Sample records for abnormal cell cycle

  1. Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas.

    PubMed

    Gerin, Chloé; Pallud, Johan; Deroulers, Christophe; Varlet, Pascale; Oppenheim, Catherine; Roux, Francois-Xavier; Chrétien, Fabrice; Thomas, Stephen R; Grammaticos, Basile; Badoual, Mathilde

    2013-10-01

    Supratentorial diffuse low-grade gliomas in adults extend beyond maximal visible MRI-defined abnormalities, and a gap exists between the imaging signal changes and the actual tumor margins. Direct quantitative comparisons between imaging and histological analyses are lacking to date. However, they are of the utmost importance if one wishes to develop realistic models for diffuse glioma growth. In this study, we quantitatively compared the cell concentration and the edema fraction from human histological biopsy samples (BSs) performed inside and outside imaging abnormalities during serial imaging-based stereotactic biopsy of diffuse low-grade gliomas. The cell concentration was significantly higher in BSs located inside (1189 ± 378 cell/mm(2)) than outside (740 ± 124 cell/mm(2)) MRI-defined abnormalities (P = .0003). The edema fraction was significantly higher in BSs located inside (mean, 45% ± 23%) than outside (mean, 5 %± 9%) MRI-defined abnormalities (P < .0001). At borders of the MRI-defined abnormalities, 20% of the tissue surface area was occupied by edema and only 3% by tumor cells. The cycling cell concentration was significantly higher in BSs located inside (10 ± 12 cell/mm(2)), compared with outside (0.5 ± 0.9 cell/mm(2)), MRI-defined abnormalities (P = .0001). We showed that the margins of T2-weighted signal changes are mainly correlated with the edema fraction. In 62.5% of patients, the cycling tumor cell fraction (defined as the ratio of the cycling tumor cell concentration to the total number of tumor cells) was higher at the limits of the MRI-defined abnormalities than closer to the center of the tumor. In the remaining patients, the cycling tumor cell fraction increased towards the center of the tumor.

  2. Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia.

    PubMed

    Stock, W; Tsai, T; Golden, C; Rankin, C; Sher, D; Slovak, M L; Pallavicini, M G; Radich, J P; Boldt, D H

    2000-04-01

    To test the hypothesis that cell cycle regulatory gene abnormalities are determinants of clinical outcome in adult acute lymphoblastic leukemia (ALL), we screened lymphoblasts from patients on a Southwest Oncology Group protocol for abnormalities of the genes, retinoblastoma (Rb), p53, p15(INK4B), and p16(INK4A). Aberrant expression occurred in 33 (85%) patients in the following frequencies: Rb, 51%; p16(INK4A), 41%; p53, 26%. Thirteen patients (33%) had abnormalities in 2 or more genes. Outcomes were compared in patients with 0 to 1 abnormality versus patients with multiple abnormalities. The 2 groups did not differ in a large number of clinical and laboratory characteristics. The CR rates for patients with 0 to 1 and multiple abnormalities were similar (69% and 54%, respectively). Patients with 0 to 1 abnormality had a median survival time of 25 months (n = 26; 95% CI, 13-46 months) versus 8 months (n = 13; 95% CI, 4-12 months) for those with multiple abnormalities (P <.01). Stem cells (CD34+lin-) were isolated from adult ALL bone marrows and tested for p16(INK4A) expression by immunocytochemistry. In 3 of 5 patients lymphoblasts and sorted stem cells lacked p16(INK4A) expression. In 2 other patients only 50% of sorted stem cells expressed p16(INK4A). By contrast, p16 expression was present in the CD34+ lin- compartment in 95% (median) of 9 patients whose lymphoblasts expressed p16(INK4A). Therefore, cell cycle regulatory gene abnormalities are frequently present in adult ALL lymphoblasts, and they may be important determinants of disease outcome. The presence of these abnormalities in the stem compartment suggests that they contribute to leukemogenesis. Eradication of the stem cell subset harboring these abnormalities may be important to achieve cure.

  3. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovariesmore » in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.« less

  4. Novel Analysis Software for Detecting and Classifying Ca2+ Transient Abnormalities in Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina

    2015-01-01

    Comprehensive functioning of Ca2+ cycling is crucial for excitation–contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs. PMID:26308621

  5. Novel Analysis Software for Detecting and Classifying Ca2+ Transient Abnormalities in Stem Cell-Derived Cardiomyocytes.

    PubMed

    Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina

    2015-01-01

    Comprehensive functioning of Ca2+ cycling is crucial for excitation-contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs.

  6. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    PubMed

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of chromosomes may contribute to cancer induction and perhaps be involved in the induction of adverse pregnancy outcomes associated with long-term consumption of disinfected water. Here we present the first observation of the induction of hyperploidy by a class of DBPs.

  7. Immunohistochemical estimation of cell cycle phase in laryngeal neoplasia

    PubMed Central

    Chatrath, P; Scott, I S; Morris, L S; Davies, R J; Bird, K; Vowler, S L; Coleman, N

    2006-01-01

    We previously developed an immunohistochemical method for estimating cell cycle state and phase in tissue samples, including biopsies that are too small for flow cytometry. We have used our technique to examine whether primary abnormalities of the cell cycle exist in laryngeal neoplasia. Antibodies against the markers of cell cycle entry, minichromosome maintenance protein-2 (Mcm-2) and Ki67, and putative markers of cell cycle phase, cyclin D1 (G1-phase), cyclin A (S-phase), cyclin B1 (G2-phase) and phosphohistone H3 (Mitosis) were applied to paraffin-embedded sections of normal larynx (n=8), laryngeal dysplasia (n=10) and laryngeal squamous cell carcinoma (n=10). Cells expressing each marker were determined as a percentage of total cells, termed the labelling index (LI), and as a percentage of Mcm-2-positive cells, termed the labelling fraction (LF). The frequency of coexpression of each putative phase marker was investigated by confocal microscopy. There was a correlation between Mcm-2 and Ki67 LIs (ρ=0.93) but Mcm-2 LIs were consistently higher. All cells expressing a phase marker coexpressed Mcm-2, whereas Ki67 was not expressed in a proportion of these cells. The putative phase markers showed little coexpression. Labelling index values increased on progression from normal larynx through laryngeal dysplasia to squamous cell carcinoma for Mcm-2 (P=0.001), Ki67 (P=0.0002), cyclin D1 (P=0.015), cyclin A (P=0.0001) and cyclin B1 (P=0.0004). There was no evidence of an increase in the LF for any phase marker. Immunohistochemistry can be used to estimate cell cycle state and phase in laryngeal biopsies. Our data argues against primary cell cycle phase abnormalities in laryngeal neoplasia. PMID:16832409

  8. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System.

    PubMed

    Santaguida, Stefano; Richardson, Amelia; Iyer, Divya Ramalingam; M'Saad, Ons; Zasadil, Lauren; Knouse, Kristin A; Wong, Yao Liang; Rhind, Nicholas; Desai, Arshad; Amon, Angelika

    2017-06-19

    Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Time-Lapse Analysis of Human Embryonic Stem Cells Reveals Multiple Bottlenecks Restricting Colony Formation and Their Relief upon Culture Adaptation

    PubMed Central

    Barbaric, Ivana; Biga, Veronica; Gokhale, Paul J.; Jones, Mark; Stavish, Dylan; Glen, Adam; Coca, Daniel; Andrews, Peter W.

    2014-01-01

    Summary Using time-lapse imaging, we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating, and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore, the daughter cells showed a continued pattern of cell death after division, so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact, which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast, most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny, without the need for cell:cell contacts and independent of their motility patterns. PMID:25068128

  10. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein.

    PubMed

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-07-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.

  11. Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein†

    PubMed Central

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037

  12. Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

    PubMed Central

    Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.

    2018-01-01

    The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160

  13. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  14. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear buds for measuring chromosome instability in telomere-dysfunction cell environments.

  15. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  16. Ionizing radiation and cell cycle progression in ataxia telangiectasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beamish, H.; Khanna, K.K.; Lavin, M.F.

    1994-04-01

    Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompaniedmore » by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.« less

  17. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  18. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  19. Essential Roles for Caenorhabditis elegans Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes

    PubMed Central

    Liu, Jun; Ben-Shahar, Tom Rolef; Riemer, Dieter; Treinin, Millet; Spann, Perah; Weber, Klaus; Fire, Andrew; Gruenbaum, Yosef

    2000-01-01

    Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs. PMID:11071918

  20. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb.

    PubMed

    Omais, Saad; Jaafar, Carine; Ghanem, Noël

    2018-01-01

    Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.

  1. Biological Characteristics and Genetic Heterogeneity between Carcinoma-Associated Fibroblasts and Their Paired Normal Fibroblasts in Human Breast Cancer

    PubMed Central

    Hou, Yixuan; Sun, Yan; Wang, Liyang; Luo, Haojun; Peng, Huimin; Liu, Manran

    2013-01-01

    Background The extensional signals in cross-talk between stromal cells and tumor cells generated from extracellular matrix molecules, soluble factor, and cell-cell adhesion complexes cooperate at the extra- and intracellular level in the tumor microenvironment. CAFs are the primary type of stromal cells in the tumor microenvironment and play a pivotal role in tumorigenesis and development. Hitherto, there is hardly any systematic analysis of the intrinsic relationship between CAFs function and its abnormal signaling pathway. The extreme complexity of CAFs’ features and their role in tumor development are needed to be further investigated. Methodology/Principal Findings We primary cultured CAFs and NFs from early stages of breast cancer tissue and identified them using their biomarker by immunohistochemistry for Fibronectin, α-SMA and FAP. Microarray was applied to analyze gene expression profiles of human breast CAFs and the paired NFs. The Up-regulated genes classified by Gene Ontology, signal pathways enriched by DAVID pathway analysis. Abnormal signaling pathways in breast cancer CAFs are involved in cell cycle, cell adhesion, signal transduction and protein transport being reported in CAFs derived from other tumors. Significantly, the altered ATM signaling pathway, a set of cell cycle regulated signaling, and immune associated signaling are identified to be changed in CAFs. Conclusions/Significance CAFs have the vigorous ability of proliferation and potential of invasion and migration comparing with NFs. CAFs could promote breast cancer cell invasion under co-culture conditions through up-regulated CCL18 and CXCL12. Consistently with its biologic behavior, the gene expression profiling analyzed by microarray shows that some of key signaling pathways, such as cell cycle, cell adhesion, and secreting factors play an important role in CAFs. The altered ATM signaling pathway is abnormally active in the early stage of breast cancer. The set of immune associated signaling may be involved in tumor cell immune evasion. PMID:23577100

  2. Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression

    PubMed Central

    Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M.; Singh, Manvendra K.; Li, Li; Epstein, Jonathan A.

    2013-01-01

    Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. PMID:23506836

  3. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  4. Single Site α-Tubulin Mutation Affects Astral Microtubules and Nuclear Positioning during Anaphase in Saccharomyces cerevisiae: Possible Role for Palmitoylation of α-Tubulin

    PubMed Central

    Caron, Joan M.; Vega, Leticia R.; Fleming, James; Bishop, Robert; Solomon, Frank

    2001-01-01

    We generated a strain of Saccharomyces cerevisiae in which the sole source of α-tubulin protein has a cys-to-ser mutation at cys-377, and then we examined microtubule morphology and nuclear positioning through the cell cycle. During G1 of the cell cycle, microtubules in the C377S α-tubulin (C377S tub1) mutant were indistinguishable from those in the control (TUB1) strain. However, mitotic C377S tub1 cells displayed astral microtubules that often appeared excessive in number, abnormally long, and/or misoriented compared with TUB1 cells. Although mitotic spindles were always correctly aligned along the mother-bud axis, translocation of spindles through the bud neck was affected. In late anaphase, spindles were often not laterally centered but instead appeared to rest along the sides of cells. When the doubling time was increased by growing cells at a lower temperature (15°C), we often found abnormally long mitotic spindles. No increase in the number of anucleate or multinucleate C377S mutant cells was found at any temperature, suggesting that, despite the microtubule abnormalities, mitosis proceeded normally. Because cys-377 is a presumptive site of palmitoylation in α-tubulin in S. cerevisiae, we next compared in vivo palmitoylation of wild-type and C377S mutant forms of the protein. We detected palmitoylated α-tubulin in TUB1 cells, but the cys-377 mutation resulted in approximately a 60% decrease in the level of palmitoylated α-tubulin in C377S tub1 cells. Our results suggest that cys-377 of α-tubulin, and possibly palmitoylation of this amino acid, plays a role in a subset of astral microtubule functions during nuclear migration in M phase of the cell cycle. PMID:11553707

  5. Modulatory effect of phytoglycoprotein (38 kDa) on cyclin D1/CDK4 in BNL CL.2 cells induced by N-methyl-N'-nitro-N-nitrosoguanidine.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2012-02-01

    In the developmental stages of cancer, cell transformation occurs after the promotion stage and is a marker of cancer progression. This cell transformation is related to abnormal proliferation during the cancer initiation stage. The purpose of this study was to evaluate the effect of Styrax japonica Siebold et al. Zuccarin (SJSZ) glycoprotein on cell transformation in murine embryonic liver cells (BNL CL.2) following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. To determine abnormal proliferation during the initiation stage, intracellular reactive oxygen species (ROS), phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), activities of cell cycle-related factors [cyclin D1/cyclin dependent kinase (CDK) 4], cell cycle inhibitors (p53, p21, and p27), nuclear factor (NF)-κB, and proliferating cell nuclear antigen (PCNA) were evaluated using Western blot analysis and real-time PCR. Our study demonstrated that SJSZ glycoprotein (50 μg/ml) reduces foci formation with combined treatment [MNNG and 12-O-tetradecanoyl phorbol-13-acetate] of BNL CL.2 cells. With regard to proliferation-related signals, our finding indicated that SJSZ glycoprotein (50 μg/ml) diminished the production of intracellular ROS, activity of phosphorylated ERK, p38 MAPK, NF-κB (p50 and p65), PCNA, and cyclin D1/CDK4 in MNNG-induced BNL CL.2 cells. Taken together, these results lead us to speculate that SJSZ glycoprotein can inhibit abnormal cell proliferation at the initiation stage of hepatocarcinogenesis.

  6. Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Han, Joo-Hui; Kim, Yohan; Jung, Sang-Hyuk; Lee, Jung-Jin; Park, Hyun-Soo; Song, Gyu-Yong; Cuong, Nguyen Manh; Kim, Young Ho

    2015-01-01

    The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [3H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis. PMID:26330754

  7. Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells.

    PubMed

    Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J

    2015-12-02

    The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.

  8. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  9. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  10. Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    PubMed Central

    Osawa, T; Davies, D; Hartley, J A

    2011-01-01

    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285

  11. “Till Death Do Us Part”: A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb

    PubMed Central

    Omais, Saad; Jaafar, Carine; Ghanem, Noël

    2018-01-01

    Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well. PMID:29593485

  12. Atorvastatin Calcium Inhibits PDGF-ββ-Induced Proliferation and Migration of VSMCs Through the G0/G1 Cell Cycle Arrest and Suppression of Activated PDGFRβ-PI3K-Akt Signaling Cascade.

    PubMed

    Chen, Shuang; Dong, Siyuan; Li, Zhao; Guo, Xiaofan; Zhang, Naijin; Yu, Bo; Sun, Yingxian

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of vascular lesions, such as atherosclerosis and restenosis. PDGF-ββ, an isoform of PDGF (platelet-derived growth factor), has been demonstrated to induce proliferation and migration of VSMCs. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, has favorable protective effects on VSMCs. This study examined the effects of atorvastatin calcium on the proliferation and migration of PDGF-ββ-treated VSMCs, as well as its underlying mechanisms. MTT assays, Edu imaging, cell cycle analysis, wound healing assays, transwell migration assays, and western blot analysis were performed. Atorvastatin calcium significantly inhibited cell proliferation, DNA synthesis and cell migration of PDGF-ββ-treated VSMCs. We demonstrated that atorvastatin calcium induced cell cycle arrest in the G0/G1 phase in response to PDGF-ββ stimulation and decreased the expression of G0/G1-specific regulatory proteins, including proliferating cell nuclear antigen (PCNA), CDK2, cyclin D1, cyclin E and CDK4 in PDGF-ββ-treated VSMCs. Moreover, pretreatment with atorvastatin calcium inhibited the PDGF-ββ-treated phosphorylation of PDGFRβ and Akt, whereas atorvastatin calcium did not affect the phosphorylation of PLC-γ1 or (ERK) 1/2. Our data suggested that atorvastatin calcium inhibited abnormal proliferation and migration of VSMCs through G0/G1 cell cycle arrest and suppression of the PDGFRβ-Akt signaling cascade. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.

    PubMed

    Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M; Singh, Manvendra K; Li, Li; Epstein, Jonathan A

    2013-05-15

    Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  15. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression.

    PubMed

    Pryzhkova, Marina V; Jordan, Philip W

    2016-04-15

    Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, despite its important roles in DNA synthesis, DNA repair and chromosome segregation as evaluated in other model systems. Using mouse embryonic stem cells (mESCs) with a conditional knockout allele of Smc5, we showed that Smc5 protein depletion resulted in destabilization of the Smc5/6 complex, accumulation of cells in G2 phase of the cell cycle and apoptosis. Detailed assessment of mitotic mESCs revealed abnormal condensin distribution and perturbed chromosome segregation, accompanied by irregular spindle morphology, lagging chromosomes and DNA bridges. Mutation of Smc5 resulted in retention of Aurora B kinase and enrichment of condensin on chromosome arms. Furthermore, we observed reduced levels of Polo-like kinase 1 at kinetochores during mitosis. Our study reveals crucial requirements of the Smc5/6 complex during cell cycle progression and for stem cell genome maintenance. © 2016. Published by The Company of Biologists Ltd.

  16. Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation.

    PubMed

    Liu, Tai-Hang; Wu, Yun-Fei; Dong, Xiao-Long; Pan, Cai-Xia; Du, Guo-Yu; Yang, Ji-Gui; Wang, Wei; Bao, Xi-Yan; Chen, Peng; Pan, Min-Hui; Lu, Cheng

    2017-05-03

    Cyclin proteins are the key regulatory and activity partner of cyclin-dependent kinases (CDKs), which play pivotal regulatory roles in cell cycle progression. In the present study, we identified a Cyclin L1 and 2 CDK11 2 CDK11 splice variants, CDK11A and CDK11B, from silkworm, Bombyx mori. We determined that both Cyclin L1 and CDK11A/B are nuclear proteins, and further investigations were conducted to elucidate their spatiofunctional features. Cyclin L1 forms a complex with CDK11A/B and were co-localized to the nucleus. Moreover, the dimerization of CDK11A and CDK11B and the effects of Cyclin L1 and CDK11A/B on cell cycle regulation were also investigated. Using overexpression or RNA interference experiments, we demonstrated that the abnormal expression of Cyclin L1 and CDK11A/B leads to cell cycle arrest and cell proliferation suppression. Together, these findings indicate that CDK11A/B interacts with Cyclin L1 to regulate the cell cycle.

  17. Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: a time-lapse study.

    PubMed

    Liu, Yanhe; Chapple, Vincent; Feenan, Katie; Roberts, Peter; Matson, Phillip

    2015-06-01

    To investigate the clinical significance of intercellular contact point (ICCP) in four-cell stage human embryos and the effectiveness of morphology and abnormal cleavage patterns in identifying embryos with low implantation potential. Retrospective cohort study. Private IVF center. A total of 223 consecutive IVF and intracytoplasmic sperm injection treatment cycles, with all resulting embryos cultured in the Embryoscope, and a subset of 207 cycles analyzed for ICCP number where good-quality four-cell embryos were available on day 2 (n = 373 IVF and n = 392 intracytoplasmic sperm injection embryos). None. Morphologic score on day 3, embryo morphokinetic parameters, incidence of abnormal biological events, and known implantation results. Of 765 good-quality four-cell embryos, 89 (11.6%) failed to achieve six ICCPs; 166 of 765 (21.7%) initially had fewer than six ICCPs but were able to establish six ICCPs before subsequent division. Embryos with fewer than six ICCPs at the end of four-cell stage had a lower implantation rate (5.0% vs. 38.5%), with lower embryology performance in both conventional and morphokinetic assessments, compared with embryos achieving six ICCPs by the end of four-cell stage. Deselecting embryos with poor morphology, direct cleavage, reverse cleavage, and fewer than six ICCPs at the four-cell stage led to a significantly improved implantation rate (33.6% vs. 22.4%). Embryos with fewer than six ICCPs at the end of the four-cell stage show compromised subsequent development and reduced implantation potential. Deselection of embryos with poor morphology and abnormal cleavage revealed via time-lapse imaging could provide the basis of a qualitative algorithm for embryo selection. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Hippo signaling controls cell cycle and restricts cell plasticity in planarians

    PubMed Central

    de Sousa, Nídia; Rodríguez-Esteban, Gustavo; Rojo-Laguna, Jose Ignacio; Saló, Emili

    2018-01-01

    The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell–based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation. PMID:29357350

  19. In vitro short-term exposure to air pollution PM{sub 2.5-0.3} induced cell cycle alterations and genetic instability in a human lung cell coculture model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Imane; EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque; Lebanese Atomic Energy Commission – CNRS, Beirut

    Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOHmore » and/or MSI) in the PM{sub 2.5-0.3}-exposed coculture model. PM{sub 2.5-0.3} exposure of human AM from the coculture model induced marked cell cycle alterations after 24 h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM{sub 2.5-0.3} was reported in the L132 cells. Exposure of human AM from the coculture model to PM{sub 2.5-0.3} resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM{sub 2.5-0.3} induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability. - Highlights: • Better knowledge on health adverse effects of air pollution PM{sub 2.5}. • Human alveolar macrophage and normal human epithelial lung cell coculture. • Molecular abnormalities from TP53-RB gene signaling pathway. • Loss of heterozygosity and microsatellite instability. • Pathologic changes in morphology and number of cells in relation to airway remodeling.« less

  20. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis.

    PubMed

    Schröder-Heurich, Bianca; Wieland, Britta; Lavin, Martin F; Schindler, Detlev; Dörk, Thilo

    2014-03-01

    Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.

  1. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    PubMed

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  2. A novel function for Foxm1 in interkinetic nuclear migration in the developing telencephalon and anxiety-related behavior.

    PubMed

    Wu, Xiaojing; Gu, Xiaochun; Han, Xiaoning; Du, Ailing; Jiang, Yan; Zhang, Xiaoyun; Wang, Yanjie; Cao, Guangliang; Zhao, Chunjie

    2014-01-22

    Interkinetic nuclear migration (INM) is a key feature of cortical neurogenesis. INM functions to maximize the output of the neuroepithelium, and more importantly, balance the self-renewal and differentiation of the progenitors. Although INM has been reported to be highly correlated with the cell cycle, little is known about the effects of cell cycle regulators on INM. In this study, by crossing Foxm1(fl/fl) mice with Emx1-Cre line, we report that a conditional disruption of forkhead transcription factor M1 (Foxm1) in dorsal telencephalon results in abnormal cell cycle progression, leading to impaired INM through the downregulation of Cyclin b1 and Cdc25b. The impairment of INM disturbs the synchronization of apical progenitors (APs) and promotes the transition from APs to basal progenitors (BPs) in a cell-autonomous fashion. Moreover, ablation of Foxm1 causes anxiety-related behaviors in adulthood. Thus, this study provides evidence of linkages among the cell cycle regulator Foxm1, INM, and adult behavior.

  3. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster.

    PubMed

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-07-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.

  5. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster

    PubMed Central

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-01-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390

  6. How do fission yeast cells grow and connect growth to the mitotic cycle?

    PubMed

    Sveiczer, Ákos; Horváth, Anna

    2017-05-01

    To maintain size homeostasis in a unicellular culture, cells should coordinate growth to the division cycle. This is achieved via size control mechanisms (also known as size checkpoints), i.e. some events during the mitotic cycle supervene only if the cell has reached a critical size. Rod-shaped cells like those of fission yeast are ideal model organisms to study these checkpoints via time-lapse microphotography. By applying this method, once we can analyse the growth process between two consecutive divisions at a single (or even at an 'average') cellular level, moreover, we can also position the size checkpoint(s) at the population level. Finally, any of these controls can be abolished in appropriate cell cycle mutants, either in steady-state or in induction synchronised cultures. In the latter case, we produce abnormally oversized cells, and microscopic experiments with them clearly show the existence of a critical size above which the size checkpoint ceases (becomes cryptic). In this review, we delineate the development of our knowledge both on the growth mode of fission yeast and on the operating size control(s) during its mitotic cycle. We finish these historical stories with our recent findings, arguing that three different size checkpoints exist in the fission yeast cell cycle, namely in late G1, in mid G2 and in late G2, which has been concluded by analysing these controls in several cell cycle mutants.

  7. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  8. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)].

    PubMed

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles

    2012-09-01

    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  9. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle

    NASA Astrophysics Data System (ADS)

    Boydston-White, Susie; Diem, Max

    1999-06-01

    Advances in infrared spectroscopic methodology permit excellent infrared spectra to be collected from objects as small as single human cells. These advances have lead to an increased interest of the use of infrared spectroscopy as a medical diagnostic tool. Infrared spectra of myeloid leukemia (ML-1) cells are reported for cells derived from an asynchronous, exponentially-growing culture, as well as for cells that were fractionated according to their stage within the cell division cycle. The observed results suggest that the cells' DNA is detectable by infrared spectroscopy mainly when the cell is in the S phase, during the replication of DNA. In the G1 and G2 phases, the DNA is so tightly packed in the nucleus that it appears opaque to infrared radiation. Consequently, the nucleic acid spectral contributions in the G1 and G2 phases would be mostly that of cytoplasmic RNA. These results suggest that infrared spectral changes observed earlier between normal and abnormal cells may have been due to different distributions of cells within the stages of the cell division cycle.

  10. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    PubMed

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  11. Mutations in CENPE define a novel kinetochore-centromeric mechanism for Microcephalic Primordial Dwarfism

    PubMed Central

    Mirzaa, Ghayda M.; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G.; Paciorkowski, Alex R.; Cleveland, Don W.; Dobyns, William B.; O’Driscoll, Mark

    2015-01-01

    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of Primary Microcephaly (PM) and Microcephalic Primordial Dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organisation, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated Microcephalic Osteodysplastic Primordial Dwarfism type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans. PMID:24748105

  12. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism.

    PubMed

    Mirzaa, Ghayda M; Vitre, Benjamin; Carpenter, Gillian; Abramowicz, Iga; Gleeson, Joseph G; Paciorkowski, Alex R; Cleveland, Don W; Dobyns, William B; O'Driscoll, Mark

    2014-08-01

    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.

  13. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. The B-MYB Transcriptional Network Guides Cell Cycle Progression and Fate Decisions to Sustain Self-Renewal and the Identity of Pluripotent Stem Cells

    PubMed Central

    Zhan, Ming; Riordon, Daniel R.; Yan, Bin; Tarasova, Yelena S.; Bruweleit, Sarah; Tarasov, Kirill V.; Li, Ronald A.; Wersto, Robert P.; Boheler, Kenneth R.

    2012-01-01

    Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity. PMID:22936984

  15. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    PubMed

    Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R

    2012-01-01

    Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  16. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.

    2008-07-15

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cellsmore » treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.« less

  17. Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease.

    PubMed

    Fauser, B C; Pache, T D; Lamberts, S W; Hop, W C; de Jong, F H; Dahl, K D

    1991-10-01

    Serum steroid, gonadotropin, and alpha-subunit levels were assessed in 35 women with cycle abnormalities [11 with and 24 without polycystic ovarian disease (PCOD) according to strict clinical and biochemical criteria] and 8 regularly cycling women in the early (cycle day 3 or 4) and mid (cycle day 7 or 8) follicular phase. LH and FSH levels were estimated using two immunological techniques [RIA and immunoradiometric assay (IRMA)] and in vitro bioassays (BIO), using mouse Leydig cells and rat granulosa cells, respectively. In PCOD patients mean alpha-subunit, free androgen index [FAI; testosterone x 100/sex hormone-binding globulin (SHBG)], androstenedione, estrone, and estradiol (E2) were significantly elevated compared to levels in the early follicular phase of control cycles and non-PCOD patients. In addition, in PCOD patients mean IRMA-LH and RIA-LH levels were distinctly increased (2.8- to 3.6 fold, respectively; both comparisons, P less than 0.001) compared to control values, but in the same order of magnitude (1.3- to 1.4-fold increments) as that in non-PCOD patients. However, the median BIO-LH level in PCOD patients was 5.9-fold higher than that in non-PCOD patients and 4.0-fold higher than the BIO-LH in the early follicular phase of control women. Consequently, the median BIO/IRMA-LH ratio was 4.8-fold higher in PCOD patients compared to non-PCOD patients. In women with cycle abnormalities, individual BIO/IRMA-LH ratios correlated with BIO-LH (rs = 0.48), FAI (rs = 0.39), free estrogens (E2/SHBG ratios; rs = 0 0.47), and dehydroepiandrosterone sulfate (rs = 0.60) concentrations. Mean IRMA-, RIA-, and BIO-FSH levels and BIO/IRMA-FSH ratios were not significantly different when various groups were compared. Although RIA- and IRMA-LH levels showed good correlation (rs = 0.88), RIA-LH levels were consistently higher, resulting in distinctly higher RIA-LH/FSH ratios (mean, 4.5) compared to IRMA-LH/FSH ratios (median, 1.8) in PCOD patients.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. EMODIN DOWNREGULATES CELL PROLIFERATION MARKERS DURING DMBA INDUCED ORAL CARCINOGENESIS IN GOLDEN SYRIAN HAMSTERS.

    PubMed

    Manimaran, Asokan; Buddhan, Rajamanickam; Manoharan, Shanmugam

    2017-01-01

    Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate the Emodin efficacy on abnormal cell proliferation during 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in golden Syrian hamsters. Topical application of DMBA, three times a week for 14 weeks, on the hamsters' buccal pouches developed well differentiated squamous cell carcinoma. Cyclin D1 and PCNA over-expression and up-regulation of CDK4, CDK6 and survivin were noticed in the buccal mucosa of hamsters treated with DMBA alone. Emodin administration (50mg/kg b.w) orally to hamsters treated with DMBA down-regulated the expression of cell proliferation markers in the buccal mucosa. The anti-cell proliferative role of Emodin is owing to its modulating efficacy on cell-cycle markers towards the tumor suppression during DMBA induced oral carcinogenesis.

  19. Inhibition of brain tumor cell proliferation by alternating electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  20. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities.

    PubMed

    Dixon, Jill; Jones, Natalie C; Sandell, Lisa L; Jayasinghe, Sachintha M; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J; Trainor, Paul A

    2006-09-05

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies.

  1. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.

  2. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    NASA Astrophysics Data System (ADS)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  3. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer.

    PubMed

    Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna

    2007-06-08

    LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.

  4. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates.

    PubMed

    Duensing, A; Liu, Y; Perdreau, S A; Kleylein-Sohn, J; Nigg, E A; Duensing, S

    2007-09-20

    Abnormal centrosome numbers are detected in virtually all cancers. The molecular mechanisms that underlie centrosome amplification, however, are poorly characterized. Based on the model that each maternal centriole serves as a template for the formation of one and only one daughter centriole per cell division cycle, the prevailing view is that centriole overduplication arises from successive rounds of centriole reproduction. Here, we provide evidence that a single maternal centriole can concurrently generate multiple daughter centrioles. This mechanism was initially identified in cells treated with the peptide vinyl sulfone proteasome inhibitor Z-L(3)VS. We subsequently found that the formation of more than one daughter at maternal centrioles requires cyclin E/cyclin-dependent kinase 2 as well as Polo-like kinase 4 and that overexpression of these proteins mimics this phenotype in the absence of a proteasome inhibitor. Moreover, we show that the human papillomavirus type 16 E7 oncoprotein stimulates aberrant daughter centriole numbers in part through the formation of more than one daughter centriole at single maternal templates. These results help to explain how oncogenic stimuli can rapidly induce abnormal centriole numbers within a single cell-division cycle and provide insights into the regulation of centriole duplication.

  5. Breaking the ties that bind: new advances in centrosome biology.

    PubMed

    Mardin, Balca R; Schiebel, Elmar

    2012-04-02

    The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.

  6. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    PubMed

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cytokinesis-Based Constraints on Polarized Cell Growth in Fission Yeast

    PubMed Central

    Bohnert, K. Adam; Gould, Kathleen L.

    2012-01-01

    The rod-shaped fission yeast Schizosaccharomyces pombe, which undergoes cycles of monopolar-to-bipolar tip growth, is an attractive organism for studying cell-cycle regulation of polarity establishment. While previous research has described factors mediating this process from interphase cell tips, we found that division site signaling also impacts the re-establishment of bipolar cell growth in the ensuing cell cycle. Complete loss or targeted disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at interphase cell tips, resulted in many cells failing to grow at new ends created by cell division. This appeared due to faulty disassembly and abnormal persistence of the cell division machinery at new ends of fic1Δ cells. Moreover, additional mutants defective in the final stages of cytokinesis exhibited analogous growth polarity defects, supporting that robust completion of cell division contributes to new end-growth competency. To test this model, we genetically manipulated S. pombe cells to undergo new end take-off immediately after cell division. Intriguingly, such cells elongated constitutively at new ends unless cytokinesis was perturbed. Thus, cell division imposes constraints that partially override positive controls on growth. We posit that such constraints facilitate invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed numerous pseudohyphae. Collectively, these data highlight a role for previous cell cycles in defining a cell's capacity to polarize at specific sites, and they additionally provide insight into how a unicellular yeast can transition into a quasi-multicellular state. PMID:23093943

  8. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.

  9. Urea cycle disorders: brain MRI and neurological outcome.

    PubMed

    Bireley, William R; Van Hove, Johan L K; Gallagher, Renata C; Fenton, Laura Z

    2012-04-01

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions.

  10. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities

    PubMed Central

    Dixon, Jill; Jones, Natalie C.; Sandell, Lisa L.; Jayasinghe, Sachintha M.; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J.; Trainor, Paul A.

    2006-01-01

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies. PMID:16938878

  11. The MAPK Signaling Cascade is a Central Hub in the Regulation of Cell Cycle, Apoptosis and Cytoskeleton Remodeling by Tripeptidyl-Peptidase II

    PubMed Central

    Sompallae, Ramakrishna; Stavropoulou, Vaia; Houde, Mathieu; Masucci, Maria G.

    2008-01-01

    Tripeptidyl-peptidase II (TPPII) is a serine peptidase highly expressed in malignant Burkitt’s lymphoma cells (BL). We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes highlighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII influences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability. PMID:19787088

  12. Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML).

    PubMed

    Guan, Y; Hogge, D E

    2000-12-01

    One possible explanation for the competitive advantage that malignant cells in patients with acute myelogenous leukemia (AML) appear to have over normal hematopoietic elements is that leukemic progenitors proliferate more rapidly than their normal progenitor cell counterparts. To test this hypothesis, an overnight 3H-thymidine (3H-Tdr) suicide assay was used to analyze the proliferative status of malignant progenitors detected in both colony-forming cell (CFC) and long-term culture initiating cell (LTC-IC) assays from the peripheral blood of nine patients with newly diagnosed AML. Culture of AML cells in serum-free medium with 100 ng/ml Steel factor (SF), 20 ng/ml interleukin 3 (IL-3) and 20 ng/ml granulocyte colony-stimulating factor (G-CSF) for 16-24 h maintained the number of AML-CFC and LTC-IC at near input values (mean % input +/- s.d. for CFC and LTC-IC were 78 +/- 33 and 126 +/- 53, respectively). The addition of 20 muCi/ml high specific activity 3H-Tdr to these cultures reduced the numbers of both progenitor cell types from most of the patient samples substantially: mean % kill +/- s.d. for AML-CFC and LTC-IC were 64 +/- 27 and 82 +/- 16, respectively, indicating that a large proportion of both progenitor populations were actively cycling. FISH analysis of colonies from CFC and LTC-IC assays confirmed that most cytogenetically abnormal CFC and LTC-IC were actively cycling (mean % kill +/- s.d.: 68 +/- 26 and 85 +/- 13, respectively). Interestingly, in six patient samples where a significant number of cytogenetically normal LTC-ICs were detected, the % kill of these cells (74 +/- 20) was similar to that of the abnormal progenitors. These data contrast with the predominantly quiescent cell cycle status of CFC and LTC-IC previously observed in steady-state peripheral blood from normal individuals but also provide evidence that a significant proportion of primitive malignant progenitors from AML patients are quiescent and therefore may be resistant to standard chemotherapeutic regimens.

  13. p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways.

    PubMed

    Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A

    2002-02-15

    p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.

  14. A Presumptive Developmental Role for a Sea Urchin Cyclin B Splice Variant

    PubMed Central

    Lozano, Jean-Claude; Schatt, Philippe; Marquès, François; Peaucellier, Gérard; Fort, Philippe; Féral, Jean-Pierre; Genevière, Anne-Marie; Picard, André

    1998-01-01

    We show that a splice variant–derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation. PMID:9442104

  15. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, W.-T.; Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

    2010-02-15

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 muM. Under NNK exposure, arsenite wasmore » able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.« less

  16. Moderate Ovarian Stimulation Does Not Increase the Incidence of Human Embryo Chromosomal Abnormalities in in Vitro Fertilization Cycles

    PubMed Central

    Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio

    2012-01-01

    Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young normo-ovulatory women does not significantly increase the embryo aneuploidies rate in in vitro fertilization-derived human embryos as compared with an unstimulated cycle. Whether these results can be extrapolated to infertile patients is still unknown. PMID:22865900

  17. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  18. The assessment of ovulation by a combination of ultrasound and detailed serial hormone profiles in 35 women with long-standing unexplained infertility.

    PubMed

    Petsos, P; Chandler, C; Oak, M; Ratcliffe, W A; Wood, R; Anderson, D C

    1985-06-01

    We have examined for the presence of subtle hormonal abnormalities in women with long-standing unexplained infertility. For a full cycle serum LH, FSH, progesterone and oestradiol levels were measured about three times a week, and serial ultrasound scans of the ovaries made until the time of apparent ovulation. The results on 45 cycles in 35 women with unexplained infertility and in three normal volunteers are presented. Normal ovulatory cycles were defined by a length of 26-32 d, and progressive follicular maturation followed by disappearance or abrupt reduction in size of a follicle within 48 h of the recorded LH peak, followed by progressive and sustained rise in serum progesterone levels to more than 25 nmol/l and a luteal phase length of greater than or equal to 13 d. Thirty spontaneous cycles (28 women) were clearly normal while 15 spontaneous cycles (12 women) were abnormal. Abnormalities included luteinization of an unruptured follicle (eight cycles), absence of follicular development (two cycles), poor follicular development (two cycles), persistence of a large ovarian cyst from the preceeding cycle (two cycles) and one aluteal cycle. Six of the abnormal cycles were characterized hormonally by inappropriate elevation of serum LH levels throughout. If this study had been based only on serial ultrasound scans, all results on abnormal cycles might have been misinterpreted. If it had been conducted only with (multiple) progesterone determinations and the level of greater than 25 nmol/l had been taken as indicative of ovulation nine clearly abnormal cycles would have been considered as normal. We conclude that the combination of the hormonal and ultrasound assessment of ovulation increases our confidence for confirmation of normality and reveals various ovulatory disorders which are possibly due to an endocrinological defect or defects.

  19. Abnormal crystal growth in CH 3NH 3PbI 3-xCl x using a multi-cycle solution coating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qingfeng; Yuan, Yongbo; Shao, Yuchuan

    2015-06-23

    Recently, the efficiency of organolead trihalide perovskite solar cells has improved greatly because of improved material qualities with longer carrier diffusion lengths. Mixing chlorine in the precursor for mixed halide films has been reported to dramatically enhance the diffusion lengths of mixed halide perovskite films, mainly as a result of a much longer carrier recombination lifetime. Here we report that adding Cl containing precursor for mixed halide perovskite formation can induce the abnormal grain growth behavior that yields well-oriented grains accompanied by the appearance of some very large size grains. The abnormal grain growth becomes prominent only after multi-cycle coatingmore » of MAI : MACl blend precursor. The large grain size is found mainly to contribute to a longer carrier charge recombination lifetime, and thus increases the device efficiency to 18.9%, but without significantly impacting the carrier transport property. As a result, the strong correlation identified between material process and morphology provides guidelines for future material optimization and device efficiency enhancement.« less

  20. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  1. Myeloperoxidase in blood neutrophils during normal and abnormal menstrual cycles in women of reproductive age.

    PubMed

    Shibata, T; Sakamoto, J; Osaka, Y; Neyatani, N; Fujita, S; Oka, Y; Takagi, H; Mori, H; Fujita, H; Tanaka, Y; Sasagawa, T

    2017-04-01

    We previously reported that granulocyte colony-stimulating factor (G-CSF) plays a critical role in ovulation, suggesting that neutrophils may maintain ovulation. We assessed myeloperoxidase (MPO), a major and specific enzyme of neutrophils, in women with abnormal and normal menstrual cycles to clarify the relationship between MPO and ovulation. We analyzed MPO activity in blood neutrophils of women with abnormal menstrual cycles (indicative of anovulation, n = 12) and age- and body mass index-matched normal menstrual cycles (indicative of ovulation, n = 24) using two parameters as a marker of MPO, Neut X and mean peroxidase index (MPXI). MPO of women with abnormal menstrual cycles was significantly lower than that of women with normal menstrual cycles [Neut X: 62.6 ± 1.1 (mean ± standard error of the mean) vs. 66.2 ± 0.3, P = 0.009; MPXI: -0.54 ± 1.66 vs. 4.91 ± 0.53, P = 0.008]. Among women with normal menstrual cycles, MPO was highest in the follicular phase (Neut X: 67.0 ± 0.3; P = 0.033). The difference in MPO between women with abnormal and normal menstrual cycles and the upregulation of MPO before ovulation suggest that neutrophils and MPO are closely related to ovulation. © 2016 John Wiley & Sons Ltd.

  2. BOD1 Is Required for Cognitive Function in Humans and Drosophila

    PubMed Central

    Motazacker, M. Mahdi; Nijhof, Bonnie; Castells-Nobau, Anna; Asztalos, Zoltan; Weißmann, Robert; Behjati, Farkhondeh; Tzschach, Andreas; Felbor, Ute; Scherthan, Harry; Sayfati, Seyed Morteza; Ropers, H. Hilger.; Kahrizi, Kimia; Najmabadi, Hossein; Swedlow, Jason R.; Schenck, Annette; Kuss, Andreas W.

    2016-01-01

    Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features. PMID:27166630

  3. Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice.

