Science.gov

Sample records for abnormal brain structure

  1. Brief Report: Brain Mechanisms in Autism: Functional and Structural Abnormalities.

    ERIC Educational Resources Information Center

    Minshew, Nancy J.

    1996-01-01

    This paper summarizes results of research on functional and structural abnormalities of the brain in autism. The current concept of causation is seen to involve multiple biologic levels. A consistent profile of brain function and dysfunction across methods has been found and specific neuropathologic findings have been found; but some research…

  2. Reconciling abnormalities of brain network structure and function in schizophrenia.

    PubMed

    Fornito, Alex; Bullmore, Edward T

    2015-02-01

    Schizophrenia is widely regarded as a disorder of abnormal brain connectivity. Magnetic resonance imaging (MRI) suggests that patients show robust reductions of structural connectivity. However, corresponding changes in functional connectivity do not always follow, with increased functional connectivity being reported in many cases. Here, we consider different methodological and mechanistic accounts that might reconcile these apparently contradictory findings and argue that increased functional connectivity in schizophrenia likely represents a pathophysiological dysregulation of brain activity arising from abnormal neurodevelopmental wiring of structural connections linking putative hub regions of association cortex to other brain areas. Elucidating the pathophysiological significance of connectivity abnormalities in schizophrenia will be contingent on better understanding how network structure shapes and constrains function.

  3. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  4. Abnormal brain structure in adults with Van der Woude syndrome.

    PubMed

    Nopoulos, P; Richman, L; Andreasen, N C; Murray, J C; Schutte, B

    2007-06-01

    Van der Woude syndrome (VWS) is an autosomal dominant disorder manifested in cleft lip and/or palate and lip pits. Isolated clefts of the lip and/or palate (ICLP) have both genotype and phenotype overlap with VWS. Subjects with ICLP have abnormalities in brain structure and function. Given the similarities between VWS and ICLP, the current study was designed to evaluate the pattern of brain structure of adults with VWS. Fourteen adults with VWS were compared to age- and gender-matched healthy controls. Brain structure was evaluated using magnetic resonance imaging. All subjects with VWS had enlarged volumes of the anterior regions of the cerebrum. Men with VWS had reduced volumes of the posterior cerebrum. Anterior cerebrum volume was negatively correlated with intelligent quotient in the subjects with VWS indicating that the enlargement of this brain region was 'pathologic.' The pattern of brain structure in VWS is nearly identical to those seen in ICLP. In addition, men are affected more severely. Pathologic enlargement of the tissue and a gender effect with men affected more severely are common features of neurodevelopmental disorders supporting the notion that the brain structure of VWS and ICLP may be because of abnormal brain development. PMID:17539900

  5. Structural Brain Abnormalities in Youth with Psychosis-Spectrum Symptoms

    PubMed Central

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Calkins, Monica E.; Vandekar, Simon N.; Erus, Guray; Ruparel, Kosha; Roalf, David R.; Linn, Kristin A.; Elliott, Mark A.; Moore, Tyler M.; Hakonarson, Hakon; Shinohara, Russell T.; Davatzikos, Christos; Gur, Ruben C.; Gur, Raquel E.

    2016-01-01

    Importance Structural brain abnormalities are prominent in psychotic disorders including schizophrenia. However, it is unclear when aberrations emerge in the disease process, and if such deficits are present in association with less severe psychosis-spectrum (PS) symptoms in youth. Objective To investigate the presence of structural brain abnormalities in youth with PS symptoms. Design The Philadelphia Neurodevelopmental Cohort (PNC) is a prospectively accrued community-based sample of nearly 10,000 youths who received a structured psychiatric evaluation. A subsample of 1,601 subjects underwent neuroimaging including structural magnetic resonance imaging. Setting The PNC is a collaboration between The Children’s Hospital of Philadelphia and the Hospital of the University of Pennsylvania. Participants Youths ages 8–22 years identified through structured interview as having psychosis-spectrum features (PS, n=391), and typically developing comparison subjects without significant psychopathology (TD, n=400). Main Outcomes and Measures Measures of brain volume derived from T1-weighted structural neuroimaging at 3T. Analyses were conducted at global, regional, and voxelwise levels. Regional volumes were estimated with an advanced multi-atlas regional segmentation procedure; voxelwise volumetric analyses were conducted as well. Nonlinear developmental patterns were examined using penalized splines within a general additive model. PS symptom severity was summarized using factor analysis and evaluated dimensionally. Results Compared to the TD group, the PS group had diminished whole brain gray matter volume and expanded white matter volume. Voxelwise analyses revealed significantly lower gray matter volume in the medial temporal lobes as well as in frontal, temporal, and parietal cortex. Reduction of medial temporal lobe volume was correlated with PS symptom severity. Conclusions and Relevance Structural brain abnormalities that have been commonly reported in adults

  6. The course of neuropsychological impairment and brain structure abnormalities in psychotic disorders.

    PubMed

    Woodward, Neil D

    2016-01-01

    Neuropsychological impairment and abnormalities in brain structure are commonly observed in psychotic disorders, including schizophrenia and bipolar disorder. Shared deficits in neuropsychological functioning and abnormalities in brain structure suggest overlapping neuropathology between schizophrenia and bipolar disorder which has important implications for psychiatric nosology, treatment, and our understanding of the etiology of psychotic illnesses. However, the emergence and trajectory of brain dysfunction in psychotic disorders is less well understood. Differences in the course and progression of neuropsychological impairment and brain abnormalities among psychotic disorders may point to unique neuropathological processes. This article reviews the course of neuropsychological impairment and brain structure abnormalities in schizophrenia and bipolar disorder.

  7. Electrocardiographic abnormalities and cardiac arrhythmias in structural brain lesions.

    PubMed

    Katsanos, Aristeidis H; Korantzopoulos, Panagiotis; Tsivgoulis, Georgios; Kyritsis, Athanassios P; Kosmidou, Maria; Giannopoulos, Sotirios

    2013-07-31

    Cardiac arrhythmias and electrocardiographic abnormalities are frequently observed after acute cerebrovascular events. The precise mechanism that leads to the development of these arrhythmias is still uncertain, though increasing evidence suggests that it is mainly due to autonomic nervous system dysregulation. In massive brain lesions sympathetic predominance and parasympathetic withdrawal during the first 72 h are associated with the occurrence of severe secondary complications in the first week. Right insular cortex lesions are also related with sympathetic overactivation and with a higher incidence of electrocardiographic abnormalities, mostly QT prolongation, in patients with ischemic stroke. Additionally, female sex and hypokalemia are independent risk factors for severe prolongation of the QT interval which subsequently results in malignant arrhythmias and poor outcome. The prognostic value of repolarization changes commonly seen after aneurysmal subarachnoid hemorrhage, such as ST segment, T wave, and U wave abnormalities, still remains controversial. In patients with traumatic brain injury both intracranial hypertension and cerebral hypoperfusion correlate with low heart rate variability and increased mortality. Given that there are no firm guidelines for the prevention or treatment of the arrhythmias that appear after cerebral incidents this review aims to highlight important issues on this topic. Selected patients with the aforementioned risk factors could benefit from electrocardiographic monitoring, reassessment of the medications that prolong QTc interval, and administration of antiadrenergic agents. Further research is required in order to validate these assumptions and to establish specific therapeutic strategies.

  8. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  9. Abnormal brain structure in youth who commit homicide

    PubMed Central

    Cope, L.M.; Ermer, E.; Gaudet, L.M.; Steele, V.R.; Eckhardt, A.L.; Arbabshirani, M.R.; Caldwell, M.F.; Calhoun, V.D.; Kiehl, K.A.

    2014-01-01

    Background Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Methods Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Results Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Conclusions Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses. PMID:24936430

  10. Structural Brain Abnormalities in Patients with Schizophrenia and 22q11 Deletion Syndrome

    PubMed Central

    Chow, Eva W.C.; Zipursky, Robert B.; Mikulis, David J.; Bassett, Anne S.

    2012-01-01

    Background 22q11 Deletion Syndrome is a genetic syndrome associated with an increased risk for developing schizophrenia. Brain abnormalities have been reported in 22q11 Deletion Syndrome, but little is known about whether differences in brain structure underlie the psychotic disorders associated with this syndrome. In the current study, we used magnetic resonance imaging to characterize the structural brain abnormalities found in adults who have both 22q11 Deletion Syndrome and schizophrenia. Methods Magnetic resonance imaging brain scans of 14 adults (7 male, 7 female) with 22q11 Deletion Syndrome and schizophrenia and 14 age- and gender-matched healthy volunteers were analyzed to derive measures of gray matter, white matter, and cerebrospinal fluid. Differences between the two groups were tested using student t tests. Results 22q11 Deletion Syndrome and schizophrenia subjects had significantly smaller total gray matter volume (t = 2.88, p < .01) and larger lateral ventricles (t = 4.08, p < .001) than healthy controls. Gray matter deficits were most prominent in the frontal and temporal lobes. Total white matter volumes did not differ between the two groups. Conclusions Findings from this 22q11 Deletion Syndrome and schizophrenia study are similar to those reported in other patients with schizophrenia, but only partially consistent with those reported in nonpsychotic children with 22q11 Deletion Syndrome. 22q11 Deletion Syndrome may provide a valuable genetic neurodevelop-mental model for investigating the relationship between abnormalities in brain development and the expression of schizophrenia. PMID:11839363

  11. Abnormal structural connectivity in the brain networks of children with hydrocephalus.

    PubMed

    Yuan, Weihong; Holland, Scott K; Shimony, Joshua S; Altaye, Mekibib; Mangano, Francesco T; Limbrick, David D; Jones, Blaise V; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect

  12. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis.

    PubMed

    Pina-Camacho, Laura; Del Rey-Mejías, Ángel; Janssen, Joost; Bioque, Miquel; González-Pinto, Ana; Arango, Celso; Lobo, Antonio; Sarró, Salvador; Desco, Manuel; Sanjuan, Julio; Lacalle-Aurioles, Maria; Cuesta, Manuel J; Saiz-Ruiz, Jerónimo; Bernardo, Miguel; Parellada, Mara

    2016-03-01

    Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis. PMID:26371339

  13. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis.

    PubMed

    Pina-Camacho, Laura; Del Rey-Mejías, Ángel; Janssen, Joost; Bioque, Miquel; González-Pinto, Ana; Arango, Celso; Lobo, Antonio; Sarró, Salvador; Desco, Manuel; Sanjuan, Julio; Lacalle-Aurioles, Maria; Cuesta, Manuel J; Saiz-Ruiz, Jerónimo; Bernardo, Miguel; Parellada, Mara

    2016-03-01

    Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis.

  14. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    PubMed

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders.

  15. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27

    PubMed Central

    Peddibhotla, Sirisha; Nagamani, Sandesh CS; Erez, Ayelet; Hunter, Jill V; Holder Jr, J Lloyd; Carlin, Mary E; Bader, Patricia I; Perras, Helene MF; Allanson, Judith E; Newman, Leslie; Simpson, Gayle; Immken, LaDonna; Powell, Erin; Mohanty, Aaron; Kang, Sung-Hae L; Stankiewicz, Pawel; Bacino, Carlos A; Bi, Weimin; Patel, Ankita; Cheung, Sau W

    2015-01-01

    Patients with terminal deletions of chromosome 6q present with structural brain abnormalities including agenesis of corpus callosum, hydrocephalus, periventricular nodular heterotopia, and cerebellar malformations. The 6q27 region harbors genes that are important for the normal development of brain and delineation of a critical deletion region for structural brain abnormalities may lead to a better genotype–phenotype correlation. We conducted a detailed clinical and molecular characterization of seven unrelated patients with deletions involving chromosome 6q27. All patients had structural brain abnormalities. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. The smallest region of overlap spans 1.7 Mb and contains DLL1, THBS2, PHF10, and C6orf70 (ERMARD) that are plausible candidates for the causation of structural brain abnormalities. Our study reiterates the importance of 6q27 region in normal development of brain and helps identify putative genes in causation of structural brain anomalies. PMID:24736736

  16. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27.

    PubMed

    Peddibhotla, Sirisha; Nagamani, Sandesh C S; Erez, Ayelet; Hunter, Jill V; Holder, J Lloyd; Carlin, Mary E; Bader, Patricia I; Perras, Helene M F; Allanson, Judith E; Newman, Leslie; Simpson, Gayle; Immken, LaDonna; Powell, Erin; Mohanty, Aaron; Kang, Sung-Hae L; Stankiewicz, Pawel; Bacino, Carlos A; Bi, Weimin; Patel, Ankita; Cheung, Sau W

    2015-01-01

    Patients with terminal deletions of chromosome 6q present with structural brain abnormalities including agenesis of corpus callosum, hydrocephalus, periventricular nodular heterotopia, and cerebellar malformations. The 6q27 region harbors genes that are important for the normal development of brain and delineation of a critical deletion region for structural brain abnormalities may lead to a better genotype-phenotype correlation. We conducted a detailed clinical and molecular characterization of seven unrelated patients with deletions involving chromosome 6q27. All patients had structural brain abnormalities. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. The smallest region of overlap spans 1.7 Mb and contains DLL1, THBS2, PHF10, and C6orf70 (ERMARD) that are plausible candidates for the causation of structural brain abnormalities. Our study reiterates the importance of 6q27 region in normal development of brain and helps identify putative genes in causation of structural brain anomalies.

  17. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers

    PubMed Central

    Bu, Limei; Yu, Dahua; Su, Shaoping; Ma, Yao; von Deneen, Karen M.; Luo, Lin; Zhai, Jinquan; Liu, Bo; Cheng, Jiadong; Guan, Yanyan; Li, Yangding; Bi, Yanzhi; Xue, Ting; Lu, Xiaoqi; Yuan, Kai

    2016-01-01

    Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking. PMID:27757078

  18. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  19. Are structural brain abnormalities associated with suicidal behavior in patients with psychotic disorders?

    PubMed

    Giakoumatos, Christoforos I; Tandon, Neeraj; Shah, Jai; Mathew, Ian T; Brady, Roscoe O; Clementz, Brett A; Pearlson, Godfrey D; Thaker, Gunvant K; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S

    2013-10-01

    Suicide represents a major health problem world-wide. Nevertheless, the understanding of the neurobiological underpinnings of suicidal behavior remains far from complete. We compared suicide attempters to non-attempters, and high vs. low lethality attempters, to identify brain regions associated with suicidal behavior in patients with psychotic disorders. 489 individuals with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder I and 262 healthy controls enrolled in the B-SNIP study were studied. Groups were compared by attempt history and the highest medical lethality of previous suicide attempts. 97 patients had a history of a high lethality attempt, 51 of a low lethality attempt and 341 had no attempt history. Gray matter volumes were obtained from 3T structural MRI scans using FreeSurfer. ANCOVAs were used to examine differences between groups, followed by Hochberg multiple comparison correction. Compared to non-attempters, attempters had significantly less gray matter volume in bilateral inferior temporal and superior temporal cortices, left superior parietal, thalamus and supramarginal regions, right insula, superior frontal and rostral middle frontal regions. Among attempters, a history of high lethality attempts was associated with significantly smaller volumes in the left lingual gyrus and right cuneus. Compared to non-attempters, low lethality attempters had significant decreases in the left supramarginal gyrus, thalamus and the right insula. Structural brain abnormalities may distinguish suicide attempters from non-attempters and high from low lethality attempters among individuals with psychotic disorders. Regions in which differences were observed are part of neural circuitries that mediate inhibition, impulsivity and emotion, visceral, visual and auditory perception.

  20. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    PubMed

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS.

  1. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  2. Schizophrenia and abnormal brain network hubs.

    PubMed

    Rubinov, Mikail; Bullmore, Ed

    2013-09-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.

  3. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  4. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  5. Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation.

    PubMed

    Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D

    2014-05-01

    In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling.

  6. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  7. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence

    PubMed Central

    Barnes, Anna; Simon Jones, P.; Morein-Zamir, Sharon; Robbins, Trevor W.; Bullmore, Edward T.

    2011-01-01

    A growing body of preclinical evidence indicates that addiction to cocaine is associated with neuroadaptive changes in frontostriatal brain systems. Human studies in cocaine-dependent individuals have shown alterations in brain structure, but it is less clear how these changes may be related to the clinical phenotype of cocaine dependence characterized by impulsive behaviours and compulsive drug-taking. Here we compared self-report, behavioural and structural magnetic resonance imaging data on a relatively large sample of cocaine-dependent individuals (n = 60) with data on healthy volunteers (n = 60); and we investigated the relationships between grey matter volume variation, duration of cocaine use, and measures of impulsivity and compulsivity in the cocaine-dependent group. Cocaine dependence was associated with an extensive system of abnormally decreased grey matter volume in orbitofrontal, cingulate, insular, temporoparietal and cerebellar cortex, and with a more localized increase in grey matter volume in the basal ganglia. Greater duration of cocaine dependence was correlated with greater grey matter volume reduction in orbitofrontal, cingulate and insular cortex. Greater impairment of attentional control was associated with reduced volume in insular cortex and increased volume of caudate nucleus. Greater compulsivity of drug use was associated with reduced volume in orbitofrontal cortex. Cocaine-dependent individuals had abnormal structure of corticostriatal systems, and variability in the extent of anatomical changes in orbitofrontal, insular and striatal structures was related to individual differences in duration of dependence, inattention and compulsivity of cocaine consumption. PMID:21690575

  8. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.

    PubMed

    Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs.

  9. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  10. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    PubMed Central

    Umeda, Satoshi; Harrison, Neil A.; Gray, Marcus A.; Mathias, Christopher J.; Critchley, Hugo D.

    2015-01-01

    Postural tachycardia syndrome (PoTS), a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety, and depression. Although the estimated prevalence of PoTS is approximately 5–10 times as common as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure to examine variation in regional brain structure associated with PoTS. We recruited 11 patients with established PoTS and 23 age-matched normal controls. Group comparison of gray matter volume revealed diminished gray matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation) and increased vulnerability to psychiatric symptoms in PoTS patients. PMID:25852449

  11. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    PubMed Central

    2009-01-01

    Background Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders. PMID:19925672

  12. Abnormal Asymmetry of Brain Connectivity in Schizophrenia

    PubMed Central

    Ribolsi, Michele; Daskalakis, Zafiris J.; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia. PMID:25566030

  13. Epilepsy in the setting of full trisomy 18: A multicenter study on 18 affected children with and without structural brain abnormalities.

    PubMed

    Matricardi, Sara; Spalice, Alberto; Salpietro, Vincenzo; Di Rosa, Gabriella; Balistreri, Maria Cristina; Grosso, Salvatore; Parisi, Pasquale; Elia, Maurizio; Striano, Pasquale; Accorsi, Patrizia; Cusmai, Raffaella; Specchio, Nicola; Coppola, Giangennaro; Savasta, Salvatore; Carotenuto, Marco; Tozzi, Elisabetta; Ferrara, Pietro; Ruggieri, Martino; Verrotti, Alberto

    2016-09-01

    This paper reports on the clinical aspects, electroencephalographic (EEG) features, and neuroimaging findings in children with full trisomy 18 and associated epilepsy, and compares the evolution and outcome of their neurological phenotype. We retrospectively studied 18 patients (10 males and 8 females; aged 14 months to 9 years) with full trisomy 18 and epilepsy. All patients underwent comprehensive assessment including neuroimaging studies of the brain. We divided patients into two groups according to neuroimaging findings: (Group 1) 10 patients harboring structural brain malformations, and (Group 2) 8 patients with normal brain images. Group 1 had a significantly earlier age at seizure onset (2 months) compared to Group 2 (21 months). The seizure semiology was more severe in Group 1, who presented multiple seizure types, need for polytherapy (80% of patients), multifocal EEG abnormalities and poorer outcome (drug resistant epilepsy in 90% of patients) than Group 2 who presented a single seizure type, generalized or focal, and non-specific EEG pattern; these patients were successfully treated with monotherapy with good outcome. Imaging revealed a wide and complex spectrum of structural brain abnormalities including anomalies of the commissures, cerebellar malformations, cortical abnormalities, and various degrees of cortical atrophy. Epilepsy in full trisomy 18 may develop during the first months of life and can be associated with structural brain malformations. Patients with brain malformations can show multiple seizure types and can frequently be resistant to therapy with antiepileptic drugs. © 2016 Wiley Periodicals, Inc. PMID:27519909

  14. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion.

  15. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. PMID:26353878

  16. Schizophrenia, abnormal connection, and brain evolution.

    PubMed

    Randall, P L

    1983-03-01

    Abnormalities of functional connection between specialized areas in the human brain may underlie the symptoms which constitute the schizophrenia syndrome. Callosal and intrahemispheric fibres may be equally involved. The clinical emergence of symptoms in the later stages of brain maturation may be dependent on myelination of these fibre groups, both of which have extended myelination cycles. Ontogenetically earlier variants of the same mechanism could theoretically result in dyslexia and the syndromes of Kanner and Gilles de la Tourette. As new and unique extensions of specialized function emerge within the evolving brain, biological trial and error of connection both within and between them may produce individuals possessing phylogenetically advanced abilities, or equally, others possessing a wide range of abnormalities including those which comprise the schizophrenia syndrome. A dormant phenotypic potential for schizophrenia may exist in individuals who never develop symptoms during the course of a lifetime though some of these may become clinically apparent under the influence of various precipitating factors. It is concluded that abnormal functional connection and its normal and "supernormal" counterparts may be natural, essential, and inevitable consequences of brain evolution, and that this may have been so throughout the history of vertebrate brain evolution.

  17. Associated brain abnormalities in patients with corpus callosum anomalies.

    PubMed

    Tekgül, H; Dizdarer, G; Yalman, O; Sener, N; Yünten, N; Tütüncüoğlu, S

    1999-01-01

    Forty-nine patients with corpus callosum (CC) anomalies were evaluated in terms of the clinical features and magnetic resonance imaging (MRI) findings. CC anomalies were classified as CC agenesis: 6 (12%), CC hypogenesis: 5 (10%), and CC hypoplasia: 38 (78%). In the CC hypoplasia group the mean value of the genu thickness of the CC was 0.29 +/- 0.1 cm, which was less than the normal value of the age-matched normal children (normal range: 0.6-1.2 cm). The associated brain abnormalities were in five distinct groups: gray matter abnormalities, white matter abnormalities, midline brain structure defects, cortical atrophy, and encephalomalacia. There was no uniformity for the clinical spectrum of CC anomalies. Microcephaly, developmental delay and seizures were the prominent findings in patients. The clinical features were more severe in cases with associated brain anomalies.

  18. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  19. Mapping brain volumetric abnormalities in never-treated pathological gamblers.

    PubMed

    Fuentes, Daniel; Rzezak, Patricia; Pereira, Fabricio R; Malloy-Diniz, Leandro F; Santos, Luciana C; Duran, Fábio L S; Barreiros, Maria A; Castro, Cláudio C; Busatto, Geraldo F; Tavares, Hermano; Gorenstein, Clarice

    2015-06-30

    Several magnetic resonance imaging (MRI) studies to date have investigated brain abnormalities in association with the diagnosis of pathological gambling (PG), but very few of these have specifically searched for brain volume differences between PG patients and healthy volunteers (HV). To investigate brain volume differences between PG patients and HV, 30 male never-treated PG patients (DSM-IV-TR criteria) and 30 closely matched HV without history of psychiatric disorders in the past 2 years underwent structural magnetic resonance imaging with a 1.5-T instrument. Using Freesurfer software, we performed an exploratory whole-brain voxelwise volume comparison between the PG group and the HV group, with false-discovery rate correction for multiple comparisons (p < 0.05). Using a more flexible statistical threshold (p < 0.01, uncorrected for multiple comparisons), we also measured absolute and regional volumes of several brain structures separately. The voxelwise analysis showed no clusters of significant regional differences between the PG and HV groups. The additional analyses of absolute and regional brain volumes showed increased absolute global gray matter volumes in PG patients relative to the HV group, as well as relatively decreased volumes specifically in the left putamen, right thalamus and right hippocampus (corrected for total gray matter). Our findings indicate that structural brain abnormalities may contribute to the functional changes associated with the symptoms of PG, and they highlight the relevance of the brain reward system to the pathophysiology of this disorder.

  20. Volumetric brain abnormalities in polysubstance use disorder patients

    PubMed Central

    Noyan, Cemal Onur; Kose, Samet; Nurmedov, Serdar; Metin, Baris; Darcin, Aslı Enez; Dilbaz, Nesrin

    2016-01-01

    Aim Polysubstance users represent the largest group of patients seeking treatment at addiction and rehabilitation clinics in Turkey. There is little knowledge about the structural brain abnormalities seen in polysubstance users. This study was conducted to examine the structural brain differences between polysubstance use disorder patients and healthy control subjects using voxel-based morphometry. Methods Forty-six male polysubstance use disorder patients in the early abstinence period and 30 healthy male controls underwent structural magnetic resonance imaging scans. Voxel-based morphometry analysis was performed to examine gray matter (GM) abnormality differences. Results Polysubstance use disorder patients displayed significantly smaller GM volume in the thalamus, temporal pole, superior frontal gyrus, cerebellum, gyrus rectus, occipital lobe, anterior cingulate cortex, superior temporal gyrus, and postcentral gyrus. Conclusion A widespread and smaller GM volume has been found at different regions of the frontal, temporal, occipital, and parietal lobes, cerebellum, and anterior cingulate cortex in polysubstance users. PMID:27358566

  1. The ageing brain: normal and abnormal memory.

    PubMed Central

    Albert, M S

    1997-01-01

    With advancing age, the majority of individuals experience declines in their ability to learn and remember. An examination of brain structure and function in healthy older persons across the age range indicates that there are substantial changes in the brain that appear to be related to alterations in memory. The nature of the cognitive and neurobiological alterations associated with age-related change is substantially different from that seen in the early stages of a dementing illness, such as Alzheimer's disease. These differences have implications for potential intervention strategies. PMID:9415922

  2. Structural brain abnormalities in patients with Parkinson's disease with visual hallucinations: a comparative voxel-based analysis.

    PubMed

    Gama, Romulo Lopes; Bruin, Veralice Meireles Sales; Távora, Daniel Gurgel Fernandes; Duran, Fábio L S; Bittencourt, Lia; Tufik, Sergio

    2014-06-01

    The objective is to evaluate clinical characteristics and cerebral alterations in Parkinson's disease (PD) patients with diurnal visual hallucinations (VHs). Assessment was performed using magnetic resonance image (MRI) and voxel-based morphometry (VBM). Thirty-nine patients with PD (53.8%) and ten controls were studied. Voxel based morphology analysis was performed. Eleven patients presented diurnal VHs and among these, six had cognitive dysfunction. Patients with VHs performed worse in the mentation-related UPDRS I (p=0.005) and motor-related UPDRS III (p=0.02). Patients with VHs showed significant clusters of reduced grey matter volume compared to controls in the left opercula frontal gyrus and left superior frontal gyrus. PD without hallucinations demonstrated reduced grey matter volume in the left superior frontal gyrus compared to controls. Comparisons between patients with VHs regarding the presence of cognitive dysfunction showed that cases with cognitive dysfunction as compared to those without cognitive dysfunction showed significant clusters of reduced grey matter volume in the left opercular frontal gyrus. Cases without cognitive dysfunction had reduced grey matter substance in the left insula and left trigonal frontal gyrus. Judging from our findings, an abnormal frontal cortex, particularly left sided insula, frontal opercular, trigonal frontal gyrus and orbital frontal would make PD patients vulnerable to hallucinations. Compromise of the left operculum distinguished cases with VHs and cognitive dysfunction. Our findings reinforce the theoretical concept of a top-down visual processing in the genesis of VHs in PD.

  3. Midline Brain Abnormalities Across Psychotic and Mood Disorders.

    PubMed

    Landin-Romero, Ramón; Amann, Benedikt L; Sarró, Salvador; Guerrero-Pedraza, Amalia; Vicens, Victor; Rodriguez-Cano, Elena; Vieta, Eduard; Salvador, Raymond; Pomarol-Clotet, Edith; Radua, Joaquim

    2016-01-01

    Patients with schizophrenia are known to have increased prevalence of abnormalities in midline brain structures, such as a failure of the septum pellucidum to fuse (cavum septum pellucidum) and the absence of the adhesio interthalamica. This is the first study to investigate the prevalence of these abnormalities across a large multidiagnostic sample. Presence of cavum septum pellucidum and absence of the adhesio interthalamica was assessed in 639 patients with chronic schizophrenia, delusional disorder, schizoaffective disorder, bipolar disorder, major depressive disorder, or a first episode of psychosis, mania or unipolar depression. This was compared with 223 healthy controls using logistic-regression-derived odds ratios (OR). Patients with psychotic or mood disorders showed an increased prevalence of both abnormalities (OR of cavum septum pellucidum = 2.1, OR of absence of the adhesio interthalamica = 2.6, OR of both cavum septum pellucidum and absence of the adhesio interthalamica = 3.8, all P < .001). This increased prevalence was separately observed in nearly all disorders as well as after controlling for potential confounding factors. This study supports a general increased prevalence of midline brain abnormalities across mood and psychotic disorders. This nonspecificity may suggest that these disorders share a common neurodevelopmental etiology.

  4. Abnormal Brain Network Organization in Body Dysmorphic Disorder

    PubMed Central

    Arienzo, Donatello; Leow, Alex; Brown, Jesse A; Zhan, Liang; GadElkarim, Johnson; Hovav, Sarit; Feusner, Jamie D

    2013-01-01

    Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing. The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from 14 unmedicated participants with DSM-IV BDD and 16 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD, in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric visual information transfer. These findings may relate to disturbances in information processing found in previous studies. PMID:23322186

  5. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  6. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo.

  7. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo. PMID:27626081

  8. Detection of Structural Abnormalities Using Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.

    1996-01-01

    This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.

  9. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  10. Neuroendocrine abnormalities in patients with traumatic brain injury

    NASA Technical Reports Server (NTRS)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  11. Brain abnormalities in murderers indicated by positron emission tomography.

    PubMed

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  12. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  13. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  14. Inborn errors of metabolism: a cause of abnormal brain development.

    PubMed

    Nissenkorn, A; Michelson, M; Ben-Zeev, B; Lerman-Sagie, T

    2001-05-22

    Brain malformations are caused by a disruption in the sequence of normal development by various environmental or genetic factors. By modifying the intrauterine milieu, inborn errors of metabolism may cause brain dysgenesis. However, this association is typically described in single case reports. The authors review the relationship between brain dysgenesis and specific inborn errors of metabolism. Peroxisomal disorders and fatty acid oxidation defects can produce migration defects. Pyruvate dehydrogenase deficiency, nonketotic hyperglycinemia, and maternal phenylketonuria preferentially cause a dysgenetic corpus callosum. Abnormal metabolism of folic acid causes neural tube defects, whereas defects in cholesterol metabolism may produce holoprosencephaly. Various mechanisms have been proposed to explain abnormal brain development in inborn errors of metabolism: production of a toxic or energy-deficient intrauterine milieu, modification of the content and function of membranes, or disturbance of the normal expression of intrauterine genes responsible for morphogenesis. The recognition of a metabolic disorder as the cause of the brain malformation has implications for both the care of the patient and for genetic counseling to prevent recurrence in subsequent pregnancies. PMID:11383558

  15. Gyrification brain abnormalities as predictors of outcome in anorexia nervosa.

    PubMed

    Favaro, Angela; Tenconi, Elena; Degortes, Daniela; Manara, Renzo; Santonastaso, Paolo

    2015-12-01

    Gyrification brain abnormalities are considered a marker of early deviations from normal developmental trajectories and a putative predictor of poor outcome in psychiatric disorders. The aim of this study was to explore cortical folding morphology in patients with anorexia nervosa (AN). A MRI brain study was conducted on 38 patients with AN, 20 fully recovered patients, and 38 healthy women. Local gyrification was measured with procedures implemented in FreeSurfer. Vertex-wise comparisons were carried out to compare: (1) AN patients and healthy women; (2) patients with a full remission at a 3-year longitudinal follow-up assessment and patients who did not recover. AN patients exhibited significantly lower gyrification when compared with healthy controls. Patients with a poor 3-year outcome had significantly lower baseline gyrification when compared to both healthy women and patients with full recovery at follow-up, even after controlling for the effects of duration of illness and gray matter volume. No significant correlation has been found between gyrification, body mass index, amount of weight loss, onset age, and duration of illness. Brain gyrification significantly predicted outcome at follow-up even after controlling for the effects of duration of illness and other clinical prognostic factors. Although the role of starvation in determining our findings cannot be excluded, our study showed that brain gyrification might be a predictor of outcome in AN. Further studies are needed to understand if brain gyrification abnormalities are indices of early neurodevelopmental alterations, the consequence of starvation, or the interaction between both factors.

  16. Abnormalities in structural covariance of cortical gyrification in schizophrenia.

    PubMed

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2015-07-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment.

  17. Cellular abnormalities in depression: evidence from postmortem brain tissue.

    PubMed

    Stockmeier, Craig A; Rajkowska, Grazyna

    2004-06-01

    During the past two decades, in vivo neuroimaging studies have permitted significant insights into the general location of dysfunctional brain regions in depression. In parallel and often intersecting ways, neuroanatomical, pharmacological, and biochemical studies of postmortem brain tissue are permitting new insights into the pathophysiology of depression. In addition to long-recognized neurochemical abnormalities in depression, novel studies at the microscopic level support the contention that mood disorders are associated with abnormalities in cell morphology and distribution. In the past 6 years, cell-counting studies have identified changes in the density and size of both neurons and glia in a number of frontolimbic brain regions, including dorsolateral prefrontal, orbitofrontal, and anterior cingulate cortex, and the amygdala and hippocampus. Convergence of cellular changes at the microscopic level with neuroimaging changes detected in vivo provides a compelling integration of clinical and basic research for disentangling the pathophysiology of depression. The ultimate integration of these two research approaches will occur with premortem longitudinal clinical studies on well-characterized patients linked to postmortem studies of the same subjects.

  18. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    PubMed

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management.

  19. Investigating individual differences in brain abnormalities in autism.

    PubMed Central

    Salmond, C H; de Haan, M; Friston, K J; Gadian, D G; Vargha-Khadem, F

    2003-01-01

    Autism is a psychiatric syndrome characterized by impairments in three domains: social interaction, communication, and restricted and repetitive behaviours and interests. Recent findings implicate the amygdala in the neurobiology of autism. In this paper, we report the results of a series of novel experimental investigations focusing on the structure and function of the amygdala in a group of children with autism. The first section attempts to determine if abnormality of the amygdala can be identified in an individual using magnetic resonance imaging in vivo. Using single-case voxel-based morphometric analyses, abnormality in the amygdala was detected in half the children with autism. Abnormalities in other regions were also found. In the second section, emotional modulation of the startle response was investigated in the group of autistic children. Surprisingly, there were no significant differences between the patterns of emotional modulation of the startle response in the autistic group compared with the controls. PMID:12639337

  20. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset…

  1. Biochemical abnormalities and excitotoxicity in Huntington's disease brain.

    PubMed

    Tabrizi, S J; Cleeter, M W; Xuereb, J; Taanman, J W; Cooper, J M; Schapira, A H

    1999-01-01

    The physiological role of huntingtin and the mechanisms by which the expanded CAG repeat in ITI5 and its polyglutamine stretch in mutant huntingtin induce Huntington's disease (HD) are unknown. Several techniques have now demonstrated abnormal metabolism in HD brain; direct measurement of respiratory chain enzyme activities has shown severe deficiency of complex II/III and a milder defect of complex IV. We confirm that these abnormalities appear to be confined to the striatum within the HD brain. Analysis of complex II/III activity in HD fibroblasts was normal, despite expression of mutant huntingtin. Although glyceraldehyde 3-phosphate dehydrogenase (a huntingtin binding protein) activity was normal in all areas studied, aconitase activity was decreased to 8% in HD caudate, 27% in putamen, and 52% in cerebral cortex, but normal in HD cerebellum and fibroblasts. We have demonstrated that although complexes II and III are those parts of the respiratory chain most vulnerable to inhibition in the presence of a nitric oxide (NO*) generator, aconitase activity was even more sensitive to inhibition. The pattern of these enzyme deficiencies and their parallel to the anatomical distribution of HD pathology support an important role for NO* and excitotoxicity in HD pathogenesis. Furthermore, based on the biochemical defects we have described, we suggest that NO* generation produces a graded response, with aconitase inhibition followed by complex II/III inhibition and the initiation of a self-amplifying cycle of free radical generation and aconitase inhibition, which results in severe ATP depletion. We propose that these events are important in determining neuronal cell death and are critical steps in the pathogenesis of HD. PMID:9894873

  2. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications

    PubMed Central

    Buckley, Peter F

    2005-01-01

    Schizophrenia, once considered a psychological malady devoid of any organic brain substrate, has been the focus of intense neuroimaging research. Findings reveal mild but generalized tissue loss as well as more selective focal loss. It is unclear whether these abnormalities reflect neurodevelopmental or neurodegenerative processes, or some combination of each; current evidence favors a preponderance of neurodevelopmental abnormalities. The pattern of brain abnormalities is also influenced by environmental and genetic risk factors, as well as by the course (and possibly even treatment) of this illness. These findings are described in this article. PMID:18568069

  3. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    PubMed

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  4. Mapping abnormal subcortical brain morphometry in an elderly HIV + cohort

    PubMed Central

    Wade, Benjamin S.C.; Valcour, Victor G.; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H.; Gutman, Boris A.; Thompson, Paul M.

