abnormalities, in 60% of cases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach

    PubMed Central

    Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496

  19. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    PubMed

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  20. Continuum of neurobehaviour and its associations with brain MRI in infants born preterm

    PubMed Central

    Eeles, Abbey L; Walsh, Jennifer M; Olsen, Joy E; Cuzzilla, Rocco; Thompson, Deanne K; Anderson, Peter J; Doyle, Lex W; Cheong, Jeanie L Y; Spittle, Alicia J

    2017-01-01

    Background Infants born very preterm (VPT) and moderate-to-late preterm (MLPT) are at increased risk of long-term neurodevelopmental deficits, but how these deficits relate to early neurobehaviour in MLPT children is unclear. The aims of this study were to compare the neurobehavioural performance of infants born across three different gestational age groups: preterm <30 weeks’ gestational age (PT<30); MLPT (32–36 weeks’ gestational age) and term age (≥37 weeks’ gestational age), and explore the relationships between MRI brain abnormalities and neurobehaviour at term-equivalent age. Methods Neurobehaviour was assessed at term-equivalent age in 149 PT<30, 200 MLPT and 200 term-born infants using the Neonatal Intensive Care UnitNetwork Neurobehavioral Scale (NNNS), the Hammersmith Neonatal Neurological Examination (HNNE) and Prechtl’s Qualitative Assessment of General Movements (GMA). A subset of 110 PT<30 and 198 MLPT infants had concurrent brain MRI. Results Proportions with abnormal neurobehaviour on the NNNS and the HNNE, and abnormal GMA all increased with decreasing gestational age. Higher brain MRI abnormality scores in some regions were associated with suboptimal neurobehaviour on the NNNS and HNNE. The relationships between brain MRI abnormality scores and suboptimal neurobehaviour were similar in both PT<30 and MLPT infants. The relationship between brain MRI abnormality scores and abnormal GMA was stronger in PT<30 infants. Conclusions There was a continuum of neurobehaviour across gestational ages. The relationships between brain abnormality scores and suboptimal neurobehaviour provide evidence that neurobehavioural assessments offer insight into the integrity of the developing brain, and may be useful in earlier identification of the highest-risk infants. PMID:29637152

  1. MRI as a tool to study brain structure from mouse models for mental retardation

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  2. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  3. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    PubMed

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation

  4. Brain MRI and MR Spectroscopy Findings in Children with Nutritional Vitamin B12 Deficiency.

    PubMed

    Ekici, F; Tekbas, G; Hattapoğlu, S; Yaramış, A; Önder, H; Bilici, A

    2016-06-01

    Our aim in this study was to analyze the findings of brain magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of children with vitamin B12 deficiency. This study included 14 cases. The findings of brain MRI and MRS in all cases were investigated. Four patients had been followed up and mean follow-up time 71.8 (59-85) day. Eight patients of the cases (57 %) had at least one abnormal MRI finding. The most commonly found MRI findings were thinning of the corpus callosum and brain atrophy, respectively. The mean ratio of NAA/Cr and Cho/Cr were measured in MRS, with values of 1.31 ± 0.17 and 1.04 ± 0.27, respectively. In two of three patients with abnormal MRI studies at presentation, subsequent MRI showed improvement while one patient remained unchanged. An increase in the ratios of metabolites were found in one case with control MRS. There was no lactate peak. Brain MRI was abnormal in more than half of the cases of children with vitamin B12 deficiency. Our radiologic findings similar with literature. There was no identifiable lactate peak. B12 deficiency could be the cause of the thinning of the corpus callosum and brain atrophy in the children that were given a brain MRI.

  5. Brain MRI in neuropsychiatric lupus: associations with the 1999 ACR case definitions.

    PubMed

    Jeong, Hae Woong; Her, Minyoung; Bae, Jong Seok; Kim, Seong-Kyu; Lee, Sung Won; Kim, Ho Kyun; Kim, Dongyook; Park, Nayoung; Chung, Won Tae; Lee, Sang Yeob; Choe, Jung-Yoon; Kim, In Joo

    2015-05-01

    The purpose of this study was to identify the characteristic magnetic resonance imaging (MRI) findings in neuropsychiatric systemic lupus erythematosus (NPSLE) and to investigate the association between MRI findings and neuropsychiatric manifestations in SLE. Brain MRIs with a diagnosis of SLE from 2002 to 2013 from three tertiary university hospitals were screened. All clinical manifestations evaluated by brain MRI were retrospectively reviewed. If the clinical manifestations were compatible with the 1999 NPSLE American College of Rheumatology (ACR) nomenclature and case definitions, the brain MRIs were assessed for the presence of white matter hyperintensities, gray matter hyperintensities, parenchymal defects, atrophy, enhancement, and abnormalities in diffusion-weighted images (DWI). The number, size, and location of each lesion were evaluated. The neuropsychiatric manifestation of each brain MRI was classified according to the 1999 ACR NPSLE case definitions. The associations between MRI findings and NPSLE manifestations were examined. In total, 219 brain MRIs with a diagnosis of SLE were screened, and 133 brain MRIs met the inclusion criteria for NPSLE. The most common MRI abnormality was white matter hyperintensities, which were observed in 76 MRIs (57.1 %). Gray matter hyperintensities were observed in 41 MRIs (30.8 %). Parenchymal defects were found in 31 MRIs (23.3 %), and atrophy was detected in 20 MRIs (15.0 %). Patients who had seizures were more associated with gray matter hyperintensities than patients with other neuropsychiatric manifestations. Patients with cerebrovascular disease were more associated with gray matter hyperintensity, parenchymal defects, and abnormal DWI than patients with other neuropsychiatric manifestations. In addition to white matter hyperintensities, which were previously known as SLE findings, we also noted the presence of gray matter hyperintensities, parenchymal defects, and abnormal DWI in a substantial portion of SLE

  6. Brain imaging in normal kids: a community-based MRI study in Malawian children.

    PubMed

    Potchen, M J; Kampondeni, S D; Mallewa, M; Taylor, T E; Birbeck, G L

    2013-04-01

    To collect normative MRI data for effective clinical and research applications. Such data may also offer insights into common neurological insults. We identified a representative, community-based sample of children aged 9-14 years. Children were screened for neurodevelopmental problems. Demographic data, medical history and environmental exposures were ascertained. Eligible children underwent the Neurologic Examination for Subtle Signs (NESS) and a brain MRI. Descriptive findings and analyses to identify risk factors for MRI abnormalities are detailed. One hundred and two of 170 households screened had age-appropriate children. Two of 102 children had neurological problems - one each with cerebral palsy and epilepsy. Ninety-six of 100 eligible children were enrolled. Mean age was 11.9 years (SD 1.5), and 43 (45%) were boys. No acute MRI abnormalities were seen. NESS abnormalities were identified in 6 of 96 children (6%). Radiographic evidence of sinusitis in 29 children (30%) was the most common MRI finding. Brain abnormalities were found in 16 (23%): mild diffuse atrophy in 4 (4%), periventricular white matter changes/gliosis in 6 (6%), multifocal punctuate subcortical white matter changes in 2 (2%), vermian atrophy in 1 (1%), empty sella in 3 (3%) and multifocal granulomas with surrounding gliosis in 1 (1%). Having an abnormal MRI was not associated with age, sex, antenatal problems, early malnutrition, febrile seizures, an abnormal neurological examination or housing quality (all P values >0.05). No predictors of radiographic sinusitis were identified. Incidental brain MRI abnormalities are common in normal Malawian children. The incidental atrophy and white matter abnormalities seen in this African population have not been reported among incidental findings from US populations, suggesting Malawi-specific exposures may be the cause. © 2013 Blackwell Publishing Ltd.

  7. Functional brain MRI in patients complaining of electrohypersensitivity after long term exposure to electromagnetic fields.

    PubMed

    Heuser, Gunnar; Heuser, Sylvia A

    2017-09-26

    Ten adult patients with electromagnetic hypersensitivity underwent functional magnetic resonance imaging (fMRI) brain scans. All scans were abnormal with abnormalities which were consistent and similar. It is proposed that fMRI brain scans be used as a diagnostic aid for determining whether or not a patient has electromagnetic hypersensitivity. Over the years we have seen an increasing number of patients who had developed multi system complaints after long term repeated exposure to electromagnetic fields (EMFs). These complaints included headaches, intermittent cognitive and memory problems, intermittent disorientation, and also sensitivity to EMF exposure. Regular laboratory tests were within normal limits in these patients. The patients refused to be exposed to radioactivity. This of course ruled out positron emission tomography (PET) and single-photon emission computed tomography (SPECT) brain scanning. This is why we ordered fMRI brain scans on these patients. We hoped that we could document objective abnormalities in these patients who had often been labeled as psychiatric cases. Ten patients first underwent a regular magnetic resonance imaging (MRI) brain scan, using a 3 Tesla Siemens Verio MRI open system. A functional MRI study was then performed in the resting state using the following sequences: A three-dimensional, T1-weighted, gradient-echo (MPRAGE) Resting state network. The echo-planar imaging (EPI) sequences for this resting state blood oxygenation level dependent (BOLD) scan were then post processed on a 3D workstation and the independent component analysis was performed separating out the various networks. Arterial spin labeling. Tractography and fractional anisotropy. All ten patients had abnormal functional MRI brain scans. The abnormality was often described as hyper connectivity of the anterior component of the default mode in the medial orbitofrontal area. Other abnormalities were usually found. Regular MRI studies of the brain were mostly

  8. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  9. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. Copyright © 2011 Wiley Periodicals, Inc.

  10. Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

    PubMed

    El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Des Portes, Vincent; Guibaud, Laurent

    2016-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment. © 2015 Wiley Periodicals, Inc.

  11. Functional brain abnormalities in major depressive disorder using the Hilbert-Huang transform.

    PubMed

    Yu, Haibin; Li, Feng; Wu, Tong; Li, Rui; Yao, Li; Wang, Chuanyue; Wu, Xia

    2018-02-09

    Major depressive disorder is a common disease worldwide, which is characterized by significant and persistent depression. Non-invasive accessory diagnosis of depression can be performed by resting-state functional magnetic resonance imaging (rs-fMRI). However, the fMRI signal may not satisfy linearity and stationarity. The Hilbert-Huang transform (HHT) is an adaptive time-frequency localization analysis method suitable for nonlinear and non-stationary signals. The objective of this study was to apply the HHT to rs-fMRI to find the abnormal brain areas of patients with depression. A total of 35 patients with depression and 37 healthy controls were subjected to rs-fMRI. The HHT was performed to extract the Hilbert-weighted mean frequency of the rs-fMRI signals, and multivariate receiver operating characteristic analysis was applied to find the abnormal brain regions with high sensitivity and specificity. We observed differences in Hilbert-weighted mean frequency between the patients and healthy controls mainly in the right hippocampus, right parahippocampal gyrus, left amygdala, and left and right caudate nucleus. Subsequently, the above-mentioned regions were included in the results obtained from the compared region homogeneity and the fractional amplitude of low frequency fluctuation method. We found brain regions with differences in the Hilbert-weighted mean frequency, and examined their sensitivity and specificity, which suggested a potential neuroimaging biomarker to distinguish between patients with depression and healthy controls. We further clarified the pathophysiological abnormality of these regions for the population with major depressive disorder.

  12. Excessive homozygosity identified by chromosomal microarray at a known GCDH mutation locus correlates with brain MRI abnormalities in an infant with glutaric aciduria.

    PubMed

    Peer-Zada, Abdul Ali; Al-Asmari, Ali M

    2017-08-01

    Herein, we report a conceptually novel clinical case highlighting the diagnostic implications of excessive homozygosity and its correlation with brain MRI abnormalities in an infant with GA1. The case also points a need for an extra amount of caution to be exercised when evaluating patients with "negative exomes."

  13. Contribution of fetal brain MRI in management of severe fetal anemia.

    PubMed

    Ghesquière, L; Houfflin-Debarge, V; Verpillat, P; Fourquet, T; Joriot, S; Coulon, C; Vaast, P; Garabedian, C

    2018-06-06

    Intrauterine transfusion (IUT) has changed fetal anemia prognosis. However, long-term neurodevelopmental outcome is altered in 5% of children. Our objective was to study the contribution of fetal MRI to diagnosis brain lesions in case of fetal anemia. Retrospective monocentric descriptive study from 2005 to 2016, including all patients followed for fetal anemia requiring IUT. The indications for MRI were: hydrops fetalis and / or hemoglobin <5 g / dL and / or more than 3 IUTs and / or acute severe anemia and / or ultrasound abnormality. Fetal and neonatal outcome and pediatric neurological monitoring were studied. 89 patients were followed for fetal anemia with IUT and 28 (29.1%) had fetal MRI, 12 of which were abnormal. Two out of twelve had abnormal ultrasound. Seven out of twelve had poor neurological prognosis: 2 medical terminations of pregnancy were performed; 2 children had severe developmental delay and 3 children had schooling difficulties. Five out of twelve children had favorable neurological prognosis. MRI of the fetal brain makes it possible to better detect brain lesions than ultrasound does in the management of severe fetal anemia and seems particularly appropriate in cases of acute anemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparison of brain MRI findings with language and motor function in the dystroglycanopathies.

    PubMed

    Brun, Brianna N; Mockler, Shelley R H; Laubscher, Katie M; Stephan, Carrie M; Wallace, Anne M; Collison, Julia A; Zimmerman, M Bridget; Dobyns, William B; Mathews, Katherine D

    2017-02-14

    To describe the spectrum of brain MRI findings in a cohort of individuals with dystroglycanopathies (DGs) and relate MRI results to function. All available brain MRIs done for clinical indications on individuals enrolled in a DG natural history study (NCT00313677) were reviewed. Reports were reviewed when MRI was not available. MRIs were categorized as follows: (1) cortical, brainstem, and cerebellar malformations; (2) cortical and cerebellar malformations; or (3) normal. Language development was assigned to 1 of 3 categories by a speech pathologist. Maximal motor function and presence of epilepsy were determined by history or examination. Twenty-five MRIs and 9 reports were reviewed. The most common MRI abnormalities were cobblestone cortex or dysgyria with an anterior-posterior gradient and cerebellar hypoplasia. Seven individuals had MRIs in group 1, 8 in group 2, and 19 in group 3. Language was impaired in 100% of those in MRI groups 1 and 2, and degree of language impairment correlated with severity of imaging. Eighty-five percent of the whole group achieved independent walking, but only 33% did in group 1. Epilepsy was present in 8% of the cohort and rose to 37% of those with an abnormal MRI. Developmental abnormalities of the brain such as cobblestone lissencephaly, cerebellar cysts, pontine hypoplasia, and brainstem bowing are hallmarks of DG and should prompt consideration of these diagnoses. Brain imaging in individuals with DG helps to predict outcomes, especially language development, aiding clinicians in prognostic counseling. © 2017 American Academy of Neurology.

  15. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  16. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    PubMed

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  17. Abnormal brain activation in excoriation (skin-picking) disorder: evidence from an executive planning fMRI study

    PubMed Central

    Odlaug, Brian L.; Hampshire, Adam; Chamberlain, Samuel R.; Grant, Jon E.

    2016-01-01

    Background Excoriation (skin-picking) disorder (SPD) is a relatively common psychiatric condition whose neurobiological basis is unknown. Aims To probe the function of fronto-striatal circuitry in SPD. Method Eighteen participants with SPD and 15 matched healthy controls undertook an executive planning task (Tower of London) during functional magnetic resonance imaging (fMRI). Activation during planning was compared between groups using region of interest and whole-brain permutation cluster approaches. Results The SPD group exhibited significant functional underactivation in a cluster encompassing bilateral dorsal striatum (maximal in right caudate), bilateral anterior cingulate and right medial frontal regions. These abnormalities were, for the most part, outside the dorsal planning network typically activated by executive planning tasks. Conclusions Abnormalities of neural regions involved in habit formation, action monitoring and inhibition appear involved in the pathophysiology of SPD. Implications exist for understanding the basis of excessive grooming and the relationship of SPD with putative obsessive–compulsive spectrum disorders. PMID:26159604

  18. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth.

    PubMed

    Masoller, N; Sanz-CortéS, M; Crispi, F; Gómez, O; Bennasar, M; Egaña-Ugrinovic, G; Bargalló, N; Martínez, J M; Gratacós, E

    2016-01-01

    Fetuses with congenital heart disease (CHD) show evidence of abnormal brain development before birth, which is thought to contribute to adverse neurodevelopment during childhood. Our aim was to evaluate whether brain development in late pregnancy can be predicted by fetal brain Doppler, head biometry and the clinical form of CHD at the time of diagnosis. This was a prospective cohort study including 58 fetuses with CHD, diagnosed at 20-24 weeks' gestation, and 58 normal control fetuses. At the time of diagnosis, we recorded fetal head circumference (HC), biparietal diameter, middle cerebral artery pulsatility index (MCA-PI), cerebroplacental ratio (CPR) and brain perfusion by fractional moving blood volume. We classified cases into one of two clinical types defined by the expected levels (high or low) of placental (well-oxygenated) blood perfusion, according to the anatomical defect. All fetuses underwent subsequent 3T-magnetic resonance imaging (MRI) at 36-38 weeks' gestation. Abnormal prenatal brain development was defined by a composite score including any of the following findings on MRI: total brain volume <  10(th) centile, parietoccipital or cingulate fissure depth <  10(th) centile or abnormal metabolic profile in the frontal lobe. Logistic regression analysis demonstrated that MCA-PI (odds ratio (OR), 12.7; P = 0.01), CPR (OR, 8.7; P = 0.02) and HC (OR, 6.2; P = 0.02) were independent predictors of abnormal neurodevelopment; however, the clinical type of CHD was not. Fetal brain Doppler and head biometry at the time of CHD diagnosis are independent predictors of abnormal brain development at birth, and could be used in future algorithms to improve counseling and targeted interventions. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  19. Diffusion MRI at 25: Exploring brain tissue structure and function

    PubMed Central

    Bihan, Denis Le; Johansen-Berg, Heidi

    2013-01-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012

  20. A Window into the Brain: Advances in Psychiatric fMRI

    PubMed Central

    Zhan, Xiaoyan

    2015-01-01

    Functional magnetic resonance imaging (fMRI) plays a key role in modern psychiatric research. It provides a means to assay differences in brain systems that underlie psychiatric illness, treatment response, and properties of brain structure and function that convey risk factor for mental diseases. Here we review recent advances in fMRI methods in general use and progress made in understanding the neural basis of mental illness. Drawing on concepts and findings from psychiatric fMRI, we propose that mental illness may not be associated with abnormalities in specific local regions but rather corresponds to variation in the overall organization of functional communication throughout the brain network. Future research may need to integrate neuroimaging information drawn from different analysis methods and delineate spatial and temporal patterns of brain responses that are specific to certain types of psychiatric disorders. PMID:26413531

  1. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age.

    PubMed

    Leuchter, Russia Ha-Vinh; Gui, Laura; Poncet, Antoine; Hagmann, Cornelia; Lodygensky, Gregory Anton; Martin, Ernst; Koller, Brigitte; Darqué, Alexandra; Bucher, Hans Ulrich; Hüppi, Petra Susan

    2014-08-27

    Premature infants are at risk of developing encephalopathy of prematurity, which is associated with long-term neurodevelopmental delay. Erythropoietin was shown to be neuroprotective in experimental and retrospective clinical studies. To determine if there is an association between early high-dose recombinant human erythropoietin treatment in preterm infants and biomarkers of encephalopathy of prematurity on magnetic resonance imaging (MRI) at term-equivalent age. A total of 495 infants were included in a randomized, double-blind, placebo-controlled study conducted in Switzerland between 2005 and 2012. In a nonrandomized subset of 165 infants (n=77 erythropoietin; n=88 placebo), brain abnormalities were evaluated on MRI acquired at term-equivalent age. Participants were randomly assigned to receive recombinant human erythropoietin (3000 IU/kg; n=256) or placebo (n=239) intravenously before 3 hours, at 12 to 18 hours, and at 36 to 42 hours after birth. The primary outcome of the trial, neurodevelopment at 24 months, has not yet been assessed. The secondary outcome, white matter disease of the preterm infant, was semiquantitatively assessed from MRI at term-equivalent age based on an established scoring method. The resulting white matter injury and gray matter injury scores were categorized as normal or abnormal according to thresholds established in the literature by correlation with neurodevelopmental outcome. At term-equivalent age, compared with untreated controls, fewer infants treated with recombinant human erythropoietin had abnormal scores for white matter injury (22% [17/77] vs 36% [32/88]; adjusted risk ratio [RR], 0.58; 95% CI, 0.35-0.96), white matter signal intensity (3% [2/77] vs 11% [10/88]; adjusted RR, 0.20; 95% CI, 0.05-0.90), periventricular white matter loss (18% [14/77] vs 33% [29/88]; adjusted RR, 0.53; 95% CI, 0.30-0.92), and gray matter injury (7% [5/77] vs 19% [17/88]; adjusted RR, 0.34; 95% CI, 0.13-0.89). In an analysis of secondary

  2. Abnormal Spontaneous Brain Activity in Patients With Anisometropic Amblyopia Using Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Tang, Angcang; Chen, Taolin; Zhang, Junran; Gong, Qiyong; Liu, Longqian

    2017-09-01

    To explore the abnormality of spontaneous activity in patients with anisometropic amblyopia under resting-state functional magnetic resonance imaging (Rs-fMRI). Twenty-four participants were split into two groups. The anisometropic amblyopia group had 10 patients, all of whom had anisometropic amblyopia of the right eye, and the control group had 14 healthy subjects. All participants underwent Rs-fMRI scanning. Measurement of amplitude of low frequency fluctuations of the brain, which is a measure of the amplitudes of spontaneous brain activity, was used to investigate brain changes between the anisometropic amblyopia and control groups. Compared with an age- and gender-matched control group, the anisometropic amblyopia group showed increased amplitude of low frequency fluctuations of spontaneous brain activity in the left superior temporal gyrus, the left inferior parietal lobe, the left pons, and the right inferior semi-lunar lobe. The anisometropic amblyopia group also showed decreased amplitude of low frequency fluctuations in the bilateral medial frontal gyrus. This study demonstrated abnormal spontaneous brain activities in patients with anisometropic amblyopia under Rs-fMRI, and these abnormalities might contribute to the neuropathological mechanisms of anisometropic amblyopia. [J Pediatr Ophthalmol Strabismus. 2017;54(5):303-310.]. Copyright 2017, SLACK Incorporated.

  3. Brain abnormalities detected on magnetic resonance imaging of amphetamine users presenting to an emergency department: a pilot study.

    PubMed

    Fatovich, Daniel M; McCoubrie, David L; Song, Swithin J; Rosen, David M; Lawn, Nick D; Daly, Frank F

    2010-09-06

    To determine the prevalence of occult brain abnormalities in magnetic resonance imaging of active amphetamine users. Prospective convenience study in a tertiary hospital emergency department (ED). Patients presenting to the ED for an amphetamine-related reason were eligible for inclusion. We collected demographic data, drug use data, and performed a mini-mental state examination (MMSE). The proportion of patients with an abnormality on their MRI scan. Of 38 patients enrolled, 30 had MRI scans. Nineteen were male and their mean age was 26.7 +/- 5.4 years (range 19-41 years). The mean age of first amphetamine use was 18 years (range 13-26 years). Sixteen patients used crystal methamphetamine (mean amount 2.5 g/week), nine used amphetamine ("speed") (mean amount 2.9 g/week), and 23 used ecstasy (mean amount 2.3 tablets/week). Marijuana was smoked by 26 (mean amount 5.9 g/week), and 28 drank alcohol (mean amount 207 g/week). The median MMSE score was 27/30 (interquartile range, 26-29). Abnormalities on brain MRI scans were identified in six patients, most commonly an unidentified bright object (n = 4). In this pilot study of brain MRI of young people attending the ED with an amphetamine-related presentation, one in five had an occult brain lesion. While the significance of this is uncertain, it is congruent with evidence that amphetamines cause brain injury.

  4. Abnormal brain development in newborns with congenital heart disease.

    PubMed

    Miller, Steven P; McQuillen, Patrick S; Hamrick, Shannon; Xu, Duan; Glidden, David V; Charlton, Natalie; Karl, Tom; Azakie, Anthony; Ferriero, Donna M; Barkovich, A James; Vigneron, Daniel B

    2007-11-08

    Congenital heart disease in newborns is associated with global impairment in development. We characterized brain metabolism and microstructure, as measures of brain maturation, in newborns with congenital heart disease before they underwent heart surgery. We studied 41 term newborns with congenital heart disease--29 who had transposition of the great arteries and 12 who had single-ventricle physiology--with the use of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) before cardiac surgery. We calculated the ratio of N-acetylaspartate to choline (which increases with brain maturation), the ratio of lactate to choline (which decreases with maturation), average diffusivity (which decreases with maturation), and fractional anisotropy of white-matter tracts (which increases with maturation). We compared these findings with those in 16 control newborns of a similar gestational age. As compared with control newborns, those with congenital heart disease had a decrease of 10% in the ratio of N-acetylaspartate to choline (P=0.003), an increase of 28% in the ratio of lactate to choline (P=0.08), an increase of 4% in average diffusivity (P<0.001), and a decrease of 12% in white-matter fractional anisotropy (P<0.001). Preoperative brain injury, as seen on MRI, was not significantly associated with findings on MRS or DTI. White-matter injury was observed in 13 newborns with congenital heart disease (32%) and in no control newborns. Term newborns with congenital heart disease have widespread brain abnormalities before they undergo cardiac surgery. The imaging findings in such newborns are similar to those in premature newborns and may reflect abnormal brain development in utero. Copyright 2007 Massachusetts Medical Society.

  5. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    PubMed Central

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  6. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis

    PubMed Central

    Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I

    2000-01-01

    OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours.
METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI.
RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy.
CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation.

 PMID:10990503

  7. Brain MRI findings in patients with idiopathic hypersomnia.

    PubMed

    Trotti, Lynn Marie; Bliwise, Donald L

    2017-06-01

    Proper diagnosis of idiopathic hypersomnia necessitates the exclusion of neurologic or medical causes of sleepiness that better explain the clinical syndrome. However, there are no formal guidelines regarding the use of neuroimaging to identify such secondary causes of symptoms. We sought to characterize brain MRI findings in a series of patients with idiopathic hypersomnia. We reviewed medical records on a consecutive series of 61 patients diagnosed with idiopathic hypersomnia to determine the frequency and results of brain magnetic resonance imaging (MRI). One-third of patients had undergone brain MRI, with focal neurologic signs or symptoms being the most common indication for neuroimaging. Although seven patients had an identifiable finding on neuroimaging (e.g., chronic microvascular ischemic changes), clinical management was changed as a result of imaging in only three cases. In all three, the imaging finding was predated by clear clinical abnormalities. Neuroimaging may be a complementary part of an idiopathic hypersomnia evaluation, but the decision to pursue imaging should be made on a case-by-case basis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management. © 2014 Wiley Periodicals, Inc.

  9. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    PubMed

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  10. N-terminal pro–brain natriuretic peptide and abnormal brain aging

    PubMed Central

    Sabayan, Behnam; van Buchem, Mark A.; de Craen, Anton J.M.; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B.; Gudnason, Vilmundur; Arai, Andrew E.

    2015-01-01

    Objective: To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. Methods: In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)–Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. Results: In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p < 0.001), gray matter (p < 0.001), and white matter (p = 0.001) brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p < 0.001), and more depressive symptoms (p = 0.002). In the substudy, the associations of higher NT-proBNP with lower brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Conclusions: Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. PMID:26231259

  11. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients

    PubMed Central

    Cordova, James S.; Shu, Hui-Kuo G.; Liang, Zhongxing; Gurbani, Saumya S.; Cooper, Lee A. D.; Holder, Chad A.; Olson, Jeffrey J.; Kairdolf, Brad; Schreibmann, Eduard; Neill, Stewart G.; Hadjipanayis, Constantinos G.; Shim, Hyunsuk

    2016-01-01

    Background The standard of care for glioblastoma (GBM) is maximal safe resection followed by radiation therapy with chemotherapy. Currently, contrast-enhanced MRI is used to define primary treatment volumes for surgery and radiation therapy. However, enhancement does not identify the tumor entirely, resulting in limited local control. Proton spectroscopic MRI (sMRI), a method reporting endogenous metabolism, may better define the tumor margin. Here, we develop a whole-brain sMRI pipeline and validate sMRI metrics with quantitative measures of tumor infiltration. Methods Whole-brain sMRI metabolite maps were coregistered with surgical planning MRI and imported into a neuronavigation system to guide tissue sampling in GBM patients receiving 5-aminolevulinic acid fluorescence-guided surgery. Samples were collected from regions with metabolic abnormalities in a biopsy-like fashion before bulk resection. Tissue fluorescence was measured ex vivo using a hand-held spectrometer. Tissue samples were immunostained for Sox2 and analyzed to quantify the density of staining cells using a novel digital pathology image analysis tool. Correlations among sMRI markers, Sox2 density, and ex vivo fluorescence were evaluated. Results Spectroscopic MRI biomarkers exhibit significant correlations with Sox2-positive cell density and ex vivo fluorescence. The choline to N-acetylaspartate ratio showed significant associations with each quantitative marker (Pearson's ρ = 0.82, P < .001 and ρ = 0.36, P < .0001, respectively). Clinically, sMRI metabolic abnormalities predated contrast enhancement at sites of tumor recurrence and exhibited an inverse relationship with progression-free survival. Conclusions As it identifies tumor infiltration and regions at high risk for recurrence, sMRI could complement conventional MRI to improve local control in GBM patients. PMID:26984746

  12. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    PubMed Central

    Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Rota, Giuseppina; Kuebler, Andrea; Birbaumer, Niels

    2007-01-01

    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment. PMID:18274615

  13. Digital atlas of fetal brain MRI.

    PubMed

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  14. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    PubMed

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  15. Abnormal electroretinogram associated with developmental brain anomalies.

    PubMed Central

    Cibis, G W; Fitzgerald, K M

    1995-01-01

    PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676

  16. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    PubMed

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  17. Resting state functional MRI reveals abnormal network connectivity in Neurofibromatosis 1

    PubMed Central

    Tomson, S.N.; Schreiner, M.; Narayan, M.; Rosser, Tena; Enrique, Nicole; Silva, Alcino J.; Allen, G.I.; Bookheimer, S.Y.; Bearden, C.E.

    2015-01-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. PMID:26304096

  18. Location of core diagnostic information across various sequences in brain MRI and implications for efficiency of MRI scanner utilization.

    PubMed

    Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth

    2015-04-01

    Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.

  19. Abnormal spontaneous brain activity is associated with impaired emotion and cognition in hyperthyroidism: A rs-fMRI study.

    PubMed

    Zhi, Mengmeng; Hou, Zhenghua; We, Qiong; Zhang, Yuqun; Li, Ling; Yuan, Yonggui

    2018-06-07

    Hyperthyroid patients undergo emotional and cognitive dysfunction. However, the neurological basis for it remains ambiguous. Amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo) were used to investigate abnormal spontaneous activity in hyperthyroidism for the first time. 29 hyperthyroid patients and 29 healthy controls (HC) received 3.0T magnetic resonance imaging (MRI) scans and neuropsychological assessments. Compared with HC, hyperthyroid patients showed decreased ALFF in left medial frontal gyrus (MeFG) and left posterior cingulate cortex (PCC). Hyperthyroidism group exhibited decreased ReHo in left MeFG. Within hyperthyroidism group, ALFF values in left MeFG were positively correlated with Hamilton Anxiety Rating Scale (HARS) Z-scores, but negatively correlated with processing speed Z-scores. Besides, ALFF values in left precuneus had a positive correlation with HARS Z-scores. As a result, abnormal brain spontaneous activity mainly in default mode network (DMN) implicated the neuro-pathological substrate of relevant emotional and cognitive dysfunction in hyperthyroid patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  1. Prenatal diagnosis of brain abnormalities in Wolf-Hirschhorn (4p-) syndrome.

    PubMed

    De Keersmaecker, B; Albert, M; Hillion, Y; Ville, Y

    2002-05-01

    Although there have been occasional reports of prenatal diagnosis of this syndrome, most cases are diagnosed postnatally. The objective was to evaluate the presence of brain abnormalities in the prenatal diagnosis of Wolf-Hirschhorn syndrome. Prenatal ultrasound and MRI examination of the fetal brain were performed in a case of Wolf-Hirschhorn syndrome. A comprehensive review of Wolf-Hirschhorn syndrome reported between 1960 and 2000 in the literature was carried out. The late diagnosis of a growth-retarded fetus with normal amniotic fluid volume, normal Doppler and negative infection screen calls for a detailed examination of the fetal brain and heart. Multifocal white matter lesions and periventricular cystic changes, which are often attributed to perinatal distress, are possible prenatal features causing suspicion of 4p- syndrome in an IUGR fetus. Subtle abnormalities on ultrasound may suggest a chromosomal problem. Standard cytogenetics cannot always demonstrate a microdeletion. High-resolution banding and molecular analysis can help to confirm the diagnosis. Copyright 2002 John Wiley & Sons, Ltd.

  2. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain

  3. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Stecher Guzman, Ximena; Hintz, Susan R; Stevenson, David K; Barnea-Goraly, Naama

    2014-01-01

    Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67

  4. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    PubMed Central

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in

  5. The application of MRI for depiction of subtle blood brain barrier disruption in stroke.

    PubMed

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-12-26

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in

  6. MRI appearance of surgically proven abnormal accessory anterior-inferior tibiofibular ligament (Bassett's ligament).

    PubMed

    Subhas, Naveen; Vinson, Emily N; Cothran, R Lee; Santangelo, James R; Nunley, James A; Helms, Clyde A

    2008-01-01

    A thickened accessory anterior-inferior tibiofibular ligament (Bassett's ligament) of the ankle can be a cause of ankle impingement. Its imaging appearance is not well described. The purpose of this study was to determine if the ligament could be identified on magnetic resonance imaging (MRI), to determine associated abnormalities, and to determine if MRI could be used to differentiate normal from abnormal. Eighteen patients with a preoperative ankle MRI and an abnormal Bassett's ligament reported at surgery were found retrospectively. A separate cohort of 18 patients was selected as a control population. The presence of Bassett's ligament and its thickness were noted. The integrity and appearance of the lateral ankle ligaments, talar dome cartilage, and anterolateral gutter were also noted. In 34 of the 36 cases (94%), Bassett's ligament was identified on MRI. The ligament was seen in all three imaging planes and most frequently in the axial plane. The mean thickness of the ligament in the surgically abnormal cases was 2.37 mm, compared with 1.87 mm in the control with a p value=0.015 (t test). Nine of the 18 abnormal cases (50%) had talar dome cartilage lesions as a result of contact with the ligament at surgery, with only 3 cases of high-grade defects seen on MRI. Fourteen of the 18 abnormal cases (78%) had of synovitis or scarring in the lateral gutter at surgery, with only 5 cases with scarring seen on MRI. The anterior-inferior tibiofibular ligament was abnormal or torn in 8 of the 18 abnormal cases (44%) by MRI and confirmed in only 3 cases at surgery. Bassett's ligament can be routinely identified on MRI and was significantly thicker in patients who had it resected at surgery. An abnormal Bassett's ligament is often present in the setting of a normal anterior-inferior tibiofibular ligament. The cartilage abnormalities and synovitis associated with an abnormal Bassett's ligament are poorly detected by conventional MRI.

  7. Volumetric MRI study of the intrauterine growth restriction fetal brain.

    PubMed

    Polat, A; Barlow, S; Ber, R; Achiron, R; Katorza, E

    2017-05-01

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions-supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum-were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. • IUGR is a pathologic fetal condition affecting the brain • IUGR is associated with long-term neurodevelopmental abnormalities; fetal characterization is needed • This study aimed to evaluate regional brain volume differences in IUGR • Cerebellar to supratentorial volume ratios were smaller in IUGR fetuses • This finding may play a role in long-term development of IUGR fetuses.

  8. Electroencephalography and Brain MRI Patterns in Encephalopathy.

    PubMed

    Wabulya, Angela; Lesser, Ronald P; Llinas, Rafael; Kaplan, Peter W

    2016-04-01

    Using electroencephalography (EEG) and histology in patients with diffuse encephalopathy, Gloor et al reported that paroxysmal synchronous discharges (PSDs) on EEG required combined cortical gray (CG) and "subcortical" gray (SCG) matter pathology, while polymorphic delta activity (PDA) occurred in patients with white matter pathology. In patients with encephalopathy, we compared EEG findings and magnetic resonance imaging (MRI) to determine if MRI reflected similar pathological EEG correlations. Retrospective case control study of 52 cases with EEG evidence of encephalopathy and 50 controls without evidence of encephalopathy. Review of clinical, EEG and MRI data acquired within 4 days of each other. The most common EEG finding in encephalopathy was background slowing, in 96.1%. We found PSDs in 0% of cases with the combination of CG and SCG abnormalities. Although 13.5% (n=7) had PSDs on EEG; 3 of these had CG and 4 had SCG abnormalities. A total of 73.1% (38/52) had white matter abnormalities-of these 28.9% (11/38) had PDA. PSDs were found with either CG or "SCG" MRI abnormalities and did not require a combination of the two. In agreement with Gloor et al, PDA occurred with white matter MRI abnormalities in the absence of gray matter abnormalities. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  9. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping.

    PubMed

    Wang, Bin; Niu, Yan; Miao, Liwen; Cao, Rui; Yan, Pengfei; Guo, Hao; Li, Dandan; Guo, Yuxiang; Yan, Tianyi; Wu, Jinglong; Xiang, Jie; Zhang, Hui

    2017-01-01

    Alzheimer's disease (AD) is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI) has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI) and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE) to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA) on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE) scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ) scores and global Clinical Dementia Rating (CDR) scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo) in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE in rs-fMRI

  10. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    PubMed Central

    Wang, Bin; Niu, Yan; Miao, Liwen; Cao, Rui; Yan, Pengfei; Guo, Hao; Li, Dandan; Guo, Yuxiang; Yan, Tianyi; Wu, Jinglong; Xiang, Jie; Zhang, Hui

    2017-01-01

    Alzheimer's disease (AD) is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI) has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI) and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE) to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA) on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE) scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ) scores and global Clinical Dementia Rating (CDR) scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo) in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE in rs-fMRI

  11. State of the art survey on MRI brain tumor segmentation.

    PubMed

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Value of brain MRI when sonography raises suspicion of agenesis of the corpus callosum in fetuses.