    PubMed

    Liu, Nan; Wang, Lin-Hui; Guo, Ling-Ling; Wang, Guo-Qing; Zhou, Xi-Ping; Jiang, Yan; Shang, Jing; Murao, Koji; Chen, Jing-Wei; Fu, Wen-Qing; Zhang, Guo-Xing

    2013-01-01

    Solid evidence has demonstrated that psychoemotional stress induced alteration of hair cycle through neuropeptide substance P (SP) mediated immune response, the role of reactive oxygen species (ROS) in brain-skin-axis regulation system remains unknown. The present study aims to investigate possible mechanisms of ROS in regulation of SP-mast cell signal pathway in chronic restraint stress (CRS, a model of chronic psychoemotional stress) which induced abnormal of hair cycle. Our results have demonstrated that CRS actually altered hair cycle by inhibiting hair follicle growth in vivo, prolonging the telogen stage and delaying subsequent anagen and catagen stage. Up-regulation of SP protein expression in cutaneous peripheral nerve fibers and activation of mast cell were observed accompanied with increase of lipid peroxidation levels and reduction of the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in CRS mice skin. In addition, SP receptor antagonist (RP67580) reduced mast cell activations and lipid peroxidation levels as well as increased GSH-Px activity and normalized hair cycle. Furthermore, antioxidant Tempol (a free radical scavenger) also restored hair cycle, reduced SP protein expression and mast cell activation. Our study provides the first solid evidence for how ROS play a role in regulation of psychoemotional stress induced SP-Mast cell pathway which may provide a convincing rationale for antioxidant application in clinical treatment with psychological stress induced hair loss.

  4. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.

    PubMed

    Sajnani, Karishma; Islam, Farhadul; Smith, Robert Anthony; Gopalan, Vinod; Lam, Alfred King-Yin

    2017-04-01

    Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis. Mutations in genes encoding aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, and citrate synthase are noted in many cancers. Abnormalities of Krebs cycle enzymes cause ectopic production of Krebs cycle intermediates (oncometabolites) such as 2-hydroxyglutarate, and citrate. These oncometabolites stabilize hypoxia inducible factor 1 (HIF1), nuclear factor like 2 (Nrf2), inhibit p53 and prolyl hydroxylase 3 (PDH3) activities as well as regulate DNA/histone methylation, which in turn activate cell growth signalling. They also stimulate increased glutaminolysis, glycolysis and production of reactive oxygen species (ROS). Additionally, genetic alterations in Krebs cycle enzymes are involved with increased fatty acid β-oxidations and epithelial mesenchymal transition (EMT) induction. These altered phenomena in cancer could in turn promote carcinogenesis by stimulating cell proliferation and survival. Overall, epigenetic and genetic changes of Krebs cycle enzymes lead to the production of oncometabolite intermediates, which are important driving forces of cancer pathogenesis and progression. Understanding and applying the knowledge of these mechanisms opens new therapeutic options for patients with cancer. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function.

    PubMed

    Kwiatkowski, Nicholas; Jelluma, Nannette; Filippakopoulos, Panagis; Soundararajan, Meera; Manak, Michael S; Kwon, Mijung; Choi, Hwan Geun; Sim, Taebo; Deveraux, Quinn L; Rottmann, Sabine; Pellman, David; Shah, Jagesh V; Kops, Geert J P L; Knapp, Stefan; Gray, Nathanael S

    2010-05-01

    Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.

  6. S100A8/A9 (Calprotectin) Negatively Regulates G2/M Cell Cycle Progression and Growth of Squamous Cell Carcinoma

    PubMed Central

    Khammanivong, Ali; Wang, Chengxing; Sorenson, Brent S.; Ross, Karen F.; Herzberg, Mark C.

    2013-01-01

    Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches. PMID:23874958

  7. E2F activators signal and maintain centrosome amplification in breast cancer cells.

    PubMed

    Lee, Mi-Young; Moreno, Carlos S; Saavedra, Harold I

    2014-07-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2(+) cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2(+) cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2(+) breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2.

  8. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less

  9. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP.

    PubMed

    Kohlmaier, Gregor; Loncarek, Jadranka; Meng, Xing; McEwen, Bruce F; Mogensen, Mette M; Spektor, Alexander; Dynlacht, Brian D; Khodjakov, Alexey; Gönczy, Pierre

    2009-06-23

    The centrosome is the principal microtubule organizing center (MTOC) of animal cells. Accurate centrosome duplication is fundamental for genome integrity and entails the formation of one procentriole next to each existing centriole, once per cell cycle. The procentriole then elongates to eventually reach the same size as the centriole. The mechanisms that govern elongation of the centriolar cylinder and their potential relevance for cell division are not known. Here, we show that the SAS-4-related protein CPAP is required for centrosome duplication in cycling human cells. Furthermore, we demonstrate that CPAP overexpression results in the formation of abnormally long centrioles. This also promotes formation of more than one procentriole in the vicinity of such overly long centrioles, eventually resulting in the presence of supernumerary MTOCs. This in turn leads to multipolar spindle assembly and cytokinesis defects. Overall, our findings suggest that centriole length must be carefully regulated to restrict procentriole number and thus ensure accurate cell division.

  10. Effect of MPS1 Inhibition on Genotoxic Stress Responses in Murine Tumour Cells.

    PubMed

    Suzuki, Motofumi; Yamamori, Tohru; Yasui, Hironobu; Inanami, Osamu

    2016-06-01

    The monopolar spindle 1 (MPS1) is a serine/threonine kinase that plays an important role in spindle assembly checkpoint signaling. To determine the possible relationship between MPS1 inhibition and genotoxic stress responses, herein we examined whether MPS1 inhibition influences cellular susceptibility towards two genotoxic treatments, etoposide and ionizing radiation (IR). Two murine tumour cell lines, SCCVII and EMT6, were used. The effect of genotoxic treatments with or without two novel MPS1 inhibitors, NMS-P715 and AZ3146, on cellular survival, cell-cycle distribution, centrosome status and mitotic catastrophe (MC) was evaluated. MPS1 inhibition sensitized murine tumour cells to etoposide but not to IR. In addition, MPS1 inhibition altered cell-cycle progression and exacerbated centrosome abnormalities, resulting in enhanced MC induced by etoposide but not by IR. MPS1 inhibition promotes the etoposide-induced aberrant mitosis and, consequently, the induction of tumour cell death. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    PubMed Central

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility. PMID:26491874

  12. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response

    PubMed Central

    dos Santos, Nathália Villa; Matias, Andreza Cândido; Higa, Guilherme Shigueto Vilar; Kihara, Alexandre Hiroaki; Cerchiaro, Giselle

    2015-01-01

    The toxicologic effects of copper (Cu) on tumor cells have been studied during the past decades, and it is suggested that Cu ion may trigger antiproliferative effects in vitro. However, in normal cells the toxicologic effects of high exposures of free Cu are not well understood. In this work, Cu uptake, the expression of genes associated with cell cycle regulation, and the levels of ROS production and related oxidative processes were evaluated in Cu-treated mammary epithelial MCF10A nontumoral cells. We have shown that the Cu additive is associated with the activation of cyclin D1 and cyclin B1, as well as cyclin-dependent kinase 2 (CDK2). These nontumor cells respond to Cu-induced changes in the oxidative balance by increase of the levels of reduced intracellular glutathione (GSH), decrease of reactive oxygen species (ROS) generation, and accumulation during progression of the cell cycle, thus preventing the cell abnormal proliferation or death. Taken together, our findings revealed an effect that contributes to prevent a possible damage of normal cells exposed to chemotherapeutic effects of drugs containing the Cu ion. PMID:26583055

  13. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Asuncion, James D; Matsui, Jonathan I

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.

  14. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  15. Analysis of cell cycle-related proteins in gastric intramucosal differentiated-type cancers based on mucin phenotypes: a novel hypothesis of early gastric carcinogenesis based on mucin phenotype

    PubMed Central

    2010-01-01

    Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401

  16. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells.

    PubMed

    Plett, P Artur; Abonour, Rafat; Frankovitz, Stacy M; Orschell, Christie M

    2004-08-01

    Migration, proliferation, and differentiation of bone marrow (BM) hematopoietic stem cells (HSC) are important factors in maintaining hematopoietic homeostasis. Homeostatic control of erythrocytes and lymphocytes is perturbed in humans exposed to microgravity (micro-g), resulting in space flight-induced anemia and immunosuppression. We sought to determine whether any of these anomalies can be explained by micro-g-induced changes in migration, proliferation, and differentiation of human BM CD34+ cells, and whether such changes can begin to explain any of the shifts in hematopoietic homeostasis observed in astronauts. BM CD34+ cells were cultured in modeled micro-g (mmicro-g) using NASA's rotating wall vessels (RWV), or in control cultures at earth gravity for 2 to 18 days. Cells were harvested at different times and CD34+ cells assessed for migration potential, cell-cycle kinetics and regulatory proteins, and maturation status. Culture of BM CD34+ cells in RWV for 2 to 3 days resulted in a significant reduction of stromal cell-derived factor 1 (SDF-1alpha)-directed migration, which correlated with decreased expression of F-actin. Modeled micro-g induced alterations in cell-cycle kinetics that were characterized by prolonged S phase and reduced cyclin A expression. Differentiation of primitive CD34+ cells cultured for 14 to 18 days in RWV favored myeloid cell development at the expense of erythroid development, which was significantly reduced compared to controls. These results illustrate that mmicro-g significantly inhibits the migration potential, cell-cycle progression, and differentiation patterns of primitive BM CD34+ cells, which may contribute to some of the hematologic abnormalities observed in humans during space flight.

  17. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability.

    PubMed

    Myers, Katie N; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J; Howard, Anna E; Beveridge, Ryan D; Maslen, Sarah; Skehel, J Mark; Collis, Spencer J

    2016-10-14

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.

  18. Cycling hypoxia: A key feature of the tumor microenvironment.

    PubMed

    Michiels, Carine; Tellier, Céline; Feron, Olivier

    2016-08-01

    A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.

    1998-01-01

    This paper explores the mode of action of the tranquillizers chloral hydrate and diazepam during fertilization and mitosis of the first reproductive cell cycles in sea urchin eggs. Most striking effects of these drugs are the alteration of centrosomal material and the abnormal microtubule configurations during exposure and after recovery from the drugs. This finding is utilized to study the mechanisms of centrosome compaction and decompaction and the dynamic configurational changes of centrosomal material and its interactions with microtubules. When 0.1% chloral hydrate or 350-750 microM diazepam is applied at specific phases during the first cell cycle of sea urchin eggs, expanded centrosomal material compacts at distinct regions and super-compacts into dense spheres while microtubules disassemble. When eggs are treated before pronuclear fusion, centrosomal material aggregates around each of the two pronuclei while microtubules disappear. Upon recovery, atypical asters oftentimes with multiple foci are formed from centrosomal material surrounding the pronuclei which indicates that the drugs have affected centrosomal material and prevent it from functioning normally. Electron microscopy and immunofluorescence studies with antibodies that routinely stain centrosomes in sea urchin eggs (4D2; and Ah-6) depict centrosomal material that is altered when compared to control cells. This centrosomal material is not able to reform normal microtubule patterns upon recovery but will form multiple asters around the two pronuclei. When cells are treated with 0.1% chloral hydrate or 350-750 microM diazepam during mitosis, the bipolar centrosomal material becomes compacted and aggregates into multiple dense spheres while spindle and polar microtubules disassemble. With increased incubation time, the smaller dense centrosome particles aggregate into bigger and fewer spheres. Upon recovery, unusual irregular microtubule configurations are formed from centrosomes that have lost their ability to reform normal mitotic figures. These results indicate that chloral hydrate and diazepam affect centrosome structure which results in the inability to reform normal microtubule formations and causes abnormal fertilization and mitosis.

  20. E2F Activators Signal and Maintain Centrosome Amplification in Breast Cancer Cells

    PubMed Central

    Lee, Mi-Young; Moreno, Carlos S.

    2014-01-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2+ cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2+ cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2+ breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2. PMID:24797070

  1. The G1 phase Cdks regulate the centrosome cycle and mediate oncogene-dependent centrosome amplification

    PubMed Central

    2011-01-01

    Because centrosome amplification generates aneuploidy and since centrosome amplification is ubiquitous in human tumors, a strong case is made for centrosome amplification being a major force in tumor biogenesis. Various evidence showing that oncogenes and altered tumor suppressors lead to centrosome amplification and aneuploidy suggests that oncogenes and altered tumor suppressors are a major source of genomic instability in tumors, and that they generate those abnormal processes to initiate and sustain tumorigenesis. We discuss how altered tumor suppressors and oncogenes utilize the cell cycle regulatory machinery to signal centrosome amplification and aneuploidy. PMID:21272329

  2. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with specific epigenetic changes in their promoters in riboflavin-depleted HEK293T cells. Riboflavin depletion contributes to HEK293T and NIH3T3 cell tumorigenesis and may be a risk factor for tumor development.

  3. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications.

    PubMed

    De Bock, Katrien; Cauwenberghs, Sandra; Carmeliet, Peter

    2011-02-01

    As a result of excessive production of angiogenic molecules, tumor vessels become abnormal in structure and function. By impairing oxygen delivery, abnormal vessels fuel a vicious cycle of non-productive angiogenesis, which creates a hostile microenvironment from where tumor cells escape through leaky vessels and which renders tumors less responsive to chemoradiation. While anti-angiogenic strategies focused on inhibiting new vessel growth and destroying pre-existing vessels, clinical studies showed modest anti-tumor effects. For many solid tumors, anti-VEGF treatment offers greater clinical benefit when combined with chemotherapy. This is partly due to a normalization of the tumor vasculature, which improves cytotoxic drug delivery and efficacy and offers unprecedented opportunities for anti-cancer treatment. Here, we overview key novel molecular players that induce vessel normalization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice.

    PubMed

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J; Hong, Seok-Ho; DeMayo, Francesco J; Lydon, John P; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-02-02

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8(d/d)) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8(d/d) females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8(d/d) mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice.

  5. KPU-300, a Novel Benzophenone–Diketopiperazine–Type Anti-Microtubule Agent with a 2-Pyridyl Structure, Is a Potent Radiosensitizer That Synchronizes the Cell Cycle in Early M Phase

    PubMed Central

    Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko

    2015-01-01

    KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300. PMID:26716455

  6. KPU-300, a Novel Benzophenone-Diketopiperazine-Type Anti-Microtubule Agent with a 2-Pyridyl Structure, Is a Potent Radiosensitizer That Synchronizes the Cell Cycle in Early M Phase.

    PubMed

    Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko

    2015-01-01

    KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300.

  7. Role of senescence and mitotic catastrophe in cancer therapy

    PubMed Central

    2010-01-01

    Senescence and mitotic catastrophe (MC) are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control. PMID:20205872

  8. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    PubMed

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Disrupted cell cycle arrest and reduced proliferation in corneal fibroblasts from GCD2 patients: A potential role for altered autophagy flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seung-il; Dadakhujaev, Shorafidinkhuja; Maeng, Yong-Sun

    Highlights: • Reduced cell proliferation in granular corneal dystrophy type 2. • Abnormal cell cycle arrest by defective autophagy. • Decreased Cyclin A1, B1, and D1 in Atg7 gene knockout cells. • Increase in p16 and p27 expressions were observed in Atg7 gene knockout cells. - Abstract: This study investigates the role of impaired proliferation, altered cell cycle arrest, and defective autophagy flux of corneal fibroblasts in granular corneal dystrophy type 2 (GCD2) pathogenesis. The proliferation rates of homozygous (HO) GCD2 corneal fibroblasts at 72 h, 96 h, and 120 h were significantly lower (1.102 ± 0.027, 1.397 ± 0.039,more » and 1.527 ± 0.056, respectively) than those observed for the wild-type (WT) controls (1.441 ± 0.029, 1.758 ± 0.043, and 2.003 ± 0.046, respectively). Flow cytometry indicated a decreased G{sub 1} cell cycle progression and the accumulation of cells in the S and G{sub 2}/M phases in GCD2 cells. These accumulations were associated with decreased levels of Cyclin A1, B1, and E1, and increased expression of p16 and p27. p21 and p53 expression was also significantly lower in GCD2 cells compared to the WT. Interestingly, treatment with the autophagy flux inhibitor, bafilomycin A{sub 1}, resulted in similarly decreased Cyclin A1, B1, D1, and p53 expression in WT fibroblasts. Furthermore, similar findings, including a decrease in Cyclin A1, B1, and D1 and an increase in p16 and p27 expression were observed in autophagy-related 7 (Atg7; known to be essential for autophagy) gene knockout cells. These data provide new insight concerning the role of autophagy in cell cycle arrest and cellular proliferation, uncovering a number of novel therapeutic possibilities for GCD2 treatment.« less

  10. TRB3 is elevated in psoriasis vulgaris lesions and mediates HaCaT cells proliferation in vitro.

    PubMed

    Yu, Xiao-Jing; Song, Tie-Jun; Zhang, Lu-Wei; Su, Ying; Wang, Ke-Yu; Sun, Qing

    2017-10-01

    Psoriasis is a chronic skin disease characterized by abnormal keratinocyte proliferation and differentiation, inflammation, and angiogenesis. Overexpression of tribbles homolog3 (TRB3), which belongs to the tribbles family of pseudokinases, has been found in several human tumors and metabolic diseases, but its role in psoriasis has not been fully clarified. The aim of this study is to investigate the expression of TRB3 in psoriasis and explore its roles in the proliferation of keratinocytes. Twenty-four patients with psoriasis vulgaris were recruited for the study. Diagnosis of psoriasis was based on clinical and histologic examinations. Immunohistochemistry and real-time reverse transcription PCR (RT-PCR) were performed to determine protein and messenger RNA (mRNA) expression of TRB3 in psoriasis lesions. 5-Bromo-2-deoxyUridine (BrdU) incorporation assay were performed for cell proliferation. Cell cycle distribution was assessed by flow cytometry analysis. The levels of TRB3 is elevated in psoriatic lesions compared with psoriatic non-lesions. The HaCat cells expressed the TRB3 gene. We found TRB3 silencing to significantly inhibit HaCat cell proliferation. Furthermore, the specific knockdown of TRB3 slowed down the cell cycle at the gap 0/first gap phase. In conclusion, our data suggest that TRB3 is overexpressed in lesions of patients with psoriasis and may be involved in the abnormal proliferation of keratinocytes. Therefore, TRB3 may be a potential therapeutic target for psoriasis. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    PubMed

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  12. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2010-09-01

    2006 Jul 24;1:15. 17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004 Dec;145...and cyclin D1:connecting development to breast cancer. Cell Cycle. 2004 Feb;3(2):145-8. 32. Wang C, Li Z, Fu M, Bouras T, Pestell RG. Signal... Pestell R, Albanese C. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res. 2007 May 1;67(9):4364-72. 36

  13. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens

    PubMed Central

    Zupan, John R.; Cameron, Todd A.; Anderson-Furgeson, James; Zambryski, Patricia C.

    2013-01-01

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes. PMID:23674672

  14. Cytoskeleton disorder and cell cycle arrest may be associated with the alteration of protein CEP135 by microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan

    In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line

  15. Minichromosome maintenance (Mcm) proteins, cyclin B1 and D1, phosphohistone H3 and in situ DNA replication for functional analysis of vulval intraepithelial neoplasia.

    PubMed

    Davidson, E J; Morris, L S; Scott, I S; Rushbrook, S M; Bird, K; Laskey, R A; Wilson, G E; Kitchener, H C; Coleman, N; Stern, P L

    2003-01-27

    Vulval intraepithelial neoplasia (VIN) is defined histopathologically by distinctive abnormalities of cellular maturation and differentiation. To investigate the functional properties of VIN, the expression of several proteins involved in the regulation of the cell cycle as well as in situ DNA replication competence was analysed by immunohistochemistry. Snap-frozen vulval biopsies were graded as normal squamous epithelium (n=6), undifferentiated HPV positive VIN 1 (n=3), VIN 2 (n=8) and VIN 3 (n=20). Immunohistochemistry was performed using the following markers: cyclin D1 (expressed in middle/late G1), cyclin B1 (expressed in G2/early M), phosphorylated histone H3 (expressed during mitosis) and minichromosome maintenance (Mcm) proteins 2 and 5 (expressed during the cell cycle, but not in differentiated or quiescent cells). In situ DNA replication competence was used to identify S-phase cells. The percentage of positively stained nuclei in three representative microscopic fields was calculated per biopsy. In normal vulva, the expression of all markers was restricted to the proliferative compartment of the basal layer of the epithelium. In contrast in high-grade VIN, the majority of epithelial cells expressed the Mcm proteins from basal to superficial layer. The detection of cyclins B1 and D1, phospho-histone H3 and in situ DNA replication was also found through the full thickness of these lesions but by a lower proportion of the cells. This is consistent with these markers providing a series of 'snapshots' of the cell cycle status of individual cells. The low-grade VIN showed reduced expression of the cell cycle markers in relation to the level of dysplasia. The combination of these analyses establishes that the majority of VIN cells remain in a functional replicative or prereplicative state of the cell cycle. Clinical application of these analyses may provide a basis for improved diagnosis of VIN.

  16. Male-induced short oestrous and ovarian cycles in sheep and goats: a working hypothesis.

    PubMed

    Chemineau, Philippe; Pellicer-Rubio, Maria-Theresa; Lassoued, Narjess; Khaldi, Gley; Monniaux, Danielle

    2006-01-01

    The existence of short ovulatory cycles (5-day duration) after the first male-induced ovulations in anovulatory ewes and goats, associated or not with the appearance of oestrous behaviour, is the origin of the two-peak abnormal distribution of parturitions after the "male effect". We propose here a working hypothesis to explain the presence of these short cycles. The male-effect is efficient during anoestrus, when follicles contain granulosa cells of lower quality than during the breeding season. They generate corpora lutea (CL) with a lower proportion of large luteal cells compared to small cells, which secrete less progesterone, compared to what is observed in the breeding season cycle. This is probably not sufficient to block prostaglandin synthesis in the endometrial cells of the uterus at the time when the responsiveness to prostaglandins of the new-formed CL is initiated and, in parallel, to centrally reduce LH pulsatility. This LH pulsatility stimulates a new wave of follicles secreting oestradiol which, in turn, stimulates prostaglandin synthesis and provokes luteolysis and new ovulation(s). The occurrence of a new follicular wave on days 3-4 of the first male-induced cycle and the initiation of the responsiveness to prostaglandins of the CL from day 3 of the oestrous cycle are probably the key elements which ensure such regularity in the duration of the short cycles. Exogenous progesterone injection suppresses short cycles, probably not by delaying ovulation time, but rather by blocking prostaglandin synthesis, thus impairing luteolysis. The existence, or not, of oestrous behaviour associated to these ovulatory events mainly varies with species: ewes, compared to does, require a more intense endogenous progesterone priming; only ovulations preceded by normal cycles are associated with oestrous behaviour. Thus, the precise and delicate mechanism underlying the existence of short ovulatory and oestrous cycles induced by the male effect appears to be dependent on the various levels of the hypothalamo-pituitary-ovario-uterine axis.

  17. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    PubMed Central

    2014-01-01

    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. PMID:24479647

  18. Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia.

    PubMed

    Bernstein, Hans-Gert; Jauch, Esther; Dobrowolny, Henrik; Mawrin, Christian; Steiner, Johann; Bogerts, Bernhard

    2016-09-01

    Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.

  19. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.

    PubMed

    Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon

    2013-12-01

    Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.

  20. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cellmore » cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.« less

  1. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability

    PubMed Central

    Myers, Katie N.; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J.; Howard, Anna E.; Beveridge, Ryan D.; Maslen, Sarah; Skehel, J. Mark; Collis, Spencer J.

    2016-01-01

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions. PMID:27739501

  2. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings.

    PubMed

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2012-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.

  3. MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus

    PubMed Central

    Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto

    2016-01-01

    ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636

  4. Tea Polysaccharide Prevents Colitis-Associated Carcinogenesis in Mice by Inhibiting the Proliferation and Invasion of Tumor Cells

    PubMed Central

    Liu, Li-Qiao; Li, Hai-Shan; Shen, Ming-Yue; Hu, Jie-Lun; Xie, Ming-Yong

    2018-01-01

    The imbalance between cell proliferation and apoptosis can lead to tumor progression, causing oncogenic transformation, abnormal cell proliferation and cell apoptosis suppression. Tea polysaccharide (TPS) is the major bioactive component in green tea, it has showed antioxidant, antitumor and anti-inflammatory bioactivities. In this study, the chemoprophylaxis effects of TPS on colitis-associated colon carcinogenesis, especially the cell apoptosis activation and inhibition effects on cell proliferation and invasion were analyzed. The azoxymethane/dextran sulfate sodium (AOM/DSS) was used to induce the colorectal carcinogenesis in mice. Results showed that the tumor incidence was reduced in TPS-treated AOM/DSS mice compared to AOM/DSS mice. TUNEL staining and Ki-67 immunohistochemistry staining showed that the TPS treatment increased significantly the cell apoptosis and decreased cell proliferation among AOM/DSS mice. Furthermore, TPS reduced the expression levels of the cell cycle protein cyclin D1, matrix metalloproteinase (MMP)-2, and MMP-9. In addition, in vitro studies showed that TPS, suppressed the proliferation and invasion of the mouse colon cancer cells. Overall, our findings demonstrated that TPS could be a potential agent in the treatment and/or prevention of colon tumor, which promoted the apoptosis and suppressed the proliferation and invasion of the mouse colon cancer cells via arresting cell cycle progression. PMID:29419740

  5. Effects of exogenous hormones on spermatogenesis in the male prairie dog (Cynomys ludovicianus).

    PubMed

    Foreman, D

    1998-01-01

    Male prairie dogs (Cynomys ludovicianus) breed anually and have complete testicular regression. Changes in the seminiferous tubules during the annual cycle have been described recently (Foreman, 1997). This is the first description of spermatogenesis in such a species. The definition of tubular stages during the cycle allows for evaluation of the effects of exogenous hormones, hemicastration, and hemicryptorchidism on spermatogenesis during the annual cycle. Hemicastration was performed during stages of the annual cycle to determine effects of exogenous hormones on remaining testes. Hemicryptorchidism was also done during stages of the annual cycle. FSH, LH, and testosterone were given in high and low doses for short- or long-term treatment periods during stages of the annual cycle. Testicular weights and counts of cell types in tubules of control and treated testes were made on testis tissues. Hemicastration during the out-of-season period does not cause compensatory hypertrophy of the remaining testis, but during recrudescence, hypertrophy of the remaining testis occurs. Hemicastration does not prevent loss of weight by the remaining testis during regression. The seminiferous epithelium of hemicryptorchid prairie dog testes shows damage during spermatogenic activity but not during testicular inactivity. Similarly, hemicryptorchid 15-day-old rat testes do not show damage from hemicryptorchidism. Long-term treatment with FSH preparations during testicular inactivity increased testis weights, spermatogonial proliferation, and spermatocyte differentiation in conjunction with Sertoli cell differentiation. Short-term treatments with low doses increased spermatogonial proliferation and abnormal meiotic activity. Both long- and short-term treatments with LH caused increased sloughing of germ cells and stimulated Leydig and Sertoli cells. Testosterone propionate injections stimulated Sertoli secretions but not Leydig cell activity. Hemicastration during inactivity does not stimulate gonadotropin secretion. Hemicryptorchidism does not affect tubular morphology during inactivity in either rats or prairie dogs. Prompt responses to FSH depend on scrotal location of the testis. FSH has its major effects on germ cell proliferation and differentiation, both directly and through activation of Sertoli cells, whereas LH affects Sertoli and Leydig cell activation but has no effect on germ cell activity. Testosterone activates Sertoli cells.

  6. Silkworm Pupa Protein Hydrolysate Induces Mitochondria-Dependent Apoptosis and S Phase Cell Cycle Arrest in Human Gastric Cancer SGC-7901 Cells.

    PubMed

    Li, Xiaotong; Xie, Hongqing; Chen, Yajie; Lang, Mingzi; Chen, Yuyin; Shi, Liangen

    2018-03-28

    Silkworm pupae ( Bombyx mori ) are a high-protein nutrition source consumed in China since more than 2 thousand years ago. Recent studies revealed that silkworm pupae have therapeutic benefits to treat many diseases. However, the ability of the compounds of silkworm pupae to inhibit tumourigenesis remains to be elucidated. Here, we separated the protein of silkworm pupae and performed alcalase hydrolysis. Silkworm pupa protein hydrolysate (SPPH) can specifically inhibit the proliferation and provoke abnormal morphologic features of human gastric cancer cells SGC-7901 in a dose- and time-dependent manner. Moreover, flow cytometry indicated that SPPH can induce apoptosis and arrest the cell-cycle in S phase. Furthermore, SPPH was shown to provoke accumulation of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential. Western blotting analysis indicated that SPPH inhibited Bcl-2 expression and promoted Bax expression, and subsequently induced apoptosis-inducing factor and cytochrome C release, which led to the activation of initiator caspase-9 and executioner caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), eventually caused cell apoptosis. Moreover, SPPH-induced S-phase arrest was mediated by up-regulating the expression of E2F1 and down-regulating those of cyclin E, CDK2 and cyclin A2. Transcriptome sequencing and gene set enrichment analysis (GSEA) also revealed that SPPH treatment could affect gene expression and pathway regulation related to tumourigenesis, apoptosis and cell cycle. In summary, our results suggest that SPPH could specifically suppress cell growth of SGC-7901 through an intrinsic apoptotic pathway, ROS accumulation and cell cycle arrest, and silkworm pupae have a potential to become a source of anticancer agents in the future.

  7. A model for hormonal control of the menstrual cycle: structural consistency but sensitivity with regard to data.

    PubMed

    Selgrade, J F; Harris, L A; Pasteur, R D

    2009-10-21

    This study presents a 13-dimensional system of delayed differential equations which predicts serum concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the system are fit to two different data sets for normally cycling women. For these best fit parameter sets, model simulations agree well with the two different data sets but one model also has an abnormal stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs for the model in which the normal cycle has estradiol levels at the high end of the normal range. Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone, which is required for ovulation. Also, it is observed that models with greater early follicular growth rates may have a greater risk of cycling abnormally.

  8. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.

    Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCAmore » with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions: DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.« less

  9. Comparative vaginal cytology of the estrous cycle of black-footed ferrets (Mustela nigripes), Siberian polecats (M. eversmanni), and domestic ferrets (M. putorius furo).

    PubMed

    Williams, E S; Thorne, E T; Kwiatkowski, D R; Lutz, K; Anderson, S L

    1992-01-01

    Vaginal cytology and vulva size were used to characterize the reproductive cycle of female black-footed ferrets (Mustela nigripes), Siberian polecats (M. eversmanni), and domestic ferrets (M. putorius furo). Emphasis was on black-footed ferrets because of the need to breed these critically endangered animals and on Siberian polecats because of the close taxonomic relationship to black-footed ferrets. Vaginal cytology of the 3 species of ferret is similar. Proestrus was characterized by an increasing percentage of superficial epithelial cells and enlargement of the vulva. During estrus, superficial cells were usually greater than or equal to 90% of epithelial cells in the vaginal lavage and after several days were fully keratinized. Neutrophils were more common during all stages of the estrous cycle in domestic ferrets than they were in the other species. Following copulation, percentage of superficial calls in the vagina declined and vulva swelling subsided. Large cells, probably of uterine symplasma origin, were observed in vaginal lavages following whelping or pseudopregnancy. Vaginal cytology is extremely useful in the reproductive management of black-footed ferrets and Siberian polecats. Knowledge of normal vaginal cytology could be applied to the diagnosis of female reproductive abnormalities in all 3 species.

  10. [P21-activated kinases and their role in the nervous system].

    PubMed

    Qin, Yuan; Ding, Yue-Min; Xia, Qiang

    2012-12-25

    P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.

  11. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    PubMed

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  12. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding.

    PubMed

    Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Arlier, Sefa; Kayisli, Umit A; Lockwood, Charles J

    2016-06-01

    Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding

    PubMed Central

    Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Arlier, Sefa; Kayisli, Umit A.; Lockwood, Charles J.

    2016-01-01

    BACKGROUND Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. METHODS We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. RESULTS Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. CONCLUSION Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms. PMID:26912000

  14. Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML

    PubMed Central

    Bolli, Niccolò; Rhodes, Jennifer; Abdel-Wahab, Omar I.; Levine, Ross; Hedvat, Cyrus V.; Stone, Richard; Khanna-Gupta, Arati; Sun, Hong; Kanki, John P.; Gazda, Hanna T.; Beggs, Alan H.; Cotter, Finbarr E.

    2011-01-01

    In a zebrafish mutagenesis screen to identify genes essential for myelopoiesis, we identified an insertional allele hi1727, which disrupts the gene encoding RNA helicase dead-box 18 (Ddx18). Homozygous Ddx18 mutant embryos exhibit a profound loss of myeloid and erythroid cells along with cardiovascular abnormalities and reduced size. These mutants also display prominent apoptosis and a G1 cell-cycle arrest. Loss of p53, but not Bcl-xl overexpression, rescues myeloid cells to normal levels, suggesting that the hematopoietic defect is because of p53-dependent G1 cell-cycle arrest. We then sequenced primary samples from 262 patients with myeloid malignancies because genes essential for myelopoiesis are often mutated in human leukemias. We identified 4 nonsynonymous sequence variants (NSVs) of DDX18 in acute myeloid leukemia (AML) patient samples. RNA encoding wild-type DDX18 and 3 NSVs rescued the hematopoietic defect, indicating normal DDX18 activity. RNA encoding one mutation, DDX18-E76del, was unable to rescue hematopoiesis, and resulted in reduced myeloid cell numbers in ddx18hi1727/+ embryos, indicating this NSV likely functions as a dominant-negative allele. These studies demonstrate the use of the zebrafish as a robust in vivo system for assessing the function of genes mutated in AML, which will become increasingly important as more sequence variants are identified by next-generation resequencing technologies. PMID:21653321

  15. Clinical aspects of 49 infertile males with 45,X/46,XY mosaicism karyotype: A case series.

    PubMed

    Mohammadpour Lashkari, F; Sadighi Gilani, M A; Ghaheri, A; Zamanian, M R; Borjian Boroujeni, P; Mohseni Meybodi, A; Sabbaghian, M

    2018-06-01

    Disorders of sex development (DSD) are congenital abnormalities as an atypical development process in either gonadal or chromosomal structure. It is the cause of the abnormality in phenotype and characteristics. Chromosomal analysis plays an important role in the DSD determination. 45,X/46,XY mosaicism is a rare karyotype, and its prevalence is about 1.5 in 10,000 newborns. It affects the growth, hormonal balance, gonad development and histology. All data such as height, male general appearance, testis size and volume, external genitalia, spermogram and hormonal levels, testis pathology, Y chromosome microdeletion and karyotype, and assisted reproductive technology (ART) outcome were recorded based on patients profile and history. We investigated 64 infertile males with 45,X/46,XY mosaicism. Fifteen cases who had structural abnormalities in Y chromosome were excluded. From 49 available spermogram, 21 cases reported as azoospermic men, while 28 of them classified as nonazoospermic patients in which four of them displayed normal spermogram. According to hormonal evaluation, there were no significant differences between azoospermic and nonazoospermic groups. In azoospermia, only three couples underwent an ART cycle in which all of them failed. From 14 nonazoospermic cases who entered into the ART cycle, three cases experienced a successful pregnancy that one of the prosperous outcomes was twins. In 45,X/46,XY cases, both 45,X and 46,XY cell lines are seen. Various distributions of both cell lines can reflect a wide range of phenotypes that may be the most comprehensive evaluation in infertile males with 45,X/46,XY karyotype. It assumes that karyotyping as a main diagnostic test can enable us to find these rare cases. © 2018 Blackwell Verlag GmbH.

  16. Acetylcholine Neuromodulation in Normal and Abnormal Learning and Memory: Vigilance Control in Waking, Sleep, Autism, Amnesia and Alzheimer’s Disease

    PubMed Central

    Grossberg, Stephen

    2017-01-01

    Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer’s disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer’s disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective. PMID:29163063

  17. Abnormal enhancement against interference inhibition for few-cycle pulses propagating in dense media

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Xu, Zhi-Zhan; Liu, Chengpu

    2016-04-01

    We numerically study the reflected spectrum of a few-cycle pulse propagating through an ultrathin resonant medium. According to the classical interference theory, a destructive interference dip is expected at the carrier frequency ωp for a half-wavelength medium. In contrast, an abnormal enhanced spike appears instead. The origin of such an abnormal enhancement is attributed to the coherent transient effects. In addition, its scaling laws versus medium length, pulse area and duration are obtained, which follow simple rules.

  18. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation.

    PubMed

    Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.

  19. [Successful treatment of a patient with two hematologic tumors: double-hit lymphoma and acute myelomonoblastic leukemia].

    PubMed

    Lukina, A E; Bariakh, E A; Kravchenko, S K; Nareĭko, M V; Kuz'mina, L A; Parovichnikova, E N; Obukhova, T N; Kovrigina, A M; Magomedova, A U

    2014-01-01

    Double-hit (DH) lymphoma, an extremely aggressive variant of B-cell lymphoma, is accompanied by chromosomal abnormalities leading to the activation of a few oncogenes, one of which is the c-MYC gene in conjunction with BCL2 or BCL6 gene rearrangements. There are most common cases of MYC/8q24 and BCL2/18q21 gene rearrangements (MYC/BCL-2 DH lymphoma). The tumor is characterized by an aggressive clinical course and a poor response to chemotherapy (CT). The median survival in patients with DH lymphomas varies from 4.5 to 18 months. Such patients are generally resistant to CHOP-21 and R-CHOP-21 therapy regimens. For the treatment of patients with DH lymphoma, the Hematology Research Center, Ministry of Health of the Russian Federation, chose an original BL-M-04 polychemotherapy (PCT) protocol in combination with rituximab, followed by autologous stem cell transplantation (allo-SCT). The paper describes the experience in successfully treating a patient with two hematologic tumors: 1) MYC/BCL-2 DH lymphoma with high-dose PCT cycles, followed by allo-SCT, and 2) a metachronously developed second tumor (acute myelomonoblastic leukemia (AMML)) with CT cycles, followed by auto-SCT. The incidence of tumors induced by the previous high-dose CT for aggressive lymphomas for 10 years is 0.7 to 10%. As a rule, the development of secondary AMML is preceded by a history of myelodysplastic syndrome (MDS); characteristic chromosomal abnormalities (deletions of the long arm of chromosomes 5 and 7) are detectable. In this case, the follow-up was 3 months before the development of AMML, during this period the patient was not found to have laboratory signs of MDS (anemia, thrombocytopenia) or chromosomal abnormalities associated with secondary MDS/AML. The presence of a leukemic stem cell is associated with the occurrence and development of hemoblastosis; that of the similar cell populations that may cause B-cell lymphomas remains uncertain. The described case may have defect in a hematopoietic stem cell that gives rise to both germs of hematopoiesis, as well as complete donor chimerism of bone marrow hematopoiesis, which gives hope to long-term remission in both DH lymphoma and AMML.

  20. The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels

    PubMed Central

    2011-01-01

    Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins) in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner. PMID:21418559

  1. Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle

    PubMed Central

    Johnston, Amal J.; Kirioukhova, Olga; Barrell, Philippa J.; Rutten, Twan; Moore, James M.; Baskar, Ramamurthy; Grossniklaus, Ueli; Gruissem, Wilhelm

    2010-01-01

    The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development. PMID:20585548

  2. MyoD undergoes a distinct G2/M-specific regulation in muscle cells.

    PubMed

    Batonnet-Pichon, Sabrina; Tintignac, Lionel J; Castro, Anna; Sirri, Valentina; Leibovitch, Marie Pierre; Lorca, Thierry; Leibovitch, Serge A

    2006-12-10

    The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.

  3. A new Gsdma3 mutation affecting anagen phase of first hair cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shigekazu; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540; Tamura, Masaru

    2007-08-10

    Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showedmore » hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.« less

  4. The cell cycle in Alzheimer disease: a unique target for neuropharmacology.

    PubMed

    Webber, Kate M; Raina, Arun K; Marlatt, Michael W; Zhu, Xiongwei; Prat, María I; Morelli, Laura; Casadesus, Gemma; Perry, George; Smith, Mark A

    2005-10-01

    Several hypotheses have been proposed attempting to explain the pathogenesis of Alzheimer disease including, among others, theories involving amyloid deposition, tau phosphorylation, oxidative stress, metal ion dysregulation and inflammation. While there is strong evidence suggesting that each one of these proposed mechanisms contributes to disease pathogenesis, none of these mechanisms are able to account for all the physiological changes that occur during the course of the disease. For this reason, we and others have begun the search for a causative factor that predates known features found in Alzheimer disease, and that might therefore be a fundamental initiator of the pathophysiological cascade. We propose that the dysregulation of the cell cycle that occurs in neurons susceptible to degeneration in the hippocampus during Alzheimer disease is a potential causative factor that, together with oxidative stress, would initiate all known pathological events. Neuronal changes supporting alterations in cell cycle control in the etiology of Alzheimer disease include the ectopic expression of markers of the cell cycle, organelle kinesis and cytoskeletal alterations including tau phosphorylation. Such mitotic alterations are not only one of the earliest neuronal abnormalities in the disease, but as discussed herein, are also intimately linked to all of the other pathological hallmarks of Alzheimer disease including tau protein, amyloid beta protein precursor and oxidative stress, and even risk factors such as mutations in the presenilin genes. Therefore, therapeutic interventions targeted toward ameliorating mitotic changes would be predicted to have a profound and positive impact on Alzheimer disease progression.

  5. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage

    PubMed Central

    Manson, Margaret M.

    2013-01-01

    The chemopreventive agent curcumin has anti-proliferative effects in many tumour types, but characterization of cell cycle arrest, particularly with physiologically relevant concentrations, is still incomplete. Following oral ingestion, the highest concentrations of curcumin are achievable in the gut. Although it has been established that curcumin induces arrest at the G2/M stage of the cell cycle in colorectal cancer lines, it is not clear whether arrest occurs at the G2/M transition or in mitosis. To elucidate the precise stage of arrest, we performed a direct comparison of the levels of curcumin-induced G2/M boundary and mitotic arrest in eight colorectal cancer lines (Caco-2, DLD-1, HCA-7, HCT116p53+/+, HCT116p53–/–, HCT116p21–/–, HT-29 and SW480). Flow cytometry confirmed that these lines underwent G2/M arrest following treatment for 12h with clinically relevant concentrations of curcumin (5–10 μM). In all eight lines, the majority of this arrest occurred at the G2/M transition, with a proportion of cells arresting in mitosis. Examination of the mitotic index using fluorescence microscopy showed that the HCT116 and Caco-2 lines exhibited the highest levels of curcumin-induced mitotic arrest. Image analysis revealed impaired mitotic progression in all lines, exemplified by mitotic spindle abnormalities and defects in chromosomal congression. Pre-treatment with inhibitors of the DNA damage signalling pathway abrogated curcumin-induced mitotic arrest, but had little effect at the G2/M boundary. Moreover, pH2A.X staining seen in mitotic, but not interphase, cells suggests that this aberrant mitosis results in DNA damage. PMID:23125222

  6. Ectopic Activation of Wnt/β-Catenin Signaling in Lens Fiber Cells Results in Cataract Formation and Aberrant Fiber Cell Differentiation

    PubMed Central

    Antosova, Barbora; Smolikova, Jana; Borkovcova, Romana; Strnad, Hynek; Lachova, Jitka; Machon, Ondrej; Kozmik, Zbynek

    2013-01-01

    The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency. PMID:24205179

  7. GAK, a regulator of clathrin-mediated membrane traffic, also controls centrosome integrity and chromosome congression.

