Sample records for abnormal cerebral perfusion

  1. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.

    PubMed

    Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J

    2011-03-01

    There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.

  2. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Olson, Aaron K; Isern, Nancy G; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A

    2016-11-01

    Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. © The Author(s) 2016.

  3. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  4. Abnormal regional cerebral blood flow in childhood autism.

    PubMed

    Ohnishi, T; Matsuda, H; Hashimoto, T; Kunihiro, T; Nishikawa, M; Uema, T; Sasaki, M

    2000-09-01

    Neuroimaging studies of autism have shown abnormalities in the limbic system and cerebellar circuits and additional sites. These findings are not, however, specific or consistent enough to build up a coherent theory of the origin and nature of the brain abnormality in autistic patients. Twenty-three children with infantile autism and 26 non-autistic controls matched for IQ and age were examined using brain-perfusion single photon emission computed tomography with technetium-99m ethyl cysteinate dimer. In autistic subjects, we assessed the relationship between regional cerebral blood flow (rCBF) and symptom profiles. Images were anatomically normalized, and voxel-by-voxel analyses were performed. Decreases in rCBF in autistic patients compared with the control group were identified in the bilateral insula, superior temporal gyri and left prefrontal cortices. Analysis of the correlations between syndrome scores and rCBF revealed that each syndrome was associated with a specific pattern of perfusion in the limbic system and the medial prefrontal cortex. The results confirmed the associations of (i) impairments in communication and social interaction that are thought to be related to deficits in the theory of mind (ToM) with altered perfusion in the medial prefrontal cortex and anterior cingulate gyrus, and (ii) the obsessive desire for sameness with altered perfusion in the right medial temporal lobe. The perfusion abnormalities seem to be related to the cognitive dysfunction observed in autism, such as deficits in ToM, abnormal responses to sensory stimuli, and the obsessive desire for sameness. The perfusion patterns suggest possible locations of abnormalities of brain function underlying abnormal behaviour patterns in autistic individuals.

  5. Hyperventilation, cerebral perfusion, and syncope.

    PubMed

    Immink, R V; Pott, F C; Secher, N H; van Lieshout, J J

    2014-04-01

    This review summarizes evidence in humans for an association between hyperventilation (HV)-induced hypocapnia and a reduction in cerebral perfusion leading to syncope defined as transient loss of consciousness (TLOC). The cerebral vasculature is sensitive to changes in both the arterial carbon dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2 the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced cardiac output brain perfusion becomes jeopardized. Whether, in patients with cardiovascular disease and/or defect, cerebral blood flow cerebral control HV-induced hypocapnia elicits cerebral hypoperfusion, leading to TLOC, remains to be established.

  6. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.

    Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCAmore » with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions: DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.« less

  7. A reappraisal of retrograde cerebral perfusion.

    PubMed

    Ueda, Yuichi

    2013-05-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients.

  8. A reappraisal of retrograde cerebral perfusion

    PubMed Central

    2013-01-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients. PMID:23977600

  9. Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement.

    PubMed

    Tanaka, Akiko; Estrera, Anthony L

    2018-01-01

    Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field-and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution.

  10. Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement

    PubMed Central

    Tanaka, Akiko

    2018-01-01

    Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field—and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution. PMID:29682460

  11. Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors.

    PubMed

    Li, Matthew D; Forkert, Nils D; Kundu, Palak; Ambler, Cheryl; Lober, Robert M; Burns, Terry C; Barnes, Patrick D; Gibbs, Iris C; Grant, Gerald A; Fisher, Paul G; Cheshier, Samuel H; Campen, Cynthia J; Monje, Michelle; Yeom, Kristen W

    2017-06-01

    To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction. We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.7 years after original diagnosis. A retrospective review of patient charts identified 12 patients with neurocognitive data and in whom the relationship between IQ and magnetic resonance imaging variables was assessed for each brain structure. Patients with MB (all treated with surgery, chemotherapy, and radiation) had significantly lower global CBF relative to controls (10%-23% lower, varying by anatomic region, all adjusted P?abnormalities of the mesial temporal lobe structures. Despite significant perfusion abnormalities in patients with MB, diffusion, but not perfusion, correlated with cognitive outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    PubMed

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Cerebral blood perfusion after treatment with zolpidem and flumazenil in the baboon.

    PubMed

    Clauss, Ralf P; Dormehl, Irene C; Kilian, Elmaré; Louw, Werner K A; Nel, Wally H; Oliver, Douglas W

    2002-01-01

    Previous studies have shown that zolpidem (CAS 82626-48-0) can lead to improved perfusion in damaged brain tissue. Zolpidem belongs to the imidazopyridine chemical class and it illicits its pharmacological action via the gamma-aminobutyric acid (GABA) receptor system through stimulation of particularly the omega 1 receptors and to a lesser extent omega 2 receptors. Previously it was reported that no cerebral blood flow effects were observed in normal baboons after treatment with zolpidem, whereas an asymmetric regional increase in cerebral blood flow was observed in a neurologically abnormal baboon. In this study, the effect of a combination of the benzodiazepine receptor antagonist flumazenil (CAS 78755-81-4) and zolpidem on brain perfusion was examined by the 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) split dose brain single photon emission computed tomography (SPECT). Four normal baboons and the neurologically abnormal baboon from the previous zolpidem study were examined. In the current study the asymmetric changes observed after zolpidem--only treatment in the abnormal baboon was attenuated by flumazenil intervention. A decreased brain blood flow was observed after combination treatment of zolpidem and flumazenil in the normal baboons. The involvement of the omega receptors is suggested by these results. Up- or down-regulation of omega receptors may also contribute to the observed responses in the abnormal baboon and a brain injured patient.

  14. Cerebral misery perfusion due to carotid occlusive disease

    PubMed Central

    Maddula, Mohana; Sprigg, Nikola; Bath, Philip M; Munshi, Sunil

    2017-01-01

    Purpose Cerebral misery perfusion (CMP) is a condition where cerebral autoregulatory capacity is exhausted, and cerebral blood supply in insufficient to meet metabolic demand. We present an educational review of this important condition, which has a range of clinical manifestations. Method A non-systematic review of published literature was undertaken on CMP and major cerebral artery occlusive disease, using Pubmed and Sciencedirect. Findings Patients with CMP may present with strokes in watershed territories, collapses and transient ischaemic attacks or episodic movements associated with an orthostatic component. While positron emission tomography is the gold standard investigation for misery perfusion, advanced MRI is being increasingly used as an alternative investigation modality. The presence of CMP increases the risk of strokes. In addition to the devastating effect of stroke, there is accumulating evidence of impaired cognition and quality of life with carotid occlusive disease (COD) and misery perfusion. The evidence for revascularisation in the setting of complete carotid occlusion is weak. Medical management constitutes careful blood pressure management while addressing other vascular risk factors. Discussion The evidence for the management of patients with COD and CMP is discussed, together with recommendations based on our local experience. In this review, we focus on misery perfusion due to COD. Conclusion Patients with CMP and COD may present with a wide-ranging clinical phenotype and therefore to many specialties. Early identification of patients with misery perfusion may allow appropriate management and focus on strategies to maintain or improve cerebral blood flow, while avoiding potentially harmful treatment. PMID:28959496

  15. Direct visualization of minimal cerebral capillary flow during retrograde cerebral perfusion: an intravital fluorescence microscopy study in pigs.

    PubMed

    Duebener, Lennart F; Hagino, Ikuo; Schmitt, Katharina; Sakamoto, Takahiko; Stamm, Christof; Zurakowski, David; Schäfers, Hans-Joachim; Jonas, Richard A

    2003-04-01

    Retrograde cerebral perfusion (RCP) is used in some centers during aortic arch surgery for brain protection during hypothermic circulatory arrest. It is still unclear however whether RCP provides adequate microcirculatory blood flow at a capillary level. We used intravital microscopy to directly visualize the cerebral capillary blood flow in a piglet model of RCP. Twelve pigs (weight 9.7 +/- 0.9 kg) were divided into two groups (n = 6 each): deep hypothermic circulatory arrest (DHCA) and RCP. After the creation of a window over the parietal cerebral cortex, pigs underwent 10 minutes of normothermic bypass and 40 minutes of cooling to 15 degrees C on cardiopulmonary bypass ([CPB] pH-stat, hemocrit 30%, pump flow 100 mL x kg(-1) x min(-1)). This was followed by 45 minutes of DHCA and rewarming on CPB to 37 degrees C. In the RCP group the brain was retrogradely perfused (pump flow 30 mL x kg(-1) x min(-1)) during DHCA through the superior vena cava after inferior vena cava occlusion. Plasma was labeled with fluorescein-isothiocyanate-dextran for assessing microvascular diameter and functional capillary density (FCD), defined as total length of erythrocyte-perfused capillaries per observation area. Cerebral tissue oxygenation was determined by nicotinamide adenine dinucleotide hydrogen (NADH) autofluorescence, which increases during tissue ischemia. During normothermic and hypothermic antegrade cerebral perfusion the FCD did not significantly change from base line (97% +/- 14% and 96% +/- 12%, respectively). During retrograde cerebral perfusion the FCD decreased highly significantly to 2% +/- 2% of base line values (p < 0.001). Thus there was no evidence of significant capillary blood flow during retrograde cerebral perfusion. The microvascular diameter of cerebral arterioles that were slowly perfused significantly decreased to 27% +/- 6% of base line levels during RCP. NADH fluorescence progressively and significantly increased during RCP, indicating poorer tissue

  16. Perfusion Neuroimaging Abnormalities Alone Distinguish National Football League Players from a Healthy Population.

    PubMed

    Amen, Daniel G; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A

    2016-04-25

    National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety

  17. How to Perfuse: Concepts of Cerebral Protection during Arch Replacement

    PubMed Central

    Habertheuer, Andreas; Wiedemann, Dominik; Kocher, Alfred; Laufer, Guenther; Vallabhajosyula, Prashanth

    2015-01-01

    Arch surgery remains undoubtedly among the most technically and strategically challenging endeavors in cardiovascular surgery. Surgical interventions of thoracic aneurysms involving the aortic arch require complete circulatory arrest in deep hypothermia (DHCA) or elaborate cerebral perfusion strategies with varying degrees of hypothermia to achieve satisfactory protection of the brain from ischemic insults, that is, unilateral/bilateral antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP). Despite sophisticated and increasingly individualized surgical approaches for complex aortic pathologies, there remains a lack of consensus regarding the optimal method of cerebral protection and circulatory management during the time of arch exclusion. Many recent studies argue in favor of ACP with various degrees of hypothermic arrest during arch reconstruction and its advantages have been widely demonstrated. In fact ACP with more moderate degrees of hypothermia represents a paradigm shift in the cardiac surgery community and is widely adopted as an emergent strategy; however, many centers continue to report good results using other perfusion strategies. Amidst this important discussion we review currently available surgical strategies of cerebral protection management and compare the results of recent European multicenter and single-center data. PMID:26713319

  18. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    PubMed

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on

  19. Repeatability of Bolus Kinetics Ultrasound Perfusion Imaging for the Quantification of Cerebral Blood Flow.

    PubMed

    Vinke, Elisabeth J; Eyding, Jens; de Korte, Chris L; Slump, Cornelis H; van der Hoeven, Johannes G; Hoedemaekers, Cornelia W E

    2017-12-01

    Ultrasound perfusion imaging (UPI) can be used for the quantification of cerebral perfusion. In a neuro-intensive care setting, repeated measurements are required to evaluate changes in cerebral perfusion and monitor therapy. The aim of this study was to determine the repeatability of UPI in quantification of cerebral perfusion. UPI measurement of cerebral perfusion was performed three times in healthy patients. The coefficients of variation of the three bolus injections were calculated for both time- and volume-derived perfusion parameters in the macro- and microcirculation. The UPI time-dependent parameters had overall the lowest CVs in both the macro- and microcirculation. The volume-related parameters had poorer repeatability, especially in the microcirculation. Both intra-observer variability and inter-observer variability were low. Although UPI is a promising tool for the bedside measurement of cerebral perfusion, improvement of the technique is required before implementation in routine clinical practice. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Perfusion Neuroimaging Abnormalities Alone Distinguish National Football League Players from a Healthy Population

    PubMed Central

    Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.

    2016-01-01

    Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This

  1. [Disturbances of cerebral perfusion in patients with bacterial meningoencephalitis].

    PubMed

    Garlicki, Aleksander; Podsiadło-Kleinrok, Beata; Bociaga-Jasik, Monika; Kleinrok, Krzysztof; Tomik, Barbara

    2003-01-01

    The investigations were done in acute and reconvalescent phase in 34 patients with bacterial meningoencephalitis. Neurologic condition, degree of the brain injury on the basis of Glasgow Coma Scale (GCS), protein level and pleocytosis in cerebrospinal fluid (CSF), and regional cerebral blood flow on dynamic computed tomography (CT) were assessed. The brain blood flow was measured in the white matter of the frontal and occipital horns of lateral ventricles, symmetrically in both hemispheres. Statistically significant reduction of the brain perfusion in acute phase of illness was improved. In reconvalescent phase normalisation of the brain blood supply was observed. 56% of patients had changes of consciousness. There was no significant correlation between these symptoms and parameters describing blood supply. The rest of patients had neurologic abnormalities: seizure, pyramidal syndrome, injury of the central nerves due to the reduction of blood flow in selected regions of the brain. Patients who aggregated low GCS score had high inflow of the blood. In patients who were in better condition, inflow was smaller. High pleocytosis in CSF was associated with small blood inflow and perfusion in investigated regions of the brain. Whereas high protein concentration correlated with higher inflow and increase in regional perfusion. We consider, that the brain blood supply correlate with intensification of inflammatory response in CSF.

  2. Lesional perfusion abnormalities in Leigh disease demonstrated by arterial spin labeling correlate with disease activity.

    PubMed

    Whitehead, Matthew T; Lee, Bonmyong; Gropman, Andrea

    2016-08-01

    Leigh disease is a metabolic disorder of the mitochondrial respiratory chain culminating in symmetrical necrotizing lesions in the deep gray nuclei or brainstem. Apart from classic gliotic/necrotic lesions, small-vessel proliferation is also characteristic on histopathology. We have observed lesional hyperperfusion on arterial spin-labeling (ASL) sequence in children with Leigh disease. In this cross-sectional analysis, we evaluated lesional ASL perfusion characteristics in children with Leigh syndrome. We searched the imaging database from an academic children's hospital for "arterial spin labeling, perfusion, necrosis, lactate, and Leigh" to build a cohort of children for retrospective analysis. We reviewed each child's medical record to confirm a diagnosis of Leigh disease, excluding exams with artifact, technical limitations, and without ASL images. We evaluated the degree and extent of cerebral blood flow and relationship to brain lesions. Images were compared to normal exams from an aged-matche cohort. The database search yielded 45 exams; 30 were excluded. We evaluated 15 exams from 8 children with Leigh disease and 15 age-matched normal exams. In general, Leigh brain perfusion ranged from hyperintense (n=10) to hypointense (n=5). Necrotic lesions appeared hypointense/hypoperfused. Active lesions with associated restricted diffusion demonstrated hyperperfusion. ASL perfusion patterns differed significantly from those on age-matched normal studies (P=<.0001). Disease activity positively correlated with cerebral deep gray nuclei hyperperfusion (P=0.0037) and lesion grade (P=0.0256). Children with Leigh disease have abnormal perfusion of brain lesions. Hyperperfusion can be found in active brain lesions, possibly associated with small-vessel proliferation characteristic of the disease.

  3. Retrograde and antegrade cerebral perfusion: results in short elective arch reconstructive times.

    PubMed

    Milewski, Rita Karianna; Pacini, Davide; Moser, G William; Moeller, Patrick; Cowie, Doreen; Szeto, Wilson Y; Woo, Y Joseph; Desai, Nimesh; Di Marco, Luca; Pochettino, Alberto; Di Bartolomeo, Roberto; Bavaria, Joseph E

    2010-05-01

    Debate remains regarding optimal cerebral circulatory management during relatively noncomplex, short arch reconstructive times. Both retrograde cerebral perfusion with deep hypothermic circulatory arrest (RCP/DHCA) and antegrade cerebral perfusion with moderate hypothermic circulatory arrest (ACP/MHCA) have emerged as established techniques. The aim of the study was to evaluate perioperative outcomes between antegrade and retrograde cerebral perfusion techniques for elective arch reconstruction times less than 45 minutes. Between 1997 and September 2008, 776 cases from two institutions were reviewed to compare RCP/DHCA and ACP/MHCA perfusion techniques. At the University of Pennsylvania, 682 were treated utilizing RCP/DHCA cerebral protection. At the University of Bologna, 94 were treated with ACP/MHCA and bilateral cerebral perfusion. Mean cerebral ischemic time and visceral ischemic time differed between RCP/DHCA and ACP/MHCA (p < 0.001). Multivariate analysis showed age more than 65 years, atherosclerotic aneurysm, and cross-clamp time as predictors of the composite endpoint of mortality, neurologic event, and acute myocardial infarction. There was no significant difference in permanent neurologic deficit, temporary neurologic dysfunction, or renal failure, between RCP/DHCA and ACP/MHCA. Mortality was comparable across both techniques. Both RCP/DHCA and ACP/MHCA have emerged as effective techniques for selected aortic arch operations with low morbidity and mortality. Univariate analysis revealed no statistically significant differences in primary or secondary outcomes between techniques for aortic reconstruction times less than 45 minutes. Data from this study demonstrate that selective use of either RCP/DHCA or ACP/MHCA provides excellent cerebral and visceral outcomes for elective open aortic surgery with short arch reconstructive times. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Arterial Cannulation and Cerebral Perfusion Strategies for Aortic Arch Operations.

    PubMed

    Foley, Lisa S; Yamanaka, Katsuhiro; Reece, T Brett

    2016-12-01

    Neurologic injuries following aortic arch operations can be devastating, with stroke occurring in up to 12% of elective operations and significant cerebral dysfunction occurring in up to 25% of cases. The primary challenge unique to aortic arch operations involves interruption of direct perfusion of the brachiocephalic vessels during arch reconstruction. For this reason, neuroprotection is paramount. The 2 main modes of protection are (1) reducing metabolic demand through hypothermia and (2) limiting, or even eliminating, the ischemic period. Preoperative selection of the cerebral perfusion plan for each operation is imperative to maintain maximal diffuse cerebral protection and prevent focal neurologic events. © The Author(s) 2016.

  5. Assessment of cerebral perfusion in childhood strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, G.F.; Fishman, L.S.; Segall, H.D.

    1982-11-01

    Thirty-three children who had strokes were studied by dynamic and static scintigraphy, 29 by CT scanning, and 10 by cerebral angiography. The accuracy of dynamic scintigraphy in stroke detection during the first week of clinical symptoms was 94% while CT scanning was 60% accurate and static scintigraphy 11% accurate. During the second week the accuracy of CT scanning increased to 100%, but static scintigraphy improved to only 50%. Fifty percent of scintiangiograms performed during the first week showed either luxuriant perfusion or flip-flop patterns. In some patients these two flow patterns changed to that of cerebral hemispheric ischemia after goingmore » through a phase during which perfusion appeared to be equal in the two hemispheres. Dynamic scintigraphy is believed to be the test of choice for stroke detection in children during the first week.« less

  6. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels.

    PubMed

    Hasan, Mohammad R; Herz, Josephine; Hermann, Dirk M; Doeppner, Thorsten R

    2013-01-04

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes (i.e. carmine red, India ink) or latex with or without carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen. Maeda et al. have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.

  7. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans

    PubMed Central

    Braz, Igor D.

    2015-01-01

    Abstract Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age‐related alterations in cerebral vascular function. During low‐to‐moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10–30%. Beyond ∼60–70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation‐mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial–internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age‐related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age‐related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. PMID:26435295

  8. Alteration of cerebral perfusion in patients with idiopathic normal pressure hydrocephalus measured by 3D perfusion weighted magnetic resonance imaging.

    PubMed

    Walter, Christof; Hertel, F; Naumann, E; Mörsdorf, M

    2005-12-01

    It is controversial whether alteration of cerebral perfusion plays an important role in the pathophysiology of patients with idiopathic normal pressure hydrocephalus (NPH) and can help to predict the outcome after shunt surgery. 28 patients with suspected NPH were examined clinically (Homburg Hydrocephalus Scale, walking test, incontinence protocol) and by 3D dynamic susceptibility based perfusion weighted magnetic resonance imaging (PWI-MRI) before and after cerebrospinal fluid release (spinal tap test, STT). The perfusion parameters (negative integral (NI), time of arrival (T0), time to peak (TTP), mean transit time, and the difference TTP-T0 were analysed. Three different groups of patients were identified preoperatively: In group 1 seven patients showed an increase in the cerebral perfusion and a clinical improvement after STT. The second group (9 patients) also revealed an increase of the cerebral perfusion, but no significant alteration of the clinical assessment could be found. In the third group neither the cerebral perfusion nor the clinical assessment changed. 14 of the 16 patients (group 1 and 2) were examined three months after shunt placement. 11 patients showed a good or excellent result, 2 patients revealed a fair assessment, and only 1 patient had transiently improved. No patient was downgraded after shunting. In the patient group 1 and 2 the NI increased significantly (effect size: 34%), whereas in group 3 no significant alteration of NI was observed. PWI-MRI improves the prediction of outcome after shunt placement in patients with NPH and can offer new insights into the pathophysiology.

  9. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study.

    PubMed

    Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong

    2016-07-04

    The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.

  10. Comparison of retrograde cerebral perfusion to antegrade cerebral perfusion and hypothermic circulatory arrest in a chronic porcine model.

    PubMed

    Midulla, P S; Gandsas, A; Sadeghi, A M; Mezrow, C K; Yerlioglu, M E; Wang, W; Wolfe, D; Ergin, M A; Griepp, R B

    1994-09-01

    Retrograde cerebral perfusion (RCP) is a new method of cerebral protection that has been touted as an improvement over hypothermic circulatory arrest (HCA). However, RCP has been used clinically for durations and at temperatures that are "safe" for HCA alone. This study was designed to compare RCP to HCA and antegrade cerebral perfusion (ACP) deliberately exceeding "safe" limits, in order to determine unequivocally whether RCP provides better cerebral protection than HCA. Four groups of six Yorkshire pigs (20 to 30 kg) were randomly assigned to undergo 90 minutes of RCP, ACP, HCA, or HCA with heads packed in ice (HCA-HP) at an esophageal temperature of 20 degrees C. Arterial, mixed venous and cerebral venous oxygen, glucose and lactate contents; quantitative EEG; were monitored at baseline (37 degrees C); at the end of cooling cardiopulmonary bypass (20 degrees C); during rewarming (30 degrees C); and at two and four hours post intervention. Animals were recovered and were evaluated daily using a quantitative behavioral score (0 to 9). Mean behavioral score was lower in the HCA group than in the other three groups at seven days (HCA 5.8 +/- 1.1; RCP 8.5 +/- 0.2; ACP 9.0 +/- 0.0; HCA-HP 8.5 +/- 0.2, p < 0.05). Recovery of QEEG was better in the ACP group than in all others, but the RCP group had faster EEG recovery than HCA alone, although not better than HCA-HP (HCA 15 +/- 4; RCP 27 +/- 3; ACP 78 +/- 5; HCA-HP 19 +/- 3, p < 0.001). However, histopathological evidence of ischemic injury was present in 5 of 6 HCA animals and also in 4 of 6 of the HCP-HP group, but only in 1 of 6 RCP animals and in none of the ACP group. This study demonstrates that ACP affords the best cerebral protection by all outcome measures, but RCP provides clear improvement compared to HCA.

  11. Comparable Cerebral Blood Flow in Both Hemispheres During Regional Cerebral Perfusion in Infant Aortic Arch Surgery.

    PubMed

    Rüffer, André; Tischer, Philip; Münch, Frank; Purbojo, Ariawan; Toka, Okan; Rascher, Wolfgang; Cesnjevar, Robert Anton; Jüngert, Jörg

    2017-01-01

    Cerebral protection during aortic arch repair can be provided by regional cerebral perfusion (RCP) through the innominate artery. This study addresses the question of an adequate bilateral blood flow in both hemispheres during RCP. Fourteen infants (median age 11 days [range, 3 to 108]; median weight, 3.6 kg [range, 2.8 to 6.0 kg]) undergoing RCP (flow rate 54 to 60 mL · kg -1 · min -1 ) were prospectively included. Using combined transfontanellar/transtemporal two- and three-dimensional power/color Doppler sonography, cerebral blood flow intensity in the main cerebral vessels was displayed. Mean time average velocities were measured with combined pulse-wave Doppler in the basilar artery, and both sides of the internal carotid, anterior, and medial cerebral arteries. In addition, bifrontal regional cerebral oximetry (rSO 2 ) was assessed. Comparing both hemispheres, measurements were performed at target temperature (28°C) during full-flow total body perfusion (TBP) and RCP. A regular circle of Willis with near-symmetric blood flow intensity to both hemispheres was visualized in all infants during both RCP and TBP. In the left internal carotid artery, blood flow direction was mixed (retrograde, n = 5; antegrade, n = 8) during TBP and retrograde during RCP. Comparison between sides showed comparable cerebral time average velocities and rSO 2 , except for higher time average velocities in the right internal carotid artery (TBP p = 0.019, RCP p = 0.09). Unilateral comparison between perfusion methods revealed significantly higher rSO 2 in the right hemisphere during TBP (82% ± 9%) compared with RCP (74% ± 11%, p = 0.036). Bilateral assessment of cerebral rSO 2 and time average velocity in the main great cerebral vessels suggests that RCP is associated with near-symmetric blood flow intensity to both hemispheres. Further neurodevelopmental studies are necessary to verify RCP for neuroprotection during aortic arch repair. Copyright © 2017 The Society of

  12. Decreased Regional Cerebral Perfusion in Moderate-Severe Obstructive Sleep Apnoea during Wakefulness.

    PubMed

    Innes, Carrie R H; Kelly, Paul T; Hlavac, Michael; Melzer, Tracy R; Jones, Richard D

    2015-05-01

    To investigate gray matter volume and concentration and cerebral perfusion in people with untreated obstructive sleep apnea (OSA) while awake. Voxel-based morphometry to quantify gray matter concentration and volume. Arterial spin labeling perfusion imaging to quantify cerebral perfusion. Lying supine in a 3-T magnetic resonance imaging scanner in the early afternoon. 19 people with OSA (6 females, 13 males; mean age 56.7 y, range 41-70; mean AHI 18.5, range 5.2-52.8) and 19 controls (13 females, 6 males; mean age: 50.0 y, range 41-81). N/A. There were no differences in regional gray matter concentration or volume between participants with OSA and controls. Neither was there any difference in regional perfusion between controls and people with mild OSA (n = 11). However, compared to controls, participants with moderate-severe OSA (n = 8) had decreased perfusion (while awake) in three clusters. The largest cluster incorporated, bilaterally, the paracingulate gyrus, anterior cingulate gyrus, and subcallosal cortex, and the left putamen and left frontal orbital cortex. The second cluster was right-lateralized, incorporating the posterior temporal fusiform cortex, parahippocampal gyrus, and hippocampus. The third cluster was located in the right thalamus. There is decreased regional perfusion during wakefulness in participants with moderate-severe obstructive sleep apnea, and these are in brain regions which have shown decreased regional gray matter volume in previous studies in people with severe OSA. Thus, we hypothesize that cerebral perfusion changes are evident before (and possibly underlie) future structural changes. © 2015 Associated Professional Sleep Societies, LLC.

  13. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  14. Crossed cerebellar diaschisis in patients with acute middle cerebral artery infarction: Occurrence and perfusion characteristics

    PubMed Central

    Sommer, Wieland H; Bollwein, Christine; Thierfelder, Kolja M; Baumann, Alena; Janssen, Hendrik; Ertl-Wagner, Birgit; Reiser, Maximilian F; Plate, Annika; Straube, Andreas

    2015-01-01

    We aimed to investigate the overall prevalence and possible factors influencing the occurrence of crossed cerebellar diaschisis after acute middle cerebral artery infarction using whole-brain CT perfusion. A total of 156 patients with unilateral hypoperfusion of the middle cerebral artery territory formed the study cohort; 352 patients without hypoperfusion served as controls. We performed blinded reading of different perfusion maps for the presence of crossed cerebellar diaschisis and determined the relative supratentorial and cerebellar perfusion reduction. Moreover, imaging patterns (location and volume of hypoperfusion) and clinical factors (age, sex, time from symptom onset) resulting in crossed cerebellar diaschisis were analysed. Crossed cerebellar diaschisis was detected in 35.3% of the patients with middle cerebral artery infarction. Crossed cerebellar diaschisis was significantly associated with hypoperfusion involving the left hemisphere, the frontal lobe and the thalamus. The degree of the relative supratentorial perfusion reduction was significantly more pronounced in crossed cerebellar diaschisis-positive patients but did not correlate with the relative cerebellar perfusion reduction. Our data suggest that (i) crossed cerebellar diaschisis is a common feature after middle cerebral artery infarction which can robustly be detected using whole-brain CT perfusion, (ii) its occurrence is influenced by location and degree of the supratentorial perfusion reduction rather than infarct volume (iii) other clinical factors (age, sex and time from symptom onset) did not affect the occurrence of crossed cerebellar diaschisis. PMID:26661242

  15. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  16. Hyperintense Vessels on T2-PROPELLER-FLAIR in Patients with Acute MCA Stroke: Prediction of Arterial Stenosis and Perfusion Abnormality.

    PubMed

    Ahn, S J; Suh, S H; Lee, K-Y; Kim, J H; Seo, K-D; Lee, S

    2015-11-01

    Fluid-attenuated inversion recovery hyperintense vessels in stroke represent leptomeningeal collateral flow. We presumed that FLAIR hyperintense vessels would be more closely associated with arterial stenosis and perfusion abnormality in ischemic stroke on T2-PROPELLER-FLAIR than on T2-FLAIR. We retrospectively reviewed 35 patients with middle cerebral territorial infarction who underwent MR imaging. FLAIR hyperintense vessel scores were graded according to the number of segments with FLAIR hyperintense vessels in the MCA ASPECTS areas. We compared the predictability of FLAIR hyperintense vessels between T2-PROPELLER-FLAIR and T2-FLAIR for large-artery stenosis. The interagreement between perfusion abnormality and FLAIR hyperintense vessels was assessed. In subgroup analysis (9 patients with MCA horizontal segment occlusion), the association of FLAIR hyperintense vessels with ischemic lesion volume and perfusion abnormality volume was evaluated. FLAIR hyperintense vessel scores were significantly higher on T2-PROPELLER-FLAIR than on T2-FLAIR (3.50 ± 2.79 versus 1.21 ± 1.47, P < .01), and the sensitivity for large-artery stenosis was significantly improved on T2-PROPELLER-FLAIR (93% versus 68%, P = .03). FLAIR hyperintense vessels on T2-PROPELLER-FLAIR were more closely associated with perfusion abnormalities than they were on T2-FLAIR (κ = 0.64 and κ = 0.27, respectively). In subgroup analysis, FLAIR hyperintense vessels were positively correlated with ischemic lesion volume on T2-FLAIR, while the mismatch of FLAIR hyperintense vessels between the 2 sequences was negatively correlated with ischemic lesion volume (P = .01). In MCA stroke, FLAIR hyperintense vessels were more prominent on T2-PROPELLER-FLAIR compared with T2-FLAIR. In addition, FLAIR hyperintense vessels on T2-PROPELLER-FLAIR have a significantly higher sensitivity for predicting large-artery stenosis than they do on T2-FLAIR. Moreover, the areas showing FLAIR hyperintense vessels on T2-PROPELLER

  17. Brain perfusion abnormalities in Rett syndrome: a qualitative and quantitative SPET study with 99Tc(m)-ECD.

    PubMed

    Burroni, L; Aucone, A M; Volterrani, D; Hayek, Y; Bertelli, P; Vella, A; Zappella, M; Vattimo, A

    1997-06-01

    Rett syndrome is a progressive neurological paediatric disorder associated with severe mental deficiency, which affects only girls. The aim of this study was to determine if brain blood flow abnormalities detected with 99Tc(m)-ethyl-cysteinate-dimer (99Tc[m]-ECD) single photon emission tomography (SPET) can explain the clinical manifestation and progression of the disease. Qualitative and quantitative global and regional brain blood flow was evaluated in 12 girls with Rett syndrome and compared with an aged-matched reference group of children. In comparison with the reference group, SPET revealed a considerable global reduction in cerebral perfusion in the groups of girls with Rett syndrome. A large statistical difference was noted, which was more evident when comparing the control group with girls with stage IV Rett syndrome than girls with stage III Rett syndrome. The reduction in cerebral perfusion reflects functional disturbance in the brain of children with Rett syndrome. These data confirm that 99Tc(m)-ECD brain SPET is sensitive in detecting hypoperfused areas in girls with Rett syndrome that may be associated with brain atrophy, even when magnetic resonance imaging appears normal.

  18. Evaluation of cerebral oxygenation and perfusion with conversion from an arterial-to-systemic shunt circulation to the bidirectional Glenn circulation in patients with univentricular cardiac abnormalities.

    PubMed

    Bertolizio, Gianluca; DiNardo, James A; Laussen, Peter C; Polito, Angelo; Pigula, Frank A; Zurakowski, David; Kussman, Barry D

    2015-02-01

    Superior vena cava pressure after the bidirectional Glenn operation usually is higher than that associated with the preceding shunt-dependent circulation. The aim of the present study was to determine whether the acute elevation in central venous pressure was associated with changes in cerebral oxygenation and perfusion. Single-center prospective, observational cohort study. Academic children's hospital. Infants with single-ventricle lesions and surgically placed systemic-to-pulmonary artery shunts undergoing the bidirectional Glenn operation. Near-infrared spectroscopy and transcranial Doppler sonography were used to measure regional cerebral oxygen saturation and cerebral blood flow velocity. Mean differences in regional cerebral oxygen saturation and cerebral blood flow velocity before anesthetic induction and shortly before hospital discharge were compared using the F-test in repeated measures analysis of variance. In the 24 infants studied, mean cerebral oxygen saturation increased from 49%±2% to 57%±2% (p = 0.007), mean cerebral blood flow velocity decreased from 57±4 cm/s to 47±4 cm/s (p = 0.026), and peak systolic cerebral blood flow velocity decreased from 111±6 cm/s to 99±6 cm/s (p = 0.046) after the bidirectional Glenn operation. Mean central venous pressure was 8±2 mmHg postinduction of anesthesia and 14±4 mmHg on the first postoperative day and was not associated with a change in cerebral perfusion pressure (p = 0.35). The bidirectional Glenn operation in infants with a shunt-dependent circulation is associated with an improvement in cerebral oxygenation, and the lower cerebral blood flow velocity is likely a response of intact cerebral autoregulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Crossed cerebellar diaschisis in patients with acute middle cerebral artery infarction: Occurrence and perfusion characteristics.

    PubMed

    Sommer, Wieland H; Bollwein, Christine; Thierfelder, Kolja M; Baumann, Alena; Janssen, Hendrik; Ertl-Wagner, Birgit; Reiser, Maximilian F; Plate, Annika; Straube, Andreas; von Baumgarten, Louisa

    2016-04-01

    We aimed to investigate the overall prevalence and possible factors influencing the occurrence of crossed cerebellar diaschisis after acute middle cerebral artery infarction using whole-brain CT perfusion. A total of 156 patients with unilateral hypoperfusion of the middle cerebral artery territory formed the study cohort; 352 patients without hypoperfusion served as controls. We performed blinded reading of different perfusion maps for the presence of crossed cerebellar diaschisis and determined the relative supratentorial and cerebellar perfusion reduction. Moreover, imaging patterns (location and volume of hypoperfusion) and clinical factors (age, sex, time from symptom onset) resulting in crossed cerebellar diaschisis were analysed. Crossed cerebellar diaschisis was detected in 35.3% of the patients with middle cerebral artery infarction. Crossed cerebellar diaschisis was significantly associated with hypoperfusion involving the left hemisphere, the frontal lobe and the thalamus. The degree of the relative supratentorial perfusion reduction was significantly more pronounced in crossed cerebellar diaschisis-positive patients but did not correlate with the relative cerebellar perfusion reduction. Our data suggest that (i) crossed cerebellar diaschisis is a common feature after middle cerebral artery infarction which can robustly be detected using whole-brain CT perfusion, (ii) its occurrence is influenced by location and degree of the supratentorial perfusion reduction rather than infarct volume (iii) other clinical factors (age, sex and time from symptom onset) did not affect the occurrence of crossed cerebellar diaschisis. © The Author(s) 2015.

  20. Hypertonic Lactate to Improve Cerebral Perfusion and Glucose Availability After Acute Brain Injury.

    PubMed

    Carteron, Laurent; Solari, Daria; Patet, Camille; Quintard, Hervé; Miroz, John-Paul; Bloch, Jocelyne; Daniel, Roy T; Hirt, Lorenz; Eckert, Philippe; Magistretti, Pierre J; Oddo, Mauro

    2018-06-19

    Lactate promotes cerebral blood flow and is an efficient substrate for the brain, particularly at times of glucose shortage. Hypertonic lactate is neuroprotective after experimental brain injury; however, human data are limited. Prospective study (clinicaltrials.gov NCT01573507). Academic ICU. Twenty-three brain-injured subjects (13 traumatic brain injury/10 subarachnoid hemorrhage; median age, 59 yr [41-65 yr]; median Glasgow Coma Scale, 6 [3-7]). Three-hour IV infusion of hypertonic lactate (sodium lactate, 1,000 mmol/L; concentration, 30 µmol/kg/min) administered 39 hours (26-49 hr) from injury. We examined the effect of hypertonic lactate on cerebral perfusion (using transcranial Doppler) and brain energy metabolism (using cerebral microdialysis). The majority of subjects (13/23 = 57%) had reduced brain glucose availability (baseline pretreatment cerebral microdialysis glucose, < 1 mmol/L) despite normal baseline intracranial pressure (10 [7-15] mm Hg). Hypertonic lactate was associated with increased cerebral microdialysis lactate (+55% [31-80%]) that was paralleled by an increase in middle cerebral artery mean cerebral blood flow velocities (+36% [21-66%]) and a decrease in pulsatility index (-21% [13-26%]; all p < 0.001). Cerebral microdialysis glucose increased above normal range during hypertonic lactate (+42% [30-78%]; p < 0.05); reduced brain glucose availability correlated with a greater improvement of cerebral microdialysis glucose (Spearman r = -0.53; p = 0.009). No significant changes in cerebral perfusion pressure, mean arterial pressure, systemic carbon dioxide, and blood glucose were observed during hypertonic lactate (all p > 0.1). This is the first clinical demonstration that hypertonic lactate resuscitation improves both cerebral perfusion and brain glucose availability after brain injury. These cerebral vascular and metabolic effects appeared related to brain lactate supplementation rather than to systemic effects.