    PubMed

    Jarre, A; Llorens Salvador, R; Montoliu Fornas, G; Montoya Filardi, A

    To evaluate the role of magnetic resonance imaging (MRI) in fetuses with a previous sonographic suspicion of agenesis of the corpus callosum (ACC) to confirm the diagnosis and to detect associated intracranial anomalies. Single-center retrospective and descriptive observational study of the brain MRI performed in 78 fetuses with ACC sonographic suspicion between January 2006 and December 2015. Two experts in fetal imaging reviewed the MRI findings to evaluate the presence and morphology of the corpus callosum. When ACC was detected the whole fetal brain anatomy was thoroughly studied to determine the presence of associated anomalies. Prenatal MR imaging findings were compared to postnatal brain MRI or necropsy findings when available. Fetal MRI diagnosed 45 cases of ACC, 12 were partial (26.7%) and 33 complete (73.3%). In 28 cases (62,2%) associated intracranial anomalies were identified. The most often abnormality was ventriculomegaly (78,6%), followed by cortical malformations (53,6%), posterior fossa (25%) and midline anomalies (10,7%). Fetal brain MRI has an important role in the diagnosis of ACC and detection of associated anomalies. To perform a fetal brain MRI is important in fetuses with sonographic suspicion of ACC. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆

    PubMed Central

    Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-01-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced

  14. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children.

    PubMed

    Rose, Jessica; Butler, Erin E; Lamont, Lauren E; Barnes, Patrick D; Atlas, Scott W; Stevenson, David K

    2009-07-01

    The neurological basis of an increased incidence of cerebral palsy (CP) in preterm males is unknown. This study examined neonatal brain structure on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at term-equivalent age, sex, and neurodevelopment at 1 year 6 months on the basis of the Amiel-Tison neurological examination, Gross Motor Function Classification System, and Bayley Scales of Infant Development in 78 very-low-birthweight preterm children (41 males, 37 females; mean gestational age 27.6 wks, SD 2.5; mean birthweight 1021 g, SD 339). Brain abnormalities on MRI and DTI were not different between males and females except in the splenium of the corpus callosum, where males had lower DTI fractional anisotropy (p=0.025) and a higher apparent diffusion coefficient (p=0.013), indicating delayed splenium development. In the 26 infants who were at higher risk on the basis of DTI, males had more abnormalities on MRI (p=0.034) and had lower fractional anisotropy and a higher apparent diffusion coefficient in the splenium (p=0.049; p=0.025) and right posterior limb of the internal capsule (PLIC; p=0.003; p=0.033). Abnormal neurodevelopment was more common in males (n=9) than in females (n=2; p=0.036). Children with abnormal neurodevelopment had more abnormalities on MRI (p=0.014) and reduced splenium and right PLIC fractional anisotropy (p=0.001; p=0.035). In children with abnormal neurodevelopment, right PLIC fractional anisotropy was lower than left (p=0.035), whereas in those with normal neurodevelopment right PLIC fractional anisotropy was higher than left (p=0.001). Right PLIC fractional anisotropy correlated to neurodevelopment (rho=0.371, p=0.002). Logistic regression predicted neurodevelopment with 94% accuracy; only right PLIC fractional anisotropy was a significant logistic coefficient. Results indicate that the higher incidence of abnormal neurodevelopment in preterm males relates to greater incidence and severity of brain abnormalities

  15. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital

  16. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    PubMed

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. © 2015 Wiley Periodicals, Inc.

  17. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  18. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder

    PubMed Central

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    Objective This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Methods Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t-test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Results Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). Conclusion OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD. PMID:28243104

  19. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    PubMed

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p < 0.001), gray matter (p < 0.001), and white matter (p = 0.001) brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p < 0.001), and more depressive symptoms (p = 0.002). In the substudy, the associations of higher NT-proBNP with lower brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  20. Effect of growth hormone deficiency on brain MRI findings among children with growth restrictions.

    PubMed

    Naderi, Fariba; Eslami, Samira Rajabi; Mirak, Sohrab Afshari; Khak, Mohammad; Amiri, Jalaladin; Beyrami, Bahram; Shekarchi, Babak; Poureisa, Masoud

    2015-01-01

    Growth hormone deficiency (GHD) is a major problem among children with short stature. In this study, the role of brain magnetic resonance imaging (MRI) in defining the underlying defects among short children with GHD is evaluated. In a cross-sectional study, data of 158 children were evaluated. Growth hormone (GH) levels were measured using stimulating tests and brain MRI with gadolinium contrast was applied, as well. Some 25.3% of patients had GHD with a mean age of 8.01±3.40 years. MRI results showed 35 as normal, four with pituitary hypoplasia, and one with microadenoma. The MRI results were significantly associated with GH levels and presence of other endocrine disorders. There was a significant association between prenatal disorders and patients' bone age delay. In patients with severe GHD and patients with multiple pituitary hormone deficiencies, MRI is more likely to be abnormal, and bone age is much delayed in patients with history of prenatal disorders.

  1. Brain Morphometry using MRI in Schizophrenia Patients

    NASA Astrophysics Data System (ADS)

    Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.

    2010-01-01

    Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.

  2. MRI findings in a cohort of brain injured survivors of pediatric cerebral malaria.

    PubMed

    Kampondeni, Sam D; Potchen, Michael J; Beare, Nicholas A V; Seydel, Karl B; Glover, Simon J; Taylor, Terrie E; Birbeck, Gretchen L

    2013-03-01

    Abstract. A prospective cohort study of retinopathy-confirmed cerebral malaria (CM) survivors identified 42 of 132 with neurologic sequelae. The 38 survivors with sequelae who were alive when magnetic resonance imaging (MRI) technology became available underwent brain MRIs. Common MRI abnormalities included periventricular T2 signal changes (53%), atrophy (47%), subcortical T2 signal changes (18%), and focal cortical defects (16%). The χ(2) tests assessed the relationship between chronic MRI findings, acute clinical and demographic data, and outcomes. Children who were older at the time of CM infection (P = 0.01) and those with isolated behavioral problems (P = 0.02) were more likely to have a normal MRI. Acute focal seizures were associated with atrophy (P = 0.05). Acute papilledema was associated with subcortical T2 signal changes (P = 0.02). Peripheral retinal whitening (P = 0.007) and a higher admission white blood cell count (P = 0.02) were associated with periventricular T2 signal changes. Chronic MRI findings suggest seizures, increased intracranial pressure, and microvascular ischemia contribute to clinically relevant structural brain injury in CM.

  3. Brain MRI Characteristics of Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Their Associations with 2-Year Clinical Outcome.

    PubMed

    Zhang, T; Duan, Y; Ye, J; Xu, W; Shu, N; Wang, C; Li, K; Liu, Y

    2018-05-01

    Anti- N -methyl-D-aspertate receptor encephalitis is an autoimmune-mediated disease without specific brain MRI features. Our aim was to investigate the brain MR imaging characteristics of anti- N -methyl-D-aspartate receptor encephalitis and their associations with clinical outcome at a 2-year follow-up. We enrolled 53 patients with anti- N -methyl-D-aspartate receptor encephalitis and performed 2-year follow-up. Brain MRIs were acquired for all patients at the onset phase. The brain MR imaging manifestations were classified into 4 types: type 1: normal MR imaging findings; type 2: only hippocampal lesions; type 3: lesions not involving the hippocampus; and type 4: lesions in both the hippocampus and other brain areas. The modified Rankin Scale score at 2-year follow-up was assessed, and the association between the mRS and onset brain MR imaging characteristics was evaluated. Twenty-eight (28/53, 53%) patients had normal MR imaging findings (type 1), and the others (25/53, 47%) had abnormal MRI findings: type 2: 7 patients (13%); type 3: seven patients (13%); and type 4: eleven patients (21%). Normal brain MRI findings were more common in female patients ( P = .02). Psychiatric and behavioral abnormalities were more common in adults ( P = .015), and autonomic symptoms ( P = .025) were more common in pediatric patients. The presence of hippocampal lesions ( P = .008, OR = 9.584; 95% CI, 1.803-50.931) and relapse ( P = .043, OR = 0.111; 95% CI, 0.013-0.930) was associated with poor outcome. Normal brain MRI findings were observed in half of the patients. Lesions in the hippocampus were the most common MR imaging abnormal finding. The presence of hippocampal lesions is the main MR imaging predictor for poor prognosis in patients with anti- N -methyl-D-aspartate receptor encephalitis. © 2018 by American Journal of Neuroradiology.

  4. Abnormal brain MRI signals in the splenium of the corpus callosum, basal ganglia and internal capsule in a suspected case with tuberculous meningitis.

    PubMed

    Hirotani, Makoto; Yabe, Ichiro; Hamada, Shinsuke; Tsuji, Sachiko; Kikuchi, Seiji; Sasaki, Hidenao

    2007-01-01

    A 34-year-old man visited the hospital with chief complaints of headache, fever, and disturbance of consciousness. In view of his clinical condition, the course of the disease, and results of examination, he was diagnosed with viral meningitis and treated accordingly. However, his clinical condition worsened, and MRI revealed abnormal signals in the splenium of the corpus callosum, in the basal ganglia and in the internal capsule, as well as the presence of severe inflammation in the base of the brain. Since he had a high ADA level in the cerebrospinal fluid and was consequently suspected to have tuberculous meningitis, he was placed on antitubercular agents. Then, his clinical condition began to improve. Additional steroid pulse therapy further improved his condition, and abnormal signals in the splenium of the corpus callosum and the basal ganglia resolved. This valuable case suggests that an immune mechanism contributed to the occurrence of central nervous system symptoms associated with tuberculous meningitis.

  5. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis.

    PubMed

    Hutchinson, E B; Schwerin, S C; Radomski, K L; Sadeghi, N; Jenkins, J; Komlosh, M E; Irfanoglu, M O; Juliano, S L; Pierpaoli, C

    2017-05-15

    Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study - in-vivo MRI and DTI and ex-vivo MRI and DTI - using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders. Published by Elsevier Inc.

  6. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  7. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  8. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  9. Local Brain Activity Differences Between Herpes Zoster and Postherpetic Neuralgia Patients: A Resting-State Functional MRI Study.

    PubMed

    Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian

    2017-07-01

    Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional

  10. [MRI in congenital nystagmus].

    PubMed

    Denis, D; Girard, N; Toesca, E; Zanin, E; Gambarelli, N; Lebranchu, P; Mancini, J

    2010-03-01

    Congenital nystagmus (CN) that is present by the age of 3 months is the most common form of nystagmus in childhood. We present a prospective study (2001-2008) in which we report imaging findings in 48 children with CN. Twenty-six boys and 22 girls with CN underwent a complete ophthalmologic assessment and a cerebral MRI (mean age of examination under general anesthesia: 11 months). Three CN groups were formed: neurologic (n=27), sensory visual disturbance (n=14), and isolated (n=7). Cerebral MRI was interpreted by the same pediatric neuroradiologist (NG). Of the children studied, 98 % were born at term. The MRI abnormalities were classified as morphologic abnormalities (malformative or nonmalformative) and as signal abnormalities. The location of brain abnormalities was within the posterior fossa, (brain stem, cerebellum, dental nuclei, cisterna magna) and the cerebral hemisphere (white matter, perivascular spaces, midline commissures, basal ganglia). Pendular nystagmus was prevalent in sensory and neurologic nystagmus. On fundus examination, optic disc abnormalities were present in 70 % (19) of neurologic CN and associated with white matter abnormalities of the optic radiations in 40 % of cases. On MRI, malformative morphologic abnormalities were present in 27 cases, nonmalformative abnormalities were found in 67, and signal abnormalities in 68. Within the brain stem, signal abnormalities were found as a cockade appearance of the posterior pons in the reticular regions (neurologic n=14, sensory n=6, isolated n=3). Other bright (most frequent) signal abnormalities were found within the dentate nuclei of the posterior fossa (neurologic n=10, sensory n=3, isolated n=3) and the cerebral white matter (neurologic n=17, sensory n=7, isolated n=5) of which 24 (neurologic n=15, sensory n=5, isolated n=4) involved the optic radiations. Most of these abnormalities were related and were seen most frequently in neurologic nystagmus. The most frequent association was signal

  11. Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.

    PubMed

    Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng

    2017-10-01

    Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Machine learning based brain tumour segmentation on limited data using local texture and abnormality.

    PubMed

    Bonte, Stijn; Goethals, Ingeborg; Van Holen, Roel

    2018-05-07

    Brain tumour segmentation in medical images is a very challenging task due to the large variety in tumour shape, position, appearance, scanning modalities and scanning parameters. Most existing segmentation algorithms use information from four different MRI-sequences, but since this is often not available, there is need for a method able to delineate the different tumour tissues based on a minimal amount of data. We present a novel approach using a Random Forests model combining voxelwise texture and abnormality features on a contrast-enhanced T1 and FLAIR MRI. We transform the two scans into 275 feature maps. A random forest model next calculates the probability to belong to 4 tumour classes or 5 normal classes. Afterwards, a dedicated voxel clustering algorithm provides the final tumour segmentation. We trained our method on the BraTS 2013 database and validated it on the larger BraTS 2017 dataset. We achieve median Dice scores of 40.9% (low-grade glioma) and 75.0% (high-grade glioma) to delineate the active tumour, and 68.4%/80.1% for the total abnormal region including edema. Our fully automated brain tumour segmentation algorithm is able to delineate contrast enhancing tissue and oedema with high accuracy based only on post-contrast T1-weighted and FLAIR MRI, whereas for non-enhancing tumour tissue and necrosis only moderate results are obtained. This makes the method especially suitable for high-grade glioma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Brain and bone abnormalities of thanatophoric dwarfism.

    PubMed

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  14. Multifaceted impairments in impulsivity and brain structural abnormalities in opioid dependence and abstinence.

    PubMed

    Tolomeo, S; Gray, S; Matthews, K; Steele, J D; Baldacchino, A

    2016-10-01

    Chronic opioid exposure, as a treatment for a variety of disorders or as drug of misuse, is common worldwide, but behavioural and brain abnormalities remain under-investigated. Only a small percentage of patients who receive methadone maintenance treatment (MMT) for previous heroin misuse eventually achieve abstinence and studies on such patients are rare. The Cambridge Neuropsychological Test Automated Battery and T1 weighted magnetic resonance imaging (MRI) were used to study a cohort of 122 male individuals: a clinically stable opioid-dependent patient group receiving MMT (n = 48), an abstinent previously MMT maintained group (ABS) (n = 24) and healthy controls (n = 50). Stable MMT participants deliberated longer and placed higher bets earlier in the Cambridge Gambling Task (CGT) and showed impaired strategic planning compared with healthy controls. In contrast, ABS participants showed impairment in choosing the least likely outcome, delay aversion and risk adjustment on the CGT, and exhibited non-planning impulsivity compared with controls. MMT patients had widespread grey matter reductions in the orbitomedial prefrontal cortex, caudate, putamen and globus pallidus. In contrast, ABS participants showed midbrain-thalamic grey matter reductions. A higher methadone dose at the time of scanning was associated with a smaller globus pallidus in the MMT group. Our findings support an interpretation of heightened impulsivity in patients receiving MMT. Widespread structural brain abnormalities in the MMT group and reduced brain structural abnormality with abstinence suggest benefit of cessation of methadone intake. We suggest that a longitudinal study is required to determine whether abstinence improves abnormalities, or patients who achieve abstinence have reduced abnormalities before methadone cessation.

  15. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    PubMed Central

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  16. Diagnostic reliability of 3.0-T MRI for detecting osseous abnormalities of the temporomandibular joint.

    PubMed

    Sawada, Kunihiko; Amemiya, Toshihiko; Hirai, Shigenori; Hayashi, Yusuke; Suzuki, Toshihiro; Honda, Masahiko; Sisounthone, Johnny; Matsumoto, Kunihito; Honda, Kazuya

    2018-01-01

    We compared the diagnostic reliability of 3.0-T magnetic resonance imaging (MRI) for detection of osseous abnormalities of the temporomandibular joint (TMJ) with that of the gold standard, cone-beam computed tomography (CBCT). Fifty-six TMJs were imaged with CBCT and MRI, and images of condyles and fossae were independently assessed for the presence of osseous abnormalities. The accuracy, sensitivity, and specificity of 3.0-T MRI were 0.88, 1.0, and 0.73, respectively, in condyle evaluation and 0.91, 0.75, and 0.95 in fossa evaluation. The McNemar test showed no significant difference (P > 0.05) between MRI and CBCT in the evaluation of osseous abnormalities in condyles and fossae. The present results indicate that 3.0-T MRI is equal to CBCT in the diagnostic evaluation of osseous abnormalities of the mandibular condyle.

  17. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study

    PubMed Central

    Slobounov, Semyon M.; Zhang, K.; Pennell, D.; Ray, W.; Johnson, B.; Sebastianelli, W.

    2010-01-01

    Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023

  18. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    PubMed Central

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  19. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  20. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we

  1. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  2. Real-time fMRI: a tool for local brain regulation.

    PubMed

    Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels

    2012-10-01

    Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.

  3. Fetal MRI: head and neck.

    PubMed

    Mirsky, David M; Shekdar, Karuna V; Bilaniuk, Larissa T

    2012-08-01

    Abnormalities of the fetal head and neck may be seen in isolation or in association with central nervous system abnormalities, chromosomal abnormalities, and syndromes. Magnetic resonance imaging (MRI) plays an important role in detecting associated abnormalities of the brain as well as in evaluating for airway obstruction that may impact prenatal management and delivery planning. This article provides an overview of the common indications for MRI of the fetal head and neck, including abnormalities of the fetal skull and face, masses of the face and neck, and fetal goiter. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. MRI in the diagnosis and surgical management of abnormal placentation.

    PubMed

    Palacios-Jaraquemada, José Miguel; Bruno, Claudio Hernán; Martín, Eduardo

    2013-04-01

    To determine the usefulness of placental magnetic resonance imaging (MRI) in the diagnosis and surgical management of abnormal placentation. Retrospective follow-up. Buenos Aires, Argentina. 547 pregnant women. In all cases, a direct and reliable description of abnormal placentation features was obtained by the operating surgeon. Placental MRI was analyzed according to: (1) primary description, (2) invasion topography, (3) modification required to the surgical tactics or techniques and (4) by positive and negative predictive values. Ultrasound and MRI findings were compared with surgical results, which were considered a final diagnosis in relation to primary diagnostic indications. Placental MRI was obtained because of diagnostic doubt in 78 cases, for deep invasion diagnosis in 148 cases and to define the invasion area in 346 cases. Placental MRI allowed accurate demarcation and assessment of the degree of placental invasion, parametrial involvement and cervico-trigonal vascular hyperplasia, permitting changes in the surgical tactical approach. Ultrasound and MRI differences were associated with placenta previa, uterine scar thinning and use of different criteria for placental invasion through definitions or terminology. Six cases of false-negative and 11 of false-positive findings were reported. Placental MRI provides excellent characterization of the degree and extension of placental invasion. Its usefulness in cases of adherent placentation is directly associated to the therapeutic measures, especially where dissection maneuvers are needed. Diagnostic differences between ultrasound and MRI related to the presence or not of placenta previa and uterine scar thinning. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica © 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Striatal abnormalities in trichotillomania: a multi-site MRI analysis.

    PubMed

    Isobe, Masanori; Redden, Sarah A; Keuthen, Nancy J; Stein, Dan J; Lochner, Christine; Grant, Jon E; Chamberlain, Samuel R

    2018-01-01

    Trichotillomania (hair-pulling disorder) is characterized by the repetitive pulling out of one's own hair, and is classified as an Obsessive-Compulsive Related Disorder. Abnormalities of the ventral and dorsal striatum have been implicated in disease models of trichotillomania, based on translational research, but direct evidence is lacking. The aim of this study was to elucidate subcortical morphometric abnormalities, including localized curvature changes, in trichotillomania. De-identified MRI scans were pooled by contacting authors of previous peer-reviewed studies that examined brain structure in adult patients with trichotillomania, following an extensive literature search. Group differences on subcortical volumes of interest were explored (t-tests) and localized differences in subcortical structure morphology were quantified using permutation testing. The pooled sample comprised N=68 individuals with trichotillomania and N=41 healthy controls. Groups were well-matched in terms of age, gender, and educational levels. Significant volumetric reductions were found in trichotillomania patients versus controls in right amygdala and left putamen. Localized shape deformities were found in bilateral nucleus accumbens, bilateral amygdala, right caudate and right putamen. Structural abnormalities of subcortical regions involved in affect regulation, inhibitory control, and habit generation, play a key role in the pathophysiology of trichotillomania. Trichotillomania may constitute a useful model through which to better understand other compulsive symptoms. These findings may account for why certain medications appear effective for trichotillomania, namely those modulating subcortical dopamine and glutamatergic function. Future work should study the state versus trait nature of these changes, and the impact of treatment.

  6. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  7. The Role of Brain MRI in Mitochondrial Neurogastrointestinal Encephalomyopathy

    PubMed Central

    Scarpelli, Mauro; Ricciardi, Giuseppe Kenneth; Beltramello, Alberto; Zocca, Isabella; Calabria, Francesca; Russignan, Anna; Zappini, Francesca; Cotelli, Maria Sofia; Padovani, Alessandro; Tomelleri, Giuliano; Filosto, Massimiliano; Tonin, Paola

    2013-01-01

    Summary Leukoencephalopathy is a hallmark of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) a devastating disorder characterized by ptosis, ophthalmoparesis, gastrointestinal dysfunction and polyneuropathy. To characterize MNGIE-associated leukoencephalopathy and to correlate it with clinical, biochemical and molecular data, four MNGIE patients with heterogeneous clinical phenotypes (enteropathic arthritis, exercise intolerance, CIDP-like phenotype and typical presentation) were studied by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps were also obtained. In two patients we also investigated the role of brain MRI in monitoring the evolution of leukoencephalopathy by performing follow-up imaging studies at an interval of one and two years. The extension and distribution of leukoencephalopathy were not clearly linked with age, phenotype or disease severity, and did not seem to be related to TYMP mutations, enzyme activity or pyrimidine levels. In the studied patients MRS revealed reduced N-acetyl-aspartate and increased choline signals. Although DWI appeared normal in all patients but one, ADC maps always showed moderate increased diffusivity. Leukoencephalopathy worsened over a two-year period in two patients, regardless of the clinical course, indicating a lack of correlation between clinical phenotype, size and progression of white matter abnormalities during this period. Brain MRI should be considered a very useful tool to diagnose both classical and atypical MNGIE. Serial MRIs in untreated and treated MNGIE patients will help to establish whether the leukoencephalopathy is a reversible condition or not. PMID:24199812

  8. Distribution and severity of hypoxic-ischaemic lesions on brain MRI following therapeutic cooling: selective head versus whole body cooling.

    PubMed

    Sarkar, Subrata; Donn, Steven M; Bapuraj, Jayapalli R; Bhagat, Indira; Barks, John D

    2012-09-01

    Whole body cooling (WBC) cools different parts of the brain uniformly, and selective head cooling (SHC) cools the superficial brain more than the deeper brain structures. In this study, the authors hypothesised that the hypoxic-ischaemic lesions on brain MRI following cooling would differ between modalities of cooling. To compare the frequency, distribution and severity of hypoxic-ischaemic lesions on brain MRI between SHC or WBC. In a single centre retrospective study, 83 infants consecutively cooled using either SHC (n=34) or WBC (n=49) underwent brain MRI. MRI images were evaluated by a neuroradiologist, who was masked to clinical parameters and outcomes, using a basal ganglia/watershed (BG/W) scoring system. Higher scores (on a scale of 0 to 4) were given for more extensive injury. The score has been reported to be predictive of neuromotor and cognitive outcome at 12 months. The two groups were similar for severity of depression as assessed by a history of an intrapartum sentinel event, Apgar scores, initial blood pH and base deficit and early neurological examination. However, abnormal MRI was more frequent in the SHC group (SHC 25 of 34, 74% vs WBC 22 of 49, 45%; p=0.0132, OR 3.4, 95% CI 1.3 to 8.8). Infants from the SHC group also had more severe hypoxic-ischaemic lesions (median BG/W score: SHC 2 vs WBC 0, p=0.0014). Hypoxic-ischaemic lesions on brain MRI following therapeutic cooling were more frequent and more severe with SHC compared with WBC.

  9. [Brain structure analysis for patients with antisocial personality disorder by MRI].

    PubMed

    Jiang, Weixiong; Liao, Jian; Liu, Huasheng; Huang, Renzhi; Li, Yongfan; Wang, Wei

    2015-02-01

    To investigate the structural abnormalities of brain in patients with antisocial personality disorder (ASPD) but without alcoholism and drug abuse. Volunteers from Hunan Reformatory (n=36) and the matched healthy subjects (n=26) were examined by high-spatial resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Voxel-based morphometry and fractional anisotropy (FA) maps were generated for each subject to reveal structural abnormalities in patients with ASPD. Compared with the healthy controls, ASPD patients showed significantly higher gray matter volumes in the inferior parietal lobule (P≤0.001, uncorrected), white matter volumes in the precuneus (P≤0.001, uncorrected), FA in the left lingual gyrus, bilateral precuneus, right superior frontal gyrus and right middle temporal gyrus (P≤0.01, uncorrected). Our results revealed the abnormal neuroanatomical features in ASPD patients, which might be related to the external behavioral traits in ASPD patients.

  10. Augmenting intraoperative MRI with preoperative fMRI and DTI by biomechanical simulation of brain deformation

    NASA Astrophysics Data System (ADS)

    Warfield, Simon K.; Talos, Florin; Kemper, Corey; Cosman, Eric; Tei, Alida; Ferrant, Matthieu; Macq, Benoit M. M.; Wells, William M., III; Black, Peter M.; Jolesz, Ferenc A.; Kikinis, Ron

    2003-05-01

    The key challenge facing the neurosurgeon during neurosurgery is to be able to remove from the brain as much tumor tissue as possible while preserving healthy tissue and minimizing the disruption of critical anatomical structures. The purpose of this work was to demonstrate the use of biomechanical simulation of brain deformation to project preoperative fMRI and DTI data into the coordinate system of the patient brain deformed during neurosurgery. This projection enhances the visualization of relevant critical structures available to the neurosurgeon. Our approach to tracking brain changes during neurosurgery has been previously described. We applied this procedure to warp preoperative fMRI and DTI to match intraoperative MRI. We constructed visualizations of preoperative fMRI and DTI, and intraoperative MRI showing a close correspondence between the matched data. We have previously demonstrated our biomechanical simulation of brain deformation can be executed entirely during neurosurgery. We previously used a generic atlas as a substitute for patient specific data. Here we report the successful alignment of patient-specific DTI and fMRI preoperative data into the intraoperative configuration of the patient's brain. This can significantly enhance the information available to the neurosurgeon.

  11. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  12. Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.

    PubMed

    Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng

    2016-01-01

    Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.

  13. Tracking brain arousal fluctuations with fMRI

    PubMed Central

    Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.

    2016-01-01

    Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064

  14. Atlas-Guided Segmentation of Vervet Monkey Brain MRI

    PubMed Central

    Fedorov, Andriy; Li, Xiaoxing; Pohl, Kilian M; Bouix, Sylvain; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B; Wells, William M; Kikinis, Ron

    2011-01-01

    The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic segmentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to improved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that rely on the vervet model. PMID:22253661

  15. Studying brain organization via spontaneous fMRI signal

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408

  16. Ciguatera fish poisoning with elevated muscle enzymes and abnormal spinal MRI.

    PubMed

    Wasay, Mohammad; Sarangzai, Amanullah; Siddiqi, Ather; Nizami, Qamaruddin

    2008-03-01

    We report three cases of ciguatera fish poisoning. One patient died secondary to respiratory failure. Two patients showed elevated muscle enzymes and one patients had an abnormal cervical spinal MRI. MRI findings have not been previously described. MRI findings explain the mechanism of the L'hermitte phenomenon (a common complaint) among these patients. Respiratory failure is rare in ciguatera fish poisoning. Our findings suggest this could be related to respiratory muscles involvement.

  17. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  18. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  19. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  20. MRI anatomy of schizophrenia.

    PubMed

    McCarley, R W; Wible, C G; Frumin, M; Hirayasu, Y; Levitt, J J; Fischer, I A; Shenton, M E

    1999-05-01

    Structural magnetic resonance imaging (MRI) data have provided much evidence in support of our current view that schizophrenia is a brain disorder with altered brain structure, and consequently involving more than a simple disturbance in neurotransmission. This review surveys 118 peer-reviewed studies with control group from 1987 to May 1998. Most studies (81%) do not find abnormalities of whole brain/intracranial contents, while lateral ventricle enlargement is reported in 77%, and third ventricle enlargement in 67%. The temporal lobe was the brain parenchymal region with the most consistently documented abnormalities. Volume decreases were found in 62% of 37 studies of whole temporal lobe, and in 81% of 16 studies of the superior temporal gyrus (and in 100% with gray matter separately evaluated). Fully 77% of the 30 studies of the medial temporal lobe reported volume reduction in one or more of its constituent structures (hippocampus, amygdala, parahippocampal gyrus). Despite evidence for frontal lobe functional abnormalities, structural MRI investigations less consistently found abnormalities, with 55% describing volume reduction. It may be that frontal lobe volume changes are small, and near the threshold for MRI detection. The parietal and occipital lobes were much less studied; about half of the studies showed positive findings. Most studies of cortical gray matter (86%) found volume reductions were not diffuse, but more pronounced in certain areas. About two thirds of the studies of subcortical structures of thalamus, corpus callosum and basal ganglia (which tend to increase volume with typical neuroleptics), show positive findings, as do almost all (91%) studies of cavum septi pellucidi (CSP). Most data were consistent with a developmental model, but growing evidence was compatible also with progressive, neurodegenerative features, suggesting a "two-hit" model of schizophrenia, for which a cellular hypothesis is discussed. The relationship of clinical

  1. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  2. A review of MRI findings in schizophrenia

    PubMed Central

    Shenton, Martha E.; Dickey, Chandlee C.; Frumin, Melissa; McCarley, Robert W.

    2009-01-01

    After more than 100 years of research, the neuropathology of schizophrenia remains unknown and this is despite the fact that both Kraepelin (1919/1971: Kraepelin,E., 1919/1971. Dementia praecox. Churchill Livingston Inc., New York) and Bleuler (1911/1950: Bleuler, E., 1911/1950. Dementia praecox or the group of schizophrenias. International Universities Press, New York), who first described ‘dementia praecox’ and the ‘ schizophrenias’, were convinced that schizophrenia would ultimately be linked to an organic brain disorder. Alzheimer (1897: Alzheimer, A., 1897. Beitrage zur pathologischen anatomie der hirnrinde und zur anatomischen grundlage einiger psychosen. Monatsschrift fur Psychiarie und Neurologie. 2, 82–120) was the first to investigate the neuropathology of schizophrenia, though he went on to study more tractable brain diseases. The results of subsequent neuropathological studies were disappointing because of conflicting findings. Research interest thus waned and did not flourish again until 1976, following the pivotal computer assisted tomography (CT) finding of lateral ventricular enlargement in schizophrenia by Johnstone and colleagues. Since that time significant progress has been made in brain imaging, particularly with the advent of magnetic resonance imaging (MRI), beginning with the first MRI study of schizophrenia by Smith and coworkers in 1984 (Smith, R.C., Calderon, M., Ravichandran, G.K., et al. (1984). Nuclear magnetic resonance in schizophrenia: A preliminary study. Psychiatry Res. 12, 137–147). MR in vivo imaging of the brain now confirms brain abnormalities in schizophrenia. The 193 peer reviewed MRI studies reported in the current review span the period from 1988 to August, 2000. This 12 year period has witnessed a burgeoning of MRI studies and has led to more definitive findings of brain abnormalities in schizophrenia than any other time period in the history of schizophrenia research. Such progress in defining the

  3. Studying brain organization via spontaneous fMRI signal.

    PubMed

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-11-19

    In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Prediction of individual brain maturity using fMRI.

    PubMed

    Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L

    2010-09-10

    Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.

  5. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    PubMed

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  6. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    PubMed

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-10-01

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Abnormal brain synchrony in Down Syndrome☆

    PubMed Central

    Anderson, Jeffrey S.; Nielsen, Jared A.; Ferguson, Michael A.; Burback, Melissa C.; Cox, Elizabeth T.; Dai, Li; Gerig, Guido; Edgin, Jamie O.; Korenberg, Julie R.

    2013-01-01

    Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. PMID:24179822

  8. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  9. Brain Entropy Mapping Using fMRI

    PubMed Central

    Wang, Ze; Li, Yin; Childress, Anna Rose; Detre, John A.

    2014-01-01

    Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions. PMID:24657999

  10. Brain functional network abnormality extends beyond the sensorimotor network in brachial plexus injury patients.

    PubMed

    Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong

    2016-12-01

    Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.

  11. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Segmentation of human brain using structural MRI.

    PubMed

    Helms, Gunther

    2016-04-01

    Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given.

  13. Probing the brain with molecular fMRI.

    PubMed

    Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan

    2018-06-01

    One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Morphostructural MRI abnormalities related to neuropsychiatric disorders associated to multiple sclerosis.

    PubMed

    Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2013-01-01

    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS.

  15. Morphostructural MRI Abnormalities Related to Neuropsychiatric Disorders Associated to Multiple Sclerosis

    PubMed Central

    Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2013-01-01

    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS. PMID:23691320

  16. Relationship between brain function (aEEG) and brain structure (MRI) and their predictive value for neurodevelopmental outcome of preterm infants.

    PubMed

    Hüning, Britta; Storbeck, Tobias; Bruns, Nora; Dransfeld, Frauke; Hobrecht, Julia; Karpienski, Julia; Sirin, Selma; Schweiger, Bernd; Weiss, Christel; Felderhoff-Müser, Ursula; Müller, Hanna

    2018-05-22

    To improve the prediction of neurodevelopmental outcome in very preterm infants, this study used the combination of amplitude-integrated electroencephalography (aEEG) within the first 72 h of life and cranial magnetic resonance imaging (MRI) at term equivalent age. A single-center cohort of 38 infants born before 32 weeks of gestation was subjected to both investigations. Structural measurements were performed on MRI. Multiple regression analysis was used to identify independent factors including functional and structural brain measurements associated with outcome at a corrected age of 24 months. aEEG parameters significantly correlated with MRI measurements. Reduced deep gray matter volume was associated with low Burdjalov Score on day 3 (p < 0.0001) and day 1-3 (p = 0.0012). The biparietal width and the transcerebellar diameter were related to Burdjalov Score on day 1 (p = 0.0111; p = 0.0002). The final multiple regression analysis revealed independent predictors of neurodevelopmental outcome: intraventricular hemorrhage (p = 0.0060) and interhemispheric distance (p = 0.0052) for mental developmental index; Burdjalov Score day 1 (p = 0.0201) and interhemispheric distance (p = 0.0142) for psychomotor developmental index. Functional aEEG parameters were associated with altered brain maturation on MRI. The combination of aEEG and MRI contributes to the prediction of outcome at 24 months. What is Known: • Prematurity remains a risk factor for impaired neurodevelopment. • aEEG is used to measure brain activity in preterm infants and cranial MRI is performed to identify structural gray and white matter abnormalities with impact on neurodevelopmental outcome. What is New: • aEEG parameters observed within the first 72 h of life were associated with altered deep gray matter volumes, biparietal width, and transcerebellar diameter at term equivalent age. • The combination of aEEG and MRI contributes to the prediction of

  17. Altered spontaneous brain activity in Cushing's disease: a resting-state functional MRI study.

    PubMed

    Jiang, Hong; He, Na-Ying; Sun, Yu-Hao; Jian, Fang-Fang; Bian, Liu-Guan; Shen, Jian-Kang; Yan, Fu-Hua; Pan, Si-Jian; Sun, Qing-Fang

    2017-03-01

    Cushing's disease (CD) provides a unique and naturalist model for studying the influence of hypercortisolism on the human brain and the reversibility of these effects after resolution of the condition. This cross-sectional study used resting-state fMRI (rs-fMRI) to investigate the altered spontaneous brain activity in CD patients and the trends for potential reversibility after the resolution of the hypercortisolism. We also aim to determine the relationship of these changes with clinical characteristics and cortisol levels. Active CD patients (n = 18), remitted CD patients (n = 14) and healthy control subjects (n = 22) were included in this study. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were calculated to represent spontaneous brain activity. Our study resulted in three major findings: (i) active CD patients showed significantly altered spontaneous brain activity in the posterior cingulate cortex (PCC)/precuneus (PCu), occipital lobe (OC)/cerebellum, thalamus, right postcentral gyrus (PoCG) and left prefrontal cortex (PFC); (ii) trends for partial restoration of altered spontaneous brain activity after the resolution hypercortisolism were found in several brain regions; and (iii) active CD patients showed a significant correlation between cortisol levels and ALFF/ReHo values in the PCC/PCu, a small cluster in the OC and the right IPL. This study provides a new approach to investigating brain function abnormalities in patients with CD and enhances our understanding of the effect of hypercortisolism on the human brain. Furthermore, our explorative potential reversibility study of patients with CD may facilitate the development of future longitudinal studies. © 2016 John Wiley & Sons Ltd.

  18. MRI Evidence of Cerebellar and Extraocular Muscle Atrophy Differently Contributing to Eye Movement Abnormalities in SCA2 and SCA28 Diseases.

    PubMed

    Politi, Letterio Salvatore; Bianchi Marzoli, Stefania; Godi, Claudia; Panzeri, Marta; Ciasca, Paola; Brugnara, Gianluca; Castaldo, Anna; Di Bella, Daniela; Taroni, Franco; Nanetti, Lorenzo; Mariotti, Caterina

    2016-05-01

    Spinocerebellar ataxias type 2 and 28 (SCA2, SCA28) are autosomal dominant disorders characterized by progressive cerebellar and oculomotor abnormalities. We aimed to investigate cerebellar, brainstem, and extraocular muscle involvement in the mitochondrial SCA28 disease compared with SCA2. We obtained orbital and brain 1.5 T-magnetic resonance images (MRI) in eight SCA28 subjects, nine SCA2, and nine age-matched healthy subjects. Automated segmentation of cerebellum and frontal lobe was performed using Freesurfer software. Manual segmentations for midbrain, pons, and extraocular muscles were performed using OsiriX. Eye movement abnormalities in SCA2 subjects were characterized by slow horizontal saccades. Subjects with SCA28 variably presented hypometric saccades, saccadic horizontal pursuit, impaired horizontal gaze holding, and superior eyelid ptosis. Quantitative brain MRI demonstrated that cerebellar and pons volumes were significantly reduced in both SCA2 and SCA28 subjects compared with controls (P < 0.03), and in SCA2 subjects compared with SCA28 (P < 0.01). Midbrain and frontal lobe volumes were also significantly reduced in SCA2 compared to controls (P < 0.03), whereas these volumes did not differ between SCA2 and SCA28 and between SCA28 and control subjects. The extraocular muscle areas were 37% to 48% smaller in SCA28 subjects compared with controls (P < 0.002), and 14% to 36% smaller compared with SCA2 subjects (P < 0.03). Extraocular muscle areas did not differ between SCA2 and controls. Our MRI findings support the hypothesis of different cerebellar and extraocular myopathic contributions in the eye movement abnormalities in SCA2 and SCA28 diseases. In SCA28, a myopathic defect selectively involving the extraocular muscles supports a specific impairment of mitochondrial energy metabolism.

  19. A Protocol for the Administration of Real-Time fMRI Neurofeedback Training

    PubMed Central

    Sherwood, Matthew S.; Diller, Emily E.; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T.; Parker, Jason G.