    PubMed

    Shimizu, Hiroyuki; Nagamori, Ippei; Yabuta, Norikazu; Nojima, Hiroshi

    2009-09-01

    Cyclin G-associated kinase (GAK) is an association partner of clathrin heavy chain (CHC) and is essential for clathrin-mediated membrane trafficking. Here, we report two novel functions of GAK: maintenance of proper centrosome maturation and of mitotic chromosome congression. Indeed, GAK knockdown by siRNA caused cell-cycle arrest at metaphase, which indicates that GAK is required for proper mitotic progression. We found that this impaired mitotic progression was due to activation of the spindle-assembly checkpoint, which senses protruded, misaligned or abnormally condensed chromosomes in GAK-siRNA-treated cells. GAK knockdown also caused multi-aster formation, which was due to abnormal fragmentation of pericentriolar material, but not of the centrioles. Moreover, GAK and CHC cooperated in the same pathway and interacted in mitosis to regulate the formation of a functional spindle. Taken together, we conclude that GAK and clathrin function cooperatively not only in endocytosis, but also in mitotic progression.

  8. Splenic marginal zone lymphoma uncovered after a 10-year follow up as anemia of unknown cause.

    PubMed

    Koyama, Asumi; Shiotani, Chieko; Kurihara, Toshio; Mushino, Toshiki; Okamoto, Yukiharu; Tamaki, Tatsunori; Ozaki, Takashi; Ohshima, Kouichi; Tamura, Shinobu

    2017-01-01

    A 75-year-old man was referred to our hospital for evaluation of persistent anemia. Despite repeated diagnostic tests, including bone marrow aspiration, the cause of his anemia remained unknown. On each occasion, computed tomography had revealed neither swollen lymph nodes nor splenomegaly. After a 10-year follow-up period, he was admitted with general fatigue and had developed splenomegaly as well as the anemia. Bone marrow biopsy revealed increased abnormal lymphocytes with short villi that were positive for CD11c, CD19, CD20, and kappa chain, but not for CD5, CD10, CD23, or cyclin D1, according to flow cytometry. The bone marrow biopsy sample showed nodular proliferation of small to medium-sized abnormal lymphocytes. Based on these findings, the patient was diagnosed as having splenic marginal zone lymphoma, a rare indolent B-cell neoplasm. Although his splenomegaly diminished after eight cycles of weekly rituximab monotherapy, the anemia did not improve, and abnormal lymphocytes remained detectable in his bone marrow. The patient was then treated with bendamustine monotherapy for six cycles, after which the anemia resolved, and he has since been in good condition. Although rare, it is important to consider splenic marginal zone lymphoma during the differential diagnosis of patients with a long history of anemia of unknown cause.

  9. Role of founder cell deficit and delayed neuronogenesis in microencephaly of the trisomy 16 mouse

    NASA Technical Reports Server (NTRS)

    Haydar, T. F.; Nowakowski, R. S.; Yarowsky, P. J.; Krueger, B. K.

    2000-01-01

    Development of the neocortex of the trisomy 16 (Ts16) mouse, an animal model of Down syndrome (DS), is characterized by a transient delay in the radial expansion of the cortical wall and a persistent reduction in cortical volume. Here we show that at each cell cycle during neuronogenesis, a smaller proportion of Ts16 progenitors exit the cell cycle than do control, euploid progenitors. In addition, the cell cycle duration was found to be longer in Ts16 than in euploid progenitors, the Ts16 growth fraction was reduced, and an increase in apoptosis was observed in both proliferative and postmitotic zones of the developing Ts16 neocortical wall. Incorporation of these changes into a model of neuronogenesis indicates that they are sufficient to account for the observed delay in radial expansion. In addition, the number of neocortical founder cells, i.e., precursors present just before neuronogenesis begins, is reduced by 26% in Ts16 mice, leading to a reduction in overall cortical size at the end of Ts16 neuronogenesis. Thus, altered proliferative characteristics during Ts16 neuronogenesis result in a delay in the generation of neocortical neurons, whereas the founder cell deficit leads to a proportional reduction in the overall number of neurons. Such prenatal perturbations in either the timing of neuron generation or the final number of neurons produced may lead to significant neocortical abnormalities such as those found in DS.

  10. CDC25AQ110del: A Novel Cell Division Cycle 25A Isoform Aberrantly Expressed in Non-Small Cell Lung Cancer

    PubMed Central

    Younis, Rania H.; Cao, Wei; Lin, Ruxian; Xia, Ronghui; Liu, Zhenqiu; Edelman, Martin J.; Mei, Yuping; Mao, Li; Ren, Hening

    2012-01-01

    Objective Lung cancer remains number one cause of cancer related deaths worldwide. Cell cycle deregulation plays a major role in the pathogenesis of Non-Small Cell Lung Cancer (NSCLC). CDC25A represents a critical cell cycle regulator that enhances cell cycle progression. In this study we aimed to investigate the role of a novel CDC25A transcriptional variant, CDC25AQ110del, on the regulation of the CDC25A protein, and its impact on prognosis of NSCLC patients. Methodology/Principal Findings Here we report a novel CDC25A transcript variant with codon 110 (Glutamine) deletion, that we termed CDC25AQ110del in NSCLC cells. In 9 (75%) of the 12 NSCLC cell lines, CDC25AQ110del expression accounted for more than 20% of the CDC25A transcripts. Biological effects of CDC25AQ110del were investigated in H1299 and HEK-293F cells using UV radiation, flowcytometry, cyclohexamide treatment, and confocal microscopy. Compared to CDC25Awt, CDC25AQ110del protein had longer half-life; cells expressing CDC25AQ110del were more resistant to UV irradiation and showed more mitotic activity. Taqman-PCR was used to quantify CDC25AQ110del expression levels in 88 primary NSCLC tumor/normal tissue pairs. In patients with NSCLC, Kaplan Meier curves showed tumors expressing higher levels of CDC25AQ110del relative to the adjacent lung tissues to have significantly inferior overall survival (P = .0018). Significance Here we identified CDC25AQ110del as a novel transcriptional variant of CDC25A in NSCLC. The sequence-specific nature of the abnormality could be a prognostic indicator in NSCLC patients as well as a candidate target for future therapeutic strategies. PMID:23071577

  11. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings

    PubMed Central

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2011-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233

  12. Oxidant Induced Changes in Mitochondria and Calcium Dynamicsin the Pathophysiology of Alzheimer's Disease

    PubMed Central

    Gibson, Gary E.; Karuppagounder, Saravanan S.; Shi, Qingli

    2009-01-01

    Considerable data supports the hypothesis that mitochondrial abnormalities link gene defects and/or environmental insults to the neurodegenerative process The interaction of oxidants with calcium and the mitochondrial enzymes of the tricarboxylic acid (TCA) cycle are central to that relationship. Abnormalities that were discovered in brains or fibroblasts from patients with Alzheimer's Disease (AD) have been modeled in vitro and in vivo to assess their pathophysiological importance and to determine how they might be reversed. The conclusions are consistent with the hypothesis that the AD-related abnormalities result from oxidative stress. The selection of compounds for reversal is complex because the actions of the relevant compounds vary under different conditions such as cell redox states and acute vs chronic changes. However, the models that have been developed are useful for testing the effectiveness of the potential medications. The results suggest that the reversal of the mitochondrial deficits and a reduction in oxidative stress will reduce the clinical and pathological changes and benefit patients. PMID:19076444

  13. The Endocrine Dyscrasia that Accompanies Menopause and Andropause Induces Aberrant Cell Cycle Signaling that Triggers Cell Cycle Reentry of Post-mitotic Neurons, Neurodysfunction, Neurodegeneration and Cognitive Disease

    PubMed Central

    Atwood, Craig S.; Bowen, Richard L.

    2016-01-01

    Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive studies also demonstrate the negative consequences of a high LH:sex steroid ratio on human cognitive performance. Prospective epidemiological and clinical evidence in humans supports lowering the ratio of circulating gonadotropins-GnRH to sex steroids in reducing the incidence of AD and halting cognitive decline. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson’s disease. PMID:26188949

  14. Long non-coding RNA XIST promotes cell growth by regulating miR-139-5p/PDK1/AKT axis in hepatocellular carcinoma.

    PubMed

    Mo, Yichao; Lu, Yaoyong; Wang, Peng; Huang, Simin; He, Longguang; Li, Dasheng; Li, Fuliang; Huang, Junwei; Lin, Xiaoxia; Li, Xueru; Che, Siyao; Chen, Qinshou

    2017-02-01

    Abnormal expression of long non-coding RNA often contributes to unrestricted growth of cancer cells. Long non-coding RNA XIST expression is upregulated in several cancers; however, its modulatory mechanisms have not been reported in hepatocellular carcinoma. In this study, we found that XIST expression was significantly increased in hepatocellular carcinoma tissues and cell lines. XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to hepatocellular carcinoma cell growth. In addition, we revealed that there was reciprocal repression between XIST and miR-139-5p. PDK1 was identified as a direct target of miR-139-5p. We proposed that XIST was responsible for hepatocellular carcinoma cell proliferation, and XIST exerted its function through the miR-139-5p/PDK1 axis.

  15. Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.).

    PubMed

    Lima, D C; Braz, G T; Dos Reis, G B; Techio, V H; Davide, L C; de F B Abreu, A

    2016-05-23

    The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield.

  16. Chromosomal abnormalities in HPV-16-immortalized oral epithelial cells.

    PubMed

    Oda, D; Bigler, L; Mao, E J; Disteche, C M

    1996-09-01

    Human papilloma virus (HPV) type 16 has an established association with anogenital carcinoma, and to some extent with human oral squamous cell carcinoma. We hypothesize that HPV type 16 is capable of inducing chromosomal and cell cycle changes in cultured oral epithelial cells. Normal human oral epithelia] cells were immortalized with recombinant retrovirus containing the E6/E7 open reading frames of HPV type 16. These cells have been in culture for more than 350 passages and over 4 years. Flow cytometry demonstrated an average of 42% nuclear aneuploidy in HPV 16-immortalized cells; 16% in normal controls (probably tetrasomy). Cytogenetic analysis demonstrated significant progression of chromosomal abnormalities. Cells at early passage (p10) showed trisomy 20, with no other major changes. At passage 18, trisomy 1q and monosomy 13 were seen in addition to trisomy 20. At passage 61 there were two distinct cell populations ('a' and 'b'), with multiple chromosomal changes including trisomy 5q,14,20 in one line and 7p,9q,llq in the other. Both populations had monosomy 3p, with monosomy 8p in one population and monosomy 13 in the other. At passage 136, the cells were essentially identical to population 'b' of passage 61. At this passage, mutation of the p53 gene was detected at codon 273 of exon 8, with G to T conversion (Arg to Leu). This was absent in the normal cells from which this line was developed. Passage 262 contained the two major cell populations, each with a sub-group with additional chromosomal changes such as 10p monosomy. Cells from passages 217 and 305 were injected into nude mice a year apart. Both failed to produce tumors, as did normal cells. In conclusion, we present an HPV type 16-immortalized oral epithelial cell line (IHGK) with extensive and progressive chromosomal abnormalities, invasive growth in culture and yet no tumor formation in nude mice. We suggest that the question as to whether HPV alone can induce transformation is still open.

  17. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. © 2012 Blackwell Publishing Ltd.

  18. HABP1/p32/gC1qR induces aberrant growth and morphology in Schizosaccharomyces pombe through its N-terminal {alpha} helix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, Jaideep; Datta, Kasturi

    2005-10-01

    Hyaluronan binding protein (HABP1), located on human chromosome 17p13.3, was identified and characterized as being involved in cellular signaling from our laboratory. Here, we demonstrate that HABP1 expression in Schizosaccharomyces pombe induces growth inhibition, morphological abnormalities like elongation, multinucleation and aberrant cell septum formation in several strains of S. pombe, implicating its role in cell cycle progression and cytokinesis. This argument is further strengthened by an observed delay in the maximal expression of cell cycle regulatory proteins like CDC 2 and CDC 25 coupled to the direct interaction of HABP1 with CDC 25. In order to pinpoint the interacting domainmore » of HABP1, its N- and C-terminal truncated variants ({delta}N.HABP1 and {delta}C.HABP1, respectively) were utilized which revealed that while expression of the former did not alter the phenotype, the latter generated morphological changes similar to those imparted upon HABP1 expression. It was also noted that along with HABP1, {delta}C.HABP1 too directly interacts with CDC 25 while {delta}N.HABP1 does not. Taken together, these data suggest that HABP1 induces morphological changes and modulates the cell cycle by interacting with proteins like CDC 25 through its N-terminal {alpha}-helix.« less

  19. Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos.

    PubMed

    Yuan, Ye; Lee, Kiho; Park, Kwang-Wook; Spate, Lee D; Prather, Randall S; Wells, Kevin D; Roberts, R Michael

    2014-01-01

    Nuclear transfer (NT) from porcine iPSC to create cloned piglets is unusually inefficient. Here we examined whether such failure might be related to the cell cycle stage of donor nuclei. Porcine iPSC, derived here from the inner cell mass of blastocysts, have a prolonged S phase and are highly sensitive to drugs normally used for synchronization. However, a double-blocking procedure with 0.3 μM aphidicolin for 10 h followed by 20 ng/ml nocodazole for 4 h arrested 94.3% of the cells at G2/M and, after release from the block, provided 70.1% cells in the subsequent G1 phase without causing any significant loss of cell viability or pluripotent phenotype. Nuclei from different cell cycle stages were used as donors for NT to in vitro-matured metaphase II oocytes. G2/M nuclei were more efficient than either G1 and S stage nuclei in undergoing first cleavage and in producing blastocysts, but all groups had a high incidence of chromosomal/nuclear abnormalities at 2 h and 6 h compared with non-synchronized NT controls from fetal fibroblasts. Many G2 embryos extruded a pseudo-second polar body soon after NT and, at blastocyst, tended to be either polyploid or diploid. By contrast, the few G1 blastocysts that developed were usually mosaic or aneuploid. The poor developmental potential of G1 nuclei may relate to lack of a G1/S check point, as the cells become active in DNA synthesis shortly after exit from mitosis. Together, these data provide at least a partial explanation for the almost complete failure to produce cloned piglets from piPSC.

  20. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing

    Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS). Our results suggest that a low level of spherulin 3b in G2 phase, which may lead to a reduction of Poly(b-L-malate) (PMLA), may contribute to the lengthened duration of G2 phase in altered gravity for 40 h. Present results indicate that altered gravity results in the prolongation of G2 phase with significantly altered actin cytoskeleton and proteome in P. polycephalum.

  1. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases.

    PubMed

    Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M

    2010-10-22

    Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.

  2. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, T. A.; Mehta, A.; Van Campen, D.

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  3. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE PAGES

    Furnish, T. A.; Mehta, A.; Van Campen, D.; ...

    2016-10-11

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  4. Identification of genes involved in Ca2+ ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome

    PubMed Central

    Kozian, Detlef; Proulle, Valérie; Nitsche, Almut; Galitzine, Marie; Martinez, Marie-Carmen; Schumann, Beatrice; Meyer, Dominique; Herrmann, Matthias; Freyssinet, Jean-Marie; Kerbiriou-Nabias, Danièle

    2005-01-01

    Background In contrast to other agents able to induce apoptosis of cultured cells, Ca2+ ionophore A23187 was shown to elicit direct activation of intracellular signal(s). The phenotype of the cells derived from patients having the hemorrhagic disease Scott syndrome, is associated with an abnormally high proportion of apoptotic cells, both in basal culture medium and upon addition of low ionophore concentrations in long-term cultures. These features are presumably related to the mutation also responsible for the defective procoagulant plasma membrane remodeling. We analyzed the specific transcriptional re-programming induced by A23187 to get insights into the effect of this agent on gene expression and a defective gene regulation in Scott cells. Results The changes in gene expression upon 48 hours treatment with 200 nM A23187 were measured in Scott B lymphoblasts compared to B lymphoblasts derived from the patient's daughter or unrelated individuals using Affymetrix microarrays. In a similar manner in all of the B cell lines, results showed up-regulation of 55 genes, out of 12,000 represented sequences, involved in various pathways of the cell metabolism. In contrast, a group of 54 down-regulated genes, coding for histones and proteins involved in the cell cycle progression, was more significantly repressed in Scott B lymphoblasts than in the other cell lines. These data correlated with the alterations of the cell cycle phases in treated cells and suggested that the potent effect of A23187 in Scott B lymphoblasts may be the consequence of the underlying molecular defect. Conclusion The data illustrate that the ionophore A23187 exerts its pro-apoptotic effect by promoting a complex pattern of genetic changes. These results also suggest that a subset of genes participating in various steps of the cell cycle progress can be transcriptionally regulated in a coordinated fashion. Furthermore, this research brings a new insight into the defect in cultured Scott B lymphoblasts, leading to hypothesize that a mutated gene plays a role not only in membrane remodeling but also in signal transduction pathway(s) leading to altered transcriptional regulation of cell cycle genes. PMID:16242039

  5. Genetic interactions between the hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis

    PubMed Central

    Xavier, Guilherme M.; Seppala, Maisa; Papageorgiou, Spyridon N.; Fan, Chen-Ming; Cobourne, Martyn T.

    2016-01-01

    Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves. PMID:27811357

  6. Common pathophysiological mechanisms involved in luteal phase deficiency and polycystic ovary syndrome. Impact on fertility.

    PubMed

    Boutzios, Georgios; Karalaki, Maria; Zapanti, Evangelia

    2013-04-01

    Luteal phase deficiency (LPD) is a consequence of the corpus luteum (CL) inability to produce and preserve adequate levels of progesterone. This is clinically manifested by short menstrual cycles and infertility. Abnormal follicular development, defects in neo-angiogenesis or inadequate steroidogenesis in the lutein cells of the CL have been implicated in CL dysfunction and LPD. LPD and polycystic ovary syndrome (PCOS) are independent disorders sharing common pathophysiological profiles. Factors such as hyperinsulinemia, AMH excess, and defects in angiogenesis of CL are at the origin of both LPD and PCOS. In PCOS ovulatory cycles, infertility could result from dysfunctional CL. The aim of this review was to investigate common mechanisms of infertility in CL dysfunction and PCOS.

  7. Control of proliferation and cancer growth by the Hippo signaling pathway

    PubMed Central

    Ehmer, Ursula; Sage, Julien

    2015-01-01

    The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795

  8. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism.

    PubMed

    Su, W C; Kitagawa, M; Xue, N; Xie, B; Garofalo, S; Cho, J; Deng, C; Horton, W A; Fu, X Y

    1997-03-20

    The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.

  9. The MCM-associated protein MCM-BP is important for human nuclear morphology.

    PubMed

    Jagannathan, Madhav; Sakwe, Amos M; Nguyen, Tin; Frappier, Lori

    2012-01-01

    Mini-chromosome maintenance complex-binding protein (MCM-BP) was discovered as a protein that is strongly associated with human MCM proteins, known to be crucial for DNA replication in providing DNA helicase activity. The Xenopus MCM-BP homologue appears to play a role in unloading MCM complexes from chromatin after DNA synthesis; however, the importance of MCM-BP and its functional contribution to human cells has been unclear. Here we show that depletion of MCM-BP by sustained expression of short hairpin RNA (shRNA) results in highly abnormal nuclear morphology and centrosome amplification. The abnormal nuclear morphology was not seen with depletion of other MCM proteins and was rescued with shRNA-resistant MCM-BP. MCM-BP depletion was also found to result in transient activation of the G2 checkpoint, slowed progression through G2 and increased replication protein A foci, indicative of replication stress. In addition, MCM-BP depletion led to increased cellular levels of MCM proteins throughout the cell cycle including soluble MCM pools. The results suggest that MCM-BP makes multiple contributions to human cells that are not limited to unloading of the MCM complex.

  10. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation

    PubMed Central

    Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588

  11. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  12. Characterization of a candidate bcl-1 gene.

    PubMed Central

    Withers, D A; Harvey, R C; Faust, J B; Melnyk, O; Carey, K; Meeker, T C

    1991-01-01

    The t(11;14)(q13;q32) translocation has been associated with human B-lymphocytic malignancy. Several examples of this translocation have been cloned, documenting that this abnormality joins the immunoglobulin heavy-chain gene to the bcl-1 locus on chromosome 11. However, the identification of the bcl-1 gene, a putative dominant oncogene, has been elusive. In this work, we have isolated genomic clones covering 120 kb of the bcl-1 locus. Probes from the region of an HpaII-tiny-fragment island identified a candidate bcl-1 gene. cDNAs representing the bcl-1 mRNA were cloned from three cell lines, two with the translocation. The deduced amino acid sequence from these clones showed bcl-1 to be a member of the cyclin gene family. In addition, our analysis of expression of bcl-1 in an extensive panel of human cell lines showed it to be widely expressed except in lymphoid or myeloid lineages. This observation may provide a molecular basis for distinct modes of cell cycle control in different mammalian tissues. Activation of the bcl-1 gene may be oncogenic by directly altering progression through the cell cycle. Images PMID:1833629

  13. Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development.

    PubMed

    Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri

    2015-11-01

    DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: basic and clinical aspects

    PubMed Central

    Shahshahan, Mohammad A; Beckley, Maureen N; Jazirehi, Ali R

    2011-01-01

    Protein degradation by proteasome is essential to the regulation of important cellular functions including cell cycle progression, proliferation, differentiation and apoptosis. Abnormal proteasomal degradation of key regulatory proteins perturbs the normal dynamics of these cellular processes culminating in uncontrolled cell cycle progression and decreased apoptosis leading to the characteristic cancer cell phenotype. Proteasome inhibitors are a novel group of therapeutic agents designed to oppose the increased proteasomal degradation observed in various cancers while restoring key cellular functions such as apoptosis, cell cycle progression, and the inhibition of angiogenesis. Several proteasome inhibitors have been evaluated in pre- and clinical studies for their potential usage in clinical oncology. Bortezomib (Velcade, PS-341) is the first Food and Drug Administration-approved proteasome inhibitor for the treatment of multiple myeloma and mantle cell lymphoma. Bortezomib's ability to preferentially induce toxicity and cell death in tumor cells while rendering healthy cells unaffected makes it a powerful therapeutic agent and has extended its use in other types of malignancies. The ability of bortezomib and other proteasome inhibitors to synergize with conventional therapies in killing tumors in various in vitro and in vivo models makes this class of drugs a powerful tool in overcoming acquired and inherent resistance observed in many cancers. This is achieved through modulation of aberrant cellular survival signal transduction pathways and their downstream anti-apoptotic gene products. This review will discuss the anti-neoplastic effects of various proteasome inhibitors in a variety of cancers with a special emphasis on bortezomib, its mechanism of action and role in cancer therapy. We further discuss the potential use of bortezomib in the treatment of metastatic melanoma. PMID:22016836

  15. Genomic portfolio of Merkel cell carcinoma as determined by comprehensive genomic profiling: implications for targeted therapeutics.

    PubMed

    Cohen, Philip R; Tomson, Brett N; Elkin, Sheryl K; Marchlik, Erica; Carter, Jennifer L; Kurzrock, Razelle

    2016-04-26

    Merkel cell carcinoma is an ultra-rare cutaneous neuroendocrine cancer for which approved treatment options are lacking. To better understand potential actionability, the genomic landscape of Merkel cell cancers was assessed. The molecular aberrations in 17 patients with Merkel cell carcinoma were, on physician request, tested in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation Medicine, Cambridge, MA) using next-generation sequencing (182 or 236 genes) and analyzed by N-of-One, Inc. (Lexington, MA). There were 30 genes harboring aberrations and 60 distinct molecular alterations identified in this patient population. The most common abnormalities involved the TP53 gene (12/17 [71% of patients]) and the cell cycle pathway (CDKN2A/B, CDKN2C or RB1) (12/17 [71%]). Abnormalities also were observed in the PI3K/AKT/mTOR pathway (AKT2, FBXW7, NF1, PIK3CA, PIK3R1, PTEN or RICTOR) (9/17 [53%]) and DNA repair genes (ATM, BAP1, BRCA1/2, CHEK2, FANCA or MLH1) (5/17 [29%]). Possible cognate targeted therapies, including FDA-approved drugs, could be identified in most of the patients (16/17 [94%]). In summary, Merkel cell carcinomas were characterized by multiple distinct aberrations that were unique in the majority of analyzed cases. Most patients had theoretically actionable alterations. These results provide a framework for investigating tailored combinations of matched therapies in Merkel cell carcinoma patients.

  16. Fine Structure of Changes Produced in Cultured Cells Sampled at Specified Intervals During a Single Growth Cycle of Polio Virus

    PubMed Central

    Kallman, Frances; Williams, Robley C.; Dulbecco, Renato; Vogt, Marguerite

    1958-01-01

    Primary suspended cultures of rhesus monkey kidney cells were infected with poliomyelitis virus, type 1 (Brunhilde strain). The release of virus from these cells over a one-step growth curve was correlated with their change in fine structure, as seen in the electron microscope. Most of the cells were infected nearly simultaneously, and morphological changes developed in the cells were sufficiently synchronous to be classified into three stages. The earliest change (stage I) became visible at a time when virus release into the culture fluid begins, some 3 hours after adsorption. Accentuation of the abnormal characteristics soon occurs, at 4 to 7 hours after adsorption, and results in stage II. Stage III represents the appearance of cells after their rate of virus release had passed its maximum, and probably the abnormal morphology of these cells reflects non-specific physiological damage. There seems to be consistency between the previously described cellular changes as seen under the light microscope and the finer scale changes reported here. Cytoplasmic bodies, called U bodies, were seen in large number at the time when the virus release was the most rapid (stage II). While these bodies are not of proper size to be considered polio virus, they seem to be specifically related to the infection. No evidence was found for the presence of particles that could even be presumptively identified with those of polio virus. PMID:13549502

  17. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation

    PubMed Central

    Lanza, Denise G.; Dawson, Emily P.; Rao, Priya; Heaney, Jason D.

    2016-01-01

    ABSTRACT Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis. PMID:26901436

  18. Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification.

    PubMed

    Jarrold, Michael D; Humphrey, Craig; McCormick, Mark I; Munday, Philip L

    2017-08-31

    Elevated CO 2 levels associated with ocean acidification (OA) have been shown to alter behavioural responses in coral reef fishes. However, all studies to date have used stable pCO 2 treatments, not considering the substantial diel pCO 2 variation that occurs in shallow reef habitats. Here, we reared juvenile damselfish, Acanthochromis polyacanthus, and clownfish, Amphiprion percula, at stable and diel cycling pCO 2 treatments in two experiments. As expected, absolute lateralization of A. polyacanthus and response to predator cue of Am. percula were negatively affected in fish reared at stable, elevated pCO 2 in both experiments. However, diel pCO 2 fluctuations reduced the negative effects of OA on behaviour. Importantly, in experiment two, behavioural abnormalities that were present in fish reared at stable 750 µatm CO 2 were largely absent in fish reared at 750 ± 300 µatm CO 2 . Overall, we show that diel pCO 2 cycles can substantially reduce the severity of behavioural abnormalities caused by elevated CO 2 . Thus, past studies may have over-estimated the impacts of OA on the behavioural performance of coral reef fishes. Furthermore, our results suggest that diel pCO 2 cycles will delay the onset of behavioural abnormalities in natural populations.

  19. A single ataxia telangiectasia gene with a product similar to PI-3 kinase.

    PubMed

    Savitsky, K; Bar-Shira, A; Gilad, S; Rotman, G; Ziv, Y; Vanagaite, L; Tagle, D A; Smith, S; Uziel, T; Sfez, S; Ashkenazi, M; Pecker, I; Frydman, M; Harnik, R; Patanjali, S R; Simmons, A; Clines, G A; Sartiel, A; Gatti, R A; Chessa, L; Sanal, O; Lavin, M F; Jaspers, N G; Taylor, A M; Arlett, C F; Miki, T; Weissman, S M; Lovett, M; Collins, F S; Shiloh, Y

    1995-06-23

    A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.

  20. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity.

    PubMed

    Ochocki, Joshua D; Khare, Sanika; Hess, Markus; Ackerman, Daniel; Qiu, Bo; Daisak, Jennie I; Worth, Andrew J; Lin, Nan; Lee, Pearl; Xie, Hong; Li, Bo; Wubbenhorst, Bradley; Maguire, Tobi G; Nathanson, Katherine L; Alwine, James C; Blair, Ian A; Nissim, Itzhak; Keith, Brian; Simon, M Celeste

    2018-05-04

    Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling

    PubMed Central

    Durak, Omer; Gao, Fan; Kaeser-Woo, Yea Jin; Rueda, Richard; Martorell, Anthony J.; Nott, Alexi; Liu, Carol Y.; Watson, L. Ashley; Tsai, Li-Huei

    2016-01-01

    De novo mutations in CHD8 are strongly associated with autism spectrum disorder (ASD), however the basic biology of CHD8 remains poor understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8. PMID:27694995

  2. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.

    PubMed

    Sung, Hyun; Tandarich, Lauren C; Nguyen, Kenny; Hollenbeck, Peter J

    2016-07-13

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. Copyright © 2016 the authors 0270-6474/16/367375-17$15.00/0.

  3. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    PubMed Central

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. PMID:27413149

  4. Primary fibroblasts from BRCA1 heterozygotes display an abnormal G1/S cell cycle checkpoint following UVA irradiation but show normal levels of micronuclei following oxidative stress or mitomycin C treatment.

    PubMed

    Shorrocks, Julie; Tobi, Simon E; Latham, Harry; Peacock, John H; Eeles, Ros; Eccles, Diana; McMillan, Trevor J

    2004-02-01

    There is evidence to suggest that the breast cancer predisposing gene, BRCA1, is involved in cell cycle control and the response to damage but mouse brca1+/- heterozygotes have no distinctive phenotype. Here the response to the three forms of cellular stress was examined in primary human fibroblasts from individuals with a +/+ or +/- genotype for BRCA1. Fibroblasts from individuals carrying mutations in the BRCA1 gene were compared with those from those wild-type for BRCA1 in their response to long wavelength uv (UVA), hydrogen peroxide, and mitomycin C (MMC). Cell cycle progression and micronucleus formation (MN) were used as end points. After UVA treatment there was no difference between +/- and +/+ cells in the initial fall in DNA synthetic activity (G(1) arrest) but the reentry into S-phase was restored at a faster rate in the BRCA1+/- cells after UVA exposure. Thus, for three normal (+/+) cell lines irradiated in monolayer, S-phase values averaged 15 +/- 3.7% 14 h post-UVA (1 x 10(5) J/m(2)), as compared with 35.7 +/- 1.9 (range) for two BRCA1(+/-) strains. Because a defective G(1)/S checkpoint in BRCA1 heterozygotes could lead to a greater proportion of S-phase cells with unrepaired DNA damage (strand breaks) and a resultant increase in chromosomal instability, the frequency of micronuclei induced by UVA was examined. Three normal (+/+) and three mutant (+/-) strains (two of which were used in the cell cycle experiments) produced mean micronuclei frequencies of 0.077 +/- 0.016 and 0.094 +/- 0.04/binucleate cell respectively (not statistically significant), 48 h after UVA exposure. No differences were found between BRCA1+/+ and +/- cells in MN formation after treatment with MMC or hydrogen peroxide. Our data suggest a defective G(1)/S checkpoint in cells from BRCA1 heterozygotes in response to UVA although this is not reflected in genomic instability as measured by micronuclei induction after oxidative stress or MMC treatment.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dong-Wook; Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752; Lim, Hye Ryeon

    The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-{kappa}B (NF-{kappa}B) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p < 0.05) inhibition in attachment and proliferation ofmore » RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-{kappa}B/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-{kappa}B down-modulation.« less

  6. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    PubMed

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  7. Hybrid incompatibilities in interspecific crosses between tetraploid wheat and its wild diploid relative Aegilops umbellulata.

    PubMed

    Okada, Moeko; Yoshida, Kentaro; Takumi, Shigeo

    2017-12-01

    Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F 1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.

  8. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  9. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Olson, Aaron K; Isern, Nancy G; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A

    2016-11-01

    Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. © The Author(s) 2016.

  10. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease. Published by Elsevier Inc.

  11. Metastatic renal cell carcinoma complicated with diffuse alveolar hemorrhage: a rare adverse effect of sunitinib.

    PubMed

    Yamada, Tadaaki; Ohtsubo, Koushiro; Izumi, Kouji; Takeuchi, Shinji; Mouri, Hisatsugu; Yamashita, Kaname; Yasumoto, Kazuo; Ghenev, Peter; Kitagawa, Satoshi; Yano, Seiji

    2010-12-01

    We report the case of a 67-year-old man with metastatic papillary renal cell carcinoma (RCC) who developed bloody sputum after the administration of sunitinib. Chest computed tomography revealed diffuse ground-glass opacity lesions, and bloody bronchoalveolar lavage fluid was obtained by flexible bronchoscopy. The abnormal shadows promptly regressed after withdrawal of sunitinib. In four cycles of sunitinib treatment, he suffered from controllable diffuse alveolar hemorrhage. Finally, he died of respiratory failure 8 months after onset. This is the first case report of diffuse alveolar hemorrhage as an adverse effect of sunitinib in metastatic papillary RCC. Care should be taken with pulmonary hemorrhage in the use of anti-angiogenesis agents in not only squamous cell lung cancer, but also metastatic lung tumors.

  12. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs).

    PubMed

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Maes, Michael

    2014-04-01

    The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.

  13. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia.

    PubMed

    Chao, Yu-Hua; Lin, Chiao-Wen; Pan, Hui-Hsien; Yang, Shun-Fa; Weng, Te-Fu; Peng, Ching-Tien; Wu, Kang-Hsi

    2018-06-05

    Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM. © 2018 Wiley Periodicals, Inc.

  14. Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells.

    PubMed

    Guo, Fang-Zi; Zhang, Lian-Shuang; Wei, Jia-Liu; Ren, Li-Hua; Zhang, Jin; Jing, Li; Yang, Man; Wang, Ji; Sun, Zhi-Wei; Zhou, Xian-Qing

    2016-10-01

    Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.

  15. Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation.

    PubMed

    Gurley, Kay E; Ashley, Amanda K; Moser, Russell D; Kemp, Christopher J

    2017-11-01

    Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdc scid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdc scid/scid /Trp53 -/- mice died earliest due to severe GI-ARS. While both Prkdc scid/scid and Prkdc scid/scid /Trp53 -/- mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdc scid/scid /Trp53 -/- mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.

  16. The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis.

    PubMed

    Morris, Gerwyn; Stubbs, Brendon; Köhler, Cristiano A; Walder, Ken; Slyepchenko, Anastasiya; Berk, Michael; Carvalho, André F

    2018-04-04

    Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Bone Morphogenetic Protein Regulation of Enteric Neuronal Phenotypic Diversity: Relationship to Timing of Cell Cycle Exit

    PubMed Central

    Chalazonitis, Alcmène; Pham, Tuan.D.; Li, Zhishan; Roman, Daniel; Guha, Udayan; Gomes, William; Kan, Lixin; Kessler, John A.; Gershon, Michael D.

    2008-01-01

    The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice over expressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (γ-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene related peptide, TrkC). Numbers of TH- and TrkC-expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH- and TrkC-expressing neurons developing in vitro from immunoselected enteric crest-derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT-3-dependent neurons. The developmental defects in the ENS of noggin overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development. PMID:18537141

  18. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2009-09-01

    17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004 Dec;145(12):5439-47. 18...connecting development to breast cancer. Cell Cycle. 2004 Feb;3(2):145-8. 32. Wang C, Li Z, Fu M, Bouras T, Pestell RG. Signal transduction mediated by...Ferzli G, Johnson K, Fricke S, Diba F, Kallakury B, Ohanyerenwa C, Chen M, Ostrowski M, Hung MC, Rabbani SA, Datar R, Cote R, Pestell R, Albanese C

  19. Adult granulosa cell tumors of the ovary: a retrospective study of 30 cases with respect to the expression of steroid synthesis enzymes.

    PubMed

    Kitamura, Sachiko; Abiko, Kaoru; Matsumura, Noriomi; Nakai, Hidekatsu; Akimoto, Yumiko; Tanimoto, Hirotoshi; Konishi, Ikuo

    2017-07-01

    Some, but not all, granulosa cell tumors are characterized by estrogen production. This study was designed to determine whether there are clinical or pathological variations in granulosa cell tumors in relation to the expression of sex steroid synthesis enzymes. Clinical symptoms, serum hormonal values, and histology of 30 granulosa cell tumor patients who underwent surgery between 2002 and 2014 were retrospectively reviewed. Most patients presented with abnormal genital bleeding including abnormal menstrual cycles. Eight of 16 patients older than 50 years had endometrial hyperplasia and one had endometrial cancer. Serum 17β-estradiol (E₂) levels tended to be higher in patients over 50 years of age (p=0.081). Serum follicle-stimulating hormone (FSH) levels were low in all patients irrespective of serum E₂ levels. Magnetic resonance imaging revealed a thicker endometrium in older as compared to younger patients (p<0.05). Tumor cells in the majority of cases were positive for inhibin α and P450 aromatase, irrespective of age and serum E₂ levels. P450 17α-hydroxylase (P450c17) expression varied among cases. P450c17 was strongly positive in luteinized tumor cells and weakly positive in theca cells and fibroblasts. High E₂ levels were associated with P450c17-positive cells in the tumor (p<0.05). The expression of hormone-synthesizing enzymes divides granulosa cell tumors into 2 distinct types; tumors with P450c17-positive cells show elevated serum E₂ and related clinical symptoms, while tumors without these cells show symptoms related to FSH suppression by inhibin. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  20. Biophysics Representation of the Two-Hit Model of Alzheimer's Disease for the Exploration of Late CNS Risks from Space Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ponomarev, Artem

    2009-01-01

    A concern for long-term space travel outside the Earth s magnetic field is the late effects to the central nervous system (CNS) from galactic cosmic ray (GCR) or solar particle events (SPE). Human epidemiology data is severely limited for making CNS risk estimates and it is not clear such effects occur following low LET exposures. We are developing systems biology models based on biological information on specific diseases, and experimental data for proton and heavy ion radiation. A two-hit model of Alzheimer s disease (AD) has been proposed by Zhu et al.(1), which is the framework of our model. Of importance is that over 50% of the US population over the age of 75-y have mild to severe forms of AD. Therefore we recommend that risk assessment for a potential AD risk from space radiation should focus on the projection of an earlier age of onset of AD and the prevention of this possible acceleration through countermeasures. In the two-hit model, oxidative stress and aberrant cell cycle-related abnormalities leading to amyloid-beta plaques and neurofibrillary tangles are necessary and invariant steps in AD. We have formulated a stochastic cell kinetics model of the two-hit AD model. In our model a population of neuronal cells is allowed to undergo renewal through neurogenesis and is susceptible to oxidative stress or cell cycle abnormalities with age-specific accumulation of damage. Baseline rates are fitted to AD population data for specific ages, gender, and for persons with an apolipoprotein 4 allele. We then explore how low LET or heavy ions may increase either of the two-hits or neurogenesis either through persistent oxidative stress, direct mutation, or through changes to the micro-environment, and suggest possible ways to develop accurate quantitative estimates of these processes for predicting AD risks following long-term space travel.

  1. ESHRE PGD Consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013.

    PubMed

    De Rycke, M; Goossens, V; Kokkali, G; Meijer-Hoogeveen, M; Coonen, E; Moutou, C

    2017-10-01

    How does the data collection XIV-XV of the European Society of Human Reproduction and Embryology (ESHRE) PGD Consortium compare with the cumulative data for data collections I-XIII? The 14th and 15th retrospective collection represents valuable data on PGD/PGS cycles, pregnancies and children: the main trend observed is the increased application of array technology at the cost of FISH testing in PGS cycles and in PGD cycles for chromosomal abnormalities. Since 1999, the PGD Consortium has collected, analysed and published 13 previous data sets and an overview of the first 10 years of data collections. Data were collected from each participating centre using a FileMaker Pro database (versions 5-12). Separate predesigned FileMaker Pro files were used for the cycles, pregnancies and baby records. The study documented cycles performed during the calendar years 2011 and 2012 and follow-up of the pregnancies and babies born which resulted from these cycles (until October 2013). Data were submitted by 71 centres (full PGD Consortium members). Records with incomplete or inconsistent data were excluded from the calculations. Corrections, calculations and tables were made by expert co-authors. For data collection XIV-XV, 71 centres reported data for 11 637 cycles with oocyte retrieval (OR), along with details of the follow-up on 2147 pregnancies and 1755 babies born. A total of 1953 cycles to OR were reported for chromosomal abnormalities, 144 cycles to OR for sexing for X-linked diseases, 3445 cycles to OR for monogenic diseases, 6095 cycles to OR for PGS and 38 cycles to OR for social sexing. From 2010 until 2012, the use of arrays for genetic testing increased from 4% to 20% in PGS and from 6% to 13% in PGD cycles for chromosomal abnormalities; the uptake of biopsy at the blastocyst stage (from <1% up to 7%) was only observed in cycles for structural chromosomal abnormalities, alongside the application of array comparative genomic hybridization. The findings apply to the 71 participating centres and may not represent worldwide trends in PGD. The annual data collections provide an important resource for data mining and for following trends in PGD/PGS practice. None. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.

    PubMed

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  3. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  4. Ovotoxicity of cigarette smoke: A systematic review of the literature.