  1. Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression.

    PubMed

    Ho, Tiffany C; Wu, Jing; Shin, David D; Liu, Thomas T; Tapert, Susan F; Yang, Guang; Connolly, Colm G; Frank, Guido K W; Max, Jeffrey E; Wolkowitz, Owen; Eisendrath, Stuart; Hoeft, Fumiko; Banerjee, Dipavo; Hood, Korey; Hendren, Robert L; Paulus, Martin P; Simmons, Alan N; Yang, Tony T

    2013-10-01

    Although substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). A total of 25 medication-naive adolescents (13-17 years of age) diagnosed with major depressive disorder (MDD) and 26 well-matched control subjects underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p < .05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p < .05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p < .05, corrected). Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments, and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights

  2. Transcranial Doppler of the middle cerebral artery indicates regional gray matter cerebral perfusion.

    PubMed

    Pasha, Evan P; Tarumi, Takashi; Haley, Andreana P; Tanaka, Hirofumi

    2017-11-30

    We determined if transcranial color-coded Doppler derived hemodynamics are associated with MRI-based cerebral blood flow (CBF) in regions clinically important to dementia in healthy middle-aged adults. In 30 subjects (18m/12f; age  =  52  ±  1 years), blood flow velocity (BFV) and cerebrovascular conductance (CVC) were measured with transcranial color-coded Doppler (TCCD) at the middle cerebral artery (MCA) and cerebral blood flow (CBF) was assessed with arterial spin labeled perfusion MRI. BFV and CVC were associated with hippocampus (r  =  0.58 and r  =  0.61, both p  <  0.01) and occipitoparietal (r  =  0.50 and r  =  0.58, both p  <  0.01) CBF. CVC was further associated with posterior cingulate CBF (r  =  0.58 p  <  0.01). Independent of age and sex, BFV and CVC were associated with hippocampus (r  =  0.59 and r  =  0.55, both p  <  0.003) and occipitoparietal (r  =  0.50 and r  =  0.57, both p  <  0.01) CBF. CVC was independently associated with posterior cingulate CBF (r  =  0.38, p  =  0.049). TCCD-measured BFV and CVC of the MCA are indicators of cerebral perfusion to clinically valuable brain regions in healthy middle-aged adults. TCCD may not be a good indicator of blood flow to cerebral white matter.

  3. Tissue-Negative Transient Ischemic Attack: Is There a Role for Perfusion MRI?

    PubMed

    Grams, Raymond W; Kidwell, Chelsea S; Doshi, Amish H; Drake, Kendra; Becker, Jennifer; Coull, Bruce M; Nael, Kambiz

    2016-07-01

    Approximately 60% of patients with a clinical transient ischemic attack (TIA) do not have DWI evidence of cerebral ischemia. The purpose of this study was to assess the added diagnostic value of perfusion MRI in the evaluation of patients with TIA who have normal DWI findings. The inclusion criteria for this retrospective study were clinical presentation of TIA at admission with a discharge diagnosis of TIA confirmed by a stroke neurologist, MRI including both DWI and perfusion-weighted imaging within 48 hours of symptom onset, and no DWI lesion. Cerebral blood flow (CBF) and time to maximum of the residue function (Tmax) maps were evaluated independently by two observers. Multivariate analysis was used to assess perfusion findings; clinical variables; age, blood pressure, clinical symptoms, diabetes (ABCD2) score; duration of TIA; and time between MRI and onset and resolution of symptoms. Fifty-two patients (33 women, 19 men; age range, 20-95 years) met the inclusion criteria. A regional perfusion abnormality was identified on either Tmax or CBF maps of 12 of 52 (23%) patients. Seven (58%) of the patients with perfusion abnormalities had hypoperfused lesions best detected on Tmax maps; the other five had hyperperfusion best detected on CBF maps. In 11 of 12 (92%) patients with abnormal perfusion MRI findings, the regional perfusion deficit correlated with the initial neurologic deficits. Multivariable analysis revealed no significant difference in demographics, ABCD2 scores, or presentation characteristics between patients with and those without perfusion abnormalities. Perfusion MRI that includes Tmax and CBF parametric maps adds diagnostic value by depicting regions with delayed perfusion or postischemic hyperperfusion in approximately one-fourth of TIA patients who have normal DWI findings.

  4. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    PubMed

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  5. 99mTc-ECD brain perfusion SPECT imaging for the assessment of brain perfusion in cerebral palsy (CP) patients with evaluation of the effect of hyperbaric oxygen therapy.

    PubMed

    Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid

    2015-01-01

    The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value.

  6. MRI of plaque characteristics and relationship with downstream perfusion and cerebral infarction in patients with symptomatic middle cerebral artery stenosis.

    PubMed

    Lu, Shan-Shan; Ge, Song; Su, Chun-Qiu; Xie, Jun; Mao, Jian; Shi, Hai-Bin; Hong, Xun-Ning

    2017-10-30

    Intracranial plaque characteristics are associated with stroke events. Differences in plaque features may explain the disconnect between stenosis severity and the presence of ischemic stroke. To investigate the relationship between plaque characteristics and downstream perfusion changes, and their contribution to the occurrence of cerebral infarction beyond luminal stenosis. Case control. Forty-six patients with symptomatic middle cerebral artery (MCA) stenosis (with acute cerebral infarction, n = 30; without acute cerebral infarction, n = 16). 3.0T with 3D turbo spin echo sequence (3D-SPACE). Luminal stenosis grade, plaque features including lesion T 2 and T 1 hyperintense components, plaque enhancement grade, and plaque distribution were assessed. Brain perfusion was evaluated on mean transient time maps based on the Alberta Stroke Program Early CT score (MTT-ASPECTS). Plaque features, grade of luminal stenosis, and MTT-ASPECTS were compared between two groups. The association between plaque features and MTT-ASPECTS were assessed using Spearman's correlation analysis. Multivariate logistic regression and receiver operating characteristic (ROC) curves were constructed to assess the effect of significant variables alone and their combination in determining the occurrence of cerebral infarction. Stronger enhanced plaques were associated with downstream lower MTT-ASPECTS (P = 0.010). Plaque enhancement grade (P = 0.039, odds ratio [OR] 5.9, 95% confidence interval [CI] 1.1-32) and MTT-ASPECTS (P = 0.003, OR 2.6, 95% CI 1.4-4.7) were associated with a recent cerebral infarction, whereas luminal stenosis grade was not (P = 0.128). The combination of MTT-ASPECTS and plaque enhancement grade provided incremental information beyond luminal stenosis grade alone. The area under the receiver operating characteristic curve (AUC) improved from 0.535 to 0.921 (P < 0.05). Strongly enhanced plaques are associated with a higher likelihood of downstream

  7. Optimized retrograde cerebral perfusion reduces ischemic energy depletion.

    PubMed

    Oda, Teiji; Kimura, Tetsuhiro; Ogata, Yoshitaka; Fujise, Yutaka

    2004-01-01

    It has been reported that retrograde cerebral perfusion (RCP) provides minimal capillary flow; however, the extent to which RCP can provide aerobic metabolic support is unknown. We evaluated whether perfusate composition optimization for RCP would preserve brain energy metabolism during hypothermic circulatory arrest (HCA) at 20 degrees C in rats. Three types of perfusates were prepared: hemoglobin-free saline, rat red blood cells, and artificial blood substitute (liposome-encapsulated hemoglobin); perfusates were made hypertonic, cooled to 20 degrees C, and oxygenated and CO(2) was administered (pH-stat management). Circulatory arrest was induced in 24 pH-stat-ventilated Wistar rats that had been surface cooled to 20 degrees C; 18 were assigned to the RCP group in which one of the three ( n = 6 each) perfusates was administered via the maxillary vein, and 6 received no perfusion. In two similarly surface-cooled rats (controls), brains were excised when the temperature reached 20 degrees C. After 20 min of RCP or HCA, brains were excised and immediately frozen; brain high-energy phosphates, adenosine, and water content were measured. The liposome-encapsulated hemoglobin perfusate preserved levels of brain tissue adenosine triphosphates and energy charge, but not significantly better than rat red blood cells. Both maintained significantly higher levels than perfusion with oxygenated saline or hypothermic circulatory arrest alone ( P = 0.0419-0.0001), under which regimes high-energy phosphates and energy charge declined to similar low values. RCP with hypertonic solution prevented brain edema. RCP with optimized composition perfusate (pH-stat, hypertonic rat red blood cells or liposome-encapsulated hemoglobin) reduced ischemic energy depletion during 20 min of HCA at 20 degrees C in rats.

  8. A pattern of cerebral perfusion anomalies between Major Depressive Disorder and Hashimoto Thyroiditis

    PubMed Central

    2011-01-01

    Background This study aims to evaluate relationship between three different clinical conditions: Major Depressive Disorders (MDD), Hashimoto Thyroiditis (HT) and reduction in regional Cerebral Blood Flow (rCBF) in order to explore the possibility that patients with HT and MDD have specific pattern(s) of cerebral perfusion. Methods Design: Analysis of data derived from two separate data banks. Sample: 54 subjects, 32 with HT (29 women, mean age 38.8 ± 13.9); 22 without HT (19 women, mean age 36.5 ± 12.25). Assessment: Psychiatric diagnosis was carried out by Simplified Composite International Diagnostic Interview (CIDIS) using DSM-IV categories; cerebral perfusion was measured by 99 mTc-ECD SPECT. Statistical analysis was done through logistic regression. Results MDD appears to be associated with left frontal hypoperfusion, left temporal hypoperfusion, diffuse hypoperfusion and parietal perfusion asymmetry. A statistically significant association between parietal perfusion asymmetry and MDD was found only in the HT group. Conclusion In HT, MDD is characterized by a parietal flow asymmetry. However, the specificity of rCBF in MDD with HT should be confirmed in a control sample with consideration for other health conditions. Moreover, this should be investigated with a longitudinally designed study in order to determine a possible pathogenic cause. Future studies with a much larger sample size should clarify whether a particular perfusion pattern is associated with a specific course or symptom cluster of MDD. PMID:21910915

  9. Cerebral blood flow and oxygenation in infants after birth asphyxia. Clinically useful information?

    PubMed

    Greisen, Gorm

    2014-10-01

    The term 'luxury perfusion' was coined nearly 50 years ago after observation of bright-red blood in the cerebral veins of adults with various brain pathologies. The bright-red blood represents decreased oxygen extraction and hence the perfusion is 'luxurious' compared to oxygen needs. Gradual loss of cellular energy charge during the hours following severe birth asphyxia was observed twenty years later by sequential cranial magnetic resonance spectroscopy. This led to the concept of delayed energy failure that is linked to mitochondrial dysfunction and apoptotic cell death. Abnormally increased perfusion and lack of normal cerebral blood flow regulation are also typically present, but whether the perfusion abnormalities at this secondary stage are detrimental, beneficial, or a mere epiphenomenon remains elusive. In contrast, incomplete reoxygenation of the brain during and following resuscitation is likely to compromise outcome. The clinical value of cerebral oximetry in this context can only be examined in a randomised clinical trial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of Omega-3 Fatty Acids on Resting Cerebral Perfusion in Patients with Mild Cognitive Impairment: A Randomized Controlled Trial.

    PubMed

    Schwarz, C; Wirth, M; Gerischer, L; Grittner, U; Witte, A V; Köbe, T; Flöel, A

    2018-01-01

    Alteration of cerebral perfusion can be considered as a possible therapeutic target in mild cognitive impairment. This randomized, placebo-controlled, double-blind proof-of-concept study assessed effects of omega-3 fatty acids on cerebral perfusion in patients with mild cognitive impairment. In thirteen patients (omega:n=5; placebo:n=8) cerebral perfusion was measured before and after 26-weeks intervention within posterior cortical regions using magnetic resonance imaging. There was a medium effect of intervention on cerebral blood flow (η2=0.122) and blood volume (η2=0.098). The omega group showed an increase in blood flow (mean difference: 0.02 [corresponds to 26.1%], 95% confidence interval:0.00-0.05) and blood volume (mean difference: 0.08 [corresponds to 18.5%], 95% confidence interval:0.01-0.15), which was not observed in the placebo group. These preliminary findings suggest that omega-3 fatty acids supplementation may improve perfusion in cerebral regions typically affected in mild cognitive impairment.Regulation of perfusion may help to maintain brain structure and function and potentially delay conversion to dementia.

  11. Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosenpud, J.D.; Montanaro, A.; Hart, M.V.

    1984-08-01

    Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment,more » major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.« less

  12. Scaling of cerebral blood perfusion in primates and marsupials.

    PubMed

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.

  13. Measurement of cerebral perfusion after zolpidem administration in the baboon model.

    PubMed

    Clauss, R P; Dormehl, I C; Oliver, D W; Nel, W H; Kilian, E; Louw, W K

    2001-01-01

    A recent report showed that zolpidem (CAS 82626-48-0) can lead to the arousal of a semi-comatosed patient. Zolpidem is clinically used for the treatment of insomnia. It belongs to the imidazopyridine chemical class and is a non benzodiazepine drug. It illicits its pharmacological action via the GABA receptor system through stimulation of particularly the omega 1 receptors. In this study, the effect of zolpidem on brain perfusion was examined by 99mTc hexamethyl-propylene amine oxime (HMPAO) split dose brain SPECT on four normal baboons and in one baboon with abnormal neurological behaviour. The global and regional brain perfusion was not significantly affected in the normal brains. In some regions of the abnormal baboon brain, however, there was a disproportionate increase in perfusion after zolpidem.

  14. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism.

    PubMed

    Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O'Donnell, Martha

    2012-07-01

    Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], and lactate to Cr) and diffusion-weighted imaging and perfusion-weighted imaging to assess cerebral water distribution (apparent diffusion coefficient [ADC] values) and cerebral blood flow (CBF) in three groups of juvenile rats (hyperglycemic, ketotic, and normal control). ATP-to-Pi ratio was reduced in both hyperglycemic and ketotic rats in comparison with controls. PCr-to-Pi ratio was reduced in the ketotic group, and there was a trend toward reduction in the hyperglycemic group. No significant differences were observed in NAA-to-Cr or lactate-to-Cr ratio. Cortical ADC was reduced in both groups (indicating brain cell swelling). Cortical CBF was also reduced in both groups. We conclude that both hyperglycemia and ketosis independently cause reductions in cerebral high-energy phosphates, CBF, and cortical ADC values. These effects may play a role in the pathophysiology of DKA-related brain injury.

  15. The Transcranial Doppler Sonography for Optimal Monitoring and Optimization of Cerebral Perfusion in Aortic Arch Surgery: A Case Series.

    PubMed

    Ghazy, Tamer; Darwisch, Ayham; Schmidt, Torsten; Nguyen, Phong; Elmihy, Sohaila; Fajfrova, Zuzana; Zickmüller, Claudia; Matschke, Klaus; Kappert, Utz

    2017-06-16

    To analyze the feasibility and advantages of transcranial doppler sonography (TCD) for monitoring and optimization of selective cerebral perfusion (SCP) in aortic arch surgery. From April 2013 to April 2014, nine patients with extensive aortic pathology underwent surgery under moderate hypothermic cardiac arrest with unilateral antegrade SCP under TCD monitoring in our institution. Adequate sonographic window and visualization of circle of Willis were to be confirmed. Intraoperatively, a cerebral cross-filling of the contralateral cerebral arteries on the unilateral SCP was to be confirmed with TCD. If no cross-filling was confirmed, an optimization of the SCP was performed via increasing cerebral flow and increasing PCO2. If not successful, the SCP was to be switched to bilateral perfusion. Air bubble hits were recorded at the termination of SCP. A sonographic window was confirmed in all patients. Procedural success was 100%. The mean operative time was 298 ± 89 minutes. Adequate cross-filling was confirmed in 8 patients. In 1 patient, inadequate cross-filling was detected by TCD and an optimization of cerebral flow was necessary, which was successfully confirmed by TCD. There was no conversion to bilateral perfusion. Extensive air bubble hits were confirmed in 1 patient, who suffered a postoperative stroke. The 30-day mortality rate was 0. Conclusion: The TCD is feasible for cerebral perfusion monitoring in aortic surgery. It enables a confirmation of adequacy of cerebral perfusion strategy or the need for its optimization. Documentation of calcific or air-bubble hits might add insight into patients suffering postoperative neurological deficits.

  16. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    PubMed Central

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  17. External carotid compression: a novel technique to improve cerebral perfusion during selective antegrade cerebral perfusion for aortic arch surgery.

    PubMed

    Grocott, Hilary P; Ambrose, Emma; Moon, Mike

    2016-10-01

    Selective antegrade cerebral perfusion (SACP) involving cannulation of either the axillary or innominate artery is a commonly used technique for maintaining cerebral blood flow (CBF) during the use of hypothermic cardiac arrest (HCA) for operations on the aortic arch. Nevertheless, asymmetrical CBF with hypoperfusion of the left cerebral hemisphere is a common occurrence during SACP. The purpose of this report is to describe an adjunctive maneuver to improve left hemispheric CBF during SACP by applying extrinsic compression to the left carotid artery. A 77-yr-old male patient with a history of aortic valve replacement presented for emergent surgical repair of an acute type A aortic dissection of a previously known ascending aortic aneurysm. His intraoperative course included cannulation of the right axillary artery, which was used as the aortic inflow during cardiopulmonary bypass and also allowed for subsequent SACP during HCA. After the onset of HCA, the innominate artery was clamped at its origin to allow for SACP. Shortly thereafter, however, the left-sided cerebral oxygen saturation (SrO2) began to decrease. Augmenting the PaO2, PaCO2 and both SACP pressure and flow failed to increase left hemispheric SrO2. Following the use of ultrasound guidance to confirm the absence of atherosclerotic disease in the carotid artery, external pressure was applied partially compressing the artery. With the carotid compression, the left cerebral saturation abruptly increased, suggesting pressurization of the left cerebral hemispheric circulation and augmentation of CBF. Direct ultrasound visualization and cautious partial compression of the left carotid artery may address asymmetrical CBF that occurs with SACP during HCA for aortic arch surgery. This strategy may lead to improved symmetry of CBF and corresponding cerebral oximetry measurements during aortic arch surgery.

  18. Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.

    PubMed

    Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J

    2014-06-01

    Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (ADcerebral hypoperfusion is very similar in AD and PDD. This suggests closely linked mechanisms of neurodegeneration mediating the evolution of dementia in both conditions.

  19. Decreased cerebral perfusion in Duchenne muscular dystrophy patients.

    PubMed

    Doorenweerd, Nathalie; Dumas, Eve M; Ghariq, Eidrees; Schmid, Sophie; Straathof, Chiara S M; Roest, Arno A W; Wokke, Beatrijs H; van Zwet, Erik W; Webb, Andrew G; Hendriksen, Jos G M; van Buchem, Mark A; Verschuuren, Jan J G M; Asllani, Iris; Niks, Erik H; van Osch, Matthias J P; Kan, Hermien E

    2017-01-01

    Duchenne muscular dystrophy is caused by dystrophin gene mutations which lead to the absence of the protein dystrophin. A significant proportion of patients suffer from learning and behavioural disabilities, in addition to muscle weakness. We have previously shown that these patients have a smaller total brain and grey matter volume, and altered white matter microstructure compared to healthy controls. Patients with more distal gene mutations, predicted to affect dystrophin isoforms Dp140 and Dp427, showed greater grey matter reduction. Now, we studied if cerebral blood flow in Duchenne muscular dystrophy patients is altered, since cerebral expression of dystrophin also occurs in vascular endothelial cells and astrocytes associated with cerebral vasculature. T1-weighted anatomical and pseudo-continuous arterial spin labeling cerebral blood flow images were obtained from 26 patients and 19 age-matched controls (ages 8-18 years) on a 3 tesla MRI scanner. Group comparisons of cerebral blood flow were made with and without correcting for grey matter volume using partial volume correction. Results showed that patients had a lower cerebral blood flow than controls (40.0 ± 6.4 and 47.8 ± 6.3 mL/100 g/min respectively, p = 0.0002). This reduction was independent of grey matter volume, suggesting that they are two different aspects of the pathophysiology. Cerebral blood flow was lowest in patients lacking Dp140. There was no difference in CBF between ambulant and non-ambulant patients. Only three patients showed a reduced left ventricular ejection fraction. No correlation between cerebral blood flow and age was found. Our results indicate that cerebral perfusion is reduced in Duchenne muscular dystrophy patients independent of the reduced grey matter volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Potential of Contrast-Enhanced Ultrasound as a Bedside Monitoring Technique in Cerebral Perfusion: a Systematic Review.

    PubMed

    Vinke, Elisabeth J; Kortenbout, Anna J; Eyding, Jens; Slump, Cornelis H; van der Hoeven, Johannes G; de Korte, Chris L; Hoedemaekers, Cornelia W E

    2017-12-01

    Contrast-enhanced ultrasound (CEUS) has been suggested as a new method to measure cerebral perfusion in patients with acute brain injury. In this systematic review, the tolerability, repeatability, reproducibility and accuracy of different CEUS techniques for the quantification of cerebral perfusion were assessed. We selected studies published between January 1994 and March 2017 using CEUS to measure cerebral perfusion. We included 43 studies (bolus kinetics n = 31, refill kinetics n = 6, depletion kinetics n = 6) with a total of 861 patients. Tolerability was reported in 28 studies describing 12 patients with mild and transient side effects. Repeatability was assessed in 3 studies, reproducibility in 2 studies and accuracy in 19 studies. Repeatability was high for experienced sonographers and significantly lower for less experienced sonographers. Reproducibility of CEUS was not clear. The sensitivity and specificity of CEUS for the detection of cerebral ischemia ranged from 75% to 96% and from 60% to 100%. Limited data on repeatability, reproducibility and accuracy may suggest that this technique could be feasible for use in acute brain injury patients. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  1. Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure.

    PubMed

    Khan, James; Mariappan, Ramamani; Venkatraghavan, Lashmi

    2014-07-01

    Changes in electroencephalogram (EEG) patterns correlate well with changes in cerebral perfusion pressure (CPP) and hence entropy and bispectral index values may also correlate with CPP. To highlight the potential application of entropy, an EEG-based anesthetic depth monitor, on indicating cerebral perfusion in patients with increased intracranial pressure (ICP), we report two cases of emergency neurosurgical procedure in patients with raised ICP where anesthesia was titrated to entropy values and the entropy values suddenly increased after cranial decompression, reflecting the increase in CPP. Maintaining systemic blood pressure in order to maintain the CPP is the anesthetic goal while managing patients with raised ICP. EEG-based anesthetic depth monitors may hold valuable information on guiding anesthetic management in patients with decreased CPP for better neurological outcome.

  2. Comparative clinical study between retrograde cerebral perfusion and selective cerebral perfusion in surgery for acute type A aortic dissection.

    PubMed

    Usui, A; Yasuura, K; Watanabe, T; Maseki, T

    1999-05-01

    Selection of a brain protection method is a primary concern for aortic arch surgery. We performed a retrospective study to compare the respective advantages and disadvantages of retrograde cerebral perfusion (RCP) and selective cerebral perfusion (SCP) in patients who underwent surgery for acute type A aortic dissection. The study reviewed 166 patients who underwent surgery at Nagoya University or its eight branch hospitals between January 1990 and August 1996. There were 91 patients who received SCP and 75 patients who underwent RCP. Results for these two groups were compared. There were no significant differences in age, gender, Marfan syndrome rate, DeBakey classification, or emergency operation rate. Rates of various preoperative complications were similar except for aortic valve regurgitation. Arch replacement was performed more often in SCP than in RCP patients (49% vs. 27%, P = 0.0028). There were no significant differences between groups in cardiac ischemic time or visceral organ ischemic time. However, RCP group showed shorter cardio-pulmonary bypass time (297+/-99 vs. 269+/-112 min, P = 0.013) and lower the lowest core temperature (21.6+/-3.1 degrees C vs. 18.7+/-2.1 degrees C, P = 0.0001). SCP duration was longer than RCP duration (103+/-56 vs. 54+/-24 min, P < 0.0001). Despite these differences, RCP patients were not significantly different from SCP patients with regard to any postoperative complication, neurological dysfunction (16 vs. 19%), or operative mortality (all deaths within the hospitalization; 24 vs. 21%). Regarding neurologic dysfunction, there were six cases of coma, six of motor paralysis, two of paraplegia and one of visual loss among SCP patients, and eight cases of coma, three of motor paralysis, and three of convulsion in the RCP group. The incidence of motor paralysis was higher in the SCP group, while the incidence of coma was higher in the RCP group. RCP can be performed without clamping or cannulation of the cervical arteries

  3. Cerebral Perfusion and Gray Matter Changes Associated With Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Nudelman, Kelly N H; McDonald, Brenna C; Wang, Yang; Smith, Dori J; West, John D; O'Neill, Darren P; Zanville, Noah R; Champion, Victoria L; Schneider, Bryan P; Saykin, Andrew J

    2016-03-01

    To investigate the longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN) symptoms (sx) and brain perfusion changes in patients with breast cancer. Interaction of CIPN-sx perfusion effects with known chemotherapy-associated gray matter density decrease was also assessed to elucidate the relationship between CIPN and previously reported cancer treatment-related brain structural changes. Patients with breast cancer treated with (n = 24) or without (n = 23) chemotherapy underwent clinical examination and brain magnetic resonance imaging at the following three time points: before treatment (baseline), 1 month after treatment completion, and 1 year after the 1-month assessment. CIPN-sx were evaluated with the self-reported Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity four-item sensory-specific scale. Perfusion and gray matter density were assessed using voxel-based pulsed arterial spin labeling and morphometric analyses and tested for association with CIPN-sx in the patients who received chemotherapy. Patients who received chemotherapy reported significantly increased CIPN-sx from baseline to 1 month, with partial recovery by 1 year (P < .001). CIPN-sx increase from baseline to 1 month was significantly greater for patients who received chemotherapy compared with those who did not (P = .001). At 1 month, neuroimaging showed that for the group that received chemotherapy, CIPN-sx were positively associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions associated with pain processing (P < .001). Longitudinal magnetic resonance imaging analysis in the group receiving chemotherapy indicated that CIPN-sx and associated perfusion changes from baseline to 1 month were also positively correlated with gray matter density change (P < .005). Peripheral neuropathy symptoms after systemic chemotherapy for breast cancer are associated with changes in cerebral perfusion and gray

  4. Cerebral Perfusion and Gray Matter Changes Associated With Chemotherapy-Induced Peripheral Neuropathy

    PubMed Central

    Nudelman, Kelly N.H.; McDonald, Brenna C.; Wang, Yang; Smith, Dori J.; West, John D.; O'Neill, Darren P.; Zanville, Noah R.; Champion, Victoria L.; Schneider, Bryan P.

    2016-01-01

    Purpose To investigate the longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN) symptoms (sx) and brain perfusion changes in patients with breast cancer. Interaction of CIPN-sx perfusion effects with known chemotherapy-associated gray matter density decrease was also assessed to elucidate the relationship between CIPN and previously reported cancer treatment–related brain structural changes. Methods Patients with breast cancer treated with (n = 24) or without (n = 23) chemotherapy underwent clinical examination and brain magnetic resonance imaging at the following three time points: before treatment (baseline), 1 month after treatment completion, and 1 year after the 1-month assessment. CIPN-sx were evaluated with the self-reported Functional Assessment of Cancer Therapy/Gynecologic Oncology Group–Neurotoxicity four-item sensory-specific scale. Perfusion and gray matter density were assessed using voxel-based pulsed arterial spin labeling and morphometric analyses and tested for association with CIPN-sx in the patients who received chemotherapy. Results Patients who received chemotherapy reported significantly increased CIPN-sx from baseline to 1 month, with partial recovery by 1 year (P < .001). CIPN-sx increase from baseline to 1 month was significantly greater for patients who received chemotherapy compared with those who did not (P = .001). At 1 month, neuroimaging showed that for the group that received chemotherapy, CIPN-sx were positively associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions associated with pain processing (P < .001). Longitudinal magnetic resonance imaging analysis in the group receiving chemotherapy indicated that CIPN-sx and associated perfusion changes from baseline to 1 month were also positively correlated with gray matter density change (P < .005). Conclusion Peripheral neuropathy symptoms after systemic chemotherapy for breast cancer are associated with

  5. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  6. Perfusion MR Imaging and Proton MR Spectroscopic Imaging in Differentiating Necrotizing Cerebritis from Glioblastoma Multiforme

    PubMed Central

    Pivawer, Gabriel; Law, Meng; Zagzag, David

    2007-01-01

    We describe a lesion with the MR imaging characteristics of a glioblastoma mutiforme and demonstrate how perfusion MR imaging and proton MR spectroscopic imaging can be used to differentiate necrotizing cerebritis from what appeared to be a high-grade glioma. A 43 year old woman presented to her physician complaining of progressive visual disturbance and headache for several weeks. Conventional MR imaging demonstrated a parietal peripherally enhancing mass with central necrosis and moderate to severe surrounding T2 hyperintensity suggesting an infiltrating high-grade glioma. However, advanced imaging, including dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) and magnetic resonance spectroscopic imaging (MRSI), suggested a non-neoplastic lesion. The DSC MRI data demonstrated no hyperperfusion within the lesion and surrounding T2 signal abnormality and the MRSI data showed overall decrease in metabolites in this region, except for lactate. Because of the aggressive appearance to the lesion and the patients worsening symptoms, a biopsy was performed. The pathologic diagnosis was necrotizing cerebritis. After the commencement of steroid therapy, imaging findings and patient symptoms improved. This report will review the utility of advanced imaging for differentiating inflammatory from neoplastic appearing lesions on conventional imaging. PMID:17275620

  7. Intracranial pressure and cerebral perfusion pressure in patients developing brain death.

    PubMed

    Salih, Farid; Holtkamp, Martin; Brandt, Stephan A; Hoffmann, Olaf; Masuhr, Florian; Schreiber, Stephan; Weissinger, Florian; Vajkoczy, Peter; Wolf, Stefan

    2016-08-01

    We investigated whether a critical rise of intracranial pressure (ICP) leading to a loss of cerebral perfusion pressure (CPP) could serve as a surrogate marker of brain death (BD). We retrospectively analyzed ICP and CPP of patients in whom BD was diagnosed (n = 32, 16-79 years). Intracranial pressure and CPP were recorded using parenchymal (n = 27) and ventricular probes (n = 5). Data were analyzed from admission until BD was diagnosed. Intracranial pressure was severely elevated (mean ± SD, 95.5 ± 9.8 mm Hg) in all patients when BD was diagnosed. In 28 patients, CPP was negative at the time of diagnosis (-8.2 ± 6.5 mm Hg). In 4 patients (12.5%), CPP was reduced but not negative. In these patients, minimal CPP was 4 to 18 mm Hg. In 1 patient, loss of CPP occurred 4 hours before apnea completed the BD syndrome. Brain death was universally preceded by a severe reduction of CPP, supporting loss of cerebral perfusion as a critical step in BD development. Our data show that a negative CPP is neither sufficient nor a prerequisite to diagnose BD. In BD cases with positive CPP, we speculate that arterial blood pressure dropped below a critical closing pressure, thereby causing cessation of cerebral blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cerebral Perfusion Changes in Post-Concussion Syndrome: A Prospective Controlled Cohort Study

    PubMed Central

    Marcil, Lorenzo D.; Dewey, Deborah; Carlson, Helen L.; MacMaster, Frank P.; Brooks, Brian L.; Lebel, R. Marc

    2017-01-01

    Abstract The biology of post-concussive symptoms is unclear. Symptoms are often increased during activities, and have been linked to decreased cerebrovascular reactivity and perfusion. The aim of this study was to examine cerebral blood flow (CBF) in children with different clinical recovery patterns following mild traumatic brain injury (mTBI). This was a prospective controlled cohort study of children with mTBI (ages 8 to 18 years) who were symptomatic with post-concussive symptoms at one month post-injury (symptomatic, n = 27) and children who had recovered quickly (asymptomatic, n = 24). Pseudo continuous arterial spin labeling magnetic resonance imaging (MRI) was used to quantify CBF. The mTBI groups were imaged at 40 days post-injury. Global and regional CBF were compared with healthy controls of similar age and sex but without a history of mTBI (n = 21). Seventy-two participants (mean age: 14.1 years) underwent neuroimaging. Significant differences in CBF were found: global CBF was higher in the symptomatic group and lower in the asymptomatic group compared with controls, (F(2,69) 9.734; p < 0.001). Post-injury symptom score could be predicted by pre-injury symptoms and CBF in presence of mTBI (adjusted R2 = 0.424; p < 0.001). Altered patterns of cerebral perfusion are seen following mTBI and are associated with the recovery trajectory. Symptomatic children have higher CBF. Children who “recovered” quickly, have decreased CBF suggesting that clinical recovery precedes the cerebral recovery. Further longitudinal studies are required to determine if these perfusion patterns continue to change over time. PMID:27554429

  9. Cerebral perfusion computed tomography deconvolution via structure tensor total variation regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Dong; Zhang, Xinyu; Bian, Zhaoying, E-mail: zybian@smu.edu.cn, E-mail: jhma@smu.edu.cn

    Purpose: Cerebral perfusion computed tomography (PCT) imaging as an accurate and fast acute ischemic stroke examination has been widely used in clinic. Meanwhile, a major drawback of PCT imaging is the high radiation dose due to its dynamic scan protocol. The purpose of this work is to develop a robust perfusion deconvolution approach via structure tensor total variation (STV) regularization (PD-STV) for estimating an accurate residue function in PCT imaging with the low-milliampere-seconds (low-mAs) data acquisition. Methods: Besides modeling the spatio-temporal structure information of PCT data, the STV regularization of the present PD-STV approach can utilize the higher order derivativesmore » of the residue function to enhance denoising performance. To minimize the objective function, the authors propose an effective iterative algorithm with a shrinkage/thresholding scheme. A simulation study on a digital brain perfusion phantom and a clinical study on an old infarction patient were conducted to validate and evaluate the performance of the present PD-STV approach. Results: In the digital phantom study, visual inspection and quantitative metrics (i.e., the normalized mean square error, the peak signal-to-noise ratio, and the universal quality index) assessments demonstrated that the PD-STV approach outperformed other existing approaches in terms of the performance of noise-induced artifacts reduction and accurate perfusion hemodynamic maps (PHM) estimation. In the patient data study, the present PD-STV approach could yield accurate PHM estimation with several noticeable gains over other existing approaches in terms of visual inspection and correlation analysis. Conclusions: This study demonstrated the feasibility and efficacy of the present PD-STV approach in utilizing STV regularization to improve the accuracy of residue function estimation of cerebral PCT imaging in the case of low-mAs.« less

  10. Combination of blood flow asymmetry in the cerebral and cerebellar hemispheres on brain perfusion SPECT predicts 5-year outcome in patients with symptomatic unilateral major cerebral artery occlusion.

    PubMed

    Nomura, Jun-ichi; Ogasawara, Kuniaki; Saito, Hideo; Terasaki, Kazunori; Matsumoto, Yoshiyasu; Takahashi, Yoshihiro; Ogasawara, Yasushi; Saura, Hiroaki; Yoshida, Koji; Sato, Yuiko; Kubo, Yoshitaka; Ogawa, Akira

    2014-03-01

    Misery perfusion increases the risk of stroke recurrence in patients with symptomatic major cerebral artery occlusion. The ratio of brain perfusion contralateral-to-affected asymmetry in the cerebellar hemisphere to brain perfusion affected-to-contralateral asymmetry in the cerebral hemisphere (CblPR/CbrPR) indicates affected-to-contralateral asymmetry of oxygen extraction fraction (OEF) in the cerebral hemisphere. The purpose of the present study was to determine whether the CblPR/CbrPR on brain perfusion single-photon emission computed tomography (SPECT) predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the middle cerebral artery (MCA) or internal carotid artery (ICA). Brain perfusion was assessed using N-isopropyl-p-[123I]-iodoamphetamine (123I-IMP) SPECT in 70 patients. A region of interest (ROI) was manually placed in the bilateral MCA territories and in the bilateral cerebellar hemispheres, and the CblPR/CbrPR was calculated. All patients were prospectively followed for 5 years. The primary end points were stroke recurrence or death. A total of 17 patients exhibited the primary end points, 11 of whom experienced subsequent ipsilateral strokes. Multivariate analysis revealed that only high CblPR/CbrPR was significantly associated with the development of the primary end point or subsequent ipsilateral strokes (95% confidential limits [CIs], 1.130-3.145; P  =  0.0114 or 95% CIs, 2.558-5.140; P  =  0.0045, respectively). The CblPR/CbrPR provided 65% (11/17) or 91% (10/11) sensitivity and 88% (47/53) or 88% (52/59) specificity in predicting the primary end point or subsequent ipsilateral strokes, respectively. The CblPR/CbrPR on brain perfusion SPECT predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the MCA or ICA.

  11. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion during deep hypothermic circulatory arrest in aortic surgery: a meta-analysis of 7023 patients.

    PubMed

    Guo, Shasha; Sun, Yanhua; Ji, Bingyang; Liu, Jinping; Wang, Guyan; Zheng, Zhe

    2015-04-01

    In aortic arch surgery, deep hypothermic circulatory arrest (DHCA) combined with cerebral perfusion is employed worldwide as a routine practice. Even though antegrade cerebral perfusion (ACP) is more widely used than retrograde cerebral perfusion (RCP), the difference in benefit and risk between ACP and RCP during DHCA is uncertain. The purpose of this meta-analysis is to compare neurologic outcomes and early mortality between ACP and RCP in patients who underwent aortic surgery during DHCA. PubMed, EMBASE, and the Cochrane Library were searched using the key words "antegrade," "retrograde," "cerebral perfusion," "cardiopulmonary bypass," "extracorporeal circulation," and "cardiac surgery" for studies reporting on clinical endpoints including early mortality, stroke, temporary neurologic dysfunction (TND), and permanent neurologic dysfunction (PND) in aortic surgery requiring DHCA with ACP or RCP. Heterogeneity was analyzed with the Cochrane Q statistic and I(2) statistic. Publication bias was tested with Begg's funnel plot and Egger's test. Thirty-four studies were included in this meta-analysis, with 4262 patients undergoing DHCA + ACP and 2761 undergoing DHCA + RCP. The overall pooled relative risk for TND was 0.722 (95% CI = [0.579, 0.900]), and the z-score for overall effect was 2.9 (P = 0.004). There was low heterogeneity (I(2) = 18.7%). The analysis showed that patients undergoing DHCA + ACP had better outcomes than those undergoing DHCA + RCP in terms of TND, while there were no significant differences between groups in terms of PND, stroke, and early mortality. This meta-analysis indicates that DHCA + ACP has an advantage over DHCA + RCP in terms of TND, while the two methods show similar results in terms of PND, early mortality, and stroke. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Early diagnosis of Alzheimer's disease and Parkinson's disease associated with dementia using cerebral perfusion SPECT.