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%. PMID:26640768

  5. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group. PMID:16225232

  6. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  7. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  8. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice

    PubMed Central

    Kallio, Marko; Chang, Yunhua; Manuel, Martine; Alastalo, Tero-Pekka; Rallu, Murielle; Gitton, Yorick; Pirkkala, Lila; Loones, Marie-Thérèse; Paslaru, Liliana; Larney, Severine; Hiard, Sophie; Morange, Michel; Sistonen, Lea; Mezger, Valérie

    2002-01-01

    Heat shock factor 2, one of the four vertebrate HSFs, transcriptional regulators of heat shock gene expression, is active during embryogenesis and spermatogenesis, with unknown functions and targets. By disrupting the Hsf2 gene, we show that, although the lack of HSF2 is not embryonic lethal, Hsf2–/– mice suffer from brain abnormalities, and meiotic and gameto genesis defects in both genders. The disturbances in brain are characterized by the enlargement of lateral and third ventricles and the reduction of hippocampus and striatum, in correlation with HSF2 expression in proliferative cells of the neuroepithelium and in some ependymal cells in adults. Many developing spermatocytes are eliminated via apoptosis in a stage-specific manner in Hsf2–/– males, and pachytene spermatocytes also display structural defects in the synaptonemal complexes between homologous chromosomes. Hsf2–/– females suffer from multiple fertility defects: the production of abnormal eggs, the reduction in ovarian follicle number and the presence of hemorrhagic cystic follicles are consistent with meiotic defects. Hsf2–/– females also display hormone response defects, that can be rescued by superovulation treatment, and exhibit abnormal rates of luteinizing hormone receptor mRNAs. PMID:12032072

  9. Patterns of Structural MRI Abnormalities in Deficit and Nondeficit Schizophrenia

    PubMed Central

    Galderisi, Silvana; Quarantelli, Mario; Volpe, Umberto; Mucci, Armida; Cassano, Giovanni Battista; Invernizzi, Giordano; Rossi, Alessandro; Vita, Antonio; Pini, Stefano; Cassano, Paolo; Daneluzzo, Enrico; De Peri, Luca; Stratta, Paolo; Brunetti, Arturo; Maj, Mario

    2008-01-01

    Negative symptoms of schizophrenia have generally been found in association with ventricular enlargement and prefrontal abnormalities. These relationships, however, have not been observed consistently, most probably because negative symptoms are heterogeneous and result from different pathophysiological mechanisms. The concept of deficit schizophrenia (DS) was introduced by Carpenter et al to identify a clinically homogeneous subgroup of patients characterized by the presence of primary and enduring negative symptoms. Findings of brain structural abnormalities reported by magnetic resonance imaging (MRI) studies focusing on DS have been mixed. The present study included 34 patients with DS, 32 with nondeficit schizophrenia (NDS), and 31 healthy comparison subjects, providing the largest set of MRI findings in DS published so far. The Schedule for the Deficit Syndrome was used to categorize patients as DS or NDS patients. The 2 patient groups were matched on age and gender and did not differ on clinical variables, except for higher scores on the negative dimension and more impaired interpersonal relationships in DS than in NDS subjects. Lateral ventricles were larger in NDS than in control subjects but were not enlarged in patients with DS. The cingulate gyri volume was smaller in NDS but not in DS patients as compared with healthy subjects. Both groups had smaller dorsolateral prefrontal cortex and temporal lobes than healthy subjects, but DS patients had significantly less right temporal lobe volume as compared with NDS patients. These findings do not support the hypothesis that DS is the extreme end of a severity continuum within schizophrenia. PMID:17728266

  10. Abnormal White Matter Blood-Oxygen-Level–Dependent Signals in Chronic Mild Traumatic Brain Injury

    PubMed Central

    Astafiev, Serguei V.; Shulman, Gordon L.; Metcalf, Nicholas V.; Rengachary, Jennifer; MacDonald, Christine L.; Harrington, Deborah L.; Maruta, Jun; Shimony, Joshua S.; Ghajar, Jamshid; Diwakar, Mithun; Huang, Ming-Xiong; Lee, Roland R.

    2015-01-01

    Abstract Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level–dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI. PMID:25758167

  11. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury.

    PubMed

    Astafiev, Serguei V; Shulman, Gordon L; Metcalf, Nicholas V; Rengachary, Jennifer; MacDonald, Christine L; Harrington, Deborah L; Maruta, Jun; Shimony, Joshua S; Ghajar, Jamshid; Diwakar, Mithun; Huang, Ming-Xiong; Lee, Roland R; Corbetta, Maurizio

    2015-08-15

    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI.

  12. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder.

    PubMed

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto-striatal-thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  13. Brain Gray Matter Abnormalities in First-Episode, Treatment-Naive Children with Obsessive-Compulsive Disorder

    PubMed Central

    Cheng, Bochao; Cai, Wu; Wang, Xiuli; Lei, Du; Guo, Yingkun; Yang, Xun; Wu, Qizhu; Gong, Jianping; Gong, Qiyong; Ning, Gang

    2016-01-01

    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto–striatal–thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD. PMID:27445736

  14. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    PubMed

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases. PMID:25050423

  15. Brain Structure and Development.

    ERIC Educational Resources Information Center

    Teyler, T.J.; Chiaia, N.

    1983-01-01

    Considers basic biology of brain, what is known of how it operates, and something of how it develops. Discusses properties of neurons and specialized regions of the brain in linguistic and higher order processing skills, as well as genetic and environmental influences on brain development. (CMG)

  16. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that

  17. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    PubMed Central

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  18. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  19. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    PubMed Central

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  20. Thrombotic thrombocytopenic purpura: MR demonstration of reversible brain abnormalities

    SciTech Connect

    D'Aprile, P.; Carella, A.; Pagliarulo, R. ); Farchi, G. )

    1994-01-01

    We report a case of thrombotic thrombocytopenic purpura evaluated by MR, Multiple hyperintense foci on the TS-weighted images, observed principally in the brain stem and in the region of the basal nuclei, and neurologic signs disappeared after 15 days of therapy. 6 refs., 2 figs.

  1. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder.

    PubMed

    Nordahl, Christine Wu; Braunschweig, Daniel; Iosif, Ana-Maria; Lee, Aaron; Rogers, Sally; Ashwood, Paul; Amaral, David G; Van de Water, Judy

    2013-05-01

    Autism spectrum disorder (ASD) is very heterogeneous and multiple subtypes and etiologies likely exist. The maternal immune system has been implicated in the pathogenesis of some forms of ASD. Previous studies have identified the presence of specific maternal IgG autoantibodies with reactivity to fetal brain proteins at 37 and 73kDa in up to 12% of mothers of children with ASD. The current study evaluates the presence of these autoantibodies in an independent cohort of mothers of 181 preschool-aged male children (131 ASD, 50 typically developing (TD) controls). We also investigated whether ASD children born to mothers with these autism-specific maternal IgG autoantibodies exhibit a distinct neural phenotype by evaluating total brain volume using structural magnetic resonance imaging (MRI). Of the 131 ASD children, 10 (7.6%) were born to mothers with the 37/73kDa IgG autoantibodies (ASD-IgG). The mothers of the remaining ASD children and all TD controls were negative for these paired autoantibodies. While both ASD groups exhibited abnormal brain enlargement that is commonly observed in this age range, the ASD-IgG group exhibited a more extreme 12.1% abnormal brain enlargement relative to the TD controls. In contrast, the remaining ASD children exhibited a smaller 4.4% abnormal brain enlargement relative to TD controls. Lobar and tissue type analyses revealed that the frontal lobe is selectively enlarged in the ASD-IgG group and that both gray and white matter are similarly affected. These results suggest that maternal autoantibodies associated with autism spectrum disorder may impact brain development leading to abnormal enlargement.

  2. Hysterosalpingographic features of cervical abnormalities: acquired structural anomalies

    PubMed Central

    Zafarani, F; Shahrzad, G

    2015-01-01

    Cervical abnormalities may be congenital or acquired. Congenital cervical structural anomalies are relatively uncommon, whereas acquired cervical abnormalities are commonly seen in gynaecology clinics. Acquired abnormalities of the cervix can cause cervical factor infertility and recurrent spontaneous abortion. Various imaging tools have been used for evaluation of the uterine cavity and fallopian tubes. Hysterosalpingography (HSG) is a quick and minimally invasive tool for evaluation of infertility that facilitates visualization of the inner surfaces of the uterine cavity and fallopian tubes, as well as the cervical canal and isthmus. The lesions of the uterine cervix show various imaging manifestations on HSG such as narrowing, dilatation, filling defects, irregularities and diverticular projections. This pictorial review describes and illustrates the hysterosalpingographic appearances of normal variants and acquired structural abnormalities of the cervix. Accurate diagnosis of such cases is considered essential for optimal treatment. The pathological findings and radiopathological correlation will be briefly discussed. PMID:26111269

  3. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.

    PubMed

    van Erp, T G M; Hibar, D P; Rasmussen, J M; Glahn, D C; Pearlson, G D; Andreassen, O A; Agartz, I; Westlye, L T; Haukvik, U K; Dale, A M; Melle, I; Hartberg, C B; Gruber, O; Kraemer, B; Zilles, D; Donohoe, G; Kelly, S; McDonald, C; Morris, D W; Cannon, D M; Corvin, A; Machielsen, M W J; Koenders, L; de Haan, L; Veltman, D J; Satterthwaite, T D; Wolf, D H; Gur, R C; Gur, R E; Potkin, S G; Mathalon, D H; Mueller, B A; Preda, A; Macciardi, F; Ehrlich, S; Walton, E; Hass, J; Calhoun, V D; Bockholt, H J; Sponheim, S R; Shoemaker, J M; van Haren, N E M; Hulshoff Pol, H E; Pol, H E H; Ophoff, R A; Kahn, R S; Roiz-Santiañez, R; Crespo-Facorro, B; Wang, L; Alpert, K I; Jönsson, E G; Dimitrova, R; Bois, C; Whalley, H C; McIntosh, A M; Lawrie, S M; Hashimoto, R; Thompson, P M; Turner, J A

    2016-04-01

    The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness. PMID:26033243

  4. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    PubMed

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  5. Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach

    PubMed Central

    Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496

  6. Brain potentials implicate temporal lobe abnormalities in criminal psychopaths.

    PubMed

    Kiehl, Kent A; Bates, Alan T; Laurens, Kristin R; Hare, Robert D; Liddle, Peter F

    2006-08-01

    Psychopathy is associated with abnormalities in attention and orienting. However, few studies have examined the neural systems underlying these processes. To address this issue, the authors recorded event-related potentials (ERPs) while 80 incarcerated men, classified as psychopathic or nonpsychopathic via the Hare Psychopathy Checklist--Revised (R. D. Hare, 1991, 2003), completed an auditory oddball task. Consistent with hypotheses, processing of targets elicited larger frontocentral negativities (N550) in psychopaths than in nonpsychopaths. Psychopaths also showed an enlarged N2 and reduced P3 during target detection. Similar ERP modulations have been reported in patients with amygdala and temporal lobe damage. The data are interpreted as supporting the hypothesis that psychopathy may be related to dysfunction of the paralimbic system--a system that includes parts of the temporal and frontal lobes. PMID:16866585

  7. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    PubMed

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  8. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.

  9. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS)

    PubMed Central

    2011-01-01

    Background Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients

  10. Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study

    PubMed Central

    Mao, Cui Ping; Bai, Zhi Lan; Zhang, Xiao Na; Zhang, Qiu Juan; Zhang, Lei

    2016-01-01

    Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB’s integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA. PMID:26834629

  11. [Consequences of abnormalities of chromosome structure in domestic animals].

    PubMed

    Popescu, C P

    1990-01-01

    Abnormalities in chromosome structure generally have no phenotypic expression but are very often associated with reproductive disorders. In cattle, sheep and goats, the robertsonian translocation seems to be the most frequent abnormality of chromosome structure. In the pig, reciprocal translocations are very common. The accumulation of data on the frequency of such abnormalities and their effects on reproductive performance prompted an evaluation of their economic consequences in cattle and pigs. In cattle, because of the negative effect of 1/29 translocation, an eradication program, based on the removal of carrier bulls from artificial insemination centers was established. In pig, the main effect of the reciprocal translocations was a reduction in the number of offspring, up to 50%, thus representing a considerable economic loss. PMID:2206288

  12. Structural and functional brain imaging in schizophrenia.

    PubMed Central

    Cleghorn, J M; Zipursky, R B; List, S J

    1991-01-01

    We present an evaluation of the contribution of structural and functional brain imaging to our understanding of schizophrenia. Methodological influences on the validity of the data generated by these new technologies include problems with measurement and clinical and anatomic heterogeneity. These considerations greatly affect the interpretation of the data generated by these technologies. Work in these fields to date, however, has produced strong evidence which suggests that schizophrenia is a disease which involves abnormalities in the structure and function of many brain areas. Structural brain imaging studies of schizophrenia using computed tomography (CT) and magnetic resonance imaging (MRI) are reviewed and their contribution to current theories of the pathogenesis of schizophrenia are discussed. Positron emission tomography (PET) studies of brain metabolic activity and dopamine receptor binding in schizophrenia are summarized and the critical questions raised by these studies are outlined. Future studies in these fields have the potential to yield critical insights into the pathophysiology of schizophrenia; new directions for studies of schizophrenia using these technologies are identified. PMID:1911736

  13. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction.

    PubMed

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Parvaz, Muhammad A; Alia-Klein, Nelly; Volkow, Nora D; Goldstein, Rita Z

    2012-10-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie the maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction.

  14. Auditory brain stem response abnormalities in the very low birthweight infant: incidence and risk factors.

    PubMed

    Cox, L C; Hack, M; Metz, D A

    1984-01-01

    Auditory brain stem evoked response (ABR) testing was performed on 50 very low birthweight infants in an effort to assess the effects of multiple neonatal risk factors on auditory function. The results suggested that no single risk factor was predictive of ABR abnormality while combined risk factors were shown to be very predictive.

  15. Preliminary research on abnormal brain detection by wavelet-energy and quantum- behaved PSO.

    PubMed

    Zhang, Yudong; Ji, Genlin; Yang, Jiquan; Wang, Shuihua; Dong, Zhengchao; Phillips, Preetha; Sun, Ping

    2016-04-29

    It is important to detect abnormal brains accurately and early. The wavelet-energy (WE) was a successful feature descriptor that achieved excellent performance in various applications; hence, we proposed a WE based new approach for automated abnormal detection, and reported its preliminary results in this study. The kernel support vector machine (KSVM) was used as the classifier, and quantum-behaved particle swarm optimization (QPSO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed WE + QPSO-KSVM was superior to ``DWT + PCA + BP-NN'', ``DWT + PCA + RBF-NN'', ``DWT + PCA + PSO-KSVM'', ``WE + BPNN'', ``WE +$ KSVM'', and ``DWT $+$ PCA $+$ GA-KSVM'' w.r.t. sensitivity, specificity, and accuracy. The work provides a novel means to detect abnormal brains with excellent performance. PMID:27163327

  16. Preliminary research on abnormal brain detection by wavelet-energy and quantum- behaved PSO.

    PubMed

    Zhang, Yudong; Ji, Genlin; Yang, Jiquan; Wang, Shuihua; Dong, Zhengchao; Phillips, Preetha; Sun, Ping

    2016-04-29

    It is important to detect abnormal brains accurately and early. The wavelet-energy (WE) was a successful feature descriptor that achieved excellent performance in various applications; hence, we proposed a WE based new approach for automated abnormal detection, and reported its preliminary results in this study. The kernel support vector machine (KSVM) was used as the classifier, and quantum-behaved particle swarm optimization (QPSO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed WE + QPSO-KSVM was superior to ``DWT + PCA + BP-NN'', ``DWT + PCA + RBF-NN'', ``DWT + PCA + PSO-KSVM'', ``WE + BPNN'', ``WE +$ KSVM'', and ``DWT $+$ PCA $+$ GA-KSVM'' w.r.t. sensitivity, specificity, and accuracy. The work provides a novel means to detect abnormal brains with excellent performance.

  17. Genetic influences on brain structure.

    PubMed

    Thompson, P M; Cannon, T D; Narr, K L; van Erp, T; Poutanen, V P; Huttunen, M; Lönnqvist, J; Standertskjöld-Nordenstam, C G; Kaprio, J; Khaledy, M; Dail, R; Zoumalan, C I; Toga, A W

    2001-12-01

    Here we report on detailed three-dimensional maps revealing how brain structure is influenced by individual genetic differences. A genetic continuum was detected in which brain structure was increasingly similar in subjects with increasing genetic affinity. Genetic factors significantly influenced cortical structure in Broca's and Wernicke's language areas, as well as frontal brain regions (r2(MZ) > 0.8, p < 0.05). Preliminary correlations were performed suggesting that frontal gray matter differences may be linked to Spearman's g, which measures successful test performance across multiple cognitive domains (p < 0.05). These genetic brain maps reveal how genes determine individual differences, and may shed light on the heritability of cognitive and linguistic skills, as well as genetic liability for diseases that affect the human cortex. PMID:11694885

  18. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    MedlinePlus

    ... Alters Brain Structures, Impairs Mental Flexibility Methamphetamine Alters Brain Structures, Impairs Mental Flexibility Email Facebook Twitter March ... methamphetamine use, such as tobacco smoking. Can the Brain Recover? The UCLA study’s findings underscore the importance ...

  19. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    SciTech Connect

    Fujibayashi, Y.; Yamamoto, S.; Waki, A. |

    1996-05-01

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies. In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.

  20. Abnormal asymmetries in subcortical brain volume in schizophrenia.

    PubMed

    Okada, N; Fukunaga, M; Yamashita, F; Koshiyama, D; Yamamori, H; Ohi, K; Yasuda, Y; Fujimoto, M; Watanabe, Y; Yahata, N; Nemoto, K; Hibar, D P; van Erp, T G M; Fujino, H; Isobe, M; Isomura, S; Natsubori, T; Narita, H; Hashimoto, N; Miyata, J; Koike, S; Takahashi, T; Yamasue, H; Matsuo, K; Onitsuka, T; Iidaka, T; Kawasaki, Y; Yoshimura, R; Watanabe, Y; Suzuki, M; Turner, J A; Takeda, M; Thompson, P M; Ozaki, N; Kasai, K; Hashimoto, R

    2016-10-01

    Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia. PMID:26782053

  1. Abnormal asymmetries in subcortical brain volume in schizophrenia

    PubMed Central

    Okada, N; Fukunaga, M; Yamashita, F; Koshiyama, D; Yamamori, H; Ohi, K; Yasuda, Y; Fujimoto, M; Watanabe, Y; Yahata, N; Nemoto, K; Hibar, D P; van Erp, T G M; Fujino, H; Isobe, M; Isomura, S; Natsubori, T; Narita, H; Hashimoto, N; Miyata, J; Koike, S; Takahashi, T; Yamasue, H; Matsuo, K; Onitsuka, T; Iidaka, T; Kawasaki, Y; Yoshimura, R; Watanabe, Y; Suzuki, M; Turner, J A; Takeda, M; Thompson, P M; Ozaki, N; Kasai, K; Hashimoto, R

    2016-01-01

    Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia. PMID:26782053

  2. Abnormal asymmetries in subcortical brain volume in schizophrenia.

    PubMed

    Okada, N; Fukunaga, M; Yamashita, F; Koshiyama, D; Yamamori, H; Ohi, K; Yasuda, Y; Fujimoto, M; Watanabe, Y; Yahata, N; Nemoto, K; Hibar, D P; van Erp, T G M; Fujino, H; Isobe, M; Isomura, S; Natsubori, T; Narita, H; Hashimoto, N; Miyata, J; Koike, S; Takahashi, T; Yamasue, H; Matsuo, K; Onitsuka, T; Iidaka, T; Kawasaki, Y; Yoshimura, R; Watanabe, Y; Suzuki, M; Turner, J A; Takeda, M; Thompson, P M; Ozaki, N; Kasai, K; Hashimoto, R

    2016-10-01

    Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia.

  3. Structural and functional connectivity in traumatic brain injury

    PubMed Central

    Xiao, Hui; Yang, Yang; Xi, Ji-hui; Chen, Zi-qian

    2015-01-01

    Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis. PMID:26889200

  4. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  5. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  6. Controllability of structural brain networks

    PubMed Central

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-01-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function. PMID:26423222

  7. Brain PET metabolic abnormalities in a case of varicella-zoster virus encephalitis.

    PubMed

    Coiffard, Benjamin; Guedj, Eric; Daumas, Aurélie; Leveque, Pierre; Villani, Patrick

    2014-09-01

    The role of brain 18F-FDG PET in the diagnostic evaluation of encephalitis has been recently suggested, especially in limbic encephalitis, but descriptions are mainly limited to small case reports. However, the evaluation of cerebral metabolism by 18F-FDG PET has never been described for varicella-zoster virus encephalitis. We report the first case of varicella-zoster virus encephalitis in which 18F-FDG PET revealed brain metabolic abnormalities. Brain metabolic PET imaging was analyzed by comparing the patient's brain 18F-FDG PET scans to that of 12 healthy subjects. Compared with healthy subjects, significant hypometabolism and hypermetabolism were found and evolved over time with treatment.

  8. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy

    PubMed Central

    O’Muircheartaigh, Jonathan; Vollmar, Christian; Barker, Gareth J.; Kumari, Veena; Symms, Mark R.; Thompson, Pam; Duncan, John S.; Koepp, Matthias J.

    2012-01-01

    Juvenile myoclonic epilepsy is the most common idiopathic generalized epilepsy, characterized by frequent myoclonic jerks, generalized tonic-clonic seizures and, less commonly, absences. Neuropsychological and, less consistently, anatomical studies have indicated frontal lobe dysfunction in the disease. Given its presumed thalamo–cortical basis, we investigated thalamo–cortical structural connectivity, as measured by diffusion tensor imaging, in a cohort of 28 participants with juvenile myoclonic epilepsy and detected changes in an anterior thalamo–cortical bundle compared with healthy control subjects. We then investigated task-modulated functional connectivity from the anterior thalamic region identified using functional magnetic resonance imaging in a task consistently shown to be impaired in this group, phonemic verbal fluency. We demonstrate an alteration in task-modulated connectivity in a region of frontal cortex directly connected to the thalamus via the same anatomical bundle, and overlapping with the supplementary motor area. Further, we show that the degree of abnormal connectivity is related to disease severity in those with active seizures. By integrating methods examining structural and effective interregional connectivity, these results provide convincing evidence for abnormalities in a specific thalamo–cortical circuit, with reduced structural and task-induced functional connectivity, which may underlie the functional abnormalities in this idiopathic epilepsy. PMID:23250883

  9. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  10. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  11. Polysubstance and Alcohol Dependence: Unique Abnormalities of Magnetic Resonance-Derived Brain Metabolite Levels

    PubMed Central

    Abé, Christoph; Mon, Anderson; Durazzo, Timothy C.; Pennington, David L.; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2012-01-01

    BACKGROUND Although comorbid substance misuse is common in alcohol dependence, and polysubstance abusers (PSU) represent the largest group of individuals seeking treatment for drug abuse today, we know little about potential brain abnormalities in this population. Brain magnetic resonance spectroscopy studies of mono-substance use disorders (e.g., alcohol or cocaine) reveal abnormal levels of cortical metabolites (reflecting neuronal integrity, cell membrane turnover/synthesis, cellular bioenergetics, gliosis) and altered concentrations of glutamate and γ-aminobutyric acid (GABA). The concurrent misuse of several substances may have unique and different effects on brain biology and function compared to any mono-substance misuse. METHODS High field brain magnetic resonance spectroscopy at 4 Tesla and neurocognitive testing were performed at one month of abstinence in 40 alcohol dependent individuals (ALC), 28 alcohol dependent PSU and 16 drug-free controls. Absolute metabolite concentrations were calculated in anterior cingulate (ACC), parieto-occipital (POC) and dorsolateral prefrontal cortices (DLPFC). RESULTS Compared to ALC, PSU demonstrated significant metabolic abnormalities in the DLPFC and strong trends to lower GABA in the ACC. Metabolite levels in ALC and light drinking controls were statistically equivalent. Within PSU, lower DLPFC GABA levels related to greater cocaine consumption. Several cortical metabolite concentrations were associated with cognitive performance. CONCLUSIONS While metabolite concentrations in ALC at one month of abstinence were largely normal, PSU showed persistent and functionally significant metabolic abnormalities, primarily in the DLPFC. Our results point to specific metabolic deficits as biomarkers in polysubstance misuse and as targets for pharmacological and behavioral PSU-specific treatment. PMID:23122599

  12. Common and distinct structural network abnormalities in major depressive disorder and borderline personality disorder.

    PubMed

    Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Thomann, Philipp A; Wolf, R Christian

    2016-02-01

    Major depressive disorder (MDD) and borderline personality disorder (BPD) show substantial overlap in both affective symptom expression and in regional brain volume reduction. To address the specificity of structural brain change for the respective diagnostic category, we investigated structural networks in MDD and BPD to identify shared and distinct patterns of abnormal brain volume associated with these phenotypically related disorders. Using magnetic resonance imaging at 3 T, we studied 22 females with MDD, 17 females with BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls. We used “source-based morphometry” (SBM) to investigate naturally grouping patterns of gray matter volume variation (i.e. “structural networks”) and the magnitude of their expression between groups. SBM identified three distinct structural networks which showed a significant group effect (p b 0.05, FDR-corrected). A bilateral frontostriatal network showed reduced volume in MDD compared to both controls and BPD patients. A medial temporal/medial frontal network was found to be significantly reduced in BPD compared to both controls and MDD patients. Decreased cingulate and lateral prefrontal volume was found in both MDD and BPD when compared to healthy individuals. In MDD significant relationships were found between depressive symptoms and a cingulate/lateral prefrontal structural pattern. In contrast, overall BPD symptoms and impulsivity scores were significantly associated with medial temporal/medial frontal network volume. The data suggest both distinct and common patterns of abnormal brain volume in MDD and BPD. Alterations of distinct structural networks differentially modulate clinical symptom expression in these disorders.

  13. Abnormal Baseline Brain Activity in Patients with Pulsatile Tinnitus: A Resting-State fMRI Study

    PubMed Central

    Han, Lv; Zhaohui, Liu; Fei, Yan; Ting, Li; Pengfei, Zhao; Wang, Du; Cheng, Dong; Pengde, Guo; Xiaoyi, Han; Xiao, Wang; Rui, Li; Zhenchang, Wang

    2014-01-01

    Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT) patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI) technique. The present study used unilateral PT patients (n = 42) and age-, sex-, and education-matched normal control subjects (n = 42) to investigate the changes in structural and amplitude of low-frequency (ALFF) of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG) and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients. PMID:24872895

  14. Diffusion Tensor Imaging for Assessing Brain Gray and White Matter Abnormalities in a Feline Model of α-Mannosidosis.

    PubMed

    Kumar, Manoj; Duda, Jeff T; Yoon, Sea Young; Bagel, Jessica; O'Donnell, Patricia; Vite, Charles; Pickup, Stephen; Gee, James C; Wolfe, John H; Poptani, Harish

    2016-01-01

    α-Mannosidosis (AMD) is an autosomal recessively inherited lysosomal storage disorder affecting brain function and structure. We performed ex vivo and in vivo diffusion tensor imaging (DTI) on the brains of AMD-affected cats to assess gray and white matter abnormalities. A multi-atlas approach was used to generate a brain template to process the ex vivo DTI data. The probabilistic label method was used to measure fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity values from gray and white matter regions from ex vivo DTI. Regional analysis from various regions of the gray matter (frontal cortex, cingulate gyrus, caudate nucleus, hippocampus, thalamus, and occipital cortex), and white matter (corpus callosum, corticospinal tract, cerebral peduncle, external and internal capsule) was also performed on both ex vivo and in vivo DTI. Ex vivo DTI revealed significantly reduced FA from both gray and white matter regions in AMD-affected cats compared to controls. Significantly reduced FA was also observed from in vivo DTI of AMD-affected cats compared to controls, with lower FA values observed in all white matter regions. We also observed significantly increased axial and radial diffusivity values in various gray and white matter regions in AMD cats from both ex vivo and in vivo DTI data. Imaging findings were correlated with histopathologic analyses suggesting that DTI studies can further aid in the characterization of AMD by assessing the microstructural abnormalities in both white and gray matter.

  15. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha

    2015-01-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  16. The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain.

    PubMed

    Arnold, J E; Tipler, C; Laszlo, L; Hope, J; Landon, M; Mayer, R J

    1995-08-01

    The prion encephalopathies are characterized by accumulation in the brain of the abnormal form PrPsc of a normal host gene product PrPc. The mechanism and site of formation of PrPsc from PrPc are currently unknown. In this study, ME7 scrapie-infected mouse brain was used to show, both biochemically and by double-labelled immunogold electron microscopy, that proteinase K-resistant PrPsc is enriched in subcellular structures which contain the cation-independent mannose 6-phosphate receptor, ubiquitin-protein conjugates, beta-glucuronidase, and cathepsin B, termed late endosome-like organelles. The glycosylinositol phospholipid membrane-anchored PrPc will enter such compartment for normal degradation and the organelles may therefore act as chambers for the conversion of PrPc into infectious PrPsc in this murine model of scrapie.

  17. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  18. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage.

  19. Abnormal functional brain asymmetry in depression: evidence of biologic commonality between major depression and dysthymia.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; Hellerstein, David; Alvarenga, Jorge E; Alschuler, Daniel; McGrath, Patrick J

    2012-04-30

    Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having "pure" dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or "pure" dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening.

  20. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression.

  1. The MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels

    PubMed Central

    Oien, Derek B.; Osterhaus, Greg L.; Latif, Shaheen A.; Pinkston, Jonathan W.; Fulks, Jenny; Johnson, Michael; Fowler, Stephen C.; Moskovitz, Jackob

    2008-01-01

    Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA−/−) mouse. Here we show that MsrA−/− mice have compromised complex task learning capabilities relative to wild-type mice. Likewise, MsrA−/− mice exhibit lower locomotor activity and altered gait that exacerbated with age. Furthermore, MsrA−/− mice were less responsive to amphetamine treatment. Consequently, brain dopamine levels were determined. Surprisingly, relative to wild-type mice, MsrA−/− brains contained significantly higher levels of dopamine up to 12 months of age, while lower level of dopamine was observed at 16 months of age. Moreover, striatal regions of MsrA−/− mice showed an increase of dopamine release parallel to observed dopamine levels. Similarly, the expression pattern of tyrosine hydroxylase activating protein correlated with the age-dependent dopamine levels. Thus, it is suggested that dopamine regulation and signaling pathway are impaired in MsrA−/− mice, which may contribute to their abnormal bio-behavior. These observations may be relevant to age-related neurological diseases associated with oxidative stress. PMID:18466776

  2. MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels.

    PubMed

    Oien, Derek B; Osterhaus, Greg L; Latif, Shaheen A; Pinkston, Jonathan W; Fulks, Jenny; Johnson, Michael; Fowler, Stephen C; Moskovitz, Jackob

    2008-07-15

    Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA(-/-)) mouse. Here we show that MsrA(-/-) mice have compromised complex task learning capabilities relative to wild-type mice. Likewise, MsrA(-/-) mice exhibit lower locomotor activity and altered gait that exacerbated with age. Furthermore, MsrA(-/-) mice were less responsive to amphetamine treatment. Consequently, brain dopamine levels were determined. Surprisingly, relative to wild-type mice, MsrA(-/-) brains contained significantly higher levels of dopamine up to 12 months of age, while lower levels of dopamine were observed at 16 months of age. Moreover, striatal regions of MsrA(-/-) mice showed an increase of dopamine release parallel to observed dopamine levels. Similarly, the expression pattern of tyrosine hydroxylase activating protein correlated with the age-dependent dopamine levels. Thus, it is suggested that dopamine regulation and signaling pathways are impaired in MsrA(-/-) mice, which may contribute to their abnormal behavior. These observations may be relevant to age-related neurological diseases associated with oxidative stress.

  3. Cardiac ultrasonography in structural abnormalities and arrhythmias. Recognition and treatment.

    PubMed Central

    Brook, M M; Silverman, N H; Villegas, M

    1993-01-01

    Fetal cardiac ultrasonography has become an important tool in the evaluation of fetuses at risk for cardiac anomalies. It can both guide prenatal treatment and assist the management and timing of delivery. We recommend that a fetal echocardiogram be done when there is a family history of congenital heart disease; maternal disease that may affect the fetus; a history of maternal drug use, either therapeutic or illegal; evidence of other fetal abnormalities; or evidence of fetal hydrops. The optimal timing of evaluation is 18 to 22 weeks' gestation. An entire range of structural cardiac defects can be visualized prenatally, including atrioventricular septal defect, ventricular septal defect, cardiomyopathy, ventricular outlet obstruction, and complex cardiac defects. The outcome for a fetus with a recognized abnormality is unfavourable, with less than 50% surviving the neonatal period. Fetal cardiac arrhythmias are also a common occurrence, 15% in the series described here. Premature atrial or ventricular contractions are most commonly seen and usually require no treatment. Supraventricular tachycardia can result in hydrops and require in utero treatment to prevent fetal demise. Complete heart block, particularly in association with structural heart disease, has a poor prognosis for fetal survival. Images PMID:8236970

  4. Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation.

    PubMed

    Eccles, J A; Garfinkel, S N; Harrison, N A; Ward, J; Taylor, R E; Bewley, A P; Critchley, H D

    2015-10-01

    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal.

  5. Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation.

    PubMed

    Eccles, J A; Garfinkel, S N; Harrison, N A; Ward, J; Taylor, R E; Bewley, A P; Critchley, H D

    2015-10-01

    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal. PMID:26260311

  6. Abnormal Brain Connectivity Patterns in Adults with ADHD: A Coherence Study

    PubMed Central

    Sato, João Ricardo; Hoexter, Marcelo Queiroz; Castellanos, Xavier Francisco; Rohde, Luis A.

    2012-01-01

    Studies based on functional magnetic resonance imaging (fMRI) during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC) and regions of the Default Mode Network (DMN) in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD) relative to subjects with typical development (TD). Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC) in three groups (adult patients with ADHD, n = 21; TD age-matched subjects, n = 21; young TD subjects, n = 21) using a more comprehensive analytical approach – unsupervised machine learning using a one-class support vector machine (OC-SVM) that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p = 0.014); the ADHD and young TD indices did not differ significantly (p = 0.480); the median abnormality index of young TD was greater than that of TD age-matched subjects (p = 0.016). Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits. PMID:23049834

  7. Abnormal expression of 8-nitroguanine in the brain of mice exposed to arsenic subchronically.

    PubMed

    Piao, Fengyuan; Li, Sheng; Li, Qiujuan; Ye, Jianxin; Liu, Shuang

    2011-01-01

    To provide molecular toxicological evidences for exploring the mechanism of arsenic-induced neurotoxicity the accumulation of arsenic (As), the formation of 8-nitroguanine (8-NO(2)-G) were examined in brain tissue of mice exposed to arsenic. And the gene expressions of inducible NOS (iNOS), superoxide dismutase 1 (SOD1) and peroxiredoxin 2 (Prdx2) were also analyzed by GeneChip. In the result, the concentration of As in the brain tissue of mice was 4.00, 13.70, 21.48 and 29.88 ng/g in the controls and experimental groups exposed to 1, 2 and 4 mg/l As(2)O(3), respectively and increased in dose-response manner. Nervous cells in the brain of mice exposed to As showed disappearances of axons, vacuolar degeneration in cytoplasm and karyolysis, whereas no such pathological changes were observed in the control group. Weak immunoreactivity against 8-NO(2)-G was observed in the brain tissue of mice given 1 or 2 ppm arsenic trioxide. More intensive immunoreactivity was found in cells at 4 ppm and it was mainly distributed in cytoplasm. The expressions of SOD1 and Prdx2 were down-regulated in the brain of mice exposed to As, but iNOS expression was not disturbed by As exposure. No the 8-NO(2)-G immunoreactivity or abnormal expressions of these genes in brain tissue were observed in controls. These results indicate that As induces high expression of 8-NO(2)-G in brain tissues of mice and that RNA in the cells may be modified by overproduced reactive nitrogen species.

  8. Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnatally.

    PubMed

    Soares de Oliveira-Szejnfeld, Patricia; Levine, Deborah; Melo, Adriana Suely de Oliveira; Amorim, Melania Maria Ramos; Batista, Alba Gean M; Chimelli, Leila; Tanuri, Amilcar; Aguiar, Renato Santana; Malinger, Gustavo; Ximenes, Renato; Robertson, Richard; Szejnfeld, Jacob; Tovar-Moll, Fernanda

    2016-10-01

    Purpose To document the imaging findings associated with congenital Zika virus infection as found in the Instituto de Pesquisa in Campina Grande State Paraiba (IPESQ) in northeastern Brazil, where the congenital infection has been particularly severe. Materials and Methods From June 2015 to May 2016, 438 patients were referred to the IPESQ for rash occurring during pregnancy or for suspected fetal central nervous system abnormality. Patients who underwent imaging at IPESQ were included, as well as those with documented Zika virus infection in fluid or tissue (n = 17, confirmed infection cohort) or those with brain findings suspicious for Zika virus infection, with intracranial calcifications (n = 28, presumed infection cohort). Imaging examinations included 12 fetal magnetic resonance (MR) examinations, 42 postnatal brain computed tomographic examinations, and 11 postnatal brain MR examinations. Images were reviewed by four radiologists, with final opinion achieved by means of consensus. Results Brain abnormalities seen in confirmed (n = 17) and presumed (n = 28) congenital Zika virus infections were similar, with ventriculomegaly in 16 of 17 (94%) and 27 of 28 (96%) infections, respectively; abnormalities of the corpus callosum in 16 of 17 (94%) and 22 of 28 (78%) infections, respectively; and cortical migrational abnormalities in 16 of 17 (94%) and 28 of 28 (100%) infections, respectively. Although most fetuses underwent at least one examination that showed head circumference below the 5th percentile, head circumference could be normal in the presence of severe ventriculomegaly (seen in three fetuses). Intracranial calcifications were most commonly seen at the gray matter-white matter junction, in 15 of 17 (88%) and 28 of 28 (100%) confirmed and presumed infections, respectively. The basal ganglia and/or thalamus were also commonly involved with calcifications in 11 of 17 (65%) and 18 of 28 (64%) infections, respectively. The skull frequently had a collapsed

  9. R6/2 Huntington’s disease Mice Develop Early and Progressive Abnormal Brain Metabolism and Seizures

    PubMed Central

    Cepeda-Prado, E; Popp, S; Khan, U; Stefanov, D; Rodriguez, J; Menalled, L; Dow-Edwards, D; Small, SA; Moreno, H

    2012-01-01

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several HD mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional magnetic resonance imaging (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI-signals (relative cerebral blood volumes-rCBV) and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions- thus identifying a mechanism accounting for the abnormal fMRI findings. [14C] deoxyglucose (2DG) maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice, and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models. PMID:22573668

  10. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.

    PubMed

    Driggers, Rita W; Ho, Cheng-Ying; Korhonen, Essi M; Kuivanen, Suvi; Jääskeläinen, Anne J; Smura, Teemu; Rosenberg, Avi; Hill, D Ashley; DeBiasi, Roberta L; Vezina, Gilbert; Timofeev, Julia; Rodriguez, Fausto J; Levanov, Lev; Razak, Jennifer; Iyengar, Preetha; Hennenfent, Andrew; Kennedy, Richard; Lanciotti, Robert; du Plessis, Adre; Vapalahti, Olli

    2016-06-01

    The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated.

  11. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  12. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.