    PubMed

    Budani, Maria Cristina; Tiboni, Gian Mario

    2017-09-01

    This study reviews the scientific literature on the noxious effects of cigarette smoke on the ovarian follicle, and the cumulative data on the impact of smoking on in vitro fertilization (IVF) cycle outcome. There is a close association between tobacco smoke and accelerated follicle loss, abnormal follicle growth and impairment of oocyte morphology and maturation. There is an increasing amount of evidence indicating that smoke can directly derange folliculogenesis. Increased cellular apoptosis or autophagy, DNA damage and abnormal crosstalk between oocyte and granulosa cells have been implicated in the demise of ovarian follicles. It becomes increasingly clear that maternal smoking can exert multigenerational effects on the ovarian function of the progeny. Growing evidence suggests that cigarette smoke is associated with decreased results after IVF. Further research is needed to better define the molecular mechanisms behind smoking-induced ovarian disruption. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to themore » molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age, massive programmed cell death, and the release of transcriptional gene silencing. Our data suggests that plants can initiate programmed cell death to eliminate damaged cells despite the absence of p53 in plant genome.« less

  6. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    PubMed Central

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xenograft tumors in nude mice. Silybin inhibited the kinase activity of mitogen-activated protein kinase kinase (MEK)-1/2 and ribosomal S6 kinase (RSK)-2 in melanoma cells. The direct binding of silybin with MEK1/2 and RSK2 was explored using a computational docking model. Treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2, which are regulated by the upstream kinases MEK1/2. The blockade of MEK1/2-ERK1/2-RSK2 signaling by silybin resulted in a reduced activation of nuclear factor-kappaB, activator protein-1 and signal transducer and activator of transcription-3, which are transcriptional regulators of a variety of proliferative genes in melanomas. Silybin, by blocking the activation of these transcription factors, induced cell cycle arrest at the G1 phase and inhibited melanoma cell growth in vitro and in vivo. Taken together, silybin suppresses melanoma growth by directly targeting MEK- and RSK-mediated signaling pathways. PMID:23447564

  7. Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway.

    PubMed

    Yang, Yang; Li, Xi; Sun, Qinwei; He, Bin; Jia, Yimin; Cai, Demin; Zhao, Ruqian

    2016-10-01

    Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P<0.01) down-regulated, while SLC19A1 was up-regulated (P<0.01) in FD group. FD cells exhibited significantly (P<0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P<0.01) down-regulated and IGF-1 concentration was decreased (P<0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P<0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.

    PubMed

    German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro

    2015-02-01

    Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.

  9. Centrobin-mediated Regulation of the Centrosomal Protein 4.1-associated Protein (CPAP) Level Limits Centriole Length during Elongation Stage*

    PubMed Central

    Gudi, Radhika; Haycraft, Courtney J.; Bell, P. Darwin; Li, Zihai; Vasu, Chenthamarakshan

    2015-01-01

    Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis. PMID:25616662

  10. Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells.

    PubMed

    Huang, S C; Lee, T C

    1998-05-01

    Arsenical compounds, known to be human carcinogens, were shown to disturb cell cycle progression and induce cytogenetic alterations in a variety of cell systems. We report here that a 24 h treatment of arsenite induced mitotic accumulation in human cell lines. HeLa S3 and KB cells were most susceptible: 35% of the total cell population was arrested at the mitotic stage after treatment with 5 microM sodium arsenite in HeLa S3 cells and after 10 microM in KB cells. Under a microscope, we observed abnormal mitotic figures in arsenite-arrested mitotic cells, including deranged chromosome congression, elongated polar distance of mitotic spindle, and enhanced microtubule immunofluorescence. The spindle microtubules of arsenite-arrested mitotic cells were more resistant to nocodazole-induced dissolution than those of control mitotic cells. According to turbidity assay, arsenite at concentrations below 100 microM significantly enhanced polymerization of tubulins. Since spindle dynamics play a crucial role in mitotic progression, our results suggest that arsenite-induced mitotic arrest may be due to arsenite's effects on attenuation of spindle dynamics.

  11. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain.

    PubMed

    Cizmecioglu, Onur; Warnke, Silke; Arnold, Marc; Duensing, Stefan; Hoffmann, Ingrid

    2008-11-15

    In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The centrosome duplicates once per cell cycle. Polo like kinases (Plks) perform crucial functions in cell cycle progression and during mitosis. The polo-like kinase-2, Plk2, is activated near the G(1)/S phase transition, and plays an important role in the reproduction of centrosomes. In this study, we show that the polo-box of Plk2 is required both for association to the centrosome and centriole duplication. Mutation of critical sites in the Plk2 polo-box prevents centrosomal localization and impairs centriole duplication. Plk2 is localized to centrosomes during early G(1) phase where it only associates to the mother centriole and then distributes equally to both mother and daughter centrioles at the onset of S phase. Furthermore, our results imply that Plk2 mediated centriole duplication is dependent on Plk4 function. In addition, we find that siRNA-mediated downregulation of Plk2 leads to the formation of abnormal mitotic spindles confirming that Plk2 may have a function in the reproduction of centrioles.

  12. Inactivation of AMMECR1 is associated with growth, bone, and heart alterations.

    PubMed

    Moysés-Oliveira, Mariana; Giannuzzi, Giuliana; Fish, Richard J; Rosenfeld, Jill A; Petit, Florence; Soares, Maria de Fatima; Kulikowski, Leslie Domenici; Di-Battista, Adriana; Zamariolli, Malú; Xia, Fan; Liehr, Thomas; Kosyakova, Nadezda; Carvalheira, Gianna; Parker, Michael; Seaby, Eleanor G; Ennis, Sarah; Gilbert, Rodney D; Hagelstrom, R Tanner; Cremona, Maria L; Li, Wenhui L; Malhotra, Alka; Chandrasekhar, Anjana; Perry, Denise L; Taft, Ryan J; McCarrier, Julie; Basel, Donald G; Andrieux, Joris; Stumpp, Taiza; Antunes, Fernanda; Pereira, Gustavo José; Neerman-Arbez, Marguerite; Meloni, Vera Ayres; Drummond-Borg, Margaret; Melaragno, Maria Isabel; Reymond, Alexandre

    2018-02-01

    We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis. © 2017 Wiley Periodicals, Inc.

  13. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.

    PubMed

    Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong

    2015-01-01

    Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.

  14. Essential role of FBXL5-mediated cellular iron homeostasis in maintenance of hematopoietic stem cells

    PubMed Central

    Muto, Yoshiharu; Nishiyama, Masaaki; Nita, Akihiro; Moroishi, Toshiro; Nakayama, Keiichi I.

    2017-01-01

    Hematopoietic stem cells (HSCs) are maintained in a hypoxic niche to limit oxidative stress. Although iron elicits oxidative stress, the importance of iron homeostasis in HSCs has been unknown. Here we show that iron regulation by the F-box protein FBXL5 is required for HSC self-renewal. Conditional deletion of Fbxl5 in mouse HSCs results in cellular iron overload and a reduced cell number. Bone marrow transplantation reveals that FBXL5-deficient HSCs are unable to reconstitute the hematopoietic system of irradiated recipients as a result of stem cell exhaustion. Transcriptomic analysis shows abnormal activation of oxidative stress responses and the cell cycle in FBXL5-deficient mouse HSCs as well as downregulation of FBXL5 expression in HSCs of patients with myelodysplastic syndrome. Suppression of iron regulatory protein 2 (IRP2) accumulation in FBXL5-deficient mouse HSCs restores stem cell function, implicating IRP2 as a potential therapeutic target for human hematopoietic diseases associated with FBXL5 downregulation. PMID:28714470

  15. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos.

    PubMed

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.

  16. DNA replication stress induces deregulation of the cell cycle events in root meristems of Allium cepa

    PubMed Central

    Żabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz

    2012-01-01

    Background and Aims Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis. Methods Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H2O2 production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation). Key Results Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H2O2, γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants. Conclusions The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of chromatin combined with gradients of morphological changes spread along the nucleus. PMID:23087128

  17. DNA Methylation Mediated Downregulation of miR-449c Controls Osteosarcoma Cell Cycle Progression by Directly Targeting Oncogene c-Myc

    PubMed Central

    Li, Qing; Li, Hua; Zhao, Xueling; Wang, Bing; Zhang, Lin; Zhang, Caiguo; Zhang, Fan

    2017-01-01

    MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis. PMID:28924385

  18. Curcumin-Mediated Reversal of p15 Gene Promoter Methylation: Implication in Anti-Neoplastic Action against Acute Lymphoid Leukaemia Cell Line.

    PubMed

    Sharma, V; Jha, A K; Kumar, A; Bhatnagar, A; Narayan, G; Kaur, J

    2015-01-01

    Curcumin has been documented to exert anticancer effects by interacting with altered proliferative and apoptotic pathways in cancer models. In this study, we evaluated the potential of curcumin to reverse promoter methylation of the p15 gene in Raji cells and its ability to induce apoptosis and genomic instability. Anti-neoplastic action of curcumin showed an augmentation in reactive oxygen species (ROS) and cell cycle arrest in G1 phase. Subsequently, curcumin- exposed Raji cells showed structural abnormalities in chromosomes. These observations suggest that curcumin also causes ROS-mediated apoptosis and genomic instability. The treatment of Raji cell line with 10 μM curcumin caused hypomethylation of the p15 promoter after six days. Hypomethylation of p15 was further found to be favoured by downregulation of DNA methyltransferase 1 after 10 μM curcumin treatment for six days. Methylation-specific PCR suggested demethylation of the p15 promoter. Demethylation was further validated by DNA sequencing. Reverse-transcription PCR demonstrated that treatment with curcumin (10 μM) for six days led to the up-regulation of p15 and down-regulation of DNA methyltransferase 1. Furthermore, curcumin- mediated reversal of p15 promoter methylation might be potentiated by down-regulation of DNA methyltransferase 1 expression, which was supported by cell cycle analysis. Furthermore, curcumin acts as a double-pronged agent, as it caused apoptosis and promoter hypomethylation in Raji cells.

  19. Association of abnormal morphology and altered gene expression in human preimplantation embryos.

    PubMed

    Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques

    2005-08-01

    We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.

  20. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    PubMed

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  1. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O.; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E.; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C.; Orlowski, Robert; Sarbassov, Dos D.; Lorenzi, Philip L.; Huang, Xuelin; Neelapu, Sattva S.; McDonnell, Timothy; Miranda, Roberto N.; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R. Eric.; Andreeff, Michael

    2016-01-01

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. PMID:26884599

  2. A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating p21/Cdkn1a/Cip1/Waf1 mRNA Stability

    PubMed Central

    Davidovic, Laetitia; Durand, Nelly; Khalfallah, Olfa; Tabet, Ricardo; Barbry, Pascal; Mari, Bernard; Sacconi, Sabrina; Moine, Hervé; Bardoni, Barbara

    2013-01-01

    The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA–binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21—a regulator of cell-cycle progression—in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3′ untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD. PMID:23555284

  3. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    PubMed

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  4. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii

    PubMed Central

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J.

    2015-01-01

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias. PMID:26195778

  5. Isolation and initial characterization of thermoresistant RIF tumor cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, G.M.; van Kersen, I.

    1988-04-01

    Heat-resistant cell strains were obtained from RIF-1 mouse tumor cells by repeated heatings of cells derived from survivors of previous heating cycles (60 min; 45/sup 0/C). Twenty thermally resistant (TR) strains were derived from single cells that had survived 11 heating and regrowth cycles. These were then analyzed for appropriate characteristics in vitro and in vivo. In vitro we looked for: marked heat resistance; high plating efficiency; growth rate similar to that of RIF-1 cells; and no obvious morphological abnormalities. In syngeneic hosts, we looked for: ability of the cells to form tumors whose growth rates were similar to thatmore » of RIF-1 tumors; high cellular heat resistance; good plating efficiency of tumor-derived cells; and low immunogenicity. Five strains having these desired characteristics were analyzed for survival kinetics. The heat-resistant phenotype was found to be stable in vitro, although partial reversion in vivo was seen occasionally. The break in the Arrhenius plot was found to occur at 45/sup 0/C in TR strains versus 43/sup 0/C in RIF-1. All TR strains and the RIF-1 line developed similar levels of thermotolerance (as defined by slope ratios) when given isosurvival heat exposures. X-ray responses of TR and RIF-1 cells were indistinguishable both with respect to survival and to heat-induced radiosensitization. While the number of live cells required to give tumor takes in 50% of the recipients for TR strains was appreciably higher than that for RIF-1 cells, radiation-killed cells from none of the strains were able to immunize efficiently against subsequent challenges by live cells.« less

  6. Cell cycle distribution, cellular viability and mRNA expression of hGCase-gene-transfected cells in dairy goat.

    PubMed

    Zhang, Yan-Li; Wan, Yong-Jie; Wang, Zi-Yu; Qi, Wei-Wei; Zhou, Zheng-Rong; Huang, Rong; Wang, Feng

    2010-05-07

    Nuclear transfer using transgenic donor cells is an efficient way of generating transgenic goats, wherein the preparation of competent transgenic donor cells is the pivotal upstream step. We have measured the efficiency of transfection with a plasmid containing hGCase (human lysosomal acid beta-glucosidase) gene into goat FFC (fetal-derived fibroblast cells), MEC (mammary epithelial cells) and AEFC (adult ear skin-derived fibroblast cells), and the characteristics of cell cycle, apoptosis and chromosome abnormalities after transfection. The expression of genes involved in imprinting [IGF2 (insulin-like growth factor 2), IGF2R (IGF2 receptor)], apoptosis (Bax), stress (heat-shock protein, Hsp70.1), cellular connections [Cx43 (connexin 43)] and DNA methylation [DNMT1 (DNA methyltransferase 1)] in transgenic fetal cells has been investigated. The hGCase transgene was successfully detected in the transfected cell lines, and chromosomal stability remained similar in FFC and transgenic FFC (70.9 compared with 66.8%), whereas a smaller percentage (P<0.05) of cells at G(0)/G(1) in the transgenic FFC, MEC and AEFC (T-FFC, T-MEC and T-AEFC), and higher percentage (P<0.05) of apoptotic cells in T-FFC than the non-transfected controls were detected by flow cytometric analysis. Among the genes tested, the relative expressions of IGF2, IGF2R and transcripts of Cx43 were significantly higher (P<0.05) in T-FFC compared with non-transfected FFC. These novel findings on gene expression in transgenic fetal cells may have certain implications in the biopharming industry and in our understanding the low efficiency of transgenic cloning.

  7. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  8. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.

    PubMed

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L

    2008-06-15

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  9. [Structural and functional organization of centromeres in plant chromosomes].

    PubMed

    Silkova, O G; Loginova, D B

    2014-12-01

    The centromere is a specific chromosomal locus that forms the protein complex and kinetochore, maintains sister chromatid cohesion, controls chromosome attachment to the spindle, and coordinates chromosome movement during mitosis and meiosis. Defective centromere assembly or its dysfunction causes cell cycle arrest, structural abnormalities of the chromosomes, and aneuploidy. This review collects the data on the structure, functions, and epigenetic modification of centromeric chromatin, the structure and functions of the kinetochore, and sister chromatid cohesion. Taken together, these data provide insight into the specific architecture and functioning of the centromere during chromosome division and segregation in plants.

  10. Expression of Mutant Human DISC1 in Mice Supports Abnormalities in Differentiation of Oligodendrocytes

    PubMed Central

    Katsel, Pavel; Tan, Weilun; Abazyan, Bagrat; Davis, Kenneth L; Ross, Christopher; Pletnikov, Mikhail V; Haroutunian, Vahram

    2011-01-01

    Abnormalities in oligodendrocyte (OLG) differentiation and OLG gene expression deficit have been described in schizophrenia (SZ). Recent studies revealed a critical requirement for Disrupted-in-Schizophrenia 1 (DISC1) in neural development. Transgenic mice with forebrain restricted expression of mutant human DISC1 (ΔhDISC1) are characterized by neuroanatomical and behavioral abnormalities reminiscent of some features of SZ. We sought to determine whether the expression of ΔhDISC1 may influence the development of OLGs in this mouse model. OLG- and cell cycle-associated gene and protein expression were characterized in the forebrain of ΔhDISC1 mice during different stages of neurodevelopment (E15 and P1 days) and in adulthood. The results suggest that the expression of ΔhDISC1 exerts a significant influence on oligodendrocyte differentiation and function, evidenced by premature OLG differentiation and increased proliferation of their progenitors. Additional findings showed that neuregulin 1 and its receptors may be contributing factors to the observed upregulation of OLG genes. Thus, OLG function may be perturbed by mutant hDISC1 in a model system that provides new avenues for studying aspects of the pathogenesis of SZ. PMID:21605958

  11. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with/or without production of bFGF or other regulation factors be investigated in future.

  12. Epigenetic rejuvenation.

    PubMed

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  13. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway.

    PubMed

    Li, Guang-Yong; Jung, Kyung Hee; Lee, Hyunseung; Son, Mi Kwon; Seo, JuHyeon; Hong, Sang-Won; Jeong, Yujeong; Hong, Sungwoo; Hong, Soon-Sun

    2013-02-01

    Abnormal activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is an essential step for the formation and growth of tumors in humans. HS-106 is an imidazopyridine derivative that inhibits the kinase activity of PI3K by binding to the ATP-binding cleft. We found that this compound suppressed breast cancer cell proliferation and induced apoptosis by specifically inhibiting the activity of target proteins in the PI3K/Akt/mTOR signaling pathway. Cell cycle analysis revealed that treatment with HS-106 resulted in cell cycle arrest at the G(2)/M phase due to up-regulation of p-cdc25 and down-regulation of cyclin B1. Also, HS-106 induced apoptosis by increasing the levels of cleaved caspase-3 and cleaved PARP. In addition, chromatin condensation and apoptotic bodies were detected in HS-106-treated breast cancer cells. Furthermore, HS-106 decreased the expression of hypoxia-inducible factor 1α (HIF-1α), and inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs) in vitro and blood vessel formation in an in vivo Matrigel plug assay. These results show that HS-106 may be an effective novel therapeutic candidate in clinical trials as a potential treatment for human breast cancers or other advanced malignancies with aberrant PI3K/Akt/mTOR signaling. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    PubMed

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  15. [Automated hematology analysers and spurious counts Part 3. Haemoglobin, red blood cells, cell count and indices, reticulocytes].

    PubMed

    Godon, Alban; Genevieve, Franck; Marteau-Tessier, Anne; Zandecki, Marc

    2012-01-01

    Several situations lead to abnormal haemoglobin measurement or to abnormal red blood cells (RBC) counts, including hyperlipemias, agglutinins and cryoglobulins, haemolysis, or elevated white blood cells (WBC) counts. Mean (red) cell volume may be also subject to spurious determination, because of agglutinins (mainly cold), high blood glucose level, natremia, anticoagulants in excess and at times technological considerations. Abnormality related to one measured parameter eventually leads to abnormal calculated RBC indices: mean cell haemoglobin content is certainly the most important RBC parameter to consider, maybe as important as flags generated by the haematology analysers (HA) themselves. In many circumstances, several of the measured parameters from cell blood counts (CBC) may be altered, and the discovery of a spurious change on one parameter frequently means that the validity of other parameters should be considered. Sensitive flags allow now the identification of several spurious counts, but only the most sophisticated HA have optimal flagging, and simpler ones, especially those without any WBC differential scattergram, do not share the same capacity to detect abnormal results. Reticulocytes are integrated into the CBC in many HA, and several situations may lead to abnormal counts, including abnormal gating, interference with intraerythrocytic particles, erythroblastosis or high WBC counts.

  16. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Wang, Yuan; Feng, Jinyan

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. Inmore » addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.« less

  17. Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae

    PubMed Central

    Sundararajan, Rangapriya; Freudenreich, Catherine H.

    2011-01-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275

  18. Further evidences for sleep instability and impaired spindle-delta dynamics in schizophrenia: a whole-night polysomnography study with neuroloop-gain and sleep-cycle analysis.

    PubMed

    Sasidharan, Arun; Kumar, Sunil; Nair, Ajay Kumar; Lukose, Ammu; Marigowda, Vrinda; John, John P; Kutty, Bindu M

    2017-10-01

    Sleep offers a unique window into the brain dysfunctions in schizophrenia. Many past sleep studies have reported abnormalities in both macro-sleep architecture (like increased awakenings) as well as micro-sleep-architecture (like spindle deficits) in patients with schizophrenia (PSZ). The present study attempts to replicate previous reports of macro- and micro-sleep-architectural abnormalities in schizophrenia. In addition, the study also examined sleep-stage changes and spindle-delta dynamics across sleep-cycles to provide further evidence in support of the dysfunctional thalamocortical mechanisms causing sleep instability and poor sleep maintenance associated with schizophrenia pathophysiology. Whole-night polysomnography was carried out among 45 PSZ and 39 age- and gender-matched healthy control subjects. Sleep-stage dynamics were assessed across sleep-cycles using a customized software algorithm. Spindle-delta dynamics across sleep-cycles were determined using neuroloop-gain analysis. PSZ showed macro-sleep architecture abnormalities such as prolonged sleeplessness, increased intermittent-awakenings, long sleep-onset latency, reduced non-rapid eye movement (NREM) stage 2 sleep, increased stage transitions, and poor sleep efficiency. They also showed reduced spindle density (sigma neuroloop-gain) but comparable slow wave density (delta neuroloop-gain) throughout the sleep. Sleep-cycle-wise analysis revealed transient features of sleep instability due to significantly increased intermittent awakenings especially in the first and third sleep-cycles, and unstable and recurrent stage transitions in both NREM (first sleep-cycle) and rapid eye movement (REM) sleep-periods (second sleep-cycle). Spindle deficits were persistent across the first three cycles and were positively correlated with sleep disruption during the subsequent REM sleep. In addition to replicating previously reported sleep deficits in PSZ, the current study showed subtle deficits in NREM-REM alterations across whole-night polysomnography. These results point towards a possible maladaptive interplay between unstable thalamocortical networks, resulting in sleep-cycle-specific instability patterns associated with schizophrenia pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modification of tooth development by heat shock protein 60

    PubMed Central

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  20. Squamous cell carcinoma – similarities and differences among anatomical sites

    PubMed Central

    Yan, Wusheng; Wistuba, Ignacio I; Emmert-Buck, Michael R; Erickson, Heidi S

    2011-01-01

    Squamous cell carcinoma (SCC) is an epithelial malignancy involving many anatomical sites and is the most common cancer capable of metastatic spread. Development of early diagnosis methods and novel therapeutics are important for prevention and mortality reduction. In this effort, numerous molecular alterations have been described in SCCs. SCCs share many phenotypic and molecular characteristics, but they have not been extensively compared. This article reviews SCC as a disease, including: epidemiology, pathology, risk factors, molecular characteristics, prognostic markers, targeted therapy, and a new approach to studying SCCs. Through this comparison, several themes are apparent. For example, HPV infection is a common risk factor among the four major SCCs (NMSC, HNSC, ESCC, and NSCLC) and molecular abnormalities in cell-cycle regulation and signal transduction predominate. These data reveal that the molecular insights, new markers, and drug targets discovered in individual SCCs may shed light on this type of cancer as a whole. PMID:21938273

  1. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Atsushi; Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075; Ogawa, Masahiro

    Highlights: {yields} We identified RNA-binding motif protein 3 (RBM3) as CpG-B DNA-binding protein. {yields} RBM3 translocates from the nucleus to the cytoplasm and co-localized with CpG-B DNA. {yields} We newly generated Rbm3-deficient (Rbm3{sup -/-}) mice. {yields} DNA-mediated cytokine gene induction was normally occured in Rbm3{sup -/-} cells. {yields}Rbm3{sup -/-} MEFs showed poorer proliferation rate and increased number of G2-phase cells. -- Abstract: The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for newmore » DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3{sup -/-}) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3{sup -/-} mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3{sup -/-} mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3{sup -/-} MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.« less

  2. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells.

    PubMed

    Nabzdyk, Christoph S; Lancero, Hope; Nguyen, Khanh P; Salek, Sherveen; Conte, Michael S

    2011-11-01

    Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.

  3. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells

    PubMed Central

    Nabzdyk, Christoph S.; Lancero, Hope; Nguyen, Khanh P.; Salek, Sherveen

    2011-01-01

    Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G2/M fraction consistent with a mitotic defect; 4′,6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G2/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall. PMID:21856925

  4. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

    PubMed Central

    Vicente, Juan-Jesus; Cande, W. Zacheus

    2014-01-01

    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014

  5. Characterization of distinct classes of differential gene expression in osteoblast cultures from non-syndromic craniosynostosis bone.

    PubMed

    Rojas-Peña, Monica L; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention.

  6. Characterization of Distinct Classes of Differential Gene Expression in Osteoblast Cultures from Non-Syndromic Craniosynostosis Bone

    PubMed Central

    Rojas-Peña, Monica L.; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D.; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention. PMID:25184005

  7. Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas.

    PubMed

    Itoh, Hiroko; Mogami, Haruta; Bou Nemer, Laurice; Word, Larry; Rogers, David; Miller, Rodney; Word, R Ann

    2018-02-01

    How does progesterone alter matrix remodeling in abdominal wall endometriomas compared with normal endometrium? Progesterone may prevent attachment of endometrial cells to the abdominal wall, but does not ameliorate abnormal stromal cell responses of abdominal wall endometriomas. Menstruation is a tightly orchestrated physiologic event in which steroid hormones and inflammatory cells cooperatively initiate shedding of the endometrium. Abdominal wall endometriomas represent a unique form of endometriosis in which endometrial cells inoculate fascia or dermis at the time of obstetrical or gynecologic surgery. Invasion of endometrium into ectopic sites requires matrix metalloproteinases (MMPs) for tissue remodeling but endometrium is not shed externally. Observational study in 14 cases and 19 controls. Tissues and stromal cells isolated from 14 abdominal wall endometriomas were compared with 19 normal cycling endometrium using immunohistochemistry, quantitative PCR, gelatin zymography and cell attachment assays. P values < 0.05 were considered significant and experiments were repeated in at least three different cell preps to provide scientific rigor to the conclusions. The results indicate that MMP2 and MMP9 are not increased by TGFβ1 in endometrioma stromal cells. Although progesterone prevents attachment of endometrioma cells to matrix components of the abdominal wall, it does not ameliorate these abnormal stromal cell responses to TGFβ1. N/A. Endometriomas were collected from women identified pre-operatively. Not all endometriomas were collected. Stromal cells from normal endometrium were from different patients, not women undergoing endometrioma resection. This work provides insight into the mechanisms by which progesterone may prevent abdominal wall endometriomas but, once established, are refractory to progesterone treatment. Tissue acquisition was supported by NIH P01HD087150. Authors have no competing interests. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    PubMed

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  9. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition

    PubMed Central

    Deaver, Jessica A.; Eum, Sung Y.; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light–dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques, a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii, a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances. PMID:29706947

  10. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    PubMed

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    PubMed

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  12. Hereditary urea cycle abnormality

    MedlinePlus

    Nagamani SCS, Lichter-Konecki U. Inborn errors of urea synthesis. In: Swaiman KF, Ashwal S, Ferriero DM, et al, ... Elsevier; 2017:chap 38. Rezvani I, Yudkoff M. Urea cycle and ... errors of metabolism. In: Martin RJ, Fanaroff AA, Walsh MC, eds. ...

  13. The rodent estrous cycle: Characterization of vaginal cytology and its utility in toxicological studies

    EPA Science Inventory

    An evaluation of the estrous cycle in laboratory rodents can be a useful measure of the integrity of the hypothalamic-pituitary-ovarian reproductive axis. It can also serve as a way of insuring that animals exhibiting abnormal cycling patterns are disincluded from a study prior t...

  14. Colony-Stimulating Factors for Febrile Neutropenia during Cancer Therapy

    PubMed Central

    Bennett, Charles L.; Djulbegovic, Benjamin; Norris, LeAnn B.; Armitage, James O.

    2014-01-01

    A 55-year-old, previously healthy woman received a diagnosis of diffuse large-B-cell lymphoma after the evaluation of an enlarged left axillary lymph node obtained on biopsy. She had been asymptomatic except for the presence of enlarged axillary lymph nodes, which she had found while bathing. She was referred to an oncologist, who performed a staging evaluation. A complete blood count and test results for liver and renal function and serum lactate dehydrogenase were normal. Positron-emission tomography and computed tomography (PET–CT) identified enlarged lymph nodes with abnormal uptake in the left axilla, mediastinum, and retroperitoneum. Results on bone marrow biopsy were normal. The patient’s oncologist recommends treatment with six cycles of cyclophosphamide, doxorubicin, vincristine, and prednisone with rituximab (CHOP-R) at 21-day intervals. Is the administration of prophylactic granulocyte colony-stimulating factor (G-CSF) with the first cycle of chemotherapy indicated? PMID:23514290

  15. Study of endometrial thickness by ultrasonography in regular and irregular menstrual cycles.

    PubMed

    Shinde, Charushila D; Patil, Pankaj G; Katti, Karuna; Geetha, K N

    2013-10-01

    Endometrium is the mucosal layer of uterus. Throughout the reproductive age endometrium undergoes cyclical changes during each lunar month to prepare the uterus for implantation. Endometrium proliferates and regenerates during menstrual cycle. The most common cause of abnormal vaginal bleeding during a woman's reproductive years is dysfunctional uterine bleeding. Aim of this study was to compare endometrial thickness in regular and irregular menstrual cycles. A total of 111 patients with regular and irregular menstrual bleeding were selected. Age, duration of menstrual cycle, detailed menstrual history, endometrial thickness, difference in endometrial thickness before and after treatment were recorded. Endometrial thickness was recorded by ultrasonography. In patients with abnormal uterine bleeding, if endometrial thickness was less than 8mm first medical line of treatment was advised. If endometrial thickness was greater than 8mm, line of treatment depended on age and pattern of bleeding.

  16. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    PubMed

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  17. TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells

    PubMed Central

    Weeks, Robert J.; Ludgate, Jackie L.; LeMée, Gwenn; Morison, Ian M.

    2016-01-01

    Background Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. Methods Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5’-aza-2’-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. Results In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. Conclusions These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL. PMID:26985820

  18. Effects of Melatonin on Morphological and Functional Parameters of the Pineal Gland and Organs of Immune System in Rats During Natural Light Cycle and Constant Illumination.

    PubMed

    Litvinenko, G I; Shurlygina, A V; Gritsyk, O B; Mel'nikova, E V; Tenditnik, M V; Avrorov, P A; Trufakin, V A

    2015-10-01

    We studied the response of the pineal gland and organs of the immune system to melatonin treatment in Wistar rats kept under conditions of abnormal illumination regimen. The animals were kept under natural light regimen or continuous illumination for 14 days and then received daily injections of melatonin (once a day in the evening) for 7 days. Administration of melatonin to rats kept at natural light cycle was followed by a decrease in percent ratio of CD4+8+ splenocytes and CD4-8+ thymocytes. In 24-h light with the following melatonin injections were accompanied by an increase in percent rate and absolute amount of CD4+8+ cells in the spleen, and a decrease in percent rate of CD11b/c and CD4-8+ splenocytes. In the thymus amount of CD4-8+ cells increased, and absolute number of CD4+25+ cells reduced. Melatonin significantly decreased lipofuscin concentration in the pineal gland during continuous light. Direction and intensity of effects of melatonin on parameters of cell immunity and state of the pineal gland were different under normal and continuous light conditions. It should be taken into account during using of this hormone for correction of immune and endocrine impairments developing during change in light/dark rhythm.

  19. Notch Signaling Regulates Late-Stage Epidermal Differentiation and Maintains Postnatal Hair Cycle Homeostasis

    PubMed Central

    Lin, Hsien-Yi; Kao, Cheng-Heng; Lin, Kurt Ming-Chao; Kaartinen, Vesa; Yang, Liang-Tung

    2011-01-01

    Background Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis. Methodology and Principal Findings We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes. Significance our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells. PMID:21267458

  20. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    PubMed Central

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  1. ACOG Committee Opinion No. 651: Menstruation in Girls and Adolescents: Using the Menstrual Cycle as a Vital Sign.

    PubMed

    2015-12-01

    Despite variations worldwide and within the U.S. population, median age at menarche has remained relatively stable-between 12 years and 13 years-across well-nourished populations in developed countries. Environmental factors, including socioeconomic conditions, nutrition, and access to preventive health care, may influence the timing and progression of puberty. A number of medical conditions can cause abnormal uterine bleeding, characterized by unpredictable timing and variable amount of flow. Clinicians should educate girls and their caretakers (eg, parents or guardians) about what to expect of a first menstrual period and the range for normal cycle length of subsequent menses. Identification of abnormal menstrual patterns in adolescence may improve early identification of potential health concerns for adulthood. It is important for clinicians to have an understanding of the menstrual patterns of adolescent girls, the ability to differentiate between normal and abnormal menstruation, and the skill to know how to evaluate the adolescent girl patient. By including an evaluation of the menstrual cycle as an additional vital sign, clinicians reinforce its importance in assessing overall health status for patients and caretakers.

  2. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function.

    PubMed

    Jones, Natalie C; Lynn, Megan L; Gaudenz, Karin; Sakai, Daisuke; Aoto, Kazushi; Rey, Jean-Phillipe; Glynn, Earl F; Ellington, Lacey; Du, Chunying; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2008-02-01

    Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1-mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies.

  3. Programmed cell senescence during mammalian embryonic development.

    PubMed

    Muñoz-Espín, Daniel; Cañamero, Marta; Maraver, Antonio; Gómez-López, Gonzalo; Contreras, Julio; Murillo-Cuesta, Silvia; Rodríguez-Baeza, Alfonso; Varela-Nieto, Isabel; Ruberte, Jesús; Collado, Manuel; Serrano, Manuel

    2013-11-21

    Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma.

    PubMed

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-05-23

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer.

  5. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma

    PubMed Central

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-01-01

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer. PMID:28416766

  6. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.

    PubMed

    Reddy, Rallabandi Harikrishna; Kim, Hackyoung; Cha, Seungbin; Lee, Bongsoo; Kim, Young Jun

    2017-05-28

    Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

  7. Brca2 (XRCC11) Deficiency Results in Radioresistant DNA Synthesis and a Higher Frequency of Spontaneous Deletions

    PubMed Central

    Kraakman-van der Zwet, Maria; Overkamp, Wilhelmina J. I.; van Lange, Rebecca E. E.; Essers, Jeroen; van Duijn-Goedhart, Annemarie; Wiggers, Ingrid; Swaminathan, Srividya; van Buul, Paul P. W.; Errami, Abdellatif; Tan, Raoul T. L.; Jaspers, Nicolaas G. J.; Sharan, Shyam K.; Kanaar, Roland; Zdzienicka, Małgorzata Z.

    2002-01-01

    We show here that the radiosensitive Chinese hamster cell mutant (V-C8) of group XRCC11 is defective in the breast cancer susceptibility gene Brca2. The very complex phenotype of V-C8 cells is complemented by a single human chromosome 13 providing the BRCA2 gene, as well as by the murine Brca2 gene. The Brca2 deficiency in V-C8 cells causes hypersensitivity to various DNA-damaging agents with an extreme sensitivity toward interstrand DNA cross-linking agents. Furthermore, V-C8 cells show radioresistant DNA synthesis after ionizing radiation, suggesting that Brca2 deficiency affects cell cycle checkpoint regulation. In addition, V-C8 cells display tremendous chromosomal instability and a high frequency of abnormal centrosomes. The mutation spectrum at the hprt locus showed that the majority of spontaneous mutations in V-C8 cells are deletions, in contrast to wild-type V79 cells. A mechanistic explanation for the genome instability phenotype of Brca2-deficient cells is provided by the observation that the nuclear localization of the central DNA repair protein in homologous recombination, Rad51, is reduced in V-C8 cells. PMID:11756561

  8. From centriole biogenesis to cellular function: centrioles are essential for cell division at critical developmental stages.

    PubMed

    Rodrigues-Martins, Ana; Riparbelli, Maria; Callaini, Giuliano; Glover, David M; Bettencourt-Dias, Monica

    2008-01-01

    Centrioles are essential for the formation of cilia, flagella and centrosome organization. Abnormalities in centrosome structure and number in many cancers can be associated with aberrant cell division and genomic instability.(1,2) Canonical centriole duplication occurs in coordination with the cell division cycle, such that a single new "daughter" centriole arises next to each "mother" centriole. If destroyed, or eliminated during development, centrioles can form de novo.(3-5) Here we discuss our recent data demonstrating a molecular pathway that operates in both de novo and canonical centriole biogenesis involving SAK/PLK4, SAS-6 and SAS-4.(6) We showed that centriole biogenesis is a self-assembly process locally triggered by high SAK/PLK4 activity that may or not be associated with an existing centriole. SAS-6 acts downstream of SAK/PLK4 to organize nine precentriolar units, which we call here enatosomes, fitting together laterally and longitudinally, specifying a tube-like centriole precursor.(7,8) The identification of mutants impaired in centriole biogenesis has permitted the study of the physiological consequences of their absence in the whole organism. In Drosophila, centrioles are not necessary for somatic cell divisions.(9,10) However, we show here that mitotic abnormalities arise in syncytial SAK/PLK4-derived mutant embryos resulting in lethality. Moreover male meiosis fails in both SAK/PLK4 and DSAS-4 mutant spermatids that have no centrioles. These results show diversity in the need for centrioles in cell division. This suggests that tissue specific constraints selected for different contributions of centrosome-independent and dependent mechanisms in spindle function. This heterogeneity should be taken into account both in reaching an understanding of spindle function and when designing drugs that target cell division.

  9. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development

    PubMed Central

    Boman, Bruce M.; Fields, Jeremy Z.

    2013-01-01

    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156

  10. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    PubMed

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  11. hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ*

    PubMed Central

    Xu, Yang; Wu, Xiling; Her, Chengtao

    2015-01-01

    Replication stress from stalled or collapsed replication forks is a major challenge to genomic integrity. The anticancer agent camptothecin (CPT) is a DNA topoisomerase I inhibitor that causes fork collapse and double-strand breaks amid DNA replication. Here we report that hMSH5 promotes cell survival in response to CPT-induced DNA damage. Cells deficient in hMSH5 show elevated CPT-induced γ-H2AX and RPA2 foci with concomitant reduction of Rad51 foci, indicative of impaired homologous recombination. In addition, CPT-treated hMSH5-deficient cells exhibit aberrant activation of Chk1 and Chk2 kinases and therefore abnormal cell cycle progression. Furthermore, the hMSH5-FANCJ chromatin recruitment underlies the effects of hMSH5 on homologous recombination and Chk1 activation. Intriguingly, FANCJ depletion desensitizes hMSH5-deficient cells to CPT-elicited cell killing. Collectively, our data point to the existence of a functional interplay between hMSH5 and FANCJ in double-strand break repair induced by replication stress. PMID:26055704

  12. C/EBPα expression is downregulated in human nonmelanoma skin cancers and inactivation of C/EBPα confers susceptibility to UVB-induced skin squamous cell carcinomas.

    PubMed

    Thompson, Elizabeth A; Zhu, Songyun; Hall, Jonathan R; House, John S; Ranjan, Rakesh; Burr, Jeanne A; He, Yu-Ying; Owens, David M; Smart, Robert C

    2011-06-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G(1) checkpoint, and diminished or ablated expression of C/EBPα results in G(1) checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.

  13. C/EBPα Expression Is Downregulated in Human Nonmelanoma Skin Cancers and Inactivation of C/EBPα Confers Susceptibility to UVB-Induced Skin Squamous Cell Carcinomas

    PubMed Central

    Thompson, Elizabeth A.; Zhu, Songyun; Hall, Jonathan R.; House, John S.; Ranjan, Rakesh; Burr, Jeanne A.; He, Yu-Ying; Owens, David M.; Smart, Robert C.

    2012-01-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G1 checkpoint, and diminished or ablated expression of C/EBPα results in G1 checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB. PMID:21346772

  14. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase

    PubMed Central

    Brown, Jason M.; Sampaio, Julio L.; Craft, Julie M.; Shevchenko, Andrej; Evans, James E.; Witman, George B.

    2013-01-01

    The BBSome is a complex of seven proteins, including BBS4, that is cycled through cilia by intraflagellar transport (IFT). Previous work has shown that the membrane-associated signaling protein phospholipase D (PLD) accumulates abnormally in cilia of Chlamydomonas reinhardtii bbs mutants. Here we show that PLD is a component of wild-type cilia but is enriched ∼150-fold in bbs4 cilia; this accumulation occurs progressively over time and results in altered ciliary lipid composition. When wild-type BBSomes were introduced into bbs cells, PLD was rapidly removed from the mutant cilia, indicating the presence of an efficient BBSome-dependent mechanism for exporting ciliary PLD. This export requires retrograde IFT. Importantly, entry of PLD into cilia is BBSome and IFT independent. Therefore, the BBSome is required only for the export phase of a process that continuously cycles PLD through cilia. Another protein, carbonic anhydrase 6, is initially imported normally into bbs4 cilia but lost with time, suggesting that its loss is a secondary effect of BBSome deficiency. PMID:23589493

  15. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood.

    PubMed

    Roland, Alison V; Moenter, Suzanne M

    2011-02-01

    Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.

  16. Diffuse large B-cell lymphoma solely involving bilateral adrenal glands and stomach: report of an extremely rare case with review of the literature.

    PubMed

    Wakabayashi, Mutsumi; Sekiguchi, Yasunobu; Shimada, Asami; Ichikawa, Kunimoto; Sugimoto, Keiji; Tomita, Shigeki; Izumi, Hiroshi; Nakamura, Noriko; Sawada, Tomohiro; Ohta, Yasunori; Komatsu, Norio; Noguchi, Masaaki

    2014-01-01

    A 60-year-old man complained of nausea, vomiting, decreased appetite, and a feeling of abdominal fullness in August 2013. Based on biopsy findings from an upper gastrointestinal endoscopy examination, a diagnosis of non-Hodgkin's lymphoma (NHL), diffuse large B-cell lymphoma (DLBCL), non-GC type, was made. F18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) revealed abnormal accumulations solely in the gastric wall (SUVmax = 14.5), the left adrenal gland (SUVmax = 14.3), and the right adrenal gland (SUVmax = 8.5). The clinical stage (Ann Arbor) was IVA, the serum LDH level was within the reference range, and the International Prognostic Index (IPI) was low-intermediate. The serum soluble IL-2 receptor level was within the reference range, and there was no evidence of HIV, EB virus, or autoimmune disease. After the completion of 4 cycles of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) and 2 parallel cycles of prophylactic intrathecal (I.T.), an upper gastrointestinal endoscopy and a FDG-PET/CT examination showed complete remission (CR). The patient received 8 cycles of ritsuximab therapy, 6 cycles of CHOP, and 3 cycles of I.T. The patient has maintained a CR for about 14 months. A literature search revealed that malignant lymphoma with involvement confined to the adrenal gland and gastrointestinal tract is exceedingly rare, and only 3 cases of malignant lymphoma have been reported, with involvement of the stomach in 2 cases and the duodenum in 1 case. All of the cases were diagnosed as DLBCL. The case described herein represents the third case with involvement of the stomach.

  17. Genetic Ablation of CCAAT/Enhancer Binding Protein α in Epidermis Reveals Its Role in Suppression of Epithelial Tumorigenesis

    PubMed Central

    Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.

    2013-01-01

    CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888

  18. Development of mice without Cip/Kip CDK inhibitors.

    PubMed

    Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu; Hara, Eiji; Nakayama, Keiko; Nakayama, Keiichi I

    2012-10-19

    Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largely unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G(0) to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in normal development (although it is thought to be a key player in the response to DNA damage). Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Objective Investigation of the Sleep-Wake Cycle in Adults with Intellectual Disabilities and Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Hare, D. J.; Jones, S.; Evershed, K.