    PubMed

    Song, In-Uk; Chung, Yong-An; Chung, Sung-Woo; Jeong, Jaeseung

    2014-01-01

    Since patterns of cognitive dysfunction in mild Parkinson's disease associated with dementia (PDD) are similar to those in mild Alzheimer's disease (AD), it is difficult to accurately differentiate between these two types of dementia in their early phases using neuropsychological tests. The purpose of the current study was to investigate differences in cerebral perfusion patterns of patients with AD and PDD at the earliest stages using single photon emission computed tomography (SPECT). We consecutively recruited 31 patients with mild PDD, 32 patients with mild probable AD and 33 age-matched healthy subjects. All subjects underwent (99m)Tc-hexamethylpropyleneamine oxime perfusion SPECT and completed general neuropsychological tests. We found that both mild PDD and AD patients showed distinct hypoperfusion in frontal, parietal and temporal regions, compared with healthy subjects. More importantly, hypoperfusion in occipital and cerebellar regions was observed only in mild PDD. The observation of a significant decrease in cerebral perfusion in occipital and cerebellar regions in patients with mild PDD is likely useful to differentiate between PDD and AD at the earliest stages. © 2013 S. Karger AG, Basel.

  13. Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination.

    PubMed

    Pugash, D; Hendson, G; Dunham, C P; Dewar, K; Money, D M; Prayer, D

    2012-12-01

    Prenatal development of the brain is characterized by gestational age-specific changes in the laminar structure of the brain parenchyma before 30 gestational weeks. Cerebral lamination patterns of normal fetal brain development have been described histologically, by postmortem in-vitro magnetic resonance imaging (MRI) and by in-vivo fetal MRI. The purpose of this study was to evaluate the sonographic appearance of laminar organization of the cerebral wall in normal and abnormal brain development. This was a retrospective study of ultrasound findings in 92 normal fetuses and 68 fetuses with abnormal cerebral lamination patterns for gestational age, at 17-38 weeks' gestation. We investigated the visibility of the subplate zone relative to the intermediate zone and correlated characteristic sonographic findings of cerebral lamination with gestational age in order to evaluate transient structures. In the normal cohort, the subplate zone-intermediate zone interface was identified as early as 17 weeks, and in all 57 fetuses examined up to 28 weeks. In all of these fetuses, the subplate zone appeared anechoic and the intermediate zone appeared homogeneously more echogenic than did the subplate zone. In the 22 fetuses between 28 and 34 weeks, there was a transition period when lamination disappeared in a variable fashion. The subplate zone-intermediate zone interface was not identified in any fetus after 34 weeks (n=13). There were three patterns of abnormal cerebral lamination: (1) no normal laminar pattern before 28 weeks (n=32), in association with severe ventriculomegaly, diffuse ischemia, microcephaly, teratogen exposure or lissencephaly; (2) focal disruption of lamination before 28 weeks (n=24), associated with hemorrhage, porencephaly, stroke, migrational abnormalities, thanatophoric dysplasia, meningomyelocele or encephalocele; (3) increased prominence and echogenicity of the intermediate zone before 28 weeks and/or persistence of a laminar pattern beyond 33 weeks

  14. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia.

    PubMed

    de la Torre, Jack C

    2016-09-01

    Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia. © 2016 International Society of Neuropathology.

  15. [Study of 3D-pcASL in differentiation of acute cerebral infarction and acute encephalitis].

    PubMed

    Mao, Chuanwan; Fu, Yuchuan; Ye, Xinjian; Wu, Aiqin; Yan, Zhihan

    2015-06-16

    To investigate the value of three-dimentional pseudo-continuous arterial spin labeling (ASL) perfusion imaging in differentiating acute cerebral infarction from acute encephalitis. From September 2013 to September 2014, 42 patients with actue stroke onset and 20 healthy volunteers underwent conventional brain MRI DWI and 3D-ASL Perfusion Imaging in our hospital. Only 20 patients whose lesions located in the middle cerebral artery (MCA) territory were enrolled in this study. Of these cases, 12 cases were diagnosed with acute cerebral infarction, 8 were diagnosed with encephalitis. First, we analyzed the imaging features of the 20 patients and 20 volunteers. Then, CBF values of the lesions in the 20 patients and the gray matter of MCA territory in the 20 volunteers were measured on 3D-pcASL images. Third, the difference of mean CBF values between patients and volunteers were analyzed. Out of 20 study group, 19 patients whose lesions presented high signal intensity on DWI images, 12 cases were acute cerebral infarction and 8 were encephalitis. All the lesions of 20 cases showed abnormal perfusion on 3D-pcASL images. 3D-pcASL has good consistency with DWI in diagnostic capabilities (χ² = 0.565, P = 0.01). On 3D-pcASL, 11 acute cerebral infarction patients presented perfusion defects or low perfusion, 1 acute cerebral infarction patients showed high perfusion, 8 encephalitis patients showed inhomogeneous perfusion. The mean value of CBF was (17 ± 6) ml · min⁻¹ · 100 g⁻¹ in 12 acute cerebral infarction patients, (136 ± 69) ml · min⁻¹ · 100 g⁻¹ in 8 encephalitis patients and (68 ± 12) ml · min⁻¹ · 100 g⁻¹ three in 20 healthy volunteers. The difference in mean value of CBF among the three groups was statistically significant (P < 0.01). Acute cerebral infarction often shows low perfusion and acute encephalitis shows high perfusion on 3D-pcASL images, which has a higher application value in diagnosis and differentiation of acute cerebral

  16. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion

    PubMed Central

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Urban, Alan

    2015-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject. PMID:26721392

  17. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  18. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  19. Cerebral perfusion and oxygenation after the Norwood procedure: comparison of right ventricle-pulmonary artery conduit with modified Blalock-Taussig shunt.

    PubMed

    Kussman, Barry D; Gauvreau, Kimberlee; DiNardo, James A; Newburger, Jane W; Mackie, Andrew S; Booth, Karen L; del Nido, Pedro J; Roth, Stephen J; Laussen, Peter C

    2007-03-01

    The proposed physiologic advantage of the modified Norwood procedure using a right ventricle-pulmonary artery conduit to supply pulmonary blood flow, compared with a modified Blalock-Taussig shunt, is reduced runoff from the systemic-to-pulmonary circulation during diastole, resulting in a higher diastolic blood pressure and improved systemic perfusion. We hypothesized that the modified Norwood procedure is associated with improved cerebral perfusion and oxygenation. Transcranial Doppler sonography and near-infrared spectroscopy were performed in neonates undergoing the Norwood procedure with either a modified Blalock-Taussig shunt (n = 14) or right ventricle-pulmonary artery conduit (n = 13). Diastolic blood pressure was significantly higher in the right ventricle-pulmonary artery group at 6 hours after bypass (46 +/- 7 vs 40 +/- 4 mm Hg; P = .03), on postoperative day 1 (45 +/- 6 vs 37 +/- 5 mm Hg; P = .002), and on postoperative day 2 (46 +/- 7 vs 37 +/- 4 mm Hg; P = .001). Cerebral diastolic blood flow velocity did not differ significantly between groups at any time point or over time, but cerebral systolic blood flow velocity was higher over time in the Blalock-Taussig group (P = .01). No significant differences in regional cerebral oxygen saturation were found between groups at baseline or after bypass. Blood flow velocities and cerebral oxygen saturation did not differ significantly according to use of regional low-flow perfusion. The higher diastolic blood pressure after the modified Norwood procedure is not associated with higher cerebral blood flow velocities or regional cerebral oxygen saturation. This may imply an equal vulnerability to the cerebral injury associated with hemodynamic instability in the early postoperative period.

  20. The impact of a highly visible display of cerebral perfusion pressure on outcome in individuals with cerebral aneurysms.

    PubMed

    Kirkness, Catherine J; Burr, Robert L; Cain, Kevin C; Newell, David W; Mitchell, Pamela H

    2008-01-01

    Nurses' ability to rapidly detect decreases in cerebral perfusion pressure (CPP), which may contribute to secondary brain injury, may be limited by poor visibility of CPP displays. To evaluate the impact of a highly visible CPP display on the functional outcome in individuals with cerebral aneurysms. Patients with cerebral aneurysms (n = 100) who underwent continuous CPP monitoring were enrolled and randomized to beds with or without the additional CPP display. Six-month outcome was assessed. Functional outcome was not significantly different between control and intervention groups after controlling for initial neurologic condition (odds ratio .904, 95% confidence interval 0.317 to 2.573). However, greater time below CPP thresholds (55 to 70 mm Hg) was significantly associated with poorer outcome (P = .005 to .010). Although the enhanced CPP display was not associated with significantly better outcome, longer periods of CPP below set levels were associated with poorer outcome.

  1. Assessment of Pre- and Post-Operative Cerebral Perfusion in Anterior Circulation Intracranial Aneurysm Clipping Patients at Hospital Sungai Buloh Using CT Perfusion Scan and Correlations to Fisher, Navarro and WFNS Scores.

    PubMed

    Ghani, Ailani Ab; Nayan, Saiful Azli Mat; Kandasamy, Regunath; Ghani, Abdul Rahman Izani; Rosman, Azmin Kass

    2017-02-01

    Intracranial aneurysms may rupture and are typically associated with high morbidity and mortality, commonly due to vasospasm after rupture. Once the aneurysm ruptures, the patient's cerebral blood flow may be disturbed during the acute phase, affecting cerebral circulation and thus cerebral perfusion prior to the onset of vasospasm. Fisher and Navarro scores are used to predict vasospasm, while World Federation of Neurosurgical Societies (WFNS) scores are used to predict patient outcomes. Several score modifications are available to obtain higher sensitivity and specificity for the prediction of vasospasm development, but these scores are still unsuccessful. Alternatively, cerebral CT perfusion scan (CTP) is a non-invasive method for measuring cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in regions of interests (ROI) to obtain the cerebral perfusion status as well as detecting vasospasm. A total of 30 patients' data with clipped anterior circulation intracranial aneurysms admitted to the hospital between 1 January 2013 and 30 June 2014, were collected from the hospital's electronic database. The data collected included patients' admissions demographic profiles, Fisher, Navarro and WFNS scores; and their immediate pre- and post-operative CTP parameters. This study found a significant increase in post-operative MTT (pre- and post-operative MTT) were 9.75 (SD = 1.31) and 10.44 (SD = 1.56) respectively, ( P < 0.001)) as well as a significant reduction in post-operative CBF (pre- and post-operative mean CBF were 195.29 (SD = 24.92) and 179.49 (SD = 31.17) respectively ( P < 0.001)). There were no significant differences in CBV. There were no significant correlations between the pre- and post-operative CTP parameters and Fisher, Navarro or WFNS scores. Despite the interest in using Fisher, Navarro and WFNS scores to predict vasospasm and patient outcomes for ruptured intracranial aneurysms, this study found no significant

  2. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets.

    PubMed

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Rasmussen, Rune; Miles, James Edward; Poulsen, Helle Harding; Moltke, Finn Borgbjerg; Eriksen, Thomas

    2018-02-08

    Vasopressors are frequently used to increase blood pressure in order to ensure sufficient cerebral perfusion and oxygenation (CPO) during hypotensive periods in anaesthetized patients. Efficacy depends both on the vasopressor and anaesthetic protocol used. Propofol-remifentanil total intravenous anaesthesia (TIVA) is common in human anaesthesia, and dexmedetomidine is increasingly used as adjuvant to facilitate better haemodynamic stability and analgesia. Little is known of its interaction with vasopressors and subsequent effects on CPO. This study investigates the CPO response to infusions of norepinephrine and phenylephrine in piglets during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia. Sixteen healthy female piglets (25-34 kg) were randomly allocated into a two-arm parallel group design with either normal blood pressure (NBP) or induced low blood pressure (LBP). Anaesthesia was induced with propofol without premedication and maintained with propofol-remifentanil TIVA, and finally supplemented with continuous infusion of dexmedetomidine. Norepinephrine and phenylephrine were infused in consecutive intervention periods before and after addition of dexmedetomidine. Cerebral perfusion measured by laser speckle contrast imaging was related to cerebral oxygenation as measured by an intracerebral Licox probe (partial pressure of oxygen) and transcranial near infrared spectroscopy technology (NIRS) (cerebral oxygen saturation). During propofol-remifentanil anaesthesia, increases in blood pressure by norepinephrine and phenylephrine did not change cerebral perfusion significantly, but cerebral partial pressure of oxygen (Licox) increased following vasopressors in both groups and increases following norepinephrine were significant (NBP: P = 0.04, LBP: P = 0.02). In contrast, cerebral oxygen saturation (NIRS) fell significantly in NBP following phenylephrine (P = 0.003), and following both norepinephrine (P = 0.02) and phenylephrine

  3. Comparison between antegrade and retrograde cerebral perfusion or profound hypothermia as brain protection strategies during repair of type A aortic dissection.

    PubMed

    Stamou, Sotiris C; Rausch, Laura A; Kouchoukos, Nicholas T; Lobdell, Kevin W; Khabbaz, Kamal; Murphy, Edward; Hagberg, Robert C

    2016-07-01

    The goal of this study was to compare early postoperative outcomes and actuarial-free survival between patients who underwent repair of acute type A aortic dissection by the method of cerebral perfusion used. A total of 324 patients from five academic medical centers underwent repair of acute type A aortic dissection between January 2000 and December 2010. Of those, antegrade cerebral perfusion (ACP) was used for 84 patients, retrograde cerebral perfusion (RCP) was used for 55 patients, and deep hypothermic circulatory arrest (DHCA) was used for 184 patients during repair. Major morbidity, operative mortality, and 5-year actuarial survival were compared between groups. Multivariate logistic regression was used to determine predictors of operative mortality and Cox Regression hazard ratios were calculated to determine the predictors of long term mortality. Operative mortality was not influenced by the type of cerebral protection (19% for ACP, 14.5% for RCP and 19.1% for DHCA, P=0.729). In multivariable logistic regression analysis, hemodynamic instability [odds ratio (OR) =19.6, 95% confidence intervals (CI), 0.102-0.414, P<0.001] and CPB time >200 min(OR =4.7, 95% CI, 1.962-1.072, P=0.029) emerged as independent predictors of operative mortality. Actuarial 5-year survival was unchanged by cerebral protection modality (48.8% for ACP, 61.8% for RCP and 66.8% for no cerebral protection, log-rank P=0.844). During surgical repair of type A aortic dissection, ACP, RCP or DHCA are safe strategies for cerebral protection in selected patients with type A aortic dissection.

  4. Quantitative Changes in Cerebral Perfusion during Urinary Urgency in Women with Overactive Bladder

    PubMed Central

    Weissbart, Steven J.; Xu, Sihua; Bhavsar, Rupal; Rao, Hengyi

    2017-01-01

    Purpose To quantitatively measure changes in cerebral perfusion in select regions of interest in the brain during urinary urgency in women with overactive bladder (OAB) using arterial spin labeling (ASL). Methods Twelve women with OAB and 10 controls underwent bladder filling and rated urinary urgency (scale 0–10). ASL fMRI scans were performed (1) in the low urgency state after voiding and (2) high urgency state after drinking oral fluids. Absolute regional cerebral blood flow (rCBF) in select regions of interest was compared between the low and high urgency states. Results There were no significant differences in rCBF between the low and high urgency states in the control group. In the OAB group, rCBF (mean ± SE, ml/100 g/min) increased by 10–14% from the low to the high urgency state in the right anterior cingulate cortex (ACC) (44.56 ± 0.59 versus 49.52 ± 1.49, p < 0.05), left ACC (49.29 ± 0.85 versus 54.02 ± 1.46, p < 0.05), and left insula (50.46 ± 1.72 versus 54.99 ± 1.09, p < 0.05). Whole-brain analysis identified additional areas of activation in the right insula, right dorsolateral prefrontal cortex, and pons/midbrain area. Conclusions Urinary urgency is associated with quantitative increase in cerebral perfusion in regions of the brain associated with processing emotional response to discomfort. PMID:28904950

  5. Epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage.

    PubMed

    Kim, J A; Rosenthal, E S; Biswal, S; Zafar, S; Shenoy, A V; O'Connor, K L; Bechek, S C; Valdery Moura, J; Shafi, M M; Patel, A B; Cash, S S; Westover, M B

    2017-06-01

    To identify whether abnormal neural activity, in the form of epileptiform discharges and rhythmic or periodic activity, which we term here ictal-interictal continuum abnormalities (IICAs), are associated with delayed cerebral ischemia (DCI). Retrospective analysis of continuous electroencephalography (cEEG) reports and medical records from 124 patients with moderate to severe grade subarachnoid hemorrhage (SAH). We identified daily occurrence of seizures and IICAs. Using survival analysis methods, we estimated the cumulative probability of IICA onset time for patients with and without delayed cerebral ischemia (DCI). Our data suggest the presence of IICAs indeed increases the risk of developing DCI, especially when they begin several days after the onset of SAH. We found that all IICA types except generalized rhythmic delta activity occur more commonly in patients who develop DCI. In particular, IICAs that begin later in hospitalization correlate with increased risk of DCI. IICAs represent a new marker for identifying early patients at increased risk for DCI. Moreover, IICAs might contribute mechanistically to DCI and therefore represent a new potential target for intervention to prevent secondary cerebral injury following SAH. These findings imply that IICAs may be a novel marker for predicting those at higher risk for DCI development. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. MR spectroscopy and MR perfusion character of cerebral sparganosis: a case report.

    PubMed

    Chiu, C-H; Chiou, T-L; Hsu, Y-H; Yen, P-S

    2010-02-01

    The authors report the case of a 46-year-old woman with cerebral sparganosis resulting from infection with a larva of Spirometra. Computed tomography and magnetic resonance imaging revealed a mass lesion with prominent perifocal oedema in the left parietal lobe. Advanced imaging pulse sequences, including MR spectroscopy and MR perfusion, were performed. During surgery for the removal of a granuloma, the parasite was discovered and excised. Following treatment, the patient's neurological deficits markedly improved.

  7. Comparison between antegrade and retrograde cerebral perfusion or profound hypothermia as brain protection strategies during repair of type A aortic dissection

    PubMed Central

    Rausch, Laura A.; Kouchoukos, Nicholas T.; Lobdell, Kevin W.; Khabbaz, Kamal; Murphy, Edward; Hagberg, Robert C.

    2016-01-01

    Background The goal of this study was to compare early postoperative outcomes and actuarial-free survival between patients who underwent repair of acute type A aortic dissection by the method of cerebral perfusion used. Methods A total of 324 patients from five academic medical centers underwent repair of acute type A aortic dissection between January 2000 and December 2010. Of those, antegrade cerebral perfusion (ACP) was used for 84 patients, retrograde cerebral perfusion (RCP) was used for 55 patients, and deep hypothermic circulatory arrest (DHCA) was used for 184 patients during repair. Major morbidity, operative mortality, and 5-year actuarial survival were compared between groups. Multivariate logistic regression was used to determine predictors of operative mortality and Cox Regression hazard ratios were calculated to determine the predictors of long term mortality. Results Operative mortality was not influenced by the type of cerebral protection (19% for ACP, 14.5% for RCP and 19.1% for DHCA, P=0.729). In multivariable logistic regression analysis, hemodynamic instability [odds ratio (OR) =19.6, 95% confidence intervals (CI), 0.102–0.414, P<0.001] and CPB time >200 min(OR =4.7, 95% CI, 1.962–1.072, P=0.029) emerged as independent predictors of operative mortality. Actuarial 5-year survival was unchanged by cerebral protection modality (48.8% for ACP, 61.8% for RCP and 66.8% for no cerebral protection, log-rank P=0.844). Conclusions During surgical repair of type A aortic dissection, ACP, RCP or DHCA are safe strategies for cerebral protection in selected patients with type A aortic dissection. PMID:27563545

  8. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy.

    PubMed

    Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen

    2015-01-01

    Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right-sided cancer. To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. The risk of radiation induced myocardial perfusion abnormality in patients treated with CRT on the

  9. [The cerebral hemodynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy].

    PubMed

    Jin, De-xin; Chen, Xiu-yun; Huang, He; Zhang, Xu

    2006-12-01

    To investigate the cerebral hemodynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The blood flow velocity of cerebral arteries was measured by using transcranial Doppler ultrasound (TCD) in 6 cases with CADASIL and a quite number of age and sex matched control subjects. All patients (4 were symptomatic and 2 asymptomatic), being an established CADASIL family with the diagnosis confirmed by clinical characteristics, neuroimaging, pathology and molecular genetics, had abnormal mark signals on MR imagining and no history of hypertension, diabetes, heart disease and migraine. A routinely TCD detection, including peak-systolic velocity (Vp), end-diastolic velocity (Vd), mean velocity (Vm) and pulsatility index (PI), was carried out on the bilateral middle cerebral arteries (MCA), anterior cerebral arteries (ACA), posterior cerebral arteries (PCA) and vertebral arteries (VA) as well as the basilar artery (BA). A comparison between the cases and controls was made. Then, the changes of flow velocity in middle cerebral arteries (MCA) of the patients with CADASIL were observed before and after breathholding tests. In addition, brain CT perfusion imaging (CTP) was carried out in all the cases by using 16-slice spiral CT. The appearances of frequency spectrum were nearly normal in all the cases and there was no abnormality between the two sides on velocity (P > 0.05). As compared with the controls, the bilateral Vp, Vd and Vm in ACA and PCA were decreased obviously (P < 0.05). The velocity parameters of MCA with the exception of left Vm and right PI showed changes (P < 0.05) and there were no changes of PI in the bilateral ACA, PCA and Left MCA (P > 0.05). Moreover, there were marked changes in MCA (including Vm, Vd and PI) of all the cases as compared with the controls after breathholding (P < 0.01). Brain perfusion imaging showing the regional cerebral blood flow and regional cerebral blood volume in frontal

  10. Reduced Cerebrovascular Reactivity and Increased Resting Cerebral Perfusion in Rats Exposed to a Cafeteria Diet.

    PubMed

    Gomez-Smith, Mariana; Janik, Rafal; Adams, Conner; Lake, Evelyn M; Thomason, Lynsie A M; Jeffers, Matthew S; Stefanovic, Bojana; Corbett, Dale

    2018-02-10

    To better understand the effects of a diet high in fat, sugar, and sodium on cerebrovascular function, Sprague Dawley rats were chronically exposed to a Cafeteria diet. Resting cerebral perfusion and cerebrovascular reactivity was quantified using continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI). In addition, structural changes to the cerebrovasculature and susceptibility to ischemic lesion were examined. Compared to control animals fed standard chow (SD), Cafeteria diet (CAF) rats exhibited increased resting brain perfusion in the hippocampus and reduced cerebrovascular reactivity in response to 10% inspired CO 2 challenges in both the hippocampus and the neocortex. CAF rats switched to chow for one month (SWT) exhibited improved resting perfusion in the hippocampus as well as improved cerebrovascular reactivity in the neocortex. However, the diet switch did not correct cerebrovascular reactivity in the hippocampus. These changes were not accompanied by alterations in the structural integrity of the cerebral microvasculature, examined using rat endothelial cell antigen-1 (RECA-1) and immunoglobulin G (IgG) immunostaining. Also, the extent of tissue damage induced by endothelin-1 injection into sensorimotor cortex was not affected by the Cafeteria diet. These results demonstrate that short-term consumption of an ultra-processed diet reduces cerebrovascular reactivity. This effect persists after dietary normalization despite recovery of peripheral symptomatology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate.

    PubMed

    Teng, Yichao; Ding, Haishu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-01-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (C(tHb)) compared with its original value is also monitored. It is shown that C(tHb) decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  12. Perfusion CT in acute stroke: effectiveness of automatically-generated colour maps.

    PubMed

    Ukmar, Maja; Degrassi, Ferruccio; Pozzi Mucelli, Roberta Antea; Neri, Francesca; Mucelli, Fabio Pozzi; Cova, Maria Assunta

    2017-04-01

    To evaluate the accuracy of perfusion CT (pCT) in the definition of the infarcted core and the penumbra, comparing the data obtained from the evaluation of parametric maps [cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT)] with software-generated colour maps. A retrospective analysis was performed to identify patients with suspected acute ischaemic strokes and who had undergone unenhanced CT and pCT carried out within 4.5 h from the onset of the symptoms. A qualitative evaluation of the CBV, CBF and MTT maps was performed, followed by an analysis of the colour maps automatically generated by the software. 26 patients were identified, but a direct CT follow-up was performed only on 19 patients after 24-48 h. In the qualitative analysis, 14 patients showed perfusion abnormalities. Specifically, 29 perfusion deficit areas were detected, of which 15 areas suggested the penumbra and the remaining 14 areas suggested the infarct. As for automatically software-generated maps, 12 patients showed perfusion abnormalities. 25 perfusion deficit areas were identified, 15 areas of which suggested the penumbra and the other 10 areas the infarct. The McNemar's test showed no statistically significant difference between the two methods of evaluation in highlighting infarcted areas proved later at CT follow-up. We demonstrated how pCT provides good diagnostic accuracy in the identification of acute ischaemic lesions. The limits of identification of the lesions mainly lie at the pons level and in the basal ganglia area. Qualitative analysis has proven to be more efficient in identification of perfusion lesions in comparison with software-generated maps. However, software-generated maps have proven to be very useful in the emergency setting. Advances in knowledge: The use of CT perfusion is requested in increasingly more patients in order to optimize the treatment, thanks also to the technological evolution of CT, which now allows a whole

  13. Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas.

    PubMed

    Price, Stephen J; Peña, Alonso; Burnet, Neil G; Jena, Raj; Green, Hadrian A L; Carpenter, T Adrian; Pickard, John D; Gillard, Jonathan H

    2004-10-01

    The inherent invasiveness of malignant cells is a major determinant of the poor prognosis of cerebral gliomas. Diffusion tensor MRI (DTI) can identify white matter abnormalities in gliomas that are not seen on conventional imaging. By breaking down DTI into its isotropic (p) and anisotropic (q) components, we can determine tissue diffusion "signatures". In this study we have characterised these abnormalities in peritumoural white matter tracts. Thirty-five patients with cerebral gliomas and seven normal volunteers were imaged with DTI and T2-weighted sequences at 3 T. Displaced, infiltrated and disrupted white matter tracts were identified using fractional anisotropy (FA) maps and directionally encoded colour maps and characterised using tissue signatures. The diffusion tissue signatures were normal in ROIs where the white matter was displaced. Infiltrated white matter was characterised by an increase in the isotropic component of the tensor (p) and a less marked reduction of the anisotropic component (q). In disrupted white matter tracts, there was a marked reduction in q and increase in p. The direction of water diffusion was grossly abnormal in these cases. Diffusion tissue signatures may be a useful method of assessing occult white matter infiltration. Copyright 2004 Springer-Verlag

  14. An alternative method for neonatal cerebro-myocardial perfusion.

    PubMed

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-05-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed.

  15. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  16. An alternative method for neonatal cerebro-myocardial perfusion

    PubMed Central

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-01-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed. PMID:22307393

  17. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities.

    PubMed

    Umemura, Toshitaka; Kawamura, Takahiko; Hotta, Nigishi

    2017-03-01

    Diabetes patients have more than double the risk of ischemic stroke compared with non-diabetic individuals, and its neuroimaging characteristics have important clinical implications. To understand the pathophysiology of ischemic stroke in diabetes, it is important to focus not only on the stroke subtype, but also on the size and location of the occlusive vessels. Specifically, ischemic stroke in diabetes patients might be attributed to both large and small vessels, and intracranial internal carotid artery disease and small infarcts of the posterior circulation often occur. An additional feature is that asymptomatic lacunar infarctions are often seen in the basal ganglia and brain stem on brain magnetic resonance imaging. In particular, cerebral small vessel disease (SVD), including lacunar infarctions, white matter lesions and cerebral microbleeds, has been shown to be associated not only with stroke incidence, but also with the development and progression of dementia and diabetic microangiopathy. However, the pathogenesis of cerebral SVD is not fully understood. In addition, data on the association between neuroimaging findings of the cerebral SVD and diabetes are limited. Recently, the clinical importance of the link between cerebral SVD and retinal microvascular abnormalities has been a topic of considerable interest. Several clinical studies have shown that retinal microvascular abnormalities are closely related to cerebral SVD, suggesting that retinal microvascular abnormalities might be pathophysiologically linked to ischemic cerebral SVD. We review the literature relating to the pathophysiology and neuroimaging of cerebrovascular disease in diabetes, and discuss the problems based on the concept of cerebral large and small vessel disease. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Retrograde cerebral perfusion (RCP) in aortic arch surgery: efficacy and possible mechanisms of brain protection.

    PubMed

    Bavaria, J E; Pochettino, A

    1997-07-01

    Retrograde cerebral perfusion (RCP) was first introduced to treat air embolism during cardiopulmonary bypass (CPB). Its use was reintroduced to extend the safety of hypothermic circulatory arrest (HCA) during operations involving an open aortic arch. RCP seems to prevent cerebral rewarming during HCA. Both clinical and animal data suggest that RCP provides between 10% and 30% of baseline cerebral blood flow when administered through the superior vena cava (SVC) at jugular pressures of 20 to 25 mm Hg. RCP flows producing jugular venous pressures higher than 30 mm Hg may cause cerebral edema. Cerebral blood flow generated by RCP is able to sustain some cerebral metabolic activity, yet is not able to fully meet cerebral energy demands even at temperatures of 12 degrees to 18 degrees C. RCP may further prevent embolic events during aortic arch surgery when administered at moderate jugular vein pressures (< 40 mm Hg). Clinical results suggest that RCP, when applied during aortic arch reconstruction, may extend the safe HCA period and improve morbidity and mortality, especially when HCA times are more than 60 minutes. RCP applied in patients and severe carotid and brachiocephalic occlusive disease may be ineffective, and caution is in order when RCP times are greater than 90 minutes.

  19. Measurement of cerebral perfusion volume and 99mTc-HMPAO uptake using SPECT in controls and patients with Alzheimer's disease.

    PubMed

    Fleming, J S; Kemp, P M; Bolt, L; Goatman, K A

    2002-11-01

    Methods for quantifying the changes in brain function observed in single photon emission computed tomography (SPECT) using hexamethylenepropylene amine oxime (HMPAO) for patients with Alzheimer's disease have the potential of improving the diagnostic accuracy of the procedure and its ability to monitor response to treatment. The absolute percentage uptake of HMPAO and the cerebral perfusion volume (CPV) of the brain were assessed using SPECT in 26 patients with mild to moderate Alzheimer's disease (AD) and 24 control subjects. A subset of 15 control subjects, which was age-matched to the AD patients, was selected to allow fair statistical comparison of parameters between groups. The percentage of brain volume with reduced perfusion (R) and a volume loss index (VLI), given by /CPV, were also calculated. Eight of the control subjects were studied on a second occasion after a mean period of 6 months. There was no significant difference in percentage uptake between controls and AD patients, the mean value being 5.8%. Cerebral perfusion volume in controls was found to depend on sex (mean value in males and females being 1327 ml and 1222 ml, respectively) and on age. The volume loss index corrected for age and sex provided good discrimination between controls and AD subjects giving a sensitivity and specificity of 81% and 96%, respectively. The repeatability coefficient, the 95% confidence limit for the difference between repeat measurements, on controls was 67 ml (5%). The measurement of cerebral perfusion volume and related indices may be of value in identifying patients with early Alzheimer's disease and in following their response to treatment.

  20. Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure.

    PubMed

    Knirsch, Walter; Mayer, Kristina Nadine; Scheer, Ianina; Tuura, Ruth; Schranz, Dietmar; Hahn, Andreas; Wetterling, Kristina; Beck, Ingrid; Latal, Beatrice; Reich, Bettina

    2017-04-01

    Neonates with single ventricle congenital heart disease are at risk for structural cerebral abnormalities. Little is known about the further evolution of cerebral abnormalities until Fontan procedure. Between August 2012 and July 2015, we conducted a prospective cross-sectional two centre study using cerebral magnetic resonance imaging (MRI) and neuro-developmental outcome assessed by the Bayley-III. Forty-seven children (31 male) were evaluated at a mean age of 25.9 ± 3.4 months with hypoplastic left heart syndrome (25) or other single ventricle (22). Cerebral MRI was abnormal in 17 patients (36.2%) including liquor space enlargements (10), small grey (9) and minimal white (5) matter injuries. Eight of 17 individuals had combined lesions. Median (range) cognitive composite score (CCS) (100, 65-120) and motor composite score (MCS) (97, 55-124) were comparable to the reference data, while language composite score (LCS) (97, 68-124) was significantly lower ( P  = 0.040). Liquor space enlargement was associated with poorer performance on all Bayley-III subscores (CCS: P  = 0.02; LCS: P  = 0.002; MCS: P  = 0.013). The number of re-operations [odds ratio (OR) 2.2, 95% confidence interval (CI) 1.1-4.3] ( P  = 0.03) and re-interventions (OR 2.1, 95% CI 1.1-3.8) ( P  = 0.03) was associated with a higher rate of overall MRI abnormalities. Cerebral MRI abnormalities occur in more than one third of children with single ventricle, while the neuro-developmental status is less severely affected before Fontan procedure. Liquor space enlargement is the predominant MRI finding associated with poorer neuro-developmental status, warranting further studies to determine aetiology and further evolution until school-age. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Increased pressure during retrograde cerebral perfusion provides better preservation of the Na+, K+-ATPase activity.

    PubMed

    Yang, Luojia; Li, Zhijun; Yang, Yanmin; Zhu, Raymound; Summers, Randy; Deslauriers, Roxanne; Ye, Jian

    2006-11-01

    This study was carried out to determine if increased perfusion pressure during retrograde cerebral perfusion (RCP) provides better preservation of the brain Na+, K+-ATPase activity. Twenty pigs were subjected to anesthesia alone (control group, n=5), hypothermic circulatory arrest (HCA) (HCA group, n = 5), HCA+RCP at perfusion pressures of 24-29 mmHg (Low-pressure group, n=5), or HCA+RCP at perfusion pressures of 34-40 mmHg (High-pressure group, n = 5). The brain was harvested for the measurement of tissue Na+, K+-ATPase activity. Relative to the control pigs (67.2 +/- 2.1%), significant impairment of Na+, K+-ATPase activity was observed in all three experimental groups (29.8 +/- 7.4% in HCA group, 33.5 +/- 2.9% in the Low-pressure group, and 52.0 +/- 1.8% in the High-pressure group, p < 0.01). The best preservation of the enzyme, particularly in the cortex and cerebellum regions, was observed in the High-pressure group (p < 0.01). In conclusion, HCA causes severe impairment of Na+, K+-ATPase activity, and increasing perfusion pressures from 24-29 to 34-40 mmHg during RCP significantly improves preservation of Na+, K+-ATPase activity, and the improvement of the protection varies in different regions of the brain.

  2. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  3. Do thallium myocardial perfusion scan abnormalities predict survival in sarcoid patients without cardiac symptoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, E.L.; Caldwell, J.W.

    1990-07-01

    Whereas the total mortality rate for sarcoidosis is 0.2 per 100,000, the prognosis, when the heart is involved, is very much worse. The authors used the difference in mortality rate to infer whether thallium 201 myocardial perfusion scan abnormalities correspond to myocardial sarcoid by making the simplifying assumption that if they do, then patients with abnormal scans will be found to have a death rate similar to patients with sarcoid heart disease. The authors therefore analyzed complete survival data on 52 sarcoid patients without cardiac symptoms an average of eighty-nine months after they had been scanned as part of amore » protocol. By use of survival analysis (the Cox proportional hazards model), the only variable that was significantly associated with survival was age. The patients' scan pattern, treatment status, gender, and race were not significantly related to survival. The authors conclude that thallium myocardial perfusion scans cannot reliably be used to diagnose sarcoid heart disease in sarcoid patients without cardiac symptoms.« less

  4. Randomized controlled trial comparing cerebral perfusion pressure-targeted therapy versus intracranial pressure-targeted therapy for raised intracranial pressure due to acute CNS infections in children.

    PubMed

    Kumar, Ramesh; Singhi, Sunit; Singhi, Pratibha; Jayashree, Muralidharan; Bansal, Arun; Bhatti, Anuj

    2014-08-01

    In children with acute CNS infection, management of raised intracranial pressure improves mortality and neuromorbidity. We compared cerebral perfusion pressure-targeted approach with the conventional intracranial pressure-targeted approach to treat raised intracranial pressure in these children. Prospective open-label randomized controlled trial. PICU in a tertiary care academic institute. Hundred ten children (1-12 yr) with acute CNS infections having raised intracranial pressure and a modified Glasgow Coma Scale score less than or equal to 8 were enrolled. Patients were randomized to receive either cerebral perfusion pressure-targeted therapy (n = 55) (maintaining cerebral perfusion pressure ≥ 60 mm Hg, using normal saline bolus and vasoactive therapy-dopamine, and if needed noradrenaline) or intracranial pressure-targeted therapy (n = 55) (maintaining intracranial pressure < 20 mm Hg using osmotherapy while ensuring normal blood pressure). The primary outcome was mortality up to 90 days after discharge from PICU. Secondary outcome was modified Glasgow Coma Scale score at 72 hours after enrollment, length of PICU stay, duration of mechanical ventilation, and hearing deficit and functional neurodisability at discharge and 90-day follow-up. A 90-day mortality in intracranial pressure group (38.2%) was significantly higher than cerebral perfusion pressure group (18.2%; relative risk = 2.1; 95% CI, 1.09-4.04; p = 0.020). The cerebral perfusion pressure group in comparison with intracranial pressure group had significantly higher median (interquartile range) modified Glasgow Coma Scale score at 72 hours (10 [8-11] vs 7 [4-9], p < 0.001), shorter length of PICU stay (13 d [10.8-15.2 d] vs. 18 d [14.5-21.5 d], p = 0.002) and mechanical ventilation (7.5 d [5.4-9.6 d] vs. 11.5 d [9.5-13.5 d], p = 0.003), lower prevalence of hearing deficit (8.9% vs 37.1%; relative risk = 0.69; 95% CI, 0.53-0.90; p = 0.005), and neurodisability at discharge from PICU (53.3% vs. 82

  5. Iofetamine hydrochloride I 123: a new radiopharmaceutical for cerebral perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druckenbrod, R.W.; Williams, C.C.; Gelfand, M.J.