    PubMed

    Driggers, Rita W; Ho, Cheng-Ying; Korhonen, Essi M; Kuivanen, Suvi; Jääskeläinen, Anne J; Smura, Teemu; Rosenberg, Avi; Hill, D Ashley; DeBiasi, Roberta L; Vezina, Gilbert; Timofeev, Julia; Rodriguez, Fausto J; Levanov, Lev; Razak, Jennifer; Iyengar, Preetha; Hennenfent, Andrew; Kennedy, Richard; Lanciotti, Robert; du Plessis, Adre; Vapalahti, Olli

    2016-06-01

    The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated. PMID:27028667

  13. Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: implication for glial dysfunction

    PubMed Central

    Chang, Linda; Friedman, Joseph; Ernst, Thomas; Zhong, Kai; Tsopelas, Nicholas D.; Davis, Kenneth

    2008-01-01

    Background Abnormalities in the white matter of the brain may occur in individuals with schizophrenia as well as with normal aging. Therefore, elderly schizophrenic patients may suffer further cognitive decline as they age. This study determined whether elderly schizophrenia participants, especially those with declined cognitive function (CDR>1), show white matter metabolite abnormalities on proton magnetic resonance spectroscopy (1H MRS), and whether there are group differences in age-dependent changes in these brain metabolites. Method 23 elderly schizophrenic and 22 comparison participants fulfilling study criteria were enrolled. Localized, short echo-time 1H MRS at 4 Tesla was used to assess neurometabolite concentrations in several white matter regions. Results Compared to healthy subjects, schizophrenic participants had lower N-acetyl compounds (NA, −12.6%, p=0.0008), lower myoinositol (MI, −16.4%, p=0.026) and higher glutamate+glutamine (GLX, +28.7%, p=0.0016) concentrations across brain regions. Schizophrenic participants with CDR≥1 showed the lowest NA in the frontal and temporal regions compared to controls. Interactions between age and schizophrenia status on total creatine (CR) and choline-containing compounds (CHO) were observed; only schizophrenic participants showed age-related decreases of these two metabolites in the right frontal region. Conclusion Decreased NA in these white matter brain regions likely reflects reduced neuronal content associated with decreased synapses and neuronal cell volumes. The elevated GLX, if reflecting elevated glutamate, could result from excess neuronal glutamate release or glial dysfunction in glutamate re-uptake. The decreased MI in participants with schizophrenia suggests decreased glial content or dysfunctional glia, which might result from glutamate-mediated toxicity. PMID:17693392

  14. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia.

  15. Musical Training Shapes Structural Brain Development

    PubMed Central

    Hyde, Krista L.; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C.; Schlaug, Gottfried

    2010-01-01

    The human brain has the remarkable capacity to alter in response to environmental demands. Training-induced structural brain changes have been demonstrated in the healthy adult human brain. However, no study has yet directly related structural brain changes to behavioral changes in the developing brain, addressing the question of whether structural brain differences seen in adults (comparing experts with matched controls) are a product of “nature” (via biological brain predispositions) or “nurture” (via early training). Long-term instrumental music training is an intense, multisensory, and motor experience and offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity. PMID:19279238

  16. Socioeconomic status and structural brain development.

    PubMed

    Brito, Natalie H; Noble, Kimberly G

    2014-01-01

    Recent advances in neuroimaging methods have made accessible new ways of disentangling the complex interplay between genetic and environmental factors that influence structural brain development. In recent years, research investigating associations between socioeconomic status (SES) and brain development have found significant links between SES and changes in brain structure, especially in areas related to memory, executive control, and emotion. This review focuses on studies examining links between structural brain development and SES disparities of the magnitude typically found in developing countries. We highlight how highly correlated measures of SES are differentially related to structural changes within the brain.

  17. Socioeconomic status and structural brain development

    PubMed Central

    Brito, Natalie H.; Noble, Kimberly G.

    2014-01-01

    Recent advances in neuroimaging methods have made accessible new ways of disentangling the complex interplay between genetic and environmental factors that influence structural brain development. In recent years, research investigating associations between socioeconomic status (SES) and brain development have found significant links between SES and changes in brain structure, especially in areas related to memory, executive control, and emotion. This review focuses on studies examining links between structural brain development and SES disparities of the magnitude typically found in developing countries. We highlight how highly correlated measures of SES are differentially related to structural changes within the brain. PMID:25249931

  18. Socioeconomic status and structural brain development.

    PubMed

    Brito, Natalie H; Noble, Kimberly G

    2014-01-01

    Recent advances in neuroimaging methods have made accessible new ways of disentangling the complex interplay between genetic and environmental factors that influence structural brain development. In recent years, research investigating associations between socioeconomic status (SES) and brain development have found significant links between SES and changes in brain structure, especially in areas related to memory, executive control, and emotion. This review focuses on studies examining links between structural brain development and SES disparities of the magnitude typically found in developing countries. We highlight how highly correlated measures of SES are differentially related to structural changes within the brain. PMID:25249931

  19. mTOR signaling and its roles in normal and abnormal brain development

    PubMed Central

    Takei, Nobuyuki; Nawa, Hiroyuki

    2014-01-01

    Target of rapamycin (TOR) was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mammalian TOR (mTOR). mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid) synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development. PMID:24795562

  20. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury.

    PubMed

    Cifu, David X; Hoke, Kathy W; Wetzel, Paul A; Wares, Joanna R; Gitchel, George; Carne, William

    2014-01-01

    The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (TBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between and within groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mild TBI when compared with a sham-control.

  1. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury.

    PubMed

    Cifu, David X; Hoke, Kathy W; Wetzel, Paul A; Wares, Joanna R; Gitchel, George; Carne, William

    2014-01-01

    The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (TBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between and within groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mild TBI when compared with a sham-control. PMID:25436771

  2. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    PubMed Central

    Hayes, Jasmeet P.; Miller, Danielle R.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having

  3. The nature of white matter abnormalities in blast-related mild traumatic brain injury.

    PubMed

    Hayes, Jasmeet P; Miller, Danielle R; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2015-01-01

    Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having

  4. Structural abnormalities at neuromuscular synapses lacking multiple syntrophin isoforms.

    PubMed

    Adams, Marvin E; Kramarcy, Neal; Fukuda, Taku; Engel, Andrew G; Sealock, Robert; Froehner, Stanley C

    2004-11-17

    The syntrophins are modular adapter proteins that function by recruiting signaling molecules to the cytoskeleton via their direct association with proteins of the dystrophin protein family. We investigated the physiological function of beta2-syntrophin by generating a line of mice lacking this syntrophin isoform. The beta2-syntrophin null mice show no overt phenotype, or muscular dystrophy, and form structurally normal neuromuscular junctions (NMJs). To determine whether physiological consequences caused by the lack of beta2-syntrophin were masked by compensation from the alpha-syntrophin isoform, we crossed these mice with our previously described alpha-syntrophin null mice to produce mice lacking both isoforms. The alpha/beta2-syntrophin null mice have NMJs that are structurally more aberrant than those lacking only alpha-syntrophin. The NMJs of the alpha/beta2-syntrophin null mice have fewer junctional folds than either parent strain, and the remaining folds are abnormally shaped with few openings to the synaptic space. The levels of acetylcholine receptors are reduced to 23% of wild type in mice lacking both syntrophin isoforms. Furthermore, the alpha/beta2-syntrophin null mice ran significantly shorter distances on voluntary exercise wheels despite having normal neuromuscular junction transmission as determined by micro-electrode recording of endplate potentials. We conclude that both alpha-syntrophin and beta2-syntrophin play distinct roles in forming and maintaining NMJ structure and that each syntrophin can partially compensate for the loss of the other.

  5. Structural Magnetic Resonance Imaging Can Identify Trigeminal System Abnormalities in Classical Trigeminal Neuralgia

    PubMed Central

    DeSouza, Danielle D.; Hodaie, Mojgan; Davis, Karen D.

    2016-01-01

    Classical trigeminal neuralgia (TN) is a chronic pain disorder that has been described as one of the most severe pains one can suffer. The most prevalent theory of TN etiology is that the trigeminal nerve is compressed at the root entry zone (REZ) by blood vessels. However, there is significant evidence showing a lack of neurovascular compression (NVC) for many cases of classical TN. Furthermore, a considerable number of patients who are asymptomatic have MR evidence of NVC. Since there is no validated animal model that reproduces the clinical features of TN, our understanding of TN pathology mainly comes from biopsy studies that have limitations. Sophisticated structural MRI techniques including diffusion tensor imaging provide new opportunities to assess the trigeminal nerves and CNS to provide insight into TN etiology and pathogenesis. Specifically, studies have used high-resolution structural MRI methods to visualize patterns of trigeminal nerve-vessel relationships and to detect subtle pathological features at the trigeminal REZ. Structural MRI has also identified CNS abnormalities in cortical and subcortical gray matter and white matter and demonstrated that effective neurosurgical treatment for TN is associated with a reversal of specific nerve and brain abnormalities. In conclusion, this review highlights the advanced structural neuroimaging methods that are valuable tools to assess the trigeminal system in TN and may inform our current understanding of TN pathology. These methods may in the future have clinical utility for the development of neuroimaging-based biomarkers of TN. PMID:27807409

  6. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  7. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  8. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  9. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  10. Children with New-Onset Epilepsy: Neuropsychological Status and Brain Structure

    ERIC Educational Resources Information Center

    Hermann, Bruce; Jones, Jana; Sheth, Raj; Dow, Christian; Koehn, Monica; Seidenberg, Michael

    2006-01-01

    Abnormalities in cognition, academic performance and brain volumetrics have been reported in children with chronic epilepsy. The nature and degree to which these problems may be present at epilepsy onset or may instead become more evident over time remains to be determined. This study characterizes neuropsychological status, brain structure and…

  11. Brain and Cognition Abnormalities in Long-Term Anabolic-Androgenic Steroid Users

    PubMed Central

    Kaufman, Marc J.; Janes, Amy C.; Hudson, James I.; Brennan, Brian P.; Kanayama, Gen; Kerrigan, Andrew R.; Jensen, J. Eric; Pope, Harrison G.

    2015-01-01

    Background Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. Methods This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). Results AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). Conclusions Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction. PMID:25986964

  12. Abnormal brain biomechanics in the hydrocephalic child. From: Concepts in Pediatric Neurosurgery, 1982,vol 2.

    PubMed

    Shapiro, K; Marmarou, A; Shulman, K

    1993-01-01

    Sixteen children with active hydrocephalus were studied using the Pressure Volume Index (PVI) technique to characterize neural axis compliance and the resistance to CSF absorption (Ro). Intracranial pressure for the series was 16.2 +/- 6.2/13.3 +/- 6.1 mm Hg. Measured PVI was twice that predicted for each child, indicating abnormally compliant systems. Ro was 7.8 +/- 1.7 mm Hg/ml/min, a three-fold increase above normal. There was no correlation between PVI and ventricular size. These studies indicate that the biomechanical properties of the brain and its coverings are altered by the hydrocephalic process in a way that encourages further accumulation of volume.

  13. Longitudinal assessment of gait abnormalities following penetrating ballistic-like brain injury in rats.

    PubMed

    Mountney, Andrea; Leung, Lai Yee; Pedersen, Rebecca; Shear, Deborah; Tortella, Frank

    2013-01-15

    Traumatic brain injury (TBI) results in enduring motor and cognitive dysfunction. Although gait disturbances have been documented among TBI patients, few studies have profiled gait abnormalities in animal models of TBI. We sought to obtain a comprehensive longitudinal analysis of gait function following severe penetrating ballistic-like brain injury (PBBI) in rats. Rats were subjected to either unilateral frontal PBBI, probe insertion alone, or sham surgery. Sensorimotor performance was assessed using the CatWalk automated gait analysis system. Baseline measurements were taken 3 days prior to injury and detailed analysis of gait was performed at 1, 3, 7, 14, and 28 days post-injury. Both PBBI and probe-inserted rats displayed altered static and dynamic gait parameters that were primarily evident during the early (<7 days) post-injury phase and were resolved by 1 month post-injury. PBBI produced more severe deficits compared to probe-alone which were reflected in the number, magnitude, and resolution time of abnormal gait parameters. While altered parameters were detected in all four paws, they were more apparent on the contralateral side. Gait parameters including paw pressure, print area, swing speed, and stride length were significantly decreased whereas stance, swing, and step cycle duration were increased compared to sham. Overall, altered gait patterns detected using the CatWalk system in the PBBI model were injury-severity dependent, resolved at later time points, and appeared similar to those reported in severe TBI patients. These results indicate that the CatWalk may be most useful for neuroprotection studies that focus on the acute/subacute recovery period after TBI.

  14. Abnormal brain processing of cutaneous pain in patients with chronic migraine.

    PubMed

    de Tommaso, Marina; Valeriani, Massimiliano; Guido, Marco; Libro, Giuseppe; Specchio, Luigi Maria; Tonali, Pietro; Puca, Francomichele

    2003-01-01

    Syndromes with chronic daily headache include chronic migraine (CM). The reason for the transformation of migraine into chronic daily headache is still unknown. In this study, we aimed to evaluate heat pain thresholds and event-related potentials following CO(2)-laser thermal stimulation (LEPS) in hand and facial regions in patients with CM, to show changes in nociceptive brain responses related to dysfunction of pain elaboration at the cortical level. The results were compared with findings from normal control subjects and from subjects who suffer from migraine without aura. The effects of stimulus intensity, subjective pain perception and attention were monitored and compared with features of the LEPS. Twenty-five CM patients, 15 subjects suffering from migraine without aura and 15 normal control subjects were enrolled in the study. LEPS amplitude variation was reduced in CM patients with respect to the perceived stimulus intensity, in comparison with migraine without aura patients and control subjects. In both headache groups, the distraction from the painful laser stimulus induced by an arithmetic task failed to suppress the LEPS amplitude, in comparison with control subjects. These results suggest an abnormal cortical processing of nociceptive input in CM patients, which could lead to the chronic state of pain. In both headache groups, an inability to reduce pain elaboration during an alternative cognitive task emerged as an abnormal behaviour probably predisposing to migraine. PMID:12507697

  15. Abnormal brain processing of cutaneous pain in patients with chronic migraine.

    PubMed

    de Tommaso, Marina; Valeriani, Massimiliano; Guido, Marco; Libro, Giuseppe; Specchio, Luigi Maria; Tonali, Pietro; Puca, Francomichele

    2003-01-01

    Syndromes with chronic daily headache include chronic migraine (CM). The reason for the transformation of migraine into chronic daily headache is still unknown. In this study, we aimed to evaluate heat pain thresholds and event-related potentials following CO(2)-laser thermal stimulation (LEPS) in hand and facial regions in patients with CM, to show changes in nociceptive brain responses related to dysfunction of pain elaboration at the cortical level. The results were compared with findings from normal control subjects and from subjects who suffer from migraine without aura. The effects of stimulus intensity, subjective pain perception and attention were monitored and compared with features of the LEPS. Twenty-five CM patients, 15 subjects suffering from migraine without aura and 15 normal control subjects were enrolled in the study. LEPS amplitude variation was reduced in CM patients with respect to the perceived stimulus intensity, in comparison with migraine without aura patients and control subjects. In both headache groups, the distraction from the painful laser stimulus induced by an arithmetic task failed to suppress the LEPS amplitude, in comparison with control subjects. These results suggest an abnormal cortical processing of nociceptive input in CM patients, which could lead to the chronic state of pain. In both headache groups, an inability to reduce pain elaboration during an alternative cognitive task emerged as an abnormal behaviour probably predisposing to migraine.

  16. Sensory Abnormalities in Focal Hand Dystonia and Non-Invasive Brain Stimulation

    PubMed Central

    Quartarone, Angelo; Rizzo, Vincenzo; Terranova, Carmen; Milardi, Demetrio; Bruschetta, Daniele; Ghilardi, Maria Felice; Girlanda, Paolo

    2014-01-01

    It has been proposed that synchronous and convergent afferent input arising from repetitive motor tasks may play an important role in driving the maladaptive cortical plasticity seen in focal hand dystonia (FHD). This hypothesis receives support from several sources. First, it has been reported that in subjects with FHD, paired associative stimulation produces an abnormal increase in corticospinal excitability, which was not confined to stimulated muscles. These findings provide support for the role of excessive plasticity in FHD. Second, the genetic contribution to the dystonias is increasingly recognized indicating that repetitive, stereotyped afferent inputs may lead to late-onset dystonia, such as FHD, more rapidly in genetically susceptible individuals. It can be postulated, according to the two factor hypothesis that dystonia is triggered and maintained by the concurrence of environmental factors such as repetitive training and subtle abnormal mechanisms of plasticity within somatosensory loop. In the present review, we examine the contribution of sensory-motor integration in the pathophysiology of primary dystonia. In addition, we will discuss the role of non-invasive brain stimulation as therapeutic approach in FHD. PMID:25538594

  17. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    PubMed Central

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  18. Metabolic Abnormalities in Lobar and Subcortical Brain Regions of Abstinent Polysubstance Users: Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Abé, Christoph; Mon, Anderson; Hoefer, Michael E.; Durazzo, Timothy C.; Pennington, David L.; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2013-01-01

    Aims: The aim of the study was to explore neurometabolic and associated cognitive characteristics of patients with polysubstance use (PSU) in comparison with patients with predominant alcohol use using proton magnetic resonance spectroscopy. Methods: Brain metabolite concentrations were examined in lobar and subcortical brain regions of three age-matched groups: 1-month-abstinent alcohol-dependent PSU, 1-month-abstinent individuals dependent on alcohol alone (ALC) and light drinking controls (CON). Neuropsychological testing assessed cognitive function. Results: While CON and ALC had similar metabolite levels, persistent metabolic abnormalities (primarily higher myo-inositol) were present in temporal gray matter, cerebellar vermis and lenticular nuclei of PSU. Moreover, lower cortical gray matter concentration of the neuronal marker N-acetylaspartate within PSU correlated with higher cocaine (but not alcohol) use quantities and with a reduced cognitive processing speed. Conclusions: These metabolite group differences reflect cellular/astroglial injury and/or dysfunction in alcohol-dependent PSU. Associations of other metabolite concentrations with neurocognitive performance suggest their functional relevance. The metabolic alterations in PSU may represent polydrug abuse biomarkers and/or potential targets for pharmacological and behavioral PSU-specific treatment. PMID:23797281

  19. Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis

    PubMed Central

    Deloire, M; Salort, E; Bonnet, M; Arimone, Y; Boudineau, M; Amieva, H; Barroso, B; Ouallet, J; Pachai, C; Galliaud, E; Petry, K; Dousset, V; Fabrigoule, C; Brochet, B

    2005-01-01

    Objectives: To establish the frequency of cognitive impairment in a population based sample of patients with recently diagnosed relapsing-remitting multiple sclerosis (RRMS), and to determine the relation between cognitive abnormalities and the extent of macroscopic and microscopic tissue damage revealed by magnetic resonance imaging (MRI) and magnetisation transfer (MT) imaging. Methods: 58 patients with RRMS consecutively diagnosed in the previous six months in Aquitaine and 70 healthy controls underwent a battery of neuropsychological tests. Lesion load and atrophy indices (brain parenchymal fraction and ventricular fraction) were measured on brain MRI. MT ratio (MTR) histograms were obtained from lesions, normal appearing white matter (NAWM), and normal appearing grey matter (NAGM). Gadolinium enhanced lesions were counted. Results: 44 RRMS patients could be individually matched with healthy controls for age, sex, and education. Patients performed worse in tests of verbal and spatial memory, attention, information processing speed, inhibition, and conceptualisation. Measures of attention and information processing speed were correlated with lesion load, mean NAWM MTR, and the peak location of the NAGM MTR histogram in the patients. Multivariate regression analysis showed that lesion load and mean NAWM MTR were among the MR indices that were most significantly associated with impairment of attention and information processing speed in these early RRMS cases. Conclusions: Cognitive impairment appears to be common in the early stages of RRMS, mainly affecting attention, information processing speed, memory, inhibition, and conceptualisation. The severity of these deficits reflects the extent of the lesions and the severity of tissue disorganisation outside lesions. PMID:15774439

  20. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    PubMed Central

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  1. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  2. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children.

  3. MRI as a tool to study brain structure from mouse models for mental retardation

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  4. Psychological characteristics of and counseling for carriers of structural chromosome abnormalities.

    PubMed

    Wang, H L; Wu, B; Guo, K M; Tian, R H

    2016-01-01

    Infertility as a psychological problem has gained increasing attention. Male partners among infertile couples have elevated levels of psychological distress, which could affect semen quality, result in hormonal abnormalities, and increase the occurrence of early miscarriage. Infertile women are more vulnerable to psychological distress and require psychological support. Subfertile women who conceive after assisted reproduction have higher stress, anxiety, and depression levels. Psychological interventions have been shown to have beneficial effects on infertility patients. However, psychosocial characteristics of carriers of structural chromosome abnormalities have not been studied. We report the characteristics of carriers of structural chromosome abnormalities and their influence on psychological counseling. Seventy-five patients were carriers of reciprocal translocations, 25 carried Robertsonian translocations, 17 carried inversions, 10 carried deletions, and 3 carried isochromosomes. The main clinical characteristics were recurrent spontaneous abortion, oligospermatism, azoospermatism, primary amenorrhea, and fetal death. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) scores of women with structural chromosome abnormality were significantly higher than those scores of women with normal karyotype. SAS and SDS scores of men with structural chromosome abnormality were significantly higher than those of men with normal karyotype. SAS and SDS scores of women with structural chromosome abnormality were significantly higher than their scores of men with structural chromosome abnormality. Women carriers with structural chromosome abnormality were more vulnerable to psychological distress. Psychosocial counseling for carriers of structural chromosome abnormalities should focus on self-confidence and treatment with assisted reproductive technology. PMID:27173267

  5. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder.

  6. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems.

  7. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. PMID:26796967

  8. Structural Abnormalities in Childhood Absence Epilepsy: Voxel-Based Analysis Using Diffusion Tensor Imaging

    PubMed Central

    Qiu, Wenchao; Gao, Yuan; Yu, Chuanyong; Miao, Ailiang; Tang, Lu; Huang, Shuyang; Hu, Zheng; Xiang, Jing; Wang, Xiaoshan

    2016-01-01

    Purpose: Childhood absence epilepsy (CAE) is a common syndrome of idiopathic generalized epilepsy. However, little is known about the brain structural changes in this type of epilepsy, especially in the default mode network (DMN) regions. This study aims at using the diffusion tensor imaging (DTI) technique to quantify structural abnormalities of DMN nodes in CAE patients. Method: DTI data were acquired in 14 CAE patients (aged 8.64 ± 2.59 years, seven females and seven males) and 16 age- and sex-matched healthy controls. The data were analyzed using voxel-based analysis (VBA) and statistically compared between patients and controls. Pearson correlation was explored between altered DTI metrics and clinical parameters. The difference of brain volumes between patients and controls were also tested using unpaired t-test. Results: Patients showed significant increase of mean diffusivity (MD) and radial diffusivity (RD) in left medial prefrontal cortex (MPFC), and decrease of fractional anisotropy (FA) in left precuneus and axial diffusivity (AD) in both left MPFC and precuneus. In correlation analysis, MD value from left MPFC was positively associated with duration of epilepsy. Neither the disease duration nor the seizure frequency showed significant correlation with FA values. Between-group comparison of brain volumes got no significant difference. Conclusion: The findings indicate that structural impairments exist in DMN regions in children suffering from absence epilepsy and MD values positively correlate with epilepsy duration. This may contribute to understanding the pathological mechanisms of chronic neurological deficits and promote the development of new therapies for this disorder. PMID:27733824

  9. Brain volumes in adolescents with very low birth weight: effects on brain structure and associations with neuropsychological outcomes.

    PubMed

    Taylor, H Gerry; Filipek, Pauline A; Juranek, Jenifer; Bangert, Barbara; Minich, Nori; Hack, Maureen

    2011-01-01

    The aims of this study were to examine abnormalities in brain structure in adolescents and young adults with very low birth weight (VLBW, <1,500 g) and associations of these abnormalities with neuropsychological outcomes. The sample of 108 participants from 14 to 19 years of age included 37 participants with <750 g birth weight, 35 with 750-1,499 g birth weight, and 36 normal birth weight (NBW) controls. One or both of the VLBW groups had smaller brain volumes, larger lateral ventricles, and a small surface area of the corpus callosum than the NBW controls. Group differences in white matter (WM) structures, subcortical gray matter (GM), and the cerebellum were found even when controlling for whole brain volume (WBV), and were most pronounced in the <750 g group. WM reductions in the two VLBW groups relative to NBW controls were associated with more pervasive cognitive deficits than were reductions in subcortical GM. Associations of cognitive outcomes with structural abnormalities remained when controlling for WBV or neonatal risks. The results are consistent with previous findings of residual brain abnormalities in adolescents and young adults with VLBW and provide new information on their cognitive correlates.

  10. Midline abnormalities and psychopathology: how reliable is the midsagittal magnetic resonance "window" into the brain?

    PubMed

    Coppola, R; Myslobodsky, M; Weinberger, D R

    1995-05-31

    The argument is made that mensuration of midsagittal magnetic resonance (MR) images is plagued with methodological errors due to confusion of the midsagittal MR image and the mesial brain surface. Several examples are given to demonstrate the effects of slice thickness and orientation on the size and shape of mesial structures. The benefits of examining contiguous slices and the necessity of consulting coronal and transaxial cuts in mensuration efforts of midsagittal cuts are emphasized.

  11. Gray matter textural heterogeneity as a potential in-vivo biomarker of fine structural abnormalities in Asperger syndrome.

    PubMed

    Radulescu, E; Ganeshan, B; Minati, L; Beacher, F D C C; Gray, M A; Chatwin, C; Young, R C D; Harrison, N A; Critchley, H D

    2013-02-01

    Brain imaging studies contribute to the neurobiological understanding of Autism Spectrum Conditions (ASC). Herein, we tested the prediction that distributed neurodevelopmental abnormalities in brain development impact on the homogeneity of brain tissue measured using texture analysis (TA; a morphological method for surface pattern characterization). TA was applied to structural magnetic resonance brain scans of 54 adult participants (24 with Asperger syndrome (AS) and 30 controls). Measures of mean gray-level intensity, entropy and uniformity were extracted from gray matter images at fine, medium and coarse textures. Comparisons between AS and controls identified higher entropy and lower uniformity across textures in the AS group. Data reduction of texture parameters revealed three orthogonal principal components. These were used as regressors-of-interest in a voxel-based morphometry analysis that explored the relationship between surface texture variations and regional gray matter volume. Across the AS but not control group, measures of entropy and uniformity were related to the volume of the caudate nuclei, whereas mean gray-level was related to the size of the cerebellar vermis. Similar to neuropathological studies, our study provides evidence for distributed abnormalities in the structural integrity of gray matter in adults with ASC, in particular within corticostriatal and corticocerebellar networks. Additionally, this in-vivo technique may be more sensitive to fine microstructural organization than other more traditional magnetic resonance approaches and serves as a future testable biomarker in AS and other neurodevelopmental disorders.

  12. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model

    PubMed Central

    Nakao, Kazuhito; Nakazawa, Kazu

    2014-01-01

    In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The “paradoxically” high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception. PMID:25018691

  13. Structural abnormalities of muscle tissue in ankylosing spondylitis.

    PubMed

    Berman, L; Isaacs, H; Pickering, A

    1976-07-24

    Muscle tissue of patients with ankylosing spondylitis has been studied by means of histology, histochemistry and electron microscopy and has been shown to be grossly abnormal. The underlying basis of the muscle changes is probably neuropathic and we believe that these changes form part of the over-all pathology of this disease.

  14. Structural abnormalities of common carp Cyprinus carpio spermatozoa.

    PubMed

    Psenicka, Martin; Rodina, Marek; Flajshans, Martin; Kaspar, Vojtech; Linhart, Otomar

    2009-11-01

    Spermatozoa of common carp Cyprinus carpio are typically consist of a primitive head without acrosome, a midpiece with several mitochondria, a centriolar complex (proximal and distal centriole), and one flagellum. During an evaluation of the motility of common carp spermatozoa, we found spermatozoa with more than one flagellum and/or "double head" in three different individuals. This may be related to abnormal spermatogenesis. Ultrastructure and physiological parameters of spermatozoa were examined using light microscopy (dark field with stroboscopic illumination), transmission and scanning electron microscopy, and flow cytometry. The recorded pictures and videos were evaluated using Olympus MicroImage software. All spermatozoa with more than one flagellum had a larger head and shorter flagella. They occasionally demonstrated several cytoplasmic channels separating the flagella from the midpiece. Each flagellum was based upon its own centriolar complex, with the connection of the flagellum to the head always at a constant angle. The flagella always consisted of nine peripheral pairs and one central doublet of microtubules. Sperm exhibited a relative DNA content similar to that found in sperm from normal males, with higher coefficients of variation. Although similar abnormalities have been found in livestock, where they were described as a defect in spermiogenesis, no comparable results have been reported in fish. The frequency at which these abnormalities occurs, the fertilization ability of males with defects in spermiogenesis, the influence of these abnormalities on progeny in terms of ploidy level, and the occurrence of deformities warrant further investigation.

  15. Effects of Soccer Heading on Brain Structure and Function.

    PubMed

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player's unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6-12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  16. Effects of Soccer Heading on Brain Structure and Function

    PubMed Central

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  17. Sources of abnormal EEG activity in the presence of brain lesions.

    PubMed

    Fernández-Bouzas, A; Harmony, T; Bosch, J; Aubert, E; Fernández, T; Valdés, P; Silva, J; Marosi, E; Martínez-López, M; Casián, G

    1999-04-01

    In routine clinical EEG, a common origin is assumed for delta and theta rhythms produced by brain lesions. In previous papers, we have provided some experimental support, based on High Resolution qEEG and dipole fitting in the frequency domain, for the hypothesis that delta and theta spectral power have independent origins related to lesion and edema respectively. This paper describes the results obtained with Frequency Domain VARETA (FD-VARETA) in a group of 13 patients with cortical space-occupying lesions, in order to: 1) Test the accuracy of FD-VARETA for the localization of brain lesions, and 2) To provide further support for the independent origin of delta and theta components. FD VARETA is a distributed inverse solution, constrained by the Montreal Neurological Institute probabilistic atlas that estimates the spectra of EEG sources. In all patients, logarithmic transformed source spectra were compared with age-matched normative values, defining the Z source spectrum. Maximum Z values were found in 10 patients within the delta band (1.56 to 3.12 Hz); the spatial extent of these sources in the atlas corresponded with the location of the tumors in the CT. In 2 patients with small metastases and large volumes of edema and in a patient showing only edema, maximum Z values were found between 4.29 and 5.12 Hz. The spatial extent of the sources at these frequencies was within the volume of the edema in the CT. These results provided strong support to the hypothesis that both delta and theta abnormal EEG activities are the counterparts of two different pathophysiological processes. PMID:10358783

  18. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure

    PubMed Central

    Fan, Cunxiu; Zhao, Yuhua; Yu, Qian; Yin, Wu; Liu, Haipeng; Lin, Jianzhong; Yang, Tianhe; Fan, Ming; Gesang, Luobu; Zhang, Jiaxing

    2016-01-01

    A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure. PMID:27633944

  19. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure.

    PubMed

    Fan, Cunxiu; Zhao, Yuhua; Yu, Qian; Yin, Wu; Liu, Haipeng; Lin, Jianzhong; Yang, Tianhe; Fan, Ming; Gesang, Luobu; Zhang, Jiaxing

    2016-01-01

    A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure. PMID:27633944

  20. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder.

    PubMed

    Yuksel, C; Du, F; Ravichandran, C; Goldbach, J R; Thida, T; Lin, P; Dora, B; Gelda, J; O'Connor, L; Sehovic, S; Gruber, S; Ongur, D; Cohen, B M

    2015-09-01

    Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.

  1. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Angels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  2. Neural tube defects and abnormal brain development in F52-deficient mice.

    PubMed Central

    Wu, M; Chen, D F; Sasaoka, T; Tonegawa, S

    1996-01-01

    F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700893

  3. Brain positron emission tomography in splenectomized adults with β-thalassemia intermedia: uncovering yet another covert abnormality.

    PubMed

    Musallam, Khaled M; Nasreddine, Wassim; Beydoun, Ahmad; Hourani, Roula; Hankir, Ahmed; Koussa, Suzanne; Haidar, Mohamad; Taher, Ali T

    2012-02-01

    Covert brain infarction is an emerging concern in patients with β-thalassemia intermedia (TI). We have recently observed a high prevalence (60%) of silent brain infarction on brain magnetic resonance imaging (MRI) in 30 splenectomized adults with TI. In this work, we further evaluate cerebral involvement in the same 30 patients using fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scanning. The median age was 32 years (range, 18-54 years) with a male to female ratio of 13:17. Nineteen patients (63.3%) had evidence of decreased neuronal function on PET-CT. Involvement was mostly left sided, multiple, and most commonly in the temporal and parietal lobes. Elevated liver iron concentration, beyond 15 mg Fe/g dry weight, characterized patients with decreased neuronal function. The concordance rate between brain MRI and PET-CT for the detection of brain abnormality was only 36.7% (Kappa 0.056, P = 0.757), highlighting that both modalities reveal different types of brain pathology. Decreased neuronal function is a common finding in patients with TI and is associated with iron overload. Moreover, the addition of PET-CT to MRI identifies a greater proportion of TI patients with silent neuroimaging abnormalities.

  4. Abnormal Brain Dynamics Underlie Speech Production in Children with Autism Spectrum Disorder

    PubMed Central

    Valica, Tatiana; MacDonald, Matt J.; Taylor, Margot J.; Brian, Jessica; Lerch, Jason P.; Anagnostou, Evdokia

    2015-01-01

    A large proportion of children with autism spectrum disorder (ASD) have speech and/or language difficulties. While a number of structural and functional neuroimaging methods have been used to explore the brain differences in ASD with regards to speech and language comprehension and production, the neurobiology of basic speech function in ASD has not been examined. Magnetoencephalography (MEG) is a neuroimaging modality with high spatial and temporal resolution that can be applied to the examination of brain dynamics underlying speech as it can capture the fast responses fundamental to this function. We acquired MEG from 21 children with high‐functioning autism (mean age: 11.43 years) and 21 age‐ and sex‐matched controls as they performed a simple oromotor task, a phoneme production task and a phonemic sequencing task. Results showed significant differences in activation magnitude and peak latencies in primary motor cortex (Brodmann Area 4), motor planning areas (BA 6), temporal sequencing and sensorimotor integration areas (BA 22/13) and executive control areas (BA 9). Our findings of significant functional brain differences between these two groups on these simple oromotor and phonemic tasks suggest that these deficits may be foundational and could underlie the language deficits seen in ASD. Autism Res 2016, 9: 249–261. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26363154

  5. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing's syndrome.

    PubMed

    Crespo, Iris; Santos, Alicia; Gómez-Ansón, Beatriz; López-Mourelo, Olga; Pires, Patricia; Vives-Gilabert, Yolanda; Webb, Susan M; Resmini, Eugenia

    2016-09-01

    Chronic exposure to excessive glucocorticoid (GC) concentration in Cushing's syndrome (CS) can affect the brain structurally and functionally; ventromedial prefrontal cortex (vmPFC) is rich in GC receptors and therefore particularly vulnerable to excessive GC concentration. Proton magnetic resonance spectroscopy ((1)H-MRS) is a sensitive, non-invasive imaging technique that provides information on brain metabolites in vivo. Our aim was to investigate metabolite concentrations in vmPFC of CS patients and their relationship with clinical outcome. Twenty-two right-handed CS patients (7 active/15 in remission, 19 females, 41.6 ± 12.3 years) and 22 right-handed healthy controls (14 females, 41.7 ± 11 years) underwent brain MRI and (1)H-MRS exams at 3 Tesla. Concentrations of glutamate (Glu), glutamate + glutamine (Glx), creatine (Cr), N-Acetyl-aspartate (NAA), N-Acetyl-aspartate + N-acetylaspartylglutamate (total NAA), choline-containing compounds (Cho) and myoinositol (MI) were determined. Moreover, anxiety and depressive symptoms were evaluated with the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory-II (BDI-II) test, respectively. CS patients had lower concentrations of glutamate and total NAA in the vmPFC than healthy controls (8.6 ± 1.2 vs. 9.3 ± 0.7 mmol/L, and 6.4 ± 0.8 vs. 6.8 ± 0.4 mmol/L, respectively; p < 0.05). Duration of hypercortisolism was negatively correlated with total NAA (r = -0.488, p < 0.05). Moreover, the concentration of total NAA was negatively correlated with anxiety state (r = -0.359, p < 0.05). Brain metabolites are abnormal in the vmPFC of patients with CS. Decreased total NAA and glutamate concentrations indicate neuronal dysfunction that appear to be related with duration of hypercortisolism and anxiety. PMID:27103571

  6. Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing's syndrome.

    PubMed

    Crespo, Iris; Santos, Alicia; Gómez-Ansón, Beatriz; López-Mourelo, Olga; Pires, Patricia; Vives-Gilabert, Yolanda; Webb, Susan M; Resmini, Eugenia

    2016-09-01

    Chronic exposure to excessive glucocorticoid (GC) concentration in Cushing's syndrome (CS) can affect the brain structurally and functionally; ventromedial prefrontal cortex (vmPFC) is rich in GC receptors and therefore particularly vulnerable to excessive GC concentration. Proton magnetic resonance spectroscopy ((1)H-MRS) is a sensitive, non-invasive imaging technique that provides information on brain metabolites in vivo. Our aim was to investigate metabolite concentrations in vmPFC of CS patients and their relationship with clinical outcome. Twenty-two right-handed CS patients (7 active/15 in remission, 19 females, 41.6 ± 12.3 years) and 22 right-handed healthy controls (14 females, 41.7 ± 11 years) underwent brain MRI and (1)H-MRS exams at 3 Tesla. Concentrations of glutamate (Glu), glutamate + glutamine (Glx), creatine (Cr), N-Acetyl-aspartate (NAA), N-Acetyl-aspartate + N-acetylaspartylglutamate (total NAA), choline-containing compounds (Cho) and myoinositol (MI) were determined. Moreover, anxiety and depressive symptoms were evaluated with the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory-II (BDI-II) test, respectively. CS patients had lower concentrations of glutamate and total NAA in the vmPFC than healthy controls (8.6 ± 1.2 vs. 9.3 ± 0.7 mmol/L, and 6.4 ± 0.8 vs. 6.8 ± 0.4 mmol/L, respectively; p < 0.05). Duration of hypercortisolism was negatively correlated with total NAA (r = -0.488, p < 0.05). Moreover, the concentration of total NAA was negatively correlated with anxiety state (r = -0.359, p < 0.05). Brain metabolites are abnormal in the vmPFC of patients with CS. Decreased total NAA and glutamate concentrations indicate neuronal dysfunction that appear to be related with duration of hypercortisolism and anxiety.