    2006-01-01

    Background: Disturbances in circadian rhythm functioning, as manifest in abnormal sleep-wake cycles, have been postulated to be present in people with autistic spectrum disorders (ASDs). To date, research into the sleep-wake cycle in people with ASDs has been primarily dependant on third-party data collection. Method: The utilization of…

  20. Phase II study of biweekly plitidepsin as second-line therapy for advanced or metastatic transitional cell carcinoma of the urothelium.

    PubMed

    Dumez, Herlinde; Gallardo, Enrique; Culine, Stephane; Galceran, Joan Carles; Schöffski, Patrick; Droz, Jean P; Extremera, Sonia; Szyldergemajn, Sergio; Fléchon, Aude

    2009-09-16

    The objective of this exploratory, open-label, single-arm, phase II clinical trial was to evaluate plitidepsin (5 mg/m(2)) administered as a 3-hour continuous intravenous infusion every two weeks to patients with locally advanced/metastatic transitional cell carcinoma of the urothelium who relapsed/progressed after first-line chemotherapy. Treatment cycles were repeated for up to 12 cycles or until disease progression, unacceptable toxicity, patient refusal or treatment delay for >2 weeks. The primary efficacy endpoint was objective response rate according to RECIST. Secondary endpoints were the rate of SD lasting > or = 6 months and time-to-event variables. Toxicity was assessed using NCI-CTC v. 3.0. Twenty-one patients received 57 treatment cycles. No objective tumor responses occurred. SD lasting <6 months was observed in two of 18 evaluable patients. With a median follow-up of 4.6 months, the median PFR and the median OS were 1.4 months and 2.3 months, respectively. The most common AEs were mild to moderate nausea, fatigue, myalgia and anorexia. Anemia, lymphopenia, and increases in transaminases, alkaline phosphatase and creatinine were the most frequent laboratory abnormalities. No severe neutropenia occurred. Treatment was feasible and generally well tolerated in this patient population; however the lack of antitumor activity precludes further studies of plitidepsin in this setting.

  1. Deficiency in memory B cell compartment in a patient with infertility and recurrent pregnancy losses.

    PubMed

    Sung, N; Byeon, H J; Garcia, M D Salazar; Skariah, A; Wu, L; Dambaeva, S; Beaman, K; Gilman-Sachs, A; Kwak-Kim, J

    2016-11-01

    Alterations in normal balance of B cell subsets have been reported in various rheumatic diseases. In this study, we report a woman with a history of recurrent pregnancy losses (RPL) and infertility who had low levels of memory B cells. A 35-year-old woman with a history of RPL and infertility was demonstrated to have increased peripheral blood CD19+ B cells with persistently low levels of memory B cell subsets. Prior to the frozen donor egg transfer cycle, prednisone and intravenous immunoglobulin G (IVIg) treatment was initiated and patient achieved dichorionic diamniotic twin pregnancies. During pregnancy, proportion (%) of switched memory B cells CD27+IgD- increased, while percent of total CD19+ B cells and CD27-IgD+ naive B cells were gradually decreased with a high dose IVIg treatment. She developed cervical incompetence at 20 weeks of gestation, received a Cesarean section at 32 weeks of gestation due to preterm labor, and delivered twin babies. B cell subset abnormalities may be associated with infertility, RPL and preterm labor, and further investigation is needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Orthotopic Liver Transplantation for Urea Cycle Enzyme Deficiency

    PubMed Central

    Todo, Satoru; Starzl, Thomas E.; Tzakis, Andreas; Benkov, Keith J.; Kalousek, Frantisek; Saheki, Takeyori; Tanikawa, Kyuichi; Fenton, Wayne A.

    2010-01-01

    Hyperammonemia, abnormalities in plasma amino acids and abnormalities of standard liver functions were corrected by orthotopic liver transplantation in a 14-day-old boy with carbamyl phosphate synthetase-I deficiency and in a 35-yr-old man with argininosuccinic acid synthetase deficiency. The first patient had high plasma glutamine levels and no measureable citrulline, whereas citrulline values were markedly increased in Patient 2. Enzyme analysis of the original livers showed undetectable activity of carbamyl phosphate synthetase-I in Patient 1 and arginosuccinic acid synthetase in Patient 2. Both patients were comatose before surgery. Intellectual recovery of patient 1 has been slightly retarded because of a brain abscess caused by Aspergillus infection after surgery. Both patients are well at 34 and 40 mo, respectively, after surgery. Our experience has shown that orthotopic liver transplantation corrects the life-threatening metabolic abnormalities caused by deficiencies in the urea cycle enzymes carbamyl phosphate synthetase-I and arginosuccinic acid synthetase. Seven other patients–six with ornithine transcarbamylase deficiency and another with carbamyl phosphate synthetase-I deficiency–are known to have been treated elsewhere with liver transplantation 1½ yr or longer ago. Four of these seven recipients also are well, with follow-ups of 1½ to 5 yr. Thus liver transplantation corrects the metabolic abnormalities of three of the six urea cycle enzyme deficiencies, and presumably would correct all. PMID:1544622

  3. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  4. [A case of 63,X/64,XX mosaicism in a subfertile pony mare].

    PubMed

    Pieńkowska-Schelling, A; Handler, J; Neuhauser, S; Schelling, C

    2016-04-01

    The present case report describes a 6-year old subfertile pony mare, which became pregnant after the eleventh artificial insemination. The examination of the ovaries and the uterus did not reveal any abnormal clinical findings and the mare showed a regular oestrous cycle. Based on cytogenetic and molecular genetic analyses it became possible to elucidate the observed subfertility. The mosaic karyotype of the mare consisted of 63,X (20%) and 64,XX (80%) cells. A PCR analysis failed to amplify sequences from the equine SRY gene. The observed classic 63,X/64,XX mosaicism is a plausible explanation for the subfertility of the mare.

  5. Fanconi anemia: a disorder defective in the DNA damage response.

    PubMed

    Kitao, Hiroyuki; Takata, Minoru

    2011-04-01

    Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin-phosphorylation network called the "FA pathway" and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.

  6. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    PubMed

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Acute Exposure to Vibration is an Apoptosis-Inducing Stimulus in the Vocal Fold Epithelium

    PubMed Central

    Novaleski, Carolyn K.; Kimball, Emily E.; Mizuta, Masanobu; Rousseau, Bernard

    2016-01-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120 minutes) or a control group (120 minutes of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120 minutes of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120 minutes of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases. PMID:27577014

  8. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel

    2016-07-05

    FOXM1 is a pro-proliferative transcription factor that promotes cell cycle progression at the G1-S, and G2-M transitions. It is activated by phosphorylation usually mediated by successive cyclin - cyclin dependent kinase complexes, and is highly expressed in sarcoma. p53 down regulates FOXM1 and FOXM1 inhibition is also partly dependent on Rb and p21. Abnormalities of p53 or Rb are frequent in sporadic sarcomas with bone or soft tissue sarcoma, accounting for 36% of index cancers in the high penetrance TP53 germline disorder, Li-Fraumeni syndrome.FOXM1 stimulates transcription of pluripotency related genes including SOX2, KLF4, OCT4, and NANOG many of which are important in sarcoma, a disorder of mesenchymal stem cell/ partially committed progenitor cells. In a selected specific, SOX2 is uniformly expressed in synovial sarcoma. Embryonic pathways preferentially used in stem cell such as Hippo, Hedgehog, and Wnt dominate in FOXM1 stoichiometry to alter rates of FOXM1 production or degradation. In undifferentiated pleomorphic sarcoma, liposarcoma, and fibrosarcoma, dysregulation of the Hippo pathway increases expression of the effector co-transcriptional activator Yes-Associated Protein (YAP). A complex involving YAP and the transcription factor TEAD elevates FOXM1 in these sarcoma subtypes. In another scenario 80% of desmoid tumors have nuclear localization of β-catenin, the Wnt pathway effector molecule. Thiazole antibiotics inhibit FOXM1 and because they have an auto-regulator loop FOXM1 expression is also inhibited. Current systemic treatment of sarcoma is of limited efficacy and inhibiting FOXM1 represents a potential new strategy.

  9. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  10. Focus on: epigenetics and fetal alcohol spectrum disorders.

    PubMed

    Kobor, Michael S; Weinberg, Joanne

    2011-01-01

    Epigenetic changes-stable but potentially reversible alterations in a cell's genetic information that result in changes in gene expression but do not involve changes in the underlying DNA sequence-may mediate some of the detrimental effects of prenatal alcohol exposure and contribute to the deficits and abnormalities associated with fetal alcohol spectrum disorders. These epigenetic processes are linked to the chromatin (i.e., DNA, histone proteins, and other associated proteins) and commonly involve chemical modifications (e.g., methylation) of these molecules, which may result in altered expression of the affected genes. Even alcohol exposure prior to conception appears to be able to induce epigenetic changes in the parental genetic material that can be passed on to the offspring and affect offspring outcome. Similarly, epigenetic processes may occur as a result of maternal alcohol consumption during the period between fertilization of the egg and implantation in the uterus. The period most sensitive to alcohol's adverse effects appears to be gastrulation, which corresponds to prenatal weeks 3 to 8 in the human and prenatal days 7 to 14 in the mouse, when cells are differentiating to form organs. One way in which alcohol exposure may induce epigenetic changes, particularly abnormal DNA methylation, is by affecting a set of biochemical reactions called the methionine-homocysteine cycle.

  11. MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma.

    PubMed

    Du, Juan; Liu, Shuyan; He, Jie; Liu, Xi; Qu, Ying; Yan, Wenqing; Fan, Jianling; Li, Rong; Xi, Hao; Fu, Weijun; Zhang, Chunyang; Yang, Jing; Hou, Jian

    2015-06-20

    Side population (SP) cells are an enriched source of cancer-initiating cells with stemness characteristics, generated by increased ABC transporter activity, which has served as a unique hallmark for multiple myeloma (MM) stem cell studies. Here we isolated and identified MM SP cells via Hoechst 33342 staining. Furthermore, we demonstrate that SP cells possess abnormal cell cycle, clonogenicity, and high drug efflux characteristics-all of which are features commonly seen in stem cells. Interestingly, we found that bortezomib, As2O3, and melphalan all affected apoptosis and clonogenicity in SP cells. We followed by characterizing the miRNA signature of MM SP cells and validated the specific miR-451 target tuberous sclerosis 1 (TSC1) gene to reveal that it activates the PI3K/Akt/mTOR signaling in MM SP cells. Inhibition of miR-451 enhanced anti-myeloma novel agents' effectiveness, through increasing cells apoptosis, decreasing clonogenicity, and reducing MDR1 mRNA expression. Moreover, the novel specific PI3K/Akt/mTOR signaling inhibitor S14161 displayed its prowess as a potential therapeutic agent by targeting MM SP cells. Our findings offer insights into the mechanisms regulating MM SP cells and provide a novel strategy to overcome resistance to existing therapies against myeloma.

  12. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less

  13. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.

    PubMed

    Yang, Rui; Wu, Yanan; Wang, Mei; Sun, Zhongfeng; Zou, Jiahua; Zhang, Yundong; Cui, Hongjuan

    2015-04-10

    Histone deacetylase 9 (HDAC9), a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions. We found that HDAC9 is over-expressed in prognostically poor glioblastoma patients. Knockdown HDAC9 decreased proliferation in vitro and tumor formation in vivo. HDAC9 accelerated cell cycle in part by potentiating the EGFR signaling pathway. Also, HDAC9 interacted with TAZ, a key downstream effector of Hippo pathway. Knockdown of HDAC9 decreased the expression of TAZ. We found that overexpressed TAZ in HDAC9-knockdown cells abrogated the effects induced by HDAC9 silencing both in vitro and in vivo. We demonstrated that HDAC9 promotes tumor formation of glioblastoma via TAZ-mediated EGFR pathway activation, and provide the evidence for promising target for the treatment of glioblastoma.

  14. Karyological observations

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; O'Connor, S. A.

    1984-01-01

    Root tips prepared for metaphase chromosome analysis from seedlings germinated under microgravity on the Space Shuttle (oats and mung bean) or which were exposed to space flight as very young seedlings (sunflower) have been examined. Experimental constraints did not permit pre-fixation in space with a cytostatic agent but arrest was achieved in the first division cycle on Earth after recovery. The number of cells in division was significantly depressed in all three species. Several chromosomal abnormalities were encountered in flight material. Bridge formation was seen in sunflower, as was aneuploidy. Breakage and fracture of chromosomes was prevalent in oats. No aberrant features could be detected in the chromosomes of mung bean. These results, although preliminary, should serve to alert investigators of the need to assess carefully as many aspects of cell division in higher plants exposed to space flight conditions as possible.

  15. Cardiac Hypertrophy is Positively Regulated by MicroRNA-24 in Rats

    PubMed Central

    Gao, Juan; Zhu, Min; Liu, Rui-Feng; Zhang, Jian-Shu; Xu, Ming

    2018-01-01

    Background: MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Methods: Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. Results: The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = −2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. Conclusion: MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression. PMID:29786048

  16. HBX Protein-Induced Downregulation of microRNA-18a is Responsible for Upregulation of Connective Tissue Growth Factor in HBV Infection-Associated Hepatocarcinoma.

    PubMed

    Liu, Xiaomin; Zhang, Yingjian; Wang, Ping; Wang, Hongyun; Su, Huanhuan; Zhou, Xin; Zhang, Lamei

    2016-07-16

    BACKGROUND This study was designed to improve our understanding of the role of miR-18a and its target (connective tissue growth factor (CTGF), which are mediators in HBX-induced hepatocellular carcinoma (HCC). MATERIAL AND METHODS We first investigated the expression of several candidate microRNAs (miRNAs) reported to have been aberrantly expressed between HepG2 and HepG2.2.15, which is characterized by stable HBV infection, while the CTGF is identified as a target of miR-18a. Furthermore, the expression of CTGF evaluated in HepG2 was transfected with HBX, while the HepG2.2.15 was transfected with miR-18a and CTGF siRNA. We examined the cell cycle at the same time. RESULTS We found that the expression of miR-18a was abnormally reduced in the HBV-positive HCC tissue samples compared with HBV-negative HCC samples. Through the use of a luciferase reporter system, we also identified CTGF 3'UTR (1046-1052 bp) as the exact binding site for miR-18a. We also observed a clear increase in CTGF mRNA and protein expression levels in HBV-positive HCC human tissue samples in comparison with the HBV-negative controls, indicating a possible negatively associated relationship between miR-18a and CTGF. Furthermore, we investigated the effect of HBX overexpression on miR-18a and CTGF, as well as the viability and cell cycle status of HepG2 cells. In addition, we found that HBX introduction downregulated miR-18a, upregulated CTGF, elevated the viability, and promoted cell cycle progression. We transfected HepG2.2.15 with miR-18a mimics and CTGF siRNA, finding that upregulated miR-18a and downregulated CTGF suppress the viability and cause cell cycle arrest. CONCLUSIONS Our study shows the role of the CTGF gene as a target of miR-18a, and identifies the function of HBV/HBX/miR-18a/CTGF as a key signaling pathway mediating HBV infection-induced HCC.

  17. Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats

    PubMed

    Gao, Juan; Zhu, Min; Liu, Rui-Feng; Zhang, Jian-Shu; Xu, Ming

    2018-06-05

    MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3 H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = -2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.

  18. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1

    PubMed Central

    Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.

    2015-01-01

    Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388

  19. Improving the rates of electronic results acknowledgement at a tertiary eye care centre.

    PubMed

    Phua, Val; Au, Benjamin; Soh, Yu Qiang; Husain, Rahat

    2017-01-01

    Hundreds of thousands of tests are performed annually in hospitals worldwide. Safety Issues arise when abnormal results are not recognized promptly resulting in delayed treatment and increased morbidity and mortality. As a result Singapore's largest healthcare group, Singhealth introduced an electronic result acknowledgement system. This system was adopted by the Singapore National Eye Centre (SNEC) in February 2016. Baseline measurements show that weekly numbers of unacknowledged results ranged from 193 to 617. The current standards of electronic results acknowledgement posts a significant patient safety hazard. Root cause analysis was performed to identify contributory factors. Pareto principle was then used by the authors to identify the main contributory factors. We employed the rapid cycle improvement Plan-do-study-act (PDSA) strategy to test and evaluate implemented changes. Changes are implemented for 2 weeks and data collected prospectively. The data is analyzed the week after and the following PDSA actions are decided and instituted the following week. 3 PDSA cycles were undertaken in total. The first PDSA cycle focused on raising awareness of the problem at hand, the number of unacknowledged results drastically decreased during the 1 st week of implementation of our PDSA from 617 to 254. The second PDSA cycle targeted the lack of knowledge of doctors involved in the electronic result acknowledgement process. There was a trend downwards near the end of the cycle which continued through the week after. The third PDSA cycle targeted individual doctors and provided individual remedial training. Second line doctors were also equipped to better handle abnormal results. There was significant improvement with the number of unacknowledged abnormal results dropping to <5 a week. Multiple factors were identified to contribute to the low compliance to electronic acknowledgement of results. The role doctors play in the issue at hand was paramount and required careful handling in a professional manner with multiple reminders and emphasis on the importance of acknowledging and acting on the results.A significant improvement in the rates of acknowledgement of abnormal results was demonstrated with clear benefits to patient safety. Interventions can be replicated when implementing similar systems to other areas of healthcare.

  20. Improving the rates of electronic results acknowledgement at a tertiary eye care centre

    PubMed Central

    Phua, Val; Au, Benjamin; Soh, Yu Qiang; Husain, Rahat

    2017-01-01

    Background Hundreds of thousands of tests are performed annually in hospitals worldwide. Safety Issues arise when abnormal results are not recognized promptly resulting in delayed treatment and increased morbidity and mortality. As a result Singapore’s largest healthcare group, Singhealth introduced an electronic result acknowledgement system. This system was adopted by the Singapore National Eye Centre (SNEC) in February 2016. Baseline measurements show that weekly numbers of unacknowledged results ranged from 193 to 617. The current standards of electronic results acknowledgement posts a significant patient safety hazard. Methods Root cause analysis was performed to identify contributory factors. Pareto principle was then used by the authors to identify the main contributory factors. We employed the rapid cycle improvement Plan-do-study-act (PDSA) strategy to test and evaluate implemented changes. Changes are implemented for 2 weeks and data collected prospectively. The data is analyzed the week after and the following PDSA actions are decided and instituted the following week. 3 PDSA cycles were undertaken in total. Results The first PDSA cycle focused on raising awareness of the problem at hand, the number of unacknowledged results drastically decreased during the 1stweek of implementation of our PDSA from 617 to 254. The second PDSA cycle targeted the lack of knowledge of doctors involved in the electronic result acknowledgement process. There was a trend downwards near the end of the cycle which continued through the week after. The third PDSA cycle targeted individual doctors and provided individual remedial training. Second line doctors were also equipped to better handle abnormal results. There was significant improvement with the number of unacknowledged abnormal results dropping to <5 a week. Conclusions Multiple factors were identified to contribute to the low compliance to electronic acknowledgement of results. The role doctors play in the issue at hand was paramount and required careful handling in a professional manner with multiple reminders and emphasis on the importance of acknowledging and acting on the results.A significant improvement in the rates of acknowledgement of abnormal results was demonstrated with clear benefits to patient safety. Interventions can be replicated when implementing similar systems to other areas of healthcare. PMID:29450290

  1. Pagetoid reticulosis (Woringer-Kolopp disease). An ultrastructural and immunocytological study.

    PubMed

    Takahashi, H; Takahashi, K; Tanno, K; Iijima, S

    1982-05-01

    Histopathological, immunocytological and ultrastructural observations are reported in the first case of pagetoid reticulosis (Woringer-Kolopp disease) in Japan. The patient was a 61-year-old woman with multiple skin lesions running a chronic and apparently benign clinical course. Histology of the skin biopsies revealed typical pagetoid appearance of the epidermis due to intraepidermal infiltration of abnormal cells. Ultrastructural investigation showed that the intraepidermal abnormal cells were classified into mycosis fungoides cells, Sézary cells, lymphoblast-like cells, and large blastoid cells and that the mycosis fungoides cells were a major cell population. Intermediate or transitional cells were found between these cells and large blastoid cells were mostly situated in the basal cell layer. By the rosetting assays of the free cell suspensions prepared from the epidermis of the biopsied skin lesions, 93% of the suspended cells were positive for spontaneous rosette formation with sheep erythrocytes. The immunoperoxidase technique demonstrated no cytoplasmic immunoglobulins in almost all the intraepidermal abnormal cells. These results indicate that the intraepidermal abnormal cells are T-lymphocytes. Thus, it is concluded that the present case is a cutaneous T-cell lymphoma of low-grade malignancy showing a prominent epidermotropism. This case is the first description of the disease in Japan.

  2. Primary uterine diffuse large B-cell lymphoma (DLBCL) in a patient with prolonged insertion of intrauterine device (IUD).

    PubMed

    Shimizu, Takuya; Hatanaka, Kazuo; Kaneko, Hitomi; Shimada, Toshihide; Imada, Kazunori

    2017-07-01

    A 49-year-old female from China was referred to our hospital after endocervical polypectomy. Twenty years before admission, after the birth of her first child, an intrauterine device (IUD) had been inserted due to the one-child policy in China. She had noticed abnormal vaginal bleeding with a foul smell 3 years before admission. Then the IUD was removed and a polyp was found at the IUD contact site. Two months before admission, endocervical polypectomy was performed. Lymphoma was suspected by histological examination and she was referred to our hospital. Further examination confirmed the diagnosis of primary uterine diffuse large B-cell lymphoma (DLBCL). Subsequently, a combination of three cycles of R-CHOP regimen and involved-field radiation therapy was performed, followed by maintenance therapy with five cycles of rituximab. She has remained in complete remission for over 1 year. This case suggests that chronic inflammation induced by prolonged IUD insertion may contribute to the development of primary uterine lymphoma. To the best of our knowledge, this is the first reported case of DLBCL associated with prolonged IUD insertion.

  3. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    PubMed

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  4. [Copy number alterations in adult patients with mature B acute lymphoblastic leukemia treated with specific immunochemotherapy].

    PubMed

    Ribera, Jordi; Zamora, Lurdes; García, Olga; Hernández-Rivas, Jesús-María; Genescà, Eulàlia; Ribera, Josep-Maria

    2016-12-02

    Unlike Burkitt lymphoma, molecular abnormalities other than C-MYC rearrangements have scarcely been studied in patients with mature B acute lymphoblastic leukemia (B-ALL). The aim of this study was to analyze the frequency and prognostic significance of copy number alterations (CNA) in genes involved in lymphoid differentiation, cell cycle and tumor suppression in adult patients with B-ALL. We have analyzed by multiplex ligation-dependent probe amplification the genetic material from bone marrow at diagnosis from 25 adult B-ALL patients treated with rituximab and specific chemotherapy. The most frequent CNA were alterations in the 14q32.33 region (11 cases, 44%) followed by alterations in the cell cycle regulator genes CDKN2A/B and RB1 (16%). No correlation between the presence of specific CNA and the clinical-biologic features or the response to therapy was found. The high frequency of CNA in the 14q32.33 region, CDKN2A/B and RB1 found in our study could contribute to the aggressiveness and invasiveness of mature B-ALL. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  5. mTOR regulates brain morphogenesis by mediating GSK3 signaling

    PubMed Central

    Ka, Minhan; Condorelli, Gianluigi; Woodgett, James R.; Kim, Woo-Yang

    2014-01-01

    Balanced control of neural progenitor maintenance and neuron production is crucial in establishing functional neural circuits during brain development, and abnormalities in this process are implicated in many neurological diseases. However, the regulatory mechanisms of neural progenitor homeostasis remain poorly understood. Here, we show that mammalian target of rapamycin (mTOR) is required for maintaining neural progenitor pools and plays a key role in mediating glycogen synthase kinase 3 (GSK3) signaling during brain development. First, we generated and characterized conditional mutant mice exhibiting deletion of mTOR in neural progenitors and neurons in the developing brain using Nestin-cre and Nex-cre lines, respectively. The elimination of mTOR resulted in abnormal cell cycle progression of neural progenitors in the developing brain and thereby disruption of progenitor self-renewal. Accordingly, production of intermediate progenitors and postmitotic neurons were markedly suppressed. Next, we discovered that GSK3, a master regulator of neural progenitors, interacts with mTOR and controls its activity in cortical progenitors. Finally, we found that inactivation of mTOR activity suppresses the abnormal proliferation of neural progenitors induced by GSK3 deletion. Our findings reveal that the interaction between mTOR and GSK3 signaling plays an essential role in dynamic homeostasis of neural progenitors during brain development. PMID:25273085

  6. mTOR kinase inhibitor pp242 causes mitophagy terminated by apoptotic cell death in E1A-Ras transformed cells.

    PubMed

    Gordeev, Serguei A; Bykova, Tatiana V; Zubova, Svetlana G; Bystrova, Olga A; Martynova, Marina G; Pospelov, Valery A; Pospelova, Tatiana V

    2015-12-29

    mTOR is a critical target for controlling cell cycle progression, senescence and cell death in mammalian cancer cells. Here we studied the role of mTOR-dependent autophagy in implementating the antiprolifrative effect of mTORC1-specific inhibitor rapamycin and ATP-competitive mTOR kinase inhibitor pp242. We carried out a comprehensive analysis of pp242- and rapamycin-induced autophagy in ERas tumor cells. Rapamycin exerts cytostatic effect on ERas tumor cells, thus causing a temporary and reversible cell cycle arrest, activation of non-selective autophagy not accompanied by cell death. The rapamycin-treated cells are able to continue proliferation after drug removal. The ATP-competitive mTORC1/mTORC2 kinase inhibitor pp242 is highly cytotoxic by suppressing the function of mTORC1-4EBP1 axis and mTORC1-dependent phosphorylation of mTORC1 target--ULK1-Ser757 (Atg1). In contrast to rapamycin, pp242 activates the selective autophagy targeting mitochondria (mitophagy). The pp242-induced mitophagy is accompanied by accumulation of LC3 and conversion of LC3-I form to LC3-II. However reduced degradation of p62/SQSTM indicates abnormal flux of autophagic process. According to transmission electron microscopy data, short-term pp242-treated ERas cells exhibit numerous heavily damaged mitochondria, which are included in single membrane-bound autophagic/autolysophagic vacuoles (mitophagy). Despite the lack of typical for apoptosis features, ERas-treated cells with induced mitophagy revealed the activation of caspase 3, 9 and nucleosomal DNA fragmentation. Thus, pp242 activates autophagy with suppressed later stages, leading to impaired recycling and accumulation of dysfunctional mitochondria and cell death. Better understanding of how autophagy determines the fate of a cell--survival or cell death, can help to development of new strategy for cancer therapy.

  7. Performance and Safety Tests of Lithium-Ion Cells Arranged in a Matrix Design Configuration

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Tracinski, Walt

    2010-01-01

    Matrix Packs display large variations in cell bank voltages at the charge and discharge current (C/2) used in this test program. The voltage difference is larger at the end of discharge than at the end of charge under the conditions studied. Disconnection of a cell from the pack leads to a larger voltage difference during discharge (greater than 2.0 V) between the bank that has one less cell and the other banks. Thermal profile does not show any significant changes or increase in temperature after one cell was disconnected from the bank in spite of falling to very low voltages at the end of discharge. All tests on the matrix pack with the HAM displayed lower max in general due to the placement of thermocouple on the outside of the HAM rather than on the cells. Disconnection of cells has almost no influence on the performance of the packs and does not show any abnormal thermal changes for the 100 cycles obtained in this test program. Longer cycle life may influence the performance especially if the low voltage cell goes into reversal. Overcharge leads to CID activation of cells. If the matrix configuration has a larger number of cells in series, (more than 5 S configuration), the limitations of protective devices may manifest itself irrespective of it being in a matrix configuration. External short circuit causes a fire with expulsion of content from some cells. The fire does not propagate itself laterally, but if there was cell module stacking, then the fire would cause the cells above it to also go into flames/thermal runaway. Limitations of protective devices are observed in this case as the PTCs in the cells did not protect under this abusive condition. Matrix configurations seem to provide protection against lateral propagation of fire and flame. Matrix pack configuration seems to provide good performance in spite of losing cell connections; at least for the configuration tested under this program.

  8. FANCA safeguards interphase and mitosis during hematopoiesis in vivo

    PubMed Central

    Abdul-Sater, Zahi; Cerabona, Donna; Sierra Potchanant, Elizabeth; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz

    2015-01-01

    Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in non-hematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material (PCM) to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA cross-linking and antimitotic chemotherapeutics in primary FANCA−/− cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that the FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers. PMID:26366677

  9. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed amore » more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.« less

  10. Significantly lengthened telomere in granulosa cells from women with polycystic ovarian syndrome (PCOS).

    PubMed

    Wei, Duo; Xie, Juanke; Yin, Baoli; Hao, Haoying; Song, Xiaobing; Liu, Qi; Zhang, Cuilian; Sun, Yingpu

    2017-07-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among women at reproductive age. However, its etiology remains poorly understood. Recent studies indicated that telomere length was related to PCOS. However, the association between telomere length and PCOS has only been shown in leucocytes and remained controversial across different studies. To clarify the association between telomere length and PCOS, the current study interrogated telomere length not only in leucocytes, but also in follicular granulosa cells, which is essential for folliculogenesis and steroidogenesis. Seventy-five patients with PCOS and 81 controls with mechanical infertility undergoing their first in vitro fertilization cycle were enrolled. Their peripheral blood and granulosa cells were collected on the oocyte retrieval day. Telomere length of both leucocytes in the blood and granulosa cells was assayed by quantitative polymerase chain reaction. No significant difference was found in the leucocyte telomere length between controls and PCOS patients (0.99 ± 0.44 vs. 1.00 ± 0.38, p = 0.93). Interestingly, when comparing telomere length in granulosa cells between controls and PCOS subjects, significantly lengthened telomere length was found in PCOS subjects (1.00 ± 0.37 vs. 1.57±0.67, p < 0.0001). After adjustments for age and body mass index, the p value remained significant (p < 0.0001). This finding reinforced the association between telomere abnormalities and PCOS. Given the importance of telomere length in cellular proliferation, our findings provided novel insights into the pathophysiology of PCOS that abnormalities in telomere length possibly disturb folliculogenesis and subsequently result in PCOS.

  11. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    PubMed

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.

  12. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C; Orlowski, Robert; Sarbassov, Dos D; Lorenzi, Philip L; Huang, Xuelin; Neelapu, Sattva S; McDonnell, Timothy; Miranda, Roberto N; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R Eric; Andreeff, Michael

    2016-02-16

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. Copyright © 2016, American Association for the Advancement of Science.

  13. TfVPS32 Regulates Cell Division in the Parasite Tritrichomonas foetus.

    PubMed

    Iriarte, Lucrecia S; Midlej, Victor; Frontera, Lorena S; Moros Duarte, Daniel; Barbeito, Claudio G; de Souza, Wanderley; Benchimol, Marlene; de Miguel, Natalia; Coceres, Veronica M

    2018-01-01

    The flagellated protist Tritrichomonas foetus is a parasite that causes bovine trichomonosis, a major sexually transmitted disease in cattle. Cell division has been described as a key player in controlling cell survival in other cells, including parasites but there is no information on the regulation of this process in T. foetus. The regulation of cytokinetic abscission, the final stage of cell division, is mediated by members of the ESCRT (endosomal sorting complex required for transport) machinery. VPS32 is a subunit within the ESCRTIII complex and here, we report that TfVPS32 is localized on cytoplasmic vesicles and a redistribution of the protein to the midbody is observed during the cellular division. In concordance with its localization, deletion of TfVPS32 C-terminal alpha helices (α5 helix and/or α4-5 helix) leads to abnormal T. foetus growth, an increase in the percentage of multinucleated parasites and cell cycle arrest at G2/M phase. Together, these results indicate a role of this protein in controlling normal cell division. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  14. Depletion of mRNA export regulator DBP5/DDX19, GLE1 or IPPK that is a key enzyme for the production of IP6, resulting in differentially altered cytoplasmic mRNA expression and specific cell defect

    PubMed Central

    Okamura, Masumi; Yamanaka, Yasutaka; Shigemoto, Maki; Kitadani, Yuya; Kobayashi, Yuhko; Kambe, Taiho; Nagao, Masaya; Kobayashi, Issei; Okumura, Katsuzumi

    2018-01-01

    DBP5, also known as DDX19, GLE1 and inositol hexakisphosphate (IP6) function in messenger RNA (mRNA) export at the cytoplasmic surface of the nuclear pore complex in eukaryotic cells. DBP5 is a DEAD-box RNA helicase, and its activity is stimulated by interactions with GLE1 and IP6. In addition, these three factors also have unique role(s). To investigate how these factors influenced the cytoplasmic mRNA expression and cell phenotype change, we performed RNA microarray analysis to detect the effect and function of DBP5, GLE1 and IP6 on the cytoplasmic mRNA expression. The expression of some cytoplasmic mRNA subsets (e.g. cell cycle, DNA replication) was commonly suppressed by the knock-down of DBP5, GLE1 and IPPK (IP6 synthetic enzyme). The GLE1 knock-down selectively reduced the cytoplasmic mRNA expression required for mitotic progression, results in an abnormal spindle phenotype and caused the delay of mitotic process. Meanwhile, G1/S cell cycle arrest was observed in DBP5 and IPPK knock-down cells. Several factors that function in immune response were also down-regulated in DBP5 or IPPK knock-down cells. Thereby, IFNβ-1 mRNA transcription evoked by poly(I:C) treatment was suppressed. These results imply that DBP5, GLE1 and IP6 have a conserved and individual function in the cytoplasmic mRNA expression. Variations in phenotype are due to the difference in each function of DBP5, GLE1 and IPPK in intracellular mRNA metabolism. PMID:29746542

  15. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA(Ile) A4263G mutation.

    PubMed

    Chen, Xi; Zhang, Yu; Xu, Bin; Cai, Zhongqi; Wang, Lin; Tian, Jinwen; Liu, Yuqi; Li, Yang

    2016-09-01

    Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. DSP30 and interleukin-2 as a mitotic stimulant in B-cell disorders including those with a low disease burden.

    PubMed

    Dun, Karen A; Riley, Louise A; Diano, Giuseppe; Adams, Leanne B; Chiu, Eleanor; Sharma, Archna

    2018-05-01

    Chromosome abnormalities detected during cytogenetic investigations for B-cell malignancy offer prognostic information that can have wide ranging clinical impacts on patients. These impacts may include monitoring frequency, treatment type, and disease staging level. The use of the synthetic oligonucleotide DSP30 combined with interleukin 2 (IL2) has been described as an effective mitotic stimulant in B-cell disorders, not only in chronic lymphocytic leukemia (CLL) but also in a range of other B-cell malignancies. Here, we describe the comparison of two B-cell mitogens, lipopolysaccharide (LPS), and DSP30 combined with IL2 as mitogens in a range of common B-cell disorders excluding CLL. The results showed that DSP30/IL2 was an effective mitogen in mature B-cell disorders, revealing abnormal cytogenetic results in a range of B-cell malignancies. The abnormality rate increased when compared to the use of LPS to 64% (DSP30/IL2) from 14% (LPS). In a number of cases the disease burden was proportionally very low, less than 10% of white cells. In 37% of these cases, the DSP30 culture revealed abnormal results. Importantly, we also obtained abnormal conventional cytogenetics results in 3 bone marrow cases in which immunophenotyping showed an absence of an abnormal B-cell clone. In these cases, the cytogenetics results correlated with the provisional diagnosis and altered their staging level. The use of DSP30 and IL2 is recommended for use in many B-cell malignancies as an effective mitogen and their use has been shown to enable successful culture of the malignant clone, even at very low levels of disease. © 2018 Wiley Periodicals, Inc.

  17. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion

    PubMed Central

    Tong, Xuemei; Coulombe, Pierre A.

    2006-01-01

    Mammalian hair follicles cycle between stages of rapid growth (anagen) and metabolic quiescence (telogen) throughout life. Transition from anagen to telogen involves an intermediate stage, catagen, consisting of a swift, apoptosis-driven involution of the lower half of the follicle. How catagen is coordinated, and spares the progenitor cells needed for anagen re-entry, is poorly understood. Keratin 17 (K17)-null mice develop alopecia in the first week post-birth, correlating with hair shaft fragility and untimely apoptosis in the hair bulb. Here we show that this abnormal apoptosis reflects premature entry into catagen. Of the proapoptotic challenges tested, K17-null skin keratinocytes in primary culture are selectively more sensitive to TNFα. K17 interacts with TNF receptor 1 (TNFR1)-associated death domain protein (TRADD), a death adaptor essential for TNFR1-dependent signal relay, suggesting a functional link between this keratin and TNFα signaling. The activity of NF-κB, a downstream target of TNFα, is increased in K17-null skin. We also find that TNFα is required for a timely anagen–catagen transition in mouse pelage follicles, and that its ablation partially rescues the hair cycling defect of K17-null mice. These findings identify K17 and TNFα as two novel and interdependent regulators of hair cycling. PMID:16702408

  18. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation.

    PubMed

    Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun

    2017-07-01

    Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.

  19. Abnormal gastrointestinal endocrine cells in patients with diabetes type 1: relationship to gastric emptying and myoelectrical activity.

    PubMed

    El-Salhy, M; Sitohy, B

    2001-11-01

    Gastrointestinal symptoms in patients with diabetes are believed to be caused by gastrointestinal dysmotility and secretion/absorption disturbances, and the gut endocrine cells play an important part in regulating these two functions. Studies on animal models of human diabetes type I revealed abnormality in these cells, but it is unknown whether abnormality also occurs in patients with diabetes. Eleven patients with long duration of diabetes type I and organ complications, as well as gastrointestinal symptoms, were studied. Endocrine cells in different segments of the gastrointestinal tract were detected by immunocytochemistry and quantified by computerized image analysis. Gastric emptying was measured by scintigraphy and gastric myoelectric activity was determined by electrogastrography. An abnormal density of gastrointestinal endocrine cells was found in patients with diabetes. This abnormality occurred in all segments of the upper and lower gastrointestinal tract investigated, and included most of the endocrine cell types. The patients showed delayed gastric emptying, which correlated closely with the acute glucose level, but did not correlate with HbA1c. Gastric emptying also correlated closely with the density of duodenal serotonin and secretin cells. The patients exhibited bradygastrias and tachygastrias. These dysrhythmias, however, did not differ significantly from controls. The endocrine cells are the anatomical units responsible for the production of gut hormones, and the change in their density would reflect a change in the capacity of producing these hormones. The abnormality in density of the gastrointestinal endocrine cells may contribute to the development of gastrointestinal dysmotility and the symptoms encountered in patients with diabetes.

  20. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced Pluripotent Cells...2015 - 31 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced...functions to normal in neurons derived from human pluripotent cells exposed to Gulf War toxins. 15. SUBJECT TERMS microtubule, neuron, Gulf War Illness

  1. Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma.

    PubMed

    Carroll, P R; Murty, V V; Reuter, V; Jhanwar, S; Fair, W R; Whitmore, W F; Chaganti, R S

    1987-06-01

    In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary carcinoma and an acinar/papillary carcinoma, showed the clonal abnormalities del(1)(p2l),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;10)(q14-21;q26),+7q,+11q,-18, respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region.

  2. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huser, T; Orme, C; Hollars, C

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modesmore » that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.« less

  3. Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos.

    PubMed

    Sugimura, Satoshi; Akai, Tomonori; Somfai, Tamás; Hirayama, Muneyuki; Aikawa, Yoshio; Ohtake, Masaki; Hattori, Hideshi; Kobayashi, Shuji; Hashiyada, Yutaka; Konishi, Kazuyuki; Imai, Kei

    2010-12-01

    We have developed a polystyrene-based well-of-the-well (WOW) system using injection molding to track individual embryos throughout culture using time-lapse cinematography (TLC). WOW culture of bovine embryos following in vitro fertilization was compared with conventional droplet culture (control). No differences between control- and WOW-cultured embryos were observed during development to the blastocyst stage. Morphological quality and inner cell mass (ICM) and trophectoderm (TE) cell numbers were not different between control- and WOW-derived blastocysts; however, apoptosis in both the ICM and TE cells was reduced in WOW culture (P < 0.01). Oxygen consumption in WOW-derived blastocysts was closer to physiological level than that of control-derived blastocysts. Moreover, WOW culture improved embryo viability, as indicated by increased pregnancy rates at Days 30 and 60 after embryo transfer (P < 0.05). TLC monitoring was performed to evaluate the cleavage pattern and the duration of the first cell cycle of embryos from oocytes collected by ovum pickup; correlations with success of pregnancy were determined. Logistic regression analysis indicated that the cleavage pattern correlated with success of pregnancy (P < 0.05), but cell cycle length did not. Higher pregnancy rates (66.7%) were observed for animals in which transferred blastocysts had undergone normal cleavage, identified by the presence of two blastomeres of the same size without fragmentation, than among those with abnormal cleavage (33.3%). These results suggest that our microwell culture system is a powerful tool for producing and selecting healthy embryos and for identifying viability biomarkers.

  4. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    PubMed Central

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  5. Effect of Methanolic Leaf Extract of Ocimum basilicum L. on Benzene-Induced Hematotoxicity in Mice

    PubMed Central

    Saha, S.; Mukhopadhyay, M. K.; Ghosh, P. D.; Nath, D.

    2012-01-01

    The aim of the present study was to investigate the protective role of methanolic leaf extract of Ocimum basilicum L. against benzene-induced hematotoxicity in Swiss albino mice. GC analysis and subacute toxicity level of the extract were tested. Mice were randomly divided into three groups among which II and III were exposed to benzene vapour at a dose 300 ppm × 6 hr/day × 5 days/week for 2 weeks and group I was control. Group III of this experiment was treated with the leaf methanolic extract at a dose of 100 mg/kg body weight, a dose in nontoxic range. Hematological parameters (Hb%, RBC and WBC counts), cell cycle regulatory proteins expression and DNA fragmentation analysis of bone marrow cells was performed. There was an upregulation of p53 and p21 and downregulation of levels of CDK2, CDK4, CDK6, and cyclins D1 and E in leaf extract-treated group. DNA was less fragmented in group III compared to group II (P < 0.05). The present study indicates that the secondary metabolites of O. basilicum L. methanolic leaf extract, comprising essential oil monoterpene geraniol and its oxidized form citral as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. PMID:22988471

  6. β1-integrin controls cell fate specification in early lens development

    PubMed Central

    Pathania, Mallika; Wang, Yan; Simirskii, Vladimir N.; Duncan, Melinda K.