    1989-01-01

    Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). SPECT is more widely available than positron emission tomography, and complements anatomic visualization with X-ray computed tomography (CT) or magnetic resonance imaging. Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, withmore » negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. 36 references.« less

  6. Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion.

    PubMed

    Okita, Y; Minatoya, K; Tagusari, O; Ando, M; Nagatsuka, K; Kitamura, S

    2001-07-01

    The purpose of this study was to compare the results of total aortic arch replacement using two different methods of brain protection, particularly with respect to neurologic outcome. From June 1997, 60 consecutive patients who underwent total arch replacement through a midsternotomy were alternately allocated to one of two methods of brain protection: deep hypothermic circulatory arrest with retrograde cerebral perfusion (RCP: 30 patients) or with selective antegrade cerebral perfusion (SCP: 30 patients). Preoperative and postoperative (3 weeks) brain CT scan, neurological examination, and cognitive function tests were performed. Serum 100b protein was assayed before and after the cardiopulmonary bypass, as well as 24 hours and 48 hours after the operation. Hospital mortality occurred in 2 patients in the RCP group (6.6%) and 2 in the SCP group (6.6%). New strokes occurred in 1 (3.3%) of the RCP group and in 2 (6.6%) of the SCP group (p = 0.6). The incidence of transient brain dysfunction was significantly higher in the RCP group than in the SCP group (10, 33.3% vs 4, 13.3%, p = 0.05). Except in patients with strokes, S-100b values showed no significant differences in the two groups (RCP: SCP, prebypass 0.01+/-0.04: 0.05+/-0.16, postbypass 2.17+/-0.94: 1.97+/-1.00, 24 hours 0.61+/-0.36: 0.60+/-0.37, 48 hours 0.36+/-0.45: 0.46+/-0.40 microg/L, p = 0.7). There were no intergroup differences in the scores of memory decline (RCP 0.74+/-0.99; SCP 0.55+/-1.19, p = 0.6), orientation (RCP 1.11+/-1.29; SCP 0.50+/-0.76, p = 0.08), or intellectual function (RCP 1.21+/-1.27; SCP 1.05+/-1.15, p = 0.7). Both methods of brain protection for patients undergoing total arch replacement resulted in acceptable levels of mortality and morbidity. However, the prevalence of transient brain dysfunction was significantly higher in patients with the RCP.

  7. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth

    2010-11-01

    We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.

  8. [Intracranial and cerebral perfusion pressure in neurosurgical patients during anaesthesia with xenon].

    PubMed

    Rylova, A V; Gavrilov, A G; Lubnin, A Iu; Potapov, A A

    2014-01-01

    Despite difficulties in providing xenon anaesthesia, xenon still seems to be attractive for neurosurgical procedures. But data upon its effect on intracranial (ICP) and cerebral perfusion pressure (CPP) remains controversial. We monitored ICP and CPP in patients with or without intracranial hypertension during xenon inhalation in different concentrations. Our results suggest that caution should be used while inhaling xenon in high anaesthetic concentration in patients wiith known intracranial hypertension. We also address new possibilities of xenon use, e.g., for sedation in neurosurgery. The study was supported by Russian Fund for Fundamental Research, grant number 13-04-01640.

  9. Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis.

    PubMed

    Kobayashi, Shinya; Ishikawa, Tatsuya; Tanabe, Jun; Moroi, Junta; Suzuki, Akifumi

    2014-01-01

    Intraoperative qualitative indocyanine green (ICG) angiography has been used in cerebrovascular surgery. Hyperperfusion may lead to neurological complications after superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis. The purpose of this study is to quantitatively evaluate intraoperative cerebral perfusion using microscope-integrated dynamic ICG fluorescence analysis, and to assess whether this value predicts hyperperfusion syndrome (HPS) after STA-MCA anastomosis. Ten patients undergoing STA-MCA anastomosis due to unilateral major cerebral artery occlusive disease were included. Ten patients with normal cerebral perfusion served as controls. The ICG transit curve from six regions of interest (ROIs) on the cortex, corresponding to ROIs on positron emission tomography (PET) study, was recorded. Maximum intensity (IMAX), cerebral blood flow index (CBFi), rise time (RT), and time to peak (TTP) were evaluated. RT/TTP, but not IMAX or CBFi, could differentiate between control and study subjects. RT/TTP correlated (|r| = 0.534-0.807; P < 0.01) with mean transit time (MTT)/MTT ratio in the ipsilateral to contralateral hemisphere by PET study. Bland-Altman analysis showed a wide limit of agreement between RT and MTT and between TTP and MTT. The ratio of RT before and after bypass procedures was significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.60 ± 0.032 and 0.80 ± 0.056, respectively; P = 0.017). The ratio of TTP was also significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.64 ± 0.081 and 0.85 ± 0.095, respectively; P = 0.017). Time-dependent intraoperative parameters from the ICG transit curve provide quantitative information regarding cerebral circulation time with quality and utility comparable to information obtained by PET. These parameters may help predict the occurrence of postoperative HPS.

  10. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy.

    PubMed

    Lee, C W; Lee, J H; Kim, J J; Park, S W; Hong, M K; Kim, S T; Lim, T H; Park, S J

    1999-04-01

    Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. Few data are available about cerebral metabolism in CHF. Fifty patients with CHF (ejection fraction < or = 35%) and 20 healthy volunteers were included for this study. Of the patients, 10 patients underwent heart transplantation. All subjects performed symptom-limited bicycle exercise test. Proton magnetic resonance spectroscopy (1H MRS) was obtained from localized regions (8 to 10 ml) of occipital gray matter (OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p < 0.05), and with peak oxygen consumption and serum sodium concentration in OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.

  11. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital

  12. Assessment of Specific Characteristics of Abnormal General Movements: Does It Enhance the Prediction of Cerebral Palsy?

    ERIC Educational Resources Information Center

    Hamer, Elisa G.; Bos, Arend F.; Hadders-Algra, Mijna

    2011-01-01

    Aim: Abnormal general movements at around 3 months corrected age indicate a high risk of cerebral palsy (CP). We aimed to determine whether specific movement characteristics can improve the predictive power of definitely abnormal general movements. Method: Video recordings of 46 infants with definitely abnormal general movements at 9 to 13 weeks…

  13. Clinical Use of CT Perfusion For Diagnosis and Prediction of Lesion Growth in Acute Ischemic Stroke

    PubMed Central

    Huisa, Branko N; Neil, William P; Schrader, Ronald; Maya, Marcel; Pereira, Benedict; Bruce, Nhu T; Lyden, Patrick D

    2012-01-01

    Background and Purpose CT perfusion (CTP) mapping in research centers correlates well with diffusion weighted imaging (DWI) lesions and may accurately differentiate the infarct core from ischemic penumbra. The value of CTP in real-world clinical practice has not been fully established. We investigated the yield of CTP– derived cerebral blood volume (CBV) and mean transient time (MTT) for the detection of cerebral ischemia and ischemic penumbra in a sample of acute ischemic stroke (AIS) patients. Methods We studied 165 patients with initial clinical symptoms suggestive of AIS. All patients had an initial non-contrast head CT, CT Perfusion (CTP), CT angiogram (CTA) and follow up brain MRI. The obtained perfusion images were used for image processing. CBV, MTT and DWI lesion volumes were visually estimated and manually traced. Statistical analysis was done using R-2.14.and SAS 9.1. Results All normal DWI sequences had normal CBV and MTT studies (N=89). Seventy-three patients had acute DWI lesions. CBV was abnormal in 23.3% and MTT was abnormal in 42.5% of these patients. There was a high specificity (91.8%)but poor sensitivity (40.0%) for MTT maps predicting positive DWI. Spearman correlation was significant between MTT and DWI lesions (ρ=0.66, p>0.0001) only for abnormal MTT and DWI lesions>0cc. CBV lesions did not correlate with final DWI. Conclusions In real-world use, acute imaging with CTP did not predict stroke or DWI lesions with sufficient accuracy. Our findings argue against the use of CTP for screening AIS patients until real-world implementations match the accuracy reported from specialized research centers. PMID:23253533

  14. [How can we determine the best cerebral perfusion pressure in pediatric traumatic brain injury?].

    PubMed

    Vuillaume, C; Mrozek, S; Fourcade, O; Geeraerts, T

    2013-12-01

    The management of cerebral perfusion pressure (CPP) is the one of the main preoccupation for the care of paediatric traumatic brain injury (TBI). The physiology of cerebral autoregulation, CO2 vasoreactivity, cerebral metabolism changes with age as well as the brain compliance. Low CPP leads to high morbidity and mortality in pediatric TBI. The recent guidelines for the management of CPP for the paediatric TBI indicate a CPP threshold 40-50 mmHg (infants for the lower and adolescent for the upper). But we must consider the importance of age-related differences in the arterial pressure and CPP. The best CPP is the one that allows to avoid cerebral ischaemia and oedema. In this way, the adaptation of optimal CPP must be individual. To assess this objective, interesting tools are available. Transcranial Doppler can be used to determine the best level of CPP. Other indicators can predict the impairment of autoregulation like pressure reactivity index (PRx) taking into consideration the respective changes in ICP and CPP. Measurement of brain tissue oxygen partial pressure is an other tool that can be used to determine the optimal CPP. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  15. Differential diagnosis of regional cerebral hyperfixation of TC-99m HMPAO on SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirazi, P.; Konopka, L.; Crayton, J.W.

    1994-05-01

    Accurate diagnostic evaluation of patients with neurologic and neuropsychiatric disease is important because early treatment may halt disease progression and prevent impairment or disability. Cerebral hyperfixation of HMPAO has been ascribed to luxury perfusion following ischemic infarction. The present study sought to identify other conditions that also display radiotracer hyperfixation in order to develop a differential diagnosis of this finding on SPECT imaging. Two hundred fifty (n=250) successive cerebral SPECT images were reviewed for evidence of HMPAO hyperfixation. Hyperfixation was defined as enhanced focal perfusion surrounded by a zone of diminished or normal cerebral perfusion. All patients were scanned aftermore » intravenous injection of 25 mCi Tc-99m HMPAO. Volume-rendered and oblique images were obtained with a Trionix triple-head SPECT system using ultra high resolution fan beam collimators. Thirteen (13/250; 5%) of the patients exhibited regions of HMPAO hyperfixation. CT or MRI abnormalities were detected in 6/13 cases. Clinical diagnoses in these patients included intractable psychosis, post-traumatic stress disorder, alcohol and narcotic dependence, major depression, acute closed-head trauma, hypothyroidism, as well as subacute ischemic infarction. A wide variety of conditions may be associated with cerebral hyperfixation of HMPAO. These conditions include neurologic and psychiatric diagnoses, and extend the consideration of hyperfixation beyond ischemic infarction. Consequently, a differential diagnosis of HMPAO hyperfixation may be broader than originally considered, and this may suggest a fundamental role for local cerebral hyperperfusion. Elucidation of the fundamental mechanism(s) for cerebral hyperperfusion requires further investigation.« less

  16. [Interest of MR perfusion and MR spectroscopy for the diagnostic of atypical cerebral toxoplasmosis].

    PubMed

    Barcelo, C; Catalaa, I; Loubes-Lacroix, F; Cognard, C; Bonneville, F

    2010-03-01

    We report an atypical case of cerebral toxoplasmosis (CT) in a 70-year-old woman with a history of breast cancer. Contrast-enhanced computed tomography revealed a single ring-enhancing lesion in the pons with perifocal oedema and mass effect. Toxoplasma encephalitis was suggested by means of diffusion weighted imaging, MR perfusion and MR spectroscopy, leading to the discovery of HIV infection. The patient was put on antitoxoplasma therapy. Subsequent clinical and radiological improvements confirmed the diagnosis. (c) 2009 Elsevier Masson SAS. All rights reserved.

  17. Optimizing cerebral perfusion pressure during fiberoptic bronchoscopy in severe head injury: effect of hyperventilation.

    PubMed

    Previgliano, I J; Ripoll, P I; Chiappero, G; Galíndez, F; Germani, L; González, D H; Ferrari, N; Hlavnicka, A; Purvis, C

    2002-01-01

    The aim of this study was to evaluate if Hyperventilation (HV) could avoid the Intracranial Pressure (ICP) peak that occurs during Fiberoptic Bronchoscopy (FB) in severely head injured patients. A Cerebral Perfusion Pressure (CPP) > 75 mmHg was maintained in 34 patients, with a subgroup randomized to receive controlled HV during FB. Measurements were done before the procedure, during maximum ICP values and 30 minutes after FB. The HV group had minor ICP values after FB, without differences in CPP and ICP peak values.

  18. Assessment by three-dimensional power Doppler ultrasound of cerebral blood flow perfusion in fetuses with congenital heart disease.

    PubMed

    Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q

    2015-06-01

    To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P < 0.001), and the 3D power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P < 0.01). The largest proportional increase in the blood flow perfusion indices in the fetuses with CHD relative to controls was observed in the ACA territory (P < 0.05). Among 41 cases with CHD that underwent testing, the mean Psychomotor Development Index (PDI) and Mental Development Index (MDI) scores were significantly lower than in 94 of the controls that were tested (P < 0.001). Among these CHD cases, total intracranial FI was positively correlated with PDI (r = 0.342, P = 0.029) and MDI (r = 0.339, P = 0.030), and ACA-VI and ACA-VFI were positively correlated with PDI (r = 0.377 and 0.389, P = 0.015 and 0.012, respectively) but were not correlated with MDI (r = 0.243 and 0.203, P = 0.126 and 0.204, respectively). Cerebral blood flow perfusion was increased relative to controls in most fetuses with CHD and was associated with neurodevelopment scores at 12 months

  19. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.

    PubMed

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease.

  20. Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.

    PubMed

    Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y

    2001-11-01

    Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.

  1. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    NASA Astrophysics Data System (ADS)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  2. [Clinical application of retrograde cerebral perfusion for brain protection during the surgery of ascending aortic aneurysm: 50 cases report].

    PubMed

    Dong, Pei-qing; Guan, Yu-long; He, Mei-ling; Yang, Jing; Wan, Cai-hong; Du, Shun-ping

    2003-02-01

    To assess retrospectively the effects of different protective methods on brain in ascending aortic aneurysm surgery. In 65 patients, aneurysm was dissected to the aortic arch or right arch. To protect brain, deep hypothermic circulatory arrest (DHCA) combined with retrograde cerebral perfusion (RCP) through the superior vena cava (n = 50) and simple DHCA (n = 15) were used during the procedure. Blood samples for lactic acid level from the jugular vein were compared in both groups at different phase, and perfusion blood distribution and oxygen content difference between the perfused and returned blood were measured in some RCP patients. The DHCA time was 35.9 +/- 18.8 min (10.0 - 63.0 min) and DHCA + RCP time was 45.5 +/- 17.2 min (16.0 - 81.0 min). The resuscitation time was 7.1 +/- 1.6 h (4.4 - 9.4 h) in DHCA patients and 5.4 +/- 2.2 h (2.0 - 9.0 h) in RCP patients. Operation death was 3/15 in the DHCA group and 1/50 in the RCP patients. Central nervous complication existed in 3/12 of DHCA patients and 1/49 of RCP patients (P < 0.01). The overall survival rate was 96% (RCP) vs 67% (DHCA), central nervous system dysfunction was 20% in DHCA vs 2% in RCP (P < 0.01). The blood lactic acid level increased significantly after reperfusion in DHCA than in RCP. The blood distribution measurement approximated to 20% of the perfused blood returned from arch vessels. Oxygen content between perfused and returned blood showed that oxygen uptake was adequate in the RCP group. The application of RCP could prolong the safety duration of circulation arrest. Cerebral perfusion may reep the brain cool and flush out particulate and air embolism. Open anastomosis of the aortic arch to the prosthesis can be safely performed. RCP is acceptable for brain protection in clinical practice.

  3. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data.

    PubMed

    Havla, Lukas; Schneider, Moritz J; Thierfelder, Kolja M; Beyer, Sebastian E; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H; Dietrich, Olaf

    2016-02-01

    The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets. Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated. The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters. A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

  4. Cerebral perfusion issues in acute type A aortic dissection without preoperative malperfusion: how do surgical factors affect outcomes?

    PubMed

    Buonocore, Marianna; Amarelli, Cristiano; Scardone, Michelangelo; Caiazzo, Angelo; Petrone, Giuseppe; Majello, Luigi; Santé, Pasquale; Nappi, Gianantonio; Della Corte, Alessandro

    2016-10-01

    Both preoperative (disease-related) and operative (management-related) variables make the assessment of the outcomes of acute type A aortic dissection (ATAAD) surgery a difficult task. Our aim was to evaluate the impact of operative factors, including arterial cannulation site, route of cerebral perfusion and surgeon's specific experience with ATAAD ('aortic surgeon'), on the early results of surgical management, with particular attention to neurological injury. Penn classification was used to identify clinically homogeneous risk groups of ATAAD patients undergoing surgery. Between January 2007 and June 2014, 111 of 183 ATAAD patients treated with open surgery in a single centre were in Penn Class Aa (no ischaemic complications at presentation). They were divided in two groups depending on the arterial cannulation site: femoral artery (FemA; 56 patients) or right axillary artery (RAxA; 55 patients). Study outcomes included: 30-day mortality, major adverse cardiac and cerebrovascular events at 30 days, neurological complications and in particular, patterns of stroke as defined by Bamford classification. No significant differences in preoperative variables were observed between cannulation-site groups, except for myocardial ischaemic time (60.9 ± 30.4 min in the RAxA group vs 81.7 ± 52.3 in the FemA group, P = 0.014) and cerebral perfusion time (42.1 ± 25.5 min in the RAxA group vs 52.9 ± 32.6 in the FemA group, P = 0.048). Outcomes in terms of mortality and neurological injury did not differ except for a higher incidence of lacunar cerebral infarction (LACI) in the RAxA group (14.5 vs 3.6%, P = 0.043), mainly but not exclusively explained by a higher incidence of LACI in unilateral (17.2%) than in bilateral cerebral perfusion (6.9%) within the RAxA group. The 'non-aortic surgeon' was associated instead with 30-day mortality and composite outcome in multivariable analysis (respectively, OR 6.40, P = 0.002 and OR 4.68, P = 0.001). The RAxA cannulation and Fem

  5. Regional cerebral perfusion for surgical correction of neonatal aortic arch obstruction.

    PubMed

    Zhang, Hui; Cheng, Pei; Hou, Jia; Li, Lei; Liu, Hu; Liu, Ruifang; Ji, Bingyang; Luo, Yi

    2009-05-01

    One-stage repair of aortic arch obstruction and associated cardiac anomalies is a surgical challenge in infants.The purpose of the present study is to review the current outcome using regional cerebral perfusion (RCP) during a procedure correcting interrupted aortic arch (IAA) and also isolated aortic coarctation (CoA) and CoA combined with hypoplastic aortic arch (CoA-HyAA) in our center. Between January 2007 and July 2008, 24 infant patients with interrupted aortic arch (IAA) (n=3), isolated aortic coarctation (iCoA) (n=9) and aortic coarctation with hypoplastic aortic arch (CoA-HyAA) (n=12) underwent one-stage surgical correction in our hospital. End-to-end anastomosis was employed in 12 infants (IAA n=3 and iCoA n=9); for the other 12 patients with CoA-HyAA, an end-to-end extended anastomosis was used in 8 cases, end-to-side anastomosis in 2 cases, and composite heterologous pericardial patch in 2 cases. RCP with 40 mL/kg/min through the innominate artery during aortic arch reconstruction was employed for all pediatric patients. One single-dose histidine-ketoglutarate-tryptophan (HTK) solution was used for myocardial protection during CPB. Cardiopulmonary bypass time and aortic cross-clamp time were 165.6+/-32.4 min and 81.7+/-30.0 min, respectively. The mean regional cerebral perfusion time was 31.0+/-10.6 min; lowest nasopharyngeal temperature was 19.1+/-1.1 degrees C. Operative mortality rate in both groups was 8.3%. Mean follow-up was 10.5+/-4.8 months. There was no late mortality or postoperative neurologic, renal or hepatic complications. All patients are asymptomatic and are developing normally. One-stage total arch repair using the RCP technique is an excellent method that may minimize neurologic and renal complications. Our surgical strategy for arch anomaly has a low rate of residual and recurrent coarctation when performed in these infants.

  6. The DD genotype of the angiotensin converting enzyme gene independently associates with CMR-derived abnormal microvascular perfusion in patients with a first anterior ST-segment elevation myocardial infarction treated with thrombolytic agents.

    PubMed

    Bodi, Vicente; Sanchis, Juan; Nunez, Julio; Aliño, Salvador F; Herrero, Maria J; Chorro, Francisco J; Mainar, Luis; Lopez-Lereu, Maria P; Monmeneu, Jose V; Oltra, Ricardo; Chaustre, Fabian; Forteza, Maria J; Husser, Oliver; Riegger, Günter A; Llacer, Angel

    2009-12-01

    The role of the angiotensin converting enzyme (ACE) gene on the result of thrombolysis at the microvascular level has not been addressed so far. We analyzed the implications of the insertion/deletion (I/D) polymorphism of the ACE gene on the presence of abnormal cardiovascular magnetic resonance (CMR)-derived microvascular perfusion after ST-segment elevation myocardial infarction (STEMI). We studied 105 patients with a first anterior STEMI treated with thrombolytic agents and an open left anterior descending artery. Microvascular perfusion was assessed using first-pass perfusion CMR at 7+/-1 days. CMR studies were repeated 184+/-11 days after STEMI. The ACE gene insertion/deletion (I/D) polymorphism was determined using polymerase chain reaction amplification. Overall genotype frequencies were II-ID 58% and DD 42%. Abnormal perfusion (> or = 1 segment) was detected in 56% of patients. The DD genotype associated to a higher risk of abnormal microvascular perfusion (68% vs. 47%, p=0.03) and to a larger extent of perfusion deficit (median [percentile 25 - percentile 75]: 4 [0-6] vs. 0 [0-4] segments, p=0.003). Once adjusted for baseline characteristics, the DD genotype independently increased the risk of abnormal microvascular perfusion (odds ratio [95% confidence intervals]: 2.5 [1.02-5.9], p=0.04). Moreover, DD patients displayed a larger infarct size (35+/-17 vs. 27+/-15 g, p=0.01) and a lower ejection fraction at 6 months (48+/-14 vs. 54+/-14%, p=0.03). The DD genotype associates to a higher risk of abnormal microvascular perfusion after STEMI.

  7. Cerebral Perfusion Is Perturbed by Preterm Birth and Brain Injury.

    PubMed

    Mahdi, E S; Bouyssi-Kobar, M; Jacobs, M B; Murnick, J; Chang, T; Limperopoulos, C

    2018-05-10

    Early disturbances in systemic and cerebral hemodynamics are thought to mediate prematurity-related brain injury. However, the extent to which CBF is perturbed by preterm birth is unknown. Our aim was to compare global and regional CBF in preterm infants with and without brain injury on conventional MR imaging using arterial spin-labeling during the third trimester of ex utero life and to examine the relationship between clinical risk factors and CBF. We prospectively enrolled preterm infants younger than 32 weeks' gestational age and <1500 g and performed arterial spin-labeling MR imaging studies. Global and regional CBF in the cerebral cortex, thalami, pons, and cerebellum was quantified. Preterm infants were stratified into those with and without structural brain injury. We further categorized preterm infants by brain injury severity: moderate-severe and mild. We studied 78 preterm infants: 31 without brain injury and 47 with brain injury (29 with mild and 18 with moderate-severe injury). Global CBF showed a borderline significant increase with increasing gestational age at birth ( P = .05) and trended lower in preterm infants with brain injury ( P = .07). Similarly, regional CBF was significantly lower in the right thalamus and midpons ( P < .05) and trended lower in the midtemporal, left thalamus, and anterior vermis regions ( P < .1) in preterm infants with brain injury. Regional CBF in preterm infants with moderate-severe brain injury trended lower in the midpons, right cerebellar hemisphere, and dentate nuclei compared with mild brain injury ( P < .1). In addition, a significant, lower regional CBF was associated with ventilation, sepsis, and cesarean delivery ( P < .05). We report early disturbances in global and regional CBF in preterm infants following brain injury. Regional cerebral perfusion alterations were evident in the thalamus and pons, suggesting regional vulnerability of the developing cerebro-cerebellar circuitry. © 2018 by American Journal of

  8. The effectiveness of high-flow regional cerebral perfusion in Norwood stage I palliation.

    PubMed

    Miyaji, Kagami; Miyamoto, Takashi; Kohira, Satoshi; Yoshii, Takeshi; Itatani, Kei-Ichi; Sato, Hajime; Inoue, Nobuyuki

    2011-11-01

    Regional cerebral perfusion (RCP) has been shown to provide cerebral circulatory support during Norwood procedure. In our institution, high-flow RCP (HFRCP) from the right innominate artery has been induced to keep sufficient cerebral and somatic oxygen delivery via collateral vessels. We studied the effectiveness of HFRCP to regional cerebral and somatic tissue oxygenation in Norwood stage I palliation. Seventeen patients, who underwent the Norwood procedure, were separated into two groups: group C (n=6) using low-flow RCP and group H (n=11) using HFRCP (mean flow: 54 vs 92mlkg(-1)min(-1), P<0.0001). The mean duration of RCP was 64±10min (range, 49-86min) under the moderate hypothermia. Chlorpromazine (3.0mgkg(-1)) was given to group H patients before and during RCP to increase RCP flow. The mean radial arterial pressure was kept <50mmHg during RCP. To clarify the effectiveness of HFRCP for cerebral and somatic tissue oxygenation, cerebral regional oxygen saturation (rSO(2)) and systemic venous oxygenation (SvO(2)) during RCP were compared between the two groups. Changes in the lactate level before and after RCP, and changes in the blood urea nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), and creatinine kinase (CK) levels before and after surgery, were also compared between the groups. Mean rSO(2) was 82.9±9.0% in group H and 65.9±10.7% in group C (P<0.05). Mean SvO(2) during RCP was 98.2±4.3% in group H and 85.4±9.7% in group C (P<0.01). During RCP, lactate concentration significantly increased in group C compared with that in group H (P<0.001). After surgery, the LDH and CK levels significantly increased in group C compared with that in group H (P<0.05). Our study revealed that HFRCP preserved sufficient cerebral and somatic tissue oxygenation during the Norwood procedure. The reduction of vascular resistance of collateral vessels increased both cerebral and somatic blood flow, resulting in improved tissue oxygen delivery. Copyright © 2011

  9. Simultaneous and Noninvasive Imaging of Cerebral Oxygen Metabolic Rate, Blood Flow and Oxygen Extraction Fraction in Stroke Mice

    PubMed Central

    Zhu, Xiao-Hong; Chen, James; Tu, Tsang-Wei; Chen, Wei; Song, Sheng-Kwei

    2012-01-01

    Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO2 and CBF. This study employed the recently developed in vivo 17O MR spectroscopic imaging to simultaneously assess CMRO2, CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of 17O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive 17O-MR approach for rapidly imaging CMRO2, CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO2 and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising 17O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This 17O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy. PMID:23000789

  10. Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice.

    PubMed

    Zhu, Xiao-Hong; Chen, James M; Tu, Tsang-Wei; Chen, Wei; Song, Sheng-Kwei

    2013-01-01

    Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO(2) and CBF. This study employed the recently developed in vivo (17)O MR spectroscopic imaging to simultaneously assess CMRO(2), CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of (17)O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive (17)O-MR approach for rapidly imaging CMRO(2), CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO(2) and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising (17)O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This (17)O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Brain Perfusion Is Increased at Term in the White Matter of Very Preterm Newborns and Newborns with Congenital Heart Disease: Does this Reflect Activated Angiogenesis?

    PubMed

    Wintermark, Pia; Lechpammer, Mirna; Kosaras, Bela; Jensen, Frances E; Warfield, Simon K

    2015-10-01

    This study aims to evaluate brain perfusion at term in very preterm newborns and newborns with congenital heart disease before their corrective surgery, and to search for histopathological indicators of whether the brain perfusion abnormalities of these newborns may be related to an activated angiogenesis. Using magnetic resonance imaging and arterial spin labeling, regional cerebral blood flow was measured at a term-equivalent age for three very preterm newborns (born at < 32 weeks), one newborn with congenital heart disease before his corrective surgery and three healthy newborns. In addition, a histopathological analysis was performed on a newborn with congenital heart disease. The very preterm newborns and the newborn with congenital heart disease included in this study all displayed an increased signal in their white matter on T2-weighted imaging. The cerebral blood flow of these newborns was increased in their white matter, compared with the healthy term newborns. The vascular endothelial growth factor was overexpressed in the injured white matter of the newborn with congenital heart disease. Brain perfusion may be increased at term in the white matter, in very preterm newborns, and newborns with congenital heart disease, and it correlates with white matter abnormalities on conventional imaging. Georg Thieme Verlag KG Stuttgart · New York.

  12. Usefulness of Deep Hypothermic Circulatory Arrest and Regional Cerebral Perfusion in Children

    PubMed Central

    Guo, Zheng; Hu, Ren-Jie; Zhu, De-Ming; Zhu, Zhong-Qun; Zhang, Hai-Bo

    2013-01-01

    To compare the safety and usefulness of deep hypothermic circulatory arrest (DHCA) and regional cerebral perfusion (RCP) during pediatric open heart surgery. Between January 1, 2004 and September 30, 2012, 1250 children with congenital cardiac defect underwent corrective operation with the DHCA or RCP technique in the Shanghai Children's Medical Center. Of them, 947 cases underwent the operation with the aid of DHCA (DHCA group), and 303 cases with RCP (RCP group). The mean DHCA time was 30.64±15.81 (7–63) minutes and mean RCP time was 36.18±12.86 (10–82) minutes. The mortality rate was 7.18% (68/947) and 6.60% (20/30) in two groups, respectively. The postoperative incidences of temporary and permanent neurological dysfunction were 6.23% (59/947) in the DHCA group and 2.64% (8/303) in the RCP group (p<0.01). The incidence of other complications such as low cardiac output, renal dysfunction, and lung issues are similar in both groups. RCP is a reliable technique for cerebral protection and it facilitates time-consuming corrected procedures for complex congenital cardiac defect repair procedures. PMID:24066266

  13. Safety and efficacy of retrograde cerebral perfusion as an adjunct for cerebral protection during surgery on the aortic arch.

    PubMed

    Girardi, Leonard N; Shavladze, Nikolay; Sedrakyan, Art; Neragi-Miandoab, Siyamek

    2014-12-01

    The best adjunct for cerebral protection during aortic arch reconstruction remains controversial. Retrograde cerebral perfusion (RCP) as an adjunct to profound hypothermic circulatory arrest (PHCA) extends the tolerable period of brain ischemia by flushing emboli and air from the cerebral circulation while maintaining hypothermia. We examined our experience with RCP to determine its efficacy in patients undergoing complex arch reconstruction. We retrospectively evaluated 879 patients undergoing arch reconstruction using RCP from July 1997 to March 2013. Perioperative risk factors were analyzed as predictors of neurologic injury and mortality. Survival for the type of arch reconstruction and for the interval of PHCA was calculated. Of the 879 patients, 671 underwent hemiarch and 208 total arch replacement. The mean age was 65 ± 13.3 years, and 61.6% were men. The total arch patients had longer mean periods of PHCA (39 vs 21 minutes, P < .001) and RCP (37 vs 19 minutes, P < .001). However, the incidence of transient neurologic dysfunction (3.0% vs 2.4%, P < .813) and permanent neurologic dysfunction (1.3% vs 1.9%, P < .519) was similar for both techniques. Mortality was greater in the hemiarch group (4.8% vs 0.5%, P < .003). Patients requiring >40 minutes of PHCA had outcomes similar to those requiring less. The 1-, 5-, and 10-year survival was similar, regardless of the procedure performed or interval of PHCA. RCP is a safe and effective adjunct for cerebral protection during arch surgery. Patients requiring more extensive arch reconstruction are not at greater risk of permanent neurologic dysfunction or perioperative mortality. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. Perfusion-weighted magnetic resonance imaging detects recurrent isolated vertigo caused by cerebral hypoperfusion.

    PubMed

    Xu, Xiaowei; Jiang, Li; Luo, Man; Li, Jiaoxing; Li, Weidong; Sheng, Wenli

    2015-06-01

    The etiology of isolated vertigo has been a substantial diagnostic challenge for both neurologists and otolaryngologists. This study was designed to detect recurrent isolated vertigo due to cerebral hypoperfusion using perfusion-weighted magnetic resonance imaging (PWI). We recruited isolated vertigo patients whose clinical condition was suspected to be caused by hypodynamics of the brain; these individuals formed the case group. We generated two additional groups: a negative group composed of vertigo patients whose symptoms were caused by problems associated with the ear and a healthy control group. Each subject underwent PWI, and seven regions of interest (ROIs) were chosen. The relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) were obtained from each ROI. We further calculated the absolute difference of relative parameter values between two mirrored ROIs. The significant difference in the relative MTT from the mirrored cerebellar ROI (|rMTTleft-right|) of the case group was larger than those from the negative and healthy control groups (p = 0.026 and p = 0.038, respectively). Signal differences in |rrCBVleft-right| and |rrCBFleft-right| were not found among the three groups. In summary, disequilibrium in the rMTT of the bilateral cerebellum in the case group implied that hypoperfusion of the posterior circulation could trigger recurrent isolated vertigo and could be shown efficiently using PWI.

  15. Mild Thyrotoxicosis Leads to Brain Perfusion Changes: An Arterial Spin Labelling Study.

    PubMed

    Göbel, A; Heldmann, M; Sartorius, A; Göttlich, M; Dirk, A-L; Brabant, G; Münte, T F

    2017-01-01

    Hypo- and hyperthyroidism have effects on brain structure and function, as well as cognitive processes, including memory. However, little is known about the influence of thyroid hormones on brain perfusion and the relationship of such perfusion changes with cognition. The present study aimed to demonstrate the effect of short-term experimental hyperthyroidism on brain perfusion in healthy volunteers and to assess whether perfusion changes, if present, are related to cognitive performance. It is known that an interaction exists between brain perfusion and cerebral oxygen consumption rate and it is considered that neural activation increases cerebral regional perfusion rate in brain areas associated with memory. Measuring cerebral blood flow may therefore represent a proxy for neural activity. Therefore, arterial spin labelling (ASL) measurements were conducted and later analysed to evaluate brain perfusion in 29 healthy men before and after ingesting thyroid hormones for 8 weeks. Psychological tests concerning memory were performed at the same time-points and the results were correlated with the imaging results. In the hyperthyroid condition, perfusion was increased in the posterior cerebellum in regions connected with cerebral networks associated with cognitive control and the visual cortex compared to the euthyroid condition. In addition, these perfusion changes were positively correlated with changes of performance in the German version of the Auditory Verbal Learning Task [AVLT, Verbaler Lern-und-Merkfähigkeits-Test (VLMT)]. Cerebellar perfusion and function therefore appears to be modulated by thyroid hormones, likely because the cerebellum hosts a high number of thyroid hormone receptors. © 2016 British Society for Neuroendocrinology.

  16. The Effect of Milrinone on Splanchnic and Cerebral Perfusion in Infants With Congenital Heart Disease Prior to Surgery: An Observational Study.

    PubMed

    Bianchi, Maria Otilia; Cheung, Po-Yin; Phillipos, Ernest; Aranha-Netto, Abimael; Joynt, Chloe

    2015-08-01

    Despite the advancement in the postoperative care of neonates with congenital heart disease (CHD), there is little information on preoperative management of systemic and regional hemodynamics, which may be related to outcomes. We aimed to determine the preoperative effect of milrinone, a phosphodiesterase III inhibitor, on cardiac output and splanchnic and cerebral perfusion in neonates with CHD. Neonates with CHD requiring cardiac surgery were enrolled in a prospective, single-blinded study once a clinical decision of starting milrinone (0.75 μg/kg per minute intravenously) using institutional criteria was made. Demographic and clinical variables and outcomes were recorded. Combined cardiac output and measures of splanchnic (superior mesenteric and celiac arteries) and cerebral (anterior and middle cerebral arteries) perfusion were determined by Doppler studies at 0, 6, 24, and 48 h after milrinone infusion. Investigators were unaware of intervention time points and patients in analyzing blood flow measurements. Seventeen term (39.2 ± 1.3 weeks) neonates were included with hypoplastic left-sided heart syndrome (78.5%) as the most common diagnosis. Combined cardiac output increased by 28% within 48 h (613 ± 154 vs. 479 ± 147 mL/kg per minute at baseline, P < 0.05). Superior mesenteric artery mean velocity increased at 6 h and throughout 48 h of milrinone infusion (P < 0.05). Peak and mean velocities at cerebral arteries increased with milrinone infusion (P < 0.05~0.08), and the corresponding changes at celiac artery were modest. There were no significant changes in splanchnic and cerebral resistive and pulsatility indices during milrinone infusion. Milrinone increases cardiac output with concurrent effects on splanchnic and cerebral blood flows during the short-term preoperative use in neonates with CHD.

  17. SPET brain perfusion imaging in mild traumatic brain injury without loss of consciousness and normal computed tomography.

    PubMed

    Abu-Judeh, H H; Parker, R; Singh, M; el-Zeftawy, H; Atay, S; Kumar, M; Naddaf, S; Aleksic, S; Abdel-Dayem, H M

    1999-06-01

    We present SPET brain perfusion findings in 32 patients who suffered mild traumatic brain injury without loss of consciousness and normal computed tomography. None of the patients had previous traumatic brain injury, CVA, HIV, psychiatric disorders or a history of alcohol or drug abuse. Their ages ranged from 11 to 61 years (mean = 42). The study was performed in 20 patients (62%) within 3 months of the date of injury and in 12 (38%) patients more than 3 months post-injury. Nineteen patients (60%) were involved in a motor vehicle accident, 10 patients (31%) sustained a fall and three patients (9%) received a blow to the head. The most common complaints were headaches in 26 patients (81%), memory deficits in 15 (47%), dizziness in 13 (41%) and sleep disorders in eight (25%). The studies were acquired approximately 2 h after an intravenous injection of 740 MBq (20.0 mCi) of 99Tcm-HMPAO. All images were acquired on a triple-headed gamma camera. The data were displayed on a 10-grade colour scale, with 2-pixel thickness (7.4 mm), and were reviewed blind to the patient's history of symptoms. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in the cortex or basal ganglia less than 70%, or less than 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. The results show that 13 (41%) had normal studies and 19 (59%) were abnormal (13 studies performed within 3 months of the date of injury and six studies performed more than 3 months post-injury). Analysis of the abnormal studies revealed that 17 showed 48 focal lesions and two showed diffuse supratentorial hypoperfusion (one from each of the early and delayed imaging groups). The 12 abnormal studies performed early had 37 focal lesions and averaged 3.1 lesions per patient, whereas there was a reduction to--an average of 2.2 lesions per patient in the five studies (total 11 lesions) performed more than 3 months post-injury. In the

  18. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme.