    2017-01-01

    Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain. PMID:28872110

  20. A Protocol for the Administration of Real-Time fMRI Neurofeedback Training.

    PubMed

    Sherwood, Matthew S; Diller, Emily E; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T; Parker, Jason G

    2017-08-24

    Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain.

  1. Alteration of diffusion-tensor MRI measures in brain regions involved in early stages of Parkinson's disease.

    PubMed

    Chen, Nan-Kuei; Chou, Ying-Hui; Sundman, Mark; Hickey, Patrick; Kasoff, Willard S; Bernstein, Adam; Trouard, Theodore P; Lin, Tanya; Rapcsak, Steven Z; Sherman, Scott J; Weingarten, Carol

    2018-06-07

    Many non-motor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion tensor imaging (DTI) is suitable for detecting changes of brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved ROI based analysis methods. Results showed that 1) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; 2) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.

  2. Neuroimaging evidence of brain abnormalities in mastocytosis.

    PubMed

    Boddaert, N; Salvador, A; Chandesris, M O; Lemaître, H; Grévent, D; Gauthier, C; Naggara, O; Georgin-Lavialle, S; Moura, D S; Munsch, F; Jaafari, N; Zilbovicius, M; Lortholary, O; Gaillard, R; Hermine, O

    2017-08-08

    Mastocytosis is a rare disease in which chronic symptoms are related to mast cell accumulation and activation. Patients can display depression-anxiety-like symptoms and cognitive impairment. The pathophysiology of these symptoms may be associated with tissular mast cell infiltration, mast cell mediator release or both. The objective of this study is to perform morphological or functional brain analyses in mastocytosis to identify brain changes associated with this mast cell disorder. We performed a prospective and monocentric comparative study to evaluate the link between subjective psycho-cognitive complaints, psychiatric evaluation and objective medical data using magnetic resonance imaging with morphological and perfusion sequences (arterial spin-labeled perfusion) in 39 patients with mastocytosis compared with 33 healthy controls. In the test cohort of 39 mastocytosis patients with psycho-cognitive complaints, we found that 49% of them had morphological brain abnormalities, mainly abnormal punctuated white matter abnormalities (WMA). WMA were equally frequent in cutaneous mastocytosis patients and indolent forms of systemic mastocytosis patients (42% and 41% of patients with WMA, respectively). Patients with WMA showed increased perfusion in the putamen compared with patients without WMA and with healthy controls. Putamen perfusion was also negatively correlated with depression subscores. This study demonstrates, for we believe the first time, a high prevalence of morphological and functional abnormalities in the brains of mastocytosis patients with neuropsychiatric complaints. Further studies are required to determine the mechanism underpinning this association and to ascertain its specificity.

  3. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity.

    PubMed

    Yau, Po Lai; Kang, Esther H; Javier, David C; Convit, Antonio

    2014-08-01

    To ascertain whether pediatric obesity without clinically significant insulin resistance (IR) impacts brain structure and function. Thirty obese and 30 matched lean adolescents, all without clinically significant IR or a diagnosis of metabolic syndrome (MetS), received comprehensive endocrine, neuropsychological, and MRI evaluations. Relative to lean adolescents, obese non-IR adolescents had significantly lower academic achievement (i.e., arithmetic and spelling) and tended to score lower on working memory, attention, psychomotor efficiency, and mental flexibility. In line with our prior work on adolescent MetS, memory was unaffected in uncomplicated obesity. Reductions in the thickness of the orbitofrontal and anterior cingulate cortices as well as reductions of microstructural integrity in major white matter tracts without gross volume changes were also uncovered. It was documented, for the first time, that adolescents with uncomplicated obesity already have subtle brain alterations and lower performance in selective cognitive domains. When interpreting these preliminary data in the context of our prior reports of similar, but more extensive brain findings in obese adolescents with MetS and T2DM, it was concluded that "uncomplicated" obesity may also result in subtle brain alterations, suggesting a possible dose effect with more severe metabolic dysregulation giving rise to greater abnormalities. Copyright © 2014 The Obesity Society.

  4. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  5. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.

    PubMed

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.

  6. Impact of brain injury on functional measures of amplitude-integrated EEG at term equivalent age in premature infants.

    PubMed

    El Ters, N M; Vesoulis, Z A; Liao, S M; Smyser, C D; Mathur, A M

    2017-08-01

    To evaluate the association between qualitative and quantitative amplitude-integrated EEG (aEEG) measures at term equivalent age (TEA) and brain injury on magnetic resonance imaging (MRI) in preterm infants. A cohort of premature infants born at <30 weeks of gestation and with moderate-to-severe MRI injury on a TEA MRI scan was identified. A contemporaneous group of gestational age-matched control infants also born at <30 weeks of gestation with none/mild injury on MRI was also recruited. Quantitative aEEG measures, including maximum and minimum amplitudes, bandwidth span and spectral edge frequency (SEF 90 ), were calculated using an offline software package. The aEEG recordings were qualitatively scored using the Burdjalov system. MRI scans, performed on the same day as aEEG, occurred at a mean postmenstrual age of 38.0 (range 37 to 42) weeks and were scored for abnormality in a blinded manner using an established MRI scoring system. Twenty-eight (46.7%) infants had a normal MRI or mild brain abnormality, while 32 (53.3%) infants had moderate-to-severe brain abnormality. Univariate regression analysis demonstrated an association between severity of brain abnormality and quantitative measures of left and right SEF 90 and bandwidth span (β=-0.38, -0.40 and 0.30, respectively) and qualitative measures of cyclicity, continuity and total Burdjalov score (β=-0.10, -0.14 and -0.12, respectively). After correcting for confounding variables, the relationship between MRI abnormality score and aEEG measures of SEF 90 , bandwidth span and Burdjalov score remained significant. Brain abnormalities on MRI at TEA in premature infants are associated with abnormalities on term aEEG measures, suggesting that anatomical brain injury may contribute to delay in functional brain maturation as assessed using aEEG.

  7. Acute Brain Imaging in Children: Can MRI Replace CT as a Screening Tool?

    PubMed

    Wagner, Matthias W; Kontzialis, Marinos; Seeburg, Daniel; Stern, Steven E; Oshmyansky, Alexander; Poretti, Andrea; Huisman, Thierry A G M

    2016-01-01

    To determine if axial T2-weighted imaging can serve as screening tool for pediatric brain imaging. We retrospectively evaluated consecutive brain magnetic resonance imaging (MRI) data of 161 children (74 girls) with a mean age of 7.44 ± 5.71 years. Standard of reference was the final report of neuroradiology attendings. Three readers with different levels of experience were blinded for clinical diagnoses and study indications. First, readers studied only the axial T2-weighted screening sequence. Second, they studied all available anatomical and functional MRI sequences as performed per standard protocol for each clinical indication. The readings were classified as normal or abnormal. Sensitivity and specificity were measured. Axial T2 screening yielded a sensitivity of 77-88% and a specificity of 92%. The full studies/data sets had a sensitivity of 89-95% and a specificity of 86-93%. Nineteen of 167 studies were acquired for acute and 148 of 167 studies for nonacute clinical indication. Twenty-five false-negative diagnoses paneled in three groups were made by all readers together. Readers misread four of 19 studies with acute and 21 of 148 studies with nonacute clinical indication. Four of 21 misread studies with nonacute indications harbored unexpected findings needing management. Axial T2 screening can detect pediatric brain abnormalities with high sensitivity and specificity and can possibly replace CT as screening tool if the reading physician is aware of possible limitations/pitfalls. The level of experience influences sensitivity and specificity. Adding diffusion-weighted imaging and susceptibility-weighted imaging to a 3-dimensional T2-weighted sequence would most likely further increase sensitivity and specificity. Copyright © 2015 by the American Society of Neuroimaging.

  8. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    PubMed

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  9. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  10. Distributed abnormalities of brain white matter architecture in patients with dominant optic atrophy and OPA1 mutations.

    PubMed

    Rocca, Maria A; Bianchi-Marzoli, Stefania; Messina, Roberta; Cascavilla, Maria Lucia; Zeviani, Massimo; Lamperti, Costanza; Milesi, Jacopo; Carta, Arturo; Cammarata, Gabriella; Leocani, Letizia; Lamantea, Eleonora; Bandello, Francesco; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2015-05-01

    Using advanced MRI techniques, we investigated the presence and topographical distribution of brain grey matter (GM) and white matter (WM) alterations in dominant optic atrophy (DOA) patients with genetically proven OPA1 mutation as well as their correlation with clinical and neuro-ophthalmologic findings. Nineteen DOA patients underwent neurological, neuro-ophthalmologic and brainstem auditory evoked potentials (BAEP) evaluations. Voxel-wise methods were applied to assess regional GM and WM abnormalities in patients compared to 20 healthy controls. Visual acuity was reduced in 16 patients. Six DOA patients (4 with missense mutations) had an abnormal I peripheral component (auditory nerve) at BAEP. Compared to controls, DOA patients had significant atrophy of the optic nerves (p < 0.0001). Voxel-based morphometry (VBM) analysis showed that, compared to controls, DOA patients had significant WM atrophy of the chiasm and optic tracts; whereas no areas of GM atrophy were found. Tract-based spatial statistics (TBSS) analysis showed that compared to controls, DOA patients had significantly lower mean diffusivity, axial and radial diffusivity in the WM of the cerebellum, brainstem, thalamus, fronto-occipital-temporal lobes, including the cingulum, corpus callosum, corticospinal tract and optic radiation bilaterally. No abnormalities of fractional anisotropy were detected. No correlations were found between volumetric and diffusivity abnormalities quantified with MRI and clinical and neuro-ophthalmologic measures of disease severity. Consistently with pathological studies, tissue loss in DOA patients is limited to anterior optic pathways reflecting retinal ganglion cell degeneration. Distributed abnormalities of diffusivity indexes might reflect abnormal intracellular mitochondrial morphology as well as alteration of protein levels due to OPA1 mutations.

  11. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    PubMed

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  12. Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.

    PubMed

    Navarrete, Ana F; Blezer, Erwin L A; Pagnotta, Murillo; de Viet, Elizabeth S M; Todorov, Orlin S; Lindenfors, Patrik; Laland, Kevin N; Reader, Simon M

    2018-06-12

    Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution. © 2018 S. Karger AG, Basel.

  13. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses.

    PubMed

    Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng

    2016-11-15

    It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (p<0.001). Using GQI, we found decreases in diffusion anisotropy in the superior longitudinal fasciculus and increases in diffusion probability distribution in the frontal lobe among subjects with MDD (p<0.01). In GTA and NBS analyses, we found several disruptions in connectivity among subjects with MDD, particularly in the frontal lobes (p<0.05). In addition, structural alterations were correlated with depressive symptom severity (p<0.01). Small sample size; the cross-sectional design did not allow us to observe treatment effects in the MDD participants. Our results provide further evidence indicating that MDD may be conceptualized as a brain disorder with abnormal circuit structure and

  14. fMRI brain activation in patients with insomnia disorder during a working memory task.

    PubMed

    Son, Young-Don; Kang, Jae Myeong; Cho, Seong-Jin; Lee, Jung-Sun; Hwang, Hee Young; Kang, Seung-Gul

    2018-05-01

    This study used functional magnetic resonance imaging (fMRI) to investigate differences in the functional brain activation of patients with insomnia disorder (n = 21, mean age = 36.6) and of good sleepers (n = 26, mean age = 33.2) without other comorbidities or structural brain abnormalities during a working memory task. All participants completed a clinical questionnaire, were subjected to portable polysomnography (PSG), and performed the working memory task during an fMRI scan. The subjects who were suspected of major sleep disorder and comorbid psychiatric disorders except insomnia disorder were excluded. To compare the brain activation on working memory from the insomnia group with those from the good-sleeper group, a two-sample t test was performed. Statistical significance was determined using 3DClustSim with the updated algorithm to obtain a reasonable cluster size and p value for each analysis. We observed higher levels of brain activation in the right lateral inferior frontal cortex and the right superior temporal pole in the insomnia group compared to good sleepers (cluster-based multiple comparison correction, p < 0.001, k = 34 @ α = 0.01). Thus, patients with insomnia disorder showed increased brain activation during working memory relative to good sleepers, and this may be indicative of compensatory brain activation to maintain cognitive performance in patients with insomnia disorder without other comorbidities.

  15. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  16. Central nervous system abnormalities in Fanconi anaemia: patterns and frequency on magnetic resonance imaging

    PubMed Central

    Alston, Robert; Wright, Neville B; Chandler, Kate; Bonney, Denise; Wynn, Robert F; Will, Andrew M; Punekar, Maqsood; Loughran, Sean; Kilday, John-Paul; Schindler, Detlev; Patel, Leena; Meyer, Stefan

    2015-01-01

    Objective: Fanconi anaemia (FA) is an inherited disease associated with congenital and developmental abnormalities resulting from the disruption of a multigenic DNA damage response pathway. This study aimed to define the MRI appearances of the brain in patients with FA in correlation with their genetic and clinical features. Methods: A review of the brain MRI in 20 patients with FA was performed. Pituitary size and frequencies of the radiological findings of individuals with FA and age-matched controls were determined. Results: Abnormalities were identified in 18 (90%) patients with FA, the commonest being a small pituitary (68%, p < 0.01 females and p < 0.001 males). In five cases (25%, p = 0.02), the pituitary morphology was also abnormal. Posterior fossa abnormalities were seen in six cases (30%, p = 0.01) including Chiari I malformation (n = 3), Dandy–Walker variant (n = 2) and cerebellar atrophy (n = 2). Six patients (30%, p = 0.01) had morphological structural variation of the corpus callosum (CC). Conclusion: The incidence of central nervous system (CNS) abnormalities in FA is higher than previously reported, with a midline predominance that points to impact in the early stages of CNS development. MRI brain imaging is important for endocrine assessment and pre-transplant evaluation and can make an important contribution to clinical decision-making. Advances in knowledge: The incidence of brain structural abnormalities in FA is higher than previously reported, with abnormalities of the posterior fossa, CC and pituitary being common. There is an association with gender and reduction in pituitary size which does not strongly correlate with biochemically evident endocrine abnormality. PMID:26369989

  17. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    PubMed Central

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  18. Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18-22 mo of age: an MRI and DTI study.

    PubMed

    Rose, Jessica; Cahill-Rowley, Katelyn; Vassar, Rachel; Yeom, Kristen W; Stecher, Ximena; Stevenson, David K; Hintz, Susan R; Barnea-Goraly, Naama

    2015-12-01

    Near-term brain structure was examined in preterm infants in relation to neurodevelopment. We hypothesized that near-term macrostructural brain abnormalities identified using conventional magnetic resonance imaging (MRI), and white matter (WM) microstructure detected using diffusion tensor imaging (DTI), would correlate with lower cognitive and motor development and slower, less-stable gait at 18-22 mo of age. One hundred and two very-low-birth-weight preterm infants (≤1,500 g birth weight; ≤32 wk gestational age) were recruited prior to routine near-term brain MRI at 36.6 ± 1.8 wk postmenstrual age. Cerebellar and WM macrostructure was assessed on conventional structural MRI. DTI was obtained in 66 out of 102 and WM microstructure was assessed using fractional anisotropy and mean diffusivity (MD) in six subcortical brain regions defined by DiffeoMap neonatal atlas. Neurodevelopment was assessed with Bayley-Scales-of-Infant-Toddler-Development, 3rd-Edition (BSID-III); gait was assessed using an instrumented mat. Neonates with cerebellar abnormalities identified using MRI demonstrated lower mean BSID-III cognitive composite scores (89.0 ± 10.1 vs. 97.8 ± 12.4; P = 0.002) at 18-22 mo. Neonates with higher DTI-derived left posterior limb of internal capsule (PLIC) MD demonstrated lower cognitive and motor composite scores (r = -0.368; P = 0.004; r = -0.354; P = 0.006) at 18-22 mo; neonates with higher genu MD demonstrated slower gait velocity (r = -0.374; P = 0.007). Multivariate linear regression significantly predicted cognitive (adjusted r(2) = 0.247; P = 0.002) and motor score (adjusted r(2) = 0.131; P = 0.017). Near-term cerebellar macrostructure and PLIC and genu microstructure were predictive of early neurodevelopment and gait.

  19. MRI findings in 6 cases of children by inadvertent ingestion of diphenoxylate-atropine.

    PubMed

    Xiao, Lianxiang; Lin, Xiangtao; Cao, Jinfeng; Wang, Xueyu; Wu, Lebin

    2011-09-01

    Compound diphenoxylate (diphenoxylate-atropine) poisoning can cause toxic encephalopathy in children, and magnetic resonance imaging (MRI) of the brain in this condition has not been reported. This study is to analyze brain MRI findings and to investigate the relations between MRI features and possible pathophysiological changes in children. Six children accidentally swallowed compound diphenoxylate, 4 males, 2 females, aged 20-46 months, average 33 months. Quantity of ingested diphenoxylate-atropine was from 6 to 30 tablets, each tablet contains diphenoxylate 2.5mg and atropine 0.025 mg. These patients were referred to our hospital within 24h after diphenoxylate-atropine ingestion, and underwent brain MRI scan within 24-72 h after emergency treatment. The characteristics of conventional MRI were analyzed. These pediatric patients had various symptoms of opioid intoxication and atropine toxicity. Brain MRI showed abnormal low signal intensity on T1-weighted images (T1WI) and abnormal high signal intensity on T2-weighted images (T2WI) and fluid-attenuated inversion recovery (FLAIR) imaging in bilateral in all cases; abnormal high signal intensity on T1WI, T2WI and FLAIR in 4 cases. Encephalomalacia was observed in 3 cases during follow-up. In the early stage of compound diphenoxylate poisoning in children, multiple extensive edema-necrosis and hemorrhagic-necrosis focus were observed in basic nucleus, pallium and cerebellum, these resulted in the corresponding brain dysfunction with encephalomalacia. MRI scan in the early stage in this condition may provide evidences of brain impairment, and is beneficial for the early diagnosis, treatment and prognosis assessment. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  20. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

    PubMed

    Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna

    2016-05-01

    To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  1. Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad

    2017-01-01

    Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

  2. A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy

    PubMed Central

    Shafi, Mouhsin M.; Whitfield-Gabrieli, Susan; Chu, Catherine J.; Pascual-Leone, Alvaro; Chang, Bernard S.

    2017-01-01

    Resting-state functional connectivity MRI (rs-fcMRI) is a technique that identifies connectivity between different brain regions based on correlations over time in the blood-oxygenation level dependent signal. rs-fcMRI has been applied extensively to identify abnormalities in brain connectivity in different neurologic and psychiatric diseases. However, the relationship among rs-fcMRI connectivity abnormalities, brain electrophysiology and disease state is unknown, in part because the causal significance of alterations in functional connectivity in disease pathophysiology has not been established. Transcranial Magnetic Stimulation (TMS) is a technique that uses electromagnetic induction to noninvasively produce focal changes in cortical activity. When combined with electroencephalography (EEG), TMS can be used to assess the brain's response to external perturbations. Here we provide a protocol for combining rs-fcMRI, TMS and EEG to assess the physiologic significance of alterations in functional connectivity in patients with neuropsychiatric disease. We provide representative results from a previously published study in which rs-fcMRI was used to identify regions with abnormal connectivity in patients with epilepsy due to a malformation of cortical development, periventricular nodular heterotopia (PNH). Stimulation in patients with epilepsy resulted in abnormal TMS-evoked EEG activity relative to stimulation of the same sites in matched healthy control patients, with an abnormal increase in the late component of the TMS-evoked potential, consistent with cortical hyperexcitability. This abnormality was specific to regions with abnormal resting-state functional connectivity. Electrical source analysis in a subject with previously recorded seizures demonstrated that the origin of the abnormal TMS-evoked activity co-localized with the seizure-onset zone, suggesting the presence of an epileptogenic circuit. These results demonstrate how rs-fcMRI, TMS and EEG can be

  3. Test-Retest Reliability of fMRI Brain Activity during Memory Encoding

    PubMed Central

    Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas

    2013-01-01

    The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338

  4. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    PubMed Central

    Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new

  5. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    PubMed

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  6. Relationship of hypertension, blood pressure, and blood pressure control with white matter abnormalities in the Women's Health Initiative Memory Study (WHIMS)-MRI trial.

    PubMed

    Kuller, Lewis H; Margolis, Karen L; Gaussoin, Sarah A; Bryan, Nick R; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G

    2010-03-01

    This paper evaluates the relationship of blood pressure (BP) levels at Women's Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study-Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP > or = 140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP > or = 140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia.

  7. A 3D MRI-based atlas of a lizard brain.

    PubMed

    Hoops, Daniel; Desfilis, Ester; Ullmann, Jeremy F P; Janke, Andrew L; Stait-Gardner, Timothy; Devenyi, Gabriel A; Price, William S; Medina, Loreta; Whiting, Martin J; Keogh, J Scott

    2018-06-22

    Magnetic resonance imaging (MRI) is an established technique for neuroanatomical analysis, being particularly useful in the medical sciences. However, the application of MRI to evolutionary neuroscience is still in its infancy. Few magnetic resonance brain atlases exist outside the standard model organisms in neuroscience and no magnetic resonance atlas has been produced for any reptile brain. A detailed understanding of reptilian brain anatomy is necessary to elucidate the evolutionary origin of enigmatic brain structures such as the cerebral cortex. Here, we present a magnetic resonance atlas for the brain of a representative squamate reptile, the Australian tawny dragon (Agamidae: Ctenophorus decresii), which has been the object of numerous ecological and behavioral studies. We used a high-field 11.74T magnet, a paramagnetic contrasting-enhancing agent and minimum-deformation modeling of the brains of thirteen adult male individuals. From this, we created a high-resolution three-dimensional model of a lizard brain . The 3D-MRI model can be freely downloaded and allows a better comprehension of brain areas, nuclei, and fiber tracts, facilitating comparison with other species and setting the basis for future comparative evolution imaging studies. The MRI model of a tawny dragon brain (Ctenophorus decresii) can be viewed online and downloaded using the Wiley Biolucida Server at wiley.biolucida.net. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  8. MRI assessment of whole-brain structural changes in aging.

    PubMed

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P <0.00001). They were associated with age ( r 2 >0.29; P <0.00001) and differed by cognitive status ( χ 2 >26.48, P <0.00001). T2-FLAIR revealed a greater level of periventricular ( χ 2 =29.09) and deep white matter ( χ 2 =26.65, P <0.001) lesions than others, but missed revealing certain dilated perivascular spaces that were seen in T2WI ( P <0.001). Microhemorrhages occurred in 15.3% of the sample examined and were detected using only T2*GRE. The T1WI- and T2WI-based BALI evaluations consistently identified the burden of aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests

  9. [A case of glioblastoma multiforme which indicated the early stage on brain MRI].

    PubMed

    Ono, K; Tohma, Y; Yoshida, M; Takamori, M

    2000-04-01

    A 57-year-old male was urgently carried to our hospital because of sudden loss of consciousness, lasting about 10 minutes. He had resumed consciousness before he arrived at our hospital. Neurologically, he had mild muscle weakness of the right arm. Deep tendon reflexes in the right upper extremity were reduced. In high level functions, speech disturbance, dysgraphia (disturbed ability to write Hiragana), and constructive apraxia were noted. A brain MRI upon admission showed a poorly demarcated, high signal intensity area in the cortical and subcortical layers of the left temporal and parietal lobes. This was visible on T 2 weighted images(T 2 WI), although no abnormalities were visible on T 1 weighted images(T 1 WI). No contrast enhancement was effected by Gd-DTPA. The patient was therefore suspected of having a tumor or degenerative disease and was monitored closely. About 4 months later after onset, his symptoms became aggravated, and brain MRI disclosed a marked low signal intensity area on T 1 WI and a heterogeneous high signal intensity area on T 2 WI. The abnormal signal intensity area was surrounded by extensive edema and mass effect. Ring-shaped, irregular, contrast enhanced areas were also visible. Cerebral angiography revealed a poorly demarcated tumor stain in the area supplied by the middle cerebral artery. The tumor was removed surgically and was histopathologically rated as glioblastoma multiforme(GBM). Because this case represents a valuable example of early stage of GBM, it will be discussed in this paper, along with differential diagnoses.

  10. Parallel workflow tools to facilitate human brain MRI post-processing

    PubMed Central

    Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang

    2015-01-01

    Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043

  11. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less

  12. There is less MRI brain lesions and no characteristic MRI Brain findings in IIDDs patients with positive AQP4 serology among Malaysians.

    PubMed

    Abdullah, Suhailah; Fadzli, Farhana; Ramli, Norlisah; Tan, Chong Tin

    2017-02-01

    The recently introduced International Consensus diagnostic criteria for diagnosis of neuromyelitis spectrum disorder include patients who are seronegative for AQP4 antibody. The criteria are dependent on typical MRI changes in the spinal cord, optic nerve and brain. This study aims to determine whether there are significant differences in the MRI brain images between AQP4 positive and negative patients with IIDDs. MRI brain of patients with a diagnosis of IIDDs presented to the Hospital from 2010 to 2015 was analysed. The MRI was assessed by 2 radiologists blinded to the AQP4 status, on features said to be typical of NMOSD and MS. Thirty nine patients fulfilled the criteria and were included in the study. They consisted of 19 AQP4 seropositive and 20 AQP4 seronegative patients. The mean age was older (37.0 vs. 28.8 years) among the AQP4 positive group. The majority of the patients were ethnic Chinese (72%), followed by the Malays and Indians. Those with AQP4 seropositive status generally has less brain lesions, and significantly less fulfilling the McDonald DIS criteria as compared to those with AQP4 seronegative status (15.8% vs. 60.0%, p=0.005). None of the seven cerebral MRI features highlighted in NMOSD 2015 diagnostic criteria, said to be characteristic of NMOSD was more common among the AQP4 positive patients. These features were in fact seen less frequently among the AQP4 seropositive patients. An example was the extensive hemispheric lesion seen in 10.5% of AQP4 seropositive patients vs. 45% of that AQP4 seronegative group. There was no characteristic MRI brain features in the Malaysian AQP4 seropositive IIDD patients versus those who are seronegative. This could be a reflection of ethnical difference. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. fMRI brain response during sentence reading comprehension in children with benign epilepsy with centro-temporal spikes.

    PubMed

    Malfait, D; Tucholka, A; Mendizabal, S; Tremblay, J; Poulin, C; Oskoui, M; Srour, M; Carmant, L; Major, P; Lippé, S

    2015-11-01

    Children with benign epilepsy with centro-temporal spikes (BECTS) often have language problems. Abnormal epileptic activity is found in central and temporal brain regions, which are involved in reading and semantic and syntactic comprehension. Using functional magnetic resonance imaging (fMRI), we examined reading networks in BECTS children with a new sentence reading comprehension task involving semantic and syntactic processing. Fifteen children with BECTS (age=11y 1m ± 16 m; 12 boys) and 18 healthy controls (age=11 y 8m ± 20 m; 11 boys) performed an fMRI reading comprehension task in which they read a pair of syntactically complex sentences and decided whether the target sentence (the second sentence in the pair) was true or false with respect to the first sentence. All children also underwent an exhaustive neuropsychological assessment. We demonstrated weaknesses in several cognitive domains in BECTS children. During the sentence reading fMRI task, left inferior frontal regions and bilateral temporal areas were activated in BECTS children and healthy controls. However, additional brain regions such as the left hippocampus and precuneus were activated in BECTS children. Moreover, specific activation was found in the left caudate and putamen in BECTS children but not in healthy controls. Cognitive results and accuracy during the fMRI task were associated with specific brain activation patterns. BECTS children recruited a wider network to perform the fMRI sentence reading comprehension task, with specific activation in the left dorsal striatum. BECTS cognitive performance differently predicted functional activation in frontal and temporal regions compared to controls, suggesting differences in brain network organisation that contribute to reading comprehension. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Sources and implications of whole-brain fMRI signals in humans

    PubMed Central

    Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex

    2016-01-01

    Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941

  15. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  16. [MRI in Duane retraction syndrome: Preliminary results].

    PubMed

    Denis, D; Cousin, M; Zanin, E; Toesca, E; Girard, N

    2011-09-01

    Duane retraction syndrome (DRS) is a congenital ocular motility disorder with innervational dysgenesis. MRI improves our understanding of this disease by providing in vivo access to nerves and oculomotor muscles. The goal of this prospective study (2000-2008) was to analyze DRS clinically and neuroradiologically. Twenty-four patients (27 eyes) received a complete ophthalmologic evaluation and a brain-orbital MRI. The average age was 6.1 years. MRI was performed with 3D T2 CISS-weighted images through the brainstem to visualize the cisternal segments of the cranial nerves and the orbit (lateral and medial recti muscles). MRI anomalies were classified according to type I, II, and III and depending on their condition in the posterior fossa (absence, hypoplasia) and in the orbit (muscle anomalies). Of 27 eyes, 70% were type I, 19% type II, and 11% type III. MRI showed abducens nerve abnormalities in 93% of the cases (78% absence) and muscle abnormalities in 57.5% of the cases. A detailed description showed 100% abducens nerve abnormalities and 58% abnormal lateral rectus muscle in type I, 60% abducens nerve abnormalities and 60% abnormal lateral rectus muscle in type II, and 100% abducens nerve abnormalities and 66% abnormal lateral rectus in type III. This study presents two major findings: detection of abducens nerve abnormalities in most cases of DRS whatever the type, associated with muscle abnormalities, and the confirmation that this absence may exist in type II (2/5). Thus MRI proved to be a valuable tool for investigating these patients, improving the comprehension of the physiopathogenics of this disease. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Preprocessing film-copied MRI for studying morphological brain changes.

    PubMed

    Pham, Tuan D; Eisenblätter, Uwe; Baune, Bernhard T; Berger, Klaus

    2009-06-15

    The magnetic resonance imaging (MRI) of the brain is one of the important data items for studying memory and morbidity in elderly as these images can provide useful information through the quantitative measures of various regions of interest of the brain. As an effort to fully automate the biomedical analysis of the brain that can be combined with the genetic data of the same human population and where the records of the original MRI data are missing, this paper presents two effective methods for addressing this imaging problem. The first method handles the restoration of the film-copied MRI. The second method involves the segmentation of the image data. Experimental results and comparisons with other methods suggest the usefulness of the proposed image analysis methodology.

  19. Comparison between magnetic resonance imaging and fetopathology in the evaluation of fetal posterior fossa non-cystic abnormalities.

    PubMed

    Tilea, B; Delezoide, A L; Khung-Savatovski, S; Guimiot, F; Vuillard, E; Oury, J F; Garel, C

    2007-06-01

    To compare magnetic resonance imaging (MRI) and fetopathological findings in the evaluation of non-cystic fetal posterior fossa anomalies and to describe associated abnormalities. This was a prospective study from 2000 to 2005 of fetuses identified on ultrasound as having sonographic suspicion of posterior fossa malformation. All underwent a thorough MRI examination of the fetal brain, after which we classified each fetus as presenting one of the following pathologies: vermian hypoplasia or agenesis, cerebellar and/or brain stem hypoplasia, destructive or dysplastic lesions. All of the pregnancies were then terminated, after which the whole fetus underwent fetopathological examination. We compared the findings from MRI and fetopathological examinations and recorded the associated cerebral and extracerebral abnormalities. Twenty-five fetuses were included. MRI was performed at a mean gestational age of 31 weeks, and fetopathological examination at 33 weeks. In 12 cases we observed vermian hypoplasia, six had partial vermian agenesis, 11 had cerebellar hemisphere hypoplasia, seven had brain stem hypoplasia, four had destructive lesions and six had dysplastic lesions. The two techniques were similar in their performance with respect to the detection of vermian agenesis, brain stem hypoplasia and destructive lesions. There were four false-positive results of MRI for vermian hypoplasia and a poor agreement regarding cerebellar hemisphere hypoplasia. No dysplastic lesions were diagnosed by MRI. None of the posterior fossa malformations was isolated and many cerebral and extracerebral abnormalities were found. A systematic analysis of the posterior fossa in fetal MRI makes it possible to diagnose accurately most posterior fossa malformations. These malformations never occurred in isolation in our study.

  20. Morphometric brain abnormalities in boys with conduct disorder.

    PubMed

    Huebner, Thomas; Vloet, Timo D; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R; Herpertz, Sabine C; Herpertz-Dahlmann, Beate

    2008-05-01

    Children with the early-onset type of conduct disorder (CD) are at high risk for developing an antisocial personality disorder. Although there have been several neuroimaging studies on morphometric differences in adults with antisocial personality disorder, little is known about structural brain aberrations in boys with CD. Magnetic resonance imaging and voxel-based morphometry were used to assess abnormalities in gray matter volumes in 23 boys ages 12 to 17 years with CD (17 comorbid for attention-deficit/hyperactivity disorder) in comparison with age- and IQ-matched controls. Compared with healthy controls, mean gray matter volume was 6% smaller in the clinical group. Compared with controls, reduced gray matter volumes were found in the left orbitofrontal region and bilaterally in the temporal lobes, including the amygdala and hippocampus on the left side in the CD group. Regression analyses in the clinical group indicated an inverse association of hyperactive/impulsive symptoms and widespread gray matter abnormalities in the frontoparietal and temporal cortices. By contrast, CD symptoms correlated primarily with gray matter reductions in limbic brain structures. The data suggest that boys with CD and comorbid attention-deficit/hyperactivity disorder show brain abnormalities in frontolimbic areas that resemble structural brain deficits, which are typically observed in adults with antisocial behavior.

  1. Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies.

    PubMed

    Fraguas, David; Díaz-Caneja, Covadonga M; Pina-Camacho, Laura; Janssen, Joost; Arango, Celso

    2016-06-01

    Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neurologic abnormalities in murderers.

    PubMed

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  3. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI.

    PubMed

    Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong

    2017-02-01

    We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.

  4. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  5. [Recent advances in newborn MRI].

    PubMed

    Morel, B; Hornoy, P; Husson, B; Bloch, I; Adamsbaum, C

    2014-07-01

    The accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Structural brain MRI trait polygenic score prediction of cognitive abilities

    PubMed Central

    Luciano, Michelle; Marioni, Riccardo E; Hernández, Maria Valdés; Maniega, Susana Munoz; Hamilton, Iona F; Royle, Natalie A.; Scotland, Generation; Chauhan, Ganesh; Bis, Joshua C.; Debette, Stephanie; DeCarli, Charles; Fornage, Myriam; Schmidt, Reinhold; Ikram, M. Arfan; Launer, Lenore J.; Seshadri, Sudha; Bastin, Mark E.; Porteous, David J.; Wardlaw, Joanna; Deary, Ian J

    2016-01-01

    Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance with cognitive traits. Here, we use genetic association results from large meta-analytic studies of genome-wide association for brain infarcts, white matter hyperintensities, intracranial, hippocampal and total brain volumes to estimate polygenic scores for these traits in three Scottish samples: Generation Scotland: Scottish Family Health Study (GS:SFHS), and the Lothian Birth Cohorts of 1936 (LBC1936) and 1921 (LBC1921). These five brain MRI trait polygenic scores were then used to 1) predict corresponding MRI traits in the LBC1936 (numbers ranged 573 to 630 across traits) and 2) predict cognitive traits in all three cohorts (in 8,115 to 8,250 persons). In the LBC1936, all MRI phenotypic traits were correlated with at least one cognitive measure; and polygenic prediction of MRI traits was observed for intracranial volume. Meta-analysis of the correlations between MRI polygenic scores and cognitive traits revealed a significant negative correlation (maximal r=0.08) between the hippocampal volume polygenic score and measures of global cognitive ability collected in childhood and in old age in the Lothian Birth Cohorts. The lack of association to a related general cognitive measure when including the GS:SFHS points to either type 1 error or the importance of using prediction samples that closely match the demographics of the genome-wide association samples from which prediction is based. Ideally, these analyses should be repeated in larger samples with data on both MRI and cognition, and using MRI GWA results from even larger meta-analysis studies. PMID:26427786

  7. Comparative Effectiveness of Frame-based, Frameless and Intraoperative MRI Guided Brain Biopsy Techniques

    PubMed Central

    Lu, Yi; Yeung, Cecil; Radmanesh, Alireza; Wiemann, Robert; Black, Peter M.; Golby, Alexandra J.

    2015-01-01

    Objective Intraoperative MRI (IoMRI) guided brain biopsy provides a real time visual feedback of the lesion that is sampled during surgery. The objective of the study is to compare the diagnostic yield and safety profiles of ioMRI needle brain biopsy with two traditional brain biopsy methods: frame-based and frameless stereotactic brain biopsies. Methods A retrospective analysis from 288 consecutive needle brain biopsies in 277 patients undergoing stereotactic brain biopsy with any of the three biopsy methods at Brigham and Women's Hospital from 2000 to 2008 was performed. Variables such as age, sex, history of radiation and previous surgery, pathology results, complications and postoperative stays were analyzed. Results Over the course of eight years, 288 brain biopsies were performed. 253 (87.8%) biopsies yielded positive diagnostic tissue. Young age (<40 years), history of brain radiation or surgery were significant negative predictors for a positive biopsy diagnostic yield. Excluding patients with prior radiation or surgeries, no significant difference in diagnostic yield was detected among the three groups, with frame-based, frameless and ioMRI guided needle biopsies yield 96.9%, 91.8% and 89.9% positive diagnostic yield, respectively. 19 biopsies (6.6%) were complicated by serious adverse events. The ioMRI-guided brain biopsy was associated with less serious adverse events and the shortest postoperative hospital stay. Conclusions Frame-based, frameless stereotactic and ioMRI guided brain needle biopsy have comparable diagnostic yield for patients with no prior treatments (either radiation or surgery). IoMRI guided brain biopsy is associated with fewer serious adverse events and shorter hospital stay. PMID:25088233

  8. Neural conduction abnormality in the brain stem and prevalence of the abnormality in late preterm infants with perinatal problems.

    PubMed

    Jiang, Ze Dong

    2013-08-01

    Neurodevelopment in late preterm infants has recently attracted considerable interest. The prevalence of brain stem conduction abnormality remains unknown. We examined maximum length sequence brain stem auditory evoked response in 163 infants, born at 33-36 weeks gestation, who had various perinatal problems. Compared with 49 normal term infants without problems, the late preterm infants showed a significant increase in III-V and I-V interpeak intervals at all 91-910/s clicks, particularly at 455 and 910/s (p < 0.01-0.001). The I-III interval was slightly increased, without statistically significant difference from the controls at any click rates. These results suggest that neural conduction along the, mainly more central or rostral part of, auditory brain stem is abnormal in late preterm infants with perinatal problems. Of the 163 late preterm infant, the number (and percentage rate) of infants with abnormal I-V interval at 91, 227, 455, and 910/s clicks was, respectively, 11 (6.5%), 17 (10.2%), 37 (22.3%), and 31 (18.7%). The number (and percentage rate) of infants with abnormal III-V interval at these rates was, respectively, 10 (6.0%), 17 (10.2%), 28 (16.9), and 36 (21.2%). Apparently, the abnormal rates were much higher at 455 and 910/s clicks than at lower rates 91 and 227/s. In total, 42 (25.8%) infants showed abnormal I-V and/or III-V intervals. Conduction in, mainly in the more central part, the brain stem is abnormal in late preterm infants with perinatal problems. The abnormality is more detectable at high- than at low-rate sensory stimulation. A quarter of late preterm infants with perinatal problems have brain stem conduction abnormality.