  7. Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study.

    PubMed

    Klauser, Paul; Zhou, Juan; Lim, Joseph K W; Poh, Joann S; Zheng, Hui; Tng, Han Ying; Krishnan, Ranga; Lee, Jimmy; Keefe, Richard S E; Adcock, R Alison; Wood, Stephen J; Fornito, Alex; Chee, Michael W L

    2015-11-01

    There is cumulative evidence that young people in an "at-risk mental state" (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS. PMID:25745033

  8. Cortico-striato-thalamo-cortical circuit abnormalities in obsessive-compulsive disorder: A voxel-based morphometric and fMRI study of the whole brain.

    PubMed

    Tang, Wenxin; Zhu, Qifeng; Gong, Xiangyang; Zhu, Cheng; Wang, Yiquan; Chen, Shulin

    2016-10-15

    The primary aim of this study was to identify structural and functional abnormalities in the brains of obsessive-compulsive disorder (OCD) patients. Another aim was to assess the effect of serotonin selective reuptake inhibitors (SSRIs) on brain structure of OCD patients. All subjects underwent brain magnetic resonance imaging (MRI) and resting functional MRI (fMRI). High-resolution three-dimensional images were processed using the voxel-based morphometry (VBM) method. The final analysis included 18 OCD patients and 16 healthy controls. In the OCD patients there was a decrease in gray matter volume in the bilateral cingulate cortex and bilateral striatum. In some cortical structures including the cerebellar anterior lobe, left orbital frontal gyrus, right middle frontal gyrus, left middle temporal gyrus, precentral gyrus, and postcentral gyrus, there was an increase in gray matter volume. On fMRI the OCD patients had overactivation of the right cerebellum and right parietal lobe and reduced activation of the left cingulate gyrus, putamen, and caudate nucleus. Eleven OCD patients who improved during 12 weeks of drug treatment with sertraline hydrochloride had a significant increase in gray matter volume in several brain structures but no significant differences were found on resting fMRI. The results indicated a consistent trend between structural and functional images. Higher cortical structures showed increased gray matter volume and increased activation as did the cerebellum whereas subcortical structures showed decreased gray matter volume and decreased activation. And brain structure improvement consisted with symptom improvement after SSRIs treatment in OCD patients. PMID:27388149

  9. Structural connectivity asymmetry in the neonatal brain.

    PubMed

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. PMID:23501049

  10. Association between brain structure and phenotypic characteristics in pedophilia.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder.

  11. Predictive modeling of neuroanatomic structures for brain atrophy detection

    NASA Astrophysics Data System (ADS)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  12. Quantitative Analysis of Metabolic Abnormality Associated with Brain Developmental Venous Anomalies

    PubMed Central

    Timerman, Dmitriy; Thum, Jasmine A

    2016-01-01

    Background and Purpose: Abnormal hypometabolism is common in the brain parenchyma surrounding developmental venous anomalies (DVAs), although the degree of DVA-associated hypometabolism (DVAAh) has not been quantitatively analyzed. In this study, we demonstrate a simple method for the measurement of DVAAh and test the hypothesis that DVAs are associated with a quantifiable decrement in metabolic activity. Materials and Methods: Measurements of DVAAh using ratios of standardized uptake values (SUVs) and comparison to a normal database were performed on a cohort of 25 patients (12 male, 13 female), 14 to 76 years old, with a total of 28 DVAs (20 with DVAAh, seven with isometabolic activity, and one with hypermetabolic activity). Results: Qualitative classification of none, mild, moderate, and severe DVAAh corresponded to quantitative measurements of DVAAh of 1 ± 3%, 12 ± 7%, 18 ± 6%, and 37 ± 6%, respectively. A statistically significant linear correlation between DVAAh and age was observed (P = 0.003), with a 3% reduction in metabolic activity per decade. A statistically significant linear correlation between DVAAh and DVA size was observed (P = 0.01), with a 4% reduction in metabolic activity per each 1 cm in the longest dimension. The SUVDVA-based measures of DVAAh correlated (P = 0.001) with measures derived from comparison with a standardized database. Conclusion: We present a simple method for the quantitative measurement of DVAAh using ratios of SUVs, and find that this quantitative analysis is consistent with a qualitative classification. We find that 54% (15 of 28) of DVAs are associated with a greater than 10% decrease in metabolic activity. PMID:27774365

  13. Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability.

    PubMed

    Kinney, Hannah C; Cryan, Jane B; Haynes, Robin L; Paterson, David S; Haas, Elisabeth A; Mena, Othon J; Minter, Megan; Journey, Kelley W; Trachtenberg, Felicia L; Goldstein, Richard D; Armstrong, Dawna D

    2015-01-01

    Sudden unexplained death in infants, including the sudden infant death syndrome, is likely due to heterogeneous causes that involve different intrinsic vulnerabilities and/or environmental factors. Neuropathologic research focuses upon the role of brain regions, particularly the brainstem, that regulate or modulate autonomic and respiratory control during sleep or transitions to waking. The hippocampus is a key component of the forebrain-limbic network that modulates autonomic/respiratory control via brainstem connections, but its role in sudden infant death has received little attention. We tested the hypothesis that a well-established marker of hippocampal pathology in temporal lobe epilepsy-focal granule cell bilamination in the dentate, a variant of granule cell dispersion-is associated with sudden unexplained death in infants. In a blinded study of hippocampal morphology in 153 infants with sudden and unexpected death autopsied in the San Diego County medical examiner's office, deaths were classified as unexplained or explained based upon autopsy and scene investigation. Focal granule cell bilamination was present in 41.2% (47/114) of the unexplained group compared to 7.7% (3/39) of the explained (control) group (p < 0.001). It was associated with a cluster of other dentate developmental abnormalities that reflect defective neuronal proliferation, migration, and/or survival. Dentate lesions in a large subset of infants with sudden unexplained death may represent a developmental vulnerability that leads to autonomic/respiratory instability or autonomic seizures, and sleep-related death when the infants are challenged with homeostatic stressors. Importantly, these lesions can be recognized in microscopic sections prepared in current forensic practice. Future research is needed to determine the relationship between hippocampal and previously reported brainstem pathology in sudden infant death. PMID:25421424

  14. Repeated stress and structural plasticity in the brain.

    PubMed

    Radley, Jason J; Morrison, John H

    2005-05-01

    Although adrenal steroid receptors are distributed widely throughout the central nervous system, specific limbic and cortical regions targeted by stress hormones play a key role in integrating behavioral and physiological responses during stress and adaptation to subsequent stressors. When the stressor is of a sufficient magnitude or prolonged, it may result in abnormal changes in brain plasticity that, paradoxically, may impair the ability of the brain to appropriately regulate and respond to subsequent stressors. Here we review how repeated stress produces alterations in brain plasticity in animal models, and discuss its relevance to behavioral changes associated with these regions. Interestingly, prolonged stress produces opposing effects on structural plasticity, notably dendritic atrophy and excitatory synapse loss in the hippocampus and prefrontal cortex, and growth of dendrites and spines in the amygdala. The granule cells of the dentate gyrus are also significantly affected through a decrease in the rate neurogenesis following prolonged stress. How functional impairments in these brain regions play a role in stress-related mental illnesses is discussed in this context. Finally, we discuss the cumulative impact of stress-induced structural plasticity in aging.

  15. Brain imaging and blood biomarker abnormalities in children with autosomal-dominant Alzheimer's disease: A cross-sectional Study

    PubMed Central

    Quiroz, Y.T.; Schultz, A.; Chen, K.; Protas, H.; Brickhouse, M.; Fleisher, A.S.; Langbaum, J.B.; Thiyyagura, P.; Fagan, A.M.; Shah, A.R.; Muniz, M.; Arboleda-Velasquez, JF; Munoz, C.; Garcia, G.; Acosta-Baena, N.; Giraldo, M.; Tirado, V.; Ramirez, D.; Tariot, PN; Dickerson, B.C.; Sperling, R.A.; Lopera, F.; Reiman, E.M.

    2015-01-01

    -carrying children demonstrated increased functional connectivity of the posterior cingulate cortex with medial temporal lobe regions (mean [SD] parameter estimates were 0.038 [0.070] for noncarriers and 0.190 [0.057] for carriers), as well as greater gray matter volumes in temporal regions (eg, left parahippocampus; P < . 049, corrected for multiple comparisons). CONCLUSIONS AND RELEVANCE Children at genetic risk for ADAD have functional and structural brain changes and abnormal levels of plasma Aβ1-42. The extent to which the underlying brain changes are either neurodegenerative or developmental remains to be determined. This study provides additional information about the earliest known biomarker changes associated with ADAD. PMID:26121081

  16. Molecular cytogenetic studies in structural abnormalities of chromosome 13

    SciTech Connect

    Lozzio, C.B.; Bamberger, E.; Anderson, I.

    1994-09-01

    A partial trisomy 13 was detected prenatally in an amniocentesis performed due to the following ultrasound abnormalities: open sacral neural tube defect (NTD), a flattened cerebellum, and lumbar/thoracic hemivertebrae. Elevated AFP and positive acetylcholinesterase in amniotic fluid confirmed the open NTD. Chromosome analysis showed an extra acrocentric chromosome marker. FISH analysis with the painting probe 13 showed that most of the marker was derived from this chromosome. Chromosomes on the parents revealed that the mother had a balanced reciprocal translocation t(2;13)(q23;q21). Dual labeling with painting chromosomes 2 and 13 on cells from the mother and from the amniotic fluid identified the marker as a der(13)t(2;13)(p23;q21). Thus, the fetus had a partial trisomy 13 and a small partial trisomy 2p. The maternal grandfather was found to be a carrier for this translocation. Fetal demise occurred a 29 weeks of gestation. The fetus had open lumbar NTD and showed dysmorphic features, overlapping fingers and imperforate anus. This woman had a subsequent pregnancy and chorionic villi sample showed that this fetus was normal. Another case with an abnormal chromosome 13 was a newborn with partial monosomy 13 due to the presence of a ring chromosome 13. This infant had severe intrauterine growth retardation, oligohydramnios, dysmorphic features and multiple congenital microphthalmia, congenital heart disease, absent thumbs and toes and cervical vertebral anomalies. Chromosome studies in blood and skin fibroblast cultures showed that one chromosome 3 was replaced by a ring chromosome of various sizes. This ring was confirmed to be derived from chromosome 13 using the centromeric 21/13 probe.

  17. Structure and function of complex brain networks.

    PubMed

    Sporns, Olaf

    2013-09-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a "rich club," centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed.

  18. Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV.

    PubMed

    Clark, Uraina S; Walker, Keenan A; Cohen, Ronald A; Devlin, Kathryn N; Folkers, Anna M; Pina, Matthew J; Tashima, Karen T

    2015-04-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV-associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities.

  19. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    PubMed Central

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  20. Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV.

    PubMed

    Clark, Uraina S; Walker, Keenan A; Cohen, Ronald A; Devlin, Kathryn N; Folkers, Anna M; Pina, Matthew J; Tashima, Karen T

    2015-04-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV-associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  1. Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan

    PubMed Central

    Ha, Sungji; Sohn, In-Jung; Kim, Namwook; Sim, Hyeon Jeong

    2015-01-01

    Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by impaired social communication and restricted and repetitive behaviors (RRBs). Over the past decade, neuroimaging studies have provided considerable insights underlying neurobiological mechanisms of ASD. In this review, we introduce recent findings from brain imaging studies to characterize the brains of ASD across the human lifespan. Results of structural Magnetic Resonance Imaging (MRI) studies dealing with total brain volume, regional brain structure and cortical area are summarized. Using task-based functional MRI (fMRI), many studies have shown dysfunctional activation in critical areas of social communication and RRBs. We also describe several data to show abnormal connectivity in the ASD brains. Finally, we suggest the possible strategies to study ASD brains in the future. PMID:26713076

  2. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia.

    PubMed

    Ruiz, Marta; Perez-Garcia, Georgina; Ortiz-Virumbrales, Maitane; Méneret, Aurelie; Morant, Andrika; Kottwitz, Jessica; Fuchs, Tania; Bonet, Justine; Gonzalez-Alegre, Pedro; Hof, Patrick R; Ozelius, Laurie J; Ehrlich, Michelle E

    2015-12-20

    DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations. PMID:26376866

  3. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia.

    PubMed

    Ruiz, Marta; Perez-Garcia, Georgina; Ortiz-Virumbrales, Maitane; Méneret, Aurelie; Morant, Andrika; Kottwitz, Jessica; Fuchs, Tania; Bonet, Justine; Gonzalez-Alegre, Pedro; Hof, Patrick R; Ozelius, Laurie J; Ehrlich, Michelle E

    2015-12-20

    DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations.

  4. Modeling the thermal and structural response of engineered systems to abnormal environments

    SciTech Connect

    Skocypec, R.D.; Thomas, R.K.; Moya, J.L.

    1993-10-01

    Sandia National Laboratories (SNL) is engaged actively in research to improve the ability to accurately predict the response of engineered systems to thermal and structural abnormal environments. Abnormal environments that will be addressed in this paper include: fire, impact, and puncture by probes and fragments, as well as a combination of all of the above. Historically, SNL has demonstrated the survivability of engineered systems to abnormal environments using a balanced approach between numerical simulation and testing. It is necessary to determine the response of engineered systems in two cases: (1) to satisfy regulatory specifications, and (2) to enable quantification of a probabilistic risk assessment (PRA). In a regulatory case, numerical simulation of system response is generally used to guide the system design such that the system will respond satisfactorily to the specified regulatory abnormal environment. Testing is conducted at the regulatory abnormal environment to ensure compliance.

  5. Baseline brain perfusion and brain structure in patients with major depression: a multimodal magnetic resonance imaging study

    PubMed Central

    Vasic, Nenad; Wolf, Nadine D.; Grön, Georg; Sosic-Vasic, Zrinka; Connemann, Bernhard J.; Sambataro, Fabio; von Strombeck, Anna; Lang, Dirk; Otte, Stefanie; Dudek, Manuela; Wolf, Robert C.

    2015-01-01

    Background Abnormal regional cerebral blood flow (rCBF) and grey matter volume have been frequently reported in patients with major depressive disorder (MDD). However, it is unclear to what extent structural and functional change co-occurs in patients with MDD and whether markers of neural activity, such as rCBF, can be predicted by structural change. Methods Using MRI, we investigated resting-state rCBF and brain structure in patients with MDD and healthy controls between July 2008 and January 2013. We acquired perfusion images obtained with continuous arterial spin labelling, used voxel-based morphometry to assess grey matter volume and integrated biological parametric mapping analyses to investigate the impact of brain atrophy on rCBF. Results We included 43 patients and 29 controls in our study. Frontotemporal grey matter volume was reduced in patients compared with controls. In patients, rCBF was reduced in the anterior cingulate and bilateral parahippocampal areas and increased in frontoparietal and striatal regions. These abnormalities were confirmed by analyses with brain volume as a covariate. In patients with MDD there were significant negative correlations between the extent of depressive symptoms and bilateral parahippocampal rCBF. We found a positive correlation between depressive symptoms and rCBF for right middle frontal cortical blood flow. Limitations Medication use in patients has to be considered as a limitation of our study. Conclusion Our data suggest that while changes of cerebral blood flow and brain volume co-occur in patients with MDD, structural change is not sufficient to explain altered neural activity in patients at rest. Abnormal brain structure and function in patients with MDD appear to reflect distinct levels of neuropathology. PMID:26125119

  6. Neurolinguistics: structural plasticity in the bilingual brain.

    PubMed

    Mechelli, Andrea; Crinion, Jenny T; Noppeney, Uta; O'Doherty, John; Ashburner, John; Frackowiak, Richard S; Price, Cathy J

    2004-10-14

    Humans have a unique ability to learn more than one language--a skill that is thought to be mediated by functional (rather than structural) plastic changes in the brain. Here we show that learning a second language increases the density of grey matter in the left inferior parietal cortex and that the degree of structural reorganization in this region is modulated by the proficiency attained and the age at acquisition. This relation between grey-matter density and performance may represent a general principle of brain organization. PMID:15483594

  7. Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis.

    PubMed

    Brandt, Christine Lycke; Doan, Nhat Trung; Tønnesen, Siren; Agartz, Ingrid; Hugdahl, Kenneth; Melle, Ingrid; Andreassen, Ole A; Westlye, Lars T

    2015-01-01

    Schizophrenia (SZ) is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC). Utilizing linked independent component analysis (LICA), a data-driven multimodal analysis approach, we investigated structure-function associations in a large sample of SZ (n = 96) and HC (n = 142). We tested for associations between task-positive (fronto-parietal) and task-negative (default-mode) brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons) was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure-function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation. PMID:26509112

  8. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease.

    PubMed

    Douaud, Gwenaëlle; Menke, Ricarda A L; Gass, Achim; Monsch, Andreas U; Rao, Anil; Whitcher, Brandon; Zamboni, Giovanna; Matthews, Paul M; Sollberger, Marc; Smith, Stephen

    2013-01-30

    Diffusion imaging is a promising marker of microstructural damage in neurodegenerative disorders, but interpretation of its relationship with underlying neuropathology can be complex. Here, we examined both volumetric and brain microstructure abnormalities in 13 amnestic patients with mild cognitive impairment (MCI), who progressed to probable Alzheimer's disease (AD) no earlier than 2 years after baseline scanning, in order to focus on early, and hence more sensitive, imaging markers. We compared them to 22 stable amnestic MCI patients with similar cognitive performance and episodic memory impairment but who did not show progression of symptoms for at least 3 years. Significant group differences were mainly found in the volume and microstructure of the left hippocampus, while white matter group differences were also found in the body of the fornix, left fimbria, and superior longitudinal fasciculus (SLF). Diffusion index abnormalities in the SLF were the sign of a subtle microstructural injury not detected by standard atrophy measures in the corresponding gray matter regions. The microstructural measure obtained in the left hippocampus using diffusion imaging showed the most substantial differences between the two groups and was the best single predictor of future progression to AD. An optimal prediction model (91% accuracy, 85% sensitivity, 96% specificity) was obtained by combining MRI measures and CSF protein biomarkers. These results highlight the benefit of using the information of brain microstructural damage, in addition to traditional gray matter volume, to detect early, subtle abnormalities in MCI prior to clinical progression to probable AD and, in combination with CSF markers, to accurately predict such progression.

  9. Structural abnormalities of small resistance arteries in essential hypertension.

    PubMed

    Rizzoni, Damiano; Agabiti-Rosei, Enrico

    2012-06-01

    Regardless of the mechanisms that initiate the increase in blood pressure, the development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, the small arteries smooth muscle cells are restructured around a smaller lumen, and there is no net growth of the vascular wall, while in some secondary forms of hypertension, a hypertrophic remodeling may be detected. Also, in non-insulin-dependent diabetes mellitus, a hypertrophic remodeling of subcutaneous small arteries is present. The results from our own group have suggested that indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive patients, over and above all other known cardiovascular risk factors. Therefore, the regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure, both in human and in animal models of genetic and experimental hypertension. A complete normalization of small resistance artery structure is demonstrated in hypertensive patients, after long-term and effective therapy with ACE inhibitors, angiotensin II receptor blockers and calcium antagonists. Few data are available in diabetic hypertensive patients; however, blockade of the renin-angiotensin system seems to be effective in this regard. In conclusion, there are several pieces of evidence that suggest that small resistance artery structure may be considered an intermediate endpoint in the evaluation of the effects of antihypertensive therapy; however, there are presently no data available about the prognostic impact of the regression of vascular structural alterations in hypertension and diabetes.

  10. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    PubMed Central

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  11. BRAIN STRUCTURAL AND FUNCTIONAL CHANGES IN ADOLESCENTS WITH PSYCHIATRIC DISORDERS

    PubMed Central

    Miguel-Hidalgo, José Javier

    2013-01-01

    During adolescence hormonal and neurodevelopmental changes geared to ensure reproduction and achieve independence are very likely mediated by growth of neural processes, remodeling of synaptic connections, increased myelination in prefrontal areas, and maturation of connecting subcortical regions. These processes, greatly accelerated in adolescence, follow an asynchronous pattern in different brain areas. Neuroimaging research using functional and structural magnetic resonance imaging has produced most of the insights regarding brain structural and functional neuropathology in adolescent psychiatric disorders. In schizophrenia, first episodes during adolescence are linked to greater-than-normal losses in gray matter density and white matter integrity, and show a divergence of maturational trajectories from normative neural development, in a progression similar to that of adult-onset schizophrenia. Anxiety and mood disorders in adolescence have been linked to abnormally increased activity in the amygdala and ventral prefrontal cortical areas, although some data suggest that neural abnormalities in the amygdala and anxiety maybe particularly more frequent in adolescents than in adults. Alcohol misuse in adolescence results in reduced integrity in the white matter and reduced gray matter density that, given the high intensity of adolescent synaptic and myelin remodeling, may result in persistent and profound changes in circuits supporting memory, emotional and appetitive control. Interaction of persistent changes due to prenatal exposure with contemporaneous expression of genetic factors and disturbing environmental exposure may be an important factor in the appearance of psychiatric disorders in adolescence. Further progress in understanding adolescent psychopathology will require postmortem research of molecular and cellular determinants in the adolescent brain. PMID:23828425

  12. Structural brain correlates of human sleep oscillations.

    PubMed

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure.

  13. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury.

    PubMed

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J; Diwakar, Mithun; Risbrough, Victoria B; Ji, Zhengwei; Huang, Charles W; Chang, Douglas G; Harrington, Deborah L; Muzzatti, Laura; Canive, Jose M; Christopher Edgar, J; Chen, Yu-Han; Lee, Roland R

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1-4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1-4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  14. A mouse model for eukaryotic translation initiation factor 2B-leucodystrophy reveals abnormal development of brain white matter.

    PubMed

    Geva, Michal; Cabilly, Yuval; Assaf, Yaniv; Mindroul, Nina; Marom, Liraz; Raini, Gali; Pinchasi, Dalia; Elroy-Stein, Orna

    2010-08-01

    Eukaryotic translation initiation factor 2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. Mutations in any of its five subunits lead to leucoencephalopathy with vanishing white matter, an inherited chronic-progressive fatal brain disease with unknown aetiology, which is among the most prevalent childhood white matter disorders. We generated the first animal model for the disease by introducing a point mutation into the mouse Eif2b5 gene locus, leading to R132H replacement corresponding to the clinically significant human R136H mutation in the catalytic subunit. In contrast to human patients, mice homozygous for the mutant Eif2b5 allele (Eif2b5(R132H/R132H) mice) enable multiple analyses under a defined genetic background during the pre-symptomatic stages and during recovery from a defined brain insult. Time-course magnetic resonance imaging revealed for the first time the delayed development of the brain white matter due to the mutation. Electron microscopy demonstrated a higher proportion of small-calibre nerve fibres. Immunohistochemistry detected an abnormal abundance of oligodendrocytes and astrocytes in the brain of younger animals, as well as an abnormal level of major myelin proteins. Most importantly, mutant mice failed to recover from cuprizone-induced demyelination, reflecting an increased sensitivity to brain insults. The anomalous development of white matter in Eif2b5(R132H/R132H) mice underscores the importance of tight translational control to normal myelin formation and maintenance.

  15. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.

  16. Reading skill and structural brain development.

    PubMed

    Houston, Suzanne M; Lebel, Catherine; Katzir, Tami; Manis, Franklin R; Kan, Eric; Rodriguez, Genevieve G; Sowell, Elizabeth R

    2014-03-26

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, eight boys, mean age of sample=10.06 ± 3.29) received two MRI scans (mean interscan interval=2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency, and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience, and brain maturation trajectories may help with the development and evaluation of targeted interventions. PMID:24407200

  17. Reading skill and structural brain development.

    PubMed

    Houston, Suzanne M; Lebel, Catherine; Katzir, Tami; Manis, Franklin R; Kan, Eric; Rodriguez, Genevieve G; Sowell, Elizabeth R

    2014-03-26

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, eight boys, mean age of sample=10.06 ± 3.29) received two MRI scans (mean interscan interval=2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency, and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience, and brain maturation trajectories may help with the development and evaluation of targeted interventions.

  18. Regional brain abnormalities in 22q11.2 deletion syndrome: association with cognitive abilities and behavioral symptoms.

    PubMed

    Bearden, Carrie E; van Erp, Theo G M; Monterosso, John R; Simon, Tony J; Glahn, David C; Saleh, Peter A; Hill, Nicole M; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Cannon, Tyrone D

    2004-06-01

    Children with 22q11.2 microdeletions (Velocardiofacial Syndrome; VCFS) have previously been shown to exhibit learning deficits and elevated rates of psychopathology. The aim of this study was to assess regional brain abnormalities in children with 22q11DS, and to determine the relationship of these measures to neurocognitive and behavioral function. Thirteen children with confirmed deletions and 9 demographically matched comparison subjects were assessed with a neurocognitive battery, behavioral measures, and high-resolution MRI. Twenty-two qllDS children showed a nonsignificant 4.3% global decrease in total brain volume as compared to healthy controls,with differential reduction in white matter, and significantly increased sulcal cerebrospinal fluid (CSF) in temporal and posterior brain regions. In 22q11 DS subjects, but not controls, bilateral temporal gray and white matter volumes were significant predictors of overall cognitive performance. Further, reduced temporal gray matter was associated with elevated Thought Problems score on the CBCL. Results indicate that global alterations in brain volume are common in children with 22q deletions, particularly those with low IQ and/or behavioral disturbance. Although preliminary,these findings suggest a possible underlying pathophysiology of the cognitive deficits seen in this syndrome,and provide insight into complex gene-brain-behavior relationships. PMID:15788257

  19. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  20. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    PubMed

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M; Schneider, Jay R; Heisey, Dennis M; Johnson, Christopher J; Asher, David M; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrP(TSE)) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE) in tissues and blood. Macaque vCJD PrP(TSE) did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrP(TSE). The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE). Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE) was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE) demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE) was more permissive than human PrP(TSE) in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE) from brains of humans and macaques with vCJD. PrP(TSE) signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE) from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  1. Structured brain computing and its learning

    SciTech Connect

    Ae, Tadashi; Araki, Hiroyuki; Sakai, Keiichi

    1999-03-22

    We have proposed a two-level architecture for brain computing, where two levels are introduced for processing of meta-symbol. At level 1 a conventional pattern recognition is performed, where neural computation is included, and its output gives the meta-symbol which is a symbol enlarged from a symbol to a kind of pattern. At Level 2 an algorithm acquisition is made by using a machine for abstract states. We are also developing the VLSI chips at each level for SBC (Structured Brain Computer) Ver.1.0.

  2. Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder.

    PubMed

    Keding, Taylor J; Herringa, Ryan J

    2015-02-01

    Structural brain studies of adult post-traumatic stress disorder (PTSD) show reduced gray matter volume (GMV) in fear regulatory areas including the ventromedial prefrontal cortex (vmPFC) and hippocampus. Surprisingly, neither finding has been reported in pediatric PTSD. One possibility is that they represent age-dependent effects that are not fully apparent until adulthood. In addition, lower-resolution MRI and image processing in prior studies may have limited detection of such differences. Here we examine fear circuitry GMV, including age-related differences, using higher-resolution MRI in pediatric PTSD vs healthy youth. In a cross-sectional design, 3 T anatomical brain MRI was acquired in 27 medication-free youth with PTSD and 27 healthy non-traumatized youth of comparable age, sex, and IQ. Voxel-based morphometry was used to compare GMV in a priori regions including the medial prefrontal cortex and amygdala/hippocampus. Compared with healthy youth, PTSD youth had reduced GMV but no age-related differences in anterior vmPFC (BA 10/11, Z=4.5), which inversely correlated with PTSD duration. In contrast, although there was no overall group difference in hippocampal volume, a group × age interaction (Z=3.6) was present in the right anterior hippocampus. Here, age positively predicted hippocampal volume in healthy youth but negatively predicted volume in PTSD youth. Within the PTSD group, re-experiencing symptoms inversely correlated with subgenual anterior cingulate cortex (sgACC, Z=3.7) and right anterior hippocampus (Z=3.5) GMV. Pediatric PTSD is associated with abnormal structure of the vmPFC and age-related differences in the hippocampus, regions important in the extinction and contextual gating of fear. Reduced anterior vmPFC volume may confer impaired recovery from illness, consistent with its role in the allocation of attentional resources. In contrast, individual differences in sgACC volume were associated with re-experiencing symptoms, consistent with

  3. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata.

  4. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata. PMID:27097408

  5. Insulin Resistance, Diabetes Mellitus, and Brain Structure in Bipolar Disorders

    PubMed Central

    Hajek, Tomas; Calkin, Cynthia; Blagdon, Ryan; Slaney, Claire; Uher, Rudolf; Alda, Martin

    2014-01-01

    Type 2 diabetes mellitus (T2DM) damages the brain, especially the hippocampus, and frequently co-occurs with bipolar disorders (BD). Reduced hippocampal volumes are found only in some studies of BD subjects and may thus be secondary to the presence of certain clinical variables. Studying BD patients with abnormal glucose metabolism could help identify preventable risk factors for hippocampal atrophy in BD. We compared brain structure using optimized voxel-based morphometry of 1.5T MRI scans in 33 BD subjects with impaired glucose metabolism (19 with insulin resistance/glucose intolerance (IR/GI), 14 with T2DM), 15 euglycemic BD participants and 11 euglycemic, nonpsychiatric controls. The group of BD patients with IR, GI or T2DM had significantly smaller hippocampal volumes than the euglycemic BD participants (corrected p=0.02) or euglycemic, nonpsychiatric controls (corrected p=0.004). Already the BD subjects with IR/GI had smaller hippocampal volumes than euglycemic BD participants (t(32)=−3.15, p=0.004). Age was significantly more negatively associated with hippocampal volumes in BD subjects with IR/GI/T2DM than in the euglycemic BD participants (F(2, 44)=9.96, p=0.0003). The gray matter reductions in dysglycemic subjects extended to the cerebral cortex, including the insula. In conclusion, this is the first study demonstrating that T2DM or even prediabetes may be risk factors for smaller hippocampal and cortical volumes in BD. Abnormal glucose metabolism may accelerate the age-related decline in hippocampal volumes in BD. These findings raise the possibility that improving diabetes care among BD subjects and intervening already at the level of prediabetes could slow brain aging in BD. PMID:25074491

  6. Structural Chromosome Abnormalities Associated with Obesity: Report of Four New subjects and Review of Literature.

    PubMed

    Dasouki, Majed J; Youngs, Erin L; Hovanes, Karine

    2011-05-01

    Obesity in humans is a complex polygenic trait with high inter-individual heritability estimated at 40-70%. Candidate gene, DNA linkage and genome-wide association studies (GWAS) have allowed for the identification of a large set of genes and genomic regions associated with obesity. Structural chromosome abnormalities usually result in congenital anomalies, growth retardation and developmental delay. Occasionally, they are associated with hyperphagia and obesity rather than growth delay. We report four new individuals with structural chromosome abnormalities involving 10q22.3-23.2, 16p11.2 and Xq27.1-q28 chromosomal regions with early childhood obesity and developmental delay. We also searched and summarized the literature for structural chromosome abnormalities reported in association with childhood obesity. PMID:22043167

  7. Structural Chromosome Abnormalities Associated with Obesity: Report of Four New subjects and Review of Literature

    PubMed Central

    Dasouki, Majed J; Youngs, Erin L; Hovanes, Karine

    2011-01-01

    Obesity in humans is a complex polygenic trait with high inter-individual heritability estimated at 40–70%. Candidate gene, DNA linkage and genome-wide association studies (GWAS) have allowed for the identification of a large set of genes and genomic regions associated with obesity. Structural chromosome abnormalities usually result in congenital anomalies, growth retardation and developmental delay. Occasionally, they are associated with hyperphagia and obesity rather than growth delay. We report four new individuals with structural chromosome abnormalities involving 10q22.3-23.2, 16p11.2 and Xq27.1-q28 chromosomal regions with early childhood obesity and developmental delay. We also searched and summarized the literature for structural chromosome abnormalities reported in association with childhood obesity. PMID:22043167

  8. Structural brain lesions in inflammatory bowel disease

    PubMed Central

    Dolapcioglu, Can; Dolapcioglu, Hatice

    2015-01-01

    Central nervous system (CNS) complications or manifestations of inflammatory bowel disease deserve particular attention because symptomatic conditions can require early diagnosis and treatment, whereas unexplained manifestations might be linked with pathogenic mechanisms. This review focuses on both symptomatic and asymptomatic brain lesions detectable on imaging studies, as well as their frequency and potential mechanisms. A direct causal relationship between inflammatory bowel disease (IBD) and asymptomatic structural brain changes has not been demonstrated, but several possible explanations, including vasculitis, thromboembolism and malnutrition, have been proposed. IBD is associated with a tendency for thromboembolisms; therefore, cerebrovascular thromboembolism represents the most frequent and grave CNS complication. Vasculitis, demyelinating conditions and CNS infections are among the other CNS manifestations of the disease. Biological agents also represent a risk factor, particularly for demyelination. Identification of the nature and potential mechanisms of brain lesions detectable on imaging studies would shed further light on the disease process and could improve patient care through early diagnosis and treatment. PMID:26600970

  9. Impact of diabetes on cognitive function and brain structure.

    PubMed

    Moheet, Amir; Mangia, Silvia; Seaquist, Elizabeth R

    2015-09-01

    Both type 1 and type 2 diabetes have been associated with reduced performance on multiple domains of cognitive function and with structural abnormalities in the brain. With an aging population and a growing epidemic of diabetes, central nervous system-related complications of diabetes are expected to rise and could have challenging future public health implications. In this review, we will discuss the brain structural and functional changes that have been associated with type 1 and type 2 diabetes. Diabetes duration and glycemic control may play important roles in the development of cognitive impairment in diabetes, but the exact underlying pathophysiological mechanisms causing these changes in cognition and structure are not well understood. Future research is needed to better understand the natural history and the underlying mechanisms, as well as to identify risk factors that predict who is at greatest risk of developing cognitive impairment. This information will lead to the development of new strategies to minimize the impact of diabetes on cognitive function.

  10. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  11. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method.

  12. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  13. Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder

    PubMed Central

    Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong

    2015-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285

  14. Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: the effects of methamphetamine, alcohol, and polydrug exposure.

    PubMed

    Roussotte, Florence F; Bramen, Jennifer E; Nunez, S Christopher; Quandt, Lorna C; Smith, Lynne; O'Connor, Mary J; Bookheimer, Susan Y; Sowell, Elizabeth R

    2011-02-14

    Structural and metabolic abnormalities in fronto-striatal structures have been reported in children with prenatal methamphetamine (MA) exposure. The current study was designed to quantify functional alterations to the fronto-striatal circuit in children with prenatal MA exposure using functional magnetic resonance imaging (fMRI). Because many women who use MA during pregnancy also use alcohol, a known teratogen, we examined 50 children (age range 7-15), 19 with prenatal MA exposure, 15 of whom had concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but no MA exposure (ALC group), and 18 unexposed controls (CON group). We hypothesized that MA exposed children would demonstrate abnormal brain activation during a visuospatial working memory (WM) "N-Back" task. As predicted, the MAA group showed less activation than the CON group in many brain areas, including the striatum and frontal lobe in the left hemisphere. The ALC group showed less activation than the MAA group in several regions, including the right striatum. We found an inverse correlation between performance and activity in the striatum in both the CON and MAA groups. However, this relationship was significant in the caudate of the CON group but not the MAA group, and in the putamen of the MAA group but not the CON group. These findings suggest that structural damage in the fronto-striatal circuit after prenatal MA exposure leads to decreased recruitment of this circuit during a WM challenge, and raise the possibility that a rewiring of cortico-striatal networks may occur in children with prenatal MA exposure.

  15. Abnormal hippocampal structure and function in clinical anxiety and comorbid depression.

    PubMed

    Cha, Jiook; Greenberg, Tsafrir; Song, Inkyung; Blair Simpson, Helen; Posner, Jonathan; Mujica-Parodi, Lilianne R

    2016-05-01

    Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression.

  16. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    PubMed

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no--TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI--LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no--TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS.

  17. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  18. Sialylation regulates brain structure and function

    PubMed Central

    Yoo, Seung-Wan; Motari, Mary G.; Susuki, Keiichiro; Prendergast, Jillian; Mountney, Andrea; Hurtado, Andres; Schnaar, Ronald L.

    2015-01-01

    Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders.—Yoo, S.-W., Motari, M. G., Susuki, K., Prendergast, J., Mountney, A., Hurtado, A., Schnaar, R. L. Sialylation regulates brain structure and function. PMID:25846372

  19. Abdominal Pain, the Adolescent and Altered Brain Structure and Function

    PubMed Central

    Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L.; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  20. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    PubMed

    Hubbard, Catherine S; Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  1. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  2. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    PubMed Central

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  3. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  4. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  5. Air Pollution, Cognitive Deficits and Brain Abnormalities: A Pilot Study with Children and Dogs

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Mora-Tiscareno, Antonieta; Ontiveros, Esperanza; Gomez-Garza, Gilberto; Barragan-Mejia, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R.; Henriquez-Roldan, Carlos; Perez-Guille, Beatriz; Torres-Jardon, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E.; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C.; Engle, Randall W.

    2008-01-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n:55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic…

  6. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    ERIC Educational Resources Information Center

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  7. Tobacco Smoking and MRI/MRS Brain Abnormalities Compared to Nonsmokers

    PubMed Central

    Domino, E.F.