    PubMed

    Tian, Xiumei; Zeng, Dong; Zhang, Shanli; Huang, Jing; Zhang, Hua; He, Ji; Lu, Lijun; Xi, Weiwen; Ma, Jianhua; Bian, Zhaoying

    2016-11-22

    Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.

  19. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction

    PubMed Central

    2013-01-01

    Background Although recent studies have clearly demonstrated functional and structural abnormalities in adolescents with internet gaming addiction (IGA), less is known about how IGA affects perfusion in the human brain. We used pseudocontinuous arterial spin-labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to measure the effects of IGA on resting brain functions by comparing resting cerebral blood flow in adolescents with IGA and normal subjects. Methods Fifteen adolescents with IGA and 18 matched normal adolescents underwent structural and perfusion fMRI in the resting state. Direct subtraction, voxel-wise general linear modeling was performed to compare resting cerebral blood flow (CBF) between the 2 groups. Correlations were calculated between the mean CBF value in all clusters that survived AlphaSim correction and the Chen Internet Addiction Scale (CIAS) scores, Barratt Impulsiveness Scale-11 (BIS-11) scores, or hours of Internet use per week (hours) in the 15 subjects with IGA. Results Compared with control subjects, adolescents with IGA showed significantly higher global CBF in the left inferior temporal lobe/fusiform gyrus, left parahippocampal gyrus/amygdala, right medial frontal lobe/anterior cingulate cortex, left insula, right insula, right middle temporal gyrus, right precentral gyrus, left supplementary motor area, left cingulate gyrus, and right inferior parietal lobe. Lower CBF was found in the left middle temporal gyrus, left middle occipital gyrus, and right cingulate gyrus. There were no significant correlations between mean CBF values in all clusters that survived AlphaSim correction and CIAS or BIS-11 scores or hours of Internet use per week. Conclusions In this study, we used ASL perfusion fMRI and noninvasively quantified resting CBF to demonstrate that IGA alters the CBF distribution in the adolescent brain. The results support the hypothesis that IGA is a behavioral addiction that may share similar neurobiological

  20. Cerebral peritumoral oedema study: does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis?

    PubMed

    Lehmann, Pierre; Saliou, Guillaume; de Marco, Giovanni; Monet, Pauline; Souraya, Stoquart-Elsankari; Bruniau, Alexis; Vallée, Jean Noel; Ducreux, Denis

    2012-03-01

    Our purpose was to differentiate glioblastoma from metastasis using a single dynamic MR sequence to assess perfusion and permeability parameters. 24 patients with glioblastoma or cerebral metastasis with peritumoral oedema were recruited and explored with a 3T MR unit. Post processing used DPTools software. Regions of interest were drawn around contrast enhancement to assess relative cerebral blood volume and permeability parameters. Around the contrast enhancement Glioblastoma present high rCBV with modification of the permeability, metastasis present slight modified rCBV without modification of permeability. In conclusion, peritumoral T2 hypersignal exploration associating morphological MR and functional MR parameters can help to differentiate cerebral metastasis from glioblastoma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement.

    PubMed

    Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm

    2016-09-01

    Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart-lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart-lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart-lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures.

  2. No evidence of perfusion abnormalities in the basal ganglia of a patient with generalized chorea-ballism and polycythaemia vera: analysis using subtraction SPECT co-registered to MRI.

    PubMed

    Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An

    2008-10-01

    Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.

  3. Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output.

    PubMed

    Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G

    2011-01-01

    Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.

  4. Perfusion lung imaging in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, M.; Miniati, M.; Di Ricco, G.

    1986-07-01

    In 29 perfusion lung scans (PLS) of 19 patients with ARDS, 20 of which were obtained within six days from the onset of respiratory symptoms, perfusion abnormalities were the rule. These included focal, nonsegmental defects, mostly peripheral and dorsal, and perfusion redistribution away from the dependent lung zones. PLS were scored for the presence and intensity of perfusion abnormalities and the scores of perfusion redistribution were validated against numerical indices of blood flow distribution per unit lung volume. PLS scores were correlated with arterial blood gas values, hemodynamic parameters, and chest radiographic scores of ARDS. Arterial oxygen tension correlated withmore » the scores of both perfusion defects and redistribution. Perfusion defects correlated better with the radiographic score of ARDS, and perfusion redistribution with PAP and vascular resistance. ARDS patients exhibit peculiar patterns of PLS abnormalities not observed in other disorders. Thus, PLS may help considerably in the detection and evaluation of pulmonary vascular injury in ARDS.« less

  5. Puerarin Attenuates Cerebral Damage by Improving Cerebral Microcirculation in Spontaneously Hypertensive Rats

    PubMed Central

    Wu, Xu-Dong; Wang, Chen; Zhang, Zhen-Ying; Fu, Yan; Liu, Feng-Ying; Liu, Xiu-Hua

    2014-01-01

    Puerariae Lobatae Radix (Gegen in Chinese) is the dried root of Pueraria lobata, a semiwoody, perennial, and leguminous vine native to China. Puerarin is one of the effective components of isoflavones isolated from the root of Pueraria lobata. Previous studies showed that extracts derived from the root of Pueraria lobata possessed antihypertensive effect. Our study is to investigate whether puerarin contributes to prevention of stroke by improving cerebral microcirculation in rats. Materials and Methods. Video microscopy and laser Doppler perfusion imaging on the pia mater were used to measure the diameter of microvessel and blood perfusion in 12-week old spontaneously hypertensive rats (SHRs) and age-matched normotensive WKY rats. Histological alterations were observed by hematoxylin and eosin staining, and microvessel density in cerebral tissue was measured by immunohistochemical analysis with anti-Factor VIII antibody. Cell proliferation was detected by [3H]-TdR incorporation, and activities of p42/44 mitogen activated protein kinases (p42/44 MAPKs) were detected by western blot analysis in cultured cerebral microvascular endothelial cells (MECs). Results. Intravenous injection of puerarin relaxed arterioles and increased the blood flow perfusion in the pia mater in SHRs. Puerarin treatment for 14 days reduced the blood pressure to a normal level in SHRs (P < 0.05) and increased the arteriole diameter in the pia mater significantly as compared with vehicle treatment. Arteriole remodeling, edema, and ischemia in cerebral tissue were attenuated in puerarin-treated SHRs. Microvessel density in cerebral tissue was greater with puerarin than with vehicle treatment. Puerarin-treated MECs showed greater proliferation and p42/44 MAPKs activities than vehicle treatment. Conclusions. Puerarin possesses effects of antihypertension and stroke prevention by improved microcirculation in SHRs, which results from the increase in cerebral blood perfusion both by arteriole

  6. Role of Multimodal Evaluation of Cerebral Hemodynamics in Selecting Patients with Symptomatic Carotid or Middle Cerebral Artery Steno-occlusive Disease for Revascularization

    PubMed Central

    Sharma, Vijay K; Tsivgoulis, Georgios; Ning, Chou; Teoh, Hock L; Bairaktaris, Chrisostomos; Chong, Vincent FH; Ong, Benjamin KC; Chan, Bernard PL; Sinha, Arvind K

    2008-01-01

    Background: The circle of Willis provides collateral pathways to perfuse the affected vascular territories in patients with severe stenoocclusive disease of major arteries. The collateral perfusion may become insufficient in certain physiological circumstances due to failed vasodilatory reserve and intracranial steal phenomenon, so-called ‘Reversed-Robinhood syndrome’. We evaluated cerebral hemodynamics and vasodilatory reserve in patients with symptomatic distal internal carotid (ICA) or middle cerebral artery (MCA) severe steno-occlusive disease. Methods: Diagnostic transcranial Doppler (TCD) and TCD-monitoring with voluntary breath-holding according to a standard scanning protocol were performed in patients with severe ICA or MCA steno-occlusive disease. The steal phenomenon was detected as transient, spontaneous, or vasodilatory stimuli-induced velocity reductions in affected arteries at the time of velocity increase in normal vessels. Patients with exhausted vasomotor reactivity and intracranial steal phenomenon during breath-holding were further evaluated by 99technetiumm-hexamethyl propylene amine oxime single photon emission computed tomography (HMPAO-SPECT) with acetazolamide challenge. Results: Sixteen patients (age 27–74 years, 11 men) fulfilled our TCD criteria for exhausted vasomotor reactivity and intracranial steal phenomenon during the standard vasomotor testing by breath holding. Acetazolamide-challenged HMPAO-SPECT demonstrated significant hypoperfusion in 12 patients in affected arterial territories, suggestive of failed vasodilatory reserve. A breath-holding index of ≤0.3 on TCD was associated with an abnormal HMPAO-SPECT with acetazolamide challenge. TCD findings of a breath holding index of ≤0.3 and intracranial steal during the procedure were determinants of a significant abnormality on HMPAO-SPECT with acetazolamide challenge. Conclusion: Multimodal evaluation of cerebral hemodynamics in symptomatic patients with severe steno

  7. Changes in body temperature of the unanaesthetized monkey produced by sodium and calcium ions perfused through the cerebral ventricles

    PubMed Central

    Myers, R. D.; Veale, W. L.; Yaksh, T. L.

    1971-01-01

    1. In the unanaesthetized Rhesus monkey, solutions containing sodium, calcium, potassium or magnesium in excess of the normal concentration of extracellular fluid were perfused from a lateral to the fourth ventricle through chronically implanted cannulae. 2. Sodium (11·0-88·0 mM in excess of the physiological concentration) perfused through the ventricles, caused an immediate rise in body temperature which was accompanied by vasoconstriction, piloerection and shivering. The latency of the hyperthermia was related directly to the rate of perfusion and the concentration of sodium, whereas the magnitude of the response depended upon the concentration only. When the perfusion was terminated, shivering ceased and the temperature of the monkey returned to the base line level. 3. When calcium ions were perfused in concentrations 2·5-47·9 mM in excess of that of extracellular fluid, a fall in the temperature of the animal occurred. The magnitude of the decreases depended upon the concentration of calcium in the perfusion fluid. Vasodilatation, sedation and a reduction in withdrawal reflexes accompanied the calcium-induced hypothermia. After the perfusion ended, the temperature continued to fall until the monkey began to shiver and vasoconstriction was observed in many skin areas. 4. The perfusion through the cerebral ventricles with modified Krebs solution alone or with the Krebs solution which contained potassium or magnesium ions in concentrations five to ten times normal had virtually no effect on the temperature of the monkey. 5. Since the temperature of the monkey was unchanged as long as the physiological ratio of sodium to calcium in the perfusion fluid remained constant, we conclude that the balance between these two essential cations within the brain stem could determine the neural mechanism whereby the set-point for body temperature of the primate is established. PMID:4999638

  8. Changes in canine cerebral perfusion after accelerated high frequency repetitive transcranial magnetic stimulation (HF-rTMS): A proof of concept study.

    PubMed

    Dockx, R; Baeken, C; Duprat, R; De Vos, F; Saunders, J H; Polis, I; Audenaert, K; Peremans, K

    2018-04-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a treatment for several neuropsychiatric disorders in human beings, but the neurobiological effects of rTMS in dogs have not been investigated to date. A proof of concept study was designed to evaluate the effect of rTMS on cerebral perfusion, measured with single photon emission computed tomography (SPECT), in dogs. An accelerated high frequency (aHF)-rTMS (20Hz) protocol was applied to the canine left frontal cortex. To accurately target this area, eight dogs underwent a 3 Tesla magnetic resonance imaging (MRI) scan before stimulation. The left frontal cortex was subjected to five consecutive aHF-rTMS sessions with a figure-of-eight coil designed for human beings at an intensity of 110% of the motor threshold. The dogs underwent 99m Tc-d,1 hexamethylpropylene amine oxime (HMPAO) SPECT scans 1 week prior to and 1day after the stimulations. Perfusion indices (PIs) were determined semi-quantitatively; aHF-rTMS resulted in significantly increased PIs in the left frontal cortex and the subcortical region, whereas no significant differences were noted for the other regions. Behaviour was not influenced by the stimulation sessions. As has been observed in human beings, aHF-rTMS applied to the left frontal cortex alters regional cerebral perfusion in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes.

    PubMed

    Miners, J Scott; Palmer, Jennifer C; Tayler, Hannah; Palmer, Laura E; Ashby, Emma; Kehoe, Patrick G; Love, Seth

    2014-01-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.

  10. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment

    PubMed Central

    Zhou, Joanne; Butler, Erin E.; Rose, Jessica

    2017-01-01

    Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP. PMID:28367118

  11. Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer's disease from cognitively normal elderly adults.

    PubMed

    Mak, Henry Ka-Fung; Qian, Wenshu; Ng, Kwok Sing; Chan, Queenie; Song, You-Qiang; Chu, Leung Wing; Yau, Kelvin Kai-Wing

    2014-01-01

    Structural magnetic resonance imaging has been employed for evaluation of medial temporal atrophy in patients with Alzheimer's disease (AD). Arterial spin labeling (ASL) technique could detect cerebral perfusion abnormalities in AD. We hypothesized that combination of hippocampal volumetry and cerebral blood flow yield higher accuracy than either method alone in discriminating AD patients from cognitively normal elderly adults. 13 AD patients and 15 healthy controls were studied using a 3-tesla scanner. Standardized T1W 3D volumetric Fast Field Echo and QUASAR ASL sequences were employed for cerebral volumetry and perfusion respectively. Manual Right and left hippocampal volumetry was performed manually by ANALYZE software, with total intracranial volume normalization. ASL data were analyzed by institutional specially-design software to calculate cerebral blood flow of region-of-interests placed at the middle and posterior cingulate gyri. Right and left hippocampal volumes and middle and posterior cingulate gyri cerebral blood flows were significantly lower in the patients than in the controls (independent-samples t-tests, p < 0.05), and prediction accuracies of 89.3%, 82.1%, 75.0% and 71.4% were achieved for each of the above parameters, respectively. In distinguishing patients from controls using corresponding optimized cut-off values, various combinations of these parameters were used to create the Receiver Operating Characteristic curves. The highest area under curve value was 0.944, by combining cerebral blood flow at the middle cingulate gyrus, normalized right and left hippocampal volumes. A 'one-stop-shop' magnetic resonance study of combined hippocampal volumetry and cerebral perfusion has improved efficacy in discriminating AD patients from cognitively normal elderly adults.

  12. Progressive Cortical Neuronal Damage and Extracranial-Intracranial Bypass Surgery in Patients with Misery Perfusion.

    PubMed

    Yamauchi, H; Kagawa, S; Kishibe, Y; Takahashi, M; Higashi, T

    2017-05-01

    Misery perfusion may cause selective neuronal damage in atherosclerotic ICA or MCA disease. Bypass surgery can improve misery perfusion and may prevent neuronal damage. On the other hand, surgery conveys a risk for neuronal damage. The purpose of this retrospective study was to determine whether progression of cortical neuronal damage in surgically treated patients with misery perfusion is larger than that in surgically treated patients without misery perfusion or medically treated patients with misery perfusion. We evaluated the distribution of benzodiazepine receptors twice by using PET and 11 C-labeled flumazenil in 18 surgically treated patients with atherosclerotic ICA or MCA disease (9 with misery perfusion and 9 without) and no perioperative stroke before and after bypass surgery; in 8 medically treated patients with misery perfusion and no intervening ischemic event; and in 7 healthy controls. We quantified abnormal decreases in the benzodiazepine receptors of the cerebral cortex within the MCA distribution and compared changes in the benzodiazepine receptor index among the 3 groups. The change in the benzodiazepine receptor index in surgically treated patients with misery perfusion (27.5 ± 15.6) during 7 ± 5 months was significantly larger than that in surgically treated patients without misery perfusion (-5.2 ± 9.4) during 6 ± 4 months ( P < .001) and in medically treated patients with misery perfusion (3.2 ± 15.4) during 16 ± 6 months ( P < .01). Progression of cortical neuronal damage in surgically treated patients with misery perfusion and no perioperative stroke may occur and may be larger than that in medically treated patients with misery perfusion and no intervening ischemic event. © 2017 by American Journal of Neuroradiology.

  13. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure.

    PubMed

    Varsos, Georgios V; Kolias, Angelos G; Smielewski, Peter; Brady, Ken M; Varsos, Vassilis G; Hutchinson, Peter J; Pickard, John D; Czosnyka, Marek

    2015-09-01

    Cerebral blood flow is associated with cerebral perfusion pressure (CPP), which is clinically monitored through arterial blood pressure (ABP) and invasive measurements of intracranial pressure (ICP). Based on critical closing pressure (CrCP), the authors introduce a novel method for a noninvasive estimator of CPP (eCPP). Data from 280 head-injured patients with ABP, ICP, and transcranial Doppler ultrasonography measurements were retrospectively examined. CrCP was calculated with a noninvasive version of the cerebrovascular impedance method. The eCPP was refined with a predictive regression model of CrCP-based estimation of ICP from known ICP using data from 232 patients, and validated with data from the remaining 48 patients. Cohort analysis showed eCPP to be correlated with measured CPP (R = 0.851, p < 0.001), with a mean ± SD difference of 4.02 ± 6.01 mm Hg, and 83.3% of the cases with an estimation error below 10 mm Hg. eCPP accurately predicted low CPP (< 70 mm Hg) with an area under the curve of 0.913 (95% CI 0.883-0.944). When each recording session of a patient was assessed individually, eCPP could predict CPP with a 95% CI of the SD for estimating CPP between multiple recording sessions of 1.89-5.01 mm Hg. Overall, CrCP-based eCPP was strongly correlated with invasive CPP, with sensitivity and specificity for detection of low CPP that show promise for clinical use.

  14. Diagnostic yield and accuracy of coronary CT angiography after abnormal nuclear myocardial perfusion imaging.

    PubMed

    Meinel, Felix G; Schoepf, U Joseph; Townsend, Jacob C; Flowers, Brian A; Geyer, Lucas L; Ebersberger, Ullrich; Krazinski, Aleksander W; Kunz, Wolfgang G; Thierfelder, Kolja M; Baker, Deborah W; Khan, Ashan M; Fernandes, Valerian L; O'Brien, Terrence X

    2018-06-15

    We aimed to determine the diagnostic yield and accuracy of coronary CT angiography (CCTA) in patients referred for invasive coronary angiography (ICA) based on clinical concern for coronary artery disease (CAD) and an abnormal nuclear stress myocardial perfusion imaging (MPI) study. We enrolled 100 patients (84 male, mean age 59.6 ± 8.9 years) with an abnormal MPI study and subsequent referral for ICA. Each patient underwent CCTA prior to ICA. We analyzed the prevalence of potentially obstructive CAD (≥50% stenosis) on CCTA and calculated the diagnostic accuracy of ≥50% stenosis on CCTA for the detection of clinically significant CAD on ICA (defined as any ≥70% stenosis or ≥50% left main stenosis). On CCTA, 54 patients had at least one ≥50% stenosis. With ICA, 45 patients demonstrated clinically significant CAD. A positive CCTA had 100% sensitivity and 84% specificity with a 100% negative predictive value and 83% positive predictive value for clinically significant CAD on a per patient basis in MPI positive symptomatic patients. In conclusion, almost half (48%) of patients with suspected CAD and an abnormal MPI study demonstrate no obstructive CAD on CCTA.

  15. In vitro evaluation of the imaging accuracy of C-arm conebeam CT in cerebral perfusion imaging

    PubMed Central

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2012-01-01

    Purpose: The authors have developed a method to enable cerebral perfusion CT imaging using C-arm based conebeam CT (CBCT). This allows intraprocedural monitoring of brain perfusion during treatment of stroke. Briefly, the technique consists of acquiring multiple scans (each scan comprised of six sweeps) acquired at different time delays with respect to the start of the x-ray contrast agent injection. The projections are then reconstructed into angular blocks and interpolated at desired time points. The authors have previously demonstrated its feasibility in vivo using an animal model. In this paper, the authors describe an in vitro technique to evaluate the accuracy of their method for measuring the relevant temporal signals. Methods: The authors’ evaluation method is based on the concept that any temporal signal can be represented by a Fourier series of weighted sinusoids. A sinusoidal phantom was developed by varying the concentration of iodine as successive steps of a sine wave. Each step corresponding to a different dilution of iodine contrast solution contained in partitions along a cylinder. By translating the phantom along the axis at different velocities, sinusoidal signals at different frequencies were generated. Using their image acquisition and reconstruction algorithm, these sinusoidal signals were imaged with a C-arm system and the 3D volumes were reconstructed. The average value in a slice was plotted as a function of time. The phantom was also imaged using a clinical CT system with 0.5 s rotation. C-arm CBCT results using 6, 3, 2, and 1 scan sequences were compared to those obtained using CT. Data were compared for linear velocities of the phantom ranging from 0.6 to 1 cm/s. This covers the temporal frequencies up to 0.16 Hz corresponding to a frequency range within which 99% of the spectral energy for all temporal signals in cerebral perfusion imaging is contained. Results: The errors in measurement of temporal frequencies are mostly below 2% for

  16. Mannitol-facilitated perfusion staining with 2, 3, 5-triphenyltetrazolium chloride (TTC) for detection of experimental cerebral infarction and biochemical analysis

    PubMed Central

    Sun, Yu-Yo; Yang, Dianer; Kuan, Chia-Yi

    2011-01-01

    A simple method to quantify cerebral infarction has great value for mechanistic and therapeutic studies in experimental stroke research. Immersion staining of unfixed brain slices with 2,3,5-triphenyltetrazolium chloride (TTC) is a popular method to determine cerebral infarction in preclinical studies. However, it is often difficult to apply immersion TTC-labeling to severely injured or soft newborn brains in rodents. Here we report an in-vivo TTC perfusion-labeling method based on osmotic opening of blood-brain-barrier with mannitol-pretreatment. This new method delineates cortical infarction correlated with the boundary of morphological cell injury, differentiates the induction or subcellular redistribution of apoptosis-related factors between viable and damaged areas, and easily determines the size of cerebral infarction in both adult and newborn mice. Using this method, we confirmed that administration of lipopolysaccharide 72 h before hypoxia-ischemia increases the damage in neonatal mouse brains, in contrast to its effect of protective preconditioning in adults. These results demonstrate a fast and inexpensive method that simplifies the task of quantifying cerebral infarction in small or severely injured brains and assists biochemical analysis of experimental cerebral ischemia. PMID:21982741

  17. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  18. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  19. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    PubMed

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image

  20. Reduced Perfusion in Broca’s Area in Developmental Stuttering

    PubMed Central

    Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C. R.; Lythgoe, David; Zelaya, Fernando O.; Peterson, Bradley S.

    2016-01-01

    Objective To study resting cerebral blood flow in children and adults with developmental stuttering. Methods We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. Results We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared to healthy controls in Broca’s area bilaterally and the superior frontal gyrus. rCBF values in Broca’s area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared to healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. Conclusions rCBF is reduced in Broca’s region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca’s region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. PMID:28035724

  1. Dynamic MR perfusion and proton MR spectroscopic imaging in Sturge-Weber syndrome: correlation with neurological symptoms.

    PubMed

    Lin, Doris D M; Barker, Peter B; Hatfield, Laura A; Comi, Anne M

    2006-08-01

    To investigate physiological alterations in Sturge-Weber syndrome (SWS) using MR perfusion imaging (PWI) and proton spectroscopic imaging (MRSI), and their association with neurological status. Six consecutive patients with a clinically established diagnosis of SWS underwent MRI using a 1.5 Tesla scanner. The protocol consisted of conventional anatomic scans, dynamic PWI, and multislice MRSI. A pediatric neurologist evaluated the neurological scores, and the imaging results were correlated with neurological scores using nonparametric correlation analysis. Two patients had classic neuroimaging findings of unilateral cerebral atrophy with corresponding leptomeningeal enhancement and hypoperfusion (prolonged mean transit time). Two patients had bilateral disease, and two had normal symmetric perfusion. Among clinical measures, the highest correlation was between hemiparesis index and hypoperfused tissue volume (Spearman's correlation coefficient, rho = 0.943, P < 0.05). There was also a trend of correlation, although not statistically significant (P = 0.06), between the hemiparesis score and the NAA/Cr ratio in the mid to posterior centrum semiovale, lateral gray matter (GM), and splenium. In SWS, PWI indicates cerebral hypoperfusion predominantly due to impaired venous drainage, with only the most severely affected regions in some patients also showing arterial perfusion deficiency. The extent and severity of the perfusion abnormality and neuronal loss/dysfunction reflect the severity of neurological symptoms and disability, and the highest correlation is found with the degree of hemiparesis. These parameters may be useful as quantitative measures of disease burden; however, further studies in larger number of patients (and with a more homogeneous age range) are required to confirm the preliminary findings reported here.

  2. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.

    PubMed

    Miranda, Maria J; Olofsson, Kern; Sidaros, Karam

    2006-09-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p < 0.0001) than in cortical gray matter (19 and 16 mL/100 g/min) and white matter (15 and 10 mL/100 g/min), both in preterm neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.

  3. Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage.

    PubMed

    Malinova, Vesna; Dolatowski, Karoline; Schramm, Peter; Moerer, Onnen; Rohde, Veit; Mielke, Dorothee

    2016-07-01

    OBJECT This prospective study investigated the role of whole-brain CT perfusion (CTP) studies in the identification of patients at risk for delayed ischemic neurological deficits (DIND) and of tissue at risk for delayed cerebral infarction (DCI). METHODS Forty-three patients with aneurysmal subarachnoid hemorrhage (aSAH) were included in this study. A CTP study was routinely performed in the early phase (Day 3). The CTP study was repeated in cases of transcranial Doppler sonography (TCD)-measured blood flow velocity (BFV) increase of > 50 cm/sec within 24 hours and/or on Day 7 in patients who were intubated/sedated. RESULTS Early CTP studies revealed perfusion deficits in 14 patients, of whom 10 patients (72%) developed DIND, and 6 of these 10 patients (60%) had DCI. Three of the 14 patients (21%) with early perfusion deficits developed DCI without having had DIND, and the remaining patient (7%) had neither DIND nor DCI. There was a statistically significant correlation between early perfusion deficits and occurrence of DIND and DCI (p < 0.0001). A repeated CTP was performed in 8 patients with a TCD-measured BFV increase > 50 cm/sec within 24 hours, revealing a perfusion deficit in 3 of them (38%). Two of the 3 patients (67%) developed DCI without preceding DIND and 1 patient (33%) had DIND without DCI. In 4 of the 7 patients (57%) who were sedated and/or comatose, additional CTP studies on Day 7 showed perfusion deficits. All 4 patients developed DCI. CONCLUSIONS Whole-brain CTP on Day 3 after aSAH allows early and reliable identification of patients at risk for DIND and tissue at risk for DCI. Additional CTP investigations, guided by TCD-measured BFV increase or persisting coma, do not contribute to information gain.

  4. Ventilation/Perfusion distribution abnormalities in morbidly obese subjects before and after bariatric surgery.

    PubMed

    Rivas, Eva; Arismendi, Ebymar; Agustí, Alvar; Sanchez, Marcelo; Delgado, Salvadora; Gistau, Concepción; Wagner, Peter D; Rodriguez-Roisin, Roberto

    2015-04-01

    Obesity is a global and growing public health problem. Bariatric surgery (BS) is indicated in patients with morbid obesity. To our knowledge, the effects of morbid obesity and BS on ventilation/perfusion (V.a/Q.) ratio distributions using the multiple inert gas elimination technique have never before been explored. We compared respiratory and inert gas (V.a/Q. ratio distributions) pulmonary gas exchange, breathing both ambient air and 100% oxygen, in 19 morbidly obese women (BMI, 45 kg/m2), both before and 1 year after BS, and in eight normal-weight, never smoker, age-matched, healthy women. Before BS, morbidly obese individuals had reduced arterial Po2 (76 ± 2 mm Hg) and an increased alveolar-arterial Po2 difference (27 ± 2 mm Hg) caused by small amounts of shunt (4.3% ± 1.1% of cardiac output), along with abnormally broadly unimodal blood flow dispersion (0.83 ± 0.06). During 100% oxygen breathing, shunt increased twofold in parallel with a reduction of blood flow to low V.a/Q. units, suggesting the development of reabsorption atelectasis without reversion of hypoxic pulmonary vasoconstriction. After BS, body weight was reduced significantly (BMI, 31 kg/m2), and pulmonary gas exchange abnormalities were decreased. Morbid obesity is associated with mild to moderate shunt and V.a/Q. imbalance. These abnormalities are reduced after BS.

  5. Reduced perfusion in Broca's area in developmental stuttering.

    PubMed

    Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C R; Lythgoe, David; Zelaya, Fernando O; Peterson, Bradley S

    2017-04-01

    To study resting cerebral blood flow in children and adults with developmental stuttering. We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared with healthy controls in Broca's area bilaterally and the superior frontal gyrus. rCBF values in Broca's area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared with healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. rCBF is reduced in Broca's region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca's region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. Hum Brain Mapp 38:1865-1874, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Antegrade or Retrograde Cerebral Perfusion in Ascending Aorta and Hemiarch Surgery? A Propensity-Matched Analysis.

    PubMed

    Perreas, Konstantinos; Samanidis, George; Thanopoulos, Apostolis; Georgiopoulos, Georgios; Antoniou, Theofani; Khoury, Mazen; Michalis, Alkiviadis; Bairaktaris, Andreas

    2016-01-01

    Over the years, numerous options have been proposed for surgical management of ascending aorta and aortic arch pathology in an attempt to minimize postoperative morbidity and probability of death. We present a propensity score-matching analysis of 259 patients from a single unit who were operated on under deep hypothermic arrest with retrograde cerebral perfusion (DHCA/RCP) or moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion (via common carotid artery) (MHCA/ACP). Between 2006 and 2014 a total of 259 consecutive patients underwent ascending aorta and hemiarch correction under HCA. DHCA/RCP and MHCA/ACP were performed on 207 and 52 patients, respectively. Baseline patient characteristics accounted for in the propensity matching were age, sex, acute aortic dissection, emergency operation, re-operation, preoperative hemodynamic instability, preoperative kidney injury, and CA time. After propensity scoring 40 pairs (80 patients) were successfully matched (p = 0.732). Outcomes were defined as the incidence of postoperative neurologic complications, 30-day mortality, and all-cause midterm mortality. Surgical procedure that involved the MHCA/ACP technique was associated with 76.5% decreased risk (risk ratio, 0.235; 95% CI, 0.079 to 0.699) of postoperative neurologic complications (p = 0.009). In addition to MHCA/ACP in surgical procedure for acute aortic dissection a relevant trend was established for 30-day mortality (risk ratio, 0.333; 95% CI, 0.09 to 1.23). For midterm all-cause mortality, MHCA/ACP modestly decreased the number of deaths (p = 0.0456) in comparison with the DHCA/RCP technique. MHCA/ACP in aortic arch surgical procedure is associated with a decreased risk of all types of neurologic complications and a trend toward decreased 30-day and midterm mortality in comparison with DHCA/RCP. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Assay of lysergic acid diethylamide and its passage from blood into the perfused cerebral ventricles

    PubMed Central

    Dras̆koci, M.

    1960-01-01

    On the isolated rat uterus, lysergic acid diethylamide had an oxytocic action in a concentration of 2×10-8; in smaller concentrations (10-9 to 10-10), which had no stimulating effect of their own, it potentiated acetylcholine-induced contractions. This potentiating effect was made the basis for assaying minute amounts of lysergic acid diethylamide. The method was used to assay this substance in plasma of cats during its intravenous infusion at a rate of 10 μg./min./kg. During these infusions 0.4 to 2 ng./min. of lysergic acid diethylamide passed into the cerebral ventricles perfused with a salt solution of a composition resembling that of cerebrospinal fluid. PMID:13818017

  8. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  9. Differences in cerebral perfusion deficits in mild traumatic brain injury and depression using single-photon emission computed tomography.

    PubMed

    Romero, Kristoffer; Black, Sandra E; Feinstein, Anthony

    2014-01-01

    Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions.

  10. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation*.

    PubMed

    Parnia, Sam; Nasir, Asad; Ahn, Anna; Malik, Hanan; Yang, Jie; Zhu, Jiawen; Dorazi, Francis; Richman, Paul

    2014-04-01

    A major hurdle limiting the ability to improve the quality of resuscitation has been the lack of a noninvasive real-time detection system capable of monitoring the quality of cerebral and other organ perfusion, as well as oxygen delivery during cardiopulmonary resuscitation. Here, we report on a novel system of cerebral perfusion targeted resuscitation. An observational study evaluating the role of cerebral oximetry (Equanox; Nonin, Plymouth, MI, and Invos; Covidien, Mansfield, MA) as a real-time marker of cerebral perfusion and oxygen delivery together with the impact of an automated mechanical chest compression system (Life Stat; Michigan Instruments, Grand Rapids, MI) on oxygen delivery and return of spontaneous circulation following in-hospital cardiac arrest. Tertiary medical center. In-hospital cardiac arrest patients (n = 34). Cerebral oximetry provided real-time information regarding the quality of perfusion and oxygen delivery. The use of automated mechanical chest compression device (n = 12) was associated with higher regional cerebral oxygen saturation compared with manual chest compression device (n = 22) (53.1% ± 23.4% vs 24% ± 25%, p = 0.002). There was a significant difference in mean regional cerebral oxygen saturation (median % ± interquartile range) in patients who achieved return of spontaneous circulation (n = 15) compared with those without return of spontaneous circulation (n = 19) (47.4% ± 21.4% vs 23% ± 18.42%, p < 0.001). After controlling for patients achieving return of spontaneous circulation or not, significantly higher mean regional cerebral oxygen saturation levels during cardiopulmonary resuscitation were observed in patients who were resuscitated using automated mechanical chest compression device (p < 0.001). The integration of cerebral oximetry into cardiac arrest resuscitation provides a novel noninvasive method to determine the quality of cerebral perfusion and oxygen delivery to the brain. The use of automated mechanical

  11. Different CT perfusion algorithms in the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.

    PubMed

    Cremers, Charlotte H P; Dankbaar, Jan Willem; Vergouwen, Mervyn D I; Vos, Pieter C; Bennink, Edwin; Rinkel, Gabriel J E; Velthuis, Birgitta K; van der Schaaf, Irene C

    2015-05-01

    Tracer delay-sensitive perfusion algorithms in CT perfusion (CTP) result in an overestimation of the extent of ischemia in thromboembolic stroke. In diagnosing delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH), delayed arrival of contrast due to vasospasm may also overestimate the extent of ischemia. We investigated the diagnostic accuracy of tracer delay-sensitive and tracer delay-insensitive algorithms for detecting DCI. From a prospectively collected series of aSAH patients admitted between 2007-2011, we included patients with any clinical deterioration other than rebleeding within 21 days after SAH who underwent NCCT/CTP/CTA imaging. Causes of clinical deterioration were categorized into DCI and no DCI. CTP maps were calculated with tracer delay-sensitive and tracer delay-insensitive algorithms and were visually assessed for the presence of perfusion deficits by two independent observers with different levels of experience. The diagnostic value of both algorithms was calculated for both observers. Seventy-one patients were included. For the experienced observer, the positive predictive values (PPVs) were 0.67 for the delay-sensitive and 0.66 for the delay-insensitive algorithm, and the negative predictive values (NPVs) were 0.73 and 0.74. For the less experienced observer, PPVs were 0.60 for both algorithms, and NPVs were 0.66 for the delay-sensitive and 0.63 for the delay-insensitive algorithm. Test characteristics are comparable for tracer delay-sensitive and tracer delay-insensitive algorithms for the visual assessment of CTP in diagnosing DCI. This indicates that both algorithms can be used for this purpose.

  12. Prevalence and pattern of abnormal myocardial perfusion in patients with isolated coronary artery ectasia: study by 99mTc-sestamibi radionuclide scintigraphy.

    PubMed

    Ismail, Ahmed M; Rayan, Mona; Adel, Amr; Demerdash, Salah; Atef, Mohamed; Abdallah, Mohamed; Nammas, Wail

    2014-02-01

    We explored the prevalence and pattern of abnormal myocardial perfusion in patients with isolated coronary artery ectasia (CAE), as demonstrated by (99m)Tc-sestamibi scintigraphy. Prospectively, we enrolled 35 patients with angiographically documented CAE and no significant coronary obstruction, who underwent elective coronary angiography. Patients underwent Stress-rest (99m)Tc-sestamibi scintigraphy within 4 days of coronary angiography. They were divided into 2 groups: group I: with normal perfusion scan; and group II: with reversible perfusion defects. The mean age was 49.6 ± 6.9 years; 34 (97.1 %) were males. Seventy-nine (75.2 %) arteries were affected by CAE. Among 79 arteries affected by CAE, affection was diffuse in 37 (46.8 %). Thirteen (37.1 %) patients had normal perfusion scan (group I), whereas 22 (62.9 %) had reversible perfusion defects (group II). Among 22 patients with reversible perfusion defects, 20 (90.9 %) had mild and 2 (9.1 %) had moderate ischemia. Among 49 myocardial segments with reversible perfusion defects, 22 (44.9 %) were basal, 18 (36.7 %) mid-, and 9 (18.4 %) apical segments. Diffuse CAE was significantly more prevalent in group II versus group I, in all 3 major coronary arteries (p < 0.05 for all). In patients with isolated CAE who underwent elective coronary angiography, reversible perfusion defects demonstrated by (99m)Tc-sestamibi scintigraphy were rather prevalent, mostly mild, more likely to affect the basal and mid-segments of the myocardium, and more frequently associated with diffuse ectasia.

  13. Frequency of Inverted Electrocardiographic T Waves (Cerebral T Waves) in Patients With Acute Strokes and Their Relation to Left Ventricular Wall Motion Abnormalities.