    2016-01-01

    Integrins are heterodimeric cell surface molecules that mediate cell-extracellular matrix (ECM) adhesion, ECM assembly, and regulation of both ECM and growth factor induced signaling. However, the developmental context of these diverse functions is not clear. Loss of β1-integrin from the lens vesicle (mouse E10.5) results in abnormal exit of anterior lens epithelial cells (LECs) from the cell cycle and their aberrant elongation toward the presumptive cornea by E12.5. These cells lose expression of LEC markers and initiate expression of the Maf (also known as c-Maf) and Prox1 transcription factors as well as other lens fiber cell markers, β1-integrin null LECs also upregulate the ERK, AKT and Smad1/5/8 phosphorylation indicative of BMP and FGF signaling. By E14.5, β1-integrin null lenses have undergone a complete conversion of all lens epithelial cells into fiber cells. These data suggest that shortly after lens vesicle closure, β1-integrin blocks inappropriate differentiation of the lens epithelium into fibers, potentially by inhibiting BMP and/or FGF receptor activation. Thus, β1-integrin has an important role in fine-tuning the response of the early lens to the gradient of growth factors that regulate lens fiber cell differentiation. PMID:27596755

  7. [Abnormality of blood coagulation indexes in patients with de novo acute leukemia and its clinical significance].

    PubMed

    Xiao, Fang-Fang; Hu, Kai-Xun; Guo, Mei; Qiao, Jian-Hui; Sun, Qi-Yun; Ai, Hui-Sheng; Yu, Chang-Lin

    2013-04-01

    To explore hemorrhage risk and the clinical significance of abnormal change of prothrombin time (PT), activated partial thromboplastin time (APTT), plasma fibrinogen (FIB), plasma thrombin time (TT) and d-dimer (D-D) in de novo acute leukemia (except for APL), the different bleeding manifestations of 114 cases of de novo acute leukemia with different coagulation indexes were analyzed retrospectively. The correlation between these blood coagulation indexes and the possible correlative clinical characteristics were analysed, including age, sex, type of acute leukemia, initial white blood cell(WBC) and platelet(Plt) count, the proportion of blast cells in bone marrow and cytogenetic abnormality of patients at diagnosis. The results indicated that the incidence of abnormal blood coagulation was as high as 78.1% for de novo AL patients. These patients with 5 normal blood coagulation indexes may have mild bleeding manifestation, but the more abnormal indexes, the more severe bleeding. Both PT and D-D were sensitive indexes for diagnosis of level II bleeding. Incidence of abnormal blood coagulation significantly correlates with the proportion of blast cells in bone marrow (χ(2) = 4.184, OR = 1.021, P < 0.05) and more with D-D (P < 0.01), while age, sex, type of AL, WBC count, Plt count and abnormality of cytogenetics did not correlate with abnormal blood coagulation. It is concluded that the coagulation and fibrinolysis are abnormal in most patients with de novo acute leukemia. More abnormal indexes indicate more severe bleeding, and both PT and D-D are sensitive indexes for diagnosis of level II bleeding. Higher proportion of blast cells in bone marrow predicts higher incidence of abnormal blood clotting. Acute leukemia with elderly age, high white blood cell count and adverse cytogenetics do not predict severer abnormal blood clotting. Detection of PT, APTT, TT, FIB, and D-D may help to judge whether the patients are in a state of hypercoagulability or disseminated intravenous coagulation, which will provide experiment evidences for early intervention and medication.

  8. Fluid-attenuated inversion recovery: correlations of hippocampal cell densities with signal abnormalities.

    PubMed

    Diehl, B; Najm, I; Mohamed, A; Wyllie, E; Babb, T; Ying, Z; Hilbig, A; Bingaman, W; Lüders, H O; Ruggieri, P

    2001-09-25

    Hippocampal sclerosis (HS) is characterized by hippocampal atrophy and increased signal on T2-weighted images and on fluid-attenuated inversion recovery (FLAIR) images. To quantitate cell loss and compare it with signal abnormalities on FLAIR images. Thirty-one patients with temporal lobe resection, pathologically proven HS, and Engel class I and II outcome were included: 20 with HS only and 11 with HS associated with pathologically proven cortical dysplasia (dual pathology). The signal intensity on FLAIR was rated as present or absent in the hippocampus and correlated with the neuronal losses in the hippocampus. FLAIR signal increases were present in 77% (24/31) of all patients studied. In patients with isolated HS, 90% (18/20) had ipsilateral signal increases, but in patients with dual pathology, only 55% (6/11; p < 0.02) showed FLAIR signal increase. Hippocampal cell losses were significantly higher in the isolated HS group. The average cell loss in patients with FLAIR signal abnormalities was 64.8 +/- 8.0% as compared with only 32.7 +/- 5.1% in patients with no FLAIR signal abnormalities. There was a significant positive correlation between the presence of signal abnormality and average hippocampal cell loss in both pathologic groups. Ipsilateral FLAIR signal abnormalities occur in the majority of patients with isolated HS but are less frequent in those with dual pathology. The presence of increased FLAIR signal is correlated with higher hippocampal cell loss.

  9. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    PubMed Central

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638

  11. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    PubMed

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.

  12. Mitochondrial Pyruvate Carrier Function and Cancer Metabolism

    PubMed Central

    Rauckhorst, Adam J.

    2016-01-01

    Metabolic reprograming in cancer supports the increased biosynthesis required for unchecked proliferation. Increased glucose utilization is a defining feature of many cancers that is accompanied by altered pyruvate partitioning and mitochondrial metabolism. Cancer cells also require mitochondrial tricarboxylic acid cycle activity and electron transport chain function for biosynthetic competency and proliferation. Recent evidence demonstrates that mitochondrial pyruvate carrier (MPC) function is abnormal in some cancers and that increasing MPC activity may decrease cancer proliferation. Here we examine recent findings on MPC function and cancer metabolism. Special emphasis is placed on the compartmentalization of pyruvate metabolism and the alternative routes of metabolism that maintain the cellular biosynthetic pools required for unrestrained proliferation in cancer. PMID:27269731

  13. Activation of WIP1 Phosphatase by HTLV-1 Tax Mitigates the Cellular Response to DNA Damage

    PubMed Central

    Dayaram, Tajhal; Lemoine, Francene J.; Donehower, Lawrence A.; Marriott, Susan J.

    2013-01-01

    Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome. PMID:23405243

  14. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development

    PubMed Central

    Brodsky, Michael H.; Sekelsky, Jeff J.; Tsang, Garson; Hawley, R. Scott; Rubin, Gerald M.

    2000-01-01

    Checkpoints block cell cycle progression in eukaryotic cells exposed to DNA damaging agents. We show that several Drosophila homologs of checkpoint genes, mei-41, grapes, and 14-3-3ε, regulate a DNA damage checkpoint in the developing eye. We have used this assay to show that the mutagen-sensitive gene mus304 is also required for this checkpoint. mus304 encodes a novel coiled-coil domain protein, which is targeted to the cytoplasm. Similar to mei-41, mus304 is required for chromosome break repair and for genomic stability. mus304 animals also exhibit three developmental defects, abnormal bristle morphology, decreased meiotic recombination, and arrested embryonic development. We suggest that these phenotypes reflect distinct developmental consequences of a single underlying checkpoint defect. Similar mechanisms may account for the puzzling array of symptoms observed in humans with mutations in the ATM tumor suppressor gene. PMID:10733527

  15. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3more » and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.« less

  16. Effects of Ethylene Glycol Monomethyl Ether and Its Metabolite, 2-Methoxyacetic Acid, on Organogenesis Stage Mouse Limbs In Vitro

    PubMed Central

    Dayan, Caroline; Hales, Barbara F

    2014-01-01

    Exposure to ethylene glycol monomethyl ether (EGME), a glycol ether compound found in numerous industrial products, or to its active metabolite, 2-methoxyacetic acid (2-MAA), increases the incidence of developmental defects. Using an in vitro limb bud culture system, we tested the hypothesis that the effects of EGME on limb development are mediated by 2-MAA-induced alterations in acetylation programming. Murine gestation day 12 embryonic forelimbs were exposed to 3, 10, or 30 mM EGME or 2-MAA in culture for 6 days to examine effects on limb morphology; limbs were cultured for 1 to 24 hr to monitor effects on the acetylation of histones (H3K9 and H4K12), a nonhistone protein, p53 (p53K379), and markers for cell cycle arrest (p21) and apoptosis (cleaved caspase-3). EGME had little effect on limb morphology and no significant effects on the acetylation of histones or p53 or on biomarkers for cell cycle arrest or apoptosis. In contrast, 2-MAA exposure resulted in a significant concentration-dependent increase in limb abnormalities. 2-MAA induced the hyperacetylation of histones H3K9Ac and H4K12Ac at all concentrations tested (3, 10, and 30 mM). Exposure to 10 or 30 mM 2-MAA significantly increased acetylation of p53 at K379, p21 expression, and caspase-3 cleavage. Thus, 2-MAA, the proximate metabolite of EGME, disrupts limb development in vitro, modifies acetylation programming, and induces biomarkers of cell cycle arrest and apoptosis PMID:24798094

  17. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshihide, E-mail: toshi-su@pharm.teikyo-u.ac.j; Miyazaki, Koichi; Kita, Kayoko

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvementmore » of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.« less

  18. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function

    PubMed Central

    Jones, Natalie C; Lynn, Megan L; Gaudenz, Karin; Sakai, Daisuke; Aoto, Kazushi; Rey, Jean-Phillipe; Glynn, Earl F; Ellington, Lacey; Du, Chunying; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2010-01-01

    Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1–mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1–driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies. PMID:18246078

  19. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  20. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  1. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties.

    PubMed

    Carvalho, Ana; Leal, Fernanda; Matos, Manuela; Lima-Brito, José

    2018-05-22

    Grapevine varieties respond differentially to heat stress (HS). HS ultimately reduces the photosynthesis and respiratory performance. However, the HS effects in the leaf nuclei and mitotic cells of grapevine are barely known. This work intends to evaluate the HS effects in the leaf mitotic cell cycle and chromosomes of four wine-producing varieties: Touriga Franca (TF), Touriga Nacional (TN), Rabigato, and Viosinho. In vitro plants with 11 months were used in a stepwise acclimation and recovery (SAR) experimental setup comprising different phases: heat acclimation period (3 h-32 °C), extreme HS (1 h-42 °C), and two recovery periods (3 h-32 °C and 24 h-25 °C), and compared to control plants (maintained in vitro at 25 °C). At the end of each SAR phase, leaves were collected, fixed, and used for cell suspensions and chromosome preparations. Normal and abnormal interphase and mitotic cells were observed, scored, and statistically analyzed in all varieties and treatments (control and SAR phases). Different types of chromosomal anomalies in all mitotic phases, treatments, and varieties were found. In all varieties, the percentage of dividing cells with anomalies (%DCA) after extreme HS increased relative to control. TF and Viosinho were considered the most tolerant to HS. TF showed a gradual MI reduction from heat acclimation to HS and the lowest %DCA after HS and 24 h of recovery. Only Viosinho reached the control values after the long recovery period. Extrapolating these data to the field, we hypothesize that during consecutive hot summer days, the grapevine plants will not have time or capacity to recover from the mitotic anomalies caused by high temperatures.

  2. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways

    PubMed Central

    Kelleher, Fergal C.; O'sullivan, Hazel

    2016-01-01

    FOXM1 is a pro-proliferative transcription factor that promotes cell cycle progression at the G1-S, and G2-M transitions. It is activated by phosphorylation usually mediated by successive cyclin – cyclin dependent kinase complexes, and is highly expressed in sarcoma. p53 down regulates FOXM1 and FOXM1 inhibition is also partly dependent on Rb and p21. Abnormalities of p53 or Rb are frequent in sporadic sarcomas with bone or soft tissue sarcoma, accounting for 36% of index cancers in the high penetrance TP53 germline disorder, Li-Fraumeni syndrome. FOXM1 stimulates transcription of pluripotency related genes including SOX2, KLF4, OCT4, and NANOG many of which are important in sarcoma, a disorder of mesenchymal stem cell/ partially committed progenitor cells. In a selected specific, SOX2 is uniformly expressed in synovial sarcoma. Embryonic pathways preferentially used in stem cell such as Hippo, Hedgehog, and Wnt dominate in FOXM1 stoichiometry to alter rates of FOXM1 production or degradation. In undifferentiated pleomorphic sarcoma, liposarcoma, and fibrosarcoma, dysregulation of the Hippo pathway increases expression of the effector co-transcriptional activator Yes-Associated Protein (YAP). A complex involving YAP and the transcription factor TEAD elevates FOXM1 in these sarcoma subtypes. In another scenario 80% of desmoid tumors have nuclear localization of β-catenin, the Wnt pathway effector molecule. Thiazole antibiotics inhibit FOXM1 and because they have an auto-regulator loop FOXM1 expression is also inhibited. Current systemic treatment of sarcoma is of limited efficacy and inhibiting FOXM1 represents a potential new strategy. PMID:27074562

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Bo; Huang Bo; School of Public Health, University of South China, Hengyang, Hunan 421001

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe,more » such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3{sigma} and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: > 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. > Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. > The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. > The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.« less

  4. Environmental factors, epigenetics, and developmental origin of reproductive disorders.

    PubMed

    Ho, Shuk-Mei; Cheong, Ana; Adgent, Margaret A; Veevers, Jennifer; Suen, Alisa A; Tam, Neville N C; Leung, Yuet-Kin; Jefferson, Wendy N; Williams, Carmen J

    2017-03-01

    Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Environmental Factors, Epigenetics, and Developmental Origin of Reproductive Disorders

    PubMed Central

    Ho, Shuk-Mei; Cheong, Ana; Adgent, Margaret A.; Veevers, Jennifer; Suen, Alisa A.; Tam, Neville N.C.; Leung, Yuet-Kin; Jefferson, Wendy N.; Williams, Carmen J.

    2016-01-01

    Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of “Developmental Origins of Health and Disease” (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p′-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects. PMID:27421580

  6. Ultra-sensitive detection of leukemia by graphene

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza

    2014-11-01

    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04589K

  7. Lifetime endogenous estrogen exposure and electrocardiographic frontal T axis changes in postmenopausal women.

    PubMed

    Atsma, Femke; van der Schouw, Yvonne T; Grobbee, Diederick E; Kors, Jan A; Bartelink, Marie-Louise E L

    2009-08-20

    The protective effect of endogenous estrogens in cardiovascular disease may in part originate from effects of circulating estrogens on the electrophysiological properties of the myocardium. The aim of this study was to investigate the relation between reproductive factors and the electrocardiographic frontal T axis in postmenopausal women. Cohort study. The study was conducted at the University Medical Center Utrecht. In total, 998 postmenopausal women were included. Information of women's reproductive life was obtained by a questionnaire. Electrocardiographic frontal T axes were categorized as normal (25-65 degrees) or abnormal (-180 degrees to 24 degrees and 66-180 degrees). Logistic regression analysis was used to assess the relationship between reproductive factors and the frontal T axis. Moreover, the effect of the lifetime cumulative number of menstrual cycles, a composite measure of all reproductive factors, on the frontal T axis was investigated. The mean age was 66.0 (+/-5.6) years and 15.3% had T-axes abnormalities. Later menopausal age decreased the risk on frontal T-axis abnormalities; the multivariable adjusted odds ratio was 0.97 (95% CI: 0.94-0.99) per year increasing menopause. For the lifetime cumulative number of menstrual cycles the age-adjusted odds ratio was 0.84 (95% CI: 0.75-0.99) per 100 menstrual cycles increase. Later age at menopause and increasing lifetime cumulative number of menstrual cycles decreased the risk on frontal T-axis changes. This supports the view that estrogens may protect against ventricular repolarization disturbances.

  8. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    PubMed

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  9. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    NASA Technical Reports Server (NTRS)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  10. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Wyrobek, A J

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities.more » The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.« less

  11. HPV Test

    MedlinePlus

    ... to the development of genital warts, abnormal cervical cells or cervical cancer. Your doctor might recommend the HPV test if: Your Pap test was abnormal, showing atypical squamous cells of undetermined significance (ASCUS) You're age 30 ...

  12. Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy.

    PubMed

    Wang, Hui; Tian, Chan; Sun, Jing; Chen, Li-Na; Lv, Yan; Yang, Xiao-Dong; Xiao, Kang; Wang, Jing; Chen, Cao; Shi, Qi; Shao, Qi-Xiang; Dong, Xiao-Ping

    2017-08-01

    Polo-like kinase 3 (PLK3) is the main cause of cell cycle reentry-related neuronal apoptosis which has been implicated in the pathogenesis of prion diseases. Previous work also showed the regulatory activity of exogenous PLK3 on the degradation of PrP (prion protein) mutants and pathogenic PrP Sc ; however, the precise mechanisms remain unknown. In this study, we identified that the overexpression of PLK3-mediated degradation of PrP mutant and PrP Sc was repressed by lysosome rather than by proteasomal and macroautophagy inhibitors. Core components of chaperone-mediated autophagy (CMA) effectors, lysosome-associated membrane protein type 2A (LAMP2a), and heat shock cognate protein 70 (Hsc70) are markedly decreased in the HEK293T cells expressing PrP mutant and scrapie-infected cell line SMB-S15. Meanwhile, PrP mutant showed ability to interact with LAMP2a and Hsc70. Overexpression of PLK3 sufficiently increased the cellular levels of LAMP2a and Hsc70, accompanying with declining the accumulations of PrP mutant and PrP Sc . The kinase domain (KD) of PLK3 was responsible for elevating LAMP2a and Hsc70. Knockdown of endogenous PLK3 enhanced the activity of macroautophagy in the cultured cells. Moreover, time-dependent reductions of LAMP2a and Hsc70 were also observed in the brain tissues of hamster-adapted scrapie agent 263K-infected hamsters, indicating an impairment of CMA during prion infection. Those data indicate that the overexpression of PLK3-mediated degradation of abnormal PrP is largely dependent on CMA pathway.

  13. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles.

    PubMed

    Terakura, Shinji; Kitakura, Saeko; Ishikawa, Masaki; Ueno, Yoshihisa; Fujita, Tomomichi; Machida, Chiyoko; Wabiko, Hiroetsu; Machida, Yasunori

    2006-05-01

    The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.

  14. Stimulation of Chronic Lymphocytic Leukemia (CLL) Cells with CpG Oligodeoxynucleotide (ODN) Gives Consistent Karyotypic Results among Laboratories: a CLL Research Consortium (CRC)h Study

    PubMed Central

    Heerema, Nyla A.; Byrd, John C.; Cin, Paola Dal; Dell’ Aquila, Marie L.; Koduru, Prasad; Aviram, Ayala; Smoley, Stephanie; Rassenti, Laura Z.; Greaves, Andrew W.; Brown, Jennifer R.; Rai, Kanti R.; Kipps, Thomas J.; Kay, Neil E.; van Dyke, Daniel

    2010-01-01

    Cytogenetic abnormalities in CLL are important prognostic indicators. Historically, only interphase cytogenetics was clinically useful in CLL because traditional mitogens are not effective mitotic stimulants. Recently, CpG-oligodeoxynucleotide (ODN) stimulation has shown effectiveness in CLL. The CLL Research Consortium (CRC) tested the effectiveness and reproducibility of CpG-ODN stimulation to detect chromosomally abnormal clones by five laboratories. More clonal abnormalities were observed after culture of CLL cells with CpG-ODN than with pokeweed mitogen (PWM)+12-O-tetradecanoyl-phorobol-13-acetate (TPA). All clonal abnormalities in PWM+TPA cultures were observed in CpG-ODN cultures, whereas CpG-ODN identified some clones not found by PWM+TPA. CpG-ODN stimulation of one normal control and 12 CLL samples showed that excepting clones of del(13q) in low frequencies and one translocation, results in all five laboratories were consistent, and all abnormalities were concordant with FISH. Thus, abnormal clones in CLL are more readily detected with CpG-ODN stimulation than with traditional B-cell mitogens. After CpG-ODN stimulation, abnormalities were reproducible among cytogenetic laboratories. CpG-ODN did not appear to induce aberrations in cell culture and enhanced detection of abnormalities and complexity in CLL. Since karyotypic complexity is prognostic and is not detectable by standard FISH analyses, stimulation with CpG-ODN is useful to identify this additional prognostic factor in CLL. PMID:21156225

  15. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    PubMed Central

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  16. Hemoglobin electrophoresis

    MedlinePlus

    ... is an abnormal form of hemoglobin associated with sickle cell anemia . In people with this condition, the red blood ... symptoms are much milder than they are in sickle cell anemia. Other, less common, abnormal Hb molecules cause other ...

  17. Get Tested for Cervical Cancer

    MedlinePlus

    ... cervical cancer can help find abnormal (changed) cervical cells before they turn into cervical cancer. There are 2 kinds of screening tests that can find abnormal cervical cells: Pap tests, also called Pap smears HPV (human ...

  18. Distinct downstream targets manifest p53-dependent pathologies in mice.

    PubMed

    Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G

    2016-11-03

    Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.

  19. [Successful treatment with rituximab in a patient with splenic marginal zone B-cell lymphoma accompanied by cold agglutinin disease].

    PubMed

    Yasuyama, Masako; Kawauchi, Kiyotaka; Otsuka, Kuniaki; Tamura, Hiroyuki; Fujibayashi, Mariko

    2014-01-01

    An 81-year-old man was admitted to our hospital due to dyspnea in July 2008. A physical examination revealed marked splenomegaly, and the results of laboratory tests were as follows: hemoglobin (Hb)=7.0 g/dL, Ret=6.4%, WBC=24,100/μL (Ly: 20,003/μL), indirect bilirubin=3.6 mg/dL, LDH=232 IU/L. The cold agglutinin titer was 1 : 8,192, and a direct antiglobulin test was positive. A PET scan showed abnormal accumulation in the spleen and bone marrow. A bone marrow aspirate examination and biopsy demonstrated diffuse involvement of abnormal lymphocytes that were found to be positive for CD20 and negative for CD5, CD10, and cyclin D1. The immunoglobulin genes were clonally rearranged. Based on these findings, splenic marginal zone B-cell lymphoma (SMZL) associated with cold agglutinin disease (CAD) was diagnosed. Because the patient refused splenectomy, he was treated with four cycles of rituximab therapy (375 mg/kg, once a week). The Hb level and lymphocyte count subsequently normalized and the splenomegaly resolved. One year later, he relapsed and was again treated with rituximab therapy with complete remission. CAD accompanied by SMZL is very rare. Rituximab may be chosen as an alternative and effective therapeutic option in patients with SMZL-particularly those with autoimmune hemolytic anemia.

  20. Expression variations of connective tissue growth factor in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease

    PubMed Central

    Zhou, Si-jing; Li, Min; Zeng, Da-xiong; Zhu, Zhong-ming; Hu, Xian-Wei; Li, Yong-huai; Wang, Ran; Sun, Geng-yun

    2015-01-01

    Cigarette smoking contributes to the development of pulmonary hypertension (PH) complicated with chronic obstructive pulmonary disease (COPD), and the pulmonary vascular remodeling, the structural basis of PH, could be attributed to abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs).In this study, morphometrical analysis showed that the pulmonary vessel wall thickness in smoker group and COPD group was significantly greater than in nonsmokers. In addition, we determined the expression patterns of connective tissue growth factor (CTGF) and cyclin D1 in PASMCs harvested from smokers with normal lung function or mild to moderate COPD, finding that the expression levels of CTGF and cyclin D1 were significantly increased in smoker group and COPD group. In vitro experiment showed that the expression of CTGF, cyclin D1 and E2F were significantly increased in human PASMCs (HPASMCs) treated with 2% cigarette smoke extract (CSE), and two CTGF siRNAs with different mRNA hits successfully attenuated the upregulated cyclin D1 and E2F, and significantly restored the CSE-induced proliferation of HPASMCs by causing cell cycle arrest in G0. These findings suggest that CTGF may contribute to the pathogenesis of abnormal proliferation of HPASMCs by promoting the expression of its downstream effectors in smokers with or without COPD. PMID:25708588

  1. Del(20q) in patients with chronic lymphocytic leukemia: a therapy-related abnormality involving lymphoid or myeloid cells.

    PubMed

    Yin, C Cameron; Tang, Guilin; Lu, Gary; Feng, Xiaoli; Keating, Michael J; Medeiros, L Jeffrey; Abruzzo, Lynne V

    2015-08-01

    Deletion 20q (Del(20q)), a common cytogenetic abnormality in myeloid neoplasms, is rare in chronic lymphocytic leukemia. We report 64 patients with chronic lymphocytic leukemia and del(20q), as the sole abnormality in 40, a stemline abnormality in 21, and a secondary abnormality in 3 cases. Fluorescence in situ hybridization (FISH) analysis revealed an additional high-risk abnormality, del(11q) or del(17p), in 25/64 (39%) cases. In most cases, the leukemic cells showed atypical cytologic features, unmutated IGHV (immunoglobulin heavy-chain variable region) genes, and ZAP70 positivity. The del(20q) was detected only after chemotherapy in all 27 cases with initial karyotypes available. With a median follow-up of 90 months, 30 patients (47%) died, most as a direct consequence of chronic lymphocytic leukemia. Eight patients developed a therapy-related myeloid neoplasm, seven with a complex karyotype. Combined morphologic and FISH analysis for del(20q) performed in 12 cases without morphologic evidence of a myeloid neoplasm localized the del(20q) to the chronic lymphocytic leukemia cells in 5 (42%) cases, and to myeloid/erythroid cells in 7 (58)% cases. The del(20q) was detected in myeloid cells in all 4 cases of myelodysplastic syndrome. In aggregate, these data indicate that chronic lymphocytic leukemia with del(20q) acquired after therapy is heterogeneous. In cases with morphologic evidence of dysplasia, the del(20q) likely resides in the myeloid lineage. However, in cases without morphologic evidence of dysplasia, the del(20q) may represent clonal evolution and disease progression. Combining morphologic analysis with FISH for del(20q) or performing FISH on immunomagnetically selected sub-populations to localize the cell population with this abnormality may help guide patient management.

  2. Del(20q) in patients with chronic lymphocytic leukemia: A therapy-related abnormality involving lymphoid or myeloid cells

    PubMed Central

    Yin, C. Cameron; Tang, Guilin; Lu, Gary; Feng, Xiaoli; Keating, Michael J.; Medeiros, L. Jeffrey; Abruzzo, Lynne V.

    2015-01-01

    Del(20q), a common cytogenetic abnormality in myeloid neoplasms, is rare in chronic lymphocytic leukemia. We report 64 patients with chronic lymphocytic leukemia and del(20q), as the sole abnormality in 40, a stemline abnormality in 21, and a secondary abnormality in 3 cases. FISH analysis revealed an additional high-risk abnormality, del(11q) or del(17p), in 27/64 (42%) cases. In most cases, the leukemic cells showed atypical cytologic features, unmutated IGHV genes and ZAP70 positivity. The del(20q) was detected only after chemotherapy in all 27 cases with initial karyotypes available. With a median follow-up of 90 months, 30 patients (47%) died, most as a direct consequence of chronic lymphocytic leukemia. Eight patients developed a therapy-related myeloid neoplasm, seven with a complex karyotype. Combined morphologic and FISH analysis for del(20q) performed in 12 cases without morphologic evidence of a myeloid neoplasm localized the del(20q) to the chronic lymphocytic leukemia cells in 5 (42%) cases, and to myeloid/erythroid cells in 7 (58)% cases. The del(20q) was detected in myeloid cells in all 4 cases of myelodysplastic syndrome. In aggregate, these data indicate that chronic lymphocytic leukemia with del(20q) acquired after therapy is heterogeneous. In cases with morphologic evidence of dysplasia, the del(20q) likely resides in the myeloid lineage. However, in cases without morphologic evidence of dysplasia, the del(20q) may represent clonal evolution and disease progression. Combining morphologic analysis with FISH for del(20q) or performing FISH on immunomagnetically-selected subpopulations to localize the cell population with this abnormality may help guide patient management. PMID:25953391

  3. Exercise-induced menstrual dysfunction.

    PubMed

    Henley, K; Vaitukaitis, J L

    1988-01-01

    Menstrual cycle changes associated with vigorous exercise can range widely. They may be only subtle abnormalities, ranging from delayed onset of spontaneous menses or anovulatory cycles to loss of spontaneous menses. They may be more serious, however. Significant adverse bone mineral changes, resulting in clinically significant osteoporosis and fractures, may occur concomitantly with exercise-induced menstrual dysfunction.

  4. Genome-wide differences in hepatitis C- vs alcoholism-associated hepatocellular carcinoma

    PubMed Central

    Derambure, Céline; Coulouarn, Cédric; Caillot, Frédérique; Daveau, Romain; Hiron, Martine; Scotte, Michel; François, Arnaud; Duclos, Celia; Goria, Odile; Gueudin, Marie; Cavard, Catherine; Terris, Benoit; Daveau, Maryvonne; Salier, Jean-Philippe

    2008-01-01

    AIM: To look at a comprehensive picture of etiology-dependent gene abnormalities in hepatocellular carcinoma in Western Europe. METHODS: With a liver-oriented microarray, transcript levels were compared in nodules and cirrhosis from a training set of patients with hepatocellular carcinoma (alcoholism, 12; hepatitis C, 10) and 5 controls. Loose or tight selection of informative transcripts with an abnormal abundance was statistically valid and the tightly selected transcripts were next quantified by qRTPCR in the nodules from our training set (12 + 10) and a test set (6 + 7). RESULTS: A selection of 475 transcripts pointed to significant gene over-representation on chromosome 8 (alcoholism) or -2 (hepatitis C) and ontology indicated a predominant inflammatory response (alcoholism) or changes in cell cycle regulation, transcription factors and interferon responsiveness (hepatitis C). A stringent selection of 23 transcripts whose differences between etiologies were significant in nodules but not in cirrhotic tissue indicated that the above dysregulations take place in tumor but not in the surrounding cirrhosis. These 23 transcripts separated our test set according to etiologies. The inflammation-associated transcripts pointed to limited alterations of free iron metabolism in alcoholic vs hepatitis C tumors. CONCLUSION: Etiology-specific abnormalities (chromosome preference; differences in transcriptomes and related functions) have been identified in hepatocellular carcinoma driven by alcoholism or hepatitis C. This may open novel avenues for differential therapies in this disease. PMID:18350606

  5. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    PubMed Central

    2013-01-01

    Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway. PMID:23347679

  6. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway.

  7. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds

    PubMed Central

    Chen, Chin-Hsing; Huang, Wen-Tzeng; Tan, Tan-Hsu; Chang, Cheng-Chun; Chang, Yuan-Jen

    2015-01-01

    A reported 30% of people worldwide have abnormal lung sounds, including crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular tool used by physicians to diagnose such abnormal lung sounds, however, many problems arise with the use of a stethoscope, including the effects of environmental noise, the inability to record and store lung sounds for follow-up or tracking, and the physician’s subjective diagnostic experience. This study has developed a digital stethoscope to help physicians overcome these problems when diagnosing abnormal lung sounds. In this digital system, mel-frequency cepstral coefficients (MFCCs) were used to extract the features of lung sounds, and then the K-means algorithm was used for feature clustering, to reduce the amount of data for computation. Finally, the K-nearest neighbor method was used to classify the lung sounds. The proposed system can also be used for home care: if the percentage of abnormal lung sound frames is > 30% of the whole test signal, the system can automatically warn the user to visit a physician for diagnosis. We also used bend sensors together with an amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. The respiratory signal extracted by the bend sensors can be transmitted to the computer via Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status is detected, the device will warn the user automatically. Experimental results indicated that the error in respiratory cycles between measured and actual values was only 6.8%, illustrating the potential of our detector for home care applications. PMID:26053756

  8. Sunitinib-related fulminant hepatic failure: case report and review of the literature.

    PubMed

    Mueller, Eric W; Rockey, Michelle L; Rashkin, Mitchell C

    2008-08-01

    Drug-induced hepatotoxicity is an infrequent but life-threatening complication. Sunitinib is a multitargeted receptor tyrosine kinase inhibitor approved for treatment of renal cell carcinoma and gastrointestinal stromal tumor. However, results from preapproval clinical trials suggest an equivocal hepatic risk profile for sunitinib. We describe a 75-year-old woman with renal cell carcinoma who was admitted to the intensive care unit after experiencing fulminant hepatic failure during sunitinib therapy. The patient's hepatic and renal chemistries had been within normal limits throughout four previous cycles of sunitinib therapy spanning 9 months. After the fifth cycle, she complained of a 3-day history of severe diarrhea and dehydration. Her abnormal laboratory test results included the following: total bilirubin level 5.9 mg/dl, aspartate aminotransferase level 3872 U/L, alanine aminotransferase level 3332 U/L, ammonia level 897 microg/dl, and an international normalized ratio of 4.8. Use of the Naranjo adverse drug reaction probability scale indicated a possible relationship between sunitinib and hepatotoxicity. Supportive care including aggressive intravenous hydration and reversal of coagulopathy was successful. The patient was discharged home on hospital day 7 without apparent longstanding sequelae. Clinicians should be aware of this possible adverse effect of sunitinib, and continued pharmacovigilance is imperative to accurately quantify the possible risk of sunitinib-related hepatotoxicity.

  9. Clinical accuracy of abnormal cell-free fetal DNA results for the sex chromosomes.

    PubMed

    Scibetta, Emily W; Gaw, Stephanie L; Rao, Rashmi R; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2017-12-01

    To investigate factors associated with abnormal cell-free DNA (cfDNA) results for sex chromosomes (SCs). This is a retrospective cohort study of abnormal cfDNA results for SC at a referral practice from March 2013 to July 2015. Cell-free DNA results were abnormal if they were positive for SC aneuploidy (SCA), inconclusive, or discordant with ultrasound (US) findings. Primary outcome was concordance with karyotype or postnatal evaluation. Of 50 abnormal cfDNA results for SC, 31 patients (62%) were positive for SCA, 13 (26%) were inconclusive, and 6 (12%) were sex discordant on US. Of SCA results, 19 (61%) were reported as 45,X and 12 (39%) were SC trisomy. Abnormal karyotypes were confirmed in 8/23 (35%) of SC aneuploidy and 1/5 (20%) of inconclusive results. Abnormal SC cfDNA results were associated with in vitro fertilization (P = .001) and twins (P < .001). Sex discordance between cfDNA and US was associated with twin gestation (P < .001). In our cohort, abnormal SC cfDNA results were associated with in vitro fertilization and twins. Our results indicate cfDNA for sex prediction in twins of limited utility. Positive predictive value and sensitivity for SC determination were lower than previously reported. © 2017 John Wiley & Sons, Ltd.

  10. Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity?

    PubMed Central

    Handley, Matthew E; Rasaiyaah, Jane; Chain, Benjamin M; Katz, David R

    2007-01-01

    This review summarizes current knowledge about the mixed lineage kinases (MLKs) and explores their potential role in inflammation and immunity. MLKs were identified initially as signalling molecules in the nervous system. They were also shown to play a role in the cell cycle. Further studies documented three groups of MLKs, and showed that they may be activated via the c-Jun NH2 terminal kinase (JNK) pathway, and by Rho GTPases. The biochemistry of the MLKs has been investigated in considerable detail. Homodimerization and heterodimerization can occur, and both autophosphorylation and autoinhibition are seen. The interaction between MLKs and JNK interacting protein (JIP) scaffolds, and the resultant effects on mitogen activated protein kinases, have been identified. Clearly, there is some redundancy within the MLK pathway(s), since mice which lack the MLK3 molecule are not abnormal. However, using a combination of biochemical analysis and pharmacological inhibitors, several recent studies in vitro have suggested that MLKs are not only expressed in cells of the immune system (as well as in the nervous system), but also may be implicated selectively in the signalling pathway that follows on toll-like receptor ligation in innate sentinel cells, such as the dendritic cell. PMID:17408454

  11. The effect of nitrogen on the cycling performance in thin-film Si{sub 1-x}N{sub x} anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Donggi; Kim, Chunjoong; Lee, Joon-Gon

    2008-09-15

    The effects of nitrogen on the electrochemical properties of silicon-nitrogen (Si{sub 1-x}N{sub x}) thin films were examined in terms of their initial capacities and cycling properties. In particular, Si{sub 0.76}N{sub 0.24} thin films showed negligible initial capacity but an abrupt capacity increase to {approx}2300 mA h/g after {approx}650 cycles. The capacity of pure Si thin films was deteriorated to {approx}20% of the initial level after 200 cycles between 0.02 and 1.2 V at 0.5 C (1 C=4200 mA/g), whereas the Si{sub 0.76}N{sub 0.24} thin films exhibited excellent cycle-life performance after {approx}650 cycles. In addition, the Si{sub 0.76}N{sub 0.24} thin filmsmore » at 50 deg. C showed an abrupt capacity increase at an earlier stage of only {approx}30 cycles. The abnormal electrochemical behaviors in the Si{sub 0.76}N{sub 0.24} thin films were demonstrated to be correlated with the formation of Li{sub 3}N and Si{sub 3}N{sub 4}. - Graphical abstract: The Si{sub 0.76}N{sub 0.24} thin films showed negligible initial capacity, but an abrupt capacity increase to {approx}2300 mA h/g after {approx}650 cycles, followed by excellent cycle-life performance. This abnormal electrochemical behavior was demonstrated to be correlated with the formation of Li{sub 3}N and Si{sub 3}N{sub 4}.« less

  12. Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors.

    PubMed

    Hernández-Saavedra, Diego; Strakovsky, Rita S; Ostrosky-Wegman, Patricia; Pan, Yuan-Xiang

    2017-11-01

    The centromere is a genomic locus required for the segregation of the chromosomes during cell division. This chromosomal region together with pericentromeres has been found to be susceptible to damage, and thus the perturbation of the centromere could lead to the development of aneuploidic events. Metabolic abnormalities that underlie the generation of cancer include inflammation, oxidative stress, cell cycle deregulation, and numerous others. The micronucleus assay, an early clinical marker of cancer, has been shown to provide a reliable measure of genotoxic damage that may signal cancer initiation. In the current review, we will discuss the events that lead to micronucleus formation and centromeric and pericentromeric chromatin instability, as well transcripts emanating from these regions, which were previously thought to be inactive. Studies were selected in PubMed if they reported the effects of nutritional status (macro- and micronutrients) or environmental toxicant exposure on micronucleus frequency or any other chromosomal abnormality in humans, animals, or cell models. Mounting evidence from epidemiologic, environmental, and nutritional studies provides a novel perspective on the origination of aneuploidic events. Although substantial evidence exists describing the role that nutritional status and environmental toxicants have on the generation of micronuclei and other nuclear aberrations, limited information is available to describe the importance of macro- and micronutrients on centromeric and pericentromeric chromatin stability. Moving forward, studies that specifically address the direct link between nutritional status, excess, or deficiency and the epigenetic regulation of the centromere will provide much needed insight into the nutritional and environmental regulation of this chromosomal region and the initiation of aneuploidy. © 2017 American Society for Nutrition.

  13. Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development

    PubMed Central

    Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.

    2009-01-01

    Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074

  14. Successful Treatment of Aggressive Mature B-cell Lymphoma Mimicking Immune Thrombocytopenic Purpura.

    PubMed

    Ono, Koya; Onishi, Yasushi; Kobayashi, Masahiro; Ichikawa, Satoshi; Hatta, Shunsuke; Watanabe, Shotaro; Okitsu, Yoko; Fukuhara, Noriko; Ichinohasama, Ryo; Harigae, Hideo

    2018-03-30

    A 55-year-old woman suffered from hemorrhagic tendency. She had severe thrombocytopenia without any hematological or coagulatory abnormalities, and a bone marrow examination revealed an increased number of megakaryocytes without any abnormal cells or blasts. No lymphadenopathy or hepatosplenomegaly was observed on computed tomography. She was initially diagnosed with immune thrombocytopenic purpura (ITP). None of the treatments administered for ITP produced a response. However, abnormal cells were eventually found during the third bone marrow examination. The pathological diagnosis was mature B-cell lymphoma. Rituximab-containing chemotherapy produced a marked increase in the patient's platelet count, and her lymphoma went into complete remission.

  15. Amplitude-integrated EEG in newborns with critical congenital heart disease predicts preoperative brain magnetic resonance imaging findings.

    PubMed

    Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T

    2015-06-01

    The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. LIPID ABNORMALITIES AND LIPID-BASED REPAIR STRATEGIES IN ATOPIC DERMATITIS

    PubMed Central

    Elias, Peter M.

    2013-01-01

    Prior studies have revealed the key roles played by Th1/Th2 cell dysregulation, IgE production, mast cell hyperactivity, and dendritic cell signaling in the evolution of the chronic, pruritic, inflammatory dermatosis that characterizes atopic dermatitis (AD). We review here increasing evidence that the inflammation in AD results primarily from inherited abnormalities in epidermal structural and enzymatic proteins that impact permeability barrier function. We also will show that the barrier defect can be attributed to a paracellular abnormality due to a variety of abnormalities in lipid composition, transport and extracellular organization. Accordingly, we also review the therapeutic implications of this emerging pathogenic paradigm, including several current and potentially novel, lipid-based approaches to corrective therapy. PMID:24128970

  17. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation

    PubMed Central

    Gaillard, Coline; Tokuyasu, Taku A.; Rosen, Galit; Sotzen, Jason; Vitaliano-Prunier, Adeline; Roy, Ritu; Passegué, Emmanuelle; de Thé, Hugues; Figueroa, Maria E.; Kogan, Scott C.

    2015-01-01

    Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment. PMID:26088929

  18. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle.

    PubMed

    Rawat, Anamika; Brejšková, Lucie; Hála, Michal; Cvrčková, Fatima; Žárský, Viktor

    2017-10-01

    The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus.

    PubMed

    Egashira, Mahiro; Hirota, Yasushi; Shimizu-Hirota, Ryoko; Saito-Fujita, Tomoko; Haraguchi, Hirofumi; Matsumoto, Leona; Matsuo, Mitsunori; Hiraoka, Takehiro; Tanaka, Tomoki; Akaeda, Shun; Takehisa, Chiaki; Saito-Kanatani, Mayuko; Maeda, Kei-Ichiro; Fujii, Tomoyuki; Osuga, Yutaka

    2017-07-01

    Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function. Copyright © 2017 Endocrine Society.

  20. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy.

    PubMed

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-10-03

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.

  1. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy

    PubMed Central

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-01-01

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242

  2. Hunting the mechanisms of self-renewal of immortal cell populations by means of real-time imaging of living cells.

    PubMed

    Kvitko, O V; Koneva, I I; Sheiko, Y I; Anisovich, M V

    2005-12-01

    The causes of the indefinite propagation of immortalized cell populations remain insufficiently understood, that hinders the research of such fundamental processes as ageing and cancer. In this study the interrelations between clonal proliferation and abnormalities of mitotic divisions in the immortalized cell line established from the mouse embryo were investigated with the aid of computerized microscopy of living cells. 3 mitoses with three daughter cells and 7 asymmetric mitoses which generated two daughter cells of conspicuously different sizes were registered among 71 mitotic divisions in the individual cell genealogy. Abnormal mitotic divisions either did not slow the proliferation in cell clones compared with progenies of cells that divided by means of normal mitoses or were followed by the acceleration of divisions in consecutive cell generations. These data suggest that abnormal mitotic divisions may contribute to the maintenance of the immortalized state of cell populations by means of generating chromosomal instability.