  9. Abnormal brain activation during emotion processing of euthymic bipolar patients taking different mood stabilizers.

    PubMed

    Li, Linling; Ji, Erni; Tang, Fei; Qiu, Yunhai; Han, Xue; Zhang, Shengli; Zhang, Zhiguo; Yang, Haichen

    2018-06-16

    Numerous functional magnetic resonance imaging studies have been conducted to elucidate emotion processing of patients with bipolar disorder (BD), but due to different inclusion criteria used, especially for the history of medication use, the results for euthymic BD patients are inconsistent. For this reason, brain functional effects of psychopharmacological treatments on BD patients have been investigated by numerous fMRI studies, but there is no existing report for brain functional effects of different mood stabilizers. In this study, we compared the emotion processing in BD patients treated by two popularly used mood stabilizer, lithium (N = 13; 30 ± 9 years) and valproate (N = 16; 33 ± 8 years), as well as healthy controls (HC; N = 16; 29 ± 7 years). Two emotional tasks were applied in this study: one used emotional pictures of everyday objects and scenes, and another used emotional facial expression pictures. The main findings were that BD on lithium showed increased fMRI activation in the right dorsal anterior cingulate cortex and bilateral lingual gyrus in response to the positive pictures relative to neutral pictures compared with BD on valproate and HC. Besides, no abnormal activation was observed in the amygdala. Limitations of this study comprise the small sample size and the cross-sectional design. Therefore, the results were suggestive of a different effect of lithium and valproate on brain activities during emotion processing but no causal role can be proposed. The enduring impairments in euthymic state could provide clues to the brain regions involved in the primary pathology of BD.

  10. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence

    PubMed Central

    d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-01-01

    Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559

  11. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    PubMed

    Tu, Ye; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei

    2015-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  12. MRI abnormalities of peripheral nerve and muscle are common in amyotrophic lateral sclerosis and share features with multifocal motor neuropathy

    PubMed Central

    Staff, Nathan P.; Amrami, Kimberly K.; Howe, Benjamin M.

    2015-01-01

    Introduction MRI of peripheral nerve and muscle in patients with ALS may be performed to investigate alternative diagnoses including multifocal motor neuropathy (MMN). MRI findings of peripheral nerve and muscle are not well described in these conditions, making interpretation of results difficult. Methods We examined systematically the peripheral nerve and muscle MRI findings in patients with ALS (n=60) and MMN (n=8). Results In patients with ALS and MMN, abnormal MRIs were common (85% and 75%, respectively) but did not correlate with disease severity. Peripheral nerve MRI abnormalities were similar in frequency (ALS: 58% vs. MMN: 63%) with most changes being of mild-to-moderate severity. Muscle MRI changes were more common in ALS (57% vs. 33%), and no muscle atrophy was seen in patients with MMN. Discussion MRI abnormalities of peripheral nerve and muscle in ALS and MMN are common and share some features. PMID:25736373

  13. Brain abnormalities in murderers indicated by positron emission tomography.

    PubMed

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  14. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence.

    PubMed

    Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-07-01

    Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Can Induced Hypothermia Be Assured During Brain MRI in Neonates with Hypoxic-Ischemic Encephalopathy?

    PubMed Central

    Wintermark, Pia; Labrecque, Michelle; Warfield, Simon. K.; DeHart, Stephanie; Hansen, Anne

    2012-01-01

    Until now, brain magnetic resonance imaging (MRIs) in asphyxiated neonates receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in early brain MRI while hypothermia is still being provided, in order to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in twelve asphyxiated neonates while they were treated with hypothermia. Median difference between esophageal temperature on NICU departure and return was 0.1°C (range: −0.8 to 0.8°C). In conclusion, therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. PMID:20737144

  16. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.

    PubMed

    Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J; Mendrik, Adriënne M; Biessels, Geert Jan; Pluim, Josien P W; Išgum, Ivana

    2018-01-01

    Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T 1 -weighted image, a T 2 -weighted fluid attenuated inversion recovery (FLAIR) image and a T 1 -weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge ( n  = 20), quantitatively and qualitatively in relatively healthy older subjects ( n  = 96), and qualitatively in patients from a memory clinic ( n  = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ  = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of

  17. Brain tumor segmentation using holistically nested neural networks in MRI images.

    PubMed

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  18. Relationship of Hypertension, Blood Pressure, and Blood Pressure Control With White Matter Abnormalities in the Women’s Health Initiative Memory Study (WHIMS)—MRI Trial

    PubMed Central

    Kuller, Lewis H.; Margolis, Karen L.; Gaussoin, Sarah A.; Bryan, Nick R.; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G.

    2010-01-01

    This paper evaluates the relationship of blood pressure (BP) levels at Women’s Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study—Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP ≥140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP ≥140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia. PMID:20433539

  19. Automatic MRI 2D brain segmentation using graph searching technique.

    PubMed

    Pedoia, Valentina; Binaghi, Elisabetta

    2013-09-01

    Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    PubMed

    Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J; Davey, Christopher G; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M; Fernández-Aranda, Fernando; Cardoner, Narcís

    2015-01-01

    Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  1. Correlation between blink reflex abnormalities and magnetic resonance imaging findings in patients with multiple sclerosis.

    PubMed

    Degirmenci, Eylem; Erdogan, Cagdas; Bir, Levent Sinan

    2013-09-01

    This study investigates the correlation between brain magnetic resonance imaging findings and blink reflex abnormalities in patients with relapsing remitting multiple sclerosis. Twenty-six patients and 17 healthy subjects were included in this study. Blink reflex test (BRT) results were obtained using right and left stimulations; thus, 52 BRT results were recorded for the patient group, and 34 BRT results were recorded for the control group. The magnetic resonance imaging (MRI) findings were classified based on the existence of brainstem lesions (hyperintense lesion on T2 weighted (W) and fast fluid-attenuated inversion recovery MRI or contrast-enhancing lesion on T1W MRI). Correlation analysis was performed for the BRT and MRI findings. The percentage of individuals with abnormal BRT results (including R1 latency, ipsilateral R2 latency, and contralateral R2 latency) was significantly higher in the patient group as compared to the control group (p values: 0.015, 0.001, and 0.002, respectively). Correlation analysis revealed significant correlations between contralateral R2 latency abnormalities and brainstem lesions (p value: 0.011). Our results showed significant correlation correlations between contralateral R2 latency abnormalities and brainstem lesions and these results may be explained the effects of multiple demyelinating lesions of the brain stem of patients with relapsing remitting multiple sclerosis.

  2. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: A longitudinal in vivo MRI study.

    PubMed

    Crum, William R; Sawiak, Stephen J; Chege, Winfred; Cooper, Jonathan D; Williams, Steven C R; Vernon, Anthony C

    2017-07-01

    Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images. Exposure to MIA resulted in decreases in the volume of several cortical regions, the hippocampus, amygdala, striatum, nucleus accumbens and unexpectedly, the lateral ventricles, relative to controls. In contrast, the volumes of the thalamus, ventral mesencephalon, brain stem and major white matter tracts were larger, relative to controls. These volumetric changes were maximal between post-natal day 50 and 100 with no differences between the groups thereafter. These data are consistent with and extend prior studies of brain structure in MIA-exposed rodents. Apart from the ventricular findings, these data have robust face validity to clinical imaging findings reported in studies of individuals at high clinical risk for a psychiatric disorder. Further work is now required to address the relationship of these MRI changes to behavioral dysfunction and to establish thier cellular correlates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Interictal Electroencephalography (EEG) Findings in Children with Epilepsy and Bilateral Brain Lesions on Magnetic Resonance Imaging (MRI).

    PubMed

    Zubcevic, Smail; Milos, Maja; Catibusic, Feriha; Uzicanin, Sajra; Krdzalic, Belma

    2015-12-01

    Neuroimaging procedures and electroencephalography (EEG) are basic parts of investigation of patients with epilepsies. The aim is to try to assess relationship between bilaterally localized brain lesions found in routine management of children with newly diagnosed epilepsy and their interictal EEG findings. Total amount of 68 patients filled criteria for inclusion in the study that was performed at Neuropediatrics Department, Pediatric Hospital, University Clinical Center Sarajevo, or its outpatient clinic. There were 33 girls (48,5%) and 35 boys (51,5%). Average age at diagnosis of epilepsy was 3,5 years. Both neurological and neuropsychological examination in the moment of making diagnosis of epilepsy was normal in 27 (39,7%) patients, and showed some kind of delay or other neurological finding in 41 (60,3%). Brain MRI showed lesions that can be related to antenatal or perinatal events in most of the patients (ventricular dilation in 30,9%, delayed myelination and post-hypoxic changes in 27,9%). More than half of patients (55,9%) showed bilateral interictal epileptiform discharges on their EEGs, and further 14,7% had other kinds of bilateral abnormalities. Frequency of bilateral epileptic discharges showed statistically significant predominance on level of p<0,05. Cross tabulation between specific types of bilateral brain MRI lesions and EEG finding did not reveal significant type of EEG for assessed brain lesions. We conclude that there exists relationship between bilaterally localized brain MRI lesions and interictal bilateral epileptiform or nonspecific EEG findings in children with newly diagnosed epilepsies. These data are suggesting that in cases when they do not correlate there is a need for further investigation of seizure etiology.

  4. In vivo Visuotopic Brain Mapping with Manganese-Enhanced MRI and Resting-State Functional Connectivity MRI

    PubMed Central

    Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.

    2014-01-01

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the

  5. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  6. A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data

    PubMed Central

    Calabrese, Evan; Badea, Alexandra; Cofer, Gary; Qi, Yi; Johnson, G. Allan

    2015-01-01

    Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data. PMID:26048951

  7. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  8. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  9. Structural MRI biomarkers of shared pathogenesis in autism spectrum disorder and epilepsy.

    PubMed

    Blackmon, Karen

    2015-06-01

    Etiological factors that contribute to a high comorbidity between autism spectrum disorder (ASD) and epilepsy are the subject of much debate. Does epilepsy cause ASD or are there common underlying brain abnormalities that increase the risk of developing both disorders? This review summarizes evidence from quantitative MRI studies to suggest that abnormalities of brain structure are not necessarily the consequence of ASD and epilepsy but are antecedent to disease expression. Abnormal gray and white matter volumes are present prior to onset of ASD and evident at the time of onset in pediatric epilepsy. Aberrant brain growth trajectories are also common in both disorders, as evidenced by blunted gray matter maturation and white matter maturation. Although the etiological factors that explain these abnormalities are unclear, high heritability estimates for gray matter volume and white matter microstructure demonstrate that genetic factors assert a strong influence on brain structure. In addition, histopathological studies of ASD and epilepsy brain tissue reveal elevated rates of malformations of cortical development (MCDs), such as focal cortical dysplasia and heterotopias, which supports disruption of neuronal migration as a contributing factor. Although MCDs are not always visible on MRI with conventional radiological analysis, quantitative MRI detection methods show high sensitivity to subtle malformations in epilepsy and can be potentially applied to MCD detection in ASD. Such an approach is critical for establishing quantitative neuroanatomic endophenotypes that can be used in genetic research. In the context of emerging drug treatments for seizures and autism symptoms, such as rapamycin and rapalogs, in vivo neuroimaging markers of subtle structural brain abnormalities could improve sample stratification in human clinical trials and potentially extend the range of patients that might benefit from treatment. This article is part of a Special Issue entitled "Autism

  10. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  11. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low

  12. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced

  13. Abnormal neural activity of brain regions in treatment-resistant and treatment-sensitive major depressive disorder: a resting-state fMRI study.

    PubMed

    Guo, Wen-bin; Liu, Feng; Chen, Jin-dong; Gao, Keming; Xue, Zhi-min; Xu, Xi-jia; Wu, Ren-rong; Tan, Chang-lian; Sun, Xue-li; Liu, Zhe-ning; Chen, Hua-fu; Zhao, Jing-ping

    2012-10-01

    Patients with treatment-resistant depression (TRD) and those with treatment-sensitive depression (TSD) responded to antidepressants differently. Previous studies have commonly shown that patients with TRD or TSD had abnormal neural activity in different brain regions. In the present study, we used a coherence-based ReHo (Cohe-ReHo) approach to test the hypothesis that patients with TRD or TSD had abnormal neural activity in different brain regions. Twenty-three patients with TRD, 22 with TSD, and 19 healthy subjects (HS) matched with gender, age, and education level participated in the study. ANOVA analysis revealed widespread differences in Cohe-ReHo values among the three groups in different brain regions which included bilateral superior frontal gyrus, bilateral cerebellum, left inferior temporal gyrus, left occipital cortex, and both sides of fusiform gyrus. Compared to HS, lower Cohe-ReHo values were observed in TRD group in bilateral superior frontal gyrus and left cerebellum; in contrast, in TSD group, lower Cohe-ReHo values were mainly found in bilateral superior frontal gyrus. Compared to TSD group, TRD group had lower Cohe-ReHo in bilateral cerebellum and higher Cohe-ReHo in left fusiform gyrus. There was a negative correlation between Cohe-ReHo values of the left fusiform gyrus and illness duration in the pooled patients (r = 0.480, p = 0.001). The sensitivity and specificity of cerebellar Cohe-ReHo values differentiating TRD from TSD were 83% and 86%, respectively. Compared to healthy controls, both TRD and TSD patients shared the majority of brain regions with abnormal neural activity. However, the lower Cohe-ReHo values in the cerebellum might be as a marker to differentiate TRD from TSD with high sensitivity and specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A survey on abnormal uterine bleeding among radiographers with frequent MRI exposure using intrauterine contraceptive devices.

    PubMed

    Huss, A; Schaap, K; Kromhout, H

    2018-02-01

    Based on a previous case report of menometrorrhagia (prolonged/excessive uterine bleeding, occurring at irregular and/or frequent intervals) in MRI workers with intrauterine devices (IUDs), it was evaluated whether this association could be confirmed. A survey was performed among 381 female radiographers registered with their national association. Logistic regression was used to analyze associations of abnormal uterine bleeding with the frequency of working with MRI scanners, presence near the scanner/in the scanner room during image acquisition, and with scanner strength or type. A total of 68 women reported using IUDs, and 72 reported abnormal uterine bleeding. Compared with unexposed women not using IUDs, the odds ratio in women with IUDs working with MRI scanners was 2.09 (95% confidence interval 0.83-3.66). Associations were stronger if women working with MRI reported being present during image acquisition (odds ratio 3.43, 95% CI 1.26-9.34). Associations with scanner strength or type were not consistent. Radiographers using IUDs who are occupationally exposed to stray fields from MRI scanners report abnormal uterine bleeding more often than their co-workers without an IUD, or nonexposed co-workers with an IUD. In particular, radiographers present inside the scanner room during image acquisition showed an increased risk. Magn Reson Med 79:1083-1089, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry

    NASA Astrophysics Data System (ADS)

    Ateca-Cabarga, Juan C.; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P.; Barco, Ángel; Canals, Santiago; Moratal, David

    2015-11-01

    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp+/- and cbp+/+ littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.

  16. Altered Dynamics of the fMRI Response to Faces in Individuals with Autism

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2016-01-01

    Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…

  17. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    PubMed

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  18. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    PubMed Central

    Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain. PMID:26634147

  19. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    PubMed

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  20. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  1. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  2. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study.

    PubMed

    Quiroz, Yakeel T; Schultz, Aaron P; Chen, Kewei; Protas, Hillary D; Brickhouse, Michael; Fleisher, Adam S; Langbaum, Jessica B; Thiyyagura, Pradeep; Fagan, Anne M; Shah, Aarti R; Muniz, Martha; Arboleda-Velasquez, Joseph F; Munoz, Claudia; Garcia, Gloria; Acosta-Baena, Natalia; Giraldo, Margarita; Tirado, Victoria; Ramírez, Dora L; Tariot, Pierre N; Dickerson, Bradford C; Sperling, Reisa A; Lopera, Francisco; Reiman, Eric M

    2015-08-01

    Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation-carrying and noncarrying children with ADAD. Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellín, Colombia, between August 2011 and June 2012. All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding-dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task-related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were -0.590 [0.50] for noncarriers and -0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation-carrying children demonstrated increased functional connectivity of the posterior

  3. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    PubMed

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  4. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

    PubMed Central

    Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-01-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain. PMID:23434588

  5. Brain and Cognition Abnormalities in Long-Term Anabolic-Androgenic Steroid Users

    PubMed Central

    Kaufman, Marc J.; Janes, Amy C.; Hudson, James I.; Brennan, Brian P.; Kanayama, Gen; Kerrigan, Andrew R.; Jensen, J. Eric; Pope, Harrison G.

    2015-01-01

    Background Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. Methods This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). Results AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). Conclusions Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction. PMID:25986964

  6. Multiresolution texture models for brain tumor segmentation in MRI.

    PubMed

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  7. Education and the cognitive decline associated with MRI-defined brain infarct.

    PubMed

    Elkins, J S; Longstreth, W T; Manolio, T A; Newman, A B; Bhadelia, R A; Johnston, S C

    2006-08-08

    To assess whether educational attainment, a correlate of cognitive reserve, predicts the amount of cognitive decline associated with a new brain infarct. The Cardiovascular Health Study is a population-based, longitudinal study of people aged 65 years and older. Cognitive function was measured annually using the Modified Mini-Mental State Examination (3MS) and the Digit-Symbol Substitution Test (DSST). The authors tested whether education level modified 1) the cross-sectional association between cognitive performance and MRI-defined infarct and 2) the change in cognitive function associated with an incident infarct at a follow-up MRI. In cross-sectional analysis (n = 3,660), MRI-defined infarct was associated with a greater impact on 3MS performance in the lowest education quartile when compared with others (p for heterogeneity = 0.012). Among those with a follow-up MRI who had no infarct on initial MRI (n = 1,433), education level was not associated with the incidence, size, or location of new brain infarct. However, a new MRI-defined infarct predicted substantially greater decline in 3MS scores in the lowest education group compared with the others (6.3, 95% CI 4.4- to 8.2-point decline vs 1.7, 95% CI 0.7- to 2.7-point decline; p for heterogeneity < 0.001). Higher education was not associated with smaller declines in DSST performance in the setting of MRI-defined infarct. Education seems to modify an individual's decline on a test of general cognitive function when there is incident brain infarct. These findings are consistent with the hypothesis that cognitive reserve influences the impact of vascular injury in the brain.

  8. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels.

    PubMed

    Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong

    2018-04-01

    Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI

    PubMed Central

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990

  10. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    PubMed

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  11. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    PubMed Central

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  12. Increased resting-state brain entropy in Alzheimer's disease.

    PubMed

    Xue, Shao-Wei; Guo, Yonghu

    2018-03-07

    Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.

  13. Nonlinear Complexity Analysis of Brain fMRI Signals in Schizophrenia

    PubMed Central

    Sokunbi, Moses O.; Gradin, Victoria B.; Waiter, Gordon D.; Cameron, George G.; Ahearn, Trevor S.; Murray, Alison D.; Steele, Douglas J.; Staff, Roger T.

    2014-01-01

    We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H). 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV) criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems. PMID:24824731

  14. Learning implicit brain MRI manifolds with deep learning

    NASA Astrophysics Data System (ADS)

    Bermudez, Camilo; Plassard, Andrew J.; Davis, Larry T.; Newton, Allen T.; Resnick, Susan M.; Landman, Bennett A.

    2018-03-01

    An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease or markers of development in populations. Having a low-dimensional manifold of an image allows for easier statistical comparisons between groups and the synthesis of group representatives. Previous studies have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have been limited by assumptions of explicit similarity measures. In this work, we use deep learning techniques to investigate implicit manifolds of normal brains and generate new, high-quality images. We explore implicit manifolds by addressing the problems of image synthesis and image denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by performing a cross-correlation with the training set. Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5. The quality score of the synthetic image showed substantial overlap with that of the real images. Moreover, we use an autoencoder with skip connections for image denoising, showing that the proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the power of artificial networks to synthesize realistic imaging data, which can be used to improve image processing techniques and provide a quantitative framework to structural changes in the brain.

  15. Novel frontiers in ultra-structural and molecular MRI of the brain.

    PubMed

    Duyn, Jeff H; Koretsky, Alan P

    2011-08-01

    Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.

  16. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F

  17. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    PubMed

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  18. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    PubMed Central

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  19. Brain magnetic resonance imaging findings in Smith-Lemli-Opitz syndrome.

    PubMed

    Lee, Ryan W Y; Conley, Sandra K; Gropman, Andrea; Porter, Forbes D; Baker, Eva H

    2013-10-01

    Smith-Lemli-Opitz syndrome (SLOS) is a neurodevelopmental disorder caused by inborn errors of cholesterol metabolism resulting from mutations in 7-dehydrocholesterol reductase (DHCR7). There are only a few studies describing the brain imaging findings in SLOS. This study examines the prevalence of magnetic resonance imaging (MRI) abnormalities in the largest cohort of patients with SLOS to date. Fifty-five individuals with SLOS (27 M, 28 F) between age 0.17 years and 25.4 years (mean = 6.2, SD = 5.8) received a total of 173 brain MRI scans (mean = 3.1 per subject) on a 1.5T GE scanner between September 1998 and December 2003, or on a 3T Philips scanner between October 2010 and September 2012; all exams were performed at the Clinical Center of the National Institutes of Health. We performed a retrospective review of these imaging studies for both major and minor brain anomalies. Aberrant MRI findings were observed in 53 of 55 (96%) SLOS patients, with abnormalities of the septum pellucidum the most frequent (42/55, 76%) finding. Abnormalities of the corpus callosum were found in 38 of 55 (69%) patients. Other findings included cerebral atrophy, cerebellar atrophy, colpocephaly, white matter lesions, arachnoid cysts, Dandy-Walker variant, and type I Chiari malformation. Significant correlations were observed when comparing MRI findings with sterol levels and somatic malformations. Individuals with SLOS commonly have anomalies involving the midline and para-midline structures of the brain. Further studies are required to examine the relationship between structural brain abnormalities and neurodevelopmental disability in SLOS. © 2013 The Authors. American Journal of Medical Genetics Part A Published by U.S. Government Work.

  20. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group.

  1. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    PubMed

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  2. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    PubMed

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR

  3. Postural abnormalities and contraversive pushing following right hemisphere brain damage.

    PubMed

    Lafosse, C; Kerckhofs, E; Vereeck, L; Troch, M; Van Hoydonck, G; Moeremans, M; Sneyers, C; Broeckx, J; Dereymaeker, L

    2007-06-01

    We investigated the presence of postural abnormalities in a consecutive sample of stroke patients, with either left or right brain damage, in relation to their perceived body position in space. The presence or absence of posture-related symptoms was judged by two trained therapists and subsequently analysed by hierarchical classes analysis (HICLAS). The subject classes resulting from the HICLAS model were further validated with respect to posture-related measurements, such as centre of gravity position and head position, as well as measurements related to the postural body scheme, such as the perception of postural and visual verticality. The results of the classification analysis clearly demonstrated a relation between the presence of right brain damage and abnormalities in body geometry. The HICLAS model revealed three classes of subjects: The first class contained almost all the patients without neglect and without any signs of contraversive pushing. They were mainly characterised by a normal body axis in any position. The second class were all neglect patients but predominantly without any contraversive pushing. The third class contained right brain damaged patients, all showing neglect and mostly exhibiting contraversive pushing. The patients in the third class showed a clear resistance to bringing the weight over to the ipsilesional side when the therapist attempted to make the subject achieve a vertical posture across the midline. The clear correspondence between abnormalities of the observed body geometry and the tilt of the subjective postural and visual vertical suggests that a patient's postural body geometry is characterised by leaning towards the side of space where he/she feels aligned with an altered postural body scheme. The presence of contraversive pushing after right brain damage points in to a spatial higher-order processing deficit underlying the higher frequency and severity of the axial postural abnormalities found after right brain lesions.

  4. Eye Movement Abnormalities in Joubert Syndrome

    PubMed Central

    Weiss, Avery H.; Doherty, Dan; Parisi, Melissa; Shaw, Dennis; Glass, Ian; Phillips, James O.

    2011-01-01

    Purpose Joubert syndrome is a genetic disorder characterized by hypoplasia of the midline cerebellum and deficiency of crossed connections between neural structures in the brain stem that control eye movements. The goal of the study was to quantify the eye movement abnormalities that occur in Joubert syndrome. Methods Eye movements were recorded in response to stationary stimuli and stimuli designed to elicit smooth pursuit, saccades, optokinetic nystagmus (OKN), vestibulo-ocular reflex (VOR), and vergence using video-oculography or Skalar search coils in 8 patients with Joubert syndrome. All patients underwent high-resolution magnetic resonance imaging (MRI). Results All patients had the highly characteristic molar tooth sign on brain MRI. Six patients had conjugate pendular (n = 4) or see-saw nystagmus (n = 2); gaze holding was stable in four patients. Smooth-pursuit gains were 0.28 to 1.19, 0.11 to 0.68, and 0.33 to 0.73 at peak stimulus velocities of 10, 20, and 30 deg/s in six patients; smooth pursuit could not be elicited in four patients. Saccade gains in five patients ranged from 0.35 to 0.91 and velocities ranged from 60.9 to 259.5 deg/s. Targeted saccades could not be elicited in five patients. Horizontal OKN gain was uniformly reduced across gratings drifted at velocities of 15, 30, and 45 deg/s. VOR gain was 0.8 or higher and phase appropriate in three of seven subjects; VOR gain was 0.3 or less and phase was indeterminate in four subjects. Conclusions The abnormalities in gaze-holding and eye movements are consistent with the distributed abnormalities of midline cerebellum and brain stem regions associated with Joubert syndrome. PMID:19443711

  5. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    PubMed

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  6. Longitudinal brain MRI study in a mouse model of Rett Syndrome and the effects of choline.

    PubMed

    Ward, B C; Agarwal, S; Wang, K; Berger-Sweeney, J; Kolodny, N H

    2008-07-01

    Rett Syndrome (RTT), the second most common cause of mental retardation in girls, is associated with mutations of an X-linked gene encoding the transcriptional repressor protein MeCP2. Mecp2(1lox) mutant mice express no functional MeCP2 protein and exhibit behavioral abnormalities similar to those seen in RTT patients. Here we monitor the development of both whole brain and regional volumes between 21 and 42 days of age in this model of RTT using MRI. We see decreases in whole brain volumes in both male and female mutant mice. Cerebellar and ventricular volumes are also decreased in RTT males. Previous work has suggested that perinatal choline supplementation alleviates some of the behavioral deficits in both male and female Mecp2(1lox) mutant mice. Here we show that perinatal choline supplementation also positively affects whole brain volume in heterozygous females, and cerebellar volume in male RTT mice.

  7. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    PubMed

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  8. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.

  9. A novel POMT2 mutation causes mild congenital muscular dystrophy with normal brain MRI

    PubMed Central

    MURAKAMI, Terumi; HAYASHI, Yukiko K.; OGAWA, Megumu; NOGUCHI, Satoru; CAMPBELL, Kevin P.; TOGAWA, Masami; INOUE, Takehiko; OKA, Akira; OHNO, Kousaku; NONAKA, Ikuya; NISHINO, Ichizo

    2009-01-01

    We report a patient harboring a novel homozygous mutation of c.604T>G (p.F202V) in POMT2. He showed delayed psychomotor development but acquired the ability to walk at the age of 3 years and 10 months. His brain MRI was normal. No ocular abnormalities were seen. Biopsied skeletal muscle revealed markedly decreased but still detectable glycosylated forms of alpha-dystroglycan (α-DG). Our results indicate that mutations in POMT2 can cause a wide spectrum of clinical phenotypes as observed in other genes associated with alpha-dystroglycanopathy. Presence of small amounts of partly glycosylated α-DG may have a role in reducing the clinical symptoms of alpha-dystroglycanopathy. PMID:18804929

  10. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.

    PubMed Central

    Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J

    1996-01-01

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661

  11. Assessment of the usefulness of magnetic resonance brain imaging in patients presenting with acute seizures.

    PubMed

    Olszewska, D A; Costello, D J

    2014-12-01

    Magnetic Resonance Imaging (MRI) is increasingly available as a tool for assessment of patients presenting to acute services with seizures. We set out to prospectively determine the usefulness of early MRI brain in a cohort of patients presenting with acute seizures. We examined the MR imaging studies performed in patients admitted solely because of acute seizures to Cork University Hospital over a 12-month period. The main aim of the study was to determine if the MRI established the proximate cause for the patient's recent seizure. We identified 91 patients who underwent MRI brain within 48 h of admission for seizures. Of the 91 studies, 51 were normal (56 %). The remaining 40 studies were abnormal as follows: microvascular disease (usually moderate/severe) (n = 19), post-traumatic gliosis (n = 7), remote symptomatic lesion (n = 6), primary brain tumour (n = 5), venous sinus thrombosis (n = 3), developmental lesion (n = 3), post-surgical gliosis (n = 3) and single cases of demyelination, unilateral hippocampal sclerosis, lobar haemorrhage and metastatic malignant melanoma. Abnormalities in diffusion-weighted sequences that were attributable to prolonged ictal activity were seen in nine patients, all of who had significant ongoing clinical deficits, most commonly delirium. Of the 40 patients with abnormal MRI studies, seven patients had unremarkable CT brain. MR brain imaging revealed the underlying cause for acute seizures in 44 % of patients. CT brain imaging failed to detect the cause of the acute seizures in 19 % of patients in whom subsequent MRI established the cause. This study emphasises the importance of obtaining optimal imaging in people admitted with acute seizures.

  12. Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients.

    PubMed

    Sevel, Landrew S; Boissoneault, Jeff; Letzen, Janelle E; Robinson, Michael E; Staud, Roland

    2018-05-30

    Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group classification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.

  13. Brain MRI findings as an important diagnostic clue in glutaric aciduria type 1.

    PubMed

    Nunes, J; Loureiro, S; Carvalho, S; Pais, R P; Alfaiate, C; Faria, A; Garcia, P; Diogo, L

    2013-04-01

    Glutaric aciduria type 1 is an autosomal recessive disorder caused by deficiency of glutaryl-coenzyme A dehydrogenase, with accumulation of glutaric acid, 3-hydroxyglutaric acid and glutaconic acid. Increased blood glutarylcarnitine levels are the basis for identification of affected infants by newborn screening. Despite the highly variability, this disease usually presents with an acute encephalitis-like encephalopathy in infancy or childhood after a period of normal development. The characteristic neurological sequel is a complex movement disorder due to acute bilateral striatal injury. Frequently, the only abnormality preceding the first episode is a progressive macrocephaly. Although neuroimaging findings are quite variable, the widening of the Sylvian fissures combined with abnormalities of the basal ganglia in a child with macrocephaly should raise the suspicion of this diagnosis. We describe two patients in whom macrocephaly was the only presenting symptom and whose diagnosis was suggested by the brain MRI findings. Our purpose is to illustrate the clinical value of neuroimaging in the diagnosis of glutaric aciduria type 1 even before the onset of neurologic symptoms, which is particularly important if newborn screening is not available.

  14. Identification of Amnestic Mild Cognitive Impairment Using Multi-Modal Brain Features: A Combined Structural MRI and Diffusion Tensor Imaging Study.

    PubMed

    Xie, Yunyan; Cui, Zaixu; Zhang, Zhongmin; Sun, Yu; Sheng, Can; Li, Kuncheng; Gong, Gaolang; Han, Ying; Jia, Jianping

    2015-01-01

    Identifying amnestic mild cognitive impairment (aMCI) is of great clinical importance because aMCI is a putative prodromal stage of Alzheimer's disease. The present study aimed to explore the feasibility of accurately identifying aMCI with a magnetic resonance imaging (MRI) biomarker. We integrated measures of both gray matter (GM) abnormalities derived from structural MRI and white matter (WM) alterations acquired from diffusion tensor imaging at the voxel level across the entire brain. In particular, multi-modal brain features, including GM volume, WM fractional anisotropy, and mean diffusivity, were extracted from a relatively large sample of 64 Han Chinese aMCI patients and 64 matched controls. Then, support vector machine classifiers for GM volume, FA, and MD were fused to distinguish the aMCI patients from the controls. The fused classifier was evaluated with the leave-one-out and the 10-fold cross-validations, and the classifier had an accuracy of 83.59% and an area under the curve of 0.862. The most discriminative regions of GM were mainly located in the medial temporal lobe, temporal lobe, precuneus, cingulate gyrus, parietal lobe, and frontal lobe, whereas the most discriminative regions of WM were mainly located in the corpus callosum, cingulum, corona radiata, frontal lobe, and parietal lobe. Our findings suggest that aMCI is characterized by a distributed pattern of GM abnormalities and WM alterations that represent discriminative power and reflect relevant pathological changes in the brain, and these changes further highlight the advantage of multi-modal feature integration for identifying aMCI.

  15. Individual white matter fractional anisotropy analysis on patients with MRI negative partial epilepsy.

    PubMed

    Duning, Thomas; Kellinghaus, Christoph; Mohammadi, Siawoosh; Schiffbauer, Hagen; Keller, Simon; Ringelstein, E Bernd; Knecht, Stefan; Deppe, Michael

    2010-02-01

    Conventional structural MRI fails to identify a cerebral lesion in 25% of patients with cryptogenic partial epilepsy (CPE). Diffusion tensor imaging is an MRI technique sensitive to microstructural abnormalities of cerebral white matter (WM) by quantification of fractional anisotropy (FA). The objectives of the present study were to identify focal FA abnormalities in patients with CPE who were deemed MRI negative during routine presurgical evaluation. Diffusion tensor imaging at 3 T was performed in 12 patients with CPE and normal conventional MRI and in 67 age matched healthy volunteers. WM integrity was compared between groups on the basis of automated voxel-wise statistics of FA maps using an analysis of covariance. Volumetric measurements from high resolution T1-weighted images were also performed. Significant FA reductions in WM regions encompassing diffuse areas of the brain were observed when all patients as a group were compared with controls. On an individual basis, voxel based analyses revealed widespread symmetrical FA reduction in CPE patients. Furthermore, asymmetrical temporal lobe FA reduction was consistently ipsilateral to the electroclinical focus. No significant correlations were found between FA alterations and clinical data. There were no differences in brain volumes of CPE patients compared with controls. Despite normal conventional MRI, WM integrity abnormalities in CPE patients extend far beyond the epileptogenic zone. Given that unilateral temporal lobe FA abnormalities were consistently observed ipsilateral to the seizure focus, analysis of temporal FA may provide an informative in vivo investigation into the localisation of the epileptogenic zone in MRI negative patients.

  16. EKG-based detection of deep brain stimulation in fMRI studies.

    PubMed

    Fiveland, Eric; Madhavan, Radhika; Prusik, Julia; Linton, Renee; Dimarzio, Marisa; Ashe, Jeffrey; Pilitsis, Julie; Hancu, Ileana

    2018-04-01

    To assess the impact of synchronization errors between the assumed functional MRI paradigm timing and the deep brain stimulation (DBS) on/off cycling using a custom electrocardiogram-based triggering system METHODS: A detector for measuring and predicting the on/off state of cycling deep brain stimulation was developed and tested in six patients in office visits. Three-electrode electrocardiogram measurements, amplified by a commercial bio-amplifier, were used as input for a custom electronics box (e-box). The e-box transformed the deep brain stimulation waveforms into transistor-transistor logic pulses, recorded their timing, and propagated it in time. The e-box was used to trigger task-based deep brain stimulation functional MRI scans in 5 additional subjects; the impact of timing accuracy on t-test values was investigated in a simulation study using the functional MRI data. Following locking to each patient's individual waveform, the e-box was shown to predict stimulation onset with an average absolute error of 112 ± 148 ms, 30 min after disconnecting from the patients. The subsecond accuracy of the e-box in predicting timing onset is more than adequate for our slow varying, 30-/30-s on/off stimulation paradigm. Conversely, the experimental deep brain stimulation onset prediction accuracy in the absence of the e-box, which could be off by as much as 4 to 6 s, could significantly decrease activation strength. Using this detector, stimulation can be accurately synchronized to functional MRI acquisitions, without adding any additional hardware in the MRI environment. Magn Reson Med 79:2432-2439, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Body growth and brain development in premature babies: an MRI study.

    PubMed

    Tzarouchi, Loukia C; Drougia, Aikaterini; Zikou, Anastasia; Kosta, Paraskevi; Astrakas, Loukas G; Andronikou, Styliani; Argyropoulou, Maria I

    2014-03-01

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGAa) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGAb). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGAb in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning.

  18. Motion correction in MRI of the brain

    PubMed Central

    Godenschweger, F; Kägebein, U; Stucht, D; Yarach, U; Sciarra, A; Yakupov, R; Lüsebrink, F; Schulze, P; Speck, O

    2016-01-01

    Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed. PMID:26864183

  19. Motion correction in MRI of the brain

    NASA Astrophysics Data System (ADS)

    Godenschweger, F.; Kägebein, U.; Stucht, D.; Yarach, U.; Sciarra, A.; Yakupov, R.; Lüsebrink, F.; Schulze, P.; Speck, O.

    2016-03-01

    Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed.

  20. Parry-Romberg syndrome: intracranial MRI appearances.

    PubMed

    Moko, Sheree Bernadette; Mistry, Yezdi; Blandin de Chalain, Tristan Maurice

    2003-10-01

    To gain further insight into the pathogenesis of Parry-Romberg syndrome, a sporadic disease of unknown aetiology characterized by progressive wasting of one side of the face. Cranial MRI was performed in 10 patients with Parry-Romberg syndrome. The central nervous system findings are correlated to clinical findings and a review of the literature. Three patients with a history of migraine had abnormal brain findings confined to the cerebral hemisphere ipsilateral to the facial hemiatrophy. Two patients without CNS symptoms had intracranial changes, one ipsilateral, the other both ipsilateral and contralateral to the facial hemiatrophy, on MRI. These changes consisted of either intracerebral atrophy or white matter hyperintensity. Five patients without CNS symptoms had no pathological intracranial MRI appearances. A significant number of patients with Parry-Romberg syndrome may have underlying brain involvement. These findings are consistent with previous reports.

  1. Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence.