    PubMed

    Stone, Jeremy; Mor-Avi, Victor; Ardelt, Agnieszka; Lang, Roberto M

    2018-01-01

    Transient, symmetric, and deep inverted electrocardiogram (ECG) T waves in the setting of stroke, commonly referred to as cerebral T waves, are rare, and the underlying mechanism is unclear. Our study aimed to test the hypothesis that cerebral T waves are associated with transient cardiac dysfunction. This retrospective study included 800 patients admitted with the primary diagnosis of hemorrhagic or ischemic stroke. ECGs were examined for cerebral T waves, defined as T-wave inversion of ≥5 mm depth in ≥4 contiguous precordial leads. Echocardiograms of those meeting these criteria were examined for the presence of left ventricular (LV) wall motion abnormalities. Follow-up evaluation included both ECG and echocardiogram. Of the 800 patients, 17 had cerebral T waves on ECG (2.1%). All 17 patients had ischemic strokes, of which 11 were in the middle cerebral artery distribution (65%), and 2 were cerebellar (12%), whereas the remaining 4 involved other locations. Follow-up ECG showed resolution of the T-wave changes in all 17 patients. Of these patients, 14 (82%) had normal wall motion, and 3 had transient wall motion abnormalities (18%). Two of these patients had Takotsubo-like cardiomyopathy with apical ballooning, and the third had globally reduced LV function. Coronary angiography showed no significant disease to explain the LV dysfunction. In summary, in our cohort of patients with acute stroke, cerebral T waves were rare and occurred only in ischemic stroke. Eighteen percent of patients with cerebral T waves had significant transient wall motion abnormalities. Patients with stroke with cerebral T waves, especially in those with ischemic strokes, should be assessed for cardiac dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Correlation between dynamic contrast-enhanced perfusion MRI relative cerebral blood volume and vascular endothelial growth factor expression in meningiomas.

    PubMed

    Ginat, Daniel T; Mangla, Rajiv; Yeaney, Gabrielle; Schaefer, Pamela W; Wang, Henry

    2012-08-01

    To determine whether there is a correlation between vascular endothelial growth factor (VEGF) expression and cerebral blood flow (CBV) measurements in dynamic contrast-enhanced susceptibility perfusion magnetic resonance imaging (MRI) and to correlate the perfusion characteristics in high- versus low-grade meningiomas. A total of 48 (24 high-grade and 24 low-grade) meningiomas with available dynamic susceptibility-weighted MRI were retrospectively reviewed for maximum CBV and semiquantitative VEGF immunoreactivity. Correlation between normalized CBV and VEGF was made using the Spearman rank test and comparison between CBV in high- versus low-grade meningiomas was made using the Wilcoxon test. There was a significant (P = .01) correlation between normalized maximum CBV and VEGF scores with a Spearman correlation coefficient of 0.37. In addition, there was a significant (P < .01) difference in normalized maximum CBV ratios between high-grade meningiomas (mean 12.6; standard deviation 5.2) and low-grade meningiomas (mean 8.2; standard deviation 5.2). The data suggest that CBV accurately reflects VEGF expression and tumor grade in meningiomas. Perfusion-weighted MRI can potentially serve as a useful biomarker for meningiomas, pending prospective studies. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  15. Dynamic change in cerebral microcirculation and focal cerebral metabolism in experimental subarachnoid hemorrhage in rabbits.

    PubMed

    Song, Jin-Ning; Chen, Hu; Zhang, Ming; Zhao, Yong-Lin; Ma, Xu-Dong

    2013-03-01

    Regional cerebral blood flow (rCBF) in the cerebral metabolism and energy metabolism measurements can be used to assess blood flow of brain cells and to detect cell activity. Changes of rCBF in the cerebral microcirculation and energy metabolism were determined in an experimental model of subarachnoid hemorrhage (SAH) model in 56 large-eared Japanese rabbits about 12 to 16-month old. Laser Doppler flowmetry was used to detect the blood supply to brain cells. Internal carotid artery and vein blood samples were used for duplicate blood gas analysis to assess the energy metabolism of brain cells. Cerebral blood flow (CBF) was detected by single photon emission computed tomography (SPECT) perfusion imaging using Tc-99m ethyl cysteinate dimer (Tc-99m ECD) as an imaging reagent. The percentage of injected dose per gram of brain tissue was calculated and analyzed. There were positive correlations between the percentage of radionuclide injected per gram of brain tissue and rCBF supply and cerebral metabolic rate for oxygen (P < 0.05). However, there was a negative correlation between radioactivity counts per unit volume detected on the SPECT rheoencephalogram and lactic acid concentration in the homolateral internal carotid artery and vein. In summary, this study found abnormal CBF in metabolism and utilization of brain cells after SAH, and also found that deterioration of energy metabolism of brain cells played a significant role in the development of SAH. There are matched reductions in CBF and metabolism. Thus, SPECT imaging could be used as a noninvasive method to detect CBF.

  16. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    PubMed

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  17. Deep Hypothermic Circulatory Arrest vs. Antegrade Cerebral Perfusion in Cerebral Protection during the Surgical Treatment of Chronic Dissection of the Ascending and Arch Aorta

    PubMed Central

    Kamenskaya, Oksana Vasilyevna; Klinkova, Asya Stanislavovna; Chernyavsky, Alexander Mikhailovich; Lomivorotov, Vladimir Vladimirovich; Meshkov, Ivan Olegovich; Karaskov, Alexander Mikhailovich

    2017-01-01

    Abstract: Circulatory arrest during aortic surgery presents a risk of neurological complications. The present study aimed to investigate the effectiveness of deep hypothermic circulatory arrest (DHCA) vs. antegrade cerebral perfusion (ACP) in cerebral protection during the surgical treatment of chronic dissection of the ascending and arch aorta and to assess the quality-of-life (QoL) in the long-term postoperative period with respect to the used cerebral protection method. In a prospective, randomized study, 58 patients with chronic type I aortic dissection who underwent ascending aorta and aortic arch replacement surgery were included. Patients were allocated in two groups: 29 patients who underwent surgery under moderate hypothermia (24°C) combined with ACP and 29 patients who underwent surgery under DHCA (18°C) with craniocerebral hypothermia. The regional hemoglobin oxygen saturation (rSO2, %) were compared during surgery, neurological complications were analyzed during the early postoperative period, QoL was compared in the long-term postoperative period (1-year follow-up). During the early postoperative period, 37.9% of patients in the DHCA group exhibited neurological complications, compared with 13.8% of those in the ACP group (p < .05). The risk of neurological complications in the early postoperative period was dependent on the extent of rSO2 decrease during circulatory arrest. In the ACP group, rSO2 decreased by ≤17% from baseline during circulatory arrest. In the DHCA group, a more profound decrease in rSO2 (>30%) was recorded (p < .05). QoL in the long-term period after surgery improved, but it was not dependent on the cerebral protection method used during surgery. ACP during aortic replacement demonstrated the most advanced properties of cerebral protection that can be evidenced by a lesser degree of neurological complications, compared with patients who underwent surgery under conditions of DHCA. QoL after surgery was not dependent on the

  18. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    PubMed

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  19. Specific cerebral perfusion patterns in three schizophrenia symptom dimensions.

    PubMed

    Stegmayer, Katharina; Strik, Werner; Federspiel, Andrea; Wiest, Roland; Bohlhalter, Stephan; Walther, Sebastian

    2017-12-01

    Dimensional concepts such as the Research Domain Criteria initiative have been proposed to disentangle the heterogeneity of schizophrenia. One model introduced three neurobiologically informed behavioral dimensions: language, affectivity and motor behavior. To study the brain-behavior associations of these three dimensions, we investigated whether current behavioral alterations were linked to resting state perfusion in distinct brain circuits in schizophrenia. In total, 47 patients with schizophrenia spectrum disorders and 44 healthy controls were included. Psychopathology was assessed with the Positive And Negative Syndrome Scale and the Bern Psychopathology scale (BPS). The BPS provides severity ratings of three behavioral dimensions (language, affectivity and motor). Patients were classified according to the severity of alterations (severe, mild, no) in each dimension. Whole brain resting state cerebral blood flow (CBF) was compared between patient subgroups and controls. Two symptom dimensions were associated with distinct CBF changes. Behavioral alterations in the language dimension were linked to increased CBF in Heschl's gyrus. Altered affectivity was related to increased CBF in amygdala. The ratings of motor behavior instead were not specifically associated with CBF. Investigating behavioral alterations in three schizophrenia symptom dimensions identified distinct regional CBF changes in the language and limbic brain circuits. The results demonstrate a hitherto unknown segregation of pathophysiological pathways underlying a limited number of specific symptom dimensions in schizophrenia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Orthostatic hypotension, cerebral hypoperfusion, and visuospatial deficits in Lewy body disorders.

    PubMed

    Robertson, Andrew D; Messner, Michelle A; Shirzadi, Zahra; Kleiner-Fisman, Galit; Lee, Joyce; Hopyan, Julia; Lang, Anthony E; Black, Sandra E; MacIntosh, Bradley J; Masellis, Mario

    2016-01-01

    Orthostatic hypotension and cognitive impairment are two non-motor attributes of Lewy body spectrum disorders that impact independence. This proof-of-concept study examined cerebral blood flow (perfusion) as a mediator of orthostatic hypotension and cognition. In fifteen patients with Lewy body disorders, we estimated regional perfusion using pseudo-continuous arterial spin labeling MRI, and quantified orthostatic hypotension from the change in systolic blood pressure between supine and standing positions. Executive, visuospatial, attention, memory, and language domains were characterized by neuropsychological tests. A matching sample of non-demented adults with cerebral small vessel disease was obtained to contrast perfusion patterns associated with comorbid vascular pathology. Compared to the vascular group, patients with Lewy body disorders exhibited lower perfusion to temporal and occipital lobes than to frontal and parietal lobes (q < 0.05). A greater orthostatic drop in systolic pressure was associated with lower occipito-parietal perfusion in these patients (uncorrected p < 0.005; cluster size ≥ 20 voxels). Although orthostatic hypotension and supine hypertension were strongly correlated (r = -0.79, p < 0.001), the patterns of association for each with perfusion were distinct. Specifically, supine hypertension was associated with high perfusion to anterior and middle cerebral arterial territories, as well as with low perfusion to posterior regions. Perfusion within orthostatic hypotension-defined regions was directly related to performance on visuospatial and attention tasks, independent of dementia severity (p < 0.05). These findings provide new insight that regional cerebral hypoperfusion is related to orthostatic hypotension, and may be involved in domain-specific cognitive deficits in Lewy body disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Brain perfusion alterations in tick-borne encephalitis-preliminary report.

    PubMed

    Tyrakowska-Dadełło, Zuzanna; Tarasów, Eugeniusz; Janusek, Dariusz; Moniuszko-Malinowska, Anna; Zajkowska, Joanna; Pancewicz, Sławomir

    2018-03-01

    Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Cerebral monitoring during cardiopulmonary bypass in children.

    PubMed

    Kern, F H; Schell, R M; Greeley, W J

    1993-07-01

    Although cerebral monitoring during CPB remains primarily investigational, recent data support its clinical utility. In particular, it is cerebral metabolic monitoring that provides meaningful information in terms of preparing the brain for dhCPB and dhCA. Cerebral blood flow or cerebral blood flow velocity monitoring is less beneficial due to the presence of luxuriant cerebral blood flow at deep hypothermic temperatures. Conventional temperature monitoring can be improved upon by adding jugular venous oxygen saturation monitoring to satisfy the primary goal of cerebral protection--uniform cerebral cooling and metabolic suppression. Although online measures of cerebral cellular metabolism are not widely available, early experience with near infrared technology suggests that it is a feasible and reliable monitor of cerebral metabolic activity and is likely to represent an important noninvasive continuous monitor in the near future. CMRO2 recovery data have suggested that cerebral metabolic suppression is more severe the longer the period of dhCA. Cerebral protection strategies, such as intermittent cerebral perfusion have demonstrated less metabolic suppression of dhCA in animal models and are currently undergoing clinical evaluation in our institution. Finally, the postoperative period remains a high-risk period for neurologic injury because temperatures are normothermic, cardiac output is reduced, cerebral autoregulation is impaired, and management strategies, such as hyperventilation, are commonly used to increase pulmonary blood flow with little knowledge on its effects on cerebral perfusion.

  3. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.

    PubMed

    Iwata, Sachiko; Tachtsidis, Ilias; Takashima, Sachio; Matsuishi, Toyojiro; Robertson, Nicola J; Iwata, Osuke

    2014-10-01

    Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO₂ index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO₂ index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO₂ index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the

  4. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion combined with deep hypothermia circulatory arrest in aortic arch surgery: a meta-analysis and systematic review of 5060 patients.

    PubMed

    Hu, Zhipeng; Wang, Zhiwei; Ren, Zongli; Wu, Hongbing; Zhang, Min; Zhang, Hao; Hu, Xiaoping

    2014-08-01

    Our objective was to determine if antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP) combined with deep hypothermia circulatory arrest in aortic arch surgery results in different mortality and neurologic outcomes. The Cochrane Library, Medline, EMBASE, CINAHL, Web of Science, and the Chinese Biomedical Database were searched for studies reporting on postoperative strokes, permanent neurologic dysfunction, temporary neurologic dysfunction, and all causes mortality within 30 days postoperation in aortic arch surgery. Meta-analysis for effect size, t test, and I(2) for detecting heterogeneity and sensitivity analysis for assessing the relative influence of each study was performed. Fifteen included studies encompassed a total of 5060 patients of whom 2855 were treated with deep hypothermic circulatory arrest plus ACP and 1897 were treated with deep hypothermic circulatory arrest plus RCP. Pooled analysis showed no significant statistical difference (P > .01) of 30-day mortality, permanent neurologic dysfunction, and transient neurologic dysfunction in the 2 groups. Before sensitivity analysis, postoperative stroke incidence in the ACP group was higher than in the RCP group (7.2% vs 4.7%; P < .01). After a study that included a different percentage of patients with a history of central neurologic events in the 2 groups was ruled out, postoperative stroke incidence in the 2 groups also showed no significant statistical difference (P > .01). ACP and RCP provide similar cerebral protective effectiveness combined with deep hypothermia circulatory arrest and could be selected according to the actual condition in aortic arch surgery. A high-quality randomized controlled trial is urgently needed to confirm this conclusion, especially for stroke morbidity following ACP or RCP. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  5. Cerebral-Body Perfusion Model

    DTIC Science & Technology

    1990-07-01

    to simulate flow and pressure interaction between the cerebral and the body systems. its objective is to study the dynamic interaction between the...single model. The objective is to enable the study of the dynamic interaction between these two systems. In this model, relevant parts of the brain and of...34blackout, can also be investigated. For example, the effect can be studied of different inhale/exhale and/or different relative positioning betwoen head-body

  6. Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis Representation Tensor Sparsity Regularization

    PubMed Central

    Zeng, Dong; Xie, Qi; Cao, Wenfei; Lin, Jiahui; Zhang, Hao; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Meng, Deyu; Xu, Zongben; Liang, Zhengrong; Chen, Wufan

    2017-01-01

    Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the hemodynamic information throughout the brain. However, due to multiple 3-D image volume acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing concerns. To address this issue, in this paper, based on the robust principal component analysis (RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging procedure, we propose a new DCPCT image reconstruction algorithm to improve low dose DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-representation tensor sparsity regularization, for measuring low-rankness extent of a tensor. For simplicity, the first proposed model is termed tensor-based RPCA (T-RPCA). Specifically, the T-RPCA model views the DCPCT sequential images as a mixture of low-rank, sparse, and noise components to describe the maximum temporal coherence of spatial structure among phases in a tensor framework intrinsically. Moreover, the low-rank component corresponds to the “background” part with spatial–temporal correlations, e.g., static anatomical contribution, which is stationary over time about structure, and the sparse component represents the time-varying component with spatial–temporal continuity, e.g., dynamic perfusion enhanced information, which is approximately sparse over time. Furthermore, an improved nonlocal patch-based T-RPCA (NL-T-RPCA) model which describes the 3-D block groups of the “background” in a tensor is also proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the DCPCT images, i.e., nonlocal self-similarity and global correlation. Two efficient algorithms using alternating direction method of multipliers are developed to solve the proposed T-RPCA and NL-T-RPCA models, respectively. Extensive experiments with a digital brain perfusion phantom, preclinical monkey data, and clinical patient data clearly

  7. Differences in Cerebral Perfusion Deficits in Mild Traumatic Brain Injury and Depression Using Single-Photon Emission Computed Tomography

    PubMed Central

    Romero, Kristoffer; Black, Sandra E.; Feinstein, Anthony

    2014-01-01

    Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. Results: mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. Conclusion: These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions. PMID:25191305

  8. Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion.

    PubMed

    Lucas, R A I; Wilson, L C; Ainslie, P N; Fan, J L; Thomas, K N; Cotter, J D

    2018-03-01

    The purpose of this study was to identify the dose-dependent effects of heat strain and orthostasis [via lower body negative pressure (LBNP)], with and without mild hypohydration, on systemic function and cerebral perfusion. Eleven men (means ± SD: 27 ± 7 y; body mass 77 ± 6 kg), resting supine in a water-perfused suit, underwent progressive passive heating [0.5°C increments in core temperature (T c ; esophageal to +2.0°C)] while euhydrated (EUH) or hypohydrated (HYPO; 1.5-2% body mass deficit). At each thermal state, mean cerebral artery blood velocity (MCAv mean ; transcranial Doppler), partial pressure of end-tidal carbon dioxide ([Formula: see text]), heart rate (HR) and mean arterial blood pressure (MAP; photoplethysmography) were measured continuously during LBNP (0, -15, -30, and -45 mmHg). Four subjects became intolerant before +2.0°C T c , unrelated to hydration status. Without LBNP, decreases in [Formula: see text] accounted fully for reductions in MCAv mean across all T c . With LBNP at heat tolerance (+1.5 or +2.0°C), [Formula: see text] accounted for 69 ± 25% of the change in MCAv mean . The HYPO condition did not affect MCAv mean or any cardiovascular variables during combined LBNP and passive heat stress (all P > 0.13). These findings indicate that hypocapnia accounted fully for the reduction in MCAv mean when passively heat stressed in the absence of LBNP and for two- thirds of the reduction when at heat tolerance combined with LBNP. Furthermore, when elevations in T c are matched, mild hypohydration does not influence cerebrovascular or cardiovascular responses to LBNP, even when stressed by a combination of hyperthermia and LBNP.

  9. Self-reported fatigue common among optimally treated HIV patients: no correlation with cerebral FDG-PET scanning abnormalities.

    PubMed

    Andersen, Ase B; Law, Ian; Ostrowski, Sisse R; Lebech, Anne Mette; Høyer-Hansen, Gunilla; Højgaard, Liselotte; Gerstoft, Jan; Ullum, Henrik; Kjaer, Andreas

    2006-01-01

    It was the aim of this study to determine the prevalence and severity of fatigue among optimally treated HIV patients and to investigate the potential association with systemic inflammation and abnormalities of the distribution of cerebral glucose metabolism. A cohort of HIV patients (n = 95), known to be HIV positive for 5 years, on anti-retroviral therapy for a minimum of 3 years and with CD4 counts above 0.2 x 10(9) cells/l, completed a validated fatigue inventory, and plasma was analysed for pro-inflammatory markers including tumour necrosis factor-alpha, interleukin 6 and soluble urokinase receptor (suPAR) levels. The distribution of the regional cerebral metabolic rate of glucose was measured in a sub-group of patients suffering from severe fatigue (n = 9) and a group with no fatigue (n = 7) using fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) scanning. Fifteen percent suffered from severe fatigue, but no association with pro-inflammatory markers was found. About 50% of the FDG-PET-scanned patients showed minor abnormalities in the relative cerebral metabolic rate of glucose. These abnormalities were not associated with fatigue but tended to correlate with a short HIV history (p = 0.058), a low CD4 nadir (p = 0.082) and elevated tumour necrosis factor-alpha levels (p = 0.074). Fatigue is common among optimally treated HIV patients. FDG-PET-described signs of imminent neurodegeneration among HIV patients who had a low CD4 nadir may illustrate an aspect of HIV neuropathogenicity.

  10. Myocardial perfusion and left ventricular function indices assessed by gated myocardial perfusion SPECT in methamphetamine abusers.

    PubMed

    Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh

    2016-12-01

    Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.

  11. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats

    PubMed Central

    Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.

    2018-01-01

    Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141

  12. T2’-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume

    PubMed Central

    Deichmann, Ralf; Pfeilschifter, Waltraud; Hattingen, Elke; Singer, Oliver C.; Wagner, Marlies

    2016-01-01

    Purpose Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis. Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas. Results No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease. PMID:27560515

  13. Optical monitoring of cerebral microcirculation in neurointensive care.

    PubMed

    Rejmstad, Peter; Haj-Hosseini, Neda; Åneman, Oscar; Wårdell, Karin

    2017-12-08

    Continuous optical monitoring of local cerebral microcirculation could benefit neurointensive care patients treated for subarachnoid hemorrhage (SAH). The aim of the study was to evaluate laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) for long-term monitoring of brain microcirculation and oxygen saturation (SO 2 ) in the neurointensive care unit (NICU). A fiber optic probe was designed for intraparenchymal use and connected to LDF and DRS for assessment of the local blood flow (perfusion and tissue reflectance (TLI)) and SO 2 in the brain. The optically monitored parameters were compared with conventional NICU monitors and Xe-CT. The LDF signals were low with median and 25 to 75% interquartiles of perfusion = 70 (59 to 83) a.u. and TLI = 2.0 (1.0 to 2.4) a.u. and showed correlation with the NICU monitors in terms of heart rate. Median and interquartiles of SO 2 were 17.4 (15.7 to 19.8) %. The lack of correlation between local perfusion and cerebral perfusion pressure indicated intact cerebral autoregulation. The systems were capable of monitoring both local perfusion and SO 2 with stable signals in the NICU over 4 days. Further clinical studies are required to evaluate the optical systems' potential for assessing the onset of secondary brain injury.

  14. Improved hemodynamic parameters in middle cerebral artery infarction after decompressive craniectomy.

    PubMed

    Amorim, Robson Luis; de Andrade, Almir Ferreira; Gattás, Gabriel S; Paiva, Wellingson Silva; Menezes, Marcos; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2014-05-01

    Decompressive craniectomy (DC) reduces mortality and improves functional outcome in patients with malignant middle cerebral artery infarction. However, little is known regarding the impact of DC on cerebral hemodynamics. Therefore, our goal was to study the hemodynamic changes that may occur in patients with malignant middle cerebral artery infarction after DC and to assess their relationship with outcomes. Twenty-seven patients with malignant middle cerebral artery infarction who were treated with DC were studied. The perfusion CT hemodynamic parameters, mean transit time, cerebral blood flow, and cerebral blood volume were evaluated preoperatively and within the first 24 hours after DC. There was a global trend toward improved cerebral hemodynamics after DC. Preoperative and postoperative absolute mean transit times were associated with mortality at 6 months, and the ratio of post- and preoperative cerebral blood flow was significantly higher in patients with favorable outcomes than those with unfavorable outcomes. Patients who underwent surgery 48 hours after stroke, those with midline brain shift>10 mm, and those who were >55 years showed no significant improvement in any perfusion CT parameters. DC improves cerebral hemodynamics in patients with malignant middle cerebral artery infarction, and the level of improvement is related to outcome. However, some patients did not seem to experience any additional hemodynamic benefit, suggesting that perfusion CT may play a role as a prognostic tool in patients undergoing DC after ischemic stroke.

  15. Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder.

    PubMed

    Dang-Vu, Thien Thanh; Gagnon, Jean-François; Vendette, Mélanie; Soucy, Jean-Paul; Postuma, Ronald B; Montplaisir, Jacques

    2012-12-11

    Patients with idiopathic REM sleep behavior disorder (IRBD) are at risk for developing Parkinson disease (PD) and dementia with Lewy bodies (DLB). We aimed to identify functional brain imaging patterns predicting the emergence of PD and DLB in patients with IRBD, using SPECT with (99m)Tc-ethylene cysteinate dimer (ECD). Twenty patients with IRBD were scanned at baseline during wakefulness using (99m)Tc-ECD SPECT. After a follow-up of 3 years on average, patients were divided into 2 groups according to whether or not they developed defined neurodegenerative disease (PD, DLB). SPECT data analysis comparing regional cerebral blood flow (rCBF) between groups assessed whether specific brain perfusion patterns were associated with subsequent clinical evolution. Regression analysis between rCBF and clinical markers of neurodegeneration (motor, color vision, olfaction) looked for neural structures involved in this process. Of the 20 patients with IRBD recruited for this study, 10 converted to PD or DLB during the follow-up. rCBF at baseline was increased in the hippocampus of patients who would later convert compared with those who would not (p < 0.05 corrected). Hippocampal perfusion was correlated with motor and color vision scores across all IRBD patients. (99m)Tc-ECD SPECT identifies patients with IRBD at risk for conversion to other neurodegenerative disorders such as PD or DLB; disease progression in IRBD is predicted by abnormal perfusion in the hippocampus at baseline. Perfusion within this structure is correlated with clinical markers of neurodegeneration, further suggesting its involvement in the development of presumed synucleinopathies.

  16. Retrograde cerebral perfusion as an adjunct to prolonged hypothermic circulatory arrest.

    PubMed

    Esmailian, F; Dox, H; Sadeghi, A; Eghbali, K; Laks, H

    1999-10-01

    This study was designed to evaluate the use of retrograde cerebral perfusion (RCP) combined with deep hypothermic circulatory arrest (DHCA) in the treatment of complex congenital and adult cardiac disease. Retrospective chart review of 52 cardiac surgery patients (34 male and 18 female; age range, 3 weeks to 89 years old; mean age, 60 years old) who received RCP in conjunction with DHCA from July 1991 through August 1998. Surgical procedures consisted of the following: (1) repair of ascending aortic aneurysms (n = 16); (2) repair of type A aortic dissection (n = 16); (3) repair of arch aneurysms (n = 10); (4) renal cell carcinoma with tumor extension to the inferior vena cava (IVC) and right atrium (n = 5); (6) coronary artery bypass grafting and concomitant aortic valve replacement with calcified aorta (n = 2); (7) Norwood procedure and take down of a Pott's shunt (n = 2); and (8) massive air embolism treatment (n = 1). Mean RCP time was 39 min (range, 3 to 88 min). Thirteen patients had RCP times > 60 min. Mean core temperature (rectal or bladder) was 19 degrees C (range, 15 degrees to 28 degrees C). There were six early deaths, four of which were related to persistent low-output cardiac failure, and two resulted from perioperative stroke. All remaining patients recovered fully without neurologic deficits. RCP is a reliable and technically appealing tool that does the following: (1) it improves DHCA safety and is applicable in a variety of clinical settings with relative ease; (2) it potentially provides oxygen and nutritional support to the brain during DHCA; (3) it helps remove air and other debris from the cerebral vessels; and (4) it is useful in dealing with congenital heart disease and tumor extension into the IVC.

  17. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy

    PubMed Central

    Kwon, Hae-Yeon

    2017-01-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5–13 years of age in I–III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject’s guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity. PMID:28265153

  18. Elevated Amygdala Perfusion Mediates Developmental Sex Differences in Trait Anxiety.

    PubMed

    Kaczkurkin, Antonia N; Moore, Tyler M; Ruparel, Kosha; Ciric, Rastko; Calkins, Monica E; Shinohara, Russell T; Elliott, Mark A; Hopson, Ryan; Roalf, David R; Vandekar, Simon N; Gennatas, Efstathios D; Wolf, Daniel H; Scott, J Cobb; Pine, Daniel S; Leibenluft, Ellen; Detre, John A; Foa, Edna B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D

    2016-11-15

    Adolescence is a critical period for emotional maturation and is a time when clinically significant symptoms of anxiety and depression increase, particularly in females. However, few studies relate developmental differences in symptoms of anxiety and depression to brain development. Cerebral blood flow is one brain phenotype that is known to have marked developmental sex differences. We investigated whether developmental sex differences in cerebral blood flow mediated sex differences in anxiety and depression symptoms by capitalizing on a large sample of 875 youths who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. Perfusion was quantified on a voxelwise basis using arterial spin-labeled magnetic resonance imaging at 3T. Perfusion images were related to trait and state anxiety using general additive models with penalized splines, while controlling for gray matter density on a voxelwise basis. Clusters found to be related to anxiety were evaluated for interactions with age, sex, and puberty. Trait anxiety was associated with elevated perfusion in a network of regions including the amygdala, anterior insula, and fusiform cortex, even after accounting for prescan state anxiety. Notably, these relationships strengthened with age and the transition through puberty. Moreover, higher trait anxiety in postpubertal females was mediated by elevated perfusion of the left amygdala. Taken together, these results demonstrate that differences in the evolution of cerebral perfusion during adolescence may be a critical element of the affective neurobiological characteristics underlying sex differences in anxiety and mood symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Semi-automated and automated glioma grading using dynamic susceptibility-weighted contrast-enhanced perfusion MRI relative cerebral blood volume measurements.

    PubMed

    Friedman, S N; Bambrough, P J; Kotsarini, C; Khandanpour, N; Hoggard, N

    2012-12-01

    Despite the established role of MRI in the diagnosis of brain tumours, histopathological assessment remains the clinically used technique, especially for the glioma group. Relative cerebral blood volume (rCBV) is a dynamic susceptibility-weighted contrast-enhanced perfusion MRI parameter that has been shown to correlate to tumour grade, but assessment requires a specialist and is time consuming. We developed analysis software to determine glioma gradings from perfusion rCBV scans in a manner that is quick, easy and does not require a specialist operator. MRI perfusion data from 47 patients with different histopathological grades of glioma were analysed with custom-designed software. Semi-automated analysis was performed with a specialist and non-specialist operator separately determining the maximum rCBV value corresponding to the tumour. Automated histogram analysis was performed by calculating the mean, standard deviation, median, mode, skewness and kurtosis of rCBV values. All values were compared with the histopathologically assessed tumour grade. A strong correlation between specialist and non-specialist observer measurements was found. Significantly different values were obtained between tumour grades using both semi-automated and automated techniques, consistent with previous results. The raw (unnormalised) data single-pixel maximum rCBV semi-automated analysis value had the strongest correlation with glioma grade. Standard deviation of the raw data had the strongest correlation of the automated analysis. Semi-automated calculation of raw maximum rCBV value was the best indicator of tumour grade and does not require a specialist operator. Both semi-automated and automated MRI perfusion techniques provide viable non-invasive alternatives to biopsy for glioma tumour grading.

  20. Effect of Intracranial Stenosis Revascularization on Dynamic and Static Cerebral Autoregulation.

    PubMed

    Ortega-Gutierrez, Santiago; Samaniego, Edgar A; Huang, Amy; Masurkar, Arjun; Zheng-Lin, Binbin; Derdeyn, Colin P; Hasan, David; Marshall, Randolph; Petersen, Nils

    2018-06-01

    Severe intracranial stenosis might lead to acute cerebral ischemia. It is imperative to better assess patients who may benefit from immediate reperfusion and blood pressure management to prevent injury to peri-infarct tissue. We assessed cerebral autoregulation using static and dynamic methods in an 81-year-old woman suffering acute cerebral ischemia from severe intracranial stenosis in the petrous segment of the left internal carotid artery (LICA). Static cerebral autoregulation, which is evaluated by magnetic resonance imaging and magnetic resonance perfusion studies showed a progression of infarcts and a large perfusion-diffusion mismatch in the entire LICA territory between the second and third days after onset despite maximized medical therapy. Dynamic methods, including transfer function analysis and mean velocity index, demonstrated an increasingly impaired dynamic cerebral autoregulation (DCA) on the affected side between these days. Revascularization through acute intracranial stenting resulted in improved perfusion in the LICA territory and normalization of both dynamic and static cerebral autoregulation. Thus, DCA, a noninvasive bedside method, may be useful in helping to identify and select patients with large-vessel flow-failure syndromes that would benefit from immediate revascularization of intracranial atherosclerotic disease.

  1. The Risk of Neurological Dysfunctions after Deep Hypothermic Circulatory Arrest with Retrograde Cerebral Perfusion.

    PubMed

    Gatti, Giuseppe; Benussi, Bernardo; Currò, Placido; Forti, Gabriella; Rauber, Elisabetta; Minati, Alessandro; Gabrielli, Marco; Tognolli, Umberto; Sinagra, Gianfranco; Pappalardo, Aniello

    2017-12-01

    Retrograde cerebral perfusion (RCP) is a brain protection technique that is adopted generally for anticipated short periods of deep hypothermic circulatory arrest (DHCA). However, the real impact of this technique on cerebral protection during DHCA remains a controversial issue. For 344 (59.5%) of 578 consecutive patients (mean age, 66.9 ± 10.9 years) who underwent cardiovascular surgery under DHCA at the present authors' institution (1999-2015), RCP was the sole technique of cerebral protection that was adopted in addition to deep hypothermia. Surgery of the thoracic aorta was performed in 95.9% of these RCP patients; in 92 cases there was an aortic arch involvement. Outcomes were reviewed retrospectively. The focus was on postoperative neurological dysfunctions. There were 33 (9.6%) in-hospital deaths. Thirty-one (9%) patients had permanent neurological dysfunctions and 66 (19.1%) transitory neurological dysfunctions alone. Age older than 74 years (odds ratio [OR], 1.88, P = .023), surgery for acute aortic dissection (OR, 2.57; P = .0009), and DHCA time longer than 25 minutes (OR, 2.44; P = .0021) were predictors of neurological dysfunctions. The 10-year nonparametric estimate of freedom from all-cause death was 61.8% (95% confidence interval, 57.8%-65.8%). Permanent postoperative neurological dysfunctions were risk factors for cardiac or cerebrovascular death (hazard ratio, 2.6; P = .039) even after an adjusted survival analysis (P < .04). According to the study findings, RCP, in addition to deep hypothermia, combines with a low risk of neurological dysfunctions provided that DHCA length is 25 minutes or less. Permanent postoperative neurological dysfunctions are predictors of poor late survival. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Tissue oxygen saturation and finger perfusion index in central hypovolemia: influence of pain.

    PubMed

    Høiseth, Lars Ø; Hisdal, Jonny; Hoff, Ingrid E; Hagen, Ove A; Landsverk, Svein A; Kirkebøen, Knut A

    2015-04-01

    Tissue oxygen saturation and peripheral perfusion index are proposed as early indirect markers of hypovolemia in trauma patients. Hypovolemia is associated with increased sympathetic nervous activity. However, many other stimuli, such as pain, also increase sympathetic activity. Since pain is often present in trauma patients, its effect on the indirect measures of hypovolemia needs to be clarified. The aim of this study was, therefore, to explore the effects of hypovolemia and pain on tissue oxygen saturation (measurement sites: cerebral, deltoid, forearm, and thenar) and finger photoplethysmographic perfusion index. Experimental study. University hospital clinical circulation and research laboratory. Twenty healthy volunteers. Central hypovolemia was induced with lower body negative pressure (-60 mm Hg) and pain by the cold pressor test (ice water exposure). Interventions were performed in a 2×2 fashion with the combination of lower body negative pressure or not (normovolemia), and ice water or not (sham). Each subject was thus exposed to four experimental sequences, each lasting for 8 minutes. Measurements were averaged over 30 seconds. For each person and sequence, the minimal value was analyzed. Tissue oxygenation in all measurement sites and finger perfusion index were reduced during hypovolemia/sham compared with normovolemia/sham. Tissue oxygen saturation (except cerebral) and perfusion index were reduced by pain during normovolemia. There was a larger reduction in tissue oxygenation (all measurement sites) and perfusion index during hypovolemia and pain than during normovolemia and pain. Pain (cold pressor test) reduces tissue oxygen saturation in all measurement sites (except cerebral) and perfusion index. In the presence of pain, tissue oxygen saturation and perfusion index are further reduced by hypovolemia (lower body negative pressure, -60 mm Hg). Thus, pain must be considered when evaluating tissue oxygen saturation and perfusion index as markers of

  3. The effect of resuscitation position on cerebral and coronary perfusion pressure during mechanical cardiopulmonary resuscitation in porcine cardiac arrest model.

    PubMed

    Kim, Taeyun; Shin, Sang Do; Song, Kyoung Jun; Park, Yong Joo; Ryu, Hyun Ho; Debaty, Guillaume; Lurie, Keith; Hong, Ki Jeong

    2017-04-01

    It is unknown whether patient position is associated with the optimal cerebral (CePP) and coronary (CoPP) perfusion pressure. This study utilized a randomized experimental design and anesthetized, intubated and paralyzed female pigs (n=12) (mean 42, SD 3kg). After 6min of untreated ventricular fibrillation, mechanical CPR with was performed for 3min in 0° supine position. The CPR was then performed for 5min in a position randomly assigned to either 1) head-up tilt (HUT) by three angles (30°, 45°, or 60°) or 2) head-down tilt (HDT) by three angles (30°, 45°, or 60°) and at 3) supine position between HUT and HDT positions. 4 Pigs were assigned to each angle of HUT or HDT position and 12 pigs were assigned to supine position. CePPs and CoPPs were measured and compared using MIXED procedure with pig as a random effect among angles and compared between angles with Tukey post-hoc analysis. With 60°, 45°, 30° head-down, 0° (supine), and 30°, 45°, 60° head-up positioning, mean(SD) CePPs increased consistently as follows: 2.4(0.4), 9.3(1.6), 16.5(1.6), 27.0(1.5), 35.1(0.4), 39.4(0.6), and 39.9(0.3) mmHg, respectively. CoPPs were followings according to same angle: 12.9(2.5), 13.3(2.5), 12.8(0.4), 18.1(0.7), 30.3(0.4), 24.1(0.6), and 26.5(0.9) mmHg, respectively. The CePPs were peak at HUT(45°) and HUT(60°), but CoPP was peak in HUT(30°) and higher than HUT(45°) and HUT(60°). Cerebral perfusion pressure during mechanical CPR were similar and highest in the HUT(45° and 60°) positions whereas the peak coronary perfusion pressure was observed with HUT(30°). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cerebral oxygen saturation and peripheral perfusion in the extremely premature infant with intraventricular and/or pulmonary haemorrhage early in life.

    PubMed

    Beausoleil, Thierry P; Janaillac, Marie; Barrington, Keith J; Lapointe, Anie; Dehaes, Mathieu

    2018-04-25

    Extremely preterm infants are at higher risk of pulmonary (PH) and intraventricular (IVH) haemorrhage during the transitioning physiology due to immature cardiovascular system. Monitoring of haemodynamics can detect early abnormal circulation that may lead to these complications. We described time-frequency relationships between near infrared spectroscopy (NIRS) cerebral regional haemoglobin oxygen saturation (CrSO 2 ) and preductal peripheral perfusion index (PI), capillary oxygen saturation (SpO 2 ) and heart rate (HR) in extremely preterm infants in the first 72 h of life. Patients were sub-grouped in infants with PH and/or IVH (N H  = 8) and healthy controls (N C  = 11). Data were decomposed in wavelets allowing the analysis of localized variations of power. This approach allowed to quantify the percentage of time of significant cross-correlation, semblance, gain (transfer function) and coherence between signals. Ultra-low frequencies (<0.28 mHz) were analyzed as slow and prolonged periods of impaired circulation are considered more detrimental than transient fluctuations. Cross-correlation between CrSO 2 and oximetry (PI, SpO 2 and HR) as well as in-phase semblance and gain between CrSO 2 and HR were significantly lower while anti-phase semblance between CrSO 2 and HR was significantly higher in PH-IVH infants compared to controls. These differences may reflect haemodynamic instability associated with cerebrovascular autoregulation and hemorrhagic complications observed during the transitioning physiology.