    2008-01-01

    This mini review emphasizes the fact that tobacco smoking causes small but real biologic brain changes that need to be studied in depth. A crucial question is whether these anatomical/chemical changes reverse toward normal when smokers quit. This review is presented to stimulate further research to answer this question. PMID:18817837

  8. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  9. Abnormal Activation of the Social Brain Network in Children with Autism Spectrum Disorder: An fMRI Study

    PubMed Central

    Kim, Sun-Young; Choi, Uk-Su; Park, Sung-Yeon; Oh, Se-Hong; Yoon, Hyo-Woon; Koh, Yun-Joo; Im, Woo-Young; Park, Jee-In; Song, Dong-Ho

    2015-01-01

    Objective The aim of this study is to investigate abnormal findings of social brain network in Korean children with autism spectrum disorder (ASD) compared with typically developing children (TDC). Methods Functional magnetic resonance imaging (fMRI) was performed to examine brain activations during the processing of emotional faces (happy, fearful, and neutral) in 17 children with ASD, 24 TDC. Results When emotional face stimuli were given to children with ASD, various areas of the social brain relevant to social cognition showed reduced activation. Specifically, ASD children exhibited less activation in the right amygdala (AMY), right superior temporal sulcus (STS) and right inferior frontal gyrus (IFG) than TDC group when fearful faces were shown. Activation of left insular cortex and right IFG in response to happy faces was less in the ASD group. Similar findings were also found in left superior insular gyrus and right insula in case of neutral stimulation. Conclusion These findings suggest that children with ASD have different processing of social and emotional experience at the neural level. In other words, the deficit of social cognition in ASD could be explained by the deterioration of the capacity for visual analysis of emotional faces, the subsequent inner imitation through mirror neuron system (MNS), and the ability to transmit it to the limbic system and to process the transmitted emotion. PMID:25670944

  10. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells. PMID:24673574

  11. Abnormalities of brain function during a nonverbal theory of mind task in schizophrenia.

    PubMed

    Brunet, Eric; Sarfati, Yves; Hardy-Baylé, Marie-Christine; Decety, Jean

    2003-01-01

    Theory of mind (ToM), the specific ability to attribute thoughts and feelings to oneself and others is generally impaired in schizophrenia. Previous studies demonstrated a deficit of the attribution of intentions to others among patients having formal thought disorder. During nonverbal tasks, such a function requires both the visual perception of human figures and the understanding of their intentions. These processes are considered to involve the superior temporal sulcus and the medial prefrontal cortex, respectively. Are the functional patterns of activation associated with those processes abnormal in schizophrenia? Seven schizophrenic patients on medication performed a nonverbal attribution of intentions task as well as two matched physical logic tasks, with and without human figures, while H2O15 PET-scanning was performed. Data from the patients were compared to those of eight healthy controls matched for verbal IQ and sex. The experimental design allowed dissociating the effect of the perception of human figures from that of the attribution of intentions. During attribution of intentions, significant activations in the right prefrontal cortex were detected in the control subjects. Those activations were not found in the schizophrenic group. However, in both groups, the perception of human figure elicited bilateral activation of the occipitotemporal regions and of the posterior part of the superior temporal sulcus. Schizophrenic patients performing a nonverbal attribution of intentions task have an abnormal cerebral activity. PMID:12887982

  12. Brain gene expression differences are associated with abnormal tail biting behavior in pigs.

    PubMed

    Brunberg, E; Jensen, P; Isaksson, A; Keeling, L J

    2013-03-01

    Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P < 0.05) when tail biters were compared with neutral pigs, 130 when comparing receiver pigs with neutrals, and two when tail biters were compared with receivers. In the prefrontal cortex, seven transcripts were differently expressed in tail biters when compared with neutrals, seven in receivers vs. neutrals and none in the tail biters vs. receivers. In total, 19 genes showed a different expression pattern in neutral pigs when compared with both performers and receivers. This implies that the functions of these may provide knowledge about why the neutral pigs are not involved in tail biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior. PMID:23146156

  13. Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization

    SciTech Connect

    Blennow, E.; Telenius, H.; Nordenskjoeld, M.

    1995-01-02

    Extra structurally abnormal chromosomes (ESACs) are small supernumerary chromosomes often associated with developmental abnormalities and malformations. We present 50 probands with ESACs characterized by fluorescence in situ hybridization using centromere-specific probes and chromosome-specific libraries. ESAC-specific libraries were constructed by flow sorting and subsequent amplification by DOP-PCR. Using such ESAC-specific libraries we were able to outline the chromosome regions involved. Twenty-three of the 50 ESACs were inverted duplications of chromosome 15 (inv dup(15)), including patients with normal phenotypes and others with similar clinical symptoms. These 2 groups differed in size and shape of the inv dup(15). Patients with a large inv dup(15), which included the Prader-Willi region, had a high risk of abnormality, whereas patients with a small inv dup(15), not including the Prader-Willi region, were normal. ESACs derived from chromosomes 13 or 21 appeared to have a low risk of abnormality, while one out of 3 patients with an ESAC derived from chromosome 14 had discrete symptoms. One out of 3 patients with an ESAC derived from chromosome 22 had severe anomalies, corresponding to some of the manifestations of the cat eye syndrome. Small extra ring chromosomes of autosomal origin and ESACs identified as i(12p) or i(18p) were all associated with a high risk of abnormality. 42 refs., 2 figs., 2 tabs.

  14. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI

    PubMed Central

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-01-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus. PMID:20068582

  15. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI.

    PubMed

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-04-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus.

  16. Differential Impact of Hyponatremia and Hepatic Encephalopathy on Health-Related Quality of Life and Brain Metabolite Abnormalities in Cirrhosis

    PubMed Central

    Ahluwalia, Vishwadeep; Wade, James B; Thacker, Leroy; Kraft, Kenneth A; Sterling, Richard K; Stravitz, R Todd; Fuchs, Michael; Bouneva, Iliana; Puri, Puneet; Luketic, Velimir; Sanyal, Arun J; Gilles, HoChong; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-01-01

    Background Hyponatremia (HN) and hepatic encephalopathy (HE) together can impair health-related quality-of-life (HRQOL) and cognition in cirrhosis. Aim To study effect of hyponatremia on cognition, HRQOL and brain MR spectroscopy (MRS) independent of HE. Methods Four cirrhotic groups(no HE/HN, HE alone, HN alone (sodium<130mEq/L),HE+HN) underwent cognitive testing, HRQOL using Sickness Impact Profile (SIP: higher score is worse; has psycho-social and physical sub-scores) and brain MRS (myoinositol(mI) and glutamate+glutamine(Glx)), which were compared across groups. A subset underwent HRQOL testing before/after diuretic withdrawal. Results 82 cirrhotics (30 no HE/HN, 25 HE, 17 HE+HN and 10 HN, MELD 12, 63% Hepatitis C) were included. Cirrhotics with HN alone and without HE/HN had better cognition compared to HE groups (median abnormal tests no-HE/HN:3, HN:3.5, HE:6.5,HE+HN:7, p=0.008). Despite better cognition, HN only patients had worse HRQOL in total and psychosocial SIP while both HN groups (with/without HE) had a significantly worse physical SIP(p<0.0001, all comparisons). Brain MRS showed lowest Glx in HN and highest in HE groups (p<0.02). mI levels were comparably decreased in the three affected (HE,HE+HN and HN) groups compared to no HE/HN and were associated with poor HRQOL. Six HE+HN cirrhotics underwent diuretic withdrawal which improved serum sodium and total/psycho-social SIP scores. Conclusions Hyponatremic cirrhotics without HE have poor HRQOL despite better cognition than those with concomitant HE. Glx levels were lowest in HN without HE but mI was similar across affected groups. HRQOL improved after diuretic withdrawal. Hyponatremia has a complex, non-linear relationship with brain Glx and mI, cognition and HRQOL. PMID:23665182

  17. Abnormal thalamocortical dynamics may be altered by deep brain stimulation: using magnetoencephalography to study phantom limb pain.

    PubMed

    Ray, N J; Jenkinson, N; Kringelbach, M L; Hansen, P C; Pereira, E A; Brittain, J S; Holland, P; Holliday, I E; Owen, S; Stein, J; Aziz, T

    2009-01-01

    Deep brain stimulation (DBS) is used to alleviate chronic pain. Using magnetoencephalography (MEG) to study the mechanisms of DBS for pain is difficult because of the artefact caused by the stimulator. We were able to record activity over the occipital lobe of a patient using DBS for phantom limb pain during presentation of a visual stimulus. This demonstrates that MEG can be used to study patients undergoing DBS provided control stimuli are used to check the reliability of the data. We then asked the patient to rate his pain during and off DBS. Correlations were found between these ratings and power in theta (6-9) and beta bands (12-30). Further, there was a tendency for frequencies under 25 Hz to correlate with each other after a period off stimulation compared with immediately after DBS. The results are interpreted as reflecting abnormal thalamocortical dynamics, previously implicated in painful syndromes.

  18. Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference.

    PubMed

    Melcher, Tobias; Falkai, Peter; Gruber, Oliver

    2008-11-01

    In the present article, we review functional neuroimaging studies on interference processing and performance monitoring in three groups of psychiatric disorders, (1) mood disorders, (2) schizophrenia, and (3) obsessive-compulsive disorder (OCD). Ad (1) Behavioral performance measures suggest an impaired interference resolution capability in symptomatic bipolar disorder patients. A series of neuroimaging analyses found alterations in the ACC-DLPFC system in mood disorder (unipolar depressed and bipolar) patients, putatively reflective of an abnormal interplay of monitoring and executive neurocognitive functions. Other studies of euthymic bipolar patients showed relatively decreased interference-related activation in rostroventral PFC which conceivably underlies defective inhibitory control. Ad (2) Behavioral Stroop studies revealed a specific performance pattern of schizophrenia patients (normal RT interference but increased error interference and RT facilitation) suggestive of a deficit in ignoring irrelevant (word) information. Moreover, reduced/absent behavioral post-error and post-conflict adaptation effects suggest alterations in performance monitoring and/or adjustment capability in these patients. Neuroimaging findings converge to suggest a disorder-related abnormal neurophysiology in ACC which consistently showed conflict- and error-related hypoactivation that, however, appeared to be modulated by different factors. Moreover, studies suggest a specific deficit in context processing in schizophrenia, evidently related to activation reduction in DLPFC. Ad (3) Behavioral findings provide evidence for impaired interference resolution in OCD. Neuroimaging results consistently showed conflict- and error-related ACC hyperactivation which--conforming OCD pathogenesis models--can be conclusively interpreted as reflecting overactive performance monitoring. Taken together, interference resolution and performance monitoring appeared to be fruitful concepts in the

  19. Automated analysis of fundamental features of brain structures.

    PubMed

    Lancaster, Jack L; McKay, D Reese; Cykowski, Matthew D; Martinez, Michael J; Tan, Xi; Valaparla, Sunil; Zhang, Yi; Fox, Peter T

    2011-12-01

    Automated image analysis of the brain should include measures of fundamental structural features such as size and shape. We used principal axes (P-A) measurements to measure overall size and shape of brain structures segmented from MR brain images. The rationale was that quantitative volumetric studies of brain structures would benefit from shape standardization as had been shown for whole brain studies. P-A analysis software was extended to include controls for variability in position and orientation to support individual structure spatial normalization (ISSN). The rationale was that ISSN would provide a bias-free means to remove elementary sources of a structure's spatial variability in preparation for more detailed analyses. We studied nine brain structures (whole brain, cerebral hemispheres, cerebellum, brainstem, caudate, putamen, hippocampus, inferior frontal gyrus, and precuneus) from the 40-brain LPBA40 atlas. This paper provides the first report of anatomical positions and principal axes orientations within a standard reference frame, in addition to "shape/size related" principal axes measures, for the nine brain structures from the LPBA40 atlas. Analysis showed that overall size (mean volume) for internal brain structures was preserved using shape standardization while variance was reduced by more than 50%. Shape standardization provides increased statistical power for between-group volumetric studies of brain structures compared to volumetric studies that control only for whole brain size. To test ISSN's ability to control for spatial variability of brain structures we evaluated the overlap of 40 regions of interest (ROIs) in a standard reference frame for the nine different brain structures before and after processing. Standardizations of orientation or shape were ineffective when not combined with position standardization. The greatest reduction in spatial variability was seen for combined standardizations of position, orientation and shape. These

  20. Asymmetric Di-methyl Arginine is Strongly Associated with Cognitive Dysfunction and Brain MR Spectroscopic Abnormalities in Cirrhosis

    PubMed Central

    Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Wade, James B; Sanyal, Arun J; White, Melanie B; Noble, Nicole A; Monteith, Pamela; Fuchs, Michael; Sterling, Richard K; Luketic, Velimir; Bouneva, Iliana; Stravitz, Richard T; Puri, Puneet; Kraft, Kenneth A; Gilles, HoChong; Heuman, Douglas M

    2012-01-01

    Background Asymmetric di-methyl arginine (ADMA) is an inhibitor of nitric oxide synthase that accumulates in liver disease and may contribute to hepatic encephalopathy(HE). Aim To evaluate the association of ADMA with cognition and brain MR spectroscopy(MRS) in cirrhosis. Methods Cirrhotic patients with/without prior HE and non-cirrhotic controls underwent cognitive testing and ADMA determination. A subgroup underwent brain MRS [Glutamine/glutamate(Glx), myoinositol(mI), N-acetyl-aspartate(NAA) in parietal white, occipital gray and anterior cingulate(ACC)]. We also tested cognition and ADMA in a cirrhotic subgroup before and 1 month after transjugular intrahepatic portosystemic shunting (TIPS). Cognition and MRS values were correlated with ADMA and compared between groups using multi-variable regression. ADMA levels were compared between those who did/did not develop post-TIPS HE. Results 90 cirrhotics (MELD13, 54 prior HE) and 16 controls were included. Controls had better cognition and lower ADMA, Glx and higher mI compared to cirrhotics. Prior HE patients had worse cognition, higher ADMA and Glx and lower mI compared to non-HE cirrhotics. ADMA was positively correlated with MELD (r=0.58,p<0.0001), abnormal cognitive test number(r=0.66,p<0.0001) and Glx and NAAA (white matter,ACC) and negatively with mI. On regression, ADMA predicted number of abnormal tests and mean Z-score independent of prior HE and MELD. 12 patients underwent TIPS;7 developed HE post-TIPS. ADMA increased post-TIPS in patients who developed HE(p=0.019) but not in others(p=0.89). Conclusions A strong association of ADMA with cognition and prior HE was found independent of MELD score in cirrhosis. PMID:22889958

  1. Steroid abnormalities and the developing brain: Declarative memory for emotionally arousing and neutral material in children with congenital adrenal hyperplasia

    PubMed Central

    Maheu, Françoise S.; Merke, Deborah P.; Schroth, Elizabeth A.; Keil, Margaret F.; Hardin, Julie; Poeth, Kaitlin; Pine, Daniel S.; Ernst, Monique

    2008-01-01

    Summary Steroid hormones modulate memory in animals and human adults. Little is known on the developmental effect of these hormones on the neural networks underlying memory. Using Congenital Adrenal Hyperplasia (CAH) as a naturalistic model of early steroid abnormalities, this study examines the consequences of CAH on memory and its neural correlates for emotionally arousing and neutral material in children. Seventeen patients with CAH and 17 age- and sex-matched healthy children (ages 12 to 14 years) completed the study. Subjects were presented positive, negative and neutral pictures. Memory recall occurred about 30 minutes after viewing the pictures. Children with CAH showed memory deficits for negative pictures compared to healthy children (p < 0.01). There were no group differences on memory performance for either positive or neutral pictures (p’s >0.1). In patients, 24h urinary-free cortisol levels (reflecting glucocorticoid replacement therapy) and testosterone levels were not associated with memory performance. These findings suggest that early steroid imbalances affect memory for negative material in children with CAH. Such memory impairments may result from abnormal brain organization and function following hormonal dysfunction during critical periods of development. PMID:18162329

  2. Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection

    PubMed Central

    Kamat, Rujvi; Brown, Gregory G.; Bolden, Khalima; Fennema-Notestine, Christine; Archibald, Sarah; Marcotte, Thomas D.; Letendre, Scott L.; Ellis, Ronald J.; Woods, Steven Paul; Grant, Igor; Heaton, Robert K.

    2015-01-01

    Apathy is a relatively common psychiatric syndrome in HIV infection, but little is known about its neural correlates. In the present study, we examined the associations between apathy and diffusion tensor imaging (DTI) indices in key frontal white matter regions in the thalamocorticostriatal circuit that has been implicated in the expression of apathy. Nineteen participants with HIV infection and 19 demographically comparable seronegative comparison subjects completed the Apathy subscale of the Frontal Systems Behavioral Scale as a part of a comprehensive neuropsychiatric research evaluation. When compared to the seronegative participants, the HIV+ group had significantly more frontal white matter abnormalities. Within HIV+ persons, and as predicted, higher ratings of apathy were associated with greater white matter alterations in the anterior corona radiata, genu, and orbital medial prefrontal cortex. The associations between white matter alterations and apathy were independent of depression and were stronger among participants with lower current CD4 counts. All told, these findings indicate that apathy is independently associated with white matter abnormalities in anterior, medial brain regions in persons infected with HIV, particularly in the setting of lower current immune functioning, which may have implications for antiretroviral therapy. PMID:25275424

  3. Perinatal choline influences brain structure and function.

    PubMed

    Zeisel, Steven H; Niculescu, Mihai D

    2006-04-01

    Choline is derived not only from the diet, but also from de novo synthesis. It is important for methyl-group metabolism, the formation of membranes, kidney function, and neurotransmission. When deprived of dietary choline, most adult men and postmenopausal women develop signs of organ dysfunction (fatty liver or muscle damage) and have a decreased capacity to convert homocysteine to methionine. Choline is critical during fetal development, when it influences stem cell proliferation and apoptosis, thereby altering brain structure and function (memory is permanently enhanced in rodents exposed to choline during the latter part of gestation). PMID:16673755

  4. Effects of hormone therapy on brain structure

    PubMed Central

    Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay; Miller, Virginia M.

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42–56 years, within 5–36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Results: Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = −0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Conclusions: Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. Classification of evidence: This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. PMID:27473135

  5. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-02-16

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system.

  6. Post mTBI fatigue is associated with abnormal brain functional connectivity

    PubMed Central

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants’ fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject’s fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  7. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  8. Whole Brain Expression of Bipolar Disorder Associated Genes: Structural and Genetic Analyses

    PubMed Central

    McCarthy, Michael J.; Liang, Sherri; Spadoni, Andrea D.; Kelsoe, John R.; Simmons, Alan N.

    2014-01-01

    Studies of bipolar disorder (BD) suggest a genetic basis of the illness that alters brain function and morphology. In recent years, a number of genetic variants associated with BD have been identified. However, little is known about the associated genes, or brain circuits that rely upon their function. Using an anatomically comprehensive survey of the human transcriptome (The Allen Brain Atlas), we mapped the expression of 58 genes with suspected involvement in BD based upon their relationship to SNPs identified in genome wide association studies (GWAS). We then conducted a meta-analysis of structural MRI studies to identify brain regions that are abnormal in BD. Of 58 BD associated genes, 22 had anatomically distinct expression patterns that could be categorized into one of three clusters (C1–C3). Brain regions with the highest and lowest expression of these genes did not overlap strongly with anatomical sites identified as abnormal by structural MRI except in the parahippocampal gyrus, the inferior/superior temporal gyrus and the cerebellar vermis, regions where overlap was significant. Using the 22 genes in C1–C3 as reference points, additional genes with correlated expression patterns were identified and organized into sets based on similarity. Further analysis revealed that five of these gene sets were significantly associated with BD, suggesting that anatomical expression profile is correlated with genetic susceptibility to BD, particularly for genes in C2. Our data suggest that expression profiles of BD-associated genes do not explain the majority of structural abnormalities observed in BD, but may be useful in identifying new candidate genes. Our results highlight the complex neuroanatomical basis of BD, and reinforce illness models that emphasize impaired brain connectivity. PMID:24941232

  9. Central motor conduction in multiple sclerosis: evaluation of abnormalities revealed by transcutaneous magnetic stimulation of the brain.

    PubMed Central

    Ingram, D A; Thompson, A J; Swash, M

    1988-01-01

    Magnetic stimulation of the brain and spinal column was used to assess conduction in the descending central motor pathways controlling arm and leg muscles of 20 patients with multiple sclerosis, and 10 normal subjects. The multiple sclerosis patients had relapsing and remitting disease but all were ambulant and in stable clinical remission. Increased central motor conduction times (CMCTs), up to three times normal, were frequently encountered in multiple sclerosis patients and in leg muscles these correlated closely with clinical signs of upper motor neuron disturbance; in the upper limb muscles a higher proportion of subclinical lesions was present. Weak muscles were almost invariably associated with abnormal central conduction but increased CMCTs were also found for 52 of the 104 muscles with normal strength. CMCTs for lower limb muscles were directly related (p less than 0.005) to functional motor disability (Kurtzke and Ambulatory Index Scales). No patient developed clinical evidence of relapse during follow-up of at least 8 months. Magnetic brain stimulation is easy to perform, painless, and safe, and provides clinically relevant information in the diagnosis and monitoring of multiple sclerosis patients. PMID:2837538

  10. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks.

  11. A small number of abnormal brain connections predicts adult autism spectrum disorder.

    PubMed

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez, José E; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  12. A small number of abnormal brain connections predicts adult autism spectrum disorder

    PubMed Central

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez Sr, José E.; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  13. Endocrine abnormalities in severe traumatic brain injury--a cue to prognosis in severe craniocerebral trauma?

    PubMed

    Hackl, J M; Gottardis, M; Wieser, C; Rumpl, E; Stadler, C; Schwarz, S; Monkayo, R

    1991-01-01

    Patients with severe craniocerebral trauma (sCCT) display metabolic and endocrine changes. The question is raised whether hormonal patterns give cues to the prognosis of outcome or not. In 21 patients the function of the adrenocortical, gonadal, thyroid and human growth hormone (hGH)-insulin system was assessed. LH, FSH, TSH, prolactin and hGH were stimulated. 3 groups of patients were formed. Group I: patients in acute phase with a Glasgow Coma Score (GCS) more than 6 (group Ia) and less than 6 (group Ib). Group II: patients in transition to traumatic apallic syndrome (TAS). Group III: patients with full-blown or resolving TAS. The values of group Ia comprised low T3, T4 and testosterone, elevated insulin, normal hGH. Group Ib had hypothyroid T3 and T4 and an attenuated response of LH, TSH, prolactin and hGH to stimulation. Group III: there was seen an endocrine normalisation with elevated T4 and TBG and an altered response of hGH and prolactin to stimulation. Endocrine abnormalities were not helpful in predicting which course, either to better or to worse, a given patient would follow.

  14. Abnormal interactions between context, memory structure, and mood in schizophrenia: an ERP investigation.

    PubMed

    Pinheiro, Ana P; Del Re, Elisabetta; Nestor, Paul G; Mezin, Jenna; Rezaii, Neguine; McCarley, Robert W; Gonçalves, Óscar F; Niznikiewicz, Margaret

    2015-01-01

    This study used event-related potentials to examine interactions between mood, sentence context, and semantic memory structure in schizophrenia. Seventeen male chronic schizophrenia and 15 healthy control subjects read sentence pairs after positive, negative, or neutral mood induction. Sentences ended with expected words (EW), within-category violations (WCV), or between-category violations (BCV). Across all moods, patients showed sensitivity to context indexed by reduced N400 to EW relative to both WCV and BCV. However, they did not show sensitivity to the semantic memory structure. N400 abnormalities were particularly enhanced under a negative mood in schizophrenia. These findings suggest abnormal interactions between mood, context processing, and connections within semantic memory in schizophrenia, and a specific role of negative mood in modulating semantic processes in this disease.

  15. Abnormal intrinsic brain activity patterns in leukoaraiosis with and without cognitive impairment.

    PubMed

    Li, Chuanming; Yang, Jun; Yin, Xuntao; Liu, Chen; Zhang, Lin; Zhang, Xiaochun; Gui, Li; Wang, Jian

    2015-10-01

    The amplitude of low frequency fluctuations (ALFF) from resting-state functional MRI (rs-fMRI) signals can be used to detect intrinsic spontaneous brain activity and provide valuable insights into the pathomechanism of neural disease. In this study, we recruited 56 patients who had been diagnosed as having mild to severe leukoaraiosis. According to the neuropsychological tests, they were subdivided into a leukoaraiosis with cognitive impairment group (n = 28) and a leukoaraiosis without cognitive impairment group (n = 28). 28 volunteers were included as normal controls. We found that the three groups showed significant differences in ALFF in the brain regions of the right inferior occipital gyrus (IOG_R), left middle temporal gyrus (MTG_L), left precuneus (Pcu_L), right superior frontal gyrus (SFG_R) and right superior occipital gyrus (SOG_R). Compared with normal controls, the leukoaraiosis without cognitive impairment group exhibited significantly increased ALFF in the IOG_R, Pcu_L, SFG_R and SOG_R. While compared with leukoaraiosis without cognitive impairment group, the leukoaraiosis with cognitive impairment group showed significantly decreased ALFF in IOG_R, MTG_L, Pcu_L and SOG_R. A close negative correlation was found between the ALFF values of the MTG_L and the Montreal Cognitive Assessment (MoCA) scores. Our data demonstrate that white matter integrity and cognitive impairment are associated with different amplitude fluctuations of rs-fMRI signals. Leukoaraiosis is related to ALFF increases in IOG_R, Pcu_L, SFG_Orb_R and SOG_R. Decreased ALFF in MTG_L is characteristic of cognitive impairment and may aid in its early detection.

  16. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones.

  17. Adolescent cocaine exposure causes enduring macroscale changes in mouse brain structure.

    PubMed

    Wheeler, Anne L; Lerch, Jason P; Chakravarty, M Mallar; Friedel, Miriam; Sled, John G; Fletcher, Paul J; Josselyn, Sheena A; Frankland, Paul W

    2013-01-30

    Cocaine dependence is associated with abnormalities in brain structure in humans. However, it is unclear whether these differences in brain structure predispose an individual to drug use or are a result of cocaine's action on the brain. This study investigates the impact of chronic cocaine exposure on brain structure and drug-related behavior in mice. Specifically, mice received daily cocaine or saline injections for 20 d during two developmental time periods: adolescence (27-46 d old) and young adulthood (60-79 d old). Following 30 d of abstinence, either fixed brain T2 weighted magnetic resonance images were acquired on a 7 T scanner at 32 μm isotropic voxel dimensions or mice were assessed for sensitization to the locomotor stimulant effects of cocaine. Three automated techniques (deformation-based morphometry, striatum shape analysis, and cortical thickness assessment) were used to identify population differences in brain structure in cocaine-exposed versus saline-exposed mice. We found that cocaine induced changes in brain structure, and these were most pronounced in mice exposed to cocaine during adolescence. Many of these changes occurred in brain regions previously implicated in addiction including the nucleus accumbens, striatum, insular cortex, orbitofrontal cortex, and medial forebrain bundle. Furthermore, exposure to the same cocaine regimen caused sensitization to the locomotor stimulant effects of cocaine, and these effects were again more pronounced in mice exposed to cocaine during adolescence. These results suggest that altered brain structure following 1 month of abstinence may contribute to these persistent drug-related behaviors, and identify cocaine exposure as the cause of these morphological changes. PMID:23365219

  18. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    PubMed Central

    Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing

    2016-01-01

    Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371

  19. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage.

  20. Dissociated Accumbens and Hippocampal Structural Abnormalities across Obesity and Alcohol Dependence

    PubMed Central

    Mak, Elijah; Chien, Yee; Voon, Valerie

    2016-01-01

    Background: Processing of food and drug rewards involves specific neurocircuitry, and emerging evidence implicates subcortical abnormalities, particularly the nucleus accumbens and hippocampus. We specifically hypothesized that these 2 established regions in addiction neurocircuitry are associated with distinctive in vivo structural abnormalities in obesity and alcohol dependence. Methods: To specifically investigate anatomically discrete volumetric changes associated with overconsumption of different rewards, we acquired T1 MRI data from 118 subjects in 3 groups comprising obesity (n=42), alcohol dependence (n=32), and healthy volunteer controls (n=44). To exploit novel methods of automated hippocampal subfield segmentation, we used Freesurfer software to generate volumetric data in subject groups for the hippocampal subiculum and its major striatal efferent target, the nucleus accumbens. Hypothesis-led, selective group difference comparisons were analyzed. Results: We found markedly greater accumbens volumes (P=.002) and relatively preserved hippocampal subfield volumes in obesity. Conversely, in alcohol dependence, we found preserved accumbens volumes but atrophy of specific ventral hippocampal subfields, the subiculum and presubiculum. Smaller global subcortical gray-matter volume was found in the alcohol dependence group only. Conclusions: Reward neurocircuitry including the accumbens and ventral hippocampus may show key structural abnormalities in disorders involving processing of both food and drug rewards, although the foci of disruption may vary as a function of reward modality. Structural differences may subserve altered reward and motivational processes in obesity and alcohol dependence and represent a potential biomarker for therapeutic targeting in key public health disorders. PMID:27207916

  1. Sex, ecology and the brain: evolutionary correlates of brain structure volumes in Tanganyikan cichlids.

    PubMed

    Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2010-12-17

    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes.

  2. Sex, Ecology and the Brain: Evolutionary Correlates of Brain Structure Volumes in Tanganyikan Cichlids

    PubMed Central

    Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2010-01-01

    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes. PMID:21179407

  3. Automated Detection of Brain Abnormalities in Neonatal Hypoxia Ischemic Injury from MR Images

    PubMed Central

    Ghosh, Nirmalya; Sun, Yu; Bhanu, Bir; Ashwal, Stephen; Obenaus, Andre

    2014-01-01

    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HII). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to check the temporal efficacy of our computational approaches. Sensitivity, specificity, similarity were used as performance metrics based on manual (‘gold standard’) injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while HRS for 33% data. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects. PMID:25000294

  4. Abnormal Vertical Structure of Water Vapor over Taklamakan Desert from COSMIC Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. K.; Liu, X. Y.; Yin, H. T.

    2012-04-01

    Water vapor is an important greenhouse gas. The vertical structure of the water vapor has a great impact on the weather and the climate. The Taklamakan desert is the largest desert in China, surrounded by a series of high mountains. The vertical structures of the water vapor over the Taklamakan desert have rarely been described by former research, due to the lack of conventional observations. This work is the first result of the water vapor vertical structure over the Taklamakan desert and its surroundings (35N-47N, 75E-94E) from the COSMIC occultation observations. Analysis found that a humid layer frequently occurs at the average height of 4800m. An "abnormal profile" was defined if a peak was observed in mid-troposphere in the humidity profile. This "abnormal profile" appeared in 24% of the total profile and appeared much more often inside the desert than outside during the year 2008 to 2010. Based on model analysis, two possible mechanisms were proposed to explain the reason of the formation of the abnormal profile. Through the statistics, 53% of total "abnormal profiles" were due to the transported water vapor topographic uplift effect, the topography of the desert forces the east-blowing wind to climb the surrounding mountains, bringing the low-altitude water vapor to mid-troposphere above the desert. The rest were due to the lack of water content in the air close to the ground. This new discovery and its possible explanations will help us to understand more about the climate of the Taklamakan desert and possibly also other similar regions.

  5. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3 Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…

  6. Brain structural changes in women and men during midlife.

    PubMed

    Guo, J Y; Isohanni, M; Miettunen, J; Jääskeläinen, E; Kiviniemi, V; Nikkinen, J; Remes, J; Huhtaniska, S; Veijola, J; Jones, P B; Murray, G K

    2016-02-26

    Brain development during childhood and adolescence differs between boys and girls. Structural changes continue during adulthood and old age, particularly in terms of brain volume reductions that accelerate beyond age 35 years. We investigated whether brain structural change in mid-life differs between men and women. 43 men and 28 women from the Northern Finland 1966 Birth Cohort underwent MRI brain scans at age 33-35 (SD=0.67) and then again at age 42-44 (SD=0.41). We examined sex differences in total percentage brain volume change (PBVC) and regional brain change with FSL SIENA software. Women showed significant PBVC reduction compared with men between the ages of 33-35 and 42-44 years (Mean=-3.21% in men, Mean=-4.03% in women, F (1, 68)=6.37, p<0.05). In regional analyses, women exhibited greater brain reduction than men in widespread areas. After controlling for total percent brain volume change, men show greater relative regional brain reduction than women in bilateral precentral gyri, bilateral paracingulate gyri, and bilateral supplementary motor cortices. The results indicate sex differences in brain changes in mid-life. Women have more total brain reduction, and more reduction on the outer brain surface than men, whereas men exhibit more brain reduction on the mid-line surface than women after co-varying for total brain volume loss. These changes could contribute to sex differences in midlife behaviour and health.

  7. Demonstration of Normal and Abnormal Fetal Brains Using 3D Printing from In Utero MR Imaging Data.

    PubMed

    Jarvis, D; Griffiths, P D; Majewski, C

    2016-09-01

    3D printing is a new manufacturing technology that produces high-fidelity models of complex structures from 3D computer-aided design data. Radiology has been particularly quick to embrace the new technology because of the wide access to 3D datasets. Models have been used extensively to assist orthopedic, neurosurgical, and maxillofacial surgical planning. In this report, we describe methods used for 3D printing of the fetal brain by using data from in utero MR imaging.

  8. Demonstration of Normal and Abnormal Fetal Brains Using 3D Printing from In Utero MR Imaging Data.

    PubMed

    Jarvis, D; Griffiths, P D; Majewski, C

    2016-09-01

    3D printing is a new manufacturing technology that produces high-fidelity models of complex structures from 3D computer-aided design data. Radiology has been particularly quick to embrace the new technology because of the wide access to 3D datasets. Models have been used extensively to assist orthopedic, neurosurgical, and maxillofacial surgical planning. In this report, we describe methods used for 3D printing of the fetal brain by using data from in utero MR imaging. PMID:27079366

  9. The neonate brain detects speech structure.

    PubMed

    Gervain, Judit; Macagno, Francesco; Cogoi, Silvia; Peña, Marcela; Mehler, Jacques

    2008-09-16

    What are the origins of the efficient language learning abilities that allow humans to acquire their mother tongue in just a few years very early in life? Although previous studies have identified different mechanisms underlying the acquisition of auditory and speech patterns in older infants and adults, the earliest sensitivities remain unexplored. To address this issue, we investigated the ability of newborns to learn simple repetition-based structures in two optical brain-imaging experiments. In the first experiment, 22 neonates listened to syllable sequences containing immediate repetitions (ABB; e.g., "mubaba," "penana"), intermixed with random control sequences (ABC; e.g., "mubage," "penaku"). We found increased responses to the repetition sequences in the temporal and left frontal areas, indicating that the newborn brain differentiated the two patterns. The repetition sequences evoked greater activation than the random sequences during the first few trials, suggesting the presence of an automatic perceptual mechanism to detect repetitions. In addition, over the subsequent trials, activation increased further in response to the repetition sequences but not in response to the random sequences, indicating that recognition of the ABB pattern was enhanced by repeated exposure. In the second experiment, in which nonadjacent repetitions (ABA; e.g., "bamuba," "napena") were contrasted with the same random controls, no discrimination was observed. These findings suggest that newborns are sensitive to certain input configurations in the auditory domain, a perceptual ability that might facilitate later language development. PMID:18768785

  10. Structural brain differences in alcohol-dependent individuals with and without comorbid substance dependence

    PubMed Central

    Mon, Anderson; Durazzo, Timothy C.; Abe, Christoph; Gazdzinski, Stefan; Pennington, David; Schmidt, Thomas; Meyerhoff, Dieter J.

    2014-01-01

    Background Over 50% of individuals with alcohol use disorders (AUD) also use other substances. Therefore, brain structural abnormalities observed in alcohol dependent individuals may not be entirely related to alcohol consumption. This MRI study assessed differences in brain regional tissue volumes between short-term abstinent alcohol dependent individuals without (ALC) and with current substance use dependence (polysubstance users, PSU). Methods Nineteen, one-month-abstinent PSU and 40 ALC as well as 27 light-drinkers (LD) were studied on a 1.5 Tesla MR system. Whole brain T1-weighted images were segmented automatically into regional gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) volumes. MANOVA assessed group differences of intracranial volume-normalized tissue volumes of the frontal, parietal, occipital, and temporal lobes as well as regional subcortical GM volumes. The volumetric measures were correlated with neurocognitive measures to assess their functional relevance. Results Despite similar lifetime drinking and smoking histories, PSU had significantly larger normalized WM volumes than ALC in all lobes. PSU also had larger frontal and parietal WM volumes than LD, but smaller temporal GM volumes as well as smaller lenticular and thalamic nuclei than LD. By contrast, ALC had smaller frontal, parietal, and temporal GM, thalamic GM and cerebellar volumes than LD. ALC also had more sulcal CSF volumes than both PSU and LD. Conclusion One-month-abstinent ALC and PSU exhibited different patterns of gross brain structural abnormalities. The larger lobar WM volumes in PSU in the absence of widespread GM volume loss contrast with widespread GM atrophy in ALC. These structural differences between ALC and PSU may demand different treatment approaches to mitigate specific functionally relevant brain abnormalities. PMID:25263262

  11. Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype

    PubMed Central

    Teng, Yong; Xie, Xiayang; Walker, Steven; Rempala, Grzegorz; Kozlowski, David J.; Mumm, Jeff S.; Cowell, John K.

    2010-01-01

    Epilepsy is a common disorder, typified by recurrent seizures with underlying neurological disorders or disease. Approximately one-third of patients are unresponsive to currently available therapies. Thus, a deeper understanding of the genetics and etiology of epilepsy is needed to advance the development of new therapies. Previously, treatment of zebrafish with epilepsy-inducing pharmacological agents was shown to result in a seizure-like phenotype, suggesting that fish provide a tractable model to understand the function of epilepsy-predisposing genes. Here, we report the first model of genetically linked epilepsy in zebrafish and provide an initial characterization of the behavioral and neurological phenotypes associated with morpholino (MO) knockdown of leucine-rich, glioma-inactivated 1a (lgi1a) expression. Mutations in the LGI1 gene in humans have been shown to predispose to a subtype of autosomal dominant epilepsy. Low-dose Lgi1a MO knockdown fish (morphants) appear morphologically normal but are sensitized to epilepsy-inducing drugs. High-dose Lgi1a morphants have morphological defects which persist into adult stages that are typified by smaller brains and eyes and abnormalities in tail shape, and display hyperactive swimming behaviors. Increased apoptosis was observed throughout the central nervous system of high-dose morphant fish, accounting for the size reduction of neural tissues. These observations demonstrate that zebrafish can be exploited to dissect the embryonic function(s) of genes known to predispose to seizure-like behavior in humans, and offer potential insight into the relationship between developmental neurobiological abnormalities and seizure. PMID:20819949

  12. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective.