    PubMed

    Roman-Urrestarazu, Andres; Lindholm, Päivi; Moilanen, Irma; Kiviniemi, Vesa; Miettunen, Jouko; Jääskeläinen, Erika; Mäki, Pirjo; Hurtig, Tuula; Ebeling, Hanna; Barnett, Jennifer H; Nikkinen, Juha; Suckling, John; Jones, Peter B; Veijola, Juha; Murray, Graham K

    2016-05-01

    When adolescents with ADHD enter adulthood, some no longer meet disorder diagnostic criteria but it is unknown if biological and cognitive abnorma lities persist. We tested the hypothesis that people diagnosed with ADHD during adolescence present residual brain abnormalities both in brain structure and in working memory brain function. 83 young adults (aged 20-24 years) from the Northern Finland 1986 Birth Cohort were classified as diagnosed with ADHD in adolescence (adolescence ADHD, n = 49) or a control group (n = 34). Only one patient had received medication for ADHD. T1-weighted brain scans were acquired and processed in a voxel-based analysis using permutation-based statistics. A sub-sample of both groups (ADHD, n = 21; controls n = 23) also performed a Sternberg working memory task whilst acquiring fMRI data. Areas of structural difference were used as a region of interest to evaluate the implications that structural abnormalities found in the ADHD group might have on working memory function. There was lower grey matter volume bilaterally in adolescence ADHD participants in the caudate (p < 0.05 FWE corrected across the whole brain) at age 20-24. Working memory was poorer in adolescence ADHD participants, with associated failure to show normal load-dependent caudate activation. Young adults diagnosed with ADHD in adolescence have structural and functional deficits in the caudate associated with abnormal working memory function. These findings are not secondary to stimulant treatment, and emphasise the importance of taking a wider perspective on ADHD outcomes than simply whether or not a particular patient meets diagnostic criteria at any given point in time.

  2. Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets.

    PubMed

    Guy, Joseph R; Sati, Pascal; Leibovitch, Emily; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S

    2016-01-15

    MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology. Published by Elsevier B.V.

  3. Abnormal MRI in a patient with 'headache with neurological deficits and CSF lymphocytosis (HaNDL)'.

    PubMed

    Yilmaz, A; Kaleagasi, H; Dogu, O; Kara, E; Ozge, A

    2010-05-01

    A 27-year-old woman was admitted to the Emergency Department with right upper-extremity numbness and mild weakness followed by a bifrontal throbbing headache for 30 min, which was similar to a headache lasting for 12 h that had occurred 3 days ago. Laboratory tests were unremarkable except for cerebrospinal fluid (CSF) lymphocytic pleocytosis. On the following day, a headache episode with left hemiparesis and hemihypoaesthesia, left hemifield visio-spatial inattention, anosagnosia and confusion recurred. The headache was diagnosed as headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) syndrome according to the criteria of the second edition of the International Classification of Headache Disorders. Simultaneously performed magnetic resonance imaging (MRI) revealed swelling of the grey matter, CSF enhancement in the sulci of the right temporal and occipital regions and hypoperfusion of the same brain regions. During the following 10 days two more similar episodes recurred and during the ensuing 12 months the patient remained headache free. Neuroimaging findings of the HaNDL syndrome are always thought as virtually normal. MRI abnormalities in our patient have not been reported in HaNDL syndrome previously, although they have been reported in hemiplegic migraine patients before. The findings in our case suggest that hemiplegic migraine and HaNDL syndrome may share a common pathophysiological pathway resulting in similar imaging findings and neurological symptoms.

  4. Structural MRI markers of brain aging early after ischemic stroke.

    PubMed

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  5. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  6. Increased frequency of brain pathology in inmates of a high-security forensic institution: a qualitative CT and MRI scan study.

    PubMed

    Witzel, Joachim G; Bogerts, Bernhard; Schiltz, Kolja

    2016-09-01

    This study aimed to assess whether brain pathology might be more abundant in forensic inpatients in a high-security setting than in non-criminal individuals. By using a previously used reliable approach, we explored the frequency and extent of brain pathology in a large group of institutionalized offenders who had not previously been considered to be suffering from structural brain damage and compare it to healthy, non-offending subjects. MRI and CT brain scans from 148 male inpatients of a high-security mental health institution (offense type: 51 sex, 80 violent, 9 arson, and 8 nonviolent) that were obtained due to headache, vertigo, or psychological complaints during imprisonment were assessed and compared to 52 non-criminal healthy controls. Brain scans were assessed qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1), or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex, and medial temporal structures bilaterally as well as third ventricle. Forensic inpatients displayed signs of brain damage to a significantly higher degree than healthy controls (p < 0.001). Even after adjustment for age, in the patients, being younger than the controls (p < 0.05), every offender type group displayed a higher proportion of subjects with brain regions categorized as definitely abnormal than the non-criminal controls. Within the forensic inpatients, offense type groups did not significantly differ in brain pathology. The astonishingly high prevalence of brain pathology in institutionalized inmates of a high-security mental health institution who previously had not been considered to be suffering from an organic brain syndrome raises questions on whether such neuroradiological assessment might be considered as a routine procedure in newly admitted patients. Furthermore, it highlights that organic changes, detectable under clinical routine

  7. Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: A resting-state fMRI study.

    PubMed

    Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei

    2018-03-15

    To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children.

  9. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    PubMed Central

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological

  10. Relationship of Intraoperative Cerebral Oxygen Saturation to Neurodevelopmental Outcome and Brain MRI at One Year of Age in Infants Undergoing Biventricular Repair

    PubMed Central

    Kussman, Barry D.; Wypij, David; Laussen, Peter C.; Soul, Janet S.; Bellinger, David C.; DiNardo, James A.; Robertson, Richard; Pigula, Frank A.; Jonas, Richard A.; Newburger, Jane W.

    2010-01-01

    Background Near-infrared spectroscopy (NIRS) monitoring of cerebral oxygen saturation (rSO2) has become routine in many centers, but no studies have reported the relationship of intraoperative NIRS to long-term neurodevelopmental outcomes after cardiac surgery. Methods and Results Of 104 infants undergoing biventricular repair without aortic arch reconstruction, 89 (86%) returned for neurodevelopmental testing at age 1 year. The primary NIRS variable was the integrated rSO2 (area under the curve) for rSO2 ≤ 45%; secondary variables were the average and minimum rSO2 by perfusion phase and at specific time points. Psychomotor (PDI) and Mental Development Indexes of the Bayley Scales, head circumference, neurologic examination, and abnormalities on brain MRI did not differ between subjects according to a threshold level for rSO2 of 45%. Lower PDI scores were modestly associated with lower average (r=0.23; P=0.03) and minimum rSO2 (r=0.22; P=0.04) during the 60 minute period following cardiopulmonary bypass (CPB), but not with other perfusion phases. Hemosiderin foci on brain MRI were associated with lower average rSO2 from post-induction to 60 minutes post-CPB (71±10 vs. 78±6%; P=0.01), and lower average rSO2 during the rewarming phase (72±12 vs. 83±9%; P=0.003) and during the 60 minute period following CPB (65±11 vs. 75±10%; P=0.009). In regression analyses adjusting for age ≤ 30 days, PDI score (P=0.02) and brain hemosiderin (P=0.04) remained significantly associated with rSO2 during the 60 minute period following CPB. Conclusions Perioperative periods of diminished cerebral oxygen delivery, as indicated by rSO2, are associated with one-year PDI and brain MRI abnormalities among infants undergoing reparative heart surgery. Clinical Trial Registration Information http://clinicaltrials.gov/ct2/show/NCT00006183 PMID:20606124

  11. BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses.

    PubMed

    Aas, Monica; Haukvik, Unn K; Djurovic, Srdjan; Bergmann, Ørjan; Athanasiu, Lavinia; Tesli, Martin S; Hellvin, Tone; Steen, Nils Eiel; Agartz, Ingrid; Lorentzen, Steinar; Sundet, Kjetil; Andreassen, Ole A; Melle, Ingrid

    2013-10-01

    Brain derived neurotrophic factor (BDNF) is important for brain development and plasticity, and here we tested if the functional BDNF val66met variant modulates the association between high levels of childhood abuse, cognitive function, and brain abnormalities in psychoses. 249 patients with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder were consecutively recruited to the TOP research study (mean±age: 30.7±10.9; gender: 49% males). History of childhood trauma was obtained using the Childhood Trauma Questionnaire. Cognitive function was assessed through a standardized neuropsychological test battery. BDNF val66met was genotyped using standardized procedures. A sub-sample of n=106 Caucasians with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder (mean±age: 32.67±10.85; 49% males) had data on sMRI. Carriers of the Methionine (met) allele exposed to high level of childhood abuse demonstrated significantly poorer cognitive functioning compared to homozygotic Valine (val/val) carriers. Taking in consideration multiple testing, using a more conservative p value, this was still shown for physical abuse and emotional abuse, as well as a trend level for sexual abuse. Further, met carriers exposed to high level of childhood sexual abuse showed reduced right hippocampal volume (r(2)=0.43; p=0.008), and larger right and left lateral ventricles (r(2)=0.37; p=0.002, and r(2)=0.27; p=0.009, respectively). Our findings were independent of age, gender, diagnosis and intracranial volume. Our data demonstrate that in patients with psychoses, met carriers of the BDNF val66met with high level of childhood abuse have more cognitive and brain abnormalities than all other groups. © 2013.

  12. MRI-guided brain PET image filtering and partial volume correction

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  13. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  14. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  16. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  17. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    PubMed

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease.

    PubMed

    Brossard-Racine, M; du Plessis, A J; Vezina, G; Robertson, R; Bulas, D; Evangelou, I E; Donofrio, M; Freeman, D; Limperopoulos, C

    2014-08-01

    Brain injury is a major complication in neonates with complex congenital heart disease. Preliminary evidence suggests that fetuses with congenital heart disease are at greater risk for brain abnormalities. However, the nature and frequency of these brain abnormalities detected by conventional fetal MR imaging has not been examined prospectively. Our primary objective was to determine the prevalence and spectrum of brain abnormalities detected on conventional clinical MR imaging in fetuses with complex congenital heart disease and, second, to compare the congenital heart disease cohort with a control group of fetuses from healthy pregnancies. We prospectively recruited pregnant women with a confirmed fetal congenital heart disease diagnosis and healthy volunteers with normal fetal echocardiogram findings who underwent a fetal MR imaging between 18 and 39 weeks gestational age. A total of 338 fetuses (194 controls; 144 with congenital heart disease) were studied at a mean gestational age of 30.61 ± 4.67 weeks. Brain abnormalities were present in 23% of the congenital heart disease group compared with 1.5% in the control group (P < .001). The most common abnormalities in the congenital heart disease group were mild unilateral ventriculomegaly in 12/33 (36.4%) and increased extra-axial spaces in 10/33 (30.3%). Subgroup analyses comparing the type and frequency of brain abnormalities based on cardiac physiology did not reveal significant associations, suggesting that the brain abnormalities were not limited to those with the most severe congenital heart disease. This is the first large prospective study reporting conventional MR imaging findings in fetuses with congenital heart disease. Our results suggest that brain abnormalities are prevalent but relatively mild antenatally in fetuses with congenital heart disease. The long-term predictive value of these findings awaits further study. © 2014 by American Journal of Neuroradiology.

  19. Simulating the Effect of Spectroscopic MRI as a Metric for Radiation Therapy Planning in Patients with Glioblastoma

    PubMed Central

    Cordova, J. Scott; Kandula, Shravan; Gurbani, Saumya; Zhong, Jim; Tejani, Mital; Kayode, Oluwatosin; Patel, Kirtesh; Prabhu, Roshan; Schreibmann, Eduard; Crocker, Ian; Holder, Chad A.; Shim, Hyunsuk; Shu, Hui-Kuo

    2017-01-01

    Due to glioblastoma’s infiltrative nature, an optimal radiation therapy (RT) plan requires targeting infiltration not identified by anatomical magnetic resonance imaging (MRI). Here, high-resolution, whole-brain spectroscopic MRI (sMRI) is used to describe tumor infiltration alongside anatomical MRI and simulate the degree to which it modifies RT target planning. In 11 patients with glioblastoma, data from preRT sMRI scans were processed to give high-resolution, whole-brain metabolite maps normalized by contralateral white matter. Maps depicting choline to N-Acetylaspartate (Cho/NAA) ratios were registered to contrast-enhanced T1-weighted RT planning MRI for each patient. Volumes depicting metabolic abnormalities (1.5−, 1.75−, and 2.0-fold increases in Cho/NAA ratios) were compared with conventional target volumes and contrast-enhancing tumor at recurrence. sMRI-modified RT plans were generated to evaluate target volume coverage and organ-at-risk dose constraints. Conventional clinical target volumes and Cho/NAA abnormalities identified significantly different regions of microscopic infiltration with substantial Cho/NAA abnormalities falling outside of the conventional 60 Gy isodose line (41.1, 22.2, and 12.7 cm3, respectively). Clinical target volumes using Cho/NAA thresholds exhibited significantly higher coverage of contrast enhancement at recurrence on average (92.4%, 90.5%, and 88.6%, respectively) than conventional plans (82.5%). sMRI-based plans targeting tumor infiltration met planning objectives in all cases with no significant change in target coverage. In 2 cases, the sMRI-modified plan exhibited better coverage of contrast-enhancing tumor at recurrence than the original plan. Integration of the high-resolution, whole-brain sMRI into RT planning is feasible, resulting in RT target volumes that can effectively target tumor infiltration while adhering to conventional constraints. PMID:28105468

  20. A family affair: brain abnormalities in siblings of patients with schizophrenia.

    PubMed

    Moran, Marcel E; Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-11-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development.

  1. A family affair: brain abnormalities in siblings of patients with schizophrenia

    PubMed Central

    Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-01-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development. PMID:23698280

  2. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping.

    PubMed

    Pinho, Ana Luísa; Amadon, Alexis; Ruest, Torsten; Fabre, Murielle; Dohmatob, Elvis; Denghien, Isabelle; Ginisty, Chantal; Becuwe-Desmidt, Séverine; Roger, Séverine; Laurier, Laurence; Joly-Testault, Véronique; Médiouni-Cloarec, Gaëlle; Doublé, Christine; Martins, Bernadette; Pinel, Philippe; Eger, Evelyn; Varoquaux, Gaël; Pallier, Christophe; Dehaene, Stanislas; Hertz-Pannier, Lucie; Thirion, Bertrand

    2018-06-12

    Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.

  4. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    PubMed Central

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is

  5. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  6. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.

    PubMed

    Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo

    2018-02-20

    To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p < 0.001). No cord MTR differences were found between patient groups. Patients with SOD1 ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.

  8. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  9. Incidental brain MRI findings in an autism twin study.

    PubMed

    Monterrey, Julio C; Philips, Jennifer; Cleveland, Sue; Tanaka, Serena; Barnes, Patrick; Hallmayer, Joachim F; Reiss, Alan L; Lazzeroni, Laura C; Hardan, Antonio Y

    2017-01-01

    Brain magnetic resonance imaging (MRI) studies suggest the prevalence of asymptomatic "incidental" findings (IF) in autism spectrum disorder (ASD) is similar to that of neurotypically developing (NT) controls. However, given the causes of IF may include both genetic and environmental factors, a twin study would facilitate comparing brain IF between ASD and NT subjects. MRI scans were examined to assess the prevalence of brain IF in twin "case pairs" (at least one twin with diagnosis of ASD) and twin "control pairs" (NT). Fifty case pairs and thirty-two control pairs were analyzed. IF were found in 68% of subjects with ASD, 71% of unaffected ASD siblings, and in 58% of control subjects (P = 0.4). IF requiring clinical follow-up occurred more frequently in subjects with ASD compared to NT controls (17% vs. 5%, respectively; P = 0.02). The concordance rate of IF in twins was 83%. A mixed effects model found younger age, male sex, and "family environment" to be significantly associated with IF. There was no difference in the prevalence rate of IF between ASD subjects and NT controls. More IF required clinical follow-up in ASD subjects compared to NT controls. The prevalence rate of IF observed in this twin study was higher than rates previously reported in singleton studies. Our results suggest the shared environment of twins - perhaps in utero - increases the risk of brain IF. Brain MRI in the initial work-up of ASD may be indicated in twins, especially in males. Autism Res 2017, 10: 113-120. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Solitary tuberculous brain lesions: 24 new cases and a review of the literature.

    PubMed

    Psimaras, D; Bonnet, C; Heinzmann, A; Cárdenas, G; Hernández José Luis, S; Tungaria, A; Behari, S; Lacrois, D; Mokhtari, K; Karantoni, E; Sokrab Tag, E; Idris Mohamed, N; Sönmez, G; Caumes, E; Roze, E

    2014-01-01

    A solitary tuberculous brain lesion (STBL) can be difficult to distinguish from a glioma, metastasis or other infectious disease, especially from a pyogenic brain abscess. We analyzed the clinical characteristics, diagnostic procedures and outcomes of 24 patients with STBL diagnosed in three centers from France, India and Mexico. We also reviewed 92 STBL cases previously reported in the literature. General symptoms were found in 54% of our patients, including enlarged lymph nodes in 20%. Cerebrospinal fluid was typically abnormal, with lymphocytic pleocytosis and a high protein level. The lung CT scan was abnormal in 56% of patients, showing lymphadenopathy or pachipleuritis. Brain MRI or CT was always abnormal, showing contrast-enhanced lesions. Typically, MRI abnormalities were hypointense on T1-weighted sequences, while T2-weighted sequences showed both a peripheral hypersignal and a central hyposignal. The diagnosis was documented microbiologically or supported histologically in 71% of cases. Clinical outcome was good in 83% of cases. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression.

    PubMed

    Liu, Chun-Hong; Ma, Xin; Wu, Xia; Zhang, Yu; Zhou, Fu-Chun; Li, Feng; Tie, Chang-Le; Dong, Jie; Wang, Yong-Jun; Yang, Zhi; Wang, Chuan-Yue

    2013-03-05

    Bipolar disorder patients experiencing a depressive episode (BD-dep) without an observed history of mania are often misdiagnosed and are consequently treated as having unipolar depression (UD), leading to inadequate treatment and poor outcomes. An essential solution to this problem is to identify objective biological markers that distinguish BD-dep and UD patients at an early stage. However, studies directly comparing the brain dysfunctions associated with BD-dep and UD are rare. More importantly, the specificity of the differences in brain activity between these mental disorders has not been examined. With whole-brain regional homogeneity analysis and region-of-interest (ROI) based receiver operating characteristic (ROC) analysis, we aimed to compare the resting-state brain activity of BD-dep and UD patients. Furthermore, we examined the specific differences and whether these differences were attributed to the brain abnormality caused by BD-dep, UD, or both. Twenty-one bipolar and 21 unipolar depressed patients, as well as 26 healthy subjects matched for gender, age, and educational levels, participated in the study. We compared the differences in the regional homogeneity (ReHo) of the BD-dep and UD groups and further identified their pathophysiological abnormality. In the brain regions showing a difference between the BD-dep and UD groups, we further conducted receptive operation characteristic (ROC) analyses to confirm the effectiveness of the identified difference in classifying the patients. We observed ReHo differences between the BD-dep and UD groups in the right ventrolateral middle frontal gyrus, right dorsal anterior insular, right ventral anterior insular, right cerebellum posterior gyrus, right posterior cingulate cortex, right parahippocampal gyrus, and left cerebellum anterior gyrus. Further ROI comparisons and ROC analysis on these ROIs showed that the right parahippocampal gyrus reflected abnormality specific to the BD-dep group, while the right

  12. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI

    PubMed Central

    Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna

    2017-01-01

    Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831

  13. Global brain atrophy and metabolic dysfunction in LGI1 encephalitis: A prospective multimodal MRI study.

    PubMed

    Szots, Monika; Blaabjerg, Morten; Orsi, Gergely; Iversen, Pernille; Kondziella, Daniel; Madsen, Camilla G; Garde, Ellen; Magnusson, Peter O; Barsi, Peter; Nagy, Ferenc; Siebner, Hartwig R; Illes, Zsolt

    2017-05-15

    Chronic cognitive deficits are frequent in leucin-rich glioma-inactivated 1 protein (LGI1) encephalitis. We examined structural and metabolic brain abnormalities following LGI1 encephalitis and correlated findings with acute and follow-up clinical outcomes. Nine patients underwent prospective multimodal 3 Tesla MRI 33.1±18months after disease onset, including automated volumetry, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). Data were compared to 9 age- and sex-matched healthy controls. Although extratemporal lesions were not present on MRI in the acute stage, tract-based spatial statistics analyses of DTI during follow-up showed widespread changes in the cerebral and cerebellar white matter (WM), most prominent in the anterior parts of the corona radiata, capsula interna and corpus callosum. MRS revealed lower glutamine/glutamate WM levels compared to controls. Higher cerebellar gray matter volume was associated with better function at disease onset (measured by the modified Rankin Scale), and higher putaminal volume was associated with better cognition by Addenbrooke's Cognitive Examination test at 23.4±7.6months. Poor clinical outcome following LGI1 encephalitis is associated with global brain atrophy and disintegration of white matter tracts. The pathological changes affect not only temporomesial structures but also frontal lobes and the cerebellum. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Brain MRI atrophy quantification in MS

    PubMed Central

    Rocca, Maria A.; Battaglini, Marco; Benedict, Ralph H.B.; De Stefano, Nicola; Geurts, Jeroen J.G.; Henry, Roland G.; Horsfield, Mark A.; Jenkinson, Mark; Pagani, Elisabetta

    2017-01-01

    Patients with the main clinical phenotypes of multiple sclerosis (MS) manifest varying degrees of brain atrophy beyond that of normal aging. Assessment of atrophy helps to distinguish clinically and cognitively deteriorating patients and predicts those who will have a less-favorable clinical outcome over the long term. Atrophy can be measured from brain MRI scans, and many technological improvements have been made over the last few years. Several software tools, with differing requirements on technical ability and levels of operator intervention, are currently available and have already been applied in research or clinical trial settings. Despite this, the measurement of atrophy in routine clinical practice remains an unmet need. After a short summary of the pathologic substrates of brain atrophy in MS, this review attempts to guide the clinician towards a better understanding of the methods currently used for quantifying brain atrophy in this condition. Important physiologic factors that affect brain volume measures are also considered. Finally, the most recent research on brain atrophy in MS is summarized, including whole brain and various compartments thereof (i.e., white matter, gray matter, selected CNS structures). Current methods provide sufficient precision for cohort studies, but are not adequate for confidently assessing changes in individual patients over the scale of months or a few years. PMID:27986875

  15. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  16. Effects of hypoglycemia on human brain activation measured with fMRI.

    PubMed

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  17. The effect of alcohol consumption on the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth

    PubMed Central

    Feldstein Ewing, Sarah W.; Sakhardande, Ashok; Blakemore, Sarah-Jayne

    2014-01-01

    Background A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. Methods For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Results Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Conclusions Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the

  18. The effect of alcohol consumption on the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth.

    PubMed

    Ewing, Sarah W Feldstein; Sakhardande, Ashok; Blakemore, Sarah-Jayne

    2014-01-01

    A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the

  19. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    PubMed

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  20. Brain MRI Findings as an Important Diagnostic Clue in Glutaric Aciduria Type 1

    PubMed Central

    Nunes, J.; Loureiro, S.; Carvalho, S.; Pais, R.P.; Alfaiate, C.; Faria, A.; Garcia, P.; Diogo, L.

    2013-01-01

    Glutaric aciduria type 1 is an autosomal recessive disorder caused by deficiency of glutaryl-coenzyme A dehydrogenase, with accumulation of glutaric acid, 3-hydroxyglutaric acid and glutaconic acid. Increased blood glutarylcarnitine levels are the basis for identification of affected infants by newborn screening. Despite the highly variability, this disease usually presents with an acute encephalitis-like encephalopathy in infancy or childhood after a period of normal development. The characteristic neurological sequel is a complex movement disorder due to acute bilateral striatal injury. Frequently, the only abnormality preceding the first episode is a progressive macrocephaly. Although neuroimaging findings are quite variable, the widening of the Sylvian fissures combined with abnormalities of the basal ganglia in a child with macrocephaly should raise the suspicion of this diagnosis. We describe two patients in whom macrocephaly was the only presenting symptom and whose diagnosis was suggested by the brain MRI findings. Our purpose is to illustrate the clinical value of neuroimaging in the diagnosis of glutaric aciduria type 1 even before the onset of neurologic symptoms, which is particularly important if newborn screening is not available. PMID:23859237

  1. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis.

    PubMed

    Perry, T L; Yong, V W; Kish, S J; Ito, M; Foulks, J G; Godolphin, W J; Sweeney, V P

    1985-10-01

    We examined autopsied brain from 10 patients with end-stage renal failure who had undergone repeated hemodialysis. Eight had classic symptoms, and two had suggestive symptoms of dialysis encephalopathy. Findings were compared with those in autopsied brain from control adults who had never been hemodialyzed. Mean gamma-aminobutyric acid (GABA) contents were significantly reduced in frontal and occipital cortex, cerebellar cortex, dentate nucleus, caudate nucleus, and medial-dorsal thalamus of the hemodialyzed patients, the reduction being greater than 40% in cerebral cortex and thalamus. Choline acetyltransferase activity was reduced by 25-35% in three cortical regions in the hemodialyzed patients. These two abnormalities were observed in the brain of each hemodialyzed patient, regardless of whether or not the patient died with unequivocal dialysis encephalopathy. Pyridoxal phosphate contents were substantially reduced in brains of the hemodialyzed patients, but metabolites of noradrenaline, 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) were present in normal amounts. Aluminum levels were abnormally high in frontal cortical gray matter in the hemodialyzed patients. Although this study does not clarify the role played by aluminum toxicity in the pathogenesis of dialysis encephalopathy, the abnormalities we found suggest the need for further neurochemical investigations in this disorder.

  2. Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients.

    PubMed

    Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping

    2015-05-01

    Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    NASA Astrophysics Data System (ADS)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  4. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.

    PubMed

    Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M

    2017-02-11

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  5. SyMRI of the Brain

    PubMed Central

    Hagiwara, Akifumi; Warntjes, Marcel; Hori, Masaaki; Andica, Christina; Nakazawa, Misaki; Kumamaru, Kanako Kunishima; Abe, Osamu; Aoki, Shigeki

    2017-01-01

    Abstract Conventional magnetic resonance images are usually evaluated using the image signal contrast between tissues and not based on their absolute signal intensities. Quantification of tissue parameters, such as relaxation rates and proton density, would provide an absolute scale; however, these methods have mainly been performed in a research setting. The development of rapid quantification, with scan times in the order of 6 minutes for full head coverage, has provided the prerequisites for clinical use. The aim of this review article was to introduce a specific quantification method and synthesis of contrast-weighted images based on the acquired absolute values, and to present automatic segmentation of brain tissues and measurement of myelin based on the quantitative values, along with application of these techniques to various brain diseases. The entire technique is referred to as “SyMRI” in this review. SyMRI has shown promising results in previous studies when used for multiple sclerosis, brain metastases, Sturge-Weber syndrome, idiopathic normal pressure hydrocephalus, meningitis, and postmortem imaging. PMID:28257339

  6. Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural

  7. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    PubMed Central

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  8. MRI Brain Volume Measurements in Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Baker, Eva H.; Levin, Sondra W.; Zhang, Zhongjian; Mukherjee, Anil B.

    2016-01-01

    Background Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative storage disease caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. PPT1 deficiency impairs degradation of palmitoylated proteins (constituents of ceroid) by lysosomal hydrolases. Consequent lysosomal ceroid accumulation leads to neuronal injury, resulting in rapid neurodegeneration and childhood demise. As part of a project studying treatment benefits of a combination of cysteamine bitartrate and N-acetylcysteine, we made serial measurements of patients’ brain volumes using MRI. Methods Ten INCL patients participating in a treatment/follow-up study underwent brain MRI that included high resolution T1-weighted images. After manual placement of a mask delineating the surface of the brain, a maximum-likelihood classifier was applied to determine total brain volume, further subdivided as cerebrum, cerebellum, brainstem, and thalamus. Patients’ brain volumes were compared to those of a normal population. Results Major subdivisions of the brain followed similar trajectories with different timing. The cerebrum demonstrated early, rapid volume loss, and may never have been normal postnatally. The thalamus dropped out of the normal range around age 6 months, cerebellum around age 2 years, and brainstem around age 3 years. Discussion Rapid cerebral volume loss was expected based upon previous qualitative reports. Because our study did not include a non-treatment arm, and because progression of brain volumes in INCL has not previously been quantified, we could not determine whether our intervention had a beneficial effect on brain volumes. However, the level of quantitative detail in this study allows it to serve as a reference for evaluation of future therapeutic interventions. PMID:27765741

  9. Multiple imputation of missing fMRI data in whole brain analysis

    PubMed Central

    Vaden, Kenneth I.; Gebregziabher, Mulugeta; Kuchinsky, Stefanie E.; Eckert, Mark A.

    2012-01-01

    Whole brain fMRI analyses rarely include the entire brain because of missing data that result from data acquisition limits and susceptibility artifact, in particular. This missing data problem is typically addressed by omitting voxels from analysis, which may exclude brain regions that are of theoretical interest and increase the potential for Type II error at cortical boundaries or Type I error when spatial thresholds are used to establish significance. Imputation could significantly expand statistical map coverage, increase power, and enhance interpretations of fMRI results. We examined multiple imputation for group level analyses of missing fMRI data using methods that leverage the spatial information in fMRI datasets for both real and simulated data. Available case analysis, neighbor replacement, and regression based imputation approaches were compared in a general linear model framework to determine the extent to which these methods quantitatively (effect size) and qualitatively (spatial coverage) increased the sensitivity of group analyses. In both real and simulated data analysis, multiple imputation provided 1) variance that was most similar to estimates for voxels with no missing data, 2) fewer false positive errors in comparison to mean replacement, and 3) fewer false negative errors in comparison to available case analysis. Compared to the standard analysis approach of omitting voxels with missing data, imputation methods increased brain coverage in this study by 35% (from 33,323 to 45,071 voxels). In addition, multiple imputation increased the size of significant clusters by 58% and number of significant clusters across statistical thresholds, compared to the standard voxel omission approach. While neighbor replacement produced similar results, we recommend multiple imputation because it uses an informed sampling distribution to deal with missing data across subjects that can include neighbor values and other predictors. Multiple imputation is

  10. Hydroxycarbamide treatment and brain MRI/MRA findings in children with sickle cell anaemia.

    PubMed

    Nottage, Kerri A; Ware, Russell E; Aygun, Banu; Smeltzer, Matthew; Kang, Guolian; Moen, Joseph; Wang, Winfred C; Hankins, Jane S; Helton, Kathleen J

    2016-10-01

    Silent cerebral infarction (SCI) is the most common neurological abnormality among children with sickle cell anaemia (SCA). The effect of hydroxycarbamide (also termed hydroxyurea) on the development and progression of SCI is unclear. We evaluated brain magnetic resonance imaging/angiography (MRI/MRA) in children with SCA receiving long-term hydroxycarbamide therapy. Fifty participants (median 9·4 years, range 1·1-17·3) enrolled in the Hydroxyurea Study of Long-Term Effects (HUSTLE; NCT00305175) underwent brain MRI/MRA and laboratory evaluations before hydroxycarbamide initiation and after 3 and 6 years of treatment to maximum tolerated dose. SCI and vascular stenosis were evaluated. At baseline, 3 and 6 years, SCI were present in 19/50 (38%), 20/49 (41%), and 7/17 (41%), respectively. At 3 years, one child developed a SCI lesion, and another progressed (single lesion to multiple). Lower haemoglobin (Hb) (80 g/l vs. 86 g/l, P = 0·049), fetal Hb (5·0% vs. 10·4%, P < 0·001) and oxygen saturation (97% vs. 98%, P = 0·027) before hydroxycarbamide initiation were associated with SCI. No patients had vascular stenosis identified on MRA, transient ischaemic attack or stroke. Our data indicate that children receiving hydroxycarbamide over a 3- to 6-year period have a low rate of new or worsening cerebrovascular disease. Further studies are needed to confirm that hydroxycarbamide can prevent the onset and progression of SCI. © 2016 John Wiley & Sons Ltd.

  11. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    PubMed Central

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  12. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  13. Spectrum of Spinal Cord, Spinal Root, and Brain MRI Abnormalities in Congenital Zika Syndrome with and without Arthrogryposis.

    PubMed

    Aragao, M F V V; Brainer-Lima, A M; Holanda, A C; van der Linden, V; Vasco Aragão, L; Silva Júnior, M L M; Sarteschi, C; Petribu, N C L; Valença, M M

    2017-05-01

    Arthrogryposis is among the malformations of congenital Zika syndrome. Similar to the brain, there might exist a spectrum of spinal cord abnormalities. The purpose of this study was to explore and describe in detail the MR imaging features found in the spinal cords, nerve roots, and brains of children with congenital Zika syndrome with and without arthrogryposis. Twelve infants with congenital Zika syndrome (4 with arthrogryposis and 8 without) who had undergone brain and spinal cord MR imaging were retrospectively selected. Qualitative and quantitative analyses were performed and compared between groups. At visual inspection, both groups showed reduced thoracic spinal cord thickness: 75% (6/8) of the group without arthrogryposis and 100% (4/4) of the arthrogryposis group. However, the latter had the entire spinal cord reduced and more severely reduced conus medullaris anterior roots (respectively, P = .002 and .007). Quantitative differences were found for conus medullaris base and cervical and lumbar intumescences diameters (respectively, P = .008, .048, .008), with more prominent reduction in arthrogryposis. Periventricular calcifications were more frequent in infants with arthrogryposis ( P = .018). Most infants had some degree of spinal cord thickness reduction, predominant in the thoracic segment (without arthrogryposis) or in the entire spinal cord (with arthrogryposis). The conus medullaris anterior roots were reduced in both groups (thinner in arthrogryposis). A prominent anterior median fissure of the spinal cord was absent in infants without arthrogryposis. Brain stem hypoplasia was present in all infants with arthrogryposis, periventricular calcifications, in the majority, and polymicrogyria was absent. © 2017 by American Journal of Neuroradiology.

  14. Functional brain segmentation using inter-subject correlation in fMRI.

    PubMed

    Kauppi, Jukka-Pekka; Pajula, Juha; Niemi, Jari; Hari, Riitta; Tohka, Jussi

    2017-05-01

    The human brain continuously processes massive amounts of rich sensory information. To better understand such highly complex brain processes, modern neuroimaging studies are increasingly utilizing experimental setups that better mimic daily-life situations. A new exploratory data-analysis approach, functional segmentation inter-subject correlation analysis (FuSeISC), was proposed to facilitate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The method provides a new type of functional segmentation of brain areas, not only characterizing areas that display similar processing across subjects but also areas in which processing across subjects is highly variable. FuSeISC was tested using fMRI data sets collected during traditional block-design stimuli (37 subjects) as well as naturalistic auditory narratives (19 subjects). The method identified spatially local and/or bilaterally symmetric clusters in several cortical areas, many of which are known to be processing the types of stimuli used in the experiments. The method is not only useful for spatial exploration of large fMRI data sets obtained using naturalistic stimuli, but also has other potential applications, such as generation of a functional brain atlases including both lower- and higher-order processing areas. Finally, as a part of FuSeISC, a criterion-based sparsification of the shared nearest-neighbor graph was proposed for detecting clusters in noisy data. In the tests with synthetic data, this technique was superior to well-known clustering methods, such as Ward's method, affinity propagation, and K-means ++. Hum Brain Mapp 38:2643-2665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study.

    PubMed

    Martens, Roland M; Bechten, Arianne; Ingala, Silvia; van Schijndel, Ronald A; Machado, Vania B; de Jong, Marcus C; Sanchez, Esther; Purcell, Derk; Arrighi, Michael H; Brashear, Robert H; Wattjes, Mike P; Barkhof, Frederik

    2018-03-01

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. • Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. • The value of ARIA-E detection, classification and monitoring using subtraction was assessed. • Validation of an established ARIA-E rating scale, recommendations for improvement are reported. • Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement.

  16. Differential diagnosis of ventriculomegaly and brainstem kinking on fetal MRI.

    PubMed

    Amir, Tali; Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2016-01-01

    Fetal ventriculomegaly is a common and frequently leading neuroimaging finding in complex brain malformations. Here we report on pre- and postnatal neuroimaging findings in three fetuses with prenatal ventriculomegaly and brainstem kinking. We aim to identify key neuroimaging features that may allow the prenatal differentiation between diseases associated with fetal ventriculomegaly and brainstem kinking. All pre- and postnatal magnetic resonance imaging (MRI) data were qualitatively evaluated for infra- and supratentorial abnormalities. Data about clinical features and genetic findings were collected from clinical histories. In all three patients, fetal MRI showed ventriculomegaly and brainstem kinking. In two patients, postnatal MRI also showed supratentorial migration abnormalities and eye abnormalities were found. In these children, the diagnosis of α-dystroglycanopathy was genetically confirmed. In the third patient, basal ganglia had an abnormal shape on MRI suggesting a tubulinopathy. The differential diagnosis of prenatal ventriculomegaly and brainstem kinking includes α-dystroglycanopathies, X-linked hydrocephalus due to mutations in L1CAM, and tubulinopathies. The prenatal differentiation between these diseases may be difficult. The presence of ocular abnormalities on prenatal neuroimaging may favor α-dystroglycanopathies, while dysplastic basal ganglia may suggest a tubulinopathy. However, in some patients the final differentiation between these diseases is possible only postnatally. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis.

    PubMed

    Lau, W K W; Leung, M-K; Lee, T M C; Law, A C K

    2016-04-26

    Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD). As no effective drug can cure AD, early diagnosis and intervention for aMCI are urgently needed. The standard diagnostic procedure for aMCI primarily relies on subjective neuropsychological examinations that require the judgment of experienced clinicians. The development of other objective and reliable aMCI markers, such as neural markers, is therefore required. Previous neuroimaging findings revealed various abnormalities in resting-state activity in MCI patients, but the findings have been inconsistent. The current study provides an updated activation likelihood estimation meta-analysis of resting-state functional magnetic resonance imaging (fMRI) data on aMCI. The authors searched on the MEDLINE/PubMed databases for whole-brain resting-state fMRI studies on aMCI published until March 2015. We included 21 whole-brain resting-state fMRI studies that reported a total of 156 distinct foci. Significant regional resting-state differences were consistently found in aMCI patients relative to controls, including the posterior cingulate cortex, right angular gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral middle temporal gyri. Our findings support that abnormalities in resting-state activities of these regions may serve as neuroimaging markers for aMCI.