  5. Dynamic cerebral autoregulation in stroke patients with a central sympathetic deficit.

    PubMed

    Gierthmühlen, J; Allardt, A; Sawade, M; Baron, R; Wasner, G

    2011-05-01

    To investigate the functional role of the sympathetic innervation on cerebral autoregulation. Seventeen patients with infarction of the dorsolateral medulla oblongata affecting central sympathetic pathways (Wallenberg's syndrome) and 21 healthy controls were included in the study. Cerebral blood flow velocity (CBFV) in the medial cerebral artery was investigated using transcranial Doppler ultrasound during decrease in cerebral perfusion pressure induced by leg-cuff test and tilt table. Upon leg-cuff test, changes of cerebral blood flow and mean arterial blood pressure as well as autoregulatory index did not differ between patients or controls. No differences were found in changes of CBFV, mean arterial blood pressure and heart rate between patients or controls during the tilt table test. We suggest that the sympathetic nervous system does not have an influence on cerebral autoregulation after decrease in perfusion pressure under normotonous conditions. © 2010 John Wiley & Sons A/S.

  6. Voxel-based statistical analysis of cerebral blood flow using Tc-99m ECD brain SPECT in patients with traumatic brain injury: group and individual analyses.

    PubMed

    Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran

    2006-06-01

    Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.

  7. Common and Dissociable Regional Cerebral Blood Flow Differences Associate with Dimensions of Psychopathology Across Categorical Diagnoses

    PubMed Central

    Kaczkurkin, Antonia N.; Moore, Tyler M.; Calkins, Monica E.; Ciric, Rastko; Detre, John A.; Elliott, Mark A.; Foa, Edna B.; de La Garza, Angel Garcia; Roalf, David R.; Rosen, Adon; Ruparel, Kosha; Shinohara, Russell T.; Xia, Cedric H.; Wolf, Daniel H.; Gur, Raquel E.; Gur, Ruben C.; Satterthwaite, Theodore D.

    2017-01-01

    The high comorbidity among neuropsychiatric disorders suggests a possible common neurobiological phenotype. Resting-state regional cerebral blood flow (CBF) can be measured noninvasively with MRI and abnormalities in regional CBF are present in many neuropsychiatric disorders. Regional CBF may also provide a useful biological marker across different types of psychopathology. To investigate CBF changes common across psychiatric disorders, we capitalized upon a sample of 1,042 youths (ages 11 to 23 years) who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. CBF during a resting state was quantified on a voxelwise basis using arterial spin labeled perfusion MRI at 3T. A dimensional measure of psychopathology was constructed using a bifactor model of item-level data from a psychiatric screening interview, which delineated four factors (fear, anxious-misery, psychosis, and behavioral symptoms) plus a general factor: overall psychopathology. Overall psychopathology was associated with elevated perfusion in several regions including the right dorsal anterior cingulate cortex (ACC) and left rostral ACC. Furthermore, several clusters were associated with specific dimensions of psychopathology. Psychosis symptoms were related to reduced perfusion in the left frontal operculum and insula, whereas fear symptoms were associated with less perfusion in the right occipital/fusiform gyrus and left subgenual ACC. Follow-up functional connectivity analyses using resting-state fMRI collected in the same participants revealed that overall psychopathology was associated with decreased connectivity between the dorsal ACC and bilateral caudate. Together, the results of this study demonstrate common and dissociable CBF abnormalities across neuropsychiatric disorders in youth. PMID:28924181

  8. Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse.

    PubMed

    Cramer, Samuel W; Popa, Laurentiu S; Carter, Russell E; Chen, Gang; Ebner, Timothy J

    2015-04-08

    The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations. Copyright © 2015 the authors 0270-6474/15/355664-16$15.00/0.

  9. A National Trial on Differences in Cerebral Perfusion Pressure Values by Measurement Location.

    PubMed

    McNett, Molly M; Bader, Mary Kay; Livesay, Sarah; Yeager, Susan; Moran, Cristina; Barnes, Arianna; Harrison, Kimberly R; Olson, DaiWai M

    2018-04-01

    Cerebral perfusion pressure (CPP) is a key parameter in management of brain injury with suspected impaired cerebral autoregulation. CPP is calculated by subtracting intracranial pressure (ICP) from mean arterial pressure (MAP). Despite consensus on importance of CPP monitoring, substantial variations exist on anatomical reference points used to measure arterial MAP when calculating CPP. This study aimed to identify differences in CPP values based on measurement location when using phlebostatic axis (PA) or tragus (Tg) as anatomical reference points. The secondary study aim was to determine impact of differences on patient outcomes at discharge. This was a prospective, repeated measures, multi-site national trial. Adult ICU patients with neurological injury necessitating ICP and CPP monitoring were consecutively enrolled from seven sites. Daily MAP/ICP/CPP values were gathered with the arterial transducer at the PA, followed by the Tg as anatomical reference points. A total of 136 subjects were enrolled, resulting in 324 paired observations. There were significant differences for CPP when comparing values obtained at PA and Tg reference points (p < 0.000). Differences remained significant in repeated measures model when controlling for clinical factors (mean CPP-PA = 80.77, mean CPP-Tg = 70.61, p < 0.000). When categorizing CPP as binary endpoint, 18.8% of values were identified as adequate with PA values, yet inadequate with CPP values measured at the Tg. Findings identify numerical differences for CPP based on anatomical reference location and highlight importance of a standard reference point for both clinical practice and future trials to limit practice variations and heterogeneity of findings.

  10. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    PubMed

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  11. Dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2012-12-01

    Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and

  12. Radiotracer Imaging Allows for Noninvasive Detection and Quantification of Abnormalities in Angiosome Foot Perfusion in Diabetic Patients With Critical Limb Ischemia and Nonhealing Wounds

    PubMed Central

    Alvelo, Jessica L.; Papademetris, Xenophon; Mena-Hurtado, Carlos; Jeon, Sangchoon; Sumpio, Bauer E.; Sinusas, Albert J.

    2018-01-01

    Background: Single photon emission computed tomography (SPECT)/computed tomography (CT) imaging allows for assessment of skeletal muscle microvascular perfusion but has not been quantitatively assessed in angiosomes, or 3-dimensional vascular territories, of the foot. This study assessed and compared resting angiosome foot perfusion between healthy subjects and diabetic patients with critical limb ischemia (CLI). Additionally, the relationship between SPECT/CT imaging and the ankle–brachial index—a standard tool for evaluating peripheral artery disease—was assessed. Methods and Results: Healthy subjects (n=9) and diabetic patients with CLI and nonhealing ulcers (n=42) underwent SPECT/CT perfusion imaging of the feet. CT images were segmented into angiosomes for quantification of relative radiotracer uptake, expressed as standardized uptake values. Standardized uptake values were assessed in ulcerated angiosomes of patients with CLI and compared with whole-foot standardized uptake values in healthy subjects. Serial SPECT/CT imaging was performed to assess uptake kinetics of technetium-99m-tetrofosmin. The relationship between angiosome perfusion and ankle–brachial index was assessed via correlational analysis. Resting perfusion was significantly lower in CLI versus healthy subjects (P=0.0007). Intraclass correlation coefficients of 0.95 (healthy) and 0.93 (CLI) demonstrated excellent agreement between serial perfusion measurements. Correlational analysis, including healthy and CLI subjects, demonstrated a significant relationship between ankle–brachial index and SPECT/CT (P=0.01); however, this relationship was not significant for diabetic CLI patients only (P=0.2). Conclusions: SPECT/CT imaging assesses regional foot perfusion and detects abnormalities in microvascular perfusion that may be undetectable by conventional ankle–brachial index in patients with diabetes mellitus. SPECT/CT may provide a novel approach for evaluating responses to targeted

  13. Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations

    PubMed Central

    Niu, Shanzhou; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2016-01-01

    Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps. PMID:27440948

  14. Cerebral oximetry: a replacement for pulse oximetry?

    PubMed

    Frost, Elizabeth A M

    2012-10-01

    Cerebral oximetry has been around for some 3 decades but has had a somewhat checkered history regarding application and reliability. More recently several monitors have been approved in the United States and elsewhere and the technique is emerging as a useful tool for assessing not only adequate cerebral oxygenation but also tissue oxygenation and perfusion in other organs.

  15. Goal-directed-perfusion in neonatal aortic arch surgery.

    PubMed

    Cesnjevar, Robert Anton; Purbojo, Ariawan; Muench, Frank; Juengert, Joerg; Rueffer, André

    2016-07-01

    Reduction of mortality and morbidity in congenital cardiac surgery has always been and remains a major target for the complete team involved. As operative techniques are more and more standardized and refined, surgical risk and associated complication rates have constantly been reduced to an acceptable level but are both still present. Aortic arch surgery in neonates seems to be of particular interest, because perfusion techniques differ widely among institutions and an ideal form of a so called "total body perfusion (TBP)" is somewhat difficult to achieve. Thus concepts of deep hypothermic circulatory arrest (DHCA), regional cerebral perfusion (RCP/with cardioplegic cardiac arrest or on the perfused beating heart) and TBP exist in parallel and all carry an individual risk for organ damage related to perfusion management, chosen core temperature and time on bypass. Patient safety relies more and more on adequate end organ perfusion on cardiopulmonary bypass, especially sensitive organs like the brain, heart, kidney, liver and the gut, whereby on adequate tissue protection, temperature management and oxygen delivery should be visualized and monitored.

  16. Neuroimaging evidence of brain abnormalities in mastocytosis.

    PubMed

    Boddaert, N; Salvador, A; Chandesris, M O; Lemaître, H; Grévent, D; Gauthier, C; Naggara, O; Georgin-Lavialle, S; Moura, D S; Munsch, F; Jaafari, N; Zilbovicius, M; Lortholary, O; Gaillard, R; Hermine, O

    2017-08-08

    Mastocytosis is a rare disease in which chronic symptoms are related to mast cell accumulation and activation. Patients can display depression-anxiety-like symptoms and cognitive impairment. The pathophysiology of these symptoms may be associated with tissular mast cell infiltration, mast cell mediator release or both. The objective of this study is to perform morphological or functional brain analyses in mastocytosis to identify brain changes associated with this mast cell disorder. We performed a prospective and monocentric comparative study to evaluate the link between subjective psycho-cognitive complaints, psychiatric evaluation and objective medical data using magnetic resonance imaging with morphological and perfusion sequences (arterial spin-labeled perfusion) in 39 patients with mastocytosis compared with 33 healthy controls. In the test cohort of 39 mastocytosis patients with psycho-cognitive complaints, we found that 49% of them had morphological brain abnormalities, mainly abnormal punctuated white matter abnormalities (WMA). WMA were equally frequent in cutaneous mastocytosis patients and indolent forms of systemic mastocytosis patients (42% and 41% of patients with WMA, respectively). Patients with WMA showed increased perfusion in the putamen compared with patients without WMA and with healthy controls. Putamen perfusion was also negatively correlated with depression subscores. This study demonstrates, for we believe the first time, a high prevalence of morphological and functional abnormalities in the brains of mastocytosis patients with neuropsychiatric complaints. Further studies are required to determine the mechanism underpinning this association and to ascertain its specificity.

  17. Caffeine induced changes in cerebral circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, R.J.; Wilson, W.H.

    1985-09-01

    While the caffeine induced cerebral vasoconstriction is well documented, the effects of oral ingestion of the drug in a dose range comparable to the quantities in which it is usually consumed and the intensity and duration of the associated reduction in cerebral circulation are unknown. Cerebral blood flow was measured via the TTXenon inhalation technique before and thirty and ninety minutes after the oral administration of 250 mg of caffeine or a placebo, under double-blind conditions. Caffeine ingestion was found to be associated with significant reductions in cerebral perfusion thirty and ninety minutes later. The placebo group showed no differencesmore » between the three sets of cerebral blood flow values.« less

  18. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study.

    PubMed

    Inder, Terrie E; Wells, Scott J; Mogridge, Nina B; Spencer, Carole; Volpe, Joseph J

    2003-08-01

    The aim of this study was to define qualitatively the nature and extent of white and gray matter abnormalities in a longitudinal population-based study of infants with very low birth weight. Perinatal factors were then related to the presence and severity of magnetic resonance imaging (MRI) abnormalities. From November 1998 to December 2000, 100 consecutive premature infants admitted to the neonatal intensive care unit at Christchurch Women's Hospital were recruited (98% eligible) after informed parental consent to undergo an MRI scan at term equivalent. The scans were analyzed by a single neuroradiologist experienced in pediatric MRI, with a second independent scoring of the MRI using a combination of criteria for white matter (cysts, signal abnormality, loss of volume, ventriculomegaly, corpus callosal thinning, myelination) and gray matter (gray matter signal abnormality, gyration, subarachnoid space). Results were analyzed against individual item scores as well as the presence of moderate-severe white matter score, total gray matter score, and total brain score. The mean gestational age was 27.9+/-2.4 weeks (range, 23-32 weeks), and mean birth weight was 1063+/-292 g. The greatest univariate predictors for moderate-severe white matter abnormality were lower gestational age (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.7; P<.01), maternal fever (OR, 2.2; 95% CI, 1.1-4.6; P<.04), proven sepsis in the infant at delivery (OR, 1.8; 95% CI, 1.1-3.6; P=0.03), inotropic support (OR, 2.7; 95% CI, 1.5-4.5; P<.001), patent ductus arteriosus (OR, 2.2; 95% CI, 1.2-3.8; P=.01), grade III/IV intraventricular hemorrhage (P=.015), and the occurrence of a pneumothorax (P=.05). There was a significant protective effect of intrauterine growth restriction (OR, 0.51; 95% CI, 0.23-0.99; P=.04). Gray matter abnormality was highly related to the presence and severity of white matter abnormality. A unique pattern of cerebral abnormality consisting of significant diffuse

  19. Comparison of Different Post-Processing Algorithms for Dynamic Susceptibility Contrast Perfusion Imaging of Cerebral Gliomas.

    PubMed

    Kudo, Kohsuke; Uwano, Ikuko; Hirai, Toshinori; Murakami, Ryuji; Nakamura, Hideo; Fujima, Noriyuki; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Sasaki, Makoto

    2017-04-10

    The purpose of the present study was to compare different software algorithms for processing DSC perfusion images of cerebral tumors with respect to i) the relative CBV (rCBV) calculated, ii) the cutoff value for discriminating low- and high-grade gliomas, and iii) the diagnostic performance for differentiating these tumors. Following approval of institutional review board, informed consent was obtained from all patients. Thirty-five patients with primary glioma (grade II, 9; grade III, 8; and grade IV, 18 patients) were included. DSC perfusion imaging was performed with 3-Tesla MRI scanner. CBV maps were generated by using 11 different algorithms of four commercially available software and one academic program. rCBV of each tumor compared to normal white matter was calculated by ROI measurements. Differences in rCBV value were compared between algorithms for each tumor grade. Receiver operator characteristics analysis was conducted for the evaluation of diagnostic performance of different algorithms for differentiating between different grades. Several algorithms showed significant differences in rCBV, especially for grade IV tumors. When differentiating between low- (II) and high-grade (III/IV) tumors, the area under the ROC curve (Az) was similar (range 0.85-0.87), and there were no significant differences in Az between any pair of algorithms. In contrast, the optimal cutoff values varied between algorithms (range 4.18-6.53). rCBV values of tumor and cutoff values for discriminating low- and high-grade gliomas differed between software packages, suggesting that optimal software-specific cutoff values should be used for diagnosis of high-grade gliomas.

  20. Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method.

    PubMed

    Weigl, W; Milej, D; Gerega, A; Toczylowska, B; Kacprzak, M; Sawosz, P; Botwicz, M; Maniewski, R; Mayzner-Zawadzka, E; Liebert, A

    2014-01-15

    The aim of this study was to verify the usefulness of the time-resolved optical method utilizing diffusely reflected photons and fluorescence signals combined with intravenous injection of indocyanine green (ICG) in the assessment of brain perfusion in post-traumatic brain injury patients. The distributions of times of flight (DTOFs) of diffusely reflected photons were acquired together with the distributions of times of arrival (DTAs) of fluorescence photons. The data analysis methodology was based on the observation of delays between the signals of statistical moments (number of photons, mean time of flight and variance) of DTOFs and DTAs related to the inflow of ICG to the extra- and intracerebral tissue compartments. Eleven patients with brain hematoma, 15 patients with brain edema and a group of 9 healthy subjects were included in this study. Statistically significant differences between parameters obtained in healthy subjects and patients with brain hematoma and brain edema were observed. The best optical parameter to differentiate patients and control group was variance of the DTOFs or DTAs. Results of the study suggest that time-resolved optical monitoring of inflow of the ICG seems to be a promising tool for detecting cerebral perfusion insufficiencies in critically ill patients. © 2013 Elsevier Inc. All rights reserved.

  1. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    PubMed

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Altered Regional Cerebral Blood Flow in Idiopathic Hypersomnia.

    PubMed

    Boucetta, Soufiane; Montplaisir, Jacques; Zadra, Antonio; Lachapelle, Francis; Soucy, Jean-Paul; Gravel, Paul; Dang-Vu, Thien Thanh

    2017-10-01

    Idiopathic hypersomnia is characterized by excessive daytime sleepiness, despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Thirteen participants with idiopathic hypersomnia and 16 healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p < .05 after correction for multiple comparisons. Participants with idiopathic hypersomnia showed regional cerebral blood flow decreases in medial prefrontal cortex and posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep

  3. Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.

    PubMed

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C

    2013-05-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  5. Elevated Amygdala Perfusion Mediates Developmental Sex Differences in Trait Anxiety

    PubMed Central

    Kaczkurkin, Antonia N.; Moore, Tyler M.; Ruparel, Kosha; Ciric, Rastko; Calkins, Monica E.; Shinohara, Russell T.; Elliott, Mark A.; Hopson, Ryan; Roalf, David R.; Vandekar, Simon N.; Gennatas, Efstathios D.; Wolf, Daniel H.; Scott, J. Cobb; Pine, Daniel S.; Leibenluft, Ellen; Detre, John A.; Foa, Edna B.; Gur, Raquel E.; Gur, Ruben C.; Satterthwaite, Theodore D.

    2016-01-01

    Background Adolescence is a critical period for emotional maturation and is a time when clinically significant symptoms of anxiety and depression increase, particularly in females. However, few studies relate developmental differences in symptoms of anxiety and depression to brain development. Cerebral blood flow (CBF) is one brain phenotype that is known to have marked developmental sex differences. Methods We investigated whether developmental sex differences in CBF mediated sex differences in anxiety and depression symptoms by capitalizing upon a large sample of 875 youths who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. Perfusion was quantified on a voxelwise basis using arterial spin labeled MRI at 3T. Perfusion images were related to trait and state anxiety using a general additive model with penalized splines, while controlling for gray matter density on a voxelwise basis. Clusters found to be related to anxiety were evaluated for interactions with age, sex, and puberty. Results Trait anxiety was associated with elevated perfusion in a network of regions including the amygdala, anterior insula, and fusiform cortex, even after accounting for pre-scanner state anxiety. Notably, these relationships strengthened with age and the transition through puberty. Moreover, higher trait anxiety in post-pubertal females was mediated by elevated perfusion of the left amygdala. Conclusions Taken together, these results demonstrate that differences in the evolution of cerebral perfusion during the adolescent period may be a critical element of the affective neurobiology underlying sex differences in anxiety and mood symptoms. PMID:27395327

  6. Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2.

    PubMed

    Muto, Mario; Frauenfelder, Giulia; Senese, Rossana; Zeccolini, Fabio; Schena, Emiliano; Giurazza, Francesco; Jäger, Hans Rolf

    2018-07-01

    Distinction between treatment-related changes and tumour recurrence in patients who have received radiation treatment for brain metastases can be difficult on conventional MRI. In this study, we investigated the ability of dynamic susceptibility contrast (DSC) perfusion in differentiating necrotic changes from pathological angiogenesis and compared measurements of relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF) and K2, using a dedicated software. Twenty-nine patients with secondary brain tumors were included in this retrospective study and underwent DSC perfusion MRI with a 3-month follow-up imaging after chemo- or radiation-therapy. Region-of-interests were drawn around the contrast enhancing lesions and measurements of rCBV, rCBF and K2 were performed in all patients. Based on subsequent histological examination or clinico-radiological follow-up, the cohort was divided in two groups: recurrent disease and stable disease. Differences between the two groups were analyzed using the Student's t test. Sensitivity, specificity and diagnostic accuracy of rCBV measurements were analyzed considering three different cut-off values. Between patients with and without disease, only rCBV and rCBF values were significant (p < 0.05). The only cut-off value giving the best diagnostic accuracy of 100% was rCBV = 2.1 (sensitivity = 100%; specificity = 100%). Patients with tumor recurrence showed a higher mean value of rCBV (mean = 4.28, standard deviation = 2.09) than patients with necrotic-related changes (mean = 0.77, standard deviation = 0.44). DSC-MRI appears a clinically useful method to differentiate between tumor recurrence, tumor necrosis and pseudoprogression in patients treated for cerebral metastases. Relative CBV using a cut-off value of 2.1 proved to be the most accurate and reliable parameter.

  7. Shortened Mean Transit Time in CT Perfusion With Singular Value Decomposition Analysis in Acute Cerebral Infarction: Quantitative Evaluation and Comparison With Various CT Perfusion Parameters.

    PubMed

    Murayama, Kazuhiro; Katada, Kazuhiro; Hayakawa, Motoharu; Toyama, Hiroshi

    We aimed to clarify the cause of shortened mean transit time (MTT) in acute ischemic cerebrovascular disease and examined its relationship with reperfusion. Twenty-three patients with acute ischemic cerebrovascular disease underwent whole-brain computed tomography perfusion (CTP). The maximum MTT (MTTmax), minimum MTT (MTTmin), ratio of maximum and minimum MTT (MTTmin/max), and minimum cerebral blood volume (CBV) (CBVmin) were measured by automatic region of interest analysis. Diffusion weighted image was performed to calculate infarction volume. We compared these CTP parameters between reperfusion and nonreperfusion groups and calculated correlation coefficients between the infarction core volume and CTP parameters. Significant differences were observed between reperfusion and nonreperfusion groups (MTTmin/max: P = 0.014; CBVmin ratio: P = 0.038). Regression analysis of CTP and high-intensity volume on diffusion weighted image showed negative correlation (CBVmin ratio: r = -0.41; MTTmin/max: r = -0.30; MTTmin ratio: r = -0.27). A region of shortened MTT indicated obstructed blood flow, which was attributed to the singular value decomposition method error.

  8. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is oftenmore » needed for accurate differential diagnosis.« less

  9. Directed Retrograde Cerebral Protection during Moderate Hypothermic Circulatory Arrest

    PubMed Central

    Yacoubian, Vahe; Jyrala, Aarne; Kay, Gregory L.

    2006-01-01

    There are many choices for neurologic protection for aortic arch surgery. Although numerous investigators have challenged the efficacy of retrograde cerebral perfusion, we have had good results with our application of this technique. We performed a retrospective review of 8 consecutive patients who underwent surgery from 1 June 2001 through 31 March 2003; the age range was 33 to 97 years. All patients required circulatory arrest and underwent retrograde cerebral perfusion with use of a tourniquet on the patients' left and right arms above the elbow to direct retrograde flow to the brain. Moderate hypothermia (around 24 °C nasopharyngeal) was used; circulatory arrest time ranged from 27 to 63 minutes. There was 1 late hospital death due to multiple-organ system failure. There were no neurologic complications (stroke or temporary neurologic dysfunction). There was no substantive neurologic or renal dysfunction in this cohort, in which moderate hypothermia was used. These results are comparable to those reported in the literature for similar patients. We conclude that, for patients who require circulatory arrest, directed retrograde cerebral perfusion at moderate nasopharyngeal hypothermia gives results comparable to those reported with other techniques. PMID:17215968

  10. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  11. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  12. Aortic arch repair under moderate hypothermic circulatory arrest with or without antegrade cerebral perfusion based on the extent of repair

    PubMed Central

    Park, Sung Jun; Jeon, Bo Bae; Kim, Hee Jung

    2018-01-01

    Background For aortic-arch repair, moderate hypothermic circulatory arrest (HCA) have shown favorable outcomes over conventional deep HCA when coupled with antegrade cerebral perfusion (ACP); however, recent studies have shown that ACP may not be essential when circulatory arrest time is less than 30 minutes. This study aims to evaluate the stratified arch repair strategy of moderate HCA with or without ACP based on the extent of procedure. Methods Consecutive 138 patients (63 female; mean age, 60.2±15.7 years) undergoing open arch repair due to acute aortic syndrome (n=69) or chronic aneurysm (n=69) from January 2012 through April 2017 were enrolled in this study. Stratified neuroprotective strategy was employed according to the extent of repair: hemi-arch repair (n=93) was performed under moderated HCA alone and total-arch repair (n=45) under moderate HCA combined with unilateral ACP. Results Median total circulatory arrest and total procedural times were 8.0 minutes [interquartile range (IQR), 6.0–10.0] and 233.0 minutes (IQR, 196.0–290.0 minutes), respectively in the hemi-arch group, and 25.0 minutes (IQR, 12.0–33.0 minutes) and 349.0 minutes (IQR, 276.0–406.0 minutes), respectively in the total-arch group. Early mortality occurred in 2 patients (1.4%) who underwent hemi-arch repair for acute aortic dissection. There was no permanent neurological injury, but 2 cases (1.4%) of temporary neurologic deficit in the hemi-arch group. Other complications included re-exploration for bleeding in 6 (4.3%), postoperative extracorporeal life support in 5 (3.6%) and new-dialysis in 6 (4.3%). Conclusions Stratified cerebral perfusion strategy using moderate hypothermia for aortic-arch surgery based on the extent of arch repair showed satisfactory safety and reasonable efficiency. PMID:29707342

  13. Antegrade versus retrograde cerebral perfusion for hemiarch replacement with deep hypothermic circulatory arrest: Does it matter? A propensity-matched analysis

    PubMed Central

    Ganapathi, Asvin M.; Hanna, Jennifer M.; Schechter, Matthew A.; Englum, Brian R.; Castleberry, Anthony W.; Gaca, Jeffrey G.; Hughes, G. Chad

    2015-01-01

    Objective The choice of cerebral perfusion strategy for aortic arch surgery has been debated, and the superiority of antegrade (ACP) or retrograde (RCP) cerebral perfusion has not been shown. We examined the early and late outcomes for ACP versus RCP in proximal (hemi-) arch replacement using deep hypothermic circulatory arrest (DHCA). Methods A retrospective analysis of a prospectively maintained database was performed for all patients undergoing elective and nonelective hemiarch replacement at a single referral institution from June 2005 to February 2013. Total arch cases were excluded to limit the analysis to shorter DHCA times and a more uniform patient population for whom clinical equipoise regarding ACP versus RCP exists. A total of 440 procedures were identified, with 360 (82%) using ACP and 80 (18%) using RCP. The endpoints included 30-day/in-hospital and late outcomes. A propensity score with 1:1 matching of 40 pre- and intraoperative variables was used to adjust for differences between the 2 groups. Results All 80 RCP patients were propensity matched to a cohort of 80 similar ACP patients. The pre- and intra-operative characteristics were not significantly different between the 2 groups after matching. No differences were found in 30-day/in-hospital mortality or morbidity outcomes. The only significant difference between the 2 groups was a shorter mean operative time in the RCP cohort (P = .01). No significant differences were noted in late survival (P = .90). Conclusions In proximal arch operations using DHCA, equivalent early and late outcomes can be achieved with RCP and ACP, although the mean operative time is significantly less with RCP, likely owing to avoidance of axillary cannulation. Questions remain regarding comparative outcomes with straight DHCA and lesser degrees of hypothermia. PMID:24908350

  14. Antegrade versus retrograde cerebral perfusion for hemiarch replacement with deep hypothermic circulatory arrest: does it matter? A propensity-matched analysis.

    PubMed

    Ganapathi, Asvin M; Hanna, Jennifer M; Schechter, Matthew A; Englum, Brian R; Castleberry, Anthony W; Gaca, Jeffrey G; Hughes, G Chad

    2014-12-01

    The choice of cerebral perfusion strategy for aortic arch surgery has been debated, and the superiority of antegrade (ACP) or retrograde (RCP) cerebral perfusion has not been shown. We examined the early and late outcomes for ACP versus RCP in proximal (hemi-) arch replacement using deep hypothermic circulatory arrest (DHCA). A retrospective analysis of a prospectively maintained database was performed for all patients undergoing elective and nonelective hemiarch replacement at a single referral institution from June 2005 to February 2013. Total arch cases were excluded to limit the analysis to shorter DHCA times and a more uniform patient population for whom clinical equipoise regarding ACP versus RCP exists. A total of 440 procedures were identified, with 360 (82%) using ACP and 80 (18%) using RCP. The endpoints included 30-day/in-hospital and late outcomes. A propensity score with 1:1 matching of 40 pre- and intraoperative variables was used to adjust for differences between the 2 groups. All 80 RCP patients were propensity matched to a cohort of 80 similar ACP patients. The pre- and intraoperative characteristics were not significantly different between the 2 groups after matching. No differences were found in 30-day/in-hospital mortality or morbidity outcomes. The only significant difference between the 2 groups was a shorter mean operative time in the RCP cohort (P = .01). No significant differences were noted in late survival (P = .90). In proximal arch operations using DHCA, equivalent early and late outcomes can be achieved with RCP and ACP, although the mean operative time is significantly less with RCP, likely owing to avoidance of axillary cannulation. Questions remain regarding comparative outcomes with straight DHCA and lesser degrees of hypothermia. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Cerebral perfusion abnormalities in therapy-resistant epilepsy in childhood: comparison between EEG, MRI and 99Tcm-ECD brain SPET.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Volterrani, D; Vella, A

    1996-01-01

    We performed 99Tcm-ethyl cysteinate dimer (ECD) interictal single photon emission tomography (SPET) in 26 children with severe therapy-resistant epilepsy. All the children underwent a detailed clinical examination, an electroencephalogram (EEG) investigation and brain magnetic resonance imaging (MRI). In 21 of the 26 children, SPET demonstrated brain blood flow abnormalities, in 13 cases in the same territories that showed EEG alterations. MRI showed structural lesions in 6 of the 26 children, while SPET imaging confirmed these abnormalities in only 5 children. The lesion not detected on SPET was shown to be 3 mm thick on MRI. Five symptomatic patients had normal SPET. In one of these patients, the EEG findings were normal and MRI revealed a small calcific nodule (4 mm thick); in the others, the EEG showed non-focal but diffuse abnormalities. These data confirm that brain SPET is sensitive in detecting and localizing hypoperfused areas that could be associated with epileptic foci in this group of patients, even when the MRI image is normal.

  16. [Anesthesia for surgery of degenerative and abnormal cervical spine].

    PubMed

    Béal, J L; Lopin, M C; Binnert, M

    1993-01-01

    A feature common to all congenital or inflammatory abnormalities of the cervical spine is an actual or potential reduction in the lumen of the spinal canal. The spinal cord and nerve roots are at risk. During intubation, and positioning the patient on the table, all untoward movements of the cervical spine may lead to spinal cord compression. Abnormalities of the cervical spine carry the risk of a difficult intubation. If there is much debate as to what constitutes optimum management of the airway, there is no evidence that any one method is the best. Recognizing the possible instability and intubating with care, are probably much more important in preserving neurological function than any particular mode of intubation. During maintenance of anaesthesia, the main goal is to preserve adequate spinal cord perfusion in order to prevent further damage. Spinal cord blood flow seems to be regulated by the same factors as cerebral blood flow. Hypercapnia increases cord blood flow while hypocapnia decreases it. Therefore, normocapnia or mild hypocapnia is recommended. Induced hypotension is frequently used to decrease blood loss. However, in patients with a marginally perfused spinal cord, the reduction in blood flow may cause ischaemia of the spinal cord and may therefore be relatively contraindicated. In addition to standard intraoperative monitoring, spinal cord monitoring is almost mandatory. Monitoring somatosensory evoked potentials is used routinely. However, the major limitation is that this technique only monitors dorsal column function; theoretically, motor paralysis can occur despite a lack of change in recorded signals. Neurogenic motor evoked potentials may now be used to monitor anterior spinal cord integrity.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Comparison of SPET brain perfusion and 18F-FDG brain metabolism in patients with chronic fatigue syndrome.

    PubMed

    Abu-Judeh, H H; Levine, S; Kumar, M; el-Zeftawy, H; Naddaf, S; Lou, J Q; Abdel-Dayem, H M

    1998-11-01

    Chronic fatigue syndrome is a clinically defined condition of uncertain aetiology. We compared 99Tcm-HMPAO single photon emission tomography (SPET) brain perfusion with dual-head 18F-FDG brain metabolism in patients with chronic fatigue syndrome. Eighteen patients (14 females, 4 males), who fulfilled the diagnostic criteria of the Centers for Disease Control for chronic fatigue syndrome, were investigated. Thirteen patients had abnormal SPET brain perfusion scans and five had normal scans. Fifteen patients had normal glucose brain metabolism scans and three had abnormal scans. We conclude that, in chronic fatigue syndrome patients, there is discordance between SPET brain perfusion and 18F-FDG brain uptake. It is possible to have brain perfusion abnormalities without corresponding changes in glucose uptake.

  18. Can Combined Bypass Surgery at Middle Cerebral Artery Territory Save Anterior Cerebral Artery Territory in Adult Moyamoya Disease?

    PubMed

    Cho, Won-Sang; Kim, Jeong Eun; Paeng, Jin Chul; Suh, Minseok; Kim, Yong-Il; Kang, Hyun-Seung; Son, Young Je; Bang, Jae Seung; Oh, Chang Wan

    2017-03-01

    Patients with moyamoya disease are frequently encountered with improved symptoms related to anterior cerebral artery territory (ACAt) and middle cerebral artery territory (MCAt) after bypass surgery at MCAt. To evaluate hemodynamic changes in MCAt and ACAt after bypass surgery in adult moyamoya disease. Combined bypass surgery was performed on 140 hemispheres in 126 patients with MCAt symptoms. Among them, 87 hemispheres (62.1%) accompanied preoperative ACAt symptoms. Clinical, hemodynamic, and angiographic states were evaluated preoperatively and approximately 6 months after surgery. Preoperative symptoms resolved in 127 MCAt (90.7%) and 82 ACAt (94.3%). Hemodynamic analysis of total patients showed a significant improvement in MCAt basal perfusion and reservoir capacity ( P < .001 and P = .002, respectively) and ACAt basal perfusion ( P = .001). In a subgroup analysis, 82 hemispheres that completely recovered from preoperative ACAt symptoms showed a significant improvement in MCAt basal perfusion and reservoir capacity ( P < .001 and P = .05, respectively) and ACAt basal perfusion ( P = .04). Meanwhile, 53 hemispheres that had never experienced ACAt symptoms significantly improved MCAt basal perfusion and reservoir capacity ( P < .001 and P = .05, respectively); however, no ACAt changes were observed. A qualitative angiographic analysis demonstrated a higher trend of leptomeningeal formation from MCAt to ACAt in the former subgroup ( P = .05). During follow-up, no ACAt infarctions were observed. Combined bypass surgery at MCAt resulted in hemodynamic improvements in ACAt and MCAt, especially in patients with preoperative ACAt symptoms. Copyright © 2017 by the Congress of Neurological Surgeons

  19. Pulmonary Arterial Hypertension With Abnormal V/Q Single-Photon Emission Computed Tomography.

    PubMed

    Chan, Kenneth; Ioannidis, Stefanos; Coghlan, John G; Hall, Margaret; Schreiber, Benjamin E

    2017-10-16

    This study aimed to evaluate the incidence and clinical outcomes of abnormal ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) without thromboembolism, especially in patients with group I pulmonary arterial hypertension (PAH). American Heart Association/American College of Cardiology and European Society of Cardiology guidelines recommend V/Q scan for screening for chronic thromboembolic pulmonary hypertension. The significance of patients with abnormal V/Q SPECT findings but no thromboembolism demonstrated in further investigations remained unclear. A distinct pattern of global patchy changes not typical of thromboembolism is recognized, but guidelines for reporting these in the context of PAH are lacking. A total of 136 patients who underwent V/Q SPECT and right-sided heart catheterization showing mean pulmonary arterial pressure ≥25 mm Hg were included. V/Q SPECT findings were reported using European Association of Nuclear Medicine criteria for pulmonary embolism followed by computed tomography pulmonary angiography screening for positive thromboembolism and further invasive pulmonary angiography for distal thromboembolism. The abnormal V/Q SPECT images were further analyzed according to perfusion pattern into focal or global perfusion defects. V/Q SPECT showed thromboembolic disease in 44 patients, but 19 of these patients had no thromboembolism demonstrated by pulmonary angiography. Among these patients, 15 of 19 (78.9%) had group I PAH, and the majority had diffuse, patchy perfusion defects. After redefining V/Q SPECT images according to the perfusion pattern, those patients with global perfusion defects had higher mean pulmonary arterial pressure compared with patients with focal perfusion defects and normal scans (mean difference +13.9 and +6.2 mm Hg, respectively; p = 0.0002), as well as higher pulmonary vascular resistance (mean difference +316.6 and +226.3 absolute resistance units, respectively; p = 0

  20. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    PubMed Central

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639

  1. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    PubMed

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  2. Divergent regional patterns of cerebral hypoperfusion and gray matter atrophy in mild cognitive impairment patients.