    PubMed

    Brumback, T; Castro, N; Jacobus, J; Tapert, S

    2016-01-01

    Marijuana, behind only tobacco and alcohol, is the most popular recreational drug in America with prevalence rates of use rising over the past decade. A wide range of research has highlighted neurocognitive deficits associated with marijuana use, particularly when initiated during childhood or adolescence. Neuroimaging, describing alterations to brain structure and function, has begun to provide a picture of possible mechanisms associated with the deleterious effects of marijuana use. This chapter provides a neurodevelopmental framework from which recent data on brain structural and functional abnormalities associated with marijuana use is reviewed. Based on the current data, we provide aims for future studies to more clearly delineate the effects of marijuana on the developing brain and to define underlying mechanisms of the potential long-term negative consequences of marijuana use. PMID:27503447

  13. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity

    PubMed Central

    Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Background Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Methods Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Results Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. Conclusions These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity. PMID:27575491

  14. Molecular information structures in the brain.

    PubMed

    Conrad, M

    1976-01-01

    This paper presents a theory of memory and memory mediated learning based on the manipulation of macromolecular conformations. The main features of the theory are: 1) the brain contains primary and reference neurons; 2) inputs from the external environment produce particular patterns of primary firing; 3) the firing of a primary neuron sensitizes certain of its dendrites; 4) the sensitized primaries are loaded by the reference neuron active at the time and in such a way that they fire when called by this reference neuron, thus reconstructing the original pattern of primary activity. The reference neurons may also be loaded by primaries, thus making it possible for the reconstruction process to be initiated by some feature of the initial input. Each reference neuron loads and calls at most one primary pattern of activity, thereby preventing superposition of memories. If the primaries are loadable by sequences of impulses, this makes it possible to increase the connectivity among the various types of neurons by using party-line organization. The loading and calling processes themselves are mediated by call molecules. These are allosteric enzymes, located in the dendrites of primary and reference neurons, whose states are set either by an impulse or sequence of impulses and which catalyze events leading to impulse formation whenever this input recurs. The call molecules are capable of duplicating their setting (or conformation) using either intra- or interneuronal potentials, thereby ensuring stability of the memory trace. The theory allows for general powers of memory manipulation (by rememorization), for the construction of time ordered, content ordered, and associative data structures, and for computation with global representations of the environment. It makes a large number of testable predictions, provides a natural interpretation for the structure of the cerebral cortex, and accounts for: resistance to cooling, differential effects of chemical agents on short

  15. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy

    PubMed Central

    Weninger, Wolfgang J.; Geyer, Stefan H.; Martineau, Alexandrine; Galli, Antonella; Adams, David J.; Wilson, Robert; Mohun, Timothy J.

    2014-01-01

    The arrival of simple and reliable methods for 3D imaging of mouse embryos has opened the possibility of analysing normal and abnormal development in a far more systematic and comprehensive manner than has hitherto been possible. This will not only help to extend our understanding of normal tissue and organ development but, by applying the same approach to embryos from genetically modified mouse lines, such imaging studies could also transform our knowledge of gene function in embryogenesis and the aetiology of developmental disorders. The International Mouse Phenotyping Consortium is coordinating efforts to phenotype single gene knockouts covering the entire mouse genome, including characterising developmental defects for those knockout lines that prove to be embryonic lethal. Here, we present a pilot study of 34 such lines, utilising high-resolution episcopic microscopy (HREM) for comprehensive 2D and 3D imaging of homozygous null embryos and their wild-type littermates. We present a simple phenotyping protocol that has been developed to take advantage of the high-resolution images obtained by HREM and that can be used to score tissue and organ abnormalities in a reliable manner. Using this approach with embryos at embryonic day 14.5, we show the wide range of structural abnormalities that are likely to be detected in such studies and the variability in phenotypes between sibling homozygous null embryos. PMID:25256713

  16. Multimodal Highlighting of Structural Abnormalities in Diabetic Rat and Human Corneas

    PubMed Central

    Kowalczuk, Laura; Latour, Gaël; Bourges, Jean-Louis; Savoldelli, Michèle; Jeanny, Jean-Claude; Plamann, Karsten; Schanne-Klein, Marie-Claire; Behar-Cohen, Francine

    2013-01-01

    Purpose This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. Methods Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. Results In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. Conclusion Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. Translational Relevance This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes. PMID:24049714

  17. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  18. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen.

  19. Alzheimer Disease in a Mouse Model: MR Imaging–guided Focused Ultrasound Targeted to the Hippocampus Opens the Blood-Brain Barrier and Improves Pathologic Abnormalities and Behavior

    PubMed Central

    Dubey, Sonam; Yeung, Sharon; Hough, Olivia; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2014-01-01

    Purpose To validate whether repeated magnetic resonance (MR) imaging–guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease (ADAlzheimer disease), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. Materials and Methods All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging–guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. Results Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging–guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging–guided focused ultrasound–treated animals (P < .01). Further, after MR imaging–guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging–guided focused ultrasound, as well (P < .01). Conclusion Repeated MR imaging–guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of ADAlzheimer disease. The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal

  20. Physiological abnormalities in experimental allergic encephalomyelitis (EAE): II. Correlation between clinical signs and vestibular hyperreactivity and other signs of brain-stem dysfunction in rats with EAE.

    PubMed

    Brinkman, C J; Huygen, P L

    1984-09-01

    12 Lewis rats were inoculated with a guinea pig spinal cord tissue preparation. They developed experimental allergic encephalomyelitis (EAE) after 12-14 days manifested by weight loss, tail flaccidity, ataxia, hind limb paresis or paralysis and urinary incontinence. Concomitantly with EAE, all animals developed vestibular hyperreactivity (VH) of canal and otolith reflexes. Other signs of brain-stem dysfunction were also observed: abducens paralysis, facial weakness, tachypnoe and mydriasis with defective pupillary light reflex. The vestibular and other abnormalities subsided with some delay after recovery from clinical EAE, whilst histological abnormalities were still present in the CNS.

  1. Spectrum of brain abnormalities detected on whole body F-18 FDG PET/CT in patients undergoing evaluation for non-CNS malignancies

    PubMed Central

    Tripathi, Madhavi; Jaimini, Abhinav; D’Souza, Maria M; Sharma, Rajnish; Jain, Jyotika; Garg, Gunjan; Singh, Dinesh; Kumar, Nitin; Mishra, Anil K; Grover, Rajesh K; Mondal, Anupam

    2011-01-01

    We present the pattern of metabolic brain abnormalities detected in patients undergoing whole body (WB) F-18 flurodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examination for non-central nervous system (CNS) malignancies. Knowledge of the PET/CT appearance of various intracranial metabolic abnormalities enables correct interpretation of PET scans in oncological patients where differentiation of metastasis from benign intracranial pathologies is important and improves specificity of the PET study. A complete clinical history and correlation with CT and MRI greatly helps in arriving at a correct imaging diagnosis. PMID:22174526

  2. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  3. Brain Structure Correlates of Urban Upbringing, an Environmental Risk Factor for Schizophrenia

    PubMed Central

    Haddad, Leila; Schäfer, Axel; Streit, Fabian; Lederbogen, Florian; Grimm, Oliver; Wüst, Stefan; Deuschle, Michael; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas

    2015-01-01

    Urban upbringing has consistently been associated with schizophrenia, but which specific environmental exposures are reflected by this epidemiological observation and how they impact the developing brain to increase risk is largely unknown. On the basis of prior observations of abnormal functional brain processing of social stress in urban-born humans and preclinical evidence for enduring structural brain effects of early social stress, we investigated a possible morphological correlate of urban upbringing in human brain. In a sample of 110 healthy subjects studied with voxel-based morphometry, we detected a strong inverse correlation between early-life urbanicity and gray matter (GM) volume in the right dorsolateral prefrontal cortex (DLPFC, Brodmann area 9). Furthermore, we detected a negative correlation of early-life urbanicity and GM volumes in the perigenual anterior cingulate cortex (pACC) in men only. Previous work has linked volume reductions in the DLPFC to the exposure to psychosocial stress, including stressful experiences in early life. Besides, anatomical and functional alterations of this region have been identified in schizophrenic patients and high-risk populations. Previous data linking functional hyperactivation of pACC during social stress to urban upbringing suggest that the present interaction effect in brain structure might contribute to an increased risk for schizophrenia in males brought up in cities. Taken together, our results suggest a neural mechanism by which early-life urbanicity could impact brain architecture to increase the risk for schizophrenia. PMID:24894884

  4. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-01

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions. PMID:20080800

  5. Brain structure and executive functions in children with cerebral palsy: a systematic review.

    PubMed

    Weierink, Lonneke; Vermeulen, R Jeroen; Boyd, Roslyn N

    2013-05-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using the STROBE checklist. All articles scored between 58.7% and 70.5% for quality (100% is the maximum score). The included studies all reported poorer performance on EF tasks for children with CP compared to children without CP. For the selected EF measures non-significant effect sizes were found for the CP group compared to a semi-control group (children without cognitive deficits but not included in a control group). This could be due to the small sample sizes, group heterogeneity and lack of comparison of the CP group to typically developing children. The included studies did not consider specific brain areas associated with EF performance. To conclude, there is a paucity of brain imaging studies focused on EF in children with CP, especially of studies that include functional brain imaging. Outcomes of the present studies are difficult to compare as each study included different EF measures and cortical abnormality measures.

  6. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-01

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions.

  7. A Prospective Study of Overuse Knee Injuries Among Female Athletes With Muscle Imbalances and Structural Abnormalities

    PubMed Central

    Pescatello, Linda S.; Faghri, Pouran; Anderson, Jeffrey

    2004-01-01

    Objective: To prospectively examine the influence of hamstring-to-quadriceps (H:Q) ratio and structural abnormalities on the prevalence of overuse knee injuries among female collegiate athletes. Design and Setting: We used chi-square 2 × 2 contingency tables and the Fischer exact test to examine associations among H:Q ratios, structural abnormalities, and overuse knee injuries. Subjects: Fifty-three apparently healthy women (age = 19.4 ± 1.3 years, height = 167.6 ± 10.1 cm, mass = 65.0 ± 10.0 kg) from National Collegiate Athletic Association Division I women's field hockey (n = 23), soccer (n = 20), and basketball teams (n = 10) volunteered. Measurements: The H:Q ratio was determined from a preseason isokinetic test on a Biodex system at 60°/s and 300°/s. We measured athletes for genu recurvatum and Q-angles with a 14-in (35.56-cm) goniometer. Iliotibial band flexibility was assessed via the Ober test. Results: Ten overuse knee injuries (iliotibial band friction syndromes = 5, patellar tendinitis = 3, patellofemoral syndrome = 1, pes anserine tendinitis = 1) occurred in 9 athletes. The H:Q ratio below the normal range at 300°/s (P = 0.047) was associated with overuse knee injuries, as was the presence of genu recurvatum (P = 0.004). In addition, athletes possessing lower H:Q ratios at 300°/s and genu recurvatum incurred more overuse knee injuries than athletes without these abnormalities (P = 0.001). Conclusions: The presence of genu recurvatum and an H: Q ratio below normal range was associated with an increased prevalence of overuse knee injuries among female collegiate athletes. Further investigation is needed to clarify which preseason screening procedures may identify collegiate athletes who are susceptible to overuse knee injuries. PMID:15496997

  8. A Prospective Study of Overuse Knee Injuries Among Female Athletes With Muscle Imbalances and Structural Abnormalities.

    PubMed

    Devan, Michelle R; Pescatello, Linda S; Faghri, Pouran; Anderson, Jeffrey

    2004-09-01

    OBJECTIVE: To prospectively examine the influence of hamstring-to-quadriceps (H:Q) ratio and structural abnormalities on the prevalence of overuse knee injuries among female collegiate athletes. DESIGN AND SETTING: We used chi-square 2 x 2 contingency tables and the Fischer exact test to examine associations among H:Q ratios, structural abnormalities, and overuse knee injuries. SUBJECTS: Fifty-three apparently healthy women (age = 19.4 +/- 1.3 years, height = 167.6 +/- 10.1 cm, mass = 65.0 +/- 10.0 kg) from National Collegiate Athletic Association Division I women's field hockey (n = 23), soccer (n = 20), and basketball teams (n = 10) volunteered. MEASUREMENTS: The H:Q ratio was determined from a preseason isokinetic test on a Biodex system at 60 degrees /s and 300 degrees /s. We measured athletes for genu recurvatum and Q-angles with a 14-in (35.56-cm) goniometer. Iliotibial band flexibility was assessed via the Ober test. RESULTS: Ten overuse knee injuries (iliotibial band friction syndromes = 5, patellar tendinitis = 3, patellofemoral syndrome = 1, pes anserine tendinitis = 1) occurred in 9 athletes. The H:Q ratio below the normal range at 300 degrees /s (P = 0.047) was associated with overuse knee injuries, as was the presence of genu recurvatum (P = 0.004). In addition, athletes possessing lower H:Q ratios at 300 degrees /s and genu recurvatum incurred more overuse knee injuries than athletes without these abnormalities (P = 0.001). CONCLUSIONS: The presence of genu recurvatum and an H: Q ratio below normal range was associated with an increased prevalence of overuse knee injuries among female collegiate athletes. Further investigation is needed to clarify which preseason screening procedures may identify collegiate athletes who are susceptible to overuse knee injuries. PMID:15496997

  9. Functional changes are associated with tracheal structural abnormalities in patients with acromegaly

    PubMed Central

    Camilo, Gustavo Bittencourt; Guimarães, Fernando Silva; Mogami, Roberto; Faria, Alvaro Camilo Dias; Melo, Pedro Lopes

    2016-01-01

    Introduction Although impaired pulmonary function and respiratory sleep disorders are described as responsible for increased mortality in acromegalic patients, little is known about the tracheal abnormalities in this group of patients. Thus, the objectives of this study were to describe the tracheal structural abnormalities and correlate these changes with the respiratory function and clinical data of acromegalic patients. Material and methods This is a cross-sectional study that was carried out at two university hospitals. Twenty acromegalic patients underwent spirometry, forced oscillation technique, and computed tomography (CT) assessments. Dyspnea and daytime sleepiness were assessed using the Modified Medical Research Council (MMRC) scale and the Epworth Sleepiness Scale (ESS), respectively. Forty matched subjects served as controls. Results The acromegalic patients exhibited larger median ratios between forced expiratory flow and forced inspiratory flow at 50% of the forced vital capacity (FEF50%/FIF50%) (2.05 vs. 1.06, p = 0.0001) compared with healthy volunteers. In the CT analysis, acromegalic patients exhibited larger median differences between their cervical and thoracic tracheal diameters (Δ tracheal diameters) (3 vs. 1 mm; p = 0.003). An association was found between FEF50%/FIF50% and the following variables: mean resistance (Rm), cervical tracheal diameter, and Δ tracheal diameters. Rm also exhibited a negative correlation with cervical tracheal diameter. Neither the MMRC scale nor the ESS exhibited any significant correlation with large airway obstruction (LAO) indices or with the measured tracheal diameters. Conclusions Acromegalic patients have tracheal structural abnormalities which are associated with functional indicators of LAO but not with clinical data. PMID:26925121

  10. A Prospective Study of Overuse Knee Injuries Among Female Athletes With Muscle Imbalances and Structural Abnormalities.

    PubMed

    Devan, Michelle R; Pescatello, Linda S; Faghri, Pouran; Anderson, Jeffrey

    2004-09-01

    OBJECTIVE: To prospectively examine the influence of hamstring-to-quadriceps (H:Q) ratio and structural abnormalities on the prevalence of overuse knee injuries among female collegiate athletes. DESIGN AND SETTING: We used chi-square 2 x 2 contingency tables and the Fischer exact test to examine associations among H:Q ratios, structural abnormalities, and overuse knee injuries. SUBJECTS: Fifty-three apparently healthy women (age = 19.4 +/- 1.3 years, height = 167.6 +/- 10.1 cm, mass = 65.0 +/- 10.0 kg) from National Collegiate Athletic Association Division I women's field hockey (n = 23), soccer (n = 20), and basketball teams (n = 10) volunteered. MEASUREMENTS: The H:Q ratio was determined from a preseason isokinetic test on a Biodex system at 60 degrees /s and 300 degrees /s. We measured athletes for genu recurvatum and Q-angles with a 14-in (35.56-cm) goniometer. Iliotibial band flexibility was assessed via the Ober test. RESULTS: Ten overuse knee injuries (iliotibial band friction syndromes = 5, patellar tendinitis = 3, patellofemoral syndrome = 1, pes anserine tendinitis = 1) occurred in 9 athletes. The H:Q ratio below the normal range at 300 degrees /s (P = 0.047) was associated with overuse knee injuries, as was the presence of genu recurvatum (P = 0.004). In addition, athletes possessing lower H:Q ratios at 300 degrees /s and genu recurvatum incurred more overuse knee injuries than athletes without these abnormalities (P = 0.001). CONCLUSIONS: The presence of genu recurvatum and an H: Q ratio below normal range was associated with an increased prevalence of overuse knee injuries among female collegiate athletes. Further investigation is needed to clarify which preseason screening procedures may identify collegiate athletes who are susceptible to overuse knee injuries.

  11. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy.

    PubMed

    Zhang, Zhiqiang; Liao, Wei; Chen, Huafu; Mantini, Dante; Ding, Ju-Rong; Xu, Qiang; Wang, Zhengge; Yuan, Cuiping; Chen, Guanghui; Jiao, Qing; Lu, Guangming

    2011-10-01

    The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings

  12. Phospholipase A2 activity is associated with structural brain changes in schizophrenia.

    PubMed

    Smesny, Stefan; Milleit, Berko; Nenadic, Igor; Preul, Christoph; Kinder, Daniel; Lasch, Jürgen; Willhardt, Ingo; Sauer, Heinrich; Gaser, Christian

    2010-10-01

    Regional structural brain changes are among the most robust biological findings in schizophrenia, yet the underlying pathophysiological changes remain poorly understood. Recent evidence suggests that abnormal neuronal/dendritic plasticity is related to alterations in membrane lipids. We examined whether serum activity of membrane lipid remodelling/repairing cytosolic phospholipase A(2) (PLA(2)) were related to regional brain structure in magnetic resonance images (MRI). The study involved 24 schizophrenia patients, who were either drug-naïve or off antipsychotic medication, and 25 healthy controls. Using voxel-based morphometry (VBM) analysis of T1-high-resolution MRI-images, we correlated both gray matter and white matter changes with serum PLA(2)-activity. PLA(2) activity was increased in patients, consistent with previous findings. VBM group comparison of patients vs. controls showed abnormalities of frontal and medial temporal cortices/hippocampus, and left middle/superior temporal gyrus in first-episode patients. Group comparison of VBM/PLA(2)-correlations revealed a distinct pattern of disease-related interactions between gray/white matter changes in patients and PLA(2)-activity: in first-episode patients (n=13), PLA(2)-activity was associated with structural alterations in the left prefrontal cortex and the bilateral thalamus. Recurrent-episode patients (n=11) showed a wide-spread pattern of associations between PLA(2)-activity and structural changes in the left (less right) prefrontal and inferior parietal cortex, the left (less right) thalamus and caudate nucleus, the left medial temporal and orbitofrontal cortex and anterior cingulum, and the cerebellum. Our findings demonstrate a potential association between membrane lipid biochemistry and focal brain structural abnormalities in schizophrenia. Differential patterns in first-episode vs. chronic patients might be related to PLA(2)-increase at disease-onset reflecting localized regenerative activity

  13. Abnormal causal connectivity by structural deficits in first-episode, drug-naive schizophrenia at rest.

    PubMed

    Guo, Wenbin; Liu, Feng; Liu, Jianrong; Yu, Liuyu; Zhang, Jian; Zhang, Zhikun; Xiao, Changqing; Zhai, Jinguo; Zhao, Jingping

    2015-01-01

    Anatomical deficits and resting-state functional connectivity (FC) alterations in prefrontal-thalamic-cerebellar circuit have been implicated in the neurobiology of schizophrenia. However, the effect of structural deficits in schizophrenia on causal connectivity of this circuit remains unclear. This study was conducted to examine the causal connectivity biased by structural deficits in first-episode, drug-naive schizophrenia patients. Structural and resting-state functional magnetic resonance imaging (fMRI) data were obtained from 49 first-episode, drug-naive schizophrenia patients and 50 healthy controls. Data were analyzed by voxel-based morphometry and Granger causality analysis. The causal connectivity of the integrated prefrontal-thalamic (limbic)-cerebellar (sensorimotor) circuit was partly affected by structural deficits in first-episode, drug-naive schizophrenia as follows: (1) unilateral prefrontal-sensorimotor connectivity abnormalities (increased driving effect from the left medial prefrontal cortex [MPFC] to the sensorimotor regions); (2) bilateral limbic-sensorimotor connectivity abnormalities (increased driving effect from the right anterior cingulate cortex [ACC] to the sensorimotor regions and decreased feedback from the sensorimotor regions to the right ACC); and (3) bilateral increased and decreased causal connectivities among the sensorimotor regions. Some correlations between the gray matter volume of the seeds, along with their causal effects and clinical variables (duration of untreated psychosis and symptom severity), were also observed in the patients. The findings indicated the partial effects of structural deficits in first-episode, drug-naive schizophrenia on the prefrontal-thalamic (limbic)-cerebellar (sensorimotor) circuit. Schizophrenia may reinforce the driving connectivities from the left MPFC or right ACC to the sensorimotor regions and may disrupt bilateral causal connectivities among the sensorimotor regions.

  14. Brain structure links loneliness to social perception.

    PubMed

    Kanai, Ryota; Bahrami, Bahador; Duchaine, Brad; Janik, Agnieszka; Banissy, Michael J; Rees, Geraint

    2012-10-23

    Loneliness is the distressing feeling associated with the perceived absence of satisfying social relationships. Loneliness is increasingly prevalent in modern societies and has detrimental effects on health and happiness. Although situational threats to social relationships can transiently induce the emotion of loneliness, susceptibility to loneliness is a stable trait that varies across individuals [6-8] and is to some extent heritable. However, little is known about the neural processes associated with loneliness (but see [12-14]). Here, we hypothesized that individual differences in loneliness might be reflected in the structure of the brain regions associated with social processes. To test this hypothesis, we used voxel-based morphometry and showed that lonely individuals have less gray matter in the left posterior superior temporal sulcus (pSTS)--an area implicated in basic social perception. As this finding predicted, we further confirmed that loneliness was associated with difficulty in processing social cues. Although other sociopsychological factors such as social network size, anxiety, and empathy independently contributed to loneliness, only basic social perception skills mediated the association between the pSTS volume and loneliness. Taken together, our results suggest that basic social perceptual abilities play an important role in shaping an individual's loneliness. PMID:23041193

  15. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Illa, Miriam; Figueras, Francesc; Eixarch, Elisenda; Gratacos, Eduard

    2014-10-15

    Characterization of brain changes produced by intrauterine growth restriction (IUGR) is among the main challenges of modern fetal medicine and pediatrics. This condition affects 5-10% of all pregnancies and is associated with a wide range of neurodevelopmental disorders. Better understanding of the brain reorganization produced by IUGR opens a window of opportunity to find potential imaging biomarkers in order to identify the infants with a high risk of having neurodevelopmental problems and apply therapies to improve their outcomes. Structural brain networks obtained from diffusion magnetic resonance imaging (MRI) is a promising tool to study brain reorganization and to be used as a biomarker of neurodevelopmental alterations. In the present study this technique is applied to a rabbit animal model of IUGR, which presents some advantages including a controlled environment and the possibility to obtain high quality MRI with long acquisition times. Using a Q-Ball diffusion model, and a previously published rabbit brain MRI atlas, structural brain networks of 15 IUGR and 14 control rabbits at 70 days of age (equivalent to pre-adolescence human age) were obtained. The analysis of graph theory features showed a decreased network infrastructure (degree and binary global efficiency) associated with IUGR condition and a set of generalized fractional anisotropy (GFA) weighted measures associated with abnormal neurobehavior. Interestingly, when assessing the brain network organization independently of network infrastructure by means of normalized networks, IUGR showed increased global and local efficiencies. We hypothesize that this effect could reflect a compensatory response to reduced infrastructure in IUGR. These results present new evidence on the long-term persistence of the brain reorganization produced by IUGR that could underlie behavioral and developmental alterations previously described. The described changes in network organization have the potential to be used

  16. Abnormal N-glycosylation pattern for brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome.

    PubMed

    Cortelazzo, Alessio; De Felice, Claudio; Guerranti, Roberto; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Scalabrì, Francesco; Madonna, Michele; Filosa, Stefania; Della Giovampaola, Cinzia; Capone, Antonietta; Durand, Thierry; Mirasole, Cristiana; Zolla, Lello; Valacchi, Giuseppe; Ciccoli, Lucia; Guy, Jacky; D'Esposito, Maurizio; Hayek, Joussef

    2016-04-01

    Neurological disorders can be associated with protein glycosylation abnormalities. Rett syndrome is a devastating genetic brain disorder, mainly caused by de novo loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although its pathogenesis appears to be closely associated with a redox imbalance, no information on glycosylation is available. Glycoprotein detection strategies (i.e., lectin-blotting) were applied to identify target glycosylation changes in the whole brain of Mecp2 mutant murine models of the disease. Remarkable glycosylation pattern changes for a peculiar 50kDa protein, i.e., the N-linked brain nucleotide pyrophosphatase-5 were evidenced, with decreased N-glycosylation in the presymptomatic and symptomatic mutant mice. Glycosylation changes were rescued by selected brain Mecp2 reactivation. Our findings indicate that there is a causal link between the amount of Mecp2 and the N-glycosylation of NPP-5.

  17. Deep Independence Network Analysis of Structural Brain Imaging: Application to Schizophrenia.

    PubMed

    Castro, Eduardo; Hjelm, R Devon; Plis, Sergey M; Dinh, Laurent; Turner, Jessica A; Calhoun, Vince D

    2016-07-01

    Linear independent component analysis (ICA) is a standard signal processing technique that has been extensively used on neuroimaging data to detect brain networks with coherent brain activity (functional MRI) or covarying structural patterns (structural MRI). However, its formulation assumes that the measured brain signals are generated by a linear mixture of the underlying brain networks and this assumption limits its ability to detect the inherent nonlinear nature of brain interactions. In this paper, we introduce nonlinear independent component estimation (NICE) to structural MRI data to detect abnormal patterns of gray matter concentration in schizophrenia patients. For this biomedical application, we further addressed the issue of model regularization of nonlinear ICA by performing dimensionality reduction prior to NICE, together with an appropriate control of the complexity of the model and the usage of a proper approximation of the probability distribution functions of the estimated components. We show that our results are consistent with previous findings in the literature, but we also demonstrate that the incorporation of nonlinear associations in the data enables the detection of spatial patterns that are not identified by linear ICA. Specifically, we show networks including basal ganglia, cerebellum and thalamus that show significant differences in patients versus controls, some of which show distinct nonlinear patterns. PMID:26891483

  18. The Neurobiology of Childhood Structural Brain Development: Conception Through Adulthood

    PubMed Central

    Houston, Suzanne M.; Herting, Megan M.

    2014-01-01

    The study of the function and structure of the human brain dates back centuries, when philosophers and physicians theorized about the localization of specific cognitive functions and the structure and organization of underlying brain tissue. In more recent years, the advent of non-invasive techniques such as Magnetic Resonance Imaging (MRI) has allowed scientists unprecedented opportunities to further our understanding not only of structure and function, but of trajectories of brain development in typical and a-typical child and adult populations. In this chapter, we hope to provide a system-level approach to introduce what we have learned about structural brain development from conception through adulthood. We discuss important findings from MRI studies, and the directions that future imaging studies can take in the concerted effort to enhance our understanding of brain development, and thus to enhance our ability to develop interventions for various neuro developmental disorders. PMID:24357437

  19. Integrating normal and abnormal personality structure: a proposal for DSM-V.

    PubMed

    Widiger, Thomas A

    2011-06-01

    The personality disorders section of the American Psychiatric Association's fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is currently being developed. The purpose of the current paper is to encourage the authors of DSM-V to integrate normal and abnormal personality structure within a common, integrative model, and to suggest that the optimal choice for such an integration would be the five-factor model (FFM) of general personality structure. A proposal for the classification of personality disorder from the perspective of the FFM is provided. Discussed as well are implications and issues associated with an FFM of personality disorder, including validity, coverage, feasibility, clinical utility, and treatment implications.

  20. Structural Similarities between Brain and Linguistic Data Provide Evidence of Semantic Relations in the Brain

    PubMed Central

    Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick

    2013-01-01

    This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009

  1. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  2. Early Social Enrichment Rescues Adult Behavioral and Brain Abnormalities in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-01-01

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases. PMID:25348604

  3. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.

    PubMed

    Griffanti, Ludovica; Zamboni, Giovanna; Khan, Aamira; Li, Linxin; Bonifacio, Guendalina; Sundaresan, Vaanathi; Schulz, Ursula G; Kuker, Wilhelm; Battaglini, Marco; Rothwell, Peter M; Jenkinson, Mark

    2016-11-01

    Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects. We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs. We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a "predominantly neurodegenerative" and a "predominantly vascular" cohort). BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods. Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies. PMID:27402600

  4. High Prevalence of Chronic Pituitary and Target-Organ Hormone Abnormalities after Blast-Related Mild Traumatic Brain Injury

    PubMed Central

    Wilkinson, Charles W.; Pagulayan, Kathleen F.; Petrie, Eric C.; Mayer, Cynthia L.; Colasurdo, Elizabeth A.; Shofer, Jane B.; Hart, Kim L.; Hoff, David; Tarabochia, Matthew A.; Peskind, Elaine R.

    2011-01-01

    Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least 1 year after injury, in 25–50% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP) to be unrelated to injury severity. Growth hormone deficiency (GHD) and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI), an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least 1 year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I) levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and rehabilitation. PMID

  5. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?

    PubMed

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2015-02-01

    Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K(+) by astrocytes, thereby leading to increased extracellular K(+) and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K(+) homeostasis and increased susceptibility to seizures in epilepsy.

  6. Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

    PubMed

    El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Des Portes, Vincent; Guibaud, Laurent

    2016-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.

  7. Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

    PubMed

    El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Des Portes, Vincent; Guibaud, Laurent

    2016-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment. PMID:26420639

  8. Delayed convergence between brain network structure and function in rolandic epilepsy

    PubMed Central

    Besseling, René M. H.; Jansen, Jacobus F. A.; Overvliet, Geke M.; van der Kruijs, Sylvie J. M.; Ebus, Saskia C. M.; de Louw, Anton J. A.; Hofman, Paul A. M.; Aldenkamp, Albert P.; Backes, Walter H.

    2014-01-01

    Introduction: Rolandic epilepsy (RE) manifests during a critical phase of brain development, and has been associated with language impairments. Concordant abnormalities in structural and functional connectivity (SC and FC) have been described before. As SC and FC are under mutual influence, the current study investigates abnormalities in the SC-FC synergy in RE. Methods: Twenty-two children with RE (age, mean ± SD: 11.3 ± 2.0 y) and 22 healthy controls (age 10.5 ± 1.6 y) underwent structural, diffusion weighted, and resting-state functional magnetic resonance imaging (MRI) at 3T. The probabilistic anatomical landmarks atlas was used to parcellate the (sub)cortical gray matter. Constrained spherical deconvolution tractography and correlation of time series were used to assess SC and FC, respectively. The SC-FC correlation was assessed as a function of age for the non-zero structural connections over a range of sparsity values (0.01–0.75). A modularity analysis was performed on the mean SC network of the controls to localize potential global effects to subnetworks. SC and FC were also assessed separately using graph analysis. Results: The SC-FC correlation was significantly reduced in children with RE compared to healthy controls, especially for the youngest participants. This effect was most pronounced in a left and a right centro-temporal network, as well as in a medial parietal network. Graph analysis revealed no prominent abnormalities in SC or FC network organization. Conclusion: Since SC and FC converge during normal maturation, our finding of reduced SC-FC correlation illustrates impaired synergy between brain structure and function. More specifically, since this effect was most pronounced in the youngest participants, RE may represent a developmental disorder of delayed brain network maturation. The observed effects seem especially attributable to medial parietal connections, which forms an intermediate between bilateral centro-temporal modules of

  9. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  10. Abnormal Subcortical Components of the Corticostriatal System in Young Adults with DLI: A Combined Structural MRI and DTI Study

    PubMed Central

    Lee, Joanna C.; Nopoulos, Peggy C.; Tomblin, J. Bruce

    2013-01-01

    Developmental Language Impairment (DLI) is a neurodevelopmental disorder affecting 12% to 14% of the school-age children in the United States. While substantial studies have shown a wide range of linguistic and non-linguistic difficulty in individuals with DLI, very little is known about the neuroanatomical mechanisms underlying this disorder. In the current study, we examined the subcortical components of the corticostriatal system in young adults with DLI, including the caudate nucleus, the putamen, the nucleus accumbens, the globus pallidus, and the thalamus. Additionally, the four cerebral lobes and the hippocampus were also comprised for an exploratory analysis. We used conventional magnetic resonance imaging (MRI) to measure regional brain volumes, as well as diffusion tensor imaging (DTI) to assess water diffusion anisotropy as quantified by fractional anisotropy (FA). Two groups of participants, one with DLI (n=12) and the other without ( n=12), were recruited from a prior behavioral study, and all were matched on age, gender, and handedness. Volumetric analyses revealed region-specific abnormalities in individuals with DLI, showing pathological enlargement bilaterally in the putamen and the nucleus accumbens, and unilaterally in the right globus pallidus after the intracranial volumes were controlled. Regarding the DTI findings, the DLI group showed decreased FA values in the globus pallidus and the thalamus but these significant differences disappeared after controlling for the whole-brain FA value, indicating that microstructural abnormality is diffuse and affects other regions of the brain. Taken together, these results suggest region-specific corticostriatal abnormalities in DLI at the macrostructural level, but corticostriatal abnormalities at the microstructural level may be a part of a diffuse pattern of brain development. Future work is suggested to investigate the relationship between corticostriatal connectivity and individual differences in

  11. Functional and Structural Abnormalities in Deferoxamine Retinopathy: A Review of the Literature

    PubMed Central

    Di Nicola, Maura; Barteselli, Giulio; Dell'Arti, Laura; Ratiglia, Roberto; Viola, Francesco

    2015-01-01

    Deferoxamine mesylate (DFO) is the most commonly used iron-chelating agent to treat transfusion-related hemosiderosis. Despite the clear advantages for the use of DFO, numerous DFO-related systemic toxicities have been reported in the literature, as well as sight-threatening ocular toxicity involving the retinal pigment epithelium (RPE). The damage to the RPE can lead to visual field defects, color-vision defects, abnormal electrophysiological tests, and permanent visual deterioration. The purpose of this review is to provide an updated summary of the ocular findings, including both functional and structural abnormalities, in DFO-treated patients. In particular, we pay particular attention to analyzing results of multimodal technologies for retinal imaging, which help ophthalmologists in the early diagnosis and correct management of DFO retinopathy. Fundus autofluorescence, for example, is not only useful for screening patients at high-risk of DFO retinopathy, but is also a prerequisite for identify specific high-risk patterns of RPE changes that are relevant for the prognosis of the disease. In addition, optical coherence tomography may have a clinical usefulness in detecting extent and location of different retinal changes in DFO retinopathy. Finally, this review wants to underline the need for universally approved guidelines for screening and followup of this particular disease. PMID:26167477

  12. Macro- and microscopic spectral-polarization characteristics of the structure of normal and abnormally located chordae tendianeae of left ventricular

    NASA Astrophysics Data System (ADS)

    Malyk, Yu. Yu.; Prydij, O. G.; Zymnyakov, D. A.; Alonova, M. V.; Ushakova, O. V.

    2013-12-01

    The morphological peculiarities of TS mitral valve of the heart of man in normal and abnormal spaced strings of the left ventricle and the study of their structural features depending on the location was studied. There are given the results of comparative statistics, correlation and fractal study population Mueller-matrix images (MMI) of healthy and abnormal (early forms that are not diagnosed by histological methods) BT normal and abnormally located tendon strings left ventricle of the human heart. Abnormalities in the structure of the wings, tendon strings (TS), mastoid muscle (MM) in inconsistencies elements and harmonized operation of all valve complex shown in the features of the polarization manifestations of it laser images.

  13. The domesticated brain: genetics of brain mass and brain structure in an avian species

    PubMed Central

    Henriksen, R.; Johnsson, M.; Andersson, L.; Jensen, P.; Wright, D.

    2016-01-01

    As brain size usually increases with body size it has been assumed that the two are tightly constrained and evolutionary studies have therefore often been based on relative brain size (i.e. brain size proportional to body size) rather than absolute brain size. The process of domestication offers an excellent opportunity to disentangle the linkage between body and brain mass due to the extreme selection for increased body mass that has occurred. By breeding an intercross between domestic chicken and their wild progenitor, we address this relationship by simultaneously mapping the genes that control inter-population variation in brain mass and body mass. Loci controlling variation in brain mass and body mass have separate genetic architectures and are therefore not directly constrained. Genetic mapping of brain regions indicates that domestication has led to a larger body mass and to a lesser extent a larger absolute brain mass in chickens, mainly due to enlargement of the cerebellum. Domestication has traditionally been linked to brain mass regression, based on measurements of relative brain mass, which confounds the large body mass augmentation due to domestication. Our results refute this concept in the chicken. PMID:27687864

  14. Intelligence and Giftedness: Changes in the Structure of the Brain.

    ERIC Educational Resources Information Center

    Sabatella, Maria Lucia Prado

    1999-01-01

    Explores research on the concepts of intelligences and giftedness. Considers the importance of the brain, its organization and functions, different theories about intelligence and the possibility of boosting it, and changes that occur in brain structure as a consequence of the interactions between genetic traits and experiences. (Author/CR)

  15. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus

  16. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    SciTech Connect

    Brunner, H.G. ); Nelen, M.; Ropers, H.H.; van Oost, B.A. )

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.

  17. Structural and Functional Coronary Artery Abnormalities in Patients With Vasospastic Angina Pectoris.

    PubMed

    Ong, Peter; Aziz, Ahmed; Hansen, Henrik Steen; Prescott, Eva; Athanasiadis, Anastasios; Sechtem, Udo

    2015-01-01

    Coronary spasm is involved in many clinical scenarios, such as stable angina, acute coronary syndrome, sudden cardiac death, non-ischemic cardiomyopathy, arrhythmia and syncope. In recent years, imaging tools such as computerized tomographic angiography, intravascular ultrasound or optical coherence tomography have been applied to study the coronary pathology in patients with vasospastic angina. Patients with vasospastic angina represent a heterogeneous cohort of patients with regard to the extent of concomitant coronary atherosclerosis. They share the common pathophysiological phenomenon of vascular smooth muscle hyperreactivity leading to spasm caused by various factors that may also overlap. Focal coronary spasm is related to epicardial atherosclerosis and in the presence of obstructive coronary artery disease it may be useful to treat the lesion to prevent further spasm. The aim of this article is to review structural and functional coronary artery abnormalities in patients with vasospastic angina.

  18. An in vivo and in vitro H-magnetic resonance spectroscopy study of mdx mouse brain: abnormal development or neural necrosis?