  18. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  19. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  20. Brain correlates of autonomic modulation: combining heart rate variability with fMRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Conti, Giulia; Makris, Nikos; Brown, Emery N; Barbieri, Riccardo

    2008-08-01

    The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method [Guimaraes, A.R., Melcher, J.R., et al., 1998. Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33-41]. The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the resample HF timeseries as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological

  1. MRI Findings in 77 Children with Non-Syndromic Autistic Disorder

    PubMed Central

    Boddaert, Nathalie; Zilbovicius, Mônica; Philipe, Anne; Robel, Laurence; Bourgeois, Marie; Barthélemy, Catherine; Seidenwurm, David; Meresse, Isabelle; Laurier, Laurence; Desguerre, Isabelle; Bahi-Buisson, Nadia; Brunelle, Francis; Munnich, Arnold; Samson, Yves; Mouren, Marie-Christine; Chabane, Nadia

    2009-01-01

    Background The clinical relevance of MR scanning in children with autism is still an open question and must be considered in light of the evolution of this technology. MRI was judged to be of insufficient value to be included in the standard clinical evaluation of autism according to the guidelines of the American Academy of Neurology and Child Neurology Society in 2000 [1]. However, this statement was based on results obtained from small samples of patients and, more importantly, included mostly insufficient MRI sequences. Our main objective was to evaluate the prevalence of brain abnormalities in a large group of children with a non-syndromic autistic disorder (AD) using T1, T2 and FLAIR MRI sequences. Methodology MRI inspection of 77 children and adolescents with non-syndromic AD (mean age 7.4±3.6) was performed. All met the DSM-IV and ADI –R criteria for autism. Based on recommended clinical and biological screenings, we excluded patients with infectious, metabolic or genetic diseases, seizures or any other neurological symptoms. Identical MRI inspections of 77 children (mean age 7.0±4.2) without AD, developmental or neurological disorders were also performed. All MRIs were acquired with a 1.5-T Signa GE (3-D T1-FSPGR, T2, FLAIR coronal and axial sequences). Two neuroradiologists independently inspected cortical and sub-cortical regions. MRIs were reported to be normal, abnormal or uninterpretable. Principal Findings MRIs were judged as uninterpretable in 10% (8/77) of the cases. In 48% of the children (33/69 patients), abnormalities were reported. Three predominant abnormalities were observed, including white matter signal abnormalities (19/69), major dilated Virchow–Robin spaces (12/69) and temporal lobe abnormalities (20/69). In all, 52% of the MRIs were interpreted as normal (36/69 patients). Conclusions An unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in non-syndromic autism. These

  2. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  3. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI.

    PubMed

    Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang

    2014-10-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.

  4. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  5. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  6. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  7. Neonatal Brain MRI and Motor Outcome at School Age in Children with Neonatal Encephalopathy: A Review of Personal Experience

    PubMed Central

    Mercuri, Eugenio; Barnett, Anna L.

    2003-01-01

    The aim of this paper is to review (i) the spectrum of neuromotor function at school age in children who had been born full-term and presented with neonatal encephalopathy (NE) and low Apgar scores and (ii) the relation between the presence/absence of such difficulties and neonatal brain MRI. Motor outcome appears to be mainly related to the severity of basal ganglia and internal capsule involvement. Severe basal ganglia lesions were always associated with the most severe outcome, microcephaly, tetraplegia, and severe global delay, whereas more discrete basal ganglia lesions were associated with athetoid cerebral palsy, with normal cognitive development or minor neuro-motor abnormalities. White matter lesions were associated with abnormal motor outcome only if the internal capsule was involved. Children with moderate white matter changes but normal internal capsule, had normal motor outcome at school age. PMID:14640307

  8. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  9. MRI Guided Brain Stimulation without the Use of a Neuronavigation System

    PubMed Central

    Vaghefi, Ehsan; Byblow, Winston D.; Stinear, Cathy M.; Thompson, Benjamin

    2015-01-01

    A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI. PMID:26413537

  10. Brain Activity Unique to Orgasm in Women: An fMRI Analysis.

    PubMed

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2017-11-01

    Although the literature on imaging of regional brain activity during sexual arousal in women and men is extensive and largely consistent, that on orgasm is relatively limited and variable, owing in part to the methodologic challenges posed by variability in latency to orgasm in participants and head movement. To compare brain activity at orgasm (self- and partner-induced) with that at the onset of genital stimulation, immediately before the onset of orgasm, and immediately after the cessation of orgasm and to upgrade the methodology for obtaining and analyzing functional magnetic resonance imaging (fMRI) findings. Using fMRI, we sampled equivalent time points across female participants' variable durations of stimulation and orgasm in response to self- and partner-induced clitoral stimulation. The first 20-second epoch of orgasm was contrasted with the 20-second epochs at the beginning of stimulation and immediately before and after orgasm. Separate analyses were conducted for whole-brain and brainstem regions of interest. For a finer-grained analysis of the peri-orgasm phase, we conducted a time-course analysis on regions of interest. Head movement was minimized to a mean less than 1.3 mm using a custom-fitted thermoplastic whole-head and neck brace stabilizer. Ten women experienced orgasm elicited by self- and partner-induced genital stimulation in a Siemens 3-T Trio fMRI scanner. Brain activity gradually increased leading up to orgasm, peaked at orgasm, and then decreased. We found no evidence of deactivation of brain regions leading up to or during orgasm. The activated brain regions included sensory, motor, reward, frontal cortical, and brainstem regions (eg, nucleus accumbens, insula, anterior cingulate cortex, orbitofrontal cortex, operculum, right angular gyrus, paracentral lobule, cerebellum, hippocampus, amygdala, hypothalamus, ventral tegmental area, and dorsal raphe). Insight gained from the present findings could provide guidance toward a rational basis

  11. Functional Brain Imaging

    PubMed Central

    2006-01-01

    due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson’s disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. The Technology Being Reviewed Functional Brain Imaging Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. Review Strategy The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane

  12. Regional brain injury on conventional and diffusion weighted MRI is associated with outcome after pediatric cardiac arrest.

    PubMed

    Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G

    2013-08-01

    To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.

  13. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    PubMed

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  14. Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder.

    PubMed

    Barkataki, Ian; Kumari, Veena; Das, Mrigendra; Taylor, Pamela; Sharma, Tonmoy

    2006-05-15

    Brain abnormalities are found in association with antisocial personality disorder and schizophrenia, the two mental disorders most implicated in violent behaviour. Structural magnetic resonance imaging was used to investigate the whole brain, cerebellum, temporal lobe, lateral ventricles, caudate nucleus, putamen, thalamus, hippocampus, amygdala and the prefrontal, pre-motor, sensorimotor, occipito-parietal regions in 13 men with antisocial personality disorder, 13 men with schizophrenia and a history of violence, 15 men with schizophrenia without violent history and 15 healthy non-violent men. Compared to controls, the antisocial personality disorder group displayed reductions in whole brain volume and temporal lobe as well as increases in putamen volume. Both schizophrenia groups regardless of violence history exhibited increased lateral ventricle volume, while the schizophrenia group with violent history showed further abnormalities including reduced whole brain and hippocampal volumes and increased putamen size. The findings suggest that individuals with antisocial personality disorder as well as those with schizophrenia and a history of violence have common neural abnormalities, but also show neuro-anatomical differences. The processes by which they came to apparently common ground may, however, differ. The finding of temporal lobe reductions prevalent among those with antisocial personality disorder and hippocampal reduction in the violent men with schizophrenia contributes support for the importance of this region in mediating violent behaviour.

  15. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI.

    PubMed

    Zhou, Yongxin; Bai, Jing

    2007-01-01

    A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.

  16. Mild Cognitive Impairment as a single sign of brain hemiatrophy in patient with Localized Scleroderma and Parry-Romberg Syndrome.

    PubMed

    Klimiec, Elzbieta; Klimkowicz-Mrowiec, Aleksandra

    2016-01-01

    Neurologic involvement is well recognized in Systemic Scleroderma and increasingly reported in Localized Scleroderma. MRI brain abnormalities are often associated with symptoms such as seizures or headaches. In some cases they may be clinically silent. We describe a 23 years old female with head, trunk and limbs scleroderma who developed Parry-Romberg Syndrome. Brain MRI showed ipsilateral temporal lobe atrophy without any prominent neurologic symptoms. Neuropsychological examination revealed Mild Cognitive Impairment. During the 7 years of follow up we have noticed progression of face atrophy but no progression of brain atrophy. Cognitive functions have been stable. This case highlight that major MRI brain abnormalities in LS may occur with only subtle clinical manifestation such as Mild Cognitive Impairment. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Microstructural Abnormalities Were Found in Brain Gray Matter from Patients with Chronic Myofascial Pain

    PubMed Central

    Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong

    2016-01-01

    Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193

  18. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study).

    PubMed

    Guermazi, Ali; Niu, Jingbo; Hayashi, Daichi; Roemer, Frank W; Englund, Martin; Neogi, Tuhina; Aliabadi, Piran; McLennan, Christine E; Felson, David T

    2012-08-29

    To examine use of magnetic resonance imaging (MRI) of knees with no radiographic evidence of osteoarthritis to determine the prevalence of structural lesions associated with osteoarthritis and their relation to age, sex, and obesity. Population based observational study. Community cohort in Framingham, MA, United States (Framingham osteoarthritis study). 710 people aged >50 who had no radiographic evidence of knee osteoarthritis (Kellgren-Lawrence grade 0) and who underwent MRI of the knee. Prevalence of MRI findings that are suggestive of knee osteoarthritis (osteophytes, cartilage damage, bone marrow lesions, subchondral cysts, meniscal lesions, synovitis, attrition, and ligamentous lesions) in all participants and after stratification by age, sex, body mass index (BMI), and the presence or absence of knee pain. Pain was assessed by three different questions and also by WOMAC questionnaire. Of the 710 participants, 393 (55%) were women, 660 (93%) were white, and 206 (29%) had knee pain in the past month. The mean age was 62.3 years and mean BMI was 27.9. Prevalence of "any abnormality" was 89% (631/710) overall. Osteophytes were the most common abnormality among all participants (74%, 524/710), followed by cartilage damage (69%, 492/710) and bone marrow lesions (52%, 371/710). The higher the age, the higher the prevalence of all types of abnormalities detectable by MRI. There were no significant differences in the prevalence of any of the features between BMI groups. The prevalence of at least one type of pathology ("any abnormality") was high in both painful (90-97%, depending on pain definition) and painless (86-88%) knees. MRI shows lesions in the tibiofemoral joint in most middle aged and elderly people in whom knee radiographs do not show any features of osteoarthritis, regardless of pain.

  19. Coupled brain and urine spectroscopy - in vivo metabolomic characterization of HMG-CoA lyase deficiency in 5 patients.

    PubMed

    Roland, Dominique; Jissendi-Tchofo, Patrice; Briand, Gilbert; Vamecq, Joseph; Fontaine, Monique; Ultré, Vincent; Acquaviva-Bourdain, Cécile; Mention, Karine; Dobbelaere, Dries

    2017-06-01

    3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG-CoA) lyase deficiency is a rare inborn error of leucine metabolism and ketogenesis. Despite recurrent hypoglycemia and metabolic decompensations, most patients have a good clinical and neurological outcome contrasting with abnormal brain magnetic resonance imaging (MRI) signals and consistent abnormal brain proton magnetic resonance spectroscopy ( 1 H-MRS) metabolite peaks. Identifying these metabolites could provide surrogate markers of the disease and improve understanding of MRI-clinical discrepancy and follow-up of affected patients. Urine samples, brain MRI and 1 H-MRS in 5 patients with HMG-CoA lyase deficiency (4 boys and 1 girl aged from 25days to 10years) were, for each patient, obtained on the same day. Brain and urine spectroscopy were performed at the same pH by studying urine at pH 7.4. Due to pH-induced modifications in chemical shifts and because reference 1 H NMR spectra are obtained at pH 2.5, spectroscopy of normal urine added with the suspected metabolite was further performed at this pH to validate the correct identification of compounds. Mild to extended abnormal white matter MRI signals were observed in all cases. Brain spectroscopy abnormal peaks at 0.8-1.1ppm, 1.2-1.4ppm and 2.4ppm were also detected by urine spectroscopy at pH 7.4. Taking into account pH-induced changes in chemical shifts, brain abnormal peaks in patients were formally identified to be those of 3-hydroxyisovaleric, 3-methylglutaconic, 3-methylglutaric and 3-hydroxy-3-methylglutaric acids. 3-Methylglutaric, 3-hydroxyisovaleric and 3-hydroxy-3-methylglutaric acids identified on urine 1 H-NMR spectra of 5 patients with HMG-CoA lyase deficiency are responsible for the cerebral spectroscopy signature seen in these patients, validating their local involvement in brain and putative contribution to brain neuropathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  1. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    NASA Astrophysics Data System (ADS)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  2. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities.

    PubMed

    Parent, Maxime J; Zimmer, Eduardo R; Shin, Monica; Kang, Min Su; Fonov, Vladimir S; Mathieu, Axel; Aliaga, Antonio; Kostikov, Alexey; Do Carmo, Sonia; Dea, Doris; Poirier, Judes; Soucy, Jean-Paul; Gauthier, Serge; Cuello, A Claudio; Rosa-Neto, Pedro

    2017-12-13

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9-11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [ 18 F]FDG) or detectable fibrillary amyloidosis (measured with PET [ 18 F]NAV4694). At more advanced ages (16-19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ 1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a "back translation" of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. Copyright © 2017 Parent et al.

  3. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities

    PubMed Central

    Parent, Maxime J.; Kang, Min Su; Mathieu, Axel; Aliaga, Antonio; Do Carmo, Sonia; Dea, Doris; Gauthier, Serge; Cuello, A. Claudio

    2017-01-01

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9–11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [18F]FDG) or detectable fibrillary amyloidosis (measured with PET [18F]NAV4694). At more advanced ages (16–19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a “back translation” of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. PMID:29097597

  4. An audit of clinical practice, referral patterns, and appropriateness of clinical indications for brain MRI examinations: A single-centre study in Ghana.

    PubMed

    Piersson, A D; Nunoo, G; Gorleku, P N

    2018-05-01

    The aim of this study was to investigate current brain MRI practice, pattern of brain MRI requests, and their appropriateness using the American College of Radiology (ACR) Appropriateness Criteria. We used direct observation and questionnaires to obtain data concerning routine brain MRI practice. We then retrospectively analyzed (i) demographic characteristics, (ii) clinical history, and (iii) appropriateness of brain MRI requests against published criteria. All patients were administered the screening questionnaire; however, no reviews were undertaken directly with patients, and no signature of the radiographer was recorded. Apart from routine brain protocol, there were dedicated protocols for epilepsy and stroke. Brain MRI images from 161 patients (85 Males; 76 Females) were analyzed. The age group with most brain MRI requests were from 26 to 45 year olds. The commonest four clinical indications for imaging were brain tumour, headache, seizure, and stroke. Using the ACR Appropriateness Criteria, almost 43% of the brain MRI scans analyzed were found to be "usually appropriate", 38% were "maybe appropriate" and 19% were categorized as "usually not appropriate". There was knowledge gap with regards to MRI safety in local practice, thus there is the utmost need for MRI safety training. Data on the commonest indications for performing brain MRI in this study should be used to inform local neuroradiological practice. Dedicated stroke and epilepsy MRI protocols require additional sequences i.e. MRA and 3D T1 volume acquisition, respectively. The ACR Appropriateness Criteria is recommended for use by the referring practitioners to improve appropriateness of brain MRI requests. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  5. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  6. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  7. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian

    2015-03-01

    Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.

  8. MRI versus ultrasonography to assess meniscal abnormalities in acute knees.

    PubMed

    Cook, James L; Cook, Cristi R; Stannard, James P; Vaughn, Gavin; Wilson, Nichole; Roller, Brandon L; Stoker, Aaron M; Jayabalan, Prakash; Hdeib, Moses; Kuroki, Keiichi

    2014-08-01

    While magnetic resonance imaging (MRI) is often considered the "gold standard" diagnostic imaging modality for detection of meniscal abnormalities, it is associated with misdiagnosis in as high as 47% of cases, is costly, and is not readily available to a large number of patients. Ultrasonographic examination of the knee has been reported to be an effective diagnostic tool for this purpose with the potential to overcome many of the shortcomings of MRI. The purpose of this study is to determine the clinical usefulness of ultrasonography for diagnosis of meniscal pathology in patients with acute knee pain and compare its diagnostic accuracy to MRI in a clinical setting. With Institutional Review Board approval, patients (n = 71) with acute knee pain were prospectively enrolled with informed consent. Preoperative MRI (1.5 T) was performed on each affected knee using the hospital's standard equipment and protocols and read by faculty radiologists trained in musculoskeletal MRI. Ultrasonographic assessments of each affected knee were performed by one of two faculty members trained in musculoskeletal ultrasonography using a 10 to 14 MHz linear transducer. Arthroscopic evaluation of affected knees was performed by one of three faculty orthopedic surgeons to assess and record all joint pathology, which served as the reference standard for determining presence, type, and severity of meniscal pathology. All evaluators for each diagnostic modality were blinded to all other data. Data were collected and compared by a separate investigator to determine sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), correct classification rate (CCR), likelihood ratios (LR[+] and LR[-]), and odds ratios. Preoperative ultrasonographic assessment of meniscal pathology was associated with Sn = 91.2%, Sp = 84.2%, PPV = 94.5%, NPV = 76.2%, CCR = 89.5%, LR(+) = 5.78, and LR(-) = 0.10. Preoperative MRI assessment of

  9. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism.

    PubMed

    Purcell, A E; Jeon, O H; Zimmerman, A W; Blue, M E; Pevsner, J

    2001-11-13

    Studies examining the brains of individuals with autism have identified anatomic and pathologic changes in regions such as the cerebellum and hippocampus. Little, if anything, is known, however, about the molecules that are involved in the pathogenesis of this disorder. To identify genes with abnormal expression levels in the cerebella of subjects with autism. Brain samples from a total of 10 individuals with autism and 23 matched controls were collected, mainly from the cerebellum. Two cDNA microarray technologies were used to identify genes that were significantly up- or downregulated in autism. The abnormal mRNA or protein levels of several genes identified by microarray analysis were investigated using PCR with reverse transcription and Western blotting. alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)- and NMDA-type glutamate receptor densities were examined with receptor autoradiography in the cerebellum, caudate-putamen, and prefrontal cortex. The mRNA levels of several genes were significantly increased in autism, including excitatory amino acid transporter 1 and glutamate receptor AMPA 1, two members of the glutamate system. Abnormalities in the protein or mRNA levels of several additional molecules in the glutamate system were identified on further analysis, including glutamate receptor binding proteins. AMPA-type glutamate receptor density was decreased in the cerebellum of individuals with autism (p < 0.05). Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.

  10. Real-time motion analytics during brain MRI improve data quality and reduce costs.

    PubMed

    Dosenbach, Nico U F; Koller, Jonathan M; Earl, Eric A; Miranda-Dominguez, Oscar; Klein, Rachel L; Van, Andrew N; Snyder, Abraham Z; Nagel, Bonnie J; Nigg, Joel T; Nguyen, Annie L; Wesevich, Victoria; Greene, Deanna J; Fair, Damien A

    2017-11-01

    Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Addiction Related Alteration in Resting-state Brain Connectivity

    PubMed Central

    Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-Ming; Hu, Xiaoping; Zhang, Da-Ren

    2009-01-01

    It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), and orbital frontal cortex (OFC), between amygdala and OFC; and reduced functional connectivity between prefrontal cortex and OFC, and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state. PMID:19703568

  12. What does brain response to neutral faces tell us about major depression? evidence from machine learning and fMRI.

    PubMed

    Oliveira, Leticia; Ladouceur, Cecile D; Phillips, Mary L; Brammer, Michael; Mourao-Miranda, Janaina

    2013-01-01

    A considerable number of previous studies have shown abnormalities in the processing of emotional faces in major depression. Fewer studies, however, have focused specifically on abnormal processing of neutral faces despite evidence that depressed patients are slow and less accurate at recognizing neutral expressions in comparison with healthy controls. The current study aimed to investigate whether this misclassification described behaviourally for neutral faces also occurred when classifying patterns of brain activation to neutral faces for these patients. TWO INDEPENDENT DEPRESSED SAMPLES: (1) Nineteen medication-free patients with depression and 19 healthy volunteers and (2) Eighteen depressed individuals and 18 age and gender-ratio-matched healthy volunteers viewed emotional faces (sad/neutral; happy/neutral) during an fMRI experiment. We used a new pattern recognition framework: first, we trained the classifier to discriminate between two brain states (e.g. viewing happy faces vs. viewing neutral faces) using data only from healthy controls (HC). Second, we tested the classifier using patterns of brain activation of a patient and a healthy control for the same stimuli. Finally, we tested if the classifier's predictions (predictive probabilities) for emotional and neutral face classification were different for healthy controls and depressed patients. Predictive probabilities to patterns of brain activation to neutral faces in both groups of patients were significantly lower in comparison to the healthy controls. This difference was specific to neutral faces. There were no significant differences in predictive probabilities to patterns of brain activation to sad faces (sample 1) and happy faces (samples 2) between depressed patients and healthy controls. Our results suggest that the pattern of brain activation to neutral faces in depressed patients is not consistent with the pattern observed in healthy controls subject to the same stimuli. This difference in

  13. Brain stem venous congestion due to dural arteriovenous fistulas of the cavernous sinus.

    PubMed

    Kai, Y; Hamada, J I; Morioka, M; Yano, S; Ushio, Y

    2004-10-01

    Venous congestion of the brain stem due to dural arteriovenous fistulas (DAVFs) in the cavernous sinus is rare and presents therapeutic challenges. To assess the prognosis of patients with symptomatic DAVFs and brain stem dysfunction, we evaluated the degree of venous ischemia by examining pre- and post-treatment magnetic resonance images (MRI) in 2 patients presenting with venous congestion of the brain stem. A 56-year-old woman with left hemiparesis and a 70-year-old woman with gait disturbance attributable to right cavernous sinus DAVFs were referred to our hospital. In both cases, T2-weighted magnetic resonance imaging (MRI) disclosed a hyperintensity lesion in the brainstem due to venous congestion. Both patients underwent open surgery for direct embolization of the cavernous sinus because there were no approach routes for transvenous embolization. The patient whose pretreatment MRI demonstrated Gd enhancement continued to manifest neurological deficits and persistence of the abnormal hyperintensity on post-treatment T2-weighted MRI. In the other patient whose pretreatment MRI showed no Gd enhancement, treatment produced a complete response of her neurological deficit and disappearance of the abnormal hyperintensity area. We tentatively conclude that lesions corresponding to hyperintensity areas on non-Gd-enhanced, T2-weighted MRI may reflect a reversible condition whereas lesions identified as hyperintense areas on GD-enhanced T2-weighted MRI may be indicative of irreversibility.

  14. A challenging issue: Detection of white matter hyperintensities in neonatal brain MRI.

    PubMed

    Morel, Baptiste; Yongchao Xu; Virzi, Alessio; Geraud, Thierry; Adamsbaum, Catherine; Bloch, Isabelle

    2016-08-01

    The progress of magnetic resonance imaging (MRI) allows for a precise exploration of the brain of premature infants at term equivalent age. The so-called DEHSI (diffuse excessive high signal intensity) of the white matter of premature brains remains a challenging issue in terms of definition, and thus of interpretation. We propose a semi-automatic detection and quantification method of white matter hyperintensities in MRI relying on morphological operators and max-tree representations, which constitutes a powerful tool to help radiologists to improve their interpretation. Results show better reproducibility and robustness than interactive segmentation.

  15. Sensorineural hearing loss in a pediatric population: association of congenital cytomegalovirus infection with intracranial abnormalities.

    PubMed

    Kimani, Jane W; Buchman, Craig A; Booker, Jessica K; Huang, Benjamin Y; Castillo, Mauricio; Powell, Cynthia M; Weck, Karen E

    2010-10-01

    To examine the incidence of congenital cytomegalovirus (CMV) infection relative to common genetic etiologies of hearing loss in a pediatric population with sensorineural hearing loss (SNHL), and to characterize intracranial radiological abnormalities in patients with CMV-associated hearing loss. Retrospective study. Academic tertiary care center. A total of 112 pediatric patients with confirmed SNHL. The association of congenital CMV infection status with abnormal brain magnetic resonance imaging (MRI) scans and the frequencies of congenital CMV infection, gap junction β-2 (GJB2) mutations, and the mitochondrial DNA (mtDNA) 1555A>G mutation in children with SNHL. Of 109 patients, 11 (10%) had positive results for CMV DNA; 10 of the 11 had normal GJB2 sequence and had negative test results for the mtDNA 1555A>G mutation. Brain MRI scans for 97 patients demonstrated a higher proportion of abnormalities in patients with positive CMV test results (80%) compared with those with no detectable CMV DNA (33%) (P = .006). GJB2 mutations and the mtDNA 1555A>G mutation were seen in 10 of 88 patients (11%) and 1 of 97 patients (1%) with SNHL, respectively. The presence of brain abnormalities in most patients with congenital CMV infection suggests that neurological damage in otherwise asymptomatic patients may not be limited to SNHL. Congenital CMV infection accounted for a significant proportion of patients with SNHL, with an incidence rate comparable with that of GJB2-related SNHL.

  16. Scale-Free Brain-Wave Music from Simultaneously EEG and fMRI Recordings

    PubMed Central

    Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong

    2012-01-01

    In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain. PMID:23166768

  17. Magnetic resonance imaging (MRI) evaluation of developmental delay in pediatric patients.

    PubMed

    Ali, Althaf S; Syed, Naziya P; Murthy, G S N; Nori, Madhavi; Abkari, Anand; Pooja, B K; Venkateswarlu, J

    2015-01-01

    Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child's ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was found to be 68% and higher yield was seen in patients presenting with

  18. CT and MRI imaging of the brain in MELAS syndrome.

    PubMed

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-07-01

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques.

  19. Does hydration status affect MRI measures of brain volume or water content?

    PubMed

    Meyers, Sandra M; Tam, Roger; Lee, Jimmy S; Kolind, Shannon H; Vavasour, Irene M; Mackie, Emilie; Zhao, Yinshan; Laule, Cornelia; Mädler, Burkhard; Li, David K B; MacKay, Alex L; Traboulsee, Anthony L

    2016-08-01

    To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304. © 2016 Wiley Periodicals, Inc.

  20. The brain MRI classification problem from wavelets perspective

    NASA Astrophysics Data System (ADS)

    Bendib, Mohamed M.; Merouani, Hayet F.; Diaba, Fatma

    2015-02-01

    Haar and Daubechies 4 (DB4) are the most used wavelets for brain MRI (Magnetic Resonance Imaging) classification. The former is simple and fast to compute while the latter is more complex and offers a better resolution. This paper explores the potential of both of them in performing Normal versus Pathological discrimination on the one hand, and Multiclassification on the other hand. The Whole Brain Atlas is used as a validation database, and the Random Forest (RF) algorithm is employed as a learning approach. The achieved results are discussed and statistically compared.

  1. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    PubMed

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  2. The Frequency and Severity of Magnetic Resonance Imaging Abnormalities in Infants with Mild Neonatal Encephalopathy.

    PubMed

    Walsh, Brian H; Neil, Jeffrey; Morey, JoAnn; Yang, Edward; Silvera, Michelle V; Inder, Terrie E; Ortinau, Cynthia

    2017-08-01

    To assess and contrast the incidence and severity of abnormalities on cerebral magnetic resonance imaging (MRI) between infants with mild, moderate, and severe neonatal encephalopathy who received therapeutic hypothermia. This retrospective cohort studied infants with mild, moderate, and severe neonatal encephalopathy who received therapeutic hypothermia at a single tertiary neonatal intensive care unit between 2013 and 2015. Two neuroradiologists masked to the clinical condition evaluated brain MRIs for cerebral injury after therapeutic hypothermia using the Barkovich classification system. Additional abnormalities not included in this classification system were also noted. The rate, pattern, and severity of abnormalities/injury were compared across the grades of neonatal encephalopathy. Eighty-nine infants received therapeutic hypothermia and met study criteria, 48 with mild neonatal encephalopathy, 35 with moderate neonatal encephalopathy, and 6 with severe neonatal encephalopathy. Forty-eight infants (54%) had an abnormality on MRI. There was no difference in the rate of overall MRI abnormalities by grade of neonatal encephalopathy (mild neonatal encephalopathy 54%, moderate neonatal encephalopathy 54%, and severe neonatal encephalopathy 50%; P= .89). Basal ganglia/thalamic injury was more common in those with severe neonatal encephalopathy (mild neonatal encephalopathy 4%, moderate neonatal encephalopathy 9%, severe neonatal encephalopathy 34%; P = .03). In contrast, watershed injury did not differ between neonatal encephalopathy grades (mild neonatal encephalopathy 36%, moderate neonatal encephalopathy 32%, severe neonatal encephalopathy 50%; P = .3). Mild neonatal encephalopathy is commonly associated with MRI abnormalities after therapeutic hypothermia. The grade of neonatal encephalopathy during the first hours of life may not discriminate adequately between infants with and without cerebral injury noted on MRI after therapeutic hypothermia

  3. Changes in spontaneous brain activity in early Parkinson's disease.

    PubMed

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of p<0.05 was determined by AlphaSim and used in statistical analysis. Compared with the healthy controls, the early PD group showed significantly increased ReHo in a number of brain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0

  4. Constructing and assessing brain templates from Chinese pediatric MRI data using SPM

    NASA Astrophysics Data System (ADS)

    Yin, Qingjie; Ye, Qing; Yao, Li; Chen, Kewei; Jin, Zhen; Liu, Gang; Wu, Xingchun; Wang, Tingting

    2005-04-01

    Spatial normalization is a very important step in the processing of magnetic resonance imaging (MRI) data. So the quality of brain templates is crucial for the accuracy of MRI analysis. In this paper, using the classical protocol and the optimized protocol plus nonlinear deformation, we constructed the T1 whole brain templates and apriori brain tissue data from 69 Chinese pediatric MRI data (age 7-16 years). Then we proposed a new assessment method to evaluate our templates. 10 pediatric subjects were chosen to do the assessment as the following steps. First, the cerebellum region, the region of interest (ROI), was located on both the pediatric volume and the template volume by an experienced neuroanatomist. Second, the pediatric whole brain was mapped to the template with affine and nonlinear deformation. Third, the parameter, derived from the second step, was used to only normalize the ROI of the child to the ROI of the template. Last, the overlapping ratio, which described the overlapping rate between the ROI of the template and the normalized ROI of the child, was calculated. The mean of overlapping ratio normalized to the classical template was 0.9687, and the mean normalized to the optimized template was 0.9713. The results show that the two Chinese pediatric brain templates are comparable and their accuracy is adequate to our studies.

  5. Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging.

    PubMed

    Shamir, Lior; Long, Joe

    2016-01-01

    While cognition is clearly affected by aging, it is unclear whether the process of brain aging is driven solely by accumulation of environmental damage, or involves biological pathways. We applied quantitative image analysis to profile the alteration of brain tissues during aging. A dataset of 463 brain MRI images taken from a cohort of 416 subjects was analyzed using a large set of low-level numerical image content descriptors computed from the entire brain MRI images. The correlation between the numerical image content descriptors and the age was computed, and the alterations of the brain tissues during aging were quantified and profiled using machine learning. The comprehensive set of global image content descriptors provides high Pearson correlation of ~0.9822 with the chronological age, indicating that the machine learning analysis of global features is sensitive to the age of the subjects. Profiling of the predicted age shows several periods of mild changes, separated by shorter periods of more rapid alterations. The periods with the most rapid changes were around the age of 55, and around the age of 65. The results show that the process of brain aging of is not linear, and exhibit short periods of rapid aging separated by periods of milder change. These results are in agreement with patterns observed in cognitive decline, mental health status, and general human aging, suggesting that brain aging might not be driven solely by accumulation of environmental damage. Code and data used in the experiments are publicly available.

  6. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  7. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method.

  8. Mapping the Alzheimer’s Brain with Connectomics

    PubMed Central

    Xie, Teng; He, Yong

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664

  9. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities.

    PubMed

    Janusonis, Skirmantas

    2005-07-19

    A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies.

  10. Variability comparison of simultaneous brain near-infrared spectroscopy (NIRS) and functional MRI (fMRI) during visual stimulation

    PubMed Central

    Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D

    2011-01-01

    Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948

  11. Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma.

    PubMed

    LaViolette, Peter S; Daun, Mitchell K; Paulson, Eric S; Schmainda, Kathleen M

    2014-02-01

    Abnormal brain tumor vasculature has recently been highlighted by a dynamic susceptibility contrast (DSC) MRI processing technique. The technique uses independent component analysis (ICA) to separate arterial and venous perfusion. The overlap of the two, i.e. arterio-venous overlap or AVOL, preferentially occurs in brain tumors and predicts response to anti-angiogenic therapy. The effects of contrast agent leakage on the AVOL biomarker have yet to be established. DSC was acquired during two separate contrast boluses in ten patients undergoing clinical imaging for brain tumor diagnosis. Three components were modeled with ICA, which included the arterial and venous components. The percentage of each component as well as a third component were determined within contrast enhancing tumor and compared. AVOL within enhancing tumor was also compared between doses. The percentage of enhancing tumor classified as not arterial or venous and instead into a third component with contrast agent leakage apparent in the time-series was significantly greater for the first contrast dose compared to the second. The amount of AVOL detected within enhancing tumor was also significantly greater with the second dose compared to the first. Contrast leakage results in large signal variance classified as a separate component by the ICA algorithm. The use of a second dose mitigates the effect and allows measurement of AVOL within enhancement.

  12. Neonatal brain resting-state functional connectivity imaging modalities.

    PubMed

    Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-06-01

    Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.

  13. Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

    DTIC Science & Technology

    2015-10-01

    Page | 2 AWARD NUMBER: W81XWH-13-1-0464 TITLE: Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI...Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional...findings include: 1) detection of brain organization in a cohort of 24 pediatric onset multiple sclerosis patients (POMS) and 25 healthy controls

  14. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    PubMed Central

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  15. Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study.

    PubMed

    Favre, Pauline; Polosan, Mircea; Pichat, Cédric; Bougerol, Thierry; Baciu, Monica

    2015-01-01

    Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict. Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach. Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network. Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

  16. Diagnostic Value of 18F-FDG PET/CT Versus MRI in the Setting of Antibody-Specific Autoimmune Encephalitis.

    PubMed

    Solnes, Lilja B; Jones, Krystyna M; Rowe, Steven P; Pattanayak, Puskar; Nalluri, Abhinav; Venkatesan, Arun; Probasco, John C; Javadi, Mehrbod S

    2017-08-01

    Diagnosis of autoimmune encephalitis presents some challenges in the clinical setting because of varied clinical presentations and delay in obtaining antibody panel results. We examined the role of neuroimaging in the setting of autoimmune encephalitides, comparing the utility of 18 F-FDG PET/CT versus conventional brain imaging with MRI. Methods: A retrospective study was performed assessing the positivity rate of MRI versus 18 F-FDG PET/CT during the initial workup of 23 patients proven to have antibody-positive autoimmune encephalitis. 18 F-FDG PET/CT studies were analyzed both qualitatively and semiquantitatively. Areas of cortical lobar hypo (hyper)-metabolism in the cerebrum that were 2 SDx from the mean were recorded as abnormal. Results: On visual inspection, all patients were identified as having an abnormal pattern of 18 F-FDG uptake. In semiquantitative analysis, at least 1 region of interest with metabolic change was identified in 22 of 23 (95.6%) patients using a discriminating z score of 2. Overall, 18 F-FDG PET/CT was more often abnormal during the diagnostic period than MRI (10/23, 43% of patients). The predominant finding on brain 18 F-FDG PET/CT imaging was lobar hypometabolism, being observed in 21 of 23 (91.3%) patients. Hypometabolism was most commonly observed in the parietal lobe followed by the occipital lobe. An entire subset of antibody-positive patients, anti- N -methyl-d-aspartate receptor (5 patients), had normal MRI results and abnormal 18 F-FDG PET/CT findings whereas the other subsets demonstrated a greater heterogeneity. Conclusion: Brain 18 F-FDG PET/CT may play a significant role in the initial evaluation of patients with clinically suspected antibody-mediated autoimmune encephalitis. Given that it is more often abnormal when compared with MRI in the acute setting, this molecular imaging technique may be better positioned as an early biomarker of disease so that treatment may be initiated earlier, resulting in improved patient

  17. [Metronidazole-Induced Encephalopathy during Brain Abscess Treatment:Two Case Reports].

    PubMed

    Yokoyama, Yuka; Asaoka, Katsuyuki; Sugiyama, Taku; Uchida, Kazuki; Shimbo, Daisuke; Kobayashi, Satoshi; Itamoto, Koji

    2015-10-01

    Metronidazole is a widely used antibiotic against anaerobic bacteria and protozoa. We report two cases of metronidazole-induced encephalopathy(MIE)during treatment of a brain abscess with metronidazole. The patients developed mental disturbance, and brain MRI showed reversible signals on DWI, FLAIR, and T2. Case 1: A 48-year-old woman was admitted to our hospital with a cerebellar abscess. We initiated treatment with oral metronidazole. After taking the medication, she developed mental disturbance, and her brain MRI showed a hyperintensity within the corpus callosum. We suspected metronidazole toxicity and discontinued metronidazole treatment. The symptoms resolved rapidly within a week, and the hyperintensity on the MRI disappeared. Case 2: A 22-year-old man was admitted to our hospital with a brain abscess. We initiated treatment with oral metronidazole. On day 38, he developed mental disturbance, and his MRI showed hyperintensities within the bilateral dentate nuclei and corpus callosum. These symptoms were consistent with MIE. After cessation of metronidazole, his symptoms and abnormal MRI signals completely disappeared.

  18. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Integration of fMRI, NIROT and ERP for studies of human brain function.

    PubMed

    Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel

    2006-05-01

    Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.

  20. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis.

    PubMed

    Khalil, A; Suff, N; Thilaganathan, B; Hurrell, A; Cooper, D; Carvalho, J S

    2014-01-01

    Studies have demonstrated an association between congenital heart disease (CHD) and neurodevelopmental delay. Neuroimaging studies have also demonstrated a high incidence of preoperative brain abnormalities. The aim of this study was to perform a systematic review to quantify the non-surgical risk of brain abnormalities and of neurodevelopmental delay in infants with CHD. MEDLINE, EMBASE and The Cochrane Library were searched electronically without language restrictions, utilizing combinations of the terms congenital heart, cardiac, neurologic, neurodevelopment, magnetic resonance imaging, ultrasound, neuroimaging, autopsy, preoperative and outcome. Reference lists of relevant articles and reviews were hand-searched for additional reports. Cohort and case-control studies were included. Studies reporting neurodevelopmental outcomes and/or brain lesions on neuroimaging in infants with CHD before heart surgery were included. Cases of chromosomal or genetic abnormalities, case reports and editorials were excluded. Between-study heterogeneity was assessed using the I(2) test. The search yielded 9129 citations. Full text was retrieved for 119 and the following were included in the review: 13 studies (n = 425 cases) reporting on brain abnormalities either preoperatively or in those who did not undergo congenital cardiac surgery and nine (n = 512 cases) reporting preoperative data on neurodevelopmental assessment. The prevalence of brain lesions on neuroimaging was 34% (95% CI, 24-46; I(2) = 0%) in transposition of the great arteries, 49% (95% CI, 25-72; I(2) = 65%) in left-sided heart lesions and 46% (95% CI, 40-52; I(2) =18.1%) in mixed/unspecified cardiac lesions, while the prevalence of neurodevelopmental delay was 42% (95% CI, 34-51; I(2) = 68.9). In the absence of chromosomal or genetic abnormalities, infants with CHD are at increased risk of brain lesions as revealed by neuroimaging and of neurodevelopmental delay. These findings are independent of the surgical risk

  1. CT and MRI imaging of the brain in MELAS syndrome

    PubMed Central

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-01-01

    Summary Background: MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. Case Report: In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. Conclusions: The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques. PMID:24115962

  2. Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain.