  3. Craniofacial bone abnormalities and malocclusion in individuals with sickle cell anemia: a critical review of the literature

    PubMed Central

    Costa, Cyrene Piazera Silva; de Carvalho, Halinna Larissa Cruz Correia; Thomaz, Erika Bárbara Abreu Fonseca; Sousa, Soraia de Fátima Carvalho

    2012-01-01

    This study aims to critically review the literature in respect to craniofacial bone abnormalities and malocclusion in sickle cell anemia individuals. The Bireme and Pubmed electronic databases were searched using the following keywords: malocclusion, maxillofacial abnormalities, and Angle Class I, Class II and lass III malocclusions combined with sickle cell anemia. The search was limited to publications in English, Spanish or Portuguese with review articles and clinical cases being excluded from this study. Ten scientific publications were identified, of which three were not included as they were review articles. There was a consistent observation of orthodontic and orthopedic variations associated with sickle cell anemia, especially maxillary protrusions. However, convenience sampling, sometimes without any control group, and the lack of estimates of association and hypotheses testing undermined the possibility of causal inferences. It was concluded that despite the high frequency of craniofacial bone abnormalities and malocclusion among patients with sickle cell anemia, there is insufficient scientific proof that this disease causes malocclusion PMID:23049386

  4. Regulation of RB Transcription In Vivo by RB Family Members▿ ‡

    PubMed Central

    Burkhart, Deborah L.; Ngai, Lynn K.; Roake, Caitlin M.; Viatour, Patrick; Thangavel, Chellappagounder; Ho, Victoria M.; Knudsen, Erik S.; Sage, Julien

    2010-01-01

    In cancer cells, the retinoblastoma tumor suppressor RB is directly inactivated by mutation in the RB gene or functionally inhibited by abnormal activation of cyclin-dependent kinase activity. While variations in RB levels may also provide an important means of controlling RB function in both normal and cancer cells, little is known about the mechanisms regulating RB transcription. Here we show that members of the RB and E2F families bind directly to the RB promoter. To investigate how the RB/E2F pathway may regulate Rb transcription, we generated reporter mice carrying an eGFP transgene inserted into a bacterial artificial chromosome containing most of the Rb gene. Expression of eGFP largely parallels that of Rb in transgenic embryos and adult mice. Using these reporter mice and mutant alleles for Rb, p107, and p130, we found that RB family members modulate Rb transcription in specific cell populations in vivo and in culture. Interestingly, while Rb is a target of the RB/E2F pathway in mouse and human cells, Rb expression does not strictly correlate with the cell cycle status of these cells. These experiments identify novel regulatory feedback mechanisms within the RB pathway in mammalian cells. PMID:20100864

  5. Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus

    PubMed Central

    Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph

    2013-01-01

    Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821

  6. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    PubMed

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  7. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  8. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Clonal B-cell population in a reactive lymph node in acquired immunodeficiency syndrome.

    PubMed

    Cozzolino, Immacolata; Nappa, Salvatore; Picardi, Marco; De Renzo, Amalia; Troncone, Giancarlo; Palombini, Lucio; Zeppa, Pio

    2009-12-01

    A 40-year-old female, HIV positive, stage C, since 4 years, complained of a right cervical lymph node swelling. Two years before, the patient had been diagnosed with follicular B-cell non-Hodgkin lymphoma (FL); she had been treated with four cycles of multiagent chemotherapy plus rituximab, the last cycle being administered 10 months before coming to our attention. An ultrasound (US) guided fine-needle cytology (FNC) showed an atypical lymphoid cell proliferation. The phenotype evidenced by flow cytometry (FC) analysis was D5: 10%, CD19: 49%, CD23: 10%, FMC7: 0%, CD10: 40%, CD10/19: 40%, lambda light chain 40%, kappa light chain 0%. FDG-positron emission tomography (PET/CT) scan showed positivity in the corresponding cervical area. Since low LDH values and a reduced lymph node size were observed, the lymph node was therefore excised; the histology revealed a reactive hyperplastic lymph node with florid follicular pattern. A subsequent PCR analysis, performed on DNA extracted from a whole histological section, did not evidence IgH rearrangement. The patient is currently undergoing strict clinical and instrumental follow-up, including PET every 3 months; after 13 months, she is alive without recurrence of lymphoma. Clonal B-cell populations in non-lymphomatous processes have been described in mucosa-associated lymphoid cell populations and reactive lymph nodes, and are considered non-malignant, antigen driven, proliferations of B-lymphocytes determined by an abnormal response to bacterial or viral antigen stimulation. The present case occurred in an HIV patient and was clinically complex because of the patient's history of FL. This experience suggests much attention in the evaluation of radiological, cytological, and FC data and in clinical correlation in patients suffering from autoimmune or immunodeficiency syndromes.

  10. CDC14A phosphatase is essential for hearing and male fertility in mouse and human.

    PubMed

    Imtiaz, Ayesha; Belyantseva, Inna A; Beirl, Alisha J; Fenollar-Ferrer, Cristina; Bashir, Rasheeda; Bukhari, Ihtisham; Bouzid, Amal; Shaukat, Uzma; Azaiez, Hela; Booth, Kevin T; Kahrizi, Kimia; Najmabadi, Hossein; Maqsood, Azra; Wilson, Elizabeth A; Fitzgerald, Tracy S; Tlili, Abdelaziz; Olszewski, Rafal; Lund, Merete; Chaudhry, Taimur; Rehman, Atteeq U; Starost, Matthew F; Waryah, Ali M; Hoa, Michael; Dong, Lijin; Morell, Robert J; Smith, Richard J H; Riazuddin, Sheikh; Masmoudi, Saber; Kindt, Katie S; Naz, Sadaf; Friedman, Thomas B

    2018-03-01

    The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.

  11. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study.

    PubMed

    Thomas, Xavier; Raffoux, Emmanuel; Renneville, Aline; Pautas, Cecile; de Botton, Stephane; Terre, Christine; Gardin, Claude; Hayette, Sandrine; Preudhomme, Claude; Dombret, Herve

    2010-04-01

    : Priming with granulocytic hematopoietic growth factors may modulate cell cycle kinetics of leukemic cells and render them more susceptible to phase-specific chemotherapeutic agents. In a first report, we have shown that priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) may enhance complete remission (CR) rate and event-free survival (EFS) in younger adults with acute myeloid leukemia (AML). : In this randomized trial, 259 patients with AML were randomized at baseline to receive or not receive GM-CSF concurrently with all cycles of chemotherapy. The effects of GM-CSF on survival were reported herein with a long-term follow-up and studied according to distinct biological subgroups defined on cytogenetics and molecular markers. : The EFS rate was better in the GM-CSF group (43% vs 34%; P = .04). GM-CSF did not improve the outcome in patients from good risk subgroups, while patients from poor risk subgroups benefited from GM-CSF therapy. In this population, the difference in terms of EFS probability was mainly observed in patients with high initial white blood cell count and in those with FLT3-ITD or MLL rearrangement. When combining these 2 molecular abnormalities for comparison of the effect of GM-CSF priming, the difference in terms of EFS was highly significant (5-year EFS, 39% with GM-CSF vs 8% without GM-CSF; P = .007). : Sensitization of leukemic cells and their progenitors by GM-CSF appears as a plausible strategy for improving the outcome of patients with newly diagnosed AML. Patients with poor-prognosis FLT3-ITD or MLL rearrangement might be a good target population to further investigate priming strategies. Cancer 2010. (c) 2010 American Cancer Society.

  12. Cell-free DNA screening in clinical practice: abnormal autosomal aneuploidy and microdeletion results.

    PubMed

    Valderramos, Stephanie G; Rao, Rashmi R; Scibetta, Emily W; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2016-11-01

    Since its commercial release in 2011 cell-free DNA screening has been rapidly adopted as a routine prenatal genetic test. However, little is known about its performance in actual clinical practice. We sought to investigate factors associated with the accuracy of abnormal autosomal cell-free DNA results. We conducted a retrospective cohort study of 121 patients with abnormal cell-free DNA results from a referral maternal-fetal medicine practice from March 2013 through July 2015. Patients were included if cell-free DNA results for trisomy 21, trisomy 18, trisomy 13, or microdeletions (if reported by the laboratory) were positive or nonreportable. The primary outcome was confirmed aneuploidy or microarray abnormality on either prenatal or postnatal karyotype or microarray. Secondary outcomes were identifiable associations with in vitro fertilization, twins, ultrasound findings, testing platform, and testing laboratory. Kruskal-Wallis or Fisher exact tests were used as appropriate. A total of 121 patients had abnormal cell-free DNA results for trisomy 21, trisomy 18, trisomy 13, and/or microdeletions. In all, 105 patients had abnormal cell-free DNA results for trisomy 21, trisomy 18, and trisomy 13. Of these, 92 (87.6%) were positive and 13 (12.4%) were nonreportable. The results of the 92 positive cell-free DNA were for trisomy 21 (48, 52.2%), trisomy 18 (22, 23.9%), trisomy 13 (17, 18.5%), triploidy (2, 2.2%), and positive for >1 parameter (3, 3.3%). Overall, the positive predictive value of cell-free DNA was 73.5% (61/83; 95% confidence interval, 63-82%) for all trisomies (by chromosome: trisomy 21, 83.0% [39/47; 95% confidence interval, 69-92%], trisomy 18, 65.0% [13/20; 95% confidence interval, 41-84%], and trisomy 13, 43.8% [7/16; 95% confidence interval, 21-70%]). Abnormal cell-free DNA results were associated with positive serum screening (by group: trisomy 21 [17/48, 70.8%]; trisomy 18 [7/22, 77.8%]; trisomy 13 [3/17, 37.5%]; nonreportable [2/13, 16.7%]; P = .004), and abnormal first-trimester ultrasound (trisomy 21 [25/45, 55.6%]; trisomy 18 [13/20, 65%]; trisomy 13 [6/14, 42.9%]; nonreportable [1/13, 7.7%]; P = .003). There was no association between false-positive rates and testing platform, but there was a difference between the 4 laboratories (P = .018). In all, 26 patients had positive (n = 9) or nonreportable (n = 17) microdeletion results. Seven of 9 screens positive for microdeletions underwent confirmatory testing; all were false positives. The positive predictive value of 73.5% for cell-free DNA screening for autosomal aneuploidy is lower than reported. The positive predictive value for microdeletion testing was 0%. Diagnostic testing is needed to confirm abnormal cell-free DNA results for aneuploidy and microdeletions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Relationship between pulmonary and cardiac abnormalities in sickle cell disease: implications for the management of patients

    PubMed Central

    Maioli, Maria Christina Paixão; Soares, Andrea Ribeiro; Bedirian, Ricardo; Alves, Ursula David; de Lima Marinho, Cirlene; Lopes, Agnaldo José

    2015-01-01

    Objective To evaluate the association between clinical, pulmonary, and cardiovascular findings in patients with sickle cell disease and, secondarily, to compare these findings between sickle cell anemia patients and those with other sickle cell diseases. Methods Fifty-nine adults were included in this cross-sectional study; 47 had sickle cell anemia, and 12 had other sickle cell diseases. All patients underwent pulmonary function tests, chest computed tomography, and echocardiography. Results Abnormalities on computed tomography, echocardiography, and pulmonary function tests were observed in 93.5%, 75.0%; and 70.2% of patients, respectively. A higher frequency of restrictive abnormalities was observed in patients with a history of acute chest syndrome (85% vs. 21.6%; p-value < 0.0001) and among patients with increased left ventricle size (48.2% vs. 22.2%; p-value = 0.036), and a higher frequency of reduced respiratory muscle strength was observed in patients with a ground-glass pattern (33.3% vs. 4.3%; p-value = 0.016). Moreover, a higher frequency of mosaic attenuation was observed in patients with elevated tricuspid regurgitation velocity (61.1% vs. 24%; p-value = 0.014). Compared to patients with other sickle cell diseases, sickle cell anemia patients had suffered increased frequencies of acute pain episodes, and acute chest syndrome, and exhibited mosaic attenuation on computed tomography, and abnormalities on echocardiography. Conclusion A significant interrelation between abnormalities of the pulmonary and cardiovascular systems was observed in sickle cell disease patients. Furthermore, the severity of the cardiopulmonary parameters among patients with sickle cell anemia was greater than that of patients with other sickle cell diseases. PMID:26969771

  14. [Mechanism involving blm gene underlies repair of DNA damage of Jurkat cells induced by mitomycin C].

    PubMed

    Yi, Xue; Cheng, Hui; Zou, Ping; Liu, Ling-Bo; Zhang, Ting; Yu, Dan; Zhu, Xiao-Ming; Zou, Liang

    2010-10-01

    The defect or block of apoptosis is an important factor involved in the drug resistance of tumor cells. Blm gene plays a great role in DNA damage and repair. This study was aimed to explore the relationship of blm gene expression with cell cycle and apoptosis after Jurkat DNA damage. The apoptosis rate and change of cell cycle were detected by flow cytometry, the expression level of blm mRNA in Jurkat cells was determined by semi-quantitative RT-PCR. The results indicated that after induction with 0.4 g/L of mitomycin C (MMC) for 24 hours the apoptosis rate of Jurkat cells were (11.42±0.013)%, and (66.08±1.60)% Jurkat cells were arrested in G2/M phase. After induction for 48 hours, the apoptosis rate of Jurkat cells declined from (11.42±0.013)% to (8.08±0.27)%, and cell count of Jurkat cells arrested in G2/M phase decreased from (66.08±1.60)% to (33.96±1.05)%. When induced with 0.4 g/L of MMC for 24 hours, the apoptosis rate of fibroblasts and the percentage of fibroblasts in G2/M, G0-G1 and S phase all showed no significant change until 48 hours. The range of apoptosis rate and the change of cell percentage in three phases were significantly different between Jurkat cells and fibroblasts (p<0.01). Expression level of blm mRNA in Jurkat cells was remarkably higher than that in normal fibroblasts (p<0.01), at 48 hours expression level of blm mRNA was remarkably higher than that at 24 hours. The 2 groups showed clear difference of blm mRNA expression after treated by MMC (p<0.01). It is concluded that the blm gene may play a significant role in repair of DNA damage of Jurkat cells after MMC induction. Abnormal expression of blm is correlated to the drug resistance of leukemia cells.

  15. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  16. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  17. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  18. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  19. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  20. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    PubMed

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  1. Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients.

    PubMed

    Tsoi, H; Lam, K C; Dong, Y; Zhang, X; Lee, C K; Zhang, J; Ng, S C; Ng, S S M; Zheng, S; Chen, Y; Fang, J; Yu, J

    2017-11-02

    One characteristic of cancer cells is the abnormally high rate of cell metabolism to sustain their enhanced proliferation. However, the behind mechanism of this phenomenon is still elusive. Here we find that enhanced precursor 45s ribosomal RNA (pre-45s rRNA) is one of the core mechanisms in promoting the pathogenesis of colorectal cancer (CRC). Pre-45s rRNA expression is significantly higher in primary CRC tumor tissues samples and cancer cell lines compared with the non-tumorous colon tissues, and is associated with tumor sizes. Knockdown of pre-45s rRNA inhibits G1/S cell-cycle transition by stabilizing p53 through inducing murine double minute 2 (MDM2) and ribosomal protein L11 (RpL11) interaction. In addition, we revealed that high rate of cancer cell metabolism triggers the passive release of calcium ion from endoplasmic reticulum to the cytoplasm. The elevated calcium ion in the cytoplasm activates the signaling cascade of calcium/calmodulin-dependent protein kinase II, ribosomal S6 kinase (S6K) and ribosomal S6K (CaMKII-S6K-UBF). The activated UBF promotes the transcription of rDNA, which therefore increases pre-45s rRNA. Disruption of CaMKII-S6K-UBF axis by either RNAi or pharmaceutical approaches leads to reduction of pre-45s rRNA expression, which subsequently suppresses cell proliferation in colon cancer cells by causing cell-cycle arrest. Knockdown of APC activates CaMKII-S6K-UBF cascade and thus enhances pre-45s rRNA expression. Moreover, the high expression level of pre-45s rRNA is associated with poor survival of CRC patients in two independent cohorts. Our study identifies a novel mechanism in CRC pathogenesis mediated by pre-45s rRNA and a prognostic factor of pre-45s rRNA in CRC patients.

  2. Characteristics of NO cycle coupling with urea cycle in non-hyperammonemic carriers of ornithine transcarbamylase deficiency.

    PubMed

    Nagasaka, Hironori; Yorifuji, Tohru; Egawa, Hiroto; Inui, Ayano; Fujisawa, Tomoo; Komatsu, Haruki; Tsukahara, Hirokazu; Uemoto, Shinji; Inomata, Yukihiro

    2013-07-01

    Urea cycle deficient patients with prominent hyperammonemic often exhibit abnormal production of nitric oxide (NO), which reduces vascular tone, along with amino acid abnormalities. However, information related to the metabolic changes in heterozygotes of ornithine transcarbamylase deficiency (OTCD) lacking overt hyperammonemia is quite limited. We examined vascular mediators and amino acids in non-hyperammonemic heterozygotes. Twenty-four heterozygous OTCD adult females without hyperammonemic bouts, defined as non-hyperammonemic carriers, were enrolled. We measured blood amino acids constituting urea cycle and nitric oxide (NO) cycle. Blood concentrations of nitrate/nitrite (NOx) as stable NO-metabolites, asymmetric dimethylarginine (ADMA) inhibiting NO synthesis, and endothelin-1 (ET-1) raising vascular tone were also determined. NOx concentrations were significantly lower in non-hyperammonemic carriers (p < 0.01). However, ADMA and ET-1 levels in this group were comparable to those in the age-matched control group. Arginine and citrulline levels were also significantly lower in non-hyperammonemic carriers than in controls (p < 0.01). Of the 24 non-hyperammonemic carriers, 10 often developed headaches. Their daily NOx and arginine levels were significantly lower than those in headache-free carriers (p < 0.05). In three carriers receiving oral l-arginine, blood NOx concentrations were significantly higher. In two of those three, the occurrence of headaches was decreased. These results suggest that NO cycle coupling with the urea cycle is altered substantially even in non-hyperammonemic OTCD carriers, predisposing them to headaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Taisuke; Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellularmore » response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.« less

  4. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  5. Impact of genetic abnormalities after allogeneic stem cell transplantation in multiple myeloma: a report of the Société Française de Greffe de Moelle et de Thérapie Cellulaire.

    PubMed

    Roos-Weil, Damien; Moreau, Philippe; Avet-Loiseau, Hervé; Golmard, Jean-Louis; Kuentz, Mathieu; Vigouroux, Stéphane; Socié, Gérard; Furst, Sabine; Soulier, Jean; Le Gouill, Steven; François, Sylvie; Thiebaut, Anne; Buzyn, Agnès; Maillard, Natacha; Yakoub-Agha, Ibrahim; Raus, Nicole; Fermand, Jean-Paul; Michallet, Mauricette; Blaise, Didier; Dhédin, Nathalie

    2011-10-01

    The impact of cytogenetic abnormalities in multiple myeloma after allogeneic stem cell transplantation has not been clearly defined. This study examines whether allogeneic stem cell transplantation could be of benefit for myeloma patients with high-risk cytogenetic abnormalities. This is a retrospective multicenter analysis of the registry of the Société Française de Greffe de Moelle et de Thérapie Cellulaire, including 143 myeloma patients transplanted between 1999 and 2008. The incidences of cytogenetic abnormalities were 59% for del(13q), 25% for t(4;14), 25% for del(17p) and 4% for t(14;16). When comparing the population carrying an abnormality to that without the same abnormality, no significant difference was found in progression-free survival, overall survival or progression rate. Patients were grouped according to the presence of any of the poor prognosis cytogenetic abnormalities t(4;14), del(17p) or t(14;16) (n=53) or their absence (n=32). No difference in outcomes was observed between these two groups: the 3-year progression-free survival, overall survival and progression rates were 30% versus 17% (P=0.9), 45% versus 39% (P=0.8) and 53% versus 75% (P=0.9), respectively. These data indicate that allogeneic stem cell transplantation could potentially be of benefit to high-risk myeloma patients.

  6. Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling.

    PubMed

    Nisbet, Ashley M; Camelliti, Patrizia; Walker, Nicola L; Burton, Francis L; Cobbe, Stuart M; Kohl, Peter; Smith, Godfrey L

    2016-05-01

    Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte-non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, Frank A.

    1982-01-01

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  8. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, F.A.

    1980-12-12

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  9. [Influence of vaginal microflora on the presence of persistent atypical squamous cells and atypical glandular cells in pap smear--a 3-year study].

    PubMed

    Ludwin, Inga; Ludwin, Artur; Basta, Antoni

    2010-05-01

    the evaluation of influence of abnormal vaginal biocoenosis on presence and maintenance ASC and AGC in Pap smears. The study group consisted of 242 non-pregnant women (25-65 years of age): 207 women (4.96%) with atypical sqamous cells and 35 (0.7%) with atypical glandular cells. In all women the vaginal flora was assessed by Nugent scale. Vaginal flora was normal in 157 (75.8%) and pathological in 50 (24.1%) women with ASC. In the ASC subgroup, the highest proportion of physiological vaginal flora was observed in 151 patients (77.4%) with ASC-US, in comparison to 44 (22.6%) with ASC-H, in which the percentage of women with normal or abnormal flora was the same (50% vs 50%). This difference was statistically significant. In case of AGC, vaginal culture was physiological in 23 (65.7%) women, and in 12 (34.3%) abnormal vaginal flora with features of the inflammation. The statistically significant influence of abnormal vaginal flora on the presence of atypical endometrial and endocervical cells was not observed. We did not observed any influence of abnormal vaginal flora on the presence, regression and progression of ASC and AGC.

  10. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-04-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.

  11. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process

    PubMed Central

    Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-01-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612

  12. Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis

    PubMed Central

    Maddala, Rupalatha; Nagendran, Tharkika; Lang, Richard A.; Morozov, Alexei; Rao, Ponugoti V.

    2015-01-01

    Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis. PMID:26212757

  13. Novel 1, 3-N, O-Spiroheterocyclic compounds inhibit heparanase activity and enhance nedaplatin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Song, Yanan; Hu, Bin; Qu, Hongjie; Wang, Lu; Zhang, Yunxiao; Tao, Jinchao; Cui, Jinquan

    2016-06-14

    Heparanase (HPA) is an enzyme that plays an important role in cancer metastasis and angiogenesis and is a potential target for molecular treatment of tumors. We previously found that abnormally high HPA expression in cervical cancer tissues is associated with poor survival and increased lymph node metastasis. The present study was conducted to assess the utility of inhibiting HPA enzyme activity in cervical cancer treatment. Two series of 13 novel HPA inhibitors were synthesized and optimized. All tested inhibitors reduced HPA enzyme activity (IC50 values ranged from 4.47 μM to 47.19 μM) and inhibited the growth of HeLa cells (IC50 values ranged from 48.16 μM to 96.64 μM). The No. 16 inhibitor inhibited the migration and growth of HeLa and Siha cells in a dose- and time-dependent manner, and increased cell apoptosis and cell cycle G0/G1 and G2/M phase arrest, while decreasing the S phase cell population. More importantly, No. 16 sensitized cervical cancer cells to low concentrations of nedaplatin, decreased HPA, c-Myc and h-TERT levels, and increased p53 levels in HeLa and Siha cells. These results suggest that this HPA inhibitor reduced proliferation and HPA expression in cervical cancer cells by restoring p53 activity and downregulating h-TERT and c-Myc expression.

  14. Abnormal human chorionic gonadotropin (hCG) trends after transfer of multiple embryos resulting in viable singleton pregnancies.

    PubMed

    Brady, Paula C; Farland, Leslie V; Missmer, Stacey A; Racowsky, Catherine; Fox, Janis H

    2018-03-01

    The purpose of this study is to investigate whether abnormal hCG trends occur at a higher incidence among women conceiving singleton pregnancies following transfer of multiple (two or more) embryos (MET), as compared to those having a single embryo transfer (SET). Retrospective cohort study was performed of women who conceived singleton pregnancies following fresh or frozen autologous IVF/ICSI cycles with day 3 or day 5 embryo transfers between 2007 and 2014 at a single academic medical center. Cycles resulting in one gestational sac on ultrasound followed by singleton live birth beyond 24 weeks of gestation were included. Logistic regression models adjusted a priori for patient age at oocyte retrieval and day of embryo transfer were used to estimate the Odds Ratio of having an abnormal hCG rise (defined as a rise or < 66% in 2 days) following SET as compared to MET. Among patients receiving two or more embryos, 6.1% (n = 84) had abnormal hCG rises between the first and second measurements, compared to 2.7% (n = 17) of patients undergoing SET (OR 2.16, 95% CI 1.26-3.71). Among patients with initially abnormal hCG rises who had a third level checked (89%), three-quarters had normal hCG rises between the second and third measurements. Patients who deliver singletons following MET were more likely to have suboptimal initial hCG rises, potentially due to transient implantation of other non-viable embryo(s). While useful for counseling, these findings should not change standard management of abnormal hCG rises following IVF. The third hCG measurements may clarify pregnancy prognosis.

  15. PD-1 is a marker for abnormal distribution of naïve/memory T cell subsets in HIV-1 infection

    PubMed Central

    Breton, Gaëlle; Chomont, Nicolas; Takata, Hiroshi; Fromentin, Rémi; Ahlers, Jeffrey; Filali-Mouhim, Abdelali; Riou, Catherine; Boulassel, Mohamed-Rachid; Routy, Jean-Pierre; Yassine-Diab, Bader; Sékaly, Rafick-Pierre

    2013-01-01

    Chronic activation of T cells is a hallmark of HIV-1 infection and plays an important role in disease progression. We previously showed that the engagement of the inhibitory receptor PD-1 on HIV-1 specific CD4+ and CD8+ T cells leads to their functional exhaustion in vitro. However, little is known about the impact of PD-1 expression on the turnover and maturation status of T cells during the course of the disease. Here, we show that PD-1 is up regulated on all T cell subsets including naïve, central memory and transitional memory T cells in HIV-1 infected subjects. PD-1 is expressed at similar levels on most CD4+ T cells during the acute and the chronic phase of disease and identifies cells that have recently entered the cell cycle. In contrast, PD-1 expression dramatically increased in CD8+ T cells during the transition from acute to chronic infection and this was associated with reduced levels of cell proliferation. The failure to down regulate expression of PD-1 in most T cells during chronic HIV-1 infection was associated to persistent alterations in the distribution of T cell subsets and was associated with impaired responses to IL-7. Our findings identify PD-1 as a marker for aberrant distribution of T cell subsets in HIV-1 infection. PMID:23918986

  16. Human cytomegalovirus UL76 induces chromosome aberrations

    PubMed Central

    2009-01-01

    Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723

  17. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    PubMed

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers. These results indicate that cell death is required for elimination of the precursor cells composing the proliferation centers. This study substantiates an essential role of early neural cell death for ensuring normal development of the central nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Genotoxic action of an aqueous extract of Heliotropium curassavicum var. argentinum.

    PubMed

    Carballo, M; Mudry, M D; Larripa, I B; Villamil, E; D'Aquino, M

    1992-06-16

    Heliotropium curassavicum var. argentinum is widely employed in gout, rheumatism, neuralgias, arteriosclerotic disorders, muscular algias, phlebitis, varix and other illnesses. In order to analyze the genotoxic effect produced in vitro by this medicinal plant, chromosomal aberrations (CA), mitotic index (MI) and anaphase delay (AD) were studied in the CHO cell line, with and without the addition of S9 mix. Prepared according to the Argentine pharmacopeia 0.1, 1, 10 and 100 micrograms/ml plant decoction (aqueous extract) were assayed. One hundred cells per culture were studied for CA and AD, while MI was calculated for 2000 nuclei. The results revealed a significant increase in the percentage of abnormal metaphases (p less than 0.001) and in total aberrations (p less than 0.001). Both the MI and the AD affected the cell cycle. All results were enhanced by the addition of an S9 fraction. The toxic effect could be associated with pyrrolizidine alkaloids and their N-oxides, which through a process of in vitro metabolism become activated by microsomal oxidation and change into pyrrolic derivatives.

  19. DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration

    PubMed Central

    Martin, Lee J.

    2008-01-01

    DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258

  20. Adiposity Alters Genes Important in Inflammation and Cell Cycle Division in Human Cumulus Granulosa Cell.

    PubMed

    Merhi, Zaher; Polotsky, Alex J; Bradford, Andrew P; Buyuk, Erkan; Chosich, Justin; Phang, Tzu; Jindal, Sangita; Santoro, Nanette

    2015-10-01

    To determine whether obesity alters genes important in cellular growth and inflammation in human cumulus granulosa cells (GCs). Eight reproductive-aged women who underwent controlled ovarian hyperstimulation followed by oocyte retrieval for in vitro fertilization were enrolled. Cumulus GC RNA was extracted and processed for microarray analysis on Affymetrix Human Genome U133 Plus 2.0 chips. Gene expression data were validated on GCs from additional biologically similar samples using quantitative real-time polymerase chain reaction (RT-PCR). Comparison in gene expression was made between women with body mass index (BMI) <25 kg/m(2) (group 1; n = 4) and those with BMI ≥25 kg/m(2) (group 2; n = 4). Groups 1 and 2 had significantly different BMI (21.4 ± 1.4 vs 30.4 ± 2.7 kg/m(2), respectively; P = .02) but did not differ in age (30.5 ± 1.7 vs 32.7 ± 0.3 years, respectively; P = .3). Comparative analysis of gene expression profiles by supervised clustering between group 1 versus group 2 resulted in the selection of 7 differentially expressed genes: fibroblast growth factor 12 (FGF-12), protein phosphatase 1-like (PPM1L), zinc finger protein multitype 2 (ZFPM2), forkhead box M1 (FOXM1), cell division cycle 20 (CDC20), interleukin 1 receptor-like 1 (IL1RL1), and growth arrest-specific protein 7 (GAS7). FOXM1, CDC20, and GAS7 were downregulated while FGF-12 and PPM1L were upregulated in group 2 when compared to group 1. Validation with RT-PCR confirmed the microarray data except for ZFPM2 and IL1RL. As BMI increased, expression of FOXM1 significantly decreased (r = -.60, P = .048). Adiposity is associated with changes in the expression of genes important in cellular growth, cell cycle progression, and inflammation. The upregulation of the metabolic regulator gene PPM1L suggests that adiposity induces an abnormal metabolic follicular environment, potentially altering folliculogenesis and oocyte quality. © The Author(s) 2015.

  1. Adiposity Alters Genes Important in Inflammation and Cell Cycle Division in Human Cumulus Granulosa Cell

    PubMed Central

    Merhi, Zaher; Polotsky, Alex J.; Bradford, Andrew P.; Buyuk, Erkan; Chosich, Justin; Phang, Tzu; Jindal, Sangita; Santoro, Nanette

    2015-01-01

    Objective: To determine whether obesity alters genes important in cellular growth and inflammation in human cumulus granulosa cells (GCs). Methods: Eight reproductive-aged women who underwent controlled ovarian hyperstimulation followed by oocyte retrieval for in vitro fertilization were enrolled. Cumulus GC RNA was extracted and processed for microarray analysis on Affymetrix Human Genome U133 Plus 2.0 chips. Gene expression data were validated on GCs from additional biologically similar samples using quantitative real-time polymerase chain reaction (RT-PCR). Comparison in gene expression was made between women with body mass index (BMI) <25 kg/m2 (group 1; n = 4) and those with BMI ≥25 kg/m2 (group 2; n = 4). Results: Groups 1 and 2 had significantly different BMI (21.4 ± 1.4 vs 30.4 ± 2.7 kg/m2, respectively; P = .02) but did not differ in age (30.5 ± 1.7 vs 32.7 ± 0.3 years, respectively; P = .3). Comparative analysis of gene expression profiles by supervised clustering between group 1 versus group 2 resulted in the selection of 7 differentially expressed genes: fibroblast growth factor 12 (FGF-12), protein phosphatase 1-like (PPM1L), zinc finger protein multitype 2 (ZFPM2), forkhead box M1 (FOXM1), cell division cycle 20 (CDC20), interleukin 1 receptor-like 1 (IL1RL1), and growth arrest-specific protein 7 (GAS7). FOXM1, CDC20, and GAS7 were downregulated while FGF-12 and PPM1L were upregulated in group 2 when compared to group 1. Validation with RT-PCR confirmed the microarray data except for ZFPM2 and IL1RL. As BMI increased, expression of FOXM1 significantly decreased (r = −.60, P = .048). Conclusions: Adiposity is associated with changes in the expression of genes important in cellular growth, cell cycle progression, and inflammation. The upregulation of the metabolic regulator gene PPM1L suggests that adiposity induces an abnormal metabolic follicular environment, potentially altering folliculogenesis and oocyte quality. PMID:25676576

  2. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Hajime

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kgmore » for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO{sup +} oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO{sup +} oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ affected synaptic function and cell cycling in the hippocampal dentate gyrus. • CPZ suppressed KLOTHO-mediated oligodendrocyte maturation in the corpus callosum. • CPZ increased metallothionein-mediated protective mechanism against myelin damage.« less

  3. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11

    PubMed Central

    Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark

    2014-01-01

    Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486

  4. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius)

    USDA-ARS?s Scientific Manuscript database

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective fo...

  5. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  6. Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells

    PubMed Central

    Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir

    2017-01-01

    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer. PMID:28103302

  7. Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells.

    PubMed

    Malami, Ibrahim; Abdul, Ahmad Bustamam; Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir

    2017-01-01

    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer.

  8. In vivo studies of sickle red blood cells.

    PubMed

    Kaul, Dhananjay K; Fabry, Mary E

    2004-03-01

    The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.

  9. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    PubMed

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  10. Individual and Partner Risk Factors Associated with Abnormal Cervical Cytology among Women in HIV-discordant Relationships

    PubMed Central

    Soh, Jason; Rositch, Anne F.; Koutsky, Laura; Guthrie, Brandon L.; Choi, Robert Y.; Bosire, Rose K.; Gatuguta, Ann; Smith, Jennifer S.; Kiarie, James; Lohman-Payne, Barbara; Farquhar, Carey

    2014-01-01

    Individual and sexual partner characteristics may increase risk of abnormal cervical cytology among women in HIV-discordant relationships. Papanicolaou smears were obtained in a prospective cohort of Kenyan HIV-discordant couples. Of 441 women, 283 (64%) were HIV-infected and 158 (36%) were HIV-uninfected with HIV-infected partners. Overall, 79 (18%) had low-grade and 25 (6%) high-grade cervical abnormalities. Lack of male circumcision, male HSV-2 seropositivity and lower couple socioeconomic status were associated with cervical abnormalities (p<0.05). HIV-uninfected women with HIV-infected male sex partners (CD4>350 cells/µL) had the lowest prevalence of high-grade cervical lesions. HIV-infected women (CD4>350 cells/µL) and HIV-uninfected women with HIV-infected partners (CD4≤350 cells/µL) were at similar intermediate risk (P>0.05), and HIV-infected women (CD4≤350 cells/µL) had significantly higher risk of high-grade cervical abnormalities (p=0.05). Women in HIV-discordant relationships have high rates of cervical lesions and this may be influenced by couple-level factors, including HIV status and CD4 count of the infected partner. PMID:24047885

  11. Abnormal kinetic behavior of cytochrome oxidase in a case of Leigh disease.

    PubMed Central

    Glerum, M; Robinson, B H; Spratt, C; Wilson, J; Patrick, D

    1987-01-01

    Cultured skin fibroblasts from a child with fatal lacticacidemia displayed an abnormally high lactate:pyruvate ratio of 77:1, compared with control values of 22:1-27:1. When protease-treated isolated mitochondria were used, activity of the respiratory-chain enzymes was found to be approximately 60% of normal, and adenosine triphosphate synthesis was found to be normal with all substrates tested. In mitochondria prepared by means of digitonin treatment, adenosine triphosphate synthesis was depressed with all substrates tested, suggesting a defect in the operation of the cytochrome oxidase complex. In disrupted whole cells from the patient, cytochrome oxidase activity was 56% of the activity in the control cell line with the lowest activity. In the presence of a twofold excess of oxidized cytochrome c, patient cells showed 31% of the activity in controls. Cytochrome oxidase activity in both sonicated whole-cell preparations and in sonicated mitochondria displayed abnormal kinetics with regard to the substrate-reduced cytochrome c, which was particularly evident in the presence of excess oxidized cytochrome c. We believe that kinetically abnormal cytochrome oxidase complex is responsible for the biochemical and clinical abnormalities present in this patient. PMID:2821802

  12. Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy

    PubMed Central

    Kho, Changwon; Lee, Ahyoung; Hajjar, Roger J.

    2013-01-01

    Cardiac myocyte function is dependent on the synchronized movements of Ca2+ into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation–contraction coupling. Ca2+ cycling is mediated by a number of critical Ca2+-handling proteins and transporters, such as L-type Ca2+ channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca2+ into the cytosol through LTCCs activates the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca2+ sequesteration and myocyte relaxation. Excitation–contraction coupling is regulated by phosphorylation of Ca2+-handling proteins. Abnormalities in sarcoplasmic reticulum Ca2+ cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca2+ cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca2+ homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure. PMID:23090087

  13. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

    PubMed Central

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-01-01

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749

  14. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  15. A map of protein dynamics during cell-cycle progression and cell-cycle exit

    PubMed Central

    Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan

    2017-01-01

    The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491

  16. Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.

    PubMed

    Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua

    2017-05-01

    Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.

  17. Pap and HPV Testing

    Cancer.gov

    Pap tests detect abnormal cervical cells, including precancerous cervical lesions, as well as early cervical cancers. HPV tests detect HPV infections that can cause cervical cell abnormalities. Learn how Pap and HPV tests are done, how often testing should be done, and how are HPV test results are reported.

  18. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  19. Genome stability of programmed stem cell products.

    PubMed

    Martin, Ulrich

    2017-10-01

    Inherited and acquired genomic abnormalities are known to cause genetic diseases and contribute to cancer formation. Recent studies demonstrated a substantial mutational load in mouse and human embryonic and induced pluripotent stem cells (ESCs and iPSCs). Single nucleotide variants, copy number variations, and larger chromosomal abnormalities may influence the differentiation capacity of pluripotent stem cells and the functionality of their derivatives in disease modeling and drug screening, and are considered a serious risk for cellular therapies based on ESC or iPSC derivatives. This review discusses the types and origins of different genetic abnormalities in pluripotent stem cells, methods for their detection, and the mechanisms of development and enrichment during reprogramming and culture expansion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    NASA Astrophysics Data System (ADS)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  1. Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle

    PubMed Central

    Li, Chunhe; Wang, Jin

    2014-01-01

    Cell cycles, essential for biological function, have been investigated extensively. However, enabling a global understanding and defining a physical quantification of the stability and function of the cell cycle remains challenging. Based upon a mammalian cell cycle gene network, we uncovered the underlying Mexican hat landscape of the cell cycle. We found the emergence of three local basins of attraction and two major potential barriers along the cell cycle trajectory. The three local basins of attraction characterize the G1, S/G2, and M phases. The barriers characterize the G1 and S/G2 checkpoints, respectively, of the cell cycle, thus providing an explanation of the checkpoint mechanism for the cell cycle from the physical perspective. We found that the progression of a cell cycle is determined by two driving forces: curl flux for acceleration and potential barriers for deceleration along the cycle path. Therefore, the cell cycle can be promoted (suppressed), either by enhancing (suppressing) the flux (representing the energy input) or by lowering (increasing) the barrier along the cell cycle path. We found that both the entropy production rate and energy per cell cycle increase as the growth factor increases. This reflects that cell growth and division are driven by energy or nutrition supply. More energy input increases flux and decreases barrier along the cell cycle path, leading to faster oscillations. We also identified certain key genes and regulations for stability and progression of the cell cycle. Some of these findings were evidenced from experiments whereas others lead to predictions and potential anticancer strategies. PMID:25228772

  2. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    PubMed

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base. PMID:25014884

  4. Paternal and maternal factors in preimplantation embryogenesis: interaction with the biochemical environment.

    PubMed

    Ménézo, Yves J R

    2006-05-01

    Paternal effect on embryonic development occurs as early as fertilization. Incorrect formation of the spermatozoon due to centrosome defects and abnormal concentrations of any components involved in the activation process lead to failure immediately or in the subsequent cell cycles. Sperm chromosomal abnormalities result in early embryo developmental arrests. Generally poor spermatozoa lead to poor blastocyst formation. Sperm DNA fragmentation may impair even late post-implantation development. The DNA repair capacity of the oocytes is of major importance. Early preimplantation development, i.e. until maternal to zygotic transition, is maternally driven. Maternal mRNAs and proteins are of major importance, as there is an unavoidable turnover of these reserves. Polyadenylation of these mRNAs is precisely controlled, in order to avoid too early or too late transcription and translation of the housekeeping genes. An important set of maternal regulations, such as DNA stability, transcriptional regulation and protection against oxidative stress, are impaired by age. The embryo biochemical endogenous pool is very important and may depend upon the environment, i.e. the culture medium. Paternal, maternal and environmental factors are unavoidable parameters; they become evident when age impairs oocyte quality.

  5. Changes in the tear film and ocular surface from dry eye syndrome.

    PubMed

    Johnson, Michael E; Murphy, Paul J

    2004-07-01

    Dry eye syndrome (DES) refers to a spectrum of ocular surface diseases with diverse and frequently multiple aetiologies. The common feature of the various manifestations of DES is an abnormal tear film. Tear film abnormalities associated with DES are tear deficiency, owing to insufficient supply or excessive loss, and anomalous tear composition. These categorizations are artificial, as in reality both often coexist. DES disrupts the homeostasis of the tear film with its adjacent structures, and adversely affects its ability to perform essential functions such as supporting the ocular surface epithelium and preventing microbial invasion. In addition, whatever the initial trigger, moderate and severe DES is characterized by ocular surface inflammation, which in turn becomes the cause and consequence of cell damage, creating a self-perpetuating cycle of deterioration. Progress has been made in our understanding of the aetiology and pathogenesis of DES, and these advances have encouraged a proliferation of therapeutic options. This article aims to amalgamate prevailing ideas of DES development, and to assist in that, relevant aspects of the structure, function, and production of the tear film are reviewed. Additionally, a synopsis of therapeutic strategies for DES is presented, detailing treatments currently available, and those in development.

  6. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    PubMed

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-11-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.