    PubMed

    Tracey, I; Dunn, J F; Parkes, H G; Radda, G K

    1996-09-15

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder primarily affecting young boys, often causing mental retardation in addition to the well-known progressive muscular weakness. Normal dystrophin expression is lacking in skeletal muscle and the central nervous system (CNS) of both DMD children and the mdx mouse model. The underlying biochemical lesion causing mental impairment in DMD is unknown. 1H-magnetic resonance spectroscopy (1H-MRS) detects choline-containing compounds, creatine and N-acetyl aspartate (NAA) in vivo. NAA is commonly used as a chemical marker for neurons, and a decline in NAA is thought to correlate with neuronal loss. Control mice were compared to mdx using a combination of in vivo and in vitro 1H-MRS methods to determine whether neural necrosis or developmental abnormalities occur in dystrophic brain. NAA levels were normal in mdx brain compared to controls suggesting minor, if any, neuronal necrosis in dystrophic brain. In contrast, choline compounds and myo-inositol levels were increased, indicative of gliosis or developmental abnormalities in dystrophic brain. PMID:8880686

  19. Label-free structural photoacoustic tomography of intact mouse brain

    NASA Astrophysics Data System (ADS)

    Li, Lei; Xia, Jun; Li, Guo; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2015-03-01

    Capitalizing on endogenous hemoglobin contrast, photoacoustic computed tomography (PACT), a deep-tissue highresolution imaging modality, has drawn increasing interest in neuro-imaging. However, most existing studies are limited to functional imaging on the cortical surface, and the deep-brain structural imaging capability of PACT has never been demonstrated. Here, we explicitly studied the limiting factors of deep-brain PACT imaging. We found that the skull distorted the acoustic signal and blood suppressed the structural contrast from other chromophores. When the two effects are mitigated, PACT can provide high-resolution label-free structural imaging through the entire mouse brain. With 100 μm in-plane resolution, we can clearly identify major structures of the brain, and the image quality is comparable to that of magnetic resonance microscopy. Spectral PACT studies indicate that structural contrasts mainly originate from cytochrome and lipid. The feasibility of imaging the structure of the brain in vivo has also been discussed. Our results demonstrate that PACT is a promising modality for both structural and functional brain imaging.

  20. Structural MRI connectome in development: challenges of the changing brain

    PubMed Central

    Hess, C P; Xu, D; Barkovich, A J

    2014-01-01

    MRI connectomics is an emerging approach to study the brain as a network of interconnected brain regions. Understanding and mapping the development of the MRI connectome may offer new insights into the development of brain connectivity and plasticity, ultimately leading to improved understanding of normal development and to more effective diagnosis and treatment of developmental disorders. In this review, we describe the attempts made to date to map the whole-brain structural MRI connectome in the developing brain and pay a special attention to the challenges associated with the rapid changes that the brain is undergoing during maturation. The two main steps in constructing a structural brain network are (i) choosing connectivity measures that will serve as the network “edges” and (ii) finding an appropriate way to divide the brain into regions that will serve as the network “nodes”. We will discuss how these two steps are usually performed in developmental studies and the rationale behind different strategies. Changes in local and global network properties that have been described during maturation in neonates and children will be reviewed, along with differences in network topology between typically and atypically developing subjects, for example, owing to pre-mature birth or hypoxic ischaemic encephalopathy. Finally, future directions of connectomics will be discussed, addressing important steps necessary to advance the study of the structural MRI connectome in development. PMID:24827379

  1. Underground structure of terrestrial mud volcanoes and abnormal water pressure formation in Niigata, Central JAPAN

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Shinya, T.; Miyata, Y.; Tokuyasu, S.

    2005-12-01

    Activity of mud volcano is thought to be caused by an abnormal water pressure generated in deep underground and make a serious problem for underground constructions such as railway tunnel, underground facility for radwaste and so on. It is important to investigate the underground structure of a mud volcano and the mechanism of abnormal water formation for site selection and safety assessment of such facilities. Serious trouble such as tunnel wall collapse due to the rock swelling has happened 180m deep under mud volcanoes. It took more than 10 years to excavate the section of 150 m long. 4 terrestrial mud volcanoes were found in the Tertiary sedimentary basin in Niigata, central Japan All the mud volcanoes are distributed along the rim of the topographic basin that is located at the NE-SW trending crest of mountainous area and distributed along the wing of anticline. Geological structure inside basin is heavily disturbed. The extinct mud volcano is exposed in the side-slope of newly constructed road and the internal vent structure of mud volcano can be observed. The vent is 30 m in diameter and is consisted of mud breccia and scaly network clay that is thought to be generated by hydro-fracturing and the following water-rock interaction between mudstone and groundwater. Groundwater erupted from mud volcano is highly saline with electric conductivity of 15 mS/cm and high 18 O/16 O isotope ratio of 1.2 parmillage. Also, the vitrinite reflectance is 1.5 to 1.9 % that is not expected in the sedimentary rocks exposed near ground surface. As a result, it is assumed that these erupted materials were introduced from the deep underground about 4000 m deep. CSA-MT geophysical exploration was carried out to survey the underground structure and obtained the profile of electrical resistivity from the surface to 800 m in depth. It is found that the disk-shaped low resistivity zone less than 1 m due to the high salinity content is identified in underground 600 m deep, 200 m thick

  2. Sensory migraine aura is not associated with structural grey matter abnormalities.

    PubMed

    Hougaard, Anders; Amin, Faisal Mohammad; Arngrim, Nanna; Vlachou, Maria; Larsen, Vibeke Andrée; Larsson, Henrik B W; Ashina, Messoud

    2016-01-01

    Migraine with aura (MA) is characterized by cortical dysfunction. Frequent aura attacks may alter cerebral cortical structure in patients, or structural grey matter abnormalities may predispose MA patients to aura attacks. In the present study we aimed to investigate cerebral grey matter structure in a large group of MA patients with and without sensory aura (i.e. gradually developing, transient unilateral sensory disturbances). We included 60 patients suffering from migraine with typical visual aura and 60 individually age and sex-matched controls. Twenty-nine of the patients additionally experienced sensory aura regularly. We analysed high-resolution structural MR images using two complimentary approaches and compared patients with and without sensory aura. Patients were also compared to controls. We found no differences of grey matter density or cortical thickness between patients with and without sensory aura and no differences for the cortical visual areas between patients and controls. The somatosensory cortex was thinner in patients (1.92 mm vs. 1.96 mm, P = 0.043) and the anterior cingulate cortex of patients had a decreased grey matter density (P = 0.039) compared to controls. These differences were not correlated to the clinical characteristics. Our results suggest that sensory migraine aura is not associated with altered grey matter structure and that patients with visual aura have normal cortical structure of areas involved in visual processing. The observed decreased grey matter volume of the cingulate gyrus in patients compared to controls have previously been reported in migraine with and without aura, but also in a wide range of other neurologic and psychiatric disorders. Most likely, this finding reflects general bias between patients and healthy controls.

  3. Structural brain changes in chronic pain reflect probably neither damage nor atrophy.

    PubMed

    Rodriguez-Raecke, Rea; Niemeier, Andreas; Ihle, Kristin; Ruether, Wolfgang; May, Arne

    2013-01-01

    Chronic pain appears to be associated with brain gray matter reduction in areas ascribable to the transmission of pain. The morphological processes underlying these structural changes, probably following functional reorganisation and central plasticity in the brain, remain unclear. The pain in hip osteoarthritis is one of the few chronic pain syndromes which are principally curable. We investigated 20 patients with chronic pain due to unilateral coxarthrosis (mean age 63.25±9.46 (SD) years, 10 female) before hip joint endoprosthetic surgery (pain state) and monitored brain structural changes up to 1 year after surgery: 6-8 weeks, 12-18 weeks and 10-14 month when completely pain free. Patients with chronic pain due to unilateral coxarthrosis had significantly less gray matter compared to controls in the anterior cingulate cortex (ACC), insular cortex and operculum, dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex. These regions function as multi-integrative structures during the experience and the anticipation of pain. When the patients were pain free after recovery from endoprosthetic surgery, a gray matter increase in nearly the same areas was found. We also found a progressive increase of brain gray matter in the premotor cortex and the supplementary motor area (SMA). We conclude that gray matter abnormalities in chronic pain are not the cause, but secondary to the disease and are at least in part due to changes in motor function and bodily integration.

  4. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI. PMID:27482782

  5. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI.

  6. Structural and Functional Plasticity in the Maternal Brain Circuitry

    ERIC Educational Resources Information Center

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  7. Understanding the brain through its spatial structure

    NASA Astrophysics Data System (ADS)

    Morrison, Will Zachary

    The spatial location of cells in neural tissue can be easily extracted from many imaging modalities, but the information contained in spatial relationships between cells is seldom utilized. This is because of a lack of recognition of the importance of spatial relationships to some aspects of brain function, and the reflection in spatial statistics of other types of information. The mathematical tools necessary to describe spatial relationships are also unknown to many neuroscientists, and biologists in general. We analyze two cases, and show that spatial relationships can be used to understand the role of a particular type of cell, the astrocyte, in Alzheimer's disease, and that the geometry of axons in the brain's white matter sheds light on the process of establishing connectivity between areas of the brain. Astrocytes provide nutrients for neuronal metabolism, and regulate the chemical environment of the brain, activities that require manipulation of spatial distributions (of neurotransmitters, for example). We first show, through the use of a correlation function, that inter-astrocyte forces determine the size of independent regulatory domains in the cortex. By examining the spatial distribution of astrocytes in a mouse model of Alzheimer's Disease, we determine that astrocytes are not actively transported to fight the disease, as was previously thought. The paths axons take through the white matter determine which parts of the brain are connected, and how quickly signals are transmitted. The rules that determine these paths (i.e. shortest distance) are currently unknown. By measurement of axon orientation distributions using three-point correlation functions and the statistics of axon turning and branching, we reveal that axons are restricted to growth in three directions, like a taxicab traversing city blocks, albeit in three-dimensions. We show how geometric restrictions at the small scale are related to large-scale trajectories. Finally we discuss the

  8. Abnormal Bone Mechanical and Structural Properties in Adolescent Idiopathic Scoliosis: A Study with Finite Element Analysis and Structural Model Index.

    PubMed

    Cheuk, K Y; Zhu, T Y; Yu, F W P; Hung, V W Y; Lee, K M; Qin, L; Cheng, J C Y; Lam, T P

    2015-10-01

    Previous studies found adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density (BMD) and abnormal bone quality, whilst the association between AIS and their bone strength is unknown. From high-resolution peripheral quantitative computed tomography-generated images, bone mechanical properties can be evaluated with finite element analysis (FEA), and trabecular rod-plate configuration related to trabecular bone strength can be quantified by structure model index (SMI). This study aimed to compare trabecular configuration and bone mechanical properties between AIS and the controls. 95 AIS girls aged 12-14 years and 97 age- and gender-matched normal controls were recruited. Bilateral femoral necks and non-dominant distal radius were scanned by dual-energy X-ray absorptiometry for areal BMD and HR-pQCT for SMI and FEA, respectively. Subjects were further classified into osteopenic and non-osteopenic group based on their areal BMD. Bone mechanical properties (stiffness, failure load and apparent modulus) were calculated using FEA. Linear regression model was used for controlling age, physical activity and calcium intake. AIS was associated with lower failure load and apparent modulus after adjusting for age, whereas AIS was associated with lower apparent modulus after adjusting for all confounders. Osteopenic AIS was associated with more rod-like trabeculae when compared with non-osteopenic AIS, whereas no difference was detected between osteopenic and non-osteopenic controls. This might be the result of abnormal regulation and modulation of bone metabolism and bone modelling and remodelling in AIS which will warrant future studies with a longitudinal design to determine the significance of micro-architectural abnormalities in AIS.

  9. Complex modular structure of large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  10. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    PubMed Central

    Li, Kai; Papademetris, Xenophon; Tucker, Don M.

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  11. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    PubMed

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  12. Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function.

    PubMed

    Goldstone, Robert L; Pestilli, Franco; Börner, Katy

    2015-08-01

    With several large-scale human brain projects currently underway and a range of neuroimaging techniques growing in availability to researchers, the amount and diversity of data relevant for understanding the human brain is increasing rapidly. A complete understanding of the brain must incorporate information about 3D neural location, activity, timing, and task. Data mining, high-performance computing, and visualization can serve as tools that augment human intellect; however, the resulting visualizations must take into account human abilities and limitations to be effective tools for exploration and communication. In this feature review, we discuss key challenges and opportunities that arise when leveraging the sophisticated perceptual and conceptual processing of the human brain to help researchers understand brain structure, function, and behavior.

  13. Default mode network functional and structural connectivity after traumatic brain injury.

    PubMed

    Sharp, David J; Beckmann, Christian F; Greenwood, Richard; Kinnunen, Kirsi M; Bonnelle, Valerie; De Boissezon, Xavier; Powell, Jane H; Counsell, Serena J; Patel, Maneesh C; Leech, Robert

    2011-08-01

    Traumatic brain injury often results in cognitive impairments that limit recovery. The underlying pathophysiology of these impairments is uncertain, which restricts clinical assessment and management. Here, we use magnetic resonance imaging to test the hypotheses that: (i) traumatic brain injury results in abnormalities of functional connectivity within key cognitive networks; (ii) these changes are correlated with cognitive performance; and (iii) functional connectivity within these networks is influenced by underlying changes in structural connectivity produced by diffuse axonal injury. We studied 20 patients in the chronic phase after traumatic brain injury compared with age-matched controls. Network function was investigated in detail using functional magnetic resonance imaging to analyse both regional brain activation, and the interaction of brain regions within a network (functional connectivity). We studied patients during performance of a simple choice-reaction task and at 'rest'. Since functional connectivity reflects underlying structural connectivity, diffusion tensor imaging was used to quantify axonal injury, and test whether structural damage correlated with functional change. The patient group showed typical impairments in information processing and attention, when compared with age-matched controls. Patients were able to perform the task accurately, but showed slow and variable responses. Brain regions activated by the task were similar between the groups, but patients showed greater deactivation within the default mode network, in keeping with an increased cognitive load. A multivariate analysis of 'resting' state functional magnetic resonance imaging was then used to investigate whether changes in network function were present in the absence of explicit task performance. Overall, default mode network functional connectivity was increased in the patient group. Patients with the highest functional connectivity had the least cognitive impairment. In

  14. Pre-existing structural abnormalities of the limbic system in transient global amnesia.

    PubMed

    Park, Kang Min; Han, Yong Hee; Kim, Tae Hyung; Mun, Chi Woong; Shin, Kyong Jin; Ha, Sam Yeol; Park, JinSe; Kim, Sung Eun

    2015-05-01

    This study aimed to investigate the clinical and radiological findings in patients with transient global amnesia and to evaluate structural abnormalities using voxel-based morphometry. The subjects were diagnosed with transient global amnesia. For the voxel-based morphometry analyses, Statistical Parametric Mapping, running on the MATLAB platform (MathWorks, Natick, MA, USA), was employed to analyze the structural differences between patients with transient global amnesia and control subjects. Eighty patients met the inclusion criteria. Twenty-three patients (29%) were men, and 57 patients (71%) were women. There were significantly more women among the transient global amnesia patients compared with the general Korean population. MRI revealed hippocampal cavities in 41 patients (51%), and the incidence of such cavities was significantly different from that of the control subjects (24%). There were no differences in the clinical factors between the patients with and without hippocampal cavities. Diffusion-weighted imaging was performed in 54 patients, and 13 patients (24%) exhibited high signal intensity in the hippocampus. There were also no differences in the clinical factors between the patients with and without high signal intensities in the hippocampus on diffusion-weighted imaging. Twenty-six patients underwent three-dimensional volumetric T1-weighted imaging that produced results suitable for voxel-based morphometry, and these patients presented with gray matter volume reductions in the hippocampus, cingulum, and cerebellum. There were significant structural differences in the limbic structures between patients with transient global amnesia and the control subjects that might have contributed to vulnerability of the memory pathways of the patients with transient global amnesia.

  15. A Congenital Gerbode Defect associated with a Rare Structural Abnormality of the Mitral Valve Diagnosed in an Adult Patient

    PubMed Central

    Mateescu, Anca D.; Beladan, Carmen C.; Radulescu, Bogdan; Ginghina, Carmen; Popescu, Bogdan A.

    2016-01-01

    We report the case of a rare association of a congenital Gerbode defect with severe mitral regurgitation due to abnormal linear structure of mitral valve, diagnosed in an adult patient. The case highlights the importance of a thorough examination interpreting the echocardiographic findings on a pathophysiological basis. It also underlines the complementary role of different imaging techniques with transesophageal echocardiography, allowing the precise assessment of both structural and functional abnormalities in such a complex case. The patient underwent mitral valve replacement with a bileaflet mechanical prosthesis and repair of the Gerbode defect. The imaging findings were confirmed during the surgical procedure, leading to a good outcome. PMID:27721869

  16. Brain Structural Correlates of Reward Sensitivity and Impulsivity in Adolescents with Normal and Excess Weight

    PubMed Central

    Moreno-López, Laura; Soriano-Mas, Carles; Delgado-Rico, Elena; Rio-Valle, Jacqueline S.; Verdejo-García, Antonio

    2012-01-01

    Introduction Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. Methods Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex). Results Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. Conclusion Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation. PMID:23185306

  17. Human brain stem structures respond differentially to noxious heat.

    PubMed

    Ritter, Alexander; Franz, Marcel; Dietrich, Caroline; Miltner, Wolfgang H R; Weiss, Thomas

    2013-01-01

    Concerning the physiological correlates of pain, the brain stem is considered to be one core region that is activated by noxious input. In animal studies, different slopes of skin heating (SSH) with noxious heat led to activation in different columns of the midbrain periaqueductal gray (PAG). The present study aimed at finding a method for differentiating structures in PAG and other brain stem structures, which are associated with different qualities of pain in humans according to the structures that were associated with different behavioral significances to noxious thermal stimulation in animals. Brain activity was studied by functional MRI in healthy subjects in response to steep and shallow SSH with noxious heat. We found differential activation to different SSH in the PAG and the rostral ventromedial medulla (RVM). In a second experiment, we demonstrate that the different SSH were associated with different pain qualities. Our experiments provide evidence that brainstem structures, i.e., the PAG and the RVM, become differentially activated by different SSH. Therefore, different SSH can be utilized when brain stem structures are investigated and when it is aimed to activate these structures differentially. Moreover, percepts of first pain were elicited by shallow SSH whereas percepts of second pain were elicited by steep SSH. The stronger activation of these brain stem structures to SSH, eliciting percepts of second vs. first pain, might be of relevance for activating different coping strategies in response to the noxious input with the two types of SSH.

  18. Retina restored and brain abnormalities ameliorated by single-copy knock-in of human NR2E1 in null mice.

    PubMed

    Schmouth, J-F; Banks, K G; Mathelier, A; Gregory-Evans, C Y; Castellarin, M; Holt, R A; Gregory-Evans, K; Wasserman, W W; Simpson, E M

    2012-04-01

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified.

  19. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    PubMed Central

    2010-01-01

    Background The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1) or are involved in synaptic vesicle cycling (dynamin 1). RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP) analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited. PMID:20420693

  20. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity.

    PubMed

    Maillard, A M; Ruef, A; Pizzagalli, F; Migliavacca, E; Hippolyte, L; Adaszewski, S; Dukart, J; Ferrari, C; Conus, P; Männik, K; Zazhytska, M; Siffredi, V; Maeder, P; Kutalik, Z; Kherif, F; Hadjikhani, N; Beckmann, J S; Reymond, A; Draganski, B; Jacquemont, S

    2015-02-01

    Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy. PMID:25421402

  1. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity

    PubMed Central

    Maillard, A M; Ruef, A; Pizzagalli, F; Migliavacca, E; Hippolyte, L; Adaszewski, S; Dukart, J; Ferrari, C; Conus, P; Männik, K; Zazhytska, M; Siffredi, V; Maeder, P; Kutalik, Z; Kherif, F; Hadjikhani, N; Beckmann, J S; Reymond, A; Draganski, B; Jacquemont, S

    2015-01-01

    Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy. PMID:25421402

  2. In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles.

    PubMed

    Dadras, Ali; Riazi, Gholam Hossein; Afrasiabi, Ali; Naghshineh, Ali; Ghalandari, Behafarid; Mokhtari, Farzad

    2013-03-01

    In recent decades, considerable efforts have been made to understand the mechanism of memory, cognition, and relevant neurodegenerative diseases in the human brain. Several studies have shown the importance of microtubule proteins in the memory mechanism and memory dysfunction. Microtubules possess dynamicity, which is essential for functions of neuronal networks. Microtubule-associated proteins, i.e., tau, play vital roles in microtubule stability. On the other hand, the ferromagnetic mineral magnetite (Fe(3)O(4)) has been detected in the normal human brain, and elevated levels of magnetite are also observed in the brains of Alzheimer's disease patients. Therefore, we propose that a relationship between microtubule organization in axons and brain magnetite nanoparticles is possible. In this study we found alterations of microtubule polymerization in the presence of increasing concentrations of magnetite through transmission electron microscopy images and a turbidimetry method. Structural changes of microtubule and tau protein, as an essential microtubule-associated protein for tubulin assembly, were detected via circular dichroism spectroscopy, intrinsic fluorescence, and 8-anilino-1-naphthalenesulfonic acid fluorometry. We predicted three possible binding sites on tau protein and one possible binding site on tubulin dimer for magnetite nanoparticles. Magnetite also causes the morphology of PC12 cells to change abnormally and cell viability to decrease. Finally, we suggest that magnetite changes microtubule dynamics and polymerization through two paths: (1) changing the secondary and tertiary structure of tubulin and (2) binding to either tubulin dimer or tau protein and preventing tau-tubulin interaction.

  3. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    SciTech Connect

    Brunetti, A.; Berg, G.; Di Chiro, G.; Cohen, R.M.; Yarchoan, R.; Pizzo, P.A.; Broder, S.; Eddy, J.; Fulham, M.J.; Finn, R.D.

    1989-05-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using (/sup 18/F)fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment.

  4. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  5. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers.

  6. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function.

    PubMed

    Gruber, Robert; Elias, Peter M; Crumrine, Debra; Lin, Tzu-Kai; Brandner, Johanna M; Hachem, Jean-Pierre; Presland, Richard B; Fleckman, Philip; Janecke, Andreas R; Sandilands, Aileen; McLean, W H Irwin; Fritsch, Peter O; Mildner, Michael; Tschachler, Erwin; Schmuth, Matthias

    2011-05-01

    Although it is widely accepted that filaggrin (FLG) deficiency contributes to an abnormal barrier function in ichthyosis vulgaris and atopic dermatitis, the pathomechanism of how FLG deficiency provokes a barrier abnormality in humans is unknown. We report here that the presence of FLG mutations in Caucasians predicts dose-dependent alterations in epidermal permeability barrier function. Although FLG is an intracellular protein, the barrier abnormality occurred solely via a paracellular route in affected stratum corneum. Abnormal barrier function correlated with alterations in keratin filament organization (perinuclear retraction), impaired loading of lamellar body contents, followed by nonuniform extracellular distribution of secreted organelle contents, and abnormalities in lamellar bilayer architecture. In addition, we observed reductions in corneodesmosome density and tight junction protein expression. Thus, FLG deficiency provokes alterations in keratinocyte architecture that influence epidermal functions localizing to the extracellular matrix. These results clarify how FLG mutations impair epidermal permeability barrier function.

  7. The influence of preterm birth on structural alterations of the vision-deprived brain.

    PubMed

    Wan, Catherine Y; Wood, Amanda G; Chen, Jian; Wilson, Sarah J; Reutens, David C

    2013-04-01

    Differences in brain structures between blind and sighted individuals have not been widely investigated. Furthermore, existing studies have included individuals who were blinded by retinopathy of prematurity, a condition that is associated with premature birth. Recent pediatric research has reported structural differences in individuals who were born prematurely, suggesting that some of the structural abnormalities previously observed in blind individuals may be related to prematurity rather than being specific to blindness. In the present study, we used voxel-based morphometry to investigate gray and white matter differences between 24 blind and 16 sighted individuals. Of the blind individuals, six were born prematurely and 18 at term. Compared to those born at term, blind individuals born preterm showed differences in gray, but not white, matter volumes in various brain regions. When the preterm individuals were excluded from analysis, there were significant differences between blind and sighted individuals. Full-term blind individuals showed regional gray matter decreases in the cuneus, lingual gyrus, middle occipital gyrus, precuneus, inferior and superior parietal lobules, and the thalamus, and gray matter increases in the globus pallidus. They also showed regional white matter decreases in the cuneus, lingual gyrus, and the posterior cingulate. These differences were observed in blind individuals irrespective of blindness onset age, providing evidence for structural alterations in the mature brain. Our findings highlight the importance of considering the potential impact of premature birth on neurodevelopmental outcomes in studies of blind individuals.

  8. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  9. Brain MRI abnormalities and spectrum of neurological and clinical findings in three patients with proximal 16p11.2 microduplication.

    PubMed

    Filges, Isabel; Sparagana, Steven; Sargent, Michael; Selby, Kathryn; Schlade-Bartusiak, Kamilla; Lueder, Gregg T; Robichaux-Viehoever, Amy; Schlaggar, Bradley L; Shimony, Joshua S; Shinawi, Marwan

    2014-08-01

    The phenotype of recurrent ∼600 kb microdeletion and microduplication on proximal 16p11.2 is characterized by a spectrum of neurodevelopmental impairments including developmental delay and intellectual disability, epilepsy, autism and psychiatric disorders which are all subject to incomplete penetrance and variable expressivity. A variety of brain MRI abnormalities were reported in patients with 16p11.2 rearrangements, but no systematic correlation has been studied among patients with similar brain anomalies, their neurodevelopmental and clinical phenotypes. We present three patients with the proximal 16p11.2 microduplication exhibiting significant developmental delay, anxiety disorder and other variable clinical features. Our patients have abnormal brain MRI findings of cerebral T2 hyperintense foci (3/3) and ventriculomegaly (2/3). The neuroradiological or neurological findings in two cases prompted an extensive diagnostic work-up. One patient has exhibited neurological regression and progressive vision impairment and was diagnosed with juvenile neuronal ceroid-lipofuscinosis. We compare the clinical course and phenotype of these patients in regard to the clinical significance of the cerebral lesions and the need for MRI surveillance. We conclude that in all three patients the lesions were not progressive, did not show any sign of malignant transformation and could not be correlated to specific clinical features. We discuss potential etiologic mechanisms that may include overexpression of genes within the duplicated region involved in control of cell proliferation and complex molecular mechanisms such as the MAPK/ERK pathway. Systematic studies in larger cohorts are needed to confirm our observation and to establish the prevalence and clinical significance of these neuroanatomical abnormalities in patients with 16p11.2 duplications. PMID:24891046

  10. Sex steroids and brain structure in pubertal boys and girls.

    PubMed

    Peper, Jiska S; Brouwer, Rachel M; Schnack, Hugo G; van Baal, G Caroline; van Leeuwen, Marieke; van den Berg, Stéphanie M; Delemarre-Van de Waal, Henriëtte A; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2009-04-01

    Sex steroids exert important organizational effects on brain structure. Early in life, they are involved in brain sexual differentiation. During puberty, sex steroid levels increase considerably. However, to which extent sex steroid production is involved in structural brain development during human puberty remains unknown. The relationship between pubertal rises in testosterone and estradiol levels and brain structure was assessed in 37 boys and 41 girls (10-15 years). Global brain volumes were measured using volumetric-MRI. Regional gray and white matter were quantified with voxel-based morphometry (VBM), a technique which measures relative concentrations ('density') of gray and white matter after individual global differences in size and shape of brains have been removed. Results showed that, corrected for age, global gray matter volume was negatively associated with estradiol levels in girls, and positively with testosterone levels in boys. Regionally, a higher estradiol level in girls was associated with decreases within prefrontal, parietal and middle temporal areas (corrected for age), and with increases in middle frontal-, inferior temporal- and middle occipital gyri. In boys, estradiol and testosterone levels were not related to regional brain structures, nor were testosterone levels in girls. Pubertal sex steroid levels could not explain regional sex differences in regional gray matter density. Boys were significantly younger than girls, which may explain part of the results. In conclusion, in girls, with the progression of puberty, gray matter development is at least in part directly associated with increased levels of estradiol, whereas in boys, who are in a less advanced pubertal stage, such steroid-related development could not (yet) be found. We suggest that in pubertal girls, estradiol may be implicated in neuronal changes in the cerebral cortex during this important period of brain development.

  11. Neurological abnormalities and neurocognitive functions in healthy elder people: A structural equation modeling analysis

    PubMed Central

    2011-01-01

    Background/Aims Neurological abnormalities have been reported in normal aging population. However, most of them were limited to extrapyramidal signs and soft signs such as motor coordination and sensory integration have received much less attention. Very little is known about the relationship between neurological soft signs and neurocognitive function in healthy elder people. The current study aimed to examine the underlying relationships between neurological soft signs and neurocognition in a group of healthy elderly. Methods One hundred and eighty healthy elderly participated in the current study. Neurological soft signs were evaluated with the subscales of Cambridge Neurological Inventory. A set of neurocognitive tests was also administered to all the participants. Structural equation modeling was adopted to examine the underlying relationship between neurological soft signs and neurocognition. Results No significant differences were found between the male and female elder people in neurocognitive function performances and neurological soft signs. The model fitted well in the elderly and indicated the moderate associations between neurological soft signs and neurocognition, specifically verbal memory, visual memory and working memory. Conclusions The neurological soft signs are more or less statistically equivalent to capture the similar information done by conventional neurocognitive function tests in the elderly. The implication of these findings may serve as a potential neurological marker for the early detection of pathological aging diseases or related mental status such as mild cognitive impairment and Alzheimer's disease. PMID:21827719

  12. Microbial community structure and function during abnormal curve development of substrate-induced respiration measurements.

    PubMed

    Bartling, Johanna; Kotzerke, Anja; Mai, Maike; Esperschütz, Jürgen; Buegger, Franz; Schloter, Michael; Wilke, Berndt-Michael

    2009-12-01

    Soil respiration measurements are an established method to test the abundance, activity and vitality of the soil microorganisms. However, abnormal progressions of soil respiration curves impede a clear interpretation of the data. The aim of this study was to investigate the changes in the microbial structure during the formation of phenomena like double peaks and terraces by analysis of the PLFA composition (phospholipid fatty acid composition). Moreover, 13C labeled glucose was used as substrate; therefore it was possible to measure delta13C values both within the PLFA fraction as well as within the carbon dioxide evolved during respiration. As contaminants trinitrotoluene, cycloheximide, and hexadecane were used. The results showed that the appearance of double peaks was mainly related to the growth of fungi with the marker 18:2delta9,12 due to a toxic effect of trinitrotoluene and cycloheximide. In contrast, the phenomenon of terrace formation was related to the utilization of hexadecane as a carbon source mainly by bacteria.

  13. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure. PMID:25687701

  14. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.

  15. Estimating brain's functional graph from the structural graph's Laplacian

    NASA Astrophysics Data System (ADS)

    Abdelnour, F.; Dayan, M.; Devinsky, O.; Thesen, T.; Raj, A.

    2015-09-01

    The interplay between the brain's function and structure has been of immense interest to the neuroscience and connectomics communities. In this work we develop a simple linear model relating the structural network and the functional network. We propose that the two networks are related by the structural network's Laplacian up to a shift. The model is simple to implement and gives accurate prediction of function's eigenvalues at the subject level and its eigenvectors at group level.

  16. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. PMID:23707901

  17. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  18. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  19. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    PubMed

    Zumbrennen-Bullough, Kimberly B; Becker, Lore; Garrett, Lillian; Hölter, Sabine M; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J; Leibold, Elizabeth A

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  20. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress

    PubMed Central

    Müller, C. Catharina; Nguyen, Tam H.; Ahlemeyer, Barbara; Meshram, Mallika; Santrampurwala, Nishreen; Cao, Siyu; Sharp, Peter; Fietz, Pamela B.; Baumgart-Vogt, Eveline; Crane, Denis I.

    2011-01-01

    SUMMARY Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS), a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD), and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology. PMID:20959636

  1. Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders

    PubMed Central

    Schumann, Cynthia M.; Bauman, Melissa D.; Amaral, David G.

    2010-01-01

    The amygdala, perhaps more than any other brain region, has been implicated in numerous neuropsychiatric and neurodevelopmental disorders. It is part of a system initially evolved to detect dangers in the environment and modulate subsequent responses, which can profoundly influence human behavior. If its threshold is set too low, normally benign aspects of the environment are perceived as dangers, interactions are limited, and anxiety may arise. If set too high, risk taking increases and inappropriate sociality may occur. Given that many neurodevelopmental disorders involve too little or too much anxiety or too little of too much social interaction, it is not surprising that the amygdala has been implicated in many of them. In this chapter, we begin by providing a brief overview of the phylogeny, ontogeny, and function of the amygdala and then appraise data from neurodevelopmental disorders which suggest amygdala dysregulation. We focus on neurodevelopmental disorders where there is evidence of amygdala dysregulation from postmortem studies, structural MRI analyses or functional MRI. However, the results are often disparate and it is not totally clear whether this is due to inherent heterogeneity or differences in methodology. Nonetheless, the amygdala is a common site for neuropathology in neurodevelopmental disorders and is therefore a potential target for therapeutics to alleviate associated symptoms. PMID:20950634

  2. Structural and functional clusters of complex brain networks

    NASA Astrophysics Data System (ADS)

    Zemanová, Lucia; Zhou, Changsong; Kurths, Jürgen

    2006-12-01

    Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

  3. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia.

    PubMed

    Funk, Adam J; McCullumsmith, Robert E; Haroutunian, Vahram; Meador-Woodruff, James H

    2012-03-01

    Recent evidence suggests that schizophrenia may result from alterations of integration of signaling mediated by multiple neurotransmitter systems. Abnormalities of associated intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. Proteins and phospho-proteins comprising mitogen activated protein kinase (MAPK) and 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways may be abnormally expressed in the anterior cingulate (ACC) and dorsolateral prefrontal cortex (DLPFC) in schizophrenia. Using western blot analysis we examined proteins of the MAPK- and cAMP-associated pathways in these two brain regions. Postmortem samples were used from a well-characterized collection of elderly patients with schizophrenia (ACC=36, DLPFC=35) and a comparison (ACC=33, DLPFC=31) group. Near-infrared intensity of IR-dye labeled secondary antisera bound to targeted proteins of the MAPK- and cAMP-associated signaling pathways was measured using LiCor Odyssey imaging system. We found decreased expression of Rap2, JNK1, JNK2, PSD-95, and decreased phosphorylation of JNK1/2 at T183/Y185 and PSD-95 at S295 in the ACC in schizophrenia. In the DLPFC, we found increased expression of Rack1, Fyn, Cdk5, and increased phosphorylation of PSD-95 at S295 and NR2B at Y1336. MAPK- and cAMP-associated molecules constitute ubiquitous intracellular signaling pathways that integrate extracellular stimuli, modify receptor expression and function, and regulate cell survival and neuroplasticity. These data suggest abnormal activity of the MAPK- and cAMP-associated pathways in frontal cortical areas in schizophrenia. These alterations may underlie the hypothesized hypoglutamatergic function in this illness. Together with previous findings, these data suggest that abnormalities of intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. PMID:22048463

  4. Eye Tracking Detects Disconjugate Eye Movements Associated with Structural Traumatic Brain Injury and Concussion

    PubMed Central

    Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H.; McStay, Christopher; Todd, S. Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-01-01

    Abstract Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury. PMID:25582436

  5. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    PubMed

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  6. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    PubMed

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology.

  7. Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase-Defective eEF2K Mice

    ERIC Educational Resources Information Center

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W.; Proud, Chris G.; Rosenblum, Kobi

    2012-01-01

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular…

  8. Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia.

    PubMed

    Song, Tianbin; Nie, Binbin; Ma, Ensen; Che, Jing; Sun, Shilong; Wang, Yuli; Shan, Baoci; Liu, Yawu; Luo, Senlin; Ma, Guolin; Li, Kefeng

    2015-05-01

    Schizophrenia is characterized by the disorder of "social brain". However, the alternation of connectivity density in brain areas of schizophrenia patients remains largely unknown. In this study, we successfully created a rat model of schizophrenia by the transfection of EGR3 gene into rat brain. We then investigated the connectivity density of schizophrenia susceptible regions in rat brain using functional magnetic resonance imaging (fMRI) in combination with multivariate Granger causality (GC) model. We found that the average signal strength in prefrontal lobe and hippocampus of schizophrenia model group was significantly higher than the control group. Bidirectional Granger causality connection was observed between hippocampus and thalamic in schizophrenia model group. Both connectivity density and Granger causality connection were changed in prefrontal lobe, hippocampus and thalamus after risperidone treatment. Our results indicated that fMRI in combination with GC connection analysis may be used as an important method in diagnosis of schizophrenia and evaluation the effect of antipsychotic treatment. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia.

  9. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  10. Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties

    PubMed Central

    Hosseini, S.M. Hadi; Black, Jessica M.; Soriano, Teresa; Bugescu, Nicolle; Martinez, Rociel; Raman, Mira M.; Kesler, Shelli R.; Hoeft, Fumiko

    2013-01-01

    Developmental dyslexia is a neurobiological deficit characterized by persistent difficulty in learning to read in children and adults who otherwise possess normal intelligence. Functional and structural connectivity data suggest that developmental dyslexia could be a disconnection syndrome. However, whether abnormalities in connectivity exist in beginning readers at-risk for reading difficulties is unknown. Using graphtheoretical analysis, we investigated differences in global and regional topological properties of structural brain networks in 42 beginning readers with (FH+) and without (FH−) familial risk for reading difficulties. We constructed separate structural correlation networks based on measures of surface area and cortical thickness. Results revealed changes in topological properties in brain regions known to be abnormal in dyslexia (left supramarginal gyrus, left inferior frontal gyrus) in the FH+ group mainly in the network constructed from measures of cortical surface area. We also found alterations in topological properties in regions that are not often advertised as dyslexia but nonetheless play important role in reading (left posterior cingulate, hippocampus, and left precentral gyrus). To our knowledge, this is the first report of altered topological properties of structural correlation networks in children at risk for reading difficulty, and motivates future studies that examine the mechanisms underlying how these brain networks may mediate the influences of family history on reading outcome. PMID:23333415

  11. Detection of structural and numerical chomosomal abnormalities by ACM-FISH analysis in sperm of oligozoospermic infertility patients

    SciTech Connect

    Schmid, T E; Brinkworth, M H; Hill, F; Sloter, E; Kamischke, A; Marchetti, F; Nieschlag, E; Wyrobek, A J

    2003-11-10

    Modern reproductive technologies are enabling the treatment of infertile men with severe disturbances of spermatogenesis. The possibility of elevated frequencies of genetically and chromosomally defective sperm has become an issue of concern with the increased usage of intracytoplasmic sperm injection (ICSI), which can enable men with severely impaired sperm production to father children. Several papers have been published about aneuploidy in oligozoospermic patients, but relatively little is known about chromosome structural aberrations in the sperm of these patients. We examined sperm from infertile, oligozoospermic individuals for structural and numerical chromosomal abnormalities using a multicolor ACM FISH assay that utilizes DNA probes specific for three regions of chromosome 1 to detect human sperm that carry numerical chromosomal abnormalities plus two categories of structural aberrations: duplications and deletions of 1pter and 1cen, and chromosomal breaks within the 1cen-1q12 region. There was a significant increase in the average frequencies of sperm with duplications and deletions in the infertility patients compared with the healthy concurrent controls. There was also a significantly elevated level of breaks within the 1cen-1q12 region. There was no evidence for an increase in chromosome-1 disomy, or in diploidy. Our data reveal that oligozoospermia is associated with chromosomal structural abnormalities suggesting that, oligozoospermic men carry a higher burden of transmissible, chromosome damage. The findings raise the possibility of elevated levels of transmissible chromosomal defects following ICSI treatment.