    PubMed

    Wang, Silun; Tryggestad, Erik; Zhou, Tingting; Armour, Michael; Wen, Zhibo; Fu, De-Xue; Ford, Eric; van Zijl, Peter C M; Zhou, Jinyuan

    2012-07-01

    Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T(1), T(2), apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 × 10 mm(2)) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at ~25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T(1), T(2), MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T(1), T(2), MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies.

    PubMed

    Raja, Rajikha; Rosenberg, Gary A; Caprihan, Arvind

    2018-05-15

    Blood-brain barrier (BBB) separates the systemic circulation and the brain, regulating transport of most molecules to protect the brain microenvironment. Multiple structural and functional components preserve the integrity of the BBB. Several imaging modalities are available to study disruption of the BBB. However, the subtle changes in BBB leakage that occurs in vascular cognitive impairment and Alzheimer's disease have been less well studied. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is the most widely adopted non-invasive imaging technique for evaluating BBB breakdown. It is used as a significant marker for a wide variety of diseases with large permeability leaks, such as brain tumors and multiple sclerosis, to more subtle disruption in chronic vascular disease and dementia. DCE-MRI analysis of BBB includes both model-free parameters and quantitative parameters using pharmacokinetic modelling. We review MRI studies of BBB breakdown in dementia. The challenges in measuring subtle BBB changes and the state of the art techniques are initially examined. Subsequently, a systematic review comparing methodologies from recent in-vivo MRI studies is presented. Various factors related to subtle BBB permeability measurement such as DCE-MRI acquisition parameters, arterial input assessment, T 1 mapping and data analysis methods are reviewed with the focus on finding the optimal technique. Finally, the reported BBB permeability values in dementia are compared across different studies and across various brain regions. We conclude that reliable measurement of low-level BBB permeability across sites remains a difficult problem and a standardization of the methodology for both data acquisition and quantitative analysis is required. This article is part of the Special Issue entitled 'Cerebral Ischemia'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.

    PubMed

    Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto

    2016-09-01

    To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.

  5. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.

    PubMed

    Maggioni, Eleonora; Tana, Maria Gabriella; Arrigoni, Filippo; Zucca, Claudio; Bianchi, Anna Maria

    2014-05-15

    Functional Magnetic Resonance Imaging (fMRI) is used for exploring brain functionality, and recently it was applied for mapping the brain connection patterns. To give a meaningful neurobiological interpretation to the connectivity network, it is fundamental to properly define the network framework. In particular, the choice of the network nodes may affect the final connectivity results and the consequent interpretation. We introduce a novel method for the intra subject topological characterization of the nodes of fMRI brain networks, based on a whole brain parcellation scheme. The proposed whole brain parcellation algorithm divides the brain into clusters that are homogeneous from the anatomical and functional point of view, each of which constitutes a node. The functional parcellation described is based on the Tononi's cluster index, which measures instantaneous correlation in terms of intrinsic and extrinsic statistical dependencies. The method performance and reliability were first tested on simulated data, then on a real fMRI dataset acquired on healthy subjects during visual stimulation. Finally, the proposed algorithm was applied to epileptic patients' fMRI data recorded during seizures, to verify its usefulness as preparatory step for effective connectivity analysis. For each patient, the nodes of the network involved in ictal activity were defined according to the proposed parcellation scheme and Granger Causality Analysis (GCA) was applied to infer effective connectivity. We showed that the algorithm 1) performed well on simulated data, 2) was able to produce reliable inter subjects results and 3) led to a detailed definition of the effective connectivity pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of liver transplantation on brain magnetic resonance imaging pathology in Wilson disease: a case report.

    PubMed

    Litwin, T; Dzieżyc, K; Poniatowska, R; Członkowska, A

    2013-01-01

    The authors present a case report of a 28-year-old patient with hepatic, but no neurological, signs of Wilson disease, with pathological changes in both the globi pallidi and caudate found with routine brain magnetic resonance imaging (MRI). The patient was recommended for liver transplantation by hepatologists, and during the two years of observation after liver transplantation, MRI brain abnormalities due to Wilson disease completely regressed. On the basis of this case, the authors present an argument for the prognostic significance of brain MRI in Wilson disease as well as current recommendations concerning liver transplantation in Wilson disease.

  7. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy.

    PubMed

    Holmes, Holly E; Powell, Nick M; Ma, Da; Ismail, Ozama; Harrison, Ian F; Wells, Jack A; Colgan, Niall; O'Callaghan, James M; Johnson, Ross A; Murray, Tracey K; Ahmed, Zeshan; Heggenes, Morten; Fisher, Alice; Cardoso, M Jorge; Modat, Marc; O'Neill, Michael J; Collins, Emily C; Fisher, Elizabeth M C; Ourselin, Sébastien; Lythgoe, Mark F

    2017-01-01

    With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our "in-skull" preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.

  8. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.

    PubMed

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-21

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  9. MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes

    NASA Astrophysics Data System (ADS)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  10. Cerebellar White Matter Abnormalities following Primary Blast Injury in US Military Personnel

    PubMed Central

    Mac Donald, Christine; Johnson, Ann; Cooper, Dana; Malone, Thomas; Sorrell, James; Shimony, Joshua; Parsons, Matthew; Snyder, Abraham; Raichle, Marcus; Fang, Raymond; Flaherty, Stephen; Russell, Michael; Brody, David L.

    2013-01-01

    Little is known about the effects of blast exposure on the human brain in the absence of head impact. Clinical reports, experimental animal studies, and computational modeling of blast exposure have suggested effects on the cerebellum and brainstem. In US military personnel with isolated, primary blast-related ‘mild’ traumatic brain injury and no other known insult, we found diffusion tensor MRI abnormalities consistent with cerebellar white matter injury in 3 of 4 subjects. No abnormalities in other brain regions were detected. These findings add to the evidence supporting the hypothesis that primary blast exposure contributes to brain injury in the absence of head impact and that the cerebellum may be particularly vulnerable. However, the clinical effects of these abnormalities cannot be determined with certainty; none of the subjects had ataxia or other detected evidence of cerebellar dysfunction. The details of the blast events themselves cannot be disclosed at this time, thus additional animal and computational modeling will be required to dissect the mechanisms underlying primary blast-related traumatic brain injury. Furthermore, the effects of possible subconcussive impacts and other military-related exposures cannot be determined from the data presented. Thus many aspects of topic will require further investigation. PMID:23409052

  11. Diagnostic performance of brain MRI in pharmacovigilance of natalizumab-treated MS patients.

    PubMed

    Wattjes, Mike P; Wijburg, Martijn T; Vennegoor, Anke; Witte, Birgit I; Roosendaal, Stefan D; Sanchez, Esther; Liu, Yaou; Martins Jarnalo, Carine O; Richert, Nancy D; Uitdehaag, Bernard Mj; Barkhof, Frederik; Killestein, Joep

    2016-08-01

    In natalizumab-treated multiple sclerosis (MS) patients, magnetic resonance imaging (MRI) is considered as a sensitive tool in detecting both MS disease activity and progressive multifocal leukoencephalopathy (PML). To investigate the performance of neuroradiologists using brain MRI in detecting new MS lesions and asymptomatic PML lesions and in differentiating between MS and PML lesions in natalizumab-treated MS patients. The secondary aim was to investigate interrater variability. In this retrospective diagnostic study, four blinded neuroradiologists assessed reference and follow-up brain MRI scans of 48 natalizumab-treated MS patients with new asymptomatic PML lesions (n = 21) or new MS lesions (n = 20) or no new lesions (n = 7). Sensitivity and specificity for detection of new lesions in general (MS and PML lesions), MS and PML lesion differentiation, and PML detection were determined. Interrater agreement was calculated. Overall sensitivity and specificity for the detection of new lesions, regardless of the nature of the lesions, were 77.4% and 89.3%, respectively; for PML-MS lesion differentiation, 74.2% and 84.7%, respectively; and for asymptomatic PML lesion detection, 59.5% and 91.7%, respectively. Interrater agreement for the tested categories was fair to moderate. The diagnostic performance of trained neuroradiologists using brain MRI in pharmacovigilance of natalizumab-treated MS patients is moderately good. Interrater agreement among trained readers is fair to moderate. © The Author(s), 2015.

  12. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  13. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  14. Multi-modal Brain MRI in Subjects with PD and iRBD.

    PubMed

    Mangia, Silvia; Svatkova, Alena; Mascali, Daniele; Nissi, Mikko J; Burton, Philip C; Bednarik, Petr; Auerbach, Edward J; Giove, Federico; Eberly, Lynn E; Howell, Michael J; Nestrasil, Igor; Tuite, Paul J; Michaeli, Shalom

    2017-01-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a condition that often evolves into Parkinson's disease (PD). Therefore, by monitoring iRBD it is possible to track the neurodegeneration of individuals who may progress to PD. Here we aimed at piloting the characterization of brain tissue properties in mid-brain subcortical regions of 10 healthy subjects, 8 iRBD, and 9 early-diagnosed PD. We used a battery of magnetic resonance imaging (MRI) contrasts at 3 T, including adiabatic and non-adiabatic rotating frame techniques developed by our group, along with diffusion tensor imaging (DTI) and resting-state fMRI. Adiabatic T 1ρ and T 2ρ , and non-adiabatic RAFF4 (Relaxation Along a Fictitious Field in the rotating frame of rank 4) were found to have lower coefficient of variations and higher sensitivity to detect group differences as compared to DTI parameters such as fractional anisotropy and mean diffusivity. Significantly longer T 1ρ were observed in the amygdala of PD subjects vs. controls, along with a trend of lower functional connectivity as measured by regional homogeneity, thereby supporting the notion that amygdalar dysfunction occurs in PD. Significant abnormalities in reward networks occurred in iRBD subjects, who manifested lower network strength of the accumbens. In agreement with previous studies, significantly longer T 1ρ occurred in the substantia nigra compacta of PD vs. controls, indicative of neuronal degeneration, while regional homogeneity was lower in the substantia nigra reticulata. Finally, other trend-level findings were observed, i.e., lower RAFF4 and T 2ρ in the midbrain of iRBD subjects vs. controls, possibly indicating changes in non-motor features as opposed to motor function in the iRBD group. We conclude that rotating frame relaxation methods along with functional connectivity measures are valuable to characterize iRBD and PD subjects, and with proper validation in larger cohorts may provide pathological signatures

  15. Virtual Brain Bank a public collection of classified head MRI

    NASA Astrophysics Data System (ADS)

    Barrios, Fernando A.

    2000-10-01

    In this work I present the effort at the Neurobiology Center for creating a digital Brain Bank, a collection of well classified human brains that are used for teaching and research, this bank will be based in a collection of high resolution three dimensional head MRI. For this reason this bank is being named "virtual" and eventually will be of public access though a WEB page in the INTERNET.

  16. Brain Activity Associated with Emoticons: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  17. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI

    PubMed Central

    Zhong, Xiaodong; Meyer, Craig H.; Schlesinger, David J.; Sheehan, Jason P.; Epstein, Frederick H.; Larner, James M.; Benedict, Stanley H.; Read, Paul W.; Sheng, Ke; Cai, Jing

    2009-01-01

    Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal∕spatial resolution and sensitivity. PMID:19746774

  18. MRI correlates of alien leg-like phenomenon in corticobasal degeneration.

    PubMed

    Hu, William T; Josephs, Keith A; Ahlskog, J Eric; Shin, Cheolsu; Boeve, Bradley F; Witte, Robert J

    2005-07-01

    We describe the clinical and neuroradiologic correlates in two patients with the clinical picture of CBD and alien leg phenomena. The MRI brain scan in both had unique focal abnormalities in the corresponding leg area of the homunculus that may be the substrate for the alien limb features. Copyright 2005 Movement Disorder Society.

  19. Brain Magnetic Resonance Imaging as First-Line Investigation for Growth Hormone Deficiency Diagnosis in Early Childhood.

    PubMed

    Pampanini, Valentina; Pedicelli, Stefania; Gubinelli, Jessica; Scirè, Giuseppe; Cappa, Marco; Boscherini, Brunetto; Cianfarani, Stefano

    2015-01-01

    The diagnosis of growth hormone (GH) deficiency (GHD) in infancy and early childhood is not straightforward. GH stimulation tests are unsafe and unreliable in infants, and normative data are lacking. This study aims to investigate whether brain magnetic resonance imaging (MRI) may replace GH stimulation tests in the diagnosis of GHD in children younger than 4 years. We examined a retrospective cohort, with longitudinal follow-up, of 68 children consecutively diagnosed with GHD before the age of 4 years. The prevalence of hypothalamic-pituitary (HP) alterations at MRI and the associations with age and either isolated GHD (IGHD) or multiple pituitary hormone deficiency (MPHD) were assessed. The prevalences of IGHD and MPHD were 54.4 and 45.6%, respectively. In the first group, brain MRI showed abnormalities in 83.8%: isolated pituitary hypoplasia in 48.7% and complex defects in 35.1%. In patients with MPHD, MRI showed complex alterations in 100%. All children younger than 24 months showed HP MRI abnormalities, regardless of the diagnosis. Complex defects were found in 94% of patients younger than 12 months and in 75% of patients between 13 and 24 months. Our data suggest that brain MRI may represent the first-line investigation for diagnosing GHD in infancy and early childhood. © 2015 S. Karger AG, Basel.

  20. Structural brain abnormalities in Cushing's syndrome.

    PubMed

    Bauduin, Stephanie E E C; van der Wee, Nic J A; van der Werff, Steven J A

    2018-05-08

    Alongside various physical symptoms, patients with Cushing's disease and Cushing's syndrome display a wide variety of neuropsychiatric and cognitive symptoms, which are indicative of involvement of the central nervous system. The aim of this review is to provide an overview of the structural brain abnormalities that are associated with Cushing's disease and Cushing's syndrome and their relation to behavioral and cognitive symptomatology. In this review, we discuss the gray matter structural abnormalities found in patients with active Cushing's disease and Cushing's syndrome, the reversibility and persistence of these changes and the white matter structural changes related to Cushing's syndrome. Recent findings are of particular interest because they provide more detailed information on localization of the structural changes as well as possible insights into the underlying biological processes. Active Cushing's disease and Cushing's syndrome is related to volume reductions of the hippocampus and in a prefrontal region involving the anterior cingulate cortex (ACC) and medial frontal gyrus (MFG). Whilst there are indications that the reductions in hippocampal volume are partially reversible, the changes in the ACC and MFG appear to be more persistent. In contrast to the volumetric findings, changes in white matter connectivity are typically widespread involving multiple tracts.

  1. Subcortical heterotopia appearing as huge midline mass in the newborn brain.

    PubMed

    Fukumura, Shinobu; Watanabe, Toshihide; Kimura, Sachiko; Ochi, Satoko; Yoshifuji, Kazuhisa; Tsutsumi, Hiroyuki

    2016-02-01

    We report the case of a 2-year-old boy who showed a huge midline mass in the brain at prenatal assessment. After birth, magnetic resonance imaging (MRI) revealed a conglomerate mass with an infolded microgyrus at the midline, which was suspected as a midline brain-in-brain malformation. MRI also showed incomplete cleavage of his frontal cortex and thalamus, consistent with lobar holoprosencephaly. The patient underwent an incisional biopsy of the mass on the second day of life. The mass consisted of normal central nervous tissue with gray and white matter, representing a heterotopic brain. The malformation was considered to be a subcortical heterotopia. With maturity, focal signal changes and decreased cerebral perfusion became clear on brain imaging, suggesting secondary glial degeneration. Coincident with these MRI abnormalities, the child developed psychomotor retardation and severe epilepsy focused on the side of the intracranial mass.

  2. Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain

    PubMed Central

    Rana, Mohit; Varan, Andrew Q.; Davoudi, Anis; Cohen, Ronald A.; Sitaram, Ranganatha; Ebner, Natalie C.

    2016-01-01

    Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging. PMID:27803662

  3. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests

    PubMed Central

    Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.

    2017-01-01

    Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680

  4. Utility of functional MRI in pediatric neurology.

    PubMed

    Freilich, Emily R; Gaillard, William D

    2010-01-01

    Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.

  5. Neuropathology of White Matter Lesions, Blood-Brain Barrier Dysfunction, and Dementia.

    PubMed

    Hainsworth, Atticus H; Minett, Thais; Andoh, Joycelyn; Forster, Gillian; Bhide, Ishaan; Barrick, Thomas R; Elderfield, Kay; Jeevahan, Jamuna; Markus, Hugh S; Bridges, Leslie R

    2017-10-01

    We tested whether blood-brain barrier dysfunction in subcortical white matter is associated with white matter abnormalities or risk of clinical dementia in older people (n=126; mean age 86.4, SD: 7.7 years) in the MRC CFAS (Medical Research Council Cognitive Function and Ageing Study). Using digital pathology, we quantified blood-brain barrier dysfunction (defined by immunohistochemical labeling for the plasma marker fibrinogen). This was assessed within subcortical white matter tissue samples harvested from postmortem T 2 magnetic resonance imaging (MRI)-detected white matter hyperintensities, from normal-appearing white matter (distant from coexistent MRI-defined hyperintensities), and from equivalent areas in MRI normal brains. Histopathologic lesions were defined using a marker for phagocytic microglia (CD68, clone PGM1). Extent of fibrinogen labeling was not significantly associated with white matter abnormalities defined either by MRI (odds ratio, 0.90; 95% confidence interval, 0.79-1.03; P =0.130) or by histopathology (odds ratio, 0.93; 95% confidence interval, 0.77-1.12; P =0.452). Among participants with normal MRI (no detectable white matter hyperintensities), increased fibrinogen was significantly related to decreased risk of clinical dementia (odds ratio, 0.74; 95% confidence interval, 0.58-0.94; P =0.013). Among participants with histological lesions, increased fibrinogen was related to increased risk of dementia (odds ratio, 2.26; 95% confidence interval, 1.25-4.08; P =0.007). Our data suggest that some degree of blood-brain barrier dysfunction is common in older people and that this may be related to clinical dementia risk, additional to standard MRI biomarkers. © 2017 American Heart Association, Inc.

  6. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    NASA Astrophysics Data System (ADS)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  7. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

    PubMed

    Roebroeck, Alard; Miller, Karla L; Aggarwal, Manisha

    2018-06-04

    This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  8. Sleep Apnea, Sleep Duration and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease: The Atherosclerosis Risk in Communities Study (ARIC).

    PubMed

    Lutsey, Pamela L; Norby, Faye L; Gottesman, Rebecca F; Mosley, Thomas; MacLehose, Richard F; Punjabi, Naresh M; Shahar, Eyal; Jack, Clifford R; Alonso, Alvaro

    2016-01-01

    A growing body of literature has suggested that obstructive sleep apnea (OSA) and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation. We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years. Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013). Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour), mild (5.0-14.9 events/hour), or normal (<5.0 events/hour). Habitual sleep duration was categorized, in hours, as <7, 7 to <8, ≥8. MRI outcomes included number of infarcts (total, subcortical, and cortical) and white matter hyperintensity (WMH) and Alzheimer's disease signature region volumes. Multivariable adjusted logistic and linear regression models were used. All models incorporated inverse probability weighting, to adjust for potential selection bias. At the time of the sleep study participants were 61.7 (SD: 5.0) years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0) years later, when participants were 76.5 (SD: 5.2) years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes. In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.

  9. 3D geometric split-merge segmentation of brain MRI datasets.

    PubMed

    Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis

    2014-05-01

    In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  11. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    PubMed Central

    Janušonis, Skirmantas

    2005-01-01

    Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies. PMID

  12. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Silun; Tryggestad, Erik; Zhou Tingting

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necroticmore » cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.« less

  13. A digital 3D atlas of the marmoset brain based on multi-modal MRI.

    PubMed

    Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C

    2018-04-01

    The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.

  14. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    PubMed

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P < 0.01 FWE) and widespread microstructural changes were detected across the motor system of the "trained" hemisphere. Specifically, region-of-interest-based analyses of diffusion MRI (n = 22) revealed significantly increased fractional anisotropy (FA) in the right caudate nucleus (4.9%; P < 0.05 FWE), and decreased mean diffusivity in the left nucleus accumbens (-1.3%; P < 0.05 FWE). Diffusion MRI tractography (n = 22), seeded by sensorimotor cortex fMRI activation, also revealed increased FA in the right corticospinal tract (mean 3.28%; P < 0.05 FWE) predominantly reflecting decreased radial diffusivity. These changes were consistent throughout the entire length of the tract. The left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P < 0.05 FWE) and right supplementary motor area (18/22 participants; P < 0.05 FWE). Equivalent changes in FA were not seen in the left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study.

    PubMed

    Grachev, I D; Fredrickson, B E; Apkarian, A V

    2000-12-15

    The neurobiology of chronic pain, including chronic back pain, is unknown. Structural imaging studies of the spine cannot explain all cases of chronic back pain. Functional brain imaging studies indicate that the brain activation patterns are different between chronic pain patients and normal subjects, and the thalamus, and prefrontal and cingulate cortices are involved in some types of chronic pain. Animal models of chronic pain suggest abnormal spinal cord chemistry. Does chronic pain cause brain chemistry changes? We examined brain chemistry changes in patients with chronic back pain using in vivo single- voxel proton magnetic resonance spectroscopy ((1)H-MRS). In vivo (1)H-MRS was used to measure relative concentrations of N-acetyl aspartate, creatine, choline, glutamate, glutamine, gamma-aminobutyric acid, inositol, glucose and lactate in relation to the concentration of creatine. These measurements were performed in six brain regions of nine chronic low back pain patients and 11 normal volunteers. All chronic back pain subjects underwent clinical evaluation and perceptual measures of pain and anxiety. We show that chronic back pain alters the human brain chemistry. Reductions of N-acetyl aspartate and glucose were demonstrated in the dorsolateral prefrontal cortex. Cingulate, sensorimotor, and other brain regions showed no chemical concentration differences. In chronic back pain, the interrelationship between chemicals within and across brain regions was abnormal, and there was a specific relationship between regional chemicals and perceptual measures of pain and anxiety. These findings provide direct evidence of abnormal brain chemistry in chronic back pain, which may be useful in diagnosis and future development of more effective pharmacological treatments.

  16. Abnormal brain structure implicated in stimulant drug addiction.

    PubMed

    Ersche, Karen D; Jones, P Simon; Williams, Guy B; Turton, Abigail J; Robbins, Trevor W; Bullmore, Edward T

    2012-02-03

    Addiction to drugs is a major contemporary public health issue, characterized by maladaptive behavior to obtain and consume an increasing amount of drugs at the expense of the individual's health and social and personal life. We discovered abnormalities in fronto-striatal brain systems implicated in self-control in both stimulant-dependent individuals and their biological siblings who have no history of chronic drug abuse; these findings support the idea of an underlying neurocognitive endophenotype for stimulant drug addiction.

  17. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): assessment of the involved white matter tracts by MRI.

    PubMed

    Kassem, Hassan; Wafaie, Ahmed; Abdelfattah, Sherif; Farid, Tarek

    2014-01-01

    Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy (1H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable signal abnormalities in the sensory and pyramidal tracts in

  18. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  19. Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination.

    PubMed

    Pugash, D; Hendson, G; Dunham, C P; Dewar, K; Money, D M; Prayer, D

    2012-12-01

    Prenatal development of the brain is characterized by gestational age-specific changes in the laminar structure of the brain parenchyma before 30 gestational weeks. Cerebral lamination patterns of normal fetal brain development have been described histologically, by postmortem in-vitro magnetic resonance imaging (MRI) and by in-vivo fetal MRI. The purpose of this study was to evaluate the sonographic appearance of laminar organization of the cerebral wall in normal and abnormal brain development. This was a retrospective study of ultrasound findings in 92 normal fetuses and 68 fetuses with abnormal cerebral lamination patterns for gestational age, at 17-38 weeks' gestation. We investigated the visibility of the subplate zone relative to the intermediate zone and correlated characteristic sonographic findings of cerebral lamination with gestational age in order to evaluate transient structures. In the normal cohort, the subplate zone-intermediate zone interface was identified as early as 17 weeks, and in all 57 fetuses examined up to 28 weeks. In all of these fetuses, the subplate zone appeared anechoic and the intermediate zone appeared homogeneously more echogenic than did the subplate zone. In the 22 fetuses between 28 and 34 weeks, there was a transition period when lamination disappeared in a variable fashion. The subplate zone-intermediate zone interface was not identified in any fetus after 34 weeks (n=13). There were three patterns of abnormal cerebral lamination: (1) no normal laminar pattern before 28 weeks (n=32), in association with severe ventriculomegaly, diffuse ischemia, microcephaly, teratogen exposure or lissencephaly; (2) focal disruption of lamination before 28 weeks (n=24), associated with hemorrhage, porencephaly, stroke, migrational abnormalities, thanatophoric dysplasia, meningomyelocele or encephalocele; (3) increased prominence and echogenicity of the intermediate zone before 28 weeks and/or persistence of a laminar pattern beyond 33 weeks

  20. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia.

    PubMed

    Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi

    2009-01-01

    Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.

  1. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behçet's disease involving the nervous system.

    PubMed Central

    McLean, B N; Miller, D; Thompson, E J

    1995-01-01

    A retrospective study of CSF and serum analysis from a total of 43 patients with sarcoidosis, 20 with systemic lupus erythematosus, and 12 with Behçet's disease with neurological involvement found local synthesis of oligoclonal IgG using isoelectric focusing and immunoblotting in 51%, 25%, and 8% respectively at some stage in their disease. Blood-brain barrier breakdown, when assessed with an albumin ratio found 47% of patients with sarcoidosis, 30% of those with systemic lupus erythematosus, and 42% of patients with Behçet's disease exhibiting abnormal barrier function at some time. Serial CSF analysis showed that clinical relapses were associated with worsening barrier function and in some patients the development of local oligoclonal IgG synthesis; conversely steroid treatment led to a statistically significant improvement in barrier function, and in two patients a loss of oligoclonal IgG bands. A higher proportion of patients had MRI abnormalities than oligoclonal IgG or blood-brain barrier breakdown, MRI being abnormal in 16 of 19 patients with sarcoidosis, three of four patients with systemic lupus erythematosus, and seven of nine patients with Behçet's disease, although this may have been due to temporal factors. In the differential diagnosis of chronic neurological disorders, locally synthesised oligoclonal IgG cannot distinguish between diseases, but the loss of bands seen in two patients contrasts with what is seen in multiple sclerosis, and thus may be a useful diagnostic clue. PMID:7745401

  2. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia

    PubMed Central

    Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.

    2014-01-01

    Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514

  3. Medication Overuse Headache: Pathophysiological Insights from Structural and Functional Brain MRI Research.

    PubMed

    Schwedt, Todd J; Chong, Catherine D

    2017-07-01

    Research imaging of brain structure and function has helped to elucidate the pathophysiology of medication overuse headache (MOH). This is a narrative review of imaging research studies that have investigated brain structural and functional alterations associated with MOH. Studies included in this review have investigated abnormal structure and function of pain processing regions in people with MOH, functional patterns that might predispose individuals to development of MOH, similarity of brain functional patterns in patients with MOH to those found in people with addiction, brain structure that could predict headache improvement following discontinuation of the overused medication, and changes in brain structure and function after discontinuation of medication overuse. MOH is associated with atypical structure and function of brain regions responsible for pain processing as well as brain regions that are commonly implicated in addiction. Several studies have shown "normalization" of structure and function in pain processing regions following discontinuation of the overused medication and resolution of MOH. However, some of the abnormalities in regions also implicated in addiction tend to persist following discontinuation of the overused medication, suggesting that they are a brain trait that predisposes certain individuals to medication overuse and MOH. © 2017 American Headache Society.

  4. Effect of bevacizumab on radiation necrosis of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Javier; Kumar, Ashok J.; Conrad, Charles A.

    Purpose: Because blocking vascular endothelial growth factor (VEGF) from reaching leaky capillaries is a logical strategy for the treatment of radiation necrosis, we reasoned that bevacizumab might be an effective treatment of radiation necrosis. Patients and Methods: Fifteen patients with malignant brain tumors were treated with bevacizumab or bevacizumab combination for their tumor on either a 5 mg/kg/2-week or 7.5 mg/kg/3-week schedule. Radiation necrosis was diagnosed in 8 of these patients on the basis of magnetic resonance imaging (MRI) and biopsy. MRI studies were obtained before treatment and at 6-week to 8-week intervals. Results: Of the 8 patients with radiationmore » necrosis, posttreatment MRI performed an average of 8.1 weeks after the start of bevacizumab therapy showed a reduction in all 8 patients in both the MRI fluid-attenuated inversion-recovery (FLAIR) abnormalities and T1-weighted post-Gd-contrast abnormalities. The average area change in the T1-weighted post-Gd-contrast abnormalities was 48% ({+-}22 SD), and the average change in the FLAIR images was 60% ({+-}18 SD). The average reduction in daily dexamethasone requirements was 8.6 mg ({+-}3.6). Conclusion: Bevacizumab, alone and in combination with other agents, can reduce radiation necrosis by decreasing capillary leakage and the associated brain edema. Our findings will need to be confirmed in a randomized trial to determine the optimal duration of treatment.« less

  5. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    PubMed

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  6. Magnetic Resonance Imaging (MRI) Evaluation of Developmental Delay in Pediatric Patients

    PubMed Central

    Syed, Naziya P.; Murthy, G.S.N.; Nori, Madhavi; Abkari, Anand; Pooja, B.K.; Venkateswarlu, J.

    2015-01-01

    Introduction: Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child’s ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. Aims and Objectives: To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. Materials and Methods: It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Results: Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was

  7. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy

    PubMed Central

    Holmes, Holly E.; Powell, Nick M.; Ma, Da; Ismail, Ozama; Harrison, Ian F.; Wells, Jack A.; Colgan, Niall; O'Callaghan, James M.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morten; Fisher, Alice; Cardoso, M. Jorge; Modat, Marc; O'Neill, Michael J.; Collins, Emily C.; Fisher, Elizabeth M. C.; Ourselin, Sébastien; Lythgoe, Mark F.

    2017-01-01

    With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes. PMID:28408879

  8. Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks.

    PubMed

    Islam, Jyoti; Zhang, Yanqing

    2018-05-31

    Alzheimer's disease is an incurable, progressive neurological brain disorder. Earlier detection of Alzheimer's disease can help with proper treatment and prevent brain tissue damage. Several statistical and machine learning models have been exploited by researchers for Alzheimer's disease diagnosis. Analyzing magnetic resonance imaging (MRI) is a common practice for Alzheimer's disease diagnosis in clinical research. Detection of Alzheimer's disease is exacting due to the similarity in Alzheimer's disease MRI data and standard healthy MRI data of older people. Recently, advanced deep learning techniques have successfully demonstrated human-level performance in numerous fields including medical image analysis. We propose a deep convolutional neural network for Alzheimer's disease diagnosis using brain MRI data analysis. While most of the existing approaches perform binary classification, our model can identify different stages of Alzheimer's disease and obtains superior performance for early-stage diagnosis. We conducted ample experiments to demonstrate that our proposed model outperformed comparative baselines on the Open Access Series of Imaging Studies dataset.

  9. BRAIN ABNORMALITIES IN YOUNG ADULTS AT GENETIC RISK FOR AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A CROSS-SECTIONAL STUDY

    PubMed Central

    Reiman, Eric M.; Quiroz, Yakeel T.; Fleisher, Adam S.; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M.; Shah, Aarti R.; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A.; Dickerson, Brad; Stern, Chantal E.; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A.; Huentelman, Matthew J.; Alexander, Gene E.; Langbaum, Jessica B.S.; Kosik, Kenneth S.; Tariot, Pierre N.; Lopera, Francisco

    2013-01-01

    Summary Background We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-β (Aβ) plaque deposition. Methods Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF Aβ1-42, total tau and phospho-tau181 levels, and plasma Aβ1-42 levels and Aβ1-42/Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological

  10. Computation of an MRI brain atlas from a population of Parkinson’s disease patients

    NASA Astrophysics Data System (ADS)

    Angelidakis, L.; Papageorgiou, I. E.; Damianou, C.; Psychogios, M. N.; Lingor, P.; von Eckardstein, K.; Hadjidemetriou, S.

    2017-11-01

    Parkinson’s Disease (PD) is a degenerative disorder of the brain. This study presents an MRI-based brain atlas of PD to characterize associated alterations for diagnostic and interventional purposes. The atlas standardizes primarily the implicated subcortical regions such as the globus pallidus (GP), substantia nigra (SN), subthalamic nucleus (STN), caudate nucleus (CN), thalamus (TH), putamen (PUT), and red nucleus (RN). The data were 3.0 T MRI brain images from 16 PD patients and 10 matched controls. The images used were T1-weighted (T 1 w), T2-weighted (T 2 w) images, and Susceptibility Weighted Images (SWI). The T1w images were the reference for the inter-subject non-rigid registration available from 3DSlicer. Anatomic labeling was achieved with BrainSuite and regions were refined with the level sets segmentation of ITK-Snap. The subcortical centers were analyzed for their volume and signal intensity. Comparison with an age-matched control group unravels a significant PD-related T1w signal loss in the striatum (CN and PUT) centers, but approximately a constant volume. The results in this study improve MRI based PD localization and can lead to the development of novel biomarkers.

  11. Tissue Tracking: Applications for Brain MRI Classification

    DTIC Science & Technology

    2007-01-01

    General Hospital, Center for Morphometric Analysis.10,11 The IBSR data-sets are T1-weighted, 3D coronal brain scans after having been positionally...learned priors,” Image Processing, IEEE Transactions on 9(2), pp. 299–301, 2000. 5. P. Olver, G. Sapiro, and A. Tannenbaum, “Invariant Geometric Evolutions...MRI,” NeuroImage 22(3), pp. 1060–1075, 2004. 16. A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer, “ Morphometric analysis of white matter lesions in

  12. Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischaemic encephalopathy in the era of therapeutic hypothermia.

    PubMed

    Weeke, Lauren C; Boylan, Geraldine B; Pressler, Ronit M; Hallberg, Boubou; Blennow, Mats; Toet, Mona C; Groenendaal, Floris; de Vries, Linda S

    2016-11-01

    To investigate the role of EEG background activity, electrographic seizure burden, and MRI in predicting neurodevelopmental outcome in infants with hypoxic-ischaemic encephalopathy (HIE) in the era of therapeutic hypothermia. Twenty-six full-term infants with HIE (September 2011-September 2012), who had video-EEG monitoring during the first 72 h, an MRI performed within the first two weeks and neurodevelopmental assessment at two years were evaluated. EEG background activity at age 24, 36 and 48 h, seizure burden, and severity of brain injury on MRI, were compared and related to neurodevelopmental outcome. EEG background activity was significantly associated with neurodevelopmental outcome at 36 h (p = 0.009) and 48 h after birth (p = 0.029) and with severity of brain injury on MRI at 36 h (p = 0.002) and 48 h (p = 0.018). All infants with a high seizure burden and moderate-severe injury on MRI had an abnormal outcome. The positive predictive value (PPV) of EEG for abnormal outcome was 100% at 36 h and 48 h and the negative predictive value (NPV) was 75% at 36 h and 69% at 48 h. The PPV of MRI was 100% and the NPV 85%. The PPV of seizure burden was 78% and the NPV 71%. Severely abnormal EEG background activity at 36 h and 48 h after birth was associated with severe injury on MRI and abnormal neurodevelopmental outcome. High seizure burden was only associated with abnormal outcome in combination with moderate-severe injury on MRI. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods

    PubMed Central

    Daugherty, Ana M; Raz, Naftali

    2015-01-01

    Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology. PMID:26248580

  14. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    PubMed

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  15. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke

    PubMed Central

    Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.

    2015-01-01

    The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual

  16. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities

    DTIC Science & Technology

    2015-10-01

    with fMRI , and CEST acquisitions. Analysis hurdles were noted in the qMT, which we discuss here. Recruitment continues in the MS cohort (all healthy...Saturation Transfer (CEST) • Magnetization Transfer (MT) • Brain • Cortical Gray Matter (cGM) • Multiple Sclerosis (MS) • Functional MRI ( fMRI ) • Pool Size...MPRAGE Anatomical – 2:12 • fMRI Resting State – 8:34 • fMRI N-Back task – 8:30 • fMRI Trailmaking task – 4:14 The current scan time for all scans is

  17. Brain Tissue Compartment Density Estimated Using Diffusion-Weighted MRI Yields Tissue Parameters Consistent With Histology

    PubMed Central

    Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi

    2015-01-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639

  18. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

    PubMed

    Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J

    2016-02-15

    Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our

  19. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

    PubMed

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.

  20. Profound microcephaly, primordial dwarfism with developmental brain malformations: a new syndrome.

    PubMed

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Saleem, Sahar N; Ahmed, Mahmoud K H; Issa, Mahmoud; Effat, Laila K; Kayed, Hisham F; Zaki, Maha S; Gaber, Khaled R

    2012-08-01

    We describe two sibs with a lethal form of profound congenital microcephaly, intrauterine and postnatal growth retardation, subtle skeletal changes, and poorly developed brain. The sibs had striking absent cranial vault with sloping of the forehead, large beaked nose, relatively large ears, and mandibular micro-retrognathia. Brain magnetic resonance imaging (MRI) revealed extremely simplified gyral pattern, large interhemispheric cyst and agenesis of corpus callosum, abnormally shaped hippocampus, and proportionately affected cerebellum and brainstem. In addition, fundus examination showed foveal hypoplasia with optic nerve atrophy. No abnormalities of the internal organs were found. This profound form of microcephaly was identified at 17 weeks gestation by ultrasound and fetal brain MRI helped in characterizing the developmental brain malformations in the second sib. Molecular analysis excluded mutations in potentially related genes such as RNU4ATAC, SLC25A19, and ASPM. These clinical and imaging findings are unlike that of any recognized severe forms of microcephaly which is believed to be a new microcephalic primordial dwarfism (MPD) with developmental brain malformations with most probably autosomal recessive inheritance based on consanguinity and similarly affected male and female sibs. Copyright © 2012 Wiley Periodicals, Inc.

  1. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

    PubMed

    Formisano, Elia; De Martino, Federico; Valente, Giancarlo

    2008-09-01

    Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.

  2. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI

    PubMed Central

    Liu, Peiying; Welch, Babu G.; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang

    2016-01-01

    Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O2 and CO2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3 min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03 %/mmHg and 0.0056±0.0006 %/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06 %/mmHg vs. 0.21±0.05 %/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO2 and O2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and

  3. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations.