  7. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features

    PubMed Central

    Schwab, Claire J.; Chilton, Lucy; Morrison, Heather; Jones, Lisa; Al-Shehhi, Halima; Erhorn, Amy; Russell, Lisa J.; Moorman, Anthony V.; Harrison, Christine J.

    2013-01-01

    In childhood B-cell precursor acute lymphoblastic leukemia, cytogenetics is important in diagnosis and as an indicator of response to therapy, thus playing a key role in risk stratification of patients for treatment. Little is known of the relationship between different cytogenetic subtypes in B-cell precursor acute lymphoblastic leukemia and the recently reported copy number abnormalities affecting significant leukemia associated genes. In a consecutive series of 1427 childhood B-cell precursor acute lymphoblastic leukemia patients, we have determined the incidence and type of copy number abnormalities using multiplex ligation-dependent probe amplification. We have shown strong links between certain deletions and cytogenetic subtypes, including the novel association between RB1 deletions and intrachromosomal amplification of chromosome 21. In this study, we characterized the different copy number abnormalities and show heterogeneity of PAX5 and IKZF1 deletions and the recurrent nature of RB1 deletions. Whole gene losses are often indicative of larger deletions, visible by conventional cytogenetics. An increased number of copy number abnormalities is associated with NCI high risk, specifically deletions of IKZF1 and CDKN2A/B, which occur more frequently among these patients. IKZF1 deletions and rearrangements of CRLF2 among patients with undefined karyotypes may point to the poor risk BCR-ABL1-like group. In conclusion, this study has demonstrated in a large representative cohort of children with B-cell precursor acute lymphoblastic leukemia that the pattern of copy number abnormalities is highly variable according to the primary genetic abnormality. PMID:23508010

  8. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906

  9. Comparative cytogenetic and cytologic study in malignant lymphomas.

    PubMed

    Răileanu-Motoiu, I; Gociu, M; Leahu, S; Berceanu, S

    1976-01-01

    The possibility of a cytogenetic-cytologic correlation with implications in the diagnosis, evolutivity and prognosis of malignant lymphomas was studied. Cytogenetic investigations were carried out comparatively in the lymph node and spleen lymphoid cells from 25 patients with malignant lymphomas and in normal subjects or patients with malignant tumors. The dominant malignant cellular type was found to correspond genotypically to the abnormal clone. In lymphomas with more differentiated cells the chormosomal abnormalities were limited to a single chromosomal group, while in those with less differentiated cells there were many clonal chromozomal abnormalities. The pathogenic significance of an extra-chromosome in the C-group (observed in most of the cases) is discussed.

  10. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  11. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  12. The global regulatory architecture of transcription during the Caulobacter cell cycle.

    PubMed

    Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.

  13. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    PubMed

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.

  14. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  15. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation

    PubMed Central

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-01-01

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase. PMID:26293378

  16. Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling.

    PubMed

    Nizzari, Mario; Thellung, Stefano; Corsaro, Alessandro; Villa, Valentina; Pagano, Aldo; Porcile, Carola; Russo, Claudio; Florio, Tullio

    2012-01-01

    Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.

  17. Palbociclib: A new hope in the treatment of breast cancer.

    PubMed

    Palanisamy, R Priyadharsini

    2016-01-01

    Breast cancer being one of the common cancers has high morbidity and mortality. Despite the conventional treatment, the burden of the disease increases year after year. There is a need for newer drugs that target the different mechanisms in the pathogenesis. The interaction of cyclins with cyclin dependent kinases (CDKs) plays a major role in the abnormal cell cycle in cancer and it is considered to be an important target. Palbociclib is a CDK inhibitor currently approved for the treatment of breast cancer. The preclinical studies with breast cancer lines were sensitive to palbociclib and the clinical trials phase I, phase II (PALOMA 1), and phase III (PALOMA 2, 3, PENTELOPE, PEARL) showed that the drug was efficacious when combined other conventional drugs for breast cancer. Palbociclib was also been tested in various other germ cell tumors, melanoma, multiple myeloma, glioblastoma multiforme etc., The major adverse effect of the drug includes hematological toxicity mainly neutropenia, gastrointestinal adverse effects.

  18. Testicular histological examination of spermatogenetic activity in captive gorillas (Gorilla gorilla).

    PubMed

    Enomoto, Tomoo; Matsubayashi, Kiyoaki; Nakano, Mayumi; Fujii-Hanamoto, Hideko; Kusunoki, Hiroshi

    2004-08-01

    To clarify the reproductive state of male gorillas, we performed histological examinations on the testicles of 10 male gorillas (Gorilla gorilla). The testicular samples were obtained by autopsy, and ordinal histological preparations were made for light microscopy. The poor spermatogenesis of this species was characterized by the following findings: First, spermatogenesis was evident in only four samples. Meiosis progressed in two samples, but they lacked spermatogenesis. In the remaining four specimens, seminiferous tubules hyalinized without any sign of spermatogenesis. Second, seminiferous epithelia were thin even in the males in which spermatogenesis was observed. Third, degenerated seminiferous tubules were found in all specimens. Fourth, abnormally large syncytial cells were found in the tubules. Six stages in the epithelial cycle of the seminiferous tubules were identified. Testosterone staining made it clear that there were many Leydig cells with spherical or fusiform nuclei in an abundance of interstitial tissue. The relevance of the testicular architecture of gorillas to the mating system is discussed. Copyright 2004 Wiley-Liss, Inc.

  19. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression.

    PubMed Central

    Nozaki, M.; Tada, M.; Kobayashi, H.; Zhang, C. L.; Sawamura, Y.; Abe, H.; Ishii, N.; Van Meir, E. G.

    1999-01-01

    Loss of function of the p53 tumor suppressor gene due to mutation occurs early in astrocytoma tumorigenesis in about 30-40% of cases. This is believed to confer a growth advantage to the cells, allowing them to clonally expand due to loss of the p53-controlled G1 checkpoint and apoptosis. Genetic instability due to the impaired ability of p53 to mediate DNA damage repair further facilitates the acquisition of new genetic abnormalities, leading to malignant progression of an astrocytoma into anaplastic astrocytoma. This is reflected by a high rate of p53 mutation (60-70%) in anaplastic astrocytomas. The cell cycle control gets further compromised in astrocytoma by alterations in one of the G1/S transition control genes, either loss of the p16/CDKN2 or RB genes or amplification of the cyclin D gene. The final progression process leading to glioblastoma multiforme seems to need additional genetic abnormalities in the long arm of chromosome 10; one of which is deletion and/or functional loss of the PTEN/MMAC1 gene. Glioblastomas also occur as primary (de novo) lesions in patients of older age, without p53 gene loss but with amplification of the epidermal growth factor receptor (EGFR) genes. In contrast to the secondary glioblastomas that evolve from astrocytoma cells with p53 mutations in younger patients, primary glioblastomas seem to be resistant to radiation therapy and thus show a poorer prognosis. The evaluation and design of therapeutic modalities aimed at preventing malignant progression of astrocytomas and glioblastomas should now be based on stratifying patients with astrocytic tumors according to their genetic diagnosis. PMID:11550308

  20. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    PubMed

    Jara-Ettinger, Ana Cecilia; López-Tavera, Juan Carlos; Zavala-Cerna, María Guadalupe; Torres-Bugarín, Olivia

    2015-01-01

    An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders. We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls). Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age. Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis) did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor. Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  1. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells

    PubMed Central

    Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael

    2017-01-01

    The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002

  2. Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way.

    PubMed

    Xu, Yin; Zhang, Jin; Tian, Chan; Ren, Ke; Yan, Yu-E; Wang, Ke; Wang, Hui; Chen, Cao; Wang, Jing; Shi, Qi; Dong, Xiao-Ping

    2014-04-01

    The protein of p62/sequestosome 1 (SQSTM1), a key cargo adaptor protein involved in autophagy-lysosome degradation, exhibits inclusion bodies structure in cytoplasm and plays a protective role in some models of neurodegenerative diseases. Some PrP mutants, such as PrP-CYTO and PrP-PG14, also form cytosolic inclusion bodies and trigger neuronal apoptosis either in cultured cells or in transgenic mice. Here, we demonstrated that the cellular p62/SQSTM1 incorporated into the inclusion bodies formed by expressing the abnormal PrP mutants, PrP-CYTO and PrP-PG14, in human embryonic kidney 293 cells. Overexpression of p62/SQSTM1 efficiently relieved the cytosolic aggregations and cell apoptosis induced by the abnormal PrPs. Autophagy-lysosome inhibitors instead of proteasome inhibitor sufficiently blocked the p62/SQSTM1-mediated degradations of abnormal PrPs. Overexpression of p62/SQSTM1 did not alter the levels of light chain 3 (LC3) in the cells expressing various PrPs. However, more complexes of p62/SQSTM1 with LC3 were detected in the cells expressing the misfolded PrPs. These data imply that p62/SQSTM1 plays an important role in the homeostasis of abnormal PrPs via autophagy-lysosome-dependent way.

  3. Reducing false negatives in clinical practice: the role of neural network technology.

    PubMed

    Mango, L J

    1996-10-01

    The fact that some cervical smears result in false-negative findings is an unavoidable and unpredictable consequence of the conventional (manual microscopic) method of screening. Errors in the detection and interpretation of abnormality are cited as leading causes of false-negative cytology findings; these are random errors that are not known to correlate with any patient risk factor, which makes the false-negative findings a "silent" threat that is difficult to prevent. Described by many as a labor-intensive procedure, the microscopic evaluation of a cervical smear involves a detailed search among hundreds of thousands of cells on each smear for a possible few that may indicate abnormality. Investigations into causes of false-negative findings preceding the discovery of high-grade lesions found that many smears had very few diagnostic cells that were often very small in size. These small cells were initially overlooked or misinterpreted and repeatedly missed on rescreening. PAPNET testing is designed to supplement conventional screening by detecting abnormal cells that initially may have been missed by microscopic examination. This interactive system uses neural networks, a type of artificial intelligence well suited for pattern recognition, to automate the arduous search for abnormality. The instrument focuses the review of suspicious cells by a trained cytologist. Clinical studies indicate that PAPNET testing is sensitive to abnormality typically missed by conventional screening and that its use as a supplemental test improves the accuracy of screening.

  4. Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos.

    PubMed

    Yao, Tatsuma; Suzuki, Rie; Furuta, Natsuki; Suzuki, Yuka; Kabe, Kyoko; Tokoro, Mikiko; Sugawara, Atsushi; Yajima, Akira; Nagasawa, Tomohiro; Matoba, Satoko; Yamagata, Kazuo; Sugimura, Satoshi

    2018-05-10

    Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.

  5. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cell - Update II

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV) nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles, compared to 3500 cycles for cells containing 31 percent KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2X normal rate). The depth-of-discharge was 80 percent. Six 48-Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16,000 cycles during the continuing test.

  6. Assessment of DNA replication in central nervous system by Laser Scanning Cytometry

    NASA Astrophysics Data System (ADS)

    Lenz, Dominik; Mosch, Birgit; Bocsi, Jozsef; Arendt, Thomas; Tárnok, Attila

    2004-07-01

    μIn neurons of patients with Alzheimers's disease (AD) signs of cell cycle re-entry as well as polyploidy have been reported1, 2, indicating that the entire or a part of the genome of the neurons is duplicated before its death but mitosis is not initiated so that the cellular DNA content remains tetraploid. It was concluded, that this imbalance is the direct cause of the neuronal loss in AD3. Manual counting of polyploidal cells is possible but time consuming and possibly statistically insufficient. The aim of this study was to develop an automated method that detects the neuronal DNA content abnormalities with Laser Scanning Cytometry (LSC).Frozen sections of formalin-fixed brain tissue of AD patients and control subjects were labelled with anti-cyclin B and anti-NeuN antibodies. Immunolabelling was performed using Cy5- and Cy2-conjugated secondary antibodies and biotin streptavidin or tyramid signal amplification. In the end sections of 20m thickness were incubated with propidium iodide (PI) (50μg/ml) and covered on slides. For analysis by the LSC PI was used as trigger. Cells identified as neurons by NeuN expression were analyzed for cyclin B expression. Per specimen data of at least 10,000 neurons were acquired. In the frozen brain sections an automated quantification of the amount of nuclear DNA is possible with LSC. The DNA ploidy as well as the cell cycle distribution can be analyzed. A high number of neurons can be scanned and the duration of measuring is shorter than a manual examination. The amount of DNA is sufficiently represented by the PI fluorescence to be able to distinguish between eu- and polyploid neurons.

  7. Paediatric germ cell tumours and congenital abnormalities: a Children's Oncology Group study

    PubMed Central

    Johnson, K J; Ross, J A; Poynter, J N; Linabery, A M; Robison, L L; Shu, X O

    2009-01-01

    Methods: Maternally reported congenital abnormalities (CAs) were examined in a case–control study of 278 cases of paediatric germ cell tumours (GCTs) and 423 controls. Results and conclusions Germ cell tumours were significantly associated with cryptorchidism in males (OR=10.8, 95% CI: 2.1–55.1), but not with any other specific CA in either sex. PMID:19603020

  8. The cell cycle.

    PubMed

    Singh, N; Lim, R B; Sawyer, M A

    2000-07-01

    The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.

  9. The inSIGHT study: costs and effects of routine hysteroscopy prior to a first IVF treatment cycle. A randomised controlled trial.

    PubMed

    Smit, Janine G; Kasius, Jenneke C; Eijkemans, Marinus J C; Koks, Carolien A M; Van Golde, Ron; Oosterhuis, Jurjen G E; Nap, Annemiek W; Scheffer, Gabrielle J; Manger, Petra A P; Hoek, Annemiek; Kaplan, Mesrure; Schoot, Dick B C; van Heusden, Arne M; Kuchenbecker, Walter K H; Perquin, Denise A M; Fleischer, Kathrin; Kaaijk, Eugenie M; Sluijmer, Alexander; Friederich, Jaap; Laven, Joop S E; van Hooff, Marcel; Louwe, Leonie A; Kwee, Janet; Boomgaard, Jantien J; de Koning, Corry H; Janssen, Ineke C A H; Mol, Femke; Mol, Ben W J; Torrance, Helen L; Broekmans, Frank J M

    2012-08-08

    In in vitro fertilization (IVF) and intracytoplasmatic sperm injection (ICSI) treatment a large drop is present between embryo transfer and occurrence of pregnancy. The implantation rate per embryo transferred is only 30%. Studies have shown that minor intrauterine abnormalities can be found in 11-45% of infertile women with a normal transvaginal sonography or hysterosalpingography. Two randomised controlled trials have indicated that detection and treatment of these abnormalities by office hysteroscopy after two failed IVF cycles leads to a 9-13% increase in pregnancy rate. Therefore, screening of all infertile women for intracavitary pathology prior to the start of IVF/ICSI is increasingly advocated. In absence of a scientific basis for such a policy, this study will assess the effects and costs of screening for and treatment of unsuspected intrauterine abnormalities by routine office hysteroscopy, with or without saline infusion sonography (SIS), prior to a first IVF/ICSI cycle. Multicenter randomised controlled trial in asymptomatic subfertile women, indicated for a first IVF/ICSI treatment cycle, with normal findings at transvaginal sonography. Women with recurrent miscarriages, prior hysteroscopy treatment and intermenstrual blood loss will not be included. Participants will be randomised for a routine fertility work-up with additional (SIS and) hysteroscopy with on-the-spot-treatment of predefined intrauterine abnormalities versus the regular fertility work-up without additional diagnostic tests. The primary study outcome is the cumulative ongoing pregnancy rate resulting in live birth achieved within 18 months of IVF/ICSI treatment after randomisation. Secondary study outcome parameters are the cumulative implantation rate; cumulative miscarriage rate; patient preference and patient tolerance of a SIS and hysteroscopy procedure. All data will be analysed according to the intention-to-treat principle, using univariate and multivariate logistic regression and cox regression. Cost-effectiveness analysis will be performed to evaluate the costs of the additional tests as routine procedure. In total 700 patients will be included in this study. The results of this study will help to clarify the significance of hysteroscopy prior to IVF treatment. NCT01242852.

  10. The inSIGHT study: costs and effects of routine hysteroscopy prior to a first IVF treatment cycle. A randomised controlled trial

    PubMed Central

    2012-01-01

    Background In in vitro fertilization (IVF) and intracytoplasmatic sperm injection (ICSI) treatment a large drop is present between embryo transfer and occurrence of pregnancy. The implantation rate per embryo transferred is only 30%. Studies have shown that minor intrauterine abnormalities can be found in 11–45% of infertile women with a normal transvaginal sonography or hysterosalpingography. Two randomised controlled trials have indicated that detection and treatment of these abnormalities by office hysteroscopy after two failed IVF cycles leads to a 9–13% increase in pregnancy rate. Therefore, screening of all infertile women for intracavitary pathology prior to the start of IVF/ICSI is increasingly advocated. In absence of a scientific basis for such a policy, this study will assess the effects and costs of screening for and treatment of unsuspected intrauterine abnormalities by routine office hysteroscopy, with or without saline infusion sonography (SIS), prior to a first IVF/ICSI cycle. Methods/design Multicenter randomised controlled trial in asymptomatic subfertile women, indicated for a first IVF/ICSI treatment cycle, with normal findings at transvaginal sonography. Women with recurrent miscarriages, prior hysteroscopy treatment and intermenstrual blood loss will not be included. Participants will be randomised for a routine fertility work-up with additional (SIS and) hysteroscopy with on-the-spot-treatment of predefined intrauterine abnormalities versus the regular fertility work-up without additional diagnostic tests. The primary study outcome is the cumulative ongoing pregnancy rate resulting in live birth achieved within 18 months of IVF/ICSI treatment after randomisation. Secondary study outcome parameters are the cumulative implantation rate; cumulative miscarriage rate; patient preference and patient tolerance of a SIS and hysteroscopy procedure. All data will be analysed according to the intention-to-treat principle, using univariate and multivariate logistic regression and cox regression. Cost-effectiveness analysis will be performed to evaluate the costs of the additional tests as routine procedure. In total 700 patients will be included in this study. Discussion The results of this study will help to clarify the significance of hysteroscopy prior to IVF treatment. Trial registration NCT01242852 PMID:22873367

  11. Environmentally toxicant exposures induced intragenerational transmission of liver abnormalities in mice

    PubMed Central

    Al-Griw, Mohamed A.; Treesh, Soad A.; Alghazeer, Rabia O.; Regeai, Sassia O.

    2017-01-01

    Environmental toxicants such as chemicals, heavy metals, and pesticides have been shown to promote transgenerational inheritance of abnormal phenotypes and/or diseases to multiple subsequent generations following parental and/or ancestral exposures. This study was designed to examine the potential transgenerational action of the environmental toxicant trichloroethane (TCE) on transmission of liver abnormality, and to elucidate the molecular etiology of hepatocyte cell damage. A total of thirty two healthy immature female albino mice were randomly divided into three equal groups as follows: a sham group, which did not receive any treatment; a vehicle group, which received corn oil alone, and TCE treated group (3 weeks, 100 μg/kg i.p., every 4th day). The F0 and F1 generation control and TCE populations were sacrificed at the age of four months, and various abnormalities histpathologically investigated. Cell death and oxidative stress indices were also measured. The present study provides experimental evidence for the inheritance of environmentally induced liver abnormalities in mice. The results of this study show that exposure to the TCE promoted adult onset liver abnormalities in F0 female mice as well as unexposed F1 generation offspring. It is the first study to report a transgenerational liver abnormalities in the F1 generation mice through maternal line prior to gestation. This finding was based on careful evaluation of liver histopathological abnormalities, apoptosis of hepatocytes, and measurements of oxidative stress biomarkers (lipid peroxidation, protein carbonylation, and nitric oxide) in control and TCE populations. There was an increase in liver histopathological abnormalities, cell death, and oxidative lipid damage in F0 and F1 hepatic tissues of TCE treated group. In conclusion, this study showed that the biological and health impacts of environmental toxicant TCE do not end in maternal adults, but are passed on to offspring generations. Hence, linking observed liver abnormality in the offspring to environmental exposure of their parental line. This study also illustrated that oxidative stress and apoptosis appear to be a molecular component of the hepatocyte cell injury. PMID:28884077

  12. Molecular cytogenetic analysis consistently identifies translocations involving chromosomes 1, 2 and 15 in five embryonal rhabdomyosarcoma cell lines and a PAX-FOXO1A fusion gene negative alveolar rhabdomyosarcoma cell line.

    PubMed

    Roberts, I; Gordon, A; Wang, R; Pritchard-Jones, K; Shipley, J; Coleman, N

    2001-01-01

    Rhabdomyosarcoma in children is a "small round blue cell tumour" that displays skeletal muscle differentiation. Two main histological variants are recognised, alveolar (ARMS) and embryonal (ERMS) rhabdomyosarcoma. Whereas consistent chromosome translocations characteristic of ARMS have been reported, no such cytogenetic abnormality has yet been described in ERMS. We have used multiple colour chromosome painting to obtain composite karyotypes for five ERMS cell lines and one PAX-FOXO1A fusion gene negative ARMS. The cell lines were assessed by spectral karyotyping (SKY), tailored multi-fluorophore fluorescence in situ hybridisation (M-FISH) using series of seven colour paint sets generated to examine specific abnormalities, and comparative genomic hybridisation (CGH). This approach enabled us to obtain karyotypes of the cell lines in greater detail than previously possible. Several recurring cytogenetic abnormalities were demonstrated, including translocations involving chromosomes 1 and 15 and chromosomes 2 and 15, in 4/6 and 2/6 cell lines respectively. All six cell lines demonstrated abnormalities of chromosome 15. Translocations between chromosomes 1 and 15 have previously been recorded in two primary cases of ERMS by conventional cytogenetics. Analysis of the translocation breakpoints may suggest mechanisms of ERMS tumourigenesis and may enable the development of novel approaches to the clinical management of this tumour. Copyright 2002 S. Karger AG, Basel

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishigami, Satoshi; Mizutani, Eiji; Ohta, Hiroshi

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently, we elucidated by using round spermatids that, after nuclear transfer, treatment of zygotes with trichostatin A (TSA), an inhibitor of histone deacetylase, can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami, N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama. E. Mizutani, T. Wakayama, Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids, Dev. Biol. (2005) in press]. Here,more » we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells, spleen cells, neural stem cells, and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further, we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus, our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques.« less

  14. Mechanisms of Mitochondrial Defects in Gulf War Syndrome

    DTIC Science & Technology

    2012-08-01

    oxidized; POR: porin; TCA: Tricarboxylic acid cycle ( Kreb cycle ). Page 2 Body: YEAR 1 of research (10/13/2009-7/14/2010) (9 months): Human... mitochondria , fatigue, myalgias 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...abnormalities in genes that are related to mitochondrial function. Hence, investigation of mitochondrial dysfunction in GWS is a priority. Mitochondria

  15. Pathological implications of cell cycle re-entry in Alzheimer disease.

    PubMed

    Bonda, David J; Lee, Hyun-pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon

    2010-06-29

    The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-beta plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD. Importantly, recent studies indicate that cell cycle re-entry is not a consequence, but rather a cause, of neurodegeneration, suggesting that targeting of cell cycle re-entry may provide an opportunity for therapeutic intervention. Moreover, multiple inducers of cell cycle re-entry and their interactions in AD have been proposed. Here, we review the most recent advances in understanding the pathological implications of cell cycle re-entry in AD.

  16. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts.

    PubMed

    Roninson, Igor B

    2002-05-08

    p21(Waf1/Cip1/Sdi1) is best known as a broad-specificity inhibitor of cyclin/cyclin-dependent kinase complexes, but p21 also interacts with many other regulators of transcription or signal transduction. p21 induction, which is mediated by p53 and by p53-independent mechanisms, is essential for the onset of cell cycle arrest in damage response and cell senescence. The effects of p21 knockout in mice and its expression patterns in human cancer are consistent with a role for p21 as both a tumour suppressor and an oncogene. Several functions of p21 are likely to promote carcinogenesis and tumour progression. These include endoreduplication and abnormal mitosis that develop in tumour cells after release from p21-induced growth arrest, the ability of p21 to inhibit apoptosis through several different mechanisms, and its ability to stimulate transcription of secreted factors with mitogenic and anti-apoptotic activities. The latter effects of p21 show close resemblance to paracrine activities of senescent cells and to tumour-promoting functions of stromal fibroblasts. Therapeutic strategies targeting the oncogenic consequences of p21 expression may provide a new approach to chemoprevention and treatment of cancer.

  17. Identification of a novel intergenic miRNA located between the human DDC and COBL genes with a potential function in cell cycle arrest.

    PubMed

    Hoballa, Mohamad Hussein; Soltani, Bahram M; Mowla, Seyed Javad; Sheikhpour, Mojgan; Kay, Maryam

    2018-07-01

    Frequent abnormalities in 7p12 locus in different tumors like lung cancer candidate this region for novel regulatory elements. MiRNAs as novel regulatory elements encoded within the human genome are potentially oncomiRs or miR suppressors. Here, we have used bioinformatics tools to search for the novel miRNAs embedded within human chromosome 7p12. A bona fide stem loop (named mirZa precursor) had the features of producing a real miRNA (named miRZa) which was detected through RT-qPCR following the overexpression of its precursor. Then, endogenous miRZa was detected in human cell lines and tissues and sequenced. Consistent to the bioinformatics prediction, RT-qPCR as well as dual luciferase assay indicated that SMAD3 and IGF1R genes were targeted by miRZa. MiRZa-3p and miRZa-5p were downregulated in lung tumor tissue samples detected by RT-qPCR, and mirZa precursor overexpression in SW480 cells resulted in increased sub-G1 cell population. Overall, here we introduced a novel miRNA which is capable of targeting SMAD3 and IGF1R regulatory genes and increases the cell population in sub-G1 stage.

  18. [History of chronic myeloid leukemia: a paradigm in the treatment of cancer].

    PubMed

    Gonon-Demoulian, R; Goldman, J M; Nicolini, F E

    2014-01-01

    During two centuries, advances in medicine and medical research have helped to understand the pathophysiology of chronic myelogenous leukemia (CML). This hematologic malignancy is a unique model of oncogenesis where a single molecular hit, causing cell proliferation and survival, was identified. The chromosomal abnormality first highlighted by P. Nowell and D. Hungerford in 1960, and characterized as the reciprocal translocation t(9;22)(q34;q11), the Philadelphia chromosome, discovered in leukemic cells, by J. Rowley in 1973. At the end of the 20th century, the contribution of molecular biology techniques was crucial by the discovery of the BCR-ABL1 hybrid oncogene derived from the t(9;22), responsible for the translation of an aberrant protein tyrosine kinase. This BCR-ABL1 kinase deregulates signaling pathways that control normal cell cycle and survival in primitive hematopoietic cells and is thus responsible for malignant cell accumulation observed in CML. It was then only necessary to develop a targeted treatment adapted to this molecular hit. Recently, tyrosine kinase inhibitors, by their specific inhibitory activity of BCR-ABL, have revolutionized the treatment of CML, allowing rates of haematological, cytogenetic and molecular responses never seen to date, and has significantly improved the overall survival and the quality of life of patients.

  19. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  20. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  1. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective.

    PubMed

    Wilhelm, Clare J; Guizzetti, Marina

    2015-01-01

    Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.

  2. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  3. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting

    PubMed Central

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042

  4. The Novel Fission Yeast Protein Pal1p Interacts with Hip1-related Sla2p/End4p and Is Involved in Cellular Morphogenesis

    PubMed Central

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N.; Balasubramanian, Mohan K.

    2005-01-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Δ mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis. PMID:15975911

  5. The novel fission yeast protein Pal1p interacts with Hip1-related Sla2p/End4p and is involved in cellular morphogenesis.

    PubMed

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N; Balasubramanian, Mohan K

    2005-09-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Delta mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis.

  6. c-Abl tyrosine kinase regulates cardiac growth and development.

    PubMed

    Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P

    2010-01-19

    The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development.

  7. c-Abl tyrosine kinase regulates cardiac growth and development

    PubMed Central

    Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P.

    2009-01-01

    The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development. PMID:20080568

  8. Targeting Sphingosine Kinase Isoforms Effectively Reduces Growth and Survival of Neoplastic Mast Cells With D816V-KIT

    PubMed Central

    Bandara, Geethani; Muñoz-Cano, Rosa; Tobío, Araceli; Yin, Yuzhi; Komarow, Hirsh D.; Desai, Avanti; Metcalfe, Dean D.; Olivera, Ana

    2018-01-01

    Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation. PMID:29643855

  9. Targeting Sphingosine Kinase Isoforms Effectively Reduces Growth and Survival of Neoplastic Mast Cells With D816V-KIT.

    PubMed

    Bandara, Geethani; Muñoz-Cano, Rosa; Tobío, Araceli; Yin, Yuzhi; Komarow, Hirsh D; Desai, Avanti; Metcalfe, Dean D; Olivera, Ana

    2018-01-01

    Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation.

  10. Improved detection rate of cytogenetic abnormalities in chronic lymphocytic leukemia and other mature B-cell neoplasms with use of CpG-oligonucleotide DSP30 and interleukin 2 stimulation.

    PubMed

    Shi, Min; Cipollini, Matthew J; Crowley-Bish, Patricia A; Higgins, Anne W; Yu, Hongbo; Miron, Patricia M

    2013-05-01

    Detection of cytogenetic abnormalities requires successful culture of the clonal population to obtain metaphase chromosomes for study, and as such, has been hampered by low mitotic indices of mature B cells in culture. Our study presents data on the improved abnormality detection rate with the use of a CpG-oligonucleotide/interleukin 2 (OL/IL-2) culture protocol for mature B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and non-CLL specimens. The increased detection rate of abnormalities, compared with unstimulated culture and traditional pokeweed mitogen culture, was statistically significant for both CLL and non-CLL neoplasms. For CLL specimens, our data also showed that for cytogenetically visible aberrations, OL/IL-2 was as, if not more, sensitive than detection with interphase fluorescence in situ hybridization (iFISH). Use of OL/IL-2 allowed a number of abnormalities to be detected, which were not covered by specific iFISH panels, especially balanced translocations. Therefore, OL/IL-2 stimulation improves diagnostic sensitivity and increases discovery rate of novel prognostic findings.

  11. Raised D-dimer levels in acute sickle cell crisis and their correlation with chest X-ray abnormalities

    PubMed Central

    Dar, Javeed; Mughal, Inam; Hassan, Hilali; Al Mekki, Taj E.; Chapunduka, Zivani; Hassan, Imad S. A.

    2010-01-01

    Objective: Quantitation of D-dimer level during a sickling crisis and its correlation with other clinical abnormalities. Design: Prospective longitudinal study. Setting: Armed Forces Hospital, Southern Region, Kingdom of Saudi Arabia. Patients: Adult patients (12 years and older) admitted acutely with a sickle cell crisis who consent to taking part in the study. Candidates may re-participate if they are readmitted with a further acute painful crisis. Results: 36 patients with homozygous sickle cell disease consented to take part in the study. D-dimer levels were raised in 31 (68.9%) of 45 episodes of painful crisis of whom 13 had an abnormal chest X-ray. Of those with a normal chest X-ray only one patient had a raised D-dimer level: sensitivity of 92.3%, specificity 40.6%, positive predictive value 38.7% and negative predictive value of 92.9% for an abnormal chest X-ray. Conclusion: D-dimer levels are frequently raised during an acute painful crisis. A normal level has a high negative predictive value for an abnormal chest X-ray. PMID:21063468

  12. Raised D-dimer levels in acute sickle cell crisis and their correlation with chest X-ray abnormalities.

    PubMed

    Dar, Javeed; Mughal, Inam; Hassan, Hilali; Al Mekki, Taj E; Chapunduka, Zivani; Hassan, Imad S A

    2010-10-08

    Quantitation of D-dimer level during a sickling crisis and its correlation with other clinical abnormalities. Prospective longitudinal study. Armed Forces Hospital, Southern Region, Kingdom of Saudi Arabia. Adult patients (12 years and older) admitted acutely with a sickle cell crisis who consent to taking part in the study. Candidates may re-participate if they are readmitted with a further acute painful crisis. 36 patients with homozygous sickle cell disease consented to take part in the study. D-dimer levels were raised in 31 (68.9%) of 45 episodes of painful crisis of whom 13 had an abnormal chest X-ray. Of those with a normal chest X-ray only one patient had a raised D-dimer level: sensitivity of 92.3%, specificity 40.6%, positive predictive value 38.7% and negative predictive value of 92.9% for an abnormal chest X-ray. D-dimer levels are frequently raised during an acute painful crisis. A normal level has a high negative predictive value for an abnormal chest X-ray.

  13. Up-Regulation of Long Noncoding RNA SRA Promotes Cell Growth, Inhibits Cell Apoptosis, and Induces Secretion of Estradiol and Progesterone in Ovarian Granular Cells of Mice.

    PubMed

    Li, Yan; Wang, Haixu; Zhou, Dangxia; Shuang, Ting; Zhao, Haibo; Chen, Biliang

    2018-04-20

    BACKGROUND Increasing evidence indicates that long noncoding RNAs (LncRNAs) play a key role in multiple pathological processes. It has been shown that LncRNA steroid receptor RNA activator (SRA) is elevated in peripheral blood of patients with polycystic ovary syndrome (PCOS). The aim of this study was to assess the effect of elevated LncRNA SRA on ovarian granular cells of mice in vitro. MATERIAL AND METHODS We firstly isolated granular cells from mouse ovaries and over-expressed the LncRNA SRA by means of lentiviral transfection in this cell line. Then, we assessed the effects of LncRNA SRA on granular cells through real-time PCR, CCK-8 assay, flow cytometry, Hoechst staining, and Western blot assay. RESULTS We demonstrated that elevated LncRNA SRA stimulated cell growth, changed distribution of cell cycle phases with increase of Cyclin B, Cyclin E, and Cyclin D1, and inhibited cell apoptosis with up-regulation of bcl2 and down-regulation of bax, cleaved-caspase 3, and cleaved-PARP. Moreover, the contents of estradiol (E2) and progesterone (PG) and expressions of their key enzymes (CYP19A1 and CYP11A1) were up-regulated following over-expression of LncRNA SRA. CONCLUSIONS Taken together, our results indicate that abnormal LncRNA SRA may be a risk factor for evoking PCOS.

  14. Alteration of cell cycle progression by Sindbis virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less

  15. Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment.

    PubMed

    Liu, Junhui; Hou, Weiping; Guan, Tao; Tang, Luyao; Zhu, Xufei; Li, Yi; Hou, Shihui; Zhang, Jun; Chen, Hua; Huang, Yunjian

    2018-05-01

    Abnormal angiogenesis plays a pathological role in diabetic nephropathy (DN), contributing to glomerular hypertrophy and microalbuminuria. Slit2/Robo1 signaling participates in angiogenesis in some pathological contexts, but whether it is involved in glomerular abnormal angiogenesis of early DN is unclear. The present study evaluated the effects of Slit2/Robo1 signaling pathway on angiogenesis of human renal glomerular endothelial cells (HRGECs) exposed to a diabetic-like environment or recombinant Slit2-N. To remove the effect of Slit2 derived from mesangial cells, human renal mesangial cells (HRMCs) grown in high glucose (HG) medium (33 mM) were transfected with Slit2 siRNA and then the HG-HRMCs-CM with Slit2 depletion was collected after 48 h. HRGECs were cultured in the HG-HRMCs-CM or recombinant Slit2-N for 0, 6, 12, 24, or 48 h. The mRNA and protein expressions of Slit2/Robo1, PI3K/Akt and HIF-1α/VEGF signaling pathways were detected by quantitative real-time PCR, western blotting, and ELISA, respectively. The CCK-8 cell proliferation assay, flow cytometry and the scratch wound-healing assay were used to assess cell proliferation, cycles, and migration, respectively. Matrigel was used to perform a tubule formation assay. Our results showed that the HG-HRMCs-CM with Slit2 depletion enhanced the activation of Slit2/Robo1, PI3K/Akt, and HIF-1α/VEGF signaling in HRGECs in time-dependent manner (0-24 h post-treatment). In addition, the HG-HRMCs-CM with Slit2 depletion significantly promoted HRGECs proliferation, migration, and tube formation. Pretreatment of HRGECs with Robo1 siRNA suppressed the activation of PI3K/Akt and HIF-1α/VEGF signaling and inhibited angiogenesis, whereas PI3K inhibitor suppressed HIF-1α/VEGF signaling, without influencing Robo1 expression. In the HRGECs treated with Slit2-N, Slit2-N time-dependently enhanced the activation of Robo1/PI3K/Akt/VEGF pathway but not HIF-1α activity, and promoted HRGECs proliferation, migration, and tube formation. The effects induced by Slit2 were also abolished by Robo1 siRNA and PI3K inhibitor. Taken together, our findings indicate that in a diabetic-like environment, in addition to mesangial cells, autocrine activation of Slit2/Robo1 signaling of HRGECs may contribute to angiogenesis of HRGECs through PI3K/Akt/VEGF pathway; therefore, Slit2/Robo1 signaling may be a potent therapeutic target for the treatment of abnormal angiogenesis in early DN and may have broad implications for the treatment of other diseases dependent on pathologic angiogenesis.

  16. CpG Oligonucleotide and Interleukin 2 stimulation enables higher cytogenetic abnormality detection rates than 12-o-tetradecanolyphorbol-13-acetate in Asian patients with B-cell chronic lymphocytic leukemia (B-CLL).

    PubMed

    Liaw, Fiona Pui San; Lau, Lai Ching; Lim, Alvin Soon Tiong; Lim, Tse Hui; Lee, Geok Yee; Tien, Sim Leng

    2014-12-01

    The present study was designed to compare abnormality detection rates using DSP30 + IL2 and 12-O-Tetradecanoylphorbol-13-acetate (TPA) in Asian patients with B-CLL. Hematological specimens from 47 patients (29 newly diagnosed, 18 relapsed) were established as 72 h-DSP30 + IL2 and TPA cultures. Standard methods were employed to identify clonal aberrations by conventional cytogenetics (CC). The B-CLL fluorescence in situ hybridization (FISH) panel comprised ATM, CEP12, D13S25, and TP53 probes. DSP30 + IL2 cultures had a higher chromosomal abnormality detection rate (67 %) compared to TPA (44 %, p < 0.001). The mean number of analyzable metaphases and abnormal metaphases per slide was also higher (p < 0.005, p < 0.001, respectively). Culture success rate, percentage of complex karyotype, and percentage of non-clonal abnormal cell were not significantly different (p > 0.05). Thirteen cases with abnormalities were found exclusively in DSP30 + IL2 cultures compared to one found solely in TPA cultures. DSP30 + IL2 cultures were comparable to the FISH panel in detecting 11q-, +12 and 17p- but not 13q-. It also has a predilection for 11q- bearing leukemic cells compared to TPA. FISH had a higher abnormality detection rate (84.1 %) compared to CC (66.0 %) with borderline significance (p = 0.051), albeit limited by its coverage. In conclusion, DSP30 + IL2 showed a higher abnormality detection rate. However, FISH is indispensable to circumvent low mitotic indices and detect subtle abnormalities.

  17. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats.

    PubMed

    Kilarkaje, Narayana; Mousa, Alyaa M; Al-Bader, Maie M; Khan, Khalid M

    2013-10-01

    To investigate the effects of an antioxidant cocktail (AC) on bleomycin, etoposide, and cisplatin (BEP)-induced testicular dysfunction. In vivo study. Research laboratory. Adult male and female Sprague-Dawley rats. The rats were treated with three cycles of 21 days each of therapeutically relevant dose levels of BEP (0.75, 7.5, and 1.5 mg/kg) with or without the AC (a mixture of α-tocopherol, L-ascorbic acid, Zn, and Se). Sperm parameters, fertility, serum hormone levels (ELISA), testicular histopathology, and expression of proliferating cell nuclear antigen (PCNA), and transferrin (Western blotting and immunohistochemistry) were evaluated at the end of treatment and a 63-day recovery period. At the end of treatment, the AC improved BEP-induced decrease in sperm motility and increase in abnormality but had no effect on reduced sperm count, fertility, and tubular atrophy, although it up-regulated germ cell proliferation. The AC normalized reduced inhibin B levels, but had no effect on decreased transferrin and testosterone and elevated LH levels. At the end of the recovery period, the AC enhanced the expression of PCNA and transferrin, repopulation of germ cells, LH-testosterone axis, and fertility, but had no effect on reduced FSH and elevated inhibin B levels. The antioxidants protect and then enhance the recovery of testicular and reproductive endocrine functions when administered concomitantly with BEP therapy. The AC may be beneficial to regain testicular functions after chemotherapy. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  19. Development of mice without Cip/Kip CDK inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Mice lacking Cip/Kip CKIs (p21, p27, and p57) survive until embryonic day 13.5. Black-Right-Pointing-Pointer Proliferation of MEFs lacking all three Cip/Kip CKIs appears unexpectedly normal. Black-Right-Pointing-Pointer CDK2 kinase activity of the triple mutant MEFs is increased in G0 phase. -- Abstract: Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largelymore » unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G{sub 0} to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in normal development (although it is thought to be a key player in the response to DNA damage).« less

  20. COMPARISON OF REAL-TIME MICROVASCULAR ABNORMALITIES IN PEDIATRIC AND ADULT SICKLE CELL ANEMIA PATIENTS

    PubMed Central

    Cheung, Anthony T.W.; Miller, Joshua W.; Craig, Sarah M.; To, Patricia L.; Lin, Xin; Samarron, Sandra L.; Chen, Peter C.Y.; Zwerdling, Theodore; Wun, Ted; Li, Chin-Shang; Green, Ralph

    2010-01-01

    The conjunctival microcirculation in 14 pediatric and 8 adult sickle cell anemia (SCA) patients was studied using computer-assisted intravital microscopy. The bulbar conjunctiva in SCA patients in both age groups exhibited a blanched/avascular appearance characterized by decreased vascularity. SCA patients from both age groups had many of the same abnormal morphometric {vessel diameter, vessel distribution, morphometry (shape), tortuosity, arteriole:venule (A:V) ratio, and hemosiderin deposits} and dynamic {vessel sludging/sludged flow, boxcar blood (trickled) flow and abnormal flow velocity} abnormalities. A severity index (SI) was computed to quantify the degree of vasculopathy for comparison between groups. The severity of vasculopathy differed significantly between the pediatric and adult patients (SI: 4.2 ± 1.8 vs 6.6 ± 2.4; p=0.028), indicative of a lesser degree of overall severity in the pediatric patients. Specific abnormalities that were less prominent in the pediatric patients included abnormal vessel morphometry and tortuosity. Sludged flow, abnormal vessel distribution, abnormal A:V ratio, and boxcar flow, appeared in high prevalence in both age groups. The results indicate that SCA microvascular abnormalities develop in childhood and the severity of vasculopathy likely progresses with age. Intervention and effective treatment/management modalities should target pediatric patients to ameliorate, slow down or prevent progressive microvascular deterioration. PMID:20872552

Top