  12. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss. PMID:25613102

  13. The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.

    PubMed

    Satterthwaite, Theodore D; Connolly, John J; Ruparel, Kosha; Calkins, Monica E; Jackson, Chad; Elliott, Mark A; Roalf, David R; Ryan Hopsona, Karthik Prabhakaran; Behr, Meckenzie; Qiu, Haijun; Mentch, Frank D; Chiavacci, Rosetta; Sleiman, Patrick M A; Gur, Ruben C; Hakonarson, Hakon; Gur, Raquel E

    2016-01-01

    The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale study of child development that combines neuroimaging, diverse clinical and cognitive phenotypes, and genomics. Data from this rich resource is now publicly available through the Database of Genotypes and Phenotypes (dbGaP). Here we focus on the data from the PNC that is available through dbGaP and describe how users can access this data, which is evolving to be a significant resource for the broader neuroscience community for studies of normal and abnormal neurodevelopment.

  14. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  15. Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage

    PubMed Central

    Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J. Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E. Sander; Kleinberg, Samantha

    2016-01-01

    High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology. PMID:27123582

  16. Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage.

    PubMed

    Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E Sander; Kleinberg, Samantha

    2016-01-01

    High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology. PMID:27123582

  17. Prediction of brain-computer interface aptitude from individual brain structure

    PubMed Central

    Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.

    2013-01-01

    Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083

  18. Brain Functional and Structural Predictors of Language Performance.

    PubMed

    Skeide, Michael A; Brauer, Jens; Friederici, Angela D

    2016-05-01

    The relation between brain function and behavior on the one hand and the relation between structural changes and behavior on the other as well as the link between the 2 aspects are core issues in cognitive neuroscience. It is an open question, however, whether brain function or brain structure is the better predictor for age-specific cognitive performance. Here, in a comprehensive set of analyses, we investigated the direct relation between hemodynamic activity in 2 pairs of frontal and temporal cortical areas, 2 long-distance white matter fiber tracts connecting each pair and sentence comprehension performance of 4 age groups, including 3 groups of children between 3 and 10 years as well as young adults. We show that the increasing accuracy of processing complex sentences throughout development is correlated with the blood-oxygen-level-dependent activation of 2 core language processing regions in Broca's area and the posterior portion of the superior temporal gyrus. Moreover, both accuracy and speed of processing are correlated with the maturational status of the arcuate fasciculus, that is, the dorsal white matter fiber bundle connecting these 2 regions. The present data provide compelling evidence for the view that brain function and white matter structure together best predict developing cognitive performance. PMID:25770126

  19. Acquiring "the Knowledge" of London's layout drives structural brain changes.

    PubMed

    Woollett, Katherine; Maguire, Eleanor A

    2011-12-20

    The last decade has seen a burgeoning of reports associating brain structure with specific skills and traits (e.g., [1-8]). Although these cross-sectional studies are informative, cause and effect are impossible to establish without longitudinal investigation of the same individuals before and after an intervention. Several longitudinal studies have been conducted (e.g., [9-18]); some involved children or young adults, potentially conflating brain development with learning, most were restricted to the motor domain, and all concerned relatively short timescales (weeks or months). Here, by contrast, we utilized a unique opportunity to study average-IQ adults operating in the real world as they learned, over four years, the complex layout of London's streets while training to become licensed taxi drivers. In those who qualified, acquisition of an internal spatial representation of London was associated with a selective increase in gray matter (GM) volume in their posterior hippocampi and concomitant changes to their memory profile. No structural brain changes were observed in trainees who failed to qualify or control participants. We conclude that specific, enduring, structural brain changes in adult humans can be induced by biologically relevant behaviors engaging higher cognitive functions such as spatial memory, with significance for the "nature versus nurture" debate. PMID:22169537

  20. Brain structure and function correlates of cognitive subtypes in schizophrenia.

    PubMed

    Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan

    2015-10-30

    Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.

  1. Acquiring "the Knowledge" of London's layout drives structural brain changes.

    PubMed

    Woollett, Katherine; Maguire, Eleanor A

    2011-12-20

    The last decade has seen a burgeoning of reports associating brain structure with specific skills and traits (e.g., [1-8]). Although these cross-sectional studies are informative, cause and effect are impossible to establish without longitudinal investigation of the same individuals before and after an intervention. Several longitudinal studies have been conducted (e.g., [9-18]); some involved children or young adults, potentially conflating brain development with learning, most were restricted to the motor domain, and all concerned relatively short timescales (weeks or months). Here, by contrast, we utilized a unique opportunity to study average-IQ adults operating in the real world as they learned, over four years, the complex layout of London's streets while training to become licensed taxi drivers. In those who qualified, acquisition of an internal spatial representation of London was associated with a selective increase in gray matter (GM) volume in their posterior hippocampi and concomitant changes to their memory profile. No structural brain changes were observed in trainees who failed to qualify or control participants. We conclude that specific, enduring, structural brain changes in adult humans can be induced by biologically relevant behaviors engaging higher cognitive functions such as spatial memory, with significance for the "nature versus nurture" debate.

  2. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Cutler, Roy G.; Kelly, Jeremiah; Storie, Kristin; Pedersen, Ward A.; Tammara, Anita; Hatanpaa, Kimmo; Troncoso, Juan C.; Mattson, Mark P.

    2004-02-01

    Alzheimer's disease (AD) is an age-related disorder characterized by deposition of amyloid -peptide (A) and degeneration of neurons in brain regions such as the hippocampus, resulting in progressive cognitive dysfunction. The pathogenesis of AD is tightly linked to A deposition and oxidative stress, but it remains unclear as to how these factors result in neuronal dysfunction and death. We report alterations in sphingolipid and cholesterol metabolism during normal brain aging and in the brains of AD patients that result in accumulation of long-chain ceramides and cholesterol. Membrane-associated oxidative stress occurs in association with the lipid alterations, and exposure of hippocampal neurons to A induces membrane oxidative stress and the accumulation of ceramide species and cholesterol. Treatment of neurons with -tocopherol or an inhibitor of sphingomyelin synthesis prevents accumulation of ceramides and cholesterol and protects them against death induced by A. Our findings suggest a sequence of events in the pathogenesis of AD in which A induces membrane-associated oxidative stress, resulting in perturbed ceramide and cholesterol metabolism which, in turn, triggers a neurodegenerative cascade that leads to clinical disease. amyloid | apoptosis | hippocampus | lipid peroxidation | sphingomyelin

  3. Decoding post-stroke motor function from structural brain imaging.

    PubMed

    Rondina, Jane M; Filippone, Maurizio; Girolami, Mark; Ward, Nick S

    2016-01-01

    Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes from early post

  4. Predicting aphasia type from brain damage measured with structural MRI.

    PubMed

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  5. Structural and Functional Plasticity in the Maternal Brain Circuitry.

    PubMed

    Pereira, Mariana

    2016-09-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young. PMID:27589496

  6. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes

    PubMed Central

    Biessels, G. J.; de Valk, H.; Algra, A.; Rutten, G. E. H. M.; van der Grond, J.; Kappelle, L. J.

    2007-01-01

    Aims/hypothesis The determinants of cerebral complications of type 2 diabetes are unclear. The present study aimed to identify metabolic and vascular factors that are associated with impaired cognitive performance and abnormalities on brain MRI in patients with type 2 diabetes. Methods The study included 122 patients and 56 controls. Neuropsychological test scores were divided into five cognitive domains and expressed as standardised z values. Brain MRI scans were rated for white matter lesions (WML), cortical and subcortical atrophy, and infarcts. Data on glucose metabolism, vascular risk factors and micro- and macrovascular disease were collected. Results Patients with type 2 diabetes had more cortical (p < 0.001) and subcortical (p < 0.01) atrophy and deep WML (p = 0.02) than the control group and their cognitive performance was worse. In multivariate regression analyses within the type 2 diabetes group, hypertension (p < 0.05) and a history of vascular events (p < 0.01) were associated with worse cognitive performance, while statin use was associated (p < 0.05) with better performance. Retinopathy and brain infarcts on MRI were associated with more severe cortical atrophy (both p < 0.01) and statin use with less atrophy (p < 0.05). Insulin level and brain infarcts were associated with more severe WML and statin use with less severe WML (all p < 0.05). Conclusions/interpretation Type 2 diabetes is associated with modest impairments in cognition, as well as atrophy and vascular lesions on MRI. This ‘diabetic encephalopathy’ is a multifactorial condition, for which atherosclerotic (macroangiopathic) vascular disease is an important determinant. Chronic hyperglycaemia, hyperinsulinaemia and hypertension may play additional roles. Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0792-z) contains details of the Utrecht Diabetic Encephalopathy Study Group, which are available to

  7. Classification of mathematics deficiency using shape and scale analysis of 3D brain structures

    NASA Astrophysics Data System (ADS)

    Kurtek, Sebastian; Klassen, Eric; Gore, John C.; Ding, Zhaohua; Srivastava, Anuj

    2011-03-01

    We investigate the use of a recent technique for shape analysis of brain substructures in identifying learning disabilities in third-grade children. This Riemannian technique provides a quantification of differences in shapes of parameterized surfaces, using a distance that is invariant to rigid motions and re-parameterizations. Additionally, it provides an optimal registration across surfaces for improved matching and comparisons. We utilize an efficient gradient based method to obtain the optimal re-parameterizations of surfaces. In this study we consider 20 different substructures in the human brain and correlate the differences in their shapes with abnormalities manifested in deficiency of mathematical skills in 106 subjects. The selection of these structures is motivated in part by the past links between their shapes and cognitive skills, albeit in broader contexts. We have studied the use of both individual substructures and multiple structures jointly for disease classification. Using a leave-one-out nearest neighbor classifier, we obtained a 62.3% classification rate based on the shape of the left hippocampus. The use of multiple structures resulted in an improved classification rate of 71.4%.

  8. Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains

    SciTech Connect

    Q Han; T Cai; D Tagle; J Li

    2011-12-31

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  9. Structural and Functional Brain Correlates of Cognitive Impairment in Euthymic Patients with Bipolar Disorder

    PubMed Central

    Goikolea, José M.; Bonnin, Caterina M.; Sarró, Salvador; Segura, Barbara; Amann, Benedikt L.; Monté, Gemma C.; Moro, Noemi; Fernandez-Corcuera, Paloma; Maristany, Teresa; Salvador, Raymond; Vieta, Eduard; Pomarol-Clotet, Edith; McKenna, Peter J.

    2016-01-01

    Introduction Cognitive impairment in the euthymic phase is a well-established finding in bipolar disorder. However, its brain structural and/or functional correlates are uncertain. Methods Thirty-three euthymic bipolar patients with preserved memory and executive function and 28 euthymic bipolar patients with significant memory and/or executive impairment, as defined using two test batteries, the Rivermead Behavioural Memory Test (RBMT) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS), plus 28 healthy controls underwent structural MRI using voxel-based morphometry (VBM). Twenty-seven of the cognitively preserved patients, 23 of the cognitively impaired patients and 28 controls also underwent fMRI during performance of the n-back working memory task. Results No clusters of grey or white matter volume difference were found between the two patient groups. During n-back performance, the cognitively impaired patients showed hypoactivation compared to the cognitively preserved patients in a circumscribed region in the right dorsolateral prefrontal cortex. Both patient groups showed failure of de-activation in the medial frontal cortex compared to the healthy controls. Conclusions Cognitive impairment in euthymic bipolar patients appears from this study to be unrelated to structural brain abnormality, but there was some evidence for an association with altered prefrontal function. PMID:27448153

  10. Small-molecule structure correctors target abnormal protein structure and function: structure corrector rescue of apolipoprotein E4-associated neuropathology.

    PubMed

    Mahley, Robert W; Huang, Yadong

    2012-11-01

    An attractive strategy to treat proteinopathies (diseases caused by malformed or misfolded proteins) is to restore protein function by inducing proper three-dimensional structure. We hypothesized that this approach would be effective in reversing the detrimental effects of apolipoprotein (apo) E4, the major allele that significantly increases the risk of developing Alzheimer's disease and other neurodegenerative disorders. ApoE4's detrimental effects result from its altered protein conformation ("domain interaction"), making it highly susceptible to proteolytic cleavage and the generation of neurotoxic fragments. Here, we review apoE structure and function and how apoE4 causes neurotoxicity, and describe the identification of potent small-molecule-based "structure correctors" that induce proper apoE4 folding. SAR studies identified a series of small molecules that significantly reduced apoE4's neurotoxic effects in cultured neurons and a series that reduced apoE4 fragment levels in vivo, providing proof-of-concept for our approach. Structure-corrector-based therapies could prove to be highly effective for the treatment of many protein-misfolding diseases.

  11. Whole-brain functional connectivity during emotional word classification in medication-free Major Depressive Disorder: Abnormal salience circuitry and relations to positive emotionality☆

    PubMed Central

    van Tol, Marie-José; Veer, Ilya M.; van der Wee, Nic J.A.; Aleman, André; van Buchem, Mark A.; Rombouts, Serge A.R.B.; Zitman, Frans G.; Veltman, Dick J.; Johnstone, Tom

    2013-01-01

    Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n = 25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject's connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic–cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior. PMID:24179829

  12. Sex differences in the structural connectome of the human brain.

    PubMed

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.

  13. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    PubMed Central

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  14. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    PubMed

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  15. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    PubMed

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  16. Impact of fatty acids on brain circulation, structure and function.

    PubMed

    Haast, Roy A M; Kiliaan, Amanda J

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of brain health is increasingly endorsed across epidemiological and diet-interventional studies. Promising results are found regarding to the protection of proper brain circulation, structure and functionality in healthy and diseased humans and animal models. These include enhanced cerebral blood flow (CBF), white and gray matter integrity, and improved cognitive functioning, and are possibly mediated through increased neurovascular coupling, neuroprotection and neuronal plasticity, respectively. Contrary, studies investigating diets high in saturated fats provide opposite results, which may eventually lead to irreversible damage. Studies like these are of great importance given the high incidence of obesity caused by the increased and decreased consumption of respectively saturated fats and ω3-LCPUFAs in the Western civilization. This paper will review in vivo research conducted on the effects of ω3-LCPUFAs and saturated fatty acids on integrity (circulation, structure and function) of the young, aging and diseased brain.

  17. Lagged and instantaneous dynamical influences related to brain structural connectivity

    PubMed Central

    Alonso-Montes, Carmen; Diez, Ibai; Remaki, Lakhdar; Escudero, Iñaki; Mateos, Beatriz; Rosseel, Yves; Marinazzo, Daniele; Stramaglia, Sebastiano; Cortes, Jesus M.

    2015-01-01

    Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Indeed, different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC). Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by three different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; in particular, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C, nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function. PMID:26257682

  18. Prenatal cocaine effects on brain structure in early infancy.

    PubMed

    Grewen, Karen; Burchinal, Margaret; Vachet, Clement; Gouttard, Sylvain; Gilmore, John H; Lin, Weili; Johns, Josephine; Elam, Mala; Gerig, Guido

    2014-11-01

    Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life. PMID:24999039

  19. Prenatal cocaine effects on brain structure in early infancy.

    PubMed

    Grewen, Karen; Burchinal, Margaret; Vachet, Clement; Gouttard, Sylvain; Gilmore, John H; Lin, Weili; Johns, Josephine; Elam, Mala; Gerig, Guido

    2014-11-01

    Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life.

  20. Brain structures mediating cardiovascular arousal and interoceptive awareness.

    PubMed

    Pollatos, Olga; Schandry, Rainer; Auer, Dorothee P; Kaufmann, Christian

    2007-04-13

    Different emotions are accompanied by different bodily states and it is unclear which brain structures are involved in both, the cerebral representation of the bodily change and the representation of its perception. Structures connecting bodily signals and interoceptive awareness could trigger, in a feedforward manner, behavioral responses appropriate to maintain a desired state of the cardiovascular system. The present functional magnetic resonance imaging study aimed at identifying brain structures that are mutually activated during interoceptive awareness of heartbeats and during cardiovascular arousal. Additionally, we searched for brain regions connecting interoception with feelings. During the interoceptive task (directing attention towards heartbeats in relation to an exteroceptive task) the thalamus, the insula, the medial frontal/dorsal cingulate and the inferior frontal gyrus, as well as the somatomotor cortex were activated. The conjunction of the interoceptive awareness of heartbeats and cardiovascular arousal revealed structures presumably connecting both conditions, i.e. the right thalamus, insula, somatomotor cortex, and the dorsal cingulate as well as medial frontal gyrus. Furthermore, the degree of interoceptive awareness predicted the degree of activation of both the insula and the medial frontal/dorsal cingulate gyrus. Negative feelings correlated with the BOLD response of the interoceptive awareness condition in the dorsal cingulate gyrus extending into the dorsomedial prefrontal cortex. We provide evidence that the insula, the dorsal cingulate gyrus, and the dorsomedial prefrontal cortex are specifically involved in processing cardiac sensations. The dorsal cingulate gyrus and the dorsomedial prefrontal cortex presumably represent the neural substrates of experiencing negative emotions. PMID:17296169

  1. Structural chromosomal abnormalities in patients with mental retardation and/or multiple congenital anomalies: a new series of 24 patients.

    PubMed

    Tos, T; Karaman, A; Aksoy, A; Tukun, A

    2012-01-01

    Chromosomal abnormalities are a major cause of mental retardation and/or multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. The objective of this study was to report standard chromosome analysis and FISH screening of a series of 24 patients with MCA/MR. Structural chromosomal abnormalities were detected in 24 alterations and included 5 deletions, 2 duplications, 6 unbalanced translocations, 3 inversions, 2 insertions, 3 derivative chromosomes, 2 marker chromosomes and 1 isochromosome. We confirm that a high percentage of MCA/MR cases hitherto considered idiopathic is caused by chromosomal imbalances. We conclude that patients with MCA/MR should be routinely karyotyped.

  2. White Matter Abnormalities and Structural Hippocampal Disconnections in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease

    PubMed Central

    Rowley, Jared; Fonov, Vladimir; Wu, Ona; Eskildsen, Simon Fristed; Schoemaker, Dorothee; Wu, Liyong; Mohades, Sara; Shin, Monica; Sziklas, Viviane; Cheewakriengkrai, Laksanun; Shmuel, Amir; Dagher, Alain; Gauthier, Serge; Rosa-Neto, Pedro

    2013-01-01

    The purpose of this project was to evaluate white matter degeneration and its impact on hippocampal structural connectivity in patients with amnestic mild cognitive impairment, non-amnestic mild cognitive impairment and Alzheimer’s disease. We estimated white matter fractional anisotropy, mean diffusivity and hippocampal structural connectivity in two independent cohorts. The ADNI cohort included 108 subjects [25 cognitively normal, 21 amnestic mild cognitive impairment, 47 non-amnestic mild cognitive impairment and 15 Alzheimer’s disease]. A second cohort included 34 subjects [15 cognitively normal and 19 amnestic mild cognitive impairment] recruited in Montreal. All subjects underwent clinical and neuropsychological assessment in addition to diffusion and T1 MRI. Individual fractional anisotropy and mean diffusivity maps were generated using FSL-DTIfit. In addition, hippocampal structural connectivity maps expressing the probability of connectivity between the hippocampus and cortex were generated using a pipeline based on FSL-probtrackX. Voxel-based group comparison statistics of fractional anisotropy, mean diffusivity and hippocampal structural connectivity were estimated using Tract-Based Spatial Statistics. The proportion of abnormal to total white matter volume was estimated using the total volume of the white matter skeleton. We found that in both cohorts, amnestic mild cognitive impairment patients had 27-29% white matter volume showing higher mean diffusivity but no significant fractional anisotropy abnormalities. No fractional anisotropy or mean diffusivity differences were observed between non-amnestic mild cognitive impairment patients and cognitively normal subjects. Alzheimer’s disease patients had 66.3% of normalized white matter volume with increased mean diffusivity and 54.3% of the white matter had reduced fractional anisotropy. Reduced structural connectivity was found in the hippocampal connections to temporal, inferior parietal

  3. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Li, Chao; Ma, Xiaofen; Dong, Mengshi; Yin, Yi; Hua, Kelei; Li, Meng; Li, Changhong; Zhan, Wenfeng; Li, Cheng; Jiang, Guihua

    2016-01-01

    Objective Investigating functional specialization is crucial for a complete understanding of the neural mechanisms of primary insomnia (PI). Resting-state functional magnetic resonance imaging (fMRI) is a useful tool to explore the functional specialization of PI. However, only a few studies have focused on the functional specialization of PI using resting-state fMRI and results of these studies were far from consistent. Thus, the current study aimed to investigate functional specialization of PI using resting-state fMRI with amplitude of low frequency fluctuations (ALFFs) algorithm. Methods In this study, 55 PI patients and 44 healthy controls were included. ALFF values were compared between the two groups using two-sample t-test. The relationship of abnormal ALFF values with clinical characteristics and duration of insomnia was investigated using Pearson’s correlation analysis. Results PI patients showed lower ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral cerebellum posterior lobes, while higher ALFF values in the right middle/inferior temporal that extended to the right occipital lobe. In addition, we found that the duration of PI negatively correlated with ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, and the Pittsburgh Sleep Quality Index score negatively correlated with ALFF values in the left inferior parietal lobule. Conclusion The present study added information to limited studies on functional specialization and provided evidence for hyperarousal hypothesis in PI. PMID:27366068

  4. Alcohol intake and brain structure in a multiethnic elderly cohort

    PubMed Central

    Gu, Yian; Scarmeas, Nikolaos; Short, Erica Eaton; Luchsinger, José A.; DeCarli, Charles; Stern, Yaakov; Manly, Jennifer J.; Schupf, Nicole; Mayeux, Richard; Brickman, Adam M.

    2014-01-01

    Background & Aims Evidence suggests that consuming light-to-moderate amounts of alcohol reduces the risk of dementia and is associated better cognitive function and less cardiovascular disease, relative to those consuming no or heavy alcohol. There are only minimal data on the association between alcohol and brain magnetic resonance imaging (MRI) markers. This study aimed to examine the association between alcohol and brain structure measured with MRI. Methods In this cross-sectional study, high-resolution structural MRI was collected on 589 multi-ethnic community residents of New York aged ≥65 with available alcohol intake assessments via a food frequency questionnaire. Total brain volume (TBV), white matter hyperintensity volume (WMHV), and presence of infarcts were derived from MRI scans with established methods. We examined the association of alcohol intake with these imaging markers using regression models adjusted for demographic, clinical, and vascular risk factors. Results Compared to non-drinking, light-to-moderate total alcohol (b=0.007, p=0.04) or wine (b= 0.008, p=0.05) intake, but not beer or liquor intake, was associated with larger TBV. Further analysis showed a dose-response association between alcohol (p-trend=0.03) or wine (p-trend=0.006)) and TBV. Overall, alcohol intake was not associated with WMHV or brain infarcts. Conclusions Our study suggests that among older adults in the community, light-to-moderate alcohol intake, in particular wine, is associated with larger TBV. These findings suggest that light to moderate alcohol consumption is potentially beneficial for brain aging, but replication is needed. PMID:24011900

  5. Brain structure resolves the segmental affinity of anomalocaridid appendages.

    PubMed

    Cong, Peiyun; Ma, Xiaoya; Hou, Xianguang; Edgecombe, Gregory D; Strausfeld, Nicholas J

    2014-09-25

    Despite being among the most celebrated taxa from Cambrian biotas, anomalocaridids (order Radiodonta) have provoked intense debate about their affinities within the moulting-animal clade that includes Arthropoda. Current alternatives identify anomalocaridids as either stem-group euarthropods, crown-group euarthropods near the ancestry of chelicerates, or a segmented ecdysozoan lineage with convergent similarity to arthropods in appendage construction. Determining unambiguous affinities has been impeded by uncertainties about the segmental affiliation of anomalocaridid frontal appendages. These structures are variably homologized with jointed appendages of the second (deutocerebral) head segment, including antennae and 'great appendages' of Cambrian arthropods, or with the paired antenniform frontal appendages of living Onychophora and some Cambrian lobopodians. Here we describe Lyrarapax unguispinus, a new anomalocaridid from the early Cambrian Chengjiang biota, southwest China, nearly complete specimens of which preserve traces of muscles, digestive tract and brain. The traces of brain provide the first direct evidence for the segmental composition of the anomalocaridid head and its appendicular organization. Carbon-rich areas in the head resolve paired pre-protocerebral ganglia at the origin of paired frontal appendages. The ganglia connect to areas indicative of a bilateral pre-oral brain that receives projections from the eyestalk neuropils and compound retina. The dorsal, segmented brain of L. unguispinus reinforces an alliance between anomalocaridids and arthropods rather than cycloneuralians. Correspondences in brain organization between anomalocaridids and Onychophora resolve pre-protocerebral ganglia, associated with pre-ocular frontal appendages, as characters of the last common ancestor of euarthropods and onychophorans. A position of Radiodonta on the euarthropod stem-lineage implies the transformation of frontal appendages to another structure in crown

  6. Brain structure resolves the segmental affinity of anomalocaridid appendages.

    PubMed

    Cong, Peiyun; Ma, Xiaoya; Hou, Xianguang; Edgecombe, Gregory D; Strausfeld, Nicholas J

    2014-09-25

    Despite being among the most celebrated taxa from Cambrian biotas, anomalocaridids (order Radiodonta) have provoked intense debate about their affinities within the moulting-animal clade that includes Arthropoda. Current alternatives identify anomalocaridids as either stem-group euarthropods, crown-group euarthropods near the ancestry of chelicerates, or a segmented ecdysozoan lineage with convergent similarity to arthropods in appendage construction. Determining unambiguous affinities has been impeded by uncertainties about the segmental affiliation of anomalocaridid frontal appendages. These structures are variably homologized with jointed appendages of the second (deutocerebral) head segment, including antennae and 'great appendages' of Cambrian arthropods, or with the paired antenniform frontal appendages of living Onychophora and some Cambrian lobopodians. Here we describe Lyrarapax unguispinus, a new anomalocaridid from the early Cambrian Chengjiang biota, southwest China, nearly complete specimens of which preserve traces of muscles, digestive tract and brain. The traces of brain provide the first direct evidence for the segmental composition of the anomalocaridid head and its appendicular organization. Carbon-rich areas in the head resolve paired pre-protocerebral ganglia at the origin of paired frontal appendages. The ganglia connect to areas indicative of a bilateral pre-oral brain that receives projections from the eyestalk neuropils and compound retina. The dorsal, segmented brain of L. unguispinus reinforces an alliance between anomalocaridids and arthropods rather than cycloneuralians. Correspondences in brain organization between anomalocaridids and Onychophora resolve pre-protocerebral ganglia, associated with pre-ocular frontal appendages, as characters of the last common ancestor of euarthropods and onychophorans. A position of Radiodonta on the euarthropod stem-lineage implies the transformation of frontal appendages to another structure in crown

  7. Diffusion abnormalities of the corpus callosum in patients receiving bevacizumab for malignant brain tumors: suspected treatment toxicity.

    PubMed

    Futterer, Stephen F; Nemeth, Alexander J; Grimm, Sean A; Ragin, Ann B; Chandler, James P; Muro, Kenji; Marymont, Maryanne H; Raizer, Jeffrey J

    2014-05-01

    Bevacizumab has been reported to cause diffusion restriction in the tumor bed of patients with malignant gliomas. This study evaluated prolonged diffusion restriction, in the corpus callosum (CC), of patients with malignant brain tumors treated with bevacizumab. We retrospectively reviewed our database of patients treated with bevacizumab for malignant brain tumors looking for those with restricted diffusion in the CC. CC ADC ratio measurements were obtained prior to and following treatment. Correlation was made with biopsy (n = 3) and MR perfusion (n = 7) and PET (n = 4). The temporal evolution of these changes relative to therapy was examined with mixed effects regression analysis. Nine patients (eight malignant gliomas, one malignant meningioma) out of 146 patients were found to have developed areas of diffusion restriction in the CC. These areas tended to enlarge and coalesce over serial MRIs and persisted for up to 22 months. Hypoperfusion was demonstrated in MR perfusion in 7/7. PET was hypometabolic in all 4. Biopsy of the CC showed no tumor in 3/3. ADC ratio measurements indicated a significant overall effect of time (F(16,60) = 11.2; p < 0.0001), consistent with persistent diffusion restriction over the measured time periods. Bevacizumab causes prolonged diffusion restriction in the CC. The negative MR perfusion, FDG PET and histopathology suggest this is a toxicity of bevacizumab and not active tumor. Awareness of these changes can assist in patient care. PMID:24574050

  8. Methylphenidate treatment leads to abnormalities on krebs cycle enzymes in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Furlanetto, Camila B; Morais, Meline O S; Jeremias, Isabela C; Mello-Santos, Lis Mairá; Freitas, Karolina V; Quevedo, João; Streck, Emilio L

    2013-08-01

    Studies have shown a relationship between energy metabolism and methylphenidate (MPH); however, there are no studies evaluating the effects of MPH in Krebs cycle. So, we investigated if MPH treatment could alter the activity of citrate synthase (CS), malate dehydrogenase (MD), and isocitrate dehydrogenase (ID) in the brain of young and adult Wistar rats. Our results showed that MPH (2 and 10 mg/kg) reduced CS in the striatum and prefrontal cortex (PF), with MPH at all doses in the cerebellum and hippocampus after chronic treatment in young rats. In adult rats the CS was reduced in the cerebellum after acute treatment with MPH at all doses, and after chronic treatment in the PF and cerebellum with MPH (10 mg/kg), and in the hippocampus with MPH (2 and 10 mg/kg). The ID decreased in the hippocampus and striatum with MPH (2 and 10 mg/kg), and in the cortex (10 mg/kg) after acute treatment in young rats. In adult rats acute treatment with MPH (2 and 10 mg/kg) reduced ID in the cerebellum, and with MPH (10 mg/kg) in the cortex; chronic treatment with MPH (10 mg/kg) decreased ID in the PF; with MPH (2 and 10 mg/kg) in the cerebellum, and with MPH at all doses in the hippocampus. The MD did not alter. In conclusion, our results suggest that MPH can alter enzymes of Krebs cycle in brain areas involved with circuits related with attention deficit hyperactivity disorder; however, such effects depend on age of animal and treatment regime.

  9. Brain structural correlates of complex sentence comprehension in children

    PubMed Central

    Fengler, Anja; Meyer, Lars; Friederici, Angela D.

    2015-01-01

    Prior structural imaging studies found initial evidence for the link between structural gray matter changes and the development of language performance in children. However, previous studies generally only focused on sentence comprehension. Therefore, little is known about the relationship between structural properties of brain regions relevant to sentence processing and more specific cognitive abilities underlying complex sentence comprehension. In this study, whole-brain magnetic resonance images from 59 children between 5 and 8 years were assessed. Scores on a standardized sentence comprehension test determined grammatical proficiency of our participants. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. Voxel-based morphometry of gray matter revealed that while children's ability to assign thematic roles is positively correlated with gray matter probability (GMP) in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. Since these areas are known to be differentially engaged in adults’ complex sentence processing, our data suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities that guide their sentence comprehension. PMID:26468613

  10. More bilateral, more anterior: Alterations of brain organization in the large-scale structural network in Chinese dyslexia.

    PubMed

    Qi, Ting; Gu, Bin; Ding, Guosheng; Gong, Gaolang; Lu, Chunming; Peng, Danling; Malins, Jeff G; Liu, Li

    2016-01-01

    Abnormalities in large-scale brain networks have been recently reported in dyslexia; however, it remains unclear whether these abnormalities are congenital (due to dyslexia per se) or arise later in development. Here, structural magnetic resonance imaging data of 17 Chinese reading disabled (RD) and 17 age-matched typically developing (TD) children were used to construct cortical thickness (sensitive to postnatal development) and surface area (sensitive to prenatal development) networks. In the thickness network, compared to TD, RD showed reduced nodal network properties (e.g., degree and betweenness) in the left hemisphere along with enhanced nodal properties mainly in the right hemisphere. As for the surface area network, compared to TD, RD demonstrated lower nodal properties in the posterior brain regions and higher nodal properties in the anterior brain regions. Furthermore, hubs in both the thickness and surface area networks in RD were more distributed in frontal areas and less distributed in parietal areas, whereas TD showed the opposite pattern. Altogether, these findings indicate that the aberrant structural connectivity in the dyslexic individuals was not only due to a late developmental effect reflected in the altered thickness network, but may also be a congenital effect during prenatal development, reflected in the altered surface network.

  11. Ultra-structural analysis of the brain in a Drosophila model of Alzheimer's disease using FIB/SEM microscopy.

    PubMed

    Park, Se Jin; Schertel, Andreas; Lee, Kyung Eun; Han, Sung Sik

    2014-02-01

    Alzheimer's disease (AD), one of the most prevalent neurodegenerative brain diseases, has been extensively researched for years. However, its synaptic structure, which is a basis for understanding neurodegenerative disorders, has not yet been understood clearly. Defining the structures of neurons and their synaptic connections is the significant goal of brain research. To study synaptic connectivity, three-dimensional (3D) reconstructions of the nervous system are very helpful. In this study, the 3D structure of brain synapses in the Drosophila melanogaster Swedish amyloid precursor protein (APP) mutant, which is characterized by early onset AD, was analyzed using focused ion beam/scanning electron microscopy (FIB/SEM). This technique is one of the most useful for 3D reconstruction, as the process of obtaining serial images is fully automated and thus avoids the problems inherent in hand-operated ultrathin serial sectioning. The 3D images of normal and AD brains reported in this study reveal characteristic features of AD such as appearance of autophagy, abnormal axon formation and increased mitochondrial size. This 3D analysis reveals structural change as a basis for understanding neurodegenerative disorder.

  12. Structural plasticity of the brain to psychostimulant use.

    PubMed

    Nyberg, Fred

    2014-12-01

    Over the past years it has become evident that repeated exposure to a variety of psychoactive stimulants, like amphetamine, cocaine, MDMA (3,4-methylenedioxy-N-methylamphetamine), methylphenidate and nicotine may produce profound behavioral changes as well as structural and neurochemical alterations in the brain that may persist long after drug administration has ceased. These stimulants have been shown to produce long-lasting enhanced embranchments of dendrites and increasing spine density in brain regions linked to behavioral sensitization and compulsive patterns characteristic of drug seeking and drug addiction. In this regard, addiction to stimulant drugs represents a compulsory behavior that includes drug seeking, drug use and drug craving, but is also characterized as a cognitive disorder. In this article, recent findings regarding the impact of central stimulants on plasticity in brain regions of relevance for addictive behavior will be highlighted. A particular focus will be given to changes in neuroplasticity that occur in areas related to memory and cognition. Possible routes for the reversal of altered brain plasticity will also be discussed. This article is part of the Special Issue entitled 'CNS Stimulants'. PMID:25018041

  13. Structural Brain Correlates Associated with Professional Handball Playing

    PubMed Central

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  14. Abnormal thermal expansion, multiple transitions, magnetocaloric effect, and electronic structure of Gd6Co4.85

    NASA Astrophysics Data System (ADS)

    Zhang, Jiliang; Zheng, Zhigang; Shan, Guangcun; Bobev, Svilen; Shek, Chan Hung

    2015-10-01

    The structure of known Gd4Co3 compound is re-determined as Gd6Co4.85, adopting the Gd6Co1.67Si3 structure type, which is characterized by two disorder Co sites filling the Gd octahedral and a short Gd-Gd distance within the octahedra. The compound shows uniaxial negative thermal expansion in paramagnetic state, significant negative expansion in ferromagnetic state, and positive expansion below ca. 140 K. It also exhibits large magnetocaloric effect, with an entropy change of -6.4 J kg-1 K-1 at 50 kOe. In the lattice of the compound, Co atoms at different sites show different spin states. It was confirmed by the X-ray photoelectron spectra and calculation of electronic structure and shed lights on the abnormal thermal expansion. The stability of such compound and the origin of its magnetism are also discussed based on measured and calculated electronic structures.

  15. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  16. The sequential structure of brain activation predicts skill.

    PubMed

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. PMID:26707716

  17. Locomotion without a brain: physical reservoir computing in tensegrity structures.

    PubMed

    Caluwaerts, K; D'Haene, M; Verstraeten, D; Schrauwen, B

    2013-01-01

    Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.

  18. Locomotion without a brain: physical reservoir computing in tensegrity structures.

    PubMed

    Caluwaerts, K; D'Haene, M; Verstraeten, D; Schrauwen, B

    2013-01-01

    Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system. PMID:23186351

  19. Role of structural inhomogeneities in resting-state brain dynamics.

    PubMed

    Vuksanović, Vesna; Hövel, Philipp

    2016-08-01

    Brain imaging methods allow a non-invasive assessment of both structural and functional connectivity. However, the mechanism of how functional connectivity arises in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which functional correlations arise from underlying structural connections taking into account inhomogeneities in the interactions between the brain regions of interest. The local dynamics of a neural population is assumed to be of phase-oscillator type. The considered structural connectivity patterns describe long-range anatomical connections between interacting neural elements. We find a dependence of the simulated functional connectivity patterns on the parameters governing the dynamics. We calculate graph-theoretic measures of the functional network topology obtained from numerical simulations. The effect of structural inhomogeneities in the coupling term on the observed network state is quantified by examining the relation between simulated and empirical functional connectivity. Importantly, we show that simulated and empirical functional connectivity agree for a narrow range of coupling strengths. We conclude that identification of functional connectivity during rest requires an analysis of the networ