    PubMed

    Bricout, M; Grévent, D; Lebre, A S; Rio, M; Desguerre, I; De Lonlay, P; Valayannopoulos, V; Brunelle, F; Rötig, A; Munnich, A; Boddaert, N

    2014-07-01

    Mitochondrial diseases are characterised by a broad clinical and genetic heterogeneity that makes diagnosis difficult. Owing to the wide pattern of symptoms in mitochondrial disorders and the constantly growing number of disease genes, their genetic diagnosis is difficult and genotype/phenotype correlations remain elusive. Brain MRI appears as a useful tool for genotype/phenotype correlations. Here, we summarise the various combinations of MRI lesions observed in the most frequent mitochondrial respiratory chain deficiencies so as to direct molecular genetic test in patients at risk of such diseases. We believe that the combination of brain MRI features is of value to support respiratory chain deficiency and direct molecular genetic tests. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer: comparisons of clinical effectiveness in a randomized trial.

    PubMed

    Yi, Chin A; Lee, Kyung Soo; Lee, Ho Yun; Kim, Seonwoo; Kwon, O Jung; Kim, Hojoong; Choi, Joon Young; Kim, Byung-Tae; Hwang, Hye Sun; Shim, Young Mog

    2013-05-15

    The objective of this study was to assess whether coregistered whole brain (WB) magnetic resonance imaging-positron emission tomography (MRI-PET) would increase the number of correctly upstaged patients compared with WB PET-computed tomography (PET-CT) plus dedicated brain MRI in patients with nonsmall cell lung cancer (NSCLC). From January 2010 through November 2011, patients with NSCLC who had resectable disease based on conventional staging were assigned randomly either to coregistered MRI-PET or WB PET-CT plus brain MRI (ClinicalTrials.gov trial NCT01065415). The primary endpoint was correct upstaging (the identification of lesions with higher tumor, lymph node, or metastasis classification, verified with biopsy or other diagnostic test) to have the advantage of avoiding unnecessary thoracotomy, to determine appropriate treatment, and to accurately predict patient prognosis. The secondary endpoints were over staging and under staging compared with pathologic staging. Lung cancer was correctly upstaged in 37 of 143 patients (25.9%) in the MRI-PET group and in 26 of 120 patients (21.7%) in the PET-CT plus brain MRI group (4.2% difference; 95% confidence interval, -6.1% to 14.5%; P = .426). Lung cancer was over staged in 26 of 143 patients (18.2%) in the MRI-PET group and in 7 of 120 patients (5.8%) in the PET-CT plus brain MRI group (12.4% difference; 95% confidence interval, 4.8%-20%; P = .003), whereas lung cancer was under staged in 18 of 143 patients (12.6%) and in 28 of 120 patients (23.3%), respectively (-10.7% difference; 95% confidence interval, -20.1% to -1.4%; P = .022). Although both staging tools allowed greater than 20% correct upstaging compared with conventional staging methods, coregistered MRI-PET did not appear to help identify significantly more correctly upstaged patients than PET-CT plus brain MRI in patients with NSCLC. Copyright © 2013 American Cancer Society.

  5. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS.

    PubMed

    Silva, Mauro Sb; Prescott, Melanie; Campbell, Rebecca E

    2018-04-05

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.

  6. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS

    PubMed Central

    Silva, Mauro S.B.; Prescott, Melanie; Campbell, Rebecca E.

    2018-01-01

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP–transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype. PMID:29618656

  7. Measuring the volume of brain tumour and determining its location in T2-weighted MRI images using hidden Markov random field: expectation maximization algorithm

    NASA Astrophysics Data System (ADS)

    Mat Jafri, Mohd. Zubir; Abdulbaqi, Hayder Saad; Mutter, Kussay N.; Mustapha, Iskandar Shahrim; Omar, Ahmad Fairuz

    2017-06-01

    A brain tumour is an abnormal growth of tissue in the brain. Most tumour volume measurement processes are carried out manually by the radiographer and radiologist without relying on any auto program. This manual method is a timeconsuming task and may give inaccurate results. Treatment, diagnosis, signs and symptoms of the brain tumours mainly depend on the tumour volume and its location. In this paper, an approach is proposed to improve volume measurement of brain tumors as well as using a new method to determine the brain tumour location. The current study presents a hybrid method that includes two methods. One method is hidden Markov random field - expectation maximization (HMRFEM), which employs a positive initial classification of the image. The other method employs the threshold, which enables the final segmentation. In this method, the tumour volume is calculated using voxel dimension measurements. The brain tumour location was determined accurately in T2- weighted MRI image using a new algorithm. According to the results, this process was proven to be more useful compared to the manual method. Thus, it provides the possibility of calculating the volume and determining location of a brain tumour.

  8. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    PubMed

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Co-registration of In-Vivo Human MRI Brain Images to Postmortem Histological Microscopic Images

    PubMed Central

    Singh, M.; Rajagopalan, A.; Kim, T.-S.; Hwang, D.; Chui, H.; Zhang, X.-L.; Lee, A.-Y.; Zarow, C.

    2009-01-01

    Certain features such as small vascular lesions seen in human MRI are detected reliably only in postmortem histological samples by microscopic imaging. Co-registration of these microscopically detected features to their corresponding locations in the in-vivo images would be of great benefit to understanding the MRI signatures of specific diseases. Using non-linear Polynomial transformation, we report a method to co-register in-vivo MRIs to microscopic images of histological samples drawn off the postmortem brain. The approach utilizes digital photographs of postmortem slices as an intermediate reference to co-register the MRIs to microscopy. The overall procedure is challenging due to gross structural deformations in the postmortem brain during extraction and subsequent distortions in the histological preparations. Hemispheres of the brain were co-registered separately to mitigate these effects. Approaches relying on matching single-slices, multiple-slices and entire volumes in conjunction with different similarity measures suggested that using four slices at a time in combination with two sequential measures, Pearson correlation coefficient followed by mutual information, produced the best MRI-postmortem co-registration according to a voxel mismatch count. The accuracy of the overall registration was evaluated by measuring the 3D Euclidean distance between the locations of microscopically identified lesions on postmortem slices and their MRI-postmortem co-registered locations. The results show a mean 3D displacement of 5.1 ± 2.0 mm between the in-vivo MRI and microscopically determined locations for 21 vascular lesions in 11 subjects. PMID:19169415

  10. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

    PubMed

    Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C

    2014-08-15

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects

    PubMed Central

    Ziegler, G.; Ridgway, G.R.; Dahnke, R.; Gaser, C.

    2014-01-01

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919

  12. An fMRI compatible wrist robotic interface to study brain development in neonates.

    PubMed

    Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E

    2013-06-01

    A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.

  13. Abnormal Reward System Activation in Mania

    PubMed Central

    Abler, Birgit; Greenhouse, Ian; Ongur, Dost; Walter, Henrik; Heckers, Stephan

    2008-01-01

    Transmission of reward signals is a function of dopamine, a neurotransmitter known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), we investigated how expectation and receipt of monetary rewards modulate brain activation in patients with bipolar mania and schizophrenia. We studied 12 acutely manic patients with a history of bipolar disorder, 12 patients with a current episode of schizoaffective disorder or schizophrenia and 12 healthy subjects. All patients were treated with dopamine antagonists at the time of the study. Subjects performed a delayed incentive paradigm with monetary reward in the scanner that allowed for investigating effects of expectation, receipt, and omission of rewards. Patients with schizophrenia and healthy control subjects showed the expected activation of dopaminergic brain areas, that is, ventral tegmentum activation upon expectation of monetary rewards and nucleus accumbens activation during receipt vs omission of rewards. In manic patients, however, we did not find a similar pattern of brain activation and the differential signal in the nucleus accumbens upon receipt vs omission of rewards was significantly lower compared to the healthy control subjects. Our findings provide evidence for abnormal function of the dopamine system during receipt or omission of expected rewards in bipolar disorder. These deficits in prediction error processing in acute mania may help to explain symptoms of disinhibition and abnormal goal pursuit regulation. PMID:17987058

  14. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.

    PubMed

    Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2018-06-01

    Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.

  15. Comprehensive Clinical Staging for Resectable Lung Cancer: Clinicopathological Correlations and the Role of Brain MRI.

    PubMed

    Vernon, Jordyn; Andruszkiewicz, Nicole; Schneider, Laura; Schieman, Colin; Finley, Christian J; Shargall, Yaron; Fahim, Christine; Farrokhyar, Forough; Hanna, Waël C

    2016-11-01

    In our model of comprehensive clinical staging (CCS) for lung cancer, patients with a computerized tomography scan of the chest and upper abdomen not showing distant metastases will then routinely undergo whole body positron emission tomography/computerized tomography and magnetic resonance imaging (MRI) of the brain before any therapeutic decision. Our aim was to determine the accuracy of CCS and the value of brain MRI in this population. A retrospective analysis of a prospectively entered database was performed for all patients who underwent lung cancer resection from January 2012 to June 2014. Demographics, clinical and pathological stage (seventh edition of the American Joint Committee on Cancer/Union for International Cancer Control tumor, node, and metastasis staging manual), and costs of staging were collected. Correlation between clinical and pathological stage was determined. Of 315 patients with primary lung cancer, 55.6% were female and the mean age was 70 ± 9.6 years. When correlation was analyzed without consideration for substages A and B, 49.8% of patients (158 of 315) were staged accurately, 39.7% (125 of 315) were overstaged, and 10.5% (32 of 315) were understaged. Only 4.7% of patients (15 of 315) underwent surgery without appropriate neoadjuvant treatment. Preoperative brain MRI detected asymptomatic metastases in four of 315 patients (1.3%). At a median postoperative follow-up of 19 months (range 6-43), symptomatic brain metastases developed in seven additional patients. The total cost of CCS in Canadian dollars was $367,292 over the study period, with $117,272 (31.9%) going toward brain MRI. CCS is effective for patients with resectable lung cancer, with less than 5% of patients being denied appropriate systemic treatment before surgery. Brain MRI is a low-yield and high-cost intervention in this population, and its routine use should be questioned. Copyright © 2016 International Association for the Study of Lung Cancer. Published by

  16. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI.

    PubMed

    Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan

    2018-01-01

    Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem

  17. Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes.

    PubMed

    Rocca, Maria A; Vacchi, Laura; Rodegher, Mariaemma; Meani, Alessandro; Martinelli, Vittorio; Possa, Francesca; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-10-01

    Using fMRI during a face encoding (FE) task, we investigated the behavioral and fMRI correlates of FE in patients with relapse-onset multiple sclerosis (MS) at different stages of the disease and their relation with attentive-executive performance and structural MRI measures of disease-related damage. A fMRI FE task was administered to 75 MS patients (11 clinically isolated syndromes - CIS, 40 relapsing-remitting - RRMS - and 24 secondary progressive - SPMS) and 22 healthy controls (HC). fMRI activity during the face encoding condition was correlated with behavioral, clinical, neuropsychological and structural MRI variables. All study subjects activated brain regions belonging to face perception and encoding network, and deactivated areas of the default-mode network. Compared to HC, MS patients had the concomitant presence of areas of increased and decreased activations as well as increased and decreased deactivations. Compared to HC or RRMS, CIS patients experienced an increased recruitment of posterior-visual areas. Thalami, para-hippocampal gyri and right anterior cingulum were more activated in RRMS vs CIS or SPMS patients, while an increased recruitment of frontal areas was observed in SPMS vs RRMS. Areas of abnormal activations were significantly correlated with clinical, cognitive-behavioral and structural MRI measures. Abnormalities of FE network occur in MS and vary across disease clinical phenotypes. Early in the disease, an increased recruitment of areas typically devoted to face perception and encoding occurs. In SPMS patients, abnormal functional recruitment of frontal lobe areas might contribute to the severity of clinical manifestations.

  18. Investigating the physiology of brain activation with MRI

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.

    2004-04-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).

  19. Using real-time fMRI brain-computer interfacing to treat eating disorders.

    PubMed

    Sokunbi, Moses O

    2018-05-15

    Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  1. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings.

    PubMed

    Talbott, Jason F; Whetstone, William D; Readdy, William J; Ferguson, Adam R; Bresnahan, Jacqueline C; Saigal, Rajiv; Hawryluk, Gregory W J; Beattie, Michael S; Mabray, Marc C; Pan, Jonathan Z; Manley, Geoffrey T; Dhall, Sanjay S

    2015-10-01

    Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane. The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors' Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity. The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors' proposed score was rapid to apply and showed excellent interrater reliability. The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2

  2. Transcranial MRI-guided FUS-induced BBB opening in the rat brain

    NASA Astrophysics Data System (ADS)

    Treat, Lisa H.; McDannold, Nathan J.; Hynynen, Kullervo

    2004-05-01

    The blood-brain barrier (BBB) has been a major limitation in treating diseases of the brain because therapeutic agents are either unable to penetrate or have dose-limiting side effects in diffuse opening of the BBB. A previous study demonstrated that focused ultrasound (FUS) can locally open the BBB in a rabbit model when a piece of skull is removed and that magnetic resonance imaging (MRI) can be used to guide and monitor the procedure. This study examined whether the same desired effect of local BBB disruption can be achieved by applying FUS through an intact skull in a rat model. Twenty-eight Sprague-Dawley rats were anesthetized, shaved, and sonicated at four focal locations in the brain, using a 1.5-MHz focused transducer. Contrast-enhanced MR images were obtained before and after sonication. The images indicated contrast agent penetration at the focal coordinates following Optison-enhanced sonication. This study demonstrated that the distortion of the ultrasound beam by the rat skull was not significant enough to inhibit focal BBB opening. Subsequent experiments using MRI-guided FUS to aid in targeted drug delivery to brain tumors in a rodent model could thus be performed more efficiently without cranial surgery. [Research funded by NIH Grant No. CA76550.

  3. The Neurocognitive and MRI Outcomes of West Nile Virus Infection: Preliminary Analysis Using an External Control Group.

    PubMed

    Murray, Kristy O; Nolan, Melissa S; Ronca, Shannon E; Datta, Sushmita; Govindarajan, Koushik; Narayana, Ponnada A; Salazar, Lucrecia; Woods, Steven P; Hasbun, Rodrigo

    2018-01-01

    To understand the long-term neurological outcomes resultant of West Nile virus (WNV) infection, participants from a previously established, prospective WNV cohort were invited to take part in a comprehensive neurologic and neurocognitive examination. Those with an abnormal exam finding were invited for MRI to evaluate cortical thinning and regional brain atrophy following infection. Correlations of presenting clinical syndrome with neurologic and neurocognitive dysfunctions were evaluated, as well as correlations of neurocognitive outcomes with MRI results. From 2002 to 2012, a total of 262 participants with a history of WNV infection were enrolled as research participants in a longitudinal cohort study, and 117 completed comprehensive neurologic and neurocognitive evaluations. Abnormal neurological exam findings were identified in 49% (57/117) of participants, with most abnormalities being unilateral. The most common abnormalities included decreased strength (26%; 30/117), abnormal reflexes (14%; 16/117), and tremors (10%; 12/117). Weakness and decreased reflexes were consistent with lower motor neuron damage in a significant proportion of patients. We observed a 22% overall rate of impairment on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), with impairments observed in immediate (31%) and delayed memory (25%). On MRI, participants showed significant cortical thinning as compared to age- and gender-matched controls in both hemispheres, with affected regions primarily occurring in the frontal and limbic cortices. Regional atrophy occurred in the cerebellum, brain stem, thalamus, putamen, and globus pallidus. This study provides valuable new information regarding the neurological outcomes following WNV infection, with MRI evidence of significant cortical thinning and regional atrophy; however, it is important to note that the results may include systemic bias due to the external control group. Considering no effective treatment

  4. Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths

    PubMed Central

    West, Janne; Blystad, Ida; Engström, Maria; Warntjes, Jan B. M.; Lundberg, Peter

    2013-01-01

    Background Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. Methods In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. Results Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. Conclusions Most of the brain was identically classified at the two field strengths, although some regional differences were observed. PMID:24066153

  5. Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.

    PubMed

    Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C

    2008-04-01

    The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.

  6. Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI.

    PubMed

    Ito, Keiichi; Asano, Yoshitaka; Ikegame, Yuka; Shinoda, Jun

    2016-01-01

    Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage.

  7. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  8. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  9. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.

    PubMed

    Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland

    2017-01-01

    Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

  10. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term.

    PubMed

    Kidokoro, H; Neil, J J; Inder, T E

    2013-01-01

    WM injury is the dominant form of injury in preterm infants. However, other cerebral structures, including the deep gray matter and the cerebellum, can also be affected by injury and/or impaired growth. Current MR imaging injury assessment scales are subjective and are challenging to apply. Thus, we developed a new assessment tool and applied it to MR imaging studies obtained from very preterm infants at term age. MR imaging scans from 97 very preterm infants (< 30 weeks' gestation) and 22 healthy term-born infants were evaluated retrospectively. The severity of brain injury (defined by signal abnormalities) and impaired brain growth (defined with biometrics) was scored in the WM, cortical gray matter, deep gray matter, and cerebellum. Perinatal variables for clinical risks were collected. In very preterm infants, brain injury was observed in the WM (n=23), deep GM (n=5), and cerebellum (n=23). Combining measures of injury and impaired growth showed moderate to severe abnormalities most commonly in the WM (n=38) and cerebellum (n=32) but still notable in the cortical gray matter (n=16) and deep gray matter (n=11). WM signal abnormalities were associated with a reduced deep gray matter area but not with cerebellar abnormality. Intraventricular and/or parenchymal hemorrhage was associated with cerebellar signal abnormality and volume reduction. Multiple clinical risk factors, including prolonged intubation, prolonged parenteral nutrition, postnatal corticosteroid use, and postnatal sepsis, were associated with increased global abnormality on MR imaging. Very preterm infants demonstrate a high prevalence of injury and growth impairment in both the WM and gray matter. This MR imaging scoring system provides a more comprehensive and objective classification of the nature and extent of abnormalities than existing measures.

  11. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.

    PubMed

    Brown, Andrew D; Marotta, Thomas R

    2017-02-01

    Incorrect imaging protocol selection can contribute to increased healthcare cost and waste. To help healthcare providers improve the quality and safety of medical imaging services, we developed and evaluated three natural language processing (NLP) models to determine whether NLP techniques could be employed to aid in clinical decision support for protocoling and prioritization of magnetic resonance imaging (MRI) brain examinations. To test the feasibility of using an NLP model to support clinical decision making for MRI brain examinations, we designed three different medical imaging prediction tasks, each with a unique outcome: selecting an examination protocol, evaluating the need for contrast administration, and determining priority. We created three models for each prediction task, each using a different classification algorithm-random forest, support vector machine, or k-nearest neighbor-to predict outcomes based on the narrative clinical indications and demographic data associated with 13,982 MRI brain examinations performed from January 1, 2013 to June 30, 2015. Test datasets were used to calculate the accuracy, sensitivity and specificity, predictive values, and the area under the curve. Our optimal results show an accuracy of 82.9%, 83.0%, and 88.2% for the protocol selection, contrast administration, and prioritization tasks, respectively, demonstrating that predictive algorithms can be used to aid in clinical decision support for examination protocoling. NLP models developed from the narrative clinical information provided by referring clinicians and demographic data are feasible methods to predict the protocol and priority of MRI brain examinations. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  13. Fingolimod's Impact on MRI Brain Volume Measures in Multiple Sclerosis: Results from MS-MRIUS.

    PubMed

    Zivadinov, Robert; Medin, Jennie; Khan, Nasreen; Korn, Jonathan R; Bergsland, Niels; Dwyer, Michael G; Chitnis, Tanuja; Naismith, Robert T; Alvarez, Enrique; Kinkel, Peter; Cohan, Stanley; Hunter, Samuel F; Silva, Diego; Weinstock-Guttman, Bianca

    2018-05-11

    Evidence is needed to understand the effect of fingolimod on slowing down brain atrophy progression in multiple sclerosis (MS) patients in clinical practice. We investigated the effect of fingolimod on brain atrophy in MS patients with active disease (clinically and/or magnetic resonance imaging [MRI]) versus no evidence of active disease (NEAD). MS and clinical outcome and MRI in the United States (MS-MRIUS) is a multicenter, retrospective study that included 590 relapsing-remitting MS patients, who initiated fingolimod, and were followed for a median of 16 months. Patients with active disease at baseline (245, 41.5%) were defined as those who had one or more relapses in the year previous starting fingolimod, and/or displayed gadolinium enhancing lesions(s) at baseline MRI scan, whereas patients with NEAD at baseline (345, 58.5%) did not fulfill these criteria. Annualized percentage brain volume change (PBVC) and percentage lateral ventricle volume change (PLVVC) over the follow-up were analyzed in both groups. Over the follow-up, the rate of PBVC was -.38% in active disease and -.25% in NEAD patients (P = .076), whereas PLLVC was 1.76% in active disease and .28% in NEAD patients (P = .046). No changes in timed 25-foot walk (P = .619) and Expanded Disability Status Scale (P = .275) scores or MRI lesion accumulation (P > 0.08) were detected, although the active disease group had a higher proportion of relapses during the follow-up period (P = .02). The study provides real-world evidence that rate of brain atrophy in MS patients with underlying active disease and NEAD in fingolimod treated patients is below the established pathological cutoff for loss of whole brain volume (>-.4%) or expansion of lateral ventricles (> 3.5%). Copyright © 2018 by the American Society of Neuroimaging.

  14. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    PubMed

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain

    NASA Astrophysics Data System (ADS)

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Lesage, Frédéric

    2018-01-01

    An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5) μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.

  16. An Investigation of the Relationship Between fMRI and ERP Source Localized Measurements of Brain Activity during Face Processing

    PubMed Central

    Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine

    2013-01-01

    Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649

  17. Functional brain imaging: an evidence-based analysis.

    PubMed

    2006-01-01

    genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson's disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. FUNCTIONAL BRAIN IMAGING: Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology

  18. Man Versus Machine Part 2: Comparison of Radiologists' Interpretations and NeuroQuant Measures of Brain Asymmetry and Progressive Atrophy in Patients With Traumatic Brain Injury.

    PubMed

    Ross, David E; Ochs, Alfred L; DeSmit, Megan E; Seabaugh, Jan M; Havranek, Michael D

    2015-01-01

    This study is an expanded version of an earlier study, which compared NeuroQuant measures of MRI brain volume with the radiologist's traditional approach in outpatients with mild or moderate traumatic brain injury. NeuroQuant volumetric analyses were compared with the radiologists' interpretations. NeuroQuant found significantly higher rates of atrophy (50.0%), abnormal asymmetry (83.3%), and progressive atrophy (70.0%) than the radiologists (12.5%, 0% and 0%, respectively). Overall, NeuroQuant was more sensitive for detecting at least one sign of atrophy, abnormal asymmetry, or progressive atrophy (95.8%) than the traditional radiologist's approach (12.5%).

  19. Serial brain MRI and ultrasound findings: relation to gestational age, bilirubin level, neonatal neurologic status and neurodevelopmental outcome in infants at risk of kernicterus.

    PubMed

    Gkoltsiou, Konstantina; Tzoufi, Meropi; Counsell, Serena; Rutherford, Mary; Cowan, Frances

    2008-12-01

    To describe cranial ultrasound (cUS) and magnetic resonance imaging (MRI) findings in neonates at risk of kernicterus, in relation to gestational age (GA), total serum bilirubin (TSB), age at imaging and neurodevelopmental outcome. Neonates with peak TSB > 400 micromol/L and/or signs of bilirubin encephalopathy. Review of neonatal data, cUS, preterm, term and later MRI scans and neurodevelopmental outcome. 11 infants were studied, two < 31, four 34-36 and five 37-40 weeks GA. TSB levels: 235-583 micromol/L (preterms); 423-720 micromol/L (terms). Neonatal neurological examination was abnormal in 8/10. cUS showed increased basal ganglia (BG) in 4/9 infants and white matter (WM) echogenicity, lenticulostriate vasculopathy (LSV) and caudothalamic hyperechogencity/cysts (GLCs) in 5/9 infants. MRI showed abnormal signal intensity (SI) in the globus pallidum (GP) in 1/2 preterm, 8/9 term and 9/11 later scans. Abnormal WM SI occurred in 2 preterm, 7 term and 10/11 later scans. Seven infants developed athetoid/dystonic cerebral palsy (CP) and 6 hearing loss (HL). Adverse outcome was associated with abnormal BG on cUS (3/4 CP, 4/4 HL), with high SI in GP (7/9 CP, 6/9 HL) on late T2-weighted MRI (all GA) and on T1/T2-weighted term MRI, mainly in term-born infants. WM abnormalities, GLCs and LSV did not correlate with outcome. Severe CP occurred with relatively low TSB levels in preterms but only at high levels in full-terms; HL was difficult to predict. Early scans did not reliably predict motor deficits whilst all children with CP had abnormal central grey matter on later scans. Abnormal WM was seen early suggesting primary involvement rather than change secondary to grey matter damage. Why characteristic central grey matter MRI features of kernicterus are not seen early remains unexplained.

  20. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome.

    PubMed

    Bertolaccini, Maria Laura; Contento, Gregorio; Lennen, Ross; Sanna, Giovanni; Blower, Philip J; Ma, Michelle T; Sunassee, Kavitha; Girardi, Guillermina

    2016-12-01

    Placental ischemic disease and adverse pregnancy outcomes are frequently observed in patients with antiphospholipid syndrome (APS). Despite the administration of conventional antithrombotic treatment a significant number of women continue to experience adverse pregnancy outcomes, with uncertain prevention and management. Efforts to develop effective pharmacological strategies for refractory obstetric APS cases will be of significant clinical benefit for both mothers and fetuses. Although the antimalarial drug, hydroxychloroquine (HCQ) is increasingly used to treat pregnant women with APS, little is known about its efficacy and mechanism of action of HCQ. Because complement activation plays a crucial and causative role in placental ischemia and abnormal fetal brain development in APS we hypothesised that HCQ prevents these pregnancy complications through inhibition of complement activation. Using a mouse model of obstetric APS that closely resembles the clinical condition, we found that HCQ prevented fetal death and the placental metabolic changes -measured by proton magnetic resonance spectroscopy in APS-mice. Using 111 In labelled antiphospholipid antibodies (aPL) we identified the placenta and the fetal brain as the main organ targets in APS-mice. Using this same method, we found that HCQ does not inhibit aPL binding to tissues as was previously suggested from in vitro studies. While HCQ did not affect aPL binding to fetal brain it prevented fetal brain abnormal cortical development. HCQ prevented complement activation in vivo and in vitro. Complement C5a levels in serum samples from APS patients and APS-mice were lower after treatment with HCQ while the antibodies titres remained unchanged. HCQ prevented not only placental insufficiency but also abnormal fetal brain development in APS. By inhibiting complement activation, HCQ might also be an effective antithrombotic therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Changes in Gray Matter Density, Regional Homogeneity, and Functional Connectivity in Methamphetamine-Associated Psychosis: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Zhang, Shengyu; Hu, Qiang; Tang, Tao; Liu, Chao; Li, Chengchong; Zang, Yin-Yin; Cai, Wei-Xiong

    2018-06-13

    BACKGROUND Using regional homogeneity (ReHo) blood oxygen level-dependent functional MR (BOLD-fMRI), we investigated the structural and functional alterations of brain regions among patients with methamphetamine-associated psychosis (MAP). MATERIAL AND METHODS This retrospective study included 17 MAP patients, 16 schizophrenia (SCZ) patients, and 18 healthy controls. Informed consent was obtained from all patients before the clinical assessment, the severity of clinical symptoms was evaluated prior to the fMRI scanning, and then images were acquired and preprocessed after each participant received 6-min fRMI scanning. The participants all underwent BOLD-fMRI scanning. Voxel-based morphometry was used to measure gray matter density (GMD). Resting-state fMRI (rs-fMRI) was conducted to analyze functional MR, ReHo, and functional connectivity (FC). RESULTS GMD analysis results suggest that MAP patients, SCZ patients, and healthy volunteers show different GMDs within different brain regions. Similarly, the ReHo analysis results suggest that MAP patients, SCZ patients, and healthy volunteers have different GMDs within different brain regions. Negative correlations were found between ReHo- and the PANSS-positive scores within the left orbital interior frontal gyrus (L-orb-IFG) of MAP patients. ReHo- and PANSS-negative scores of R-SFG were negatively correlated among SCZ patients. The abnormal FC of R-MFG showed a negative correlation with the PANSS score among MAP patients. CONCLUSIONS The abnormalities in brain structure and FC were associated with the development of MAP.

  3. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.

    PubMed

    Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan

    2010-07-01

    This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.

  4. Semi-automated brain tumor and edema segmentation using MRI.

    PubMed

    Xie, Kai; Yang, Jie; Zhang, Z G; Zhu, Y M

    2005-10-01

    Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. A semi-automated method has been developed for brain tumor and edema segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments non-enhancing brain tumor and edema from healthy tissues in magnetic resonance images. In this study, a semi-automated method was developed for brain tumor and edema segmentation and volume measurement using magnetic resonance imaging (MRI). Some novel algorithms for tumor segmentation from MRI were integrated in this medical diagnosis system. We exploit a hybrid level set (HLS) segmentation method driven by region and boundary information simultaneously, region information serves as a propagation force which is robust and boundary information serves as a stopping functional which is accurate. Ten different patients with brain tumors of different size, shape and location were selected, a total of 246 axial tumor-containing slices obtained from 10 patients were used to evaluate the effectiveness of segmentation methods. This method was applied to 10 non-enhancing brain tumors and satisfactory results were achieved. Two quantitative measures for tumor segmentation quality estimation, namely, correspondence ratio (CR) and percent matching (PM), were performed. For the segmentation of brain tumor, the volume total PM varies from 79.12 to 93.25% with the mean of 85.67+/-4.38% while the volume total CR varies from 0.74 to 0.91 with the mean of 0.84+/-0.07. For the segmentation of edema, the volume total PM varies from 72.86 to 87.29% with the mean of 79.54+/-4.18% while the volume total CR varies from 0.69 to 0.85 with the mean of 0.79+/-0.08. The HLS segmentation method perform better than the classical level sets (LS) segmentation method in PM and CR. The results of this research may have potential applications, both as a staging procedure and a method of

  5. [INDIVIDUAL EVALUATION OF LORETA ABNORMALITIES IN IDIOPATHIC GENERALIZED EPILEPSY].

    PubMed

    Clemens, Béla; Puskás, Szilvia; Besenyei, Mónika; Kondákor, István; Hollódy, Katalin; Fogarasi, Andrós; Bense, Katalin; Emri, Miklós; Opposits Gábor; Kovács, Noémi Zsuzsanna; Fekete, István

    2016-03-30

    Contemporary neuroimaging methods disclosed structural and functional cerebral abnormalities in idiopathic generalized epilepsies (IGEs). However, individual electrical (EEG) abnormalities have not been evaluated yet in IGE patients. IGE patients were investigated in the drug-free condition and after 3-6 month of antiepileptic treatment. To estimate the reproducibility of qEEG variables a retrospective recruited cohort of IGE patients was investigated. 19-channel resting state EEG activity was recorded. For each patient a total of 2 minutes EEG activity was analyzed by LORETA (Low Resolution Electromagnetic Tomography). Raw LORETA values were Z-transformed and projected to a MRI template. Z-values outside within the [+3Z] to [-3Z] range were labelled as statistically abnormal. 1. In drug-free condition, 41-50% of IGE patients showed abnormal LORETA values. 2. Abnormal LORETA findings showed great inter-individual variability. 3. Most abnormal LORETA-findings were symmetrical. 4. Most maximum Z-values were localized to frontal or temporal cortex. 5. Succesfull treatment was mostly coupled with disappearence of LORETA-abnormality, persistent seizures were accompanied by persistent LORETA abnormality. 1. LORETA abnormalities detected in the untreated condition reflect seizure-generating property of the cortex in IGE patients. 2. Maximum LORETA-Z abnormalities were topographically congruent with structural abnormalities reported by other research groups. 3. LORETA might help to investigate drug effects at the whole-brain level.

  6. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism.

    PubMed

    Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed

    2016-07-01

    The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.

  7. Evaluation of image quality of MRI data for brain tumor surgery

    NASA Astrophysics Data System (ADS)

    Heckel, Frank; Arlt, Felix; Geisler, Benjamin; Zidowitz, Stephan; Neumuth, Thomas

    2016-03-01

    3D medical images are important components of modern medicine. Their usefulness for the physician depends on their quality, though. Only high-quality images allow accurate and reproducible diagnosis and appropriate support during treatment. We have analyzed 202 MRI images for brain tumor surgery in a retrospective study. Both an experienced neurosurgeon and an experienced neuroradiologist rated each available image with respect to its role in the clinical workflow, its suitability for this specific role, various image quality characteristics, and imaging artifacts. Our results show that MRI data acquired for brain tumor surgery does not always fulfill the required quality standards and that there is a significant disagreement between the surgeon and the radiologist, with the surgeon being more critical. Noise, resolution, as well as the coverage of anatomical structures were the most important criteria for the surgeon, while the radiologist was mainly disturbed by motion artifacts.

  8. Subtle Hemorrhagic Brain Injury is Associated with Neurodevelopmental Impairment in Infants with Repaired Congenital Heart Disease

    PubMed Central

    Soul, Janet S.; Robertson, Richard L.; Wypij, David; Bellinger, David C.; Visconti, Karen J.; du Plessis, Adré J.; Kussman, Barry D.; Scoppettuolo, Lisa A.; Pigula, Frank; Jonas, Richard A.; Newburger, Jane W.

    2009-01-01

    Objective Perioperative stroke and periventricular leukomalacia have been reported to occur commonly in infants with congenital heart disease. We aimed to determine the incidence and type of brain injury in infants undergoing two-ventricle repair in infancy and to determine risk factors associated with such injury. Methods Forty-eight infants enrolled in a trial comparing two different hematocrits during surgical repair of congenital heart disease underwent brain MRI scans and neurodevelopmental testing at one year of age. Results Eighteen (38%) of our subjects had tiny foci of hemosiderin by susceptibility imaging, without evidence of abnormalities in corresponding regions on conventional MRI sequences. Subjects who had foci of hemosiderin had a significantly lower Psychomotor Developmental Index at one year of age (79.6 ± 16.5, mean ± SD) compared with subjects who did not have these foci (89.5 ± 15.3; p=0.04). Older age at surgery and diagnostic group were significantly associated with presence of hemosiderin foci. Only one subject had a small stroke (2%) and two had periventricular leukomalacia (4%). Conclusions Foci of hemosiderin without radiologic evidence of ischemic brain injury are an abnormality associated with adverse neurodevelopmental outcome not previously described in MRI studies of children with surgically repaired congenital heart disease. The association of hemosiderin foci with older age at surgery and cardiac diagnosis and not risk factors associated with brain injury in previous studies suggests that the etiology and pathogenesis of this abnormality is different from ischemic brain lesions reported previously. PMID:19619781

  9. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers.

    PubMed

    van Zoest, Rosan A; Underwood, Jonathan; De Francesco, Davide; Sabin, Caroline A; Cole, James H; Wit, Ferdinand W; Caan, Matthan W A; Kootstra, Neeltje A; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B L M; Portegies, Peter; Winston, Alan; Sharp, David J; Gisslén, Magnus; Reiss, Peter

    2017-12-27

    Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Decision-making deficit of a patient with axonal damage after traumatic brain injury.

    PubMed

    Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi

    2014-02-01

    Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective

  12. Multiple "buy buttons" in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI.

    PubMed

    Kühn, Simone; Strelow, Enrique; Gallinat, Jürgen

    2016-08-01

    We set out to forecast consumer behaviour in a supermarket based on functional magnetic resonance imaging (fMRI). Data was collected while participants viewed six chocolate bar communications and product pictures before and after each communication. Then self-reports liking judgement were collected. fMRI data was extracted from a priori selected brain regions: nucleus accumbens, medial orbitofrontal cortex, amygdala, hippocampus, inferior frontal gyrus, dorsomedial prefrontal cortex assumed to contribute positively and dorsolateral prefrontal cortex and insula were hypothesized to contribute negatively to sales. The resulting values were rank ordered. After our fMRI-based forecast an instore test was conducted in a supermarket on n=63.617 shoppers. Changes in sales were best forecasted by fMRI signal during communication viewing, second best by a comparison of brain signal during product viewing before and after communication and least by explicit liking judgements. The results demonstrate the feasibility of applying neuroimaging methods in a relatively small sample to correctly forecast sales changes at point-of-sale. Copyright © 2016. Published by Elsevier Inc.

  13. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-04-15

    In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on

  14. Recent neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  15. Influence of History of Brain Disease or Brain Trauma on Psychopathological Abnormality in Young Male in Korea : Analysis of Multiphasic Personal Inventory Test

    PubMed Central

    Paik, Ho Kyu; Oh, Chang-Hyun; Choi, Kang; Kim, Chul-Eung; Yoon, Seung Hwan

    2011-01-01

    Objective The purpose of this study is to confirm whether brain disease or brain trauma actually affect psychopathology in young male group in Korea. Methods The authors manually reviewed the result of Korean military multiphasic personal inventory (KMPI) in the examination of conscription in Korea from January 2008 to May 2010. There were total 237 young males in this review. Normal volunteers group (n=150) was composed of those who do not have history of brain disease or brain trauma. Brain disease group (n=33) was consisted of those with history of brain disease. Brain trauma group (n=54) was consisted of those with history of brain trauma. The results of KMPI in each group were compared. Results Abnormal results of KMPI were found in both brain disease and trauma groups. In the brain disease group, higher tendencies of faking bad response, anxiety, depression, somatization, personality disorder, schizophrenic and paranoid psychopathy was observed and compared to the normal volunteers group. In the brain trauma group, higher tendencies of faking-good, depression, somatization and personality disorder was observed and compared to the normal volunteers group. Conclusion Young male with history of brain disease or brain trauma may have higher tendencies to have abnormal results of multiphasic personal inventory test compared to young male without history of brain disease or brain trauma, suggesting that damaged brain may cause psychopathology in young male group in Korea. PMID:22053230

  16. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J.; Liu, Hesheng

    2015-01-01

    Importance Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates are yet to be unveiled. Objective We aimed to quantify intrinsic hemispheric specialization at a cortical and subcortical level and to reveal potential disease effects in schizophrenia. Design/Participants Resting-state functional connectivity MRI has been previously used to quantitatively measure hemispheric specialization in healthy subjects, in a reliable manner. Here we quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy control subjects using resting-state functional connectivity MRI. Results The caudate nucleus, and cortical regions with connections to the caudate nucleus, showed markedly abnormal hemispheric specialization in schizophrenia. Compared to healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus. Schizophrenia patients also displayed a disruption of the inter-hemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74%. Conclusions and Relevance These data suggested that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared to task-based fMRI measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language. PMID:25830688

  17. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses

    PubMed Central

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury’s etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care. PMID:27446888

  18. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients.

    PubMed

    Garbade, Sven F; Greenberg, Cheryl R; Demirkol, Mübeccel; Gökçay, Gülden; Ribes, Antonia; Campistol, Jaume; Burlina, Alberto B; Burgard, Peter; Kölker, Stefan

    2014-09-01

    Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.

  19. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI.

    PubMed

    Liu, Peiying; Welch, Babu G; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang

    2017-02-01

    Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O 2 and CO 2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03%/mmHg and 0.0056±0.0006%/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06%/mmHg vs. 0.21±0.05%/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO 2 and O 2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and

  20. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about