    PubMed

    Wirth, Miranka; Pichet Binette, Alexa; Brunecker, Peter; Köbe, Theresa; Witte, A Veronica; Flöel, Agnes

    2017-03-01

    Reductions of cerebral blood flow and gray matter structure have been implicated in early pathogenesis of Alzheimer's disease, potentially providing complementary information. The present study evaluated regional patterns of cerebral hypoperfusion and atrophy in patients with mild cognitive impairment and healthy older adults. In each participant, cerebral perfusion and gray matter structure were extracted within selected brain regions vulnerable to Alzheimer's disease using magnetic resonance imaging. Measures were compared between diagnostic groups with/without adjustment for covariates. In mild cognitive impairment patients, cerebral blood flow was significantly reduced in comparison with healthy controls in temporo-parietal regions and the basal ganglia in the absence of local gray matter atrophy. By contrast, gray matter structure was significantly reduced in the hippocampus in the absence of local hypoperfusion. Both, cerebral perfusion and gray matter structure were significantly reduced in the entorhinal and isthmus cingulate cortex in mild cognitive impairment patients compared with healthy older adults. Our results demonstrated partly divergent patterns of temporo-parietal hypoperfusion and medial-temporal atrophy in mild cognitive impairment patients, potentially indicating biomarker sensitivity to dissociable pathological mechanisms. The findings support applicability of cerebral perfusion and gray matter structure as complementary magnetic resonance imaging-based biomarkers in early Alzheimer's disease detection, a hypothesis to be further evaluated in longitudinal studies.

  3. Development of a NIRS method to quantify cerebral perfusion and oxidative metabolism in preterm infants with post-hemorrhagic ventricle dilation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McLachlan, Peter; Kishimoto, Jessica; de Ribeaupierre, Sandrine; Lee, David S. C.; Diop, Mamadou; St Lawrence, Keith

    2017-02-01

    A complication of intraventricular hemorrhage among preterm neonates is post-hemorrhagic ventricle dilation (PHVD), which is associated with a greater risk of life-long neurological disability. Clinical evidence, including suppressed EEG patterns, suggests that cerebral perfusion and oxygenation is impaired in these patients, likely due to elevated intracranial pressure (ICP). Cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO2) can be quantified by dynamic contrast-enhanced NIRS; however, PHVD poses a unique challenge to NIRS since the cerebral mantle can be compressed to 1 cm or less. The objectives of this work were to develop a finite-slab model for the analysis of NIRS spectra, incorporating depth measurements from ultrasound images, and to assess the magnitude of error when using the standard semi-infinite model. CBF, tissue saturation (StO2) and CMRO2 were measured in 9 patients receiving ventricle taps to reduce ICP. Monte Carlo simulations indicated that errors in StO2 could be greater than 20% if the cerebral mantle was reduced to 1 cm. Using the finite-slab model, basal CBF and CMRO2 in the PHVD patients were not significantly different from a control group of preterm infants (14.6 ± 4.2 ml/100 g/min and 1.0 ± 0.4 ml O2/100 g/min), but StO2 was significantly lower (PDA 70.5 ± 9%, PHVD 58.9 ± 12%). Additionally, ventricle tapping improved CBF by 15.6 ± 22%. This work indicates that applying NIRS to PHVD patients is prone to error; however, this issue can be overcome with the appropriate model and using readily available ultrasound images.

  4. Regional cerebral blood flow in childhood autism: a SPET study with SPM evaluation.

    PubMed

    Burroni, Luca; Orsi, Alessandra; Monti, Lucia; Hayek, Youssef; Rocchi, Raffaele; Vattimo, Angelo G

    2008-02-01

    To establish a link between rCBF assessed with Tc-ECD SPET and the clinical manifestation of the disease. We performed the study on 11 patients (five girls and six boys; mean age 11.2 years) displaying autistic behaviour and we compared their data with that of an age-matched reference group of eight normal children. A quantitative analysis of rCBF was performed calculating a perfusion index (PI) and an asymmetry index (AI) in each lobe. Images were analysed with statistical parametric mapping software, following the spatial normalization of SPET images for a standard brain. A statistically significant (P=0.003) global reduction of CBF was found in the group of autistic children (PI=1.07+/-0.07) when compared with the reference group (PI=1.25+/-0.12). Moreover, a significant difference was also observed for the right-to-left asymmetry of hemispheric perfusion between the control group and autistic patients (P=0.0085) with a right prevalence greater in autistic (2.90+/-1.68) with respect to normal children (1.12+/-0.49). Our data show a significant decrease of global cerebral perfusion in autistic children in comparison with their normal counterparts and the existence of left-hemispheric dysfunction, especially in the temporo-parietal areas devoted to language and the comprehension of music and sounds. We suggest that these abnormal areas are related to the cognitive impairment observed in autistic children, such as language deficits, impairment of cognitive development and object representation, and abnormal perception and responses to sensory stimuli. Tc-ECD SPET seems to be sensitive in revealing brain blood flow alterations and left-to-right asymmetries, when neuroradiological patterns are normal.

  5. Is moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion superior to deep hypothermic circulatory arrest in elective aortic arch surgery?

    PubMed

    Poon, Shi Sum; Estrera, Anthony; Oo, Aung; Field, Mark

    2016-09-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was whether moderate hypothermia circulatory arrest with selective antegrade cerebral perfusion (SACP) is more beneficial than deep hypothermic circulatory arrest in elective aortic arch surgery. Altogether, 1028 papers were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. There were four retrospective observational studies, one prospective randomized controlled trial and one meta-analysis study. There were no local or neuromuscular complications related to axillary arterial cannulation reported. In the elective setting, four studies showed that the in-hospital mortality for moderate hypothermia is consistently low, ranging from 1.0 to 4.3%. In a large series of hemiarch replacement comparing 682 cases of deep hypothermia with 94 cases of moderate hypothermia with SACP, 20 cases (2.8%) of permanent neurological deficit were reported, compared to 3 cases (3.2%) in moderate hypothermia. Three observational studies and a meta-analysis study did not identify an increased risk of postoperative renal failure and dialysis following either deep or moderate hypothermia although a higher incidence of stroke was reported in the meta-analysis study with deep hypothermia (12.7 vs 7.3%). Longer cardiopulmonary bypass time and circulatory arrest time were reported in four studies for deep hypothermia, suggesting an increased time required for systemic cooling and rewarming in that group. Overall, these findings suggested that in elective aortic arch surgery, moderate hypothermia with selective antegrade cerebral perfusion adapted to the duration of circulatory arrest can be performed safely with acceptable mortality and morbidity outcomes. The risk of spinal cord

  6. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    PubMed Central

    Trangmar, Steven J.; Chiesa, Scott T.; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K.; Secher, Niels H.

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2. In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2. PMID:26371170

  7. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations.

    PubMed

    Helbok, Raimund; Olson, DaiWai M; Le Roux, Peter D; Vespa, Paul

    2014-12-01

    The effect of intracranial pressure (ICP) and the role of ICP monitoring are best studied in traumatic brain injury (TBI). However, a variety of acute neurologic illnesses e.g., subarachnoid hemorrhage, intracerebral hemorrhage, ischemic stroke, meningitis/encephalitis, and select metabolic disorders, e.g., liver failure and malignant, brain tumors can affect ICP. The purpose of this paper is to review the literature about ICP monitoring in conditions other than TBI and to provide recommendations how the technique may be used in patient management. A PubMed search between 1980 and September 2013 identified 989 articles; 225 of which were reviewed in detail. The technique used to monitor ICP in non-TBI conditions is similar to that used in TBI; however, indications for ICP monitoring often are intertwined with the presence of obstructive hydrocephalus and hence the use of ventricular catheters is more frequent. Increased ICP can adversely affect outcome, particularly when it fails to respond to treatment. However, patients with elevated ICP can still have favorable outcomes. Although the influence of ICP-based care on outcome in non-TBI conditions appears less robust than in TBI, monitoring ICP and cerebral perfusion pressure can play a role in guiding therapy in select patients.

  8. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma.

    PubMed

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-07-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review.

  9. Adaptation of laser-Doppler flowmetry to measure cerebral blood flow in the fetal sheep.

    PubMed

    Lan, J; Hunter, C J; Murata, T; Power, G G

    2000-09-01

    The purpose of this study was to devise a means to use laser-Doppler flowmetry to measure cerebral perfusion before birth. The method has not been used previously, largely because of intrauterine movement artifacts. To minimize movement artifacts, a probe holder was molded from epoxy putty to the contour of the fetal skull. A curved 18-gauge needle was embedded in the holder. At surgery, the holder, probe, and skull were fixed together with tissue glue. Residual signals were recorded after fetal death and after maternal death 1 h later. These averaged <5% of baseline flow signals, indicating minimal movement artifact. To test the usefulness of the method, cerebral flow responses were measured during moderate fetal hypoxia induced by giving the ewes approximately 10% oxygen in nitrogen to breathe. As fetal arterial PO(2) decreased from 21.1 +/- 0.5 to 10.7 +/- 0.4 Torr during a 30-min period, cerebral perfusion increased progressively to 56 +/- 8% above baseline. Perfusion then returned to baseline levels during a 30-min recovery period. These responses are quantitatively similar to those spot observations that have been recorded earlier using labeled microspheres. We conclude that cerebral perfusion can be successfully measured by using laser-Doppler flowmetry with the unanesthetized, chronically prepared fetal sheep as an experimental model. With this method, relative changes of perfusion from a small volume of the ovine fetal brain can be measured on a continuous basis, and movement artifacts can be reduced to 5% of measured flow values.

  10. Cerebral perfusion characteristics show differences in younger versus older children with sickle cell anaemia: Results from a multiple-inflow-time arterial spin labelling study.

    PubMed

    Kawadler, Jamie M; Hales, Patrick W; Barker, Simon; Cox, Timothy C S; Kirkham, Fenella J; Clark, Chris A

    2018-03-30

    Sickle cell anaemia (SCA) is associated with chronic anaemia and oxygen desaturation, which elevate cerebral blood flow (CBF) and increase the risk of neurocognitive complications. Arterial spin labelling (ASL) provides a methodology for measuring CBF non-invasively; however, ASL techniques using only a single inflow time are not sufficient to fully characterize abnormal haemodynamic behaviour in SCA. This study investigated haemodynamic parameters from a multi-inflow-time ASL acquisition in younger (8-12 years) and older (13-18 years) children with SCA with and without silent cerebral infarction (SCI+/-) (n = 20 and 19 respectively, 6 and 4 SCI+ respectively) and healthy controls (n = 9 and 7 respectively). Compared with controls, CBF was elevated globally in both groups of patients. In the younger SCA patients, blood oxygen content was negatively correlated with CBF in the middle and posterior cerebral artery territories and significantly positively correlated with bolus arrival time (BAT) in the anterior and middle cerebral artery territories. In older children, SCA patients had significantly shorter BAT than healthy controls and there was a significant negative correlation between CBF and oxygen content only in the territory of the posterior cerebral artery, with a trend for a correlation in the anterior cerebral artery but no relationship for the middle cerebral artery territory. In the younger group, SCI+ patients had significantly higher CBF in the posterior cerebral artery territory (SCI+ mean = 92.78 ml/100 g/min; SCI- mean = 72.71 ml/100 g/min; F = 4.28, p = 0.04), but this no longer reached significance when two children with abnormal transcranial Doppler and one with haemoglobin SC disease were excluded, and there were no significant differences between patients with and without SCI in the older children. With age, there appears to be increasing disparity between patients and controls in terms of the relationship between CBF and oxygen

  11. A comparative analysis of the dependences of the hemodynamic parameters on changes in ROI's position in perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo

    2013-05-01

    This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.

  12. Correlation-based perfusion mapping using time-resolved MR angiography: A feasibility study for patients with suspicions of steno-occlusive craniocervical arteries.

    PubMed

    Nam, Yoonho; Jang, Jinhee; Park, Sonya Youngju; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo

    2018-05-22

    To explore the feasibility of using correlation-based time-delay (CTD) maps produced from time-resolved MR angiography (TRMRA) to diagnose perfusion abnormalities in patients suspected to have steno-occlusive lesions in the craniocervical arteries. Twenty-seven patients who were suspected to have steno-occlusive lesions in the craniocervical arteries underwent both TRMRA and brain single-photon emission computed tomography (SPECT). TRMRA was performed on the supra-aortic area after intravenous injection of a 0.03 mmol/kg gadolinium-based contrast agent. Time-to-peak (TTP) maps and CTD maps of the brain were automatically generated from TRMRA data, and their quality was assessed. Detection of perfusion abnormalities was compared between CTD maps and the time-series maximal intensity projection (MIP) images from TRMRA and TTP maps. Correlation coefficients between quantitative changes in SPECT and parametric maps for the abnormal perfusion areas were calculated. The CTD maps were of significantly superior quality than TTP maps (p < 0.01). For perfusion abnormality detection, CTD maps (kappa 0.84, 95% confidence interval [CI] 0.67-1.00) showed better agreement with SPECT than TTP maps (0.66, 0.46-0.85). For perfusion deficit detection, CTD maps showed higher accuracy (85.2%, 95% CI 66.3-95.8) than MIP images (66.7%, 46-83.5), with marginal significance (p = 0.07). In abnormal perfusion areas, correlation coefficients between SPECT and CTD (r = 0.74, 95% CI 0.34-0.91) were higher than those between SPECT and TTP (r = 0.66, 0.20-0.88). CTD maps generated from TRMRA were of high quality and offered good diagnostic performance for detecting perfusion abnormalities associated with steno-occlusive arterial lesions in the craniocervical area. • Generation of perfusion parametric maps from time-resolved MR angiography is clinically useful. • Correlation-based delay maps can be used to detect perfusion abnormalities associated with steno-occlusive craniocervical arteries

  13. Computation of ventilation-perfusion ratio with Kr-81m in pulmonary embolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meignan, M.; Simonneau, G.; Oliveira, L.

    1984-02-01

    Diagnostic difficulties occur in pulmonary embolism (PE) during visual analysis of ventilation-perfusion images in matched defects or in chronic obstructive lung disease (COPD). In 44 patients with angiographically confirmed PE and in 40 patients with COPD, the regional ventilation-perfusion ratios (V/Q) were therefore computed using krypton-81m for each perfusion defect, and were displayed in a functional image. In patients with PE and mismatched defects, a high V/Q (1.96) was observed. A V/Q > 1.25 was also found in nine of 11 patients having PE and indeterminate studies (studies with perfusion abnormalities matched by radiographic abnormalities). COPD was characterized by matchedmore » defects and low V/Q. The percentage of patients correctly classified as having PE or COPD increased from 56% when considering the match or mismatched character to 88% when based on a V/Q of 1.25 in the region of the perfusion defect. This quantitative analysis, therefore, seems useful in classifying patients with scintigraphic suspicion of PE.« less

  14. Quantitative assessment of local perfusion change in acute intracerebral hemorrhage areas with and without "dynamic spot sign" using CT perfusion imaging.

    PubMed

    Fu, Fan; Sui, Binbin; Liu, Liping; Su, Yaping; Sun, Shengjun; Li, Yingying

    2018-01-01

    Background Positive "dynamic spot sign" has been proven to be a potential risk factor for acute intracerebral hemorrhage (ICH) expansion, but local perfusion change has not been quantitatively investigated. Purpose To quantitatively evaluate perfusion changes at the ICH area using computed tomography perfusion (CTP) imaging. Material and Methods Fifty-three patients with spontaneous ICH were recruited. Unenhanced computed tomography (NCCT), CTP within 6 h, and follow-up NCCT were performed for 21 patients in the "spot sign"-positive group and 32 patients in the control group. Cerebral perfusion change was quantitatively measured on regional cerebral blood flow/regional cerebral blood volume (rCBF/rCBV) maps. Regions of interest (ROIs) were set at the "spot-sign" region and the whole hematoma area for "spot-sign"-positive cases, and at one of the highest values of three interested areas and the whole hematoma area for the control group. Hematoma expansion was determined by follow-up NCCT. Results For the "spot-sign"-positive group, the average rCBF (rCBV) values at the "spot-sign" region and the whole hematoma area were 21.34 ± 15.24 mL/min/100 g (21.64 ± 21.48 mL/100g) and 5.78 ± 6.32 mL/min/100 g (6.07 ± 5.45 mL/100g); for the control group, the average rCBF (rCBV) values at the interested area and whole hematoma area were 2.50 ± 1.83 mL/min/100 g (3.13 ± 1.96 mL/100g) and 3.02 ± 1.80 mL/min/100 g (3.40 ± 1.44 mL/100g), respectively. Average rCBF and rCBV values of the "spot-sign" region were significantly different from other regions ( P < 0.001; P = 0.004). The average volumes of hematoma expansion in the "spot-sign"-positive and control groups were 25.24 ± 19.38 mL and -0.41 ± 1.34 mL, respectively. Conclusion The higher perfusion change at ICH on CTP images may reflect the contrast extravasation and be associated with the hematoma expansion.

  15. Perfusion deficits detected by arterial spin-labeling in patients with TIA with negative diffusion and vascular imaging.

    PubMed

    Qiao, X J; Salamon, N; Wang, D J J; He, R; Linetsky, M; Ellingson, B M; Pope, W B

    2013-01-01

    A substantial portion of clinically diagnosed TIA cases is imaging-negative. The purpose of the current study is to determine if arterial spin-labeling is helpful in detecting perfusion abnormalities in patients presenting clinically with TIA. Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired on 49 patients suspected of TIA within 24 hours of symptom onset. All patients were free of stroke history and had no lesion-specific findings on general MR, DWI, and MRA sequences. The calculated arterial spin-labeling CBF maps were scored from 1-3 on the basis of presence and severity of perfusion disturbance by 3 independent observers blinded to patient history. An age-matched cohort of 36 patients diagnosed with no cerebrovascular events was evaluated as a control. Interobserver agreement was assessed by use of the Kendall concordance test. Scoring of perfusion abnormalities on arterial spin-labeling scans of the TIA cohort was highly concordant among the 3 observers (W = 0.812). The sensitivity and specificity of arterial spin-labeling in the diagnosis of perfusion abnormalities in TIA was 55.8% and 90.7%, respectively. In 93.3% (70/75) of the arterial spin-labeling CBF map readings with positive scores (≥2), the brain regions where perfusion abnormalities were identified by 3 observers matched with the neurologic deficits at TIA onset. In this preliminary study, arterial spin-labeling showed promise in the detection of perfusion abnormalities that correlated with clinically diagnosed TIA in patients with otherwise normal neuroimaging results.

  16. Patient-Specific Detection of Cerebral Blood Flow Alterations as Assessed by Arterial Spin Labeling in Drug-Resistant Epileptic Patients

    PubMed Central

    Boscolo Galazzo, Ilaria; Storti, Silvia Francesca; Del Felice, Alessandra; Pizzini, Francesca Benedetta; Arcaro, Chiara; Formaggio, Emanuela; Mai, Roberto; Chappell, Michael; Beltramello, Alberto; Manganotti, Paolo

    2015-01-01

    Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients. PMID:25946055

  17. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth.

    PubMed

    Masoller, N; Sanz-CortéS, M; Crispi, F; Gómez, O; Bennasar, M; Egaña-Ugrinovic, G; Bargalló, N; Martínez, J M; Gratacós, E

    2016-01-01

    Fetuses with congenital heart disease (CHD) show evidence of abnormal brain development before birth, which is thought to contribute to adverse neurodevelopment during childhood. Our aim was to evaluate whether brain development in late pregnancy can be predicted by fetal brain Doppler, head biometry and the clinical form of CHD at the time of diagnosis. This was a prospective cohort study including 58 fetuses with CHD, diagnosed at 20-24 weeks' gestation, and 58 normal control fetuses. At the time of diagnosis, we recorded fetal head circumference (HC), biparietal diameter, middle cerebral artery pulsatility index (MCA-PI), cerebroplacental ratio (CPR) and brain perfusion by fractional moving blood volume. We classified cases into one of two clinical types defined by the expected levels (high or low) of placental (well-oxygenated) blood perfusion, according to the anatomical defect. All fetuses underwent subsequent 3T-magnetic resonance imaging (MRI) at 36-38 weeks' gestation. Abnormal prenatal brain development was defined by a composite score including any of the following findings on MRI: total brain volume <  10(th) centile, parietoccipital or cingulate fissure depth <  10(th) centile or abnormal metabolic profile in the frontal lobe. Logistic regression analysis demonstrated that MCA-PI (odds ratio (OR), 12.7; P = 0.01), CPR (OR, 8.7; P = 0.02) and HC (OR, 6.2; P = 0.02) were independent predictors of abnormal neurodevelopment; however, the clinical type of CHD was not. Fetal brain Doppler and head biometry at the time of CHD diagnosis are independent predictors of abnormal brain development at birth, and could be used in future algorithms to improve counseling and targeted interventions. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  18. Cerebral Lateralization and Aggression.

    ERIC Educational Resources Information Center

    Hillbrand, Marc; And Others

    1994-01-01

    A resurgence of interest in the relationship between cerebral lateralization (the functional asymmetry of the cerebral cortex) and aggression has occurred. Most recent studies have found that individuals with abnormal patterns of lateralization are overrepresented among violent individuals. Intervening variables (such as drug and alcohol abuse)…

  19. Flecainide-induced proarrhythmia is attributed to abnormal changes in repolarization and refractoriness in perfused guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2012-11-01

    Flecainide is nonselective Na(+) channel blocker which may also inhibit I(Kr), the rapid component of the delayed rectifier. This study was designed to explore if proarrhythmic responses to flecainide noted in cardiac patients may be partly attributed to abnormal changes in repolarization and refractoriness. Monophasic action potential duration (APD) and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated perfused guinea-pig heart preparations. Flecainide was found to prolong ventricular repolarization, with effect being greater at the left ventricular compared with the right ventricular epicardium. This change translated to reversal of the normal right ventricular-to-left ventricular transepicardial APD difference determined before drug infusion. An inverse correlation between local epicardial APD and corresponding activation time values seen at baseline was eliminated in flecainide-treated hearts, indicating the activation-to-repolarization uncoupling. Over transmural plane, flecainide produced a greater ERP lengthening at endocardium than epicardium, thus markedly increasing ERP dispersion across ventricular wall. Spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 45% of heart preparations upon flecainide infusion. In conclusion, in nonischemic guinea-pig heart, flecainide-induced proarrhythmia may be partly attributed to abnormal spatial gradients in repolarization and refractoriness and impaired transepicardial activation-to-repolarization coupling.

  20. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . Copyright © 2015 the American Physiological Society.

  1. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  2. Cerebral perfusion during cardiopulmonary bypass in children: correlations between near-infrared spectroscopy, temperature, lactate, pump flow, and blood pressure.

    PubMed

    Haydin, Sertac; Onan, Burak; Onan, Ismihan Selen; Ozturk, Erkut; Iyigun, Muzeyyen; Yeniterzi, Mehmet; Bakir, Ihsan

    2013-01-01

    Near-infrared spectroscopy (NIRS) is a noninvasive modality to monitor regional brain oxygenation (rSO(2) ). In this study, we aimed to investigate the correlation between cerebral rSO(2) and lactate, pump flow, hematocrit, pCO(2) , and mean blood pressure (MBP) during cardiopulmonary bypass (CPB). Between March and September 2011, 50 pediatric patients who underwent congenital heart surgery were enrolled into the study. Ages ranged from 6 days to 168 months (median 14 months). A NIRS sensor (Somanetics 5100B, Troy, MI, USA) was placed on the right forehead of patients. CPB period was divided into five stages: 1-at the beginning of CBP, 2-cooling at 32°C, 3-at final hypothermic temperature, 4-rewarming at 32°C, 5-before weaning from CPB. Data collection included measurements of each parameter at five stages of CPB. Data were analyzed using multivariate analysis within groups and Spearman's correlation to test association between parameters. Lactate levels increased significantly from stage 1 to stage 5 during CPB (P < 0.05). There was no significant correlation between cerebral rSO(2) and MBPs, pump flows, hematocrit, or pCO(2) during CPB. Cerebral rSO(2) levels showed changes between the stages; there was a significant increase during cooling period, compared to stage 1 (P < 0.05). Significant changes during cooling stage did not happen for other parameters. At stage 3, there was a negative correlation between lactate level and MBP. At stage 4, there was no significant change in cerebral rSO(2) levels despite decreased MBP. At the warming stage, low MBPs, but normal rSO(2) values, are observed despite increased pump flows. Increased rSO(2) levels despite insignificant changes at other parameters during the cooling stage of CPB may show that optimal pump flow with adequate intravascular volume may provide effective cerebral perfusion even without changes in MBP. Considering normal rSO(2) values during CPB in this study, it may be speculated that brain

  3. Quantification of Macrocirculation and Microcirculation in Brain Using Ultrasound Perfusion Imaging.

    PubMed

    Vinke, Eline J; Eyding, Jens; de Korte, Chris; Slump, Cornelis H; van der Hoeven, Johannes G; Hoedemaekers, Cornelia W E

    2018-01-01

    The aim of this study was to investigate the feasibility of simultaneous visualization of the cerebral macrocirculation and microcirculation, using ultrasound perfusion imaging (UPI). In addition, we studied the sensitivity of this technique for detecting changes in cerebral blood flow (CBF). We performed an observational study in ten healthy volunteers. Ultrasound contrast was used for UPI measurements during normoventilation and hyperventilation. For the data analysis of the UPI measurements, an in-house algorithm was used to visualize the DICOM files, calculate parameter images and select regions of interest (ROIs). Next, time intensity curves (TIC) were extracted and perfusion parameters calculated. Both volume- and velocity-related perfusion parameters were significantly different between the macrocirculation and the parenchymal areas. Hyperventilation-induced decreases in CBF were detectable by UPI in both the macrocirculation and microcirculation, most consistently by the volume-related parameters. The method was safe, with no adverse effects in our population. Bedside quantification of CBF seems feasible and the technique has a favourable safety profile. Adjustment of current method is required to improve its diagnostic accuracy. Validation studies using a 'gold standard' are needed to determine the added value of UPI in neurocritical care monitoring.

  4. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, H; Xing, L; Liang, Z

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of eachmore » tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue

  5. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    PubMed

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  6. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma

    PubMed Central

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-01-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review. PMID:27761184

  7. The inhibitor of 20-HETE synthesis, TS-011, improves cerebral microcirculatory autoregulation impaired by middle cerebral artery occlusion in mice.

    PubMed

    Marumo, Toshiyuki; Eto, Kei; Wake, Hiroaki; Omura, Tomohiro; Nabekura, Junichi

    2010-11-01

    20-Hydroxyeicosatetraenoic acid is a potent vasoconstrictor that contributes to cerebral ischaemia. An inhibitor of 20-Hydroxyeicosatetraenoic acid synthesis, TS-011, reduces infarct volume and improves neurological deficits in animal stroke models. However, little is known about how TS-011 affects the microvessels in ischaemic brain. Here, we investigated the effect of TS-011 on microvessels after cerebral ischaemia. TS-011 (0.3 mg·kg(-1) ) or a vehicle was infused intravenously for 1 h every 6 h in a mouse model of stroke, induced by transient occlusion of the middle cerebral artery occlusion following photothrombosis. The cerebral blood flow velocity and the vascular perfusion area of the peri-infarct microvessels were measured using in vivo two-photon imaging. The cerebral blood flow velocities in the peri-infarct microvessels decreased at 1 and 7 h after reperfusion, followed by an increase at 24 h after reperfusion in the vehicle-treated mice. We found that TS-011 significantly inhibited both the decrease and the increase in the blood flow velocities in the peri-infarct microvessels seen in the vehicle-treated mice after reperfusion. In addition, TS-011 significantly inhibited the reduction in the microvascular perfusion area after reperfusion, compared with the vehicle-treated group. Moreover, TS-011 significantly reduced the infarct volume by 40% at 72 h after middle cerebral artery occlusion. These findings demonstrated that infusion of TS-011 improved defects in the autoregulation of peri-infarct microcirculation and reduced the infarct volume. Our results could be relevant to the treatment of cerebral ischaemia. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  8. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): Dual-energy CT experience in 31 patients.

    PubMed

    Giordano, Jessica; Khung, Suonita; Duhamel, Alain; Hossein-Foucher, Claude; Bellèvre, Dimitri; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2017-04-01

    To compare lung perfusion in PAH and pCTEPH on dual-energy CT (DECT) examinations. Thirty-one patients with PAH (group 1; n = 19) and pCTEPH (group 2; n = 12) underwent a dual-energy chest CTA with reconstruction of diagnostic and perfusion images. Perfusion alterations were analysed at a segmental level. V/Q scintigraphy was available in 22 patients (group 1: 13/19; group 2: 9/12). CT perfusion was abnormal in 52.6 % of group 1 patients and in 100 % of group 2 patients (p = 0.0051). The patterns of perfusion alteration significantly differed between the two groups (p < 0.0001): (1) in group 1, 96.6 % of segments with abnormal perfusion showed patchy defects; (2) in group 2, the most frequent abnormalities consisted of patchy (58.5 %) and PE-type (37.5 %) defects. Paired comparison of CT perfusion and scintigraphy showed concordant findings in 76.9 % of group 1 (10/13) and 100 % of group 2 (9/9) patients, with a predominant or an exclusive patchy pattern in group 1 and a mixed pattern of abnormalities in group 2. Lung perfusion alterations at DECT are less frequent and more homogeneous in PAH than in pCTEPH, with a high level of concordant findings with V/Q scintigraphy. • Depiction of chronic pulmonary embolism exclusively located on peripheral arteries is difficult. • The main differential diagnosis of pCTEPH is PAH. • The pattern of DECT perfusion changes can help differentiate PAH and pCETPH. • In PAH, almost all segments with abnormal perfusion showed patchy defects. • In pCTEPH, patchy and PE-type defects were the most frequent abnormalities.

  9. Paradoxical Air Microembolism Induces Cerebral Bioelectrical Abnormalities and Occasionally Headache in Patent Foramen Ovale Patients With Migraine

    PubMed Central

    Sevgi, Eser Başak; Erdener, Sefik Evren; Demirci, Mehmet; Topcuoglu, Mehmet Akif; Dalkara, Turgay

    2012-01-01

    Background Although controversial, paradoxical embolism via patent foramen ovale (PFO) may account for some of the migraine attacks in a subset of migraine with aura (MA) patients. Induction of MA attacks with air bubble injection during transcranial Doppler ultrasound in MA patients with PFO supports this view. It is likely that cerebral embolism in patients with right-to-left shunt induces bioelectrical abnormalities to initiate MA under some conditions. Methods and Results We investigated changes in cerebral bioelectrical activity after intravenous microbubble injection in 10 MA patients with large PFO and right-to-left cardiac shunt. Eight PFO patients without migraine but with large right-to-left shunt and 12 MA patients without PFO served as controls. Four MA patients with PFO were reexamined with sham injections of saline without microbubbles. Bioelectrical activity was evaluated using spectral electroencephalography and, passage of microbubbles through cerebral arteries was monitored with transcranial Doppler ultrasound. Microbubble embolism caused significant electroencephalographic power increase in MA+PFO patients but not in control groups including the sham-injected MA+PFO patients. Headache developed in 2 MA with PFO patients after microbubble injection. Conclusions These findings demonstrate that air microembolism through large PFOs may cause cerebral bioelectrical disturbances and, occasionally, headache in MA patients, which may reflect an increased reactivity of their brain to transient subclinical hypoxia–ischemia, and suggest that paradoxical embolism is not a common cause of migraine but may induce headache in the presence of a large PFO and facilitating conditions. PMID:23316313

  10. [Research on brain white matter network in cerebral palsy infant].

    PubMed

    Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong

    2017-10-01

    Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.

  11. Fetal origin of the posterior cerebral artery produces left-right asymmetry on perfusion imaging.

    PubMed

    Wentland, A L; Rowley, H A; Vigen, K K; Field, A S

    2010-03-01

    Fetal origin of the PCA is a common anatomic variation of the circle of Willis. On perfusion imaging, patients with unilateral fetal-type PCA may demonstrate left-right asymmetry that could mimic cerebrovascular disease. The aim of this study was to characterize the relationship between a fetal-type PCA and asymmetry of hemodynamic parameters derived from MR perfusion imaging. We retrospectively reviewed MR perfusion studies of 36 patients to determine the relationship between hemodynamic and vascular asymmetries in the PCA territory. Perfusion asymmetry indices for the PCA territory were computed from maps of rCBF, rCBV, MTT, T(max), and FMT. Vascular asymmetry indices were derived from calibers of the PCA-P1 segments relative to the posterior communicating arteries. Asymmetrically smaller values of FMT and T(max) were observed with unilateral fetal-type PCA, and these were strongly correlated with the degree of vascular asymmetry (Spearman's rho = 0.76 and 0.74, respectively, P < 1 x 10(-6)). Asymmetries of rCBF, MTT, and rCBV were neither significant nor related to vascular asymmetry. Faster perfusion transit times are seen for parameters sensitive to macrovascular transit effects (eg, FMT and T(max)) ipsilateral to fetal origin of the PCA in proportion to the degree of arterial asymmetry. Knowledge of this normal variation is critical in the interpretation of perfusion studies because asymmetry could mimic cerebrovascular pathology.

  12. Crossed aphasia following cerebral infarction in a right-handed patient with atypical cerebral language dominance.

    PubMed

    Tan, Xiaoping; Guo, Yang; Dun, Saihong; Sun, Hongzan

    2018-05-18

    Crossed aphasia (CA), usually referred to as an acquired language disturbance, is caused by a lesion in the cerebral hemisphere ipsilateral to the dominant hand, and the exact mechanism is not clear. The development of handedness is influenced by education and training and the impact of habitualization, while language is more susceptible to the impact of speech habits, and it is not absolutely accurate to judge cerebral language dominance by the degree of hand preference. We describe a case of CA after right hemispheric stroke in a right-handed patient with atypical language dominance and attempt to analyze the mechanism of CA based on functional imaging methods, including arterial spin labeling (ASL) and positron emission tomography/magnetic resonance imaging (PET-MRI). Brain MRI at 24 h after admission showed a large cerebral infarction in the right cerebral hemisphere, including the posteroinferior part of Broca's area in the right frontal lobe, the right temporal lobe, and the right occipital lobe. The patient exhibited a non-fluent aphasia on a standard language test (the Aphasia Battery of Chinese [ABC]) performed on the 7th day after onset. Thus, atypical language dominance was suspected. One week after admission, ASL imaging showed high perfusion in the infarct core zone and low perfusion in the left cerebellar hemisphere. Two months later, PET/MRI demonstrated low metabolism in the posterior frontal lobe, temporal lobe, temporal occipital junction area, and the right basal ganglia. The findings suggest that the patient has right-sided cerebral language dominance, or that both hemispheres have linguistic functions. Not all patients show linguistic capabilities on the side opposite hand preference. The language dominance should be predicted by a combination of clinical manifestations and functional imaging techniques.

  13. Autoregulation of cerebral blood circulation under orthostatic tests

    NASA Technical Reports Server (NTRS)

    Gayevyy, M. D.; Maltsev, V. G.; Pogorelyy, V. E.

    1980-01-01

    Autoregulation of cerebral blood flow (ACBF) under orthostatic tests (OT) was estimated in acute experiments on rabbits and cats under local anesthesia according to changes of perfusion pressure (PP) in carotid arteries, cerebral blood flow, pressure in the venous system of the brain, and resistance of cerebral vessels. The OT were conducted by turning a special table with the animal fastened to it from a horizontal to a vertical (head up or head down) position at 40 to 80 deg. In most experiments ACBF correlated with the changes of PP. Different variations of ACBF and its possible mechanisms are discussed.

  14. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods

    PubMed Central

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T.; Kornbluth, Joshua

    2016-01-01

    Abstract. Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation. PMID:27403447

  15. PET scan perfusion imaging in the Prader–Willi syndrome: new insights into the psychiatric and social disturbances

    PubMed Central

    Mantoulan, Carine; Payoux, Pierre; Diene, Gwenaëlle; Glattard, Mélanie; Rogé, Bernadette; Molinas, Catherine; Sevely, Annick; Zilbovicius, Monica; Celsis, Pierre; Tauber, Maïthé

    2011-01-01

    The Prader–Willi syndrome (PWS), a rare multisystem genetic disease, leads to severe disabilities, such as morbid obesity, endocrine dysfunctions, psychiatric disorders, and social disturbances. We explored the whole brain of patients with PWS to detect abnormalities that might explain the behavioral and social disturbances, as well as the psychiatric disorders of these patients. Nine patients with PWS (six males, three females; mean age 16.4 years) underwent a positron emission tomography (PET) scan with H215O as a tracer to measure regional cerebral blood flow (rCBF). The images were compared with those acquired from nine controls (six males, three females; mean age 21.2 years). A morphologic magnetic resonance imaging (MRI) was also performed in PWS patients, and their cognitive and behavioral skills were assessed with Wechsler Intelligence Scale for Children III and the Child Behavior Check List (CBCL). The MRI images showed no evident anatomic abnormalities, whereas PET scans revealed hypoperfused brain regions in PWS patients compared with controls, particularly in the anterior cingulum and superior temporal regions. We observed a significant relationship (P<0.05) between rCBF in the hypoperfused regions and CBCL scores. The functional consequences of these perfusion abnormalities in specific brain regions might explain the behavioral and social problems observed in these individuals. PMID:20588317

  16. PET scan perfusion imaging in the Prader-Willi syndrome: new insights into the psychiatric and social disturbances.

    PubMed

    Mantoulan, Carine; Payoux, Pierre; Diene, Gwenaëlle; Glattard, Mélanie; Rogé, Bernadette; Molinas, Catherine; Sevely, Annick; Zilbovicius, Monica; Celsis, Pierre; Tauber, Maïthé

    2011-01-01

    The Prader-Willi syndrome (PWS), a rare multisystem genetic disease, leads to severe disabilities, such as morbid obesity, endocrine dysfunctions, psychiatric disorders, and social disturbances. We explored the whole brain of patients with PWS to detect abnormalities that might explain the behavioral and social disturbances, as well as the psychiatric disorders of these patients. Nine patients with PWS (six males, three females; mean age 16.4 years) underwent a positron emission tomography (PET) scan with H(2)(15)O as a tracer to measure regional cerebral blood flow (rCBF). The images were compared with those acquired from nine controls (six males, three females; mean age 21.2 years). A morphologic magnetic resonance imaging (MRI) was also performed in PWS patients, and their cognitive and behavioral skills were assessed with Wechsler Intelligence Scale for Children III and the Child Behavior Check List (CBCL). The MRI images showed no evident anatomic abnormalities, whereas PET scans revealed hypoperfused brain regions in PWS patients compared with controls, particularly in the anterior cingulum and superior temporal regions. We observed a significant relationship (P<0.05) between rCBF in the hypoperfused regions and CBCL scores. The functional consequences of these perfusion abnormalities in specific brain regions might explain the behavioral and social problems observed in these individuals.

  17. Evaluation of brain perfusion in Alzheimer disease with perfusion computed tomography and comparison to elderly patient without dementia.

    PubMed

    Yildirim, Tülin; Karakurum Göksel, Başak; Demir, Şenay; Tokmak, Naime; Tan, Meliha

    2016-04-19

    The aim of this study was to evaluate perfusion computed tomography (PCT) findings in patients with Alzheimer disease and to compare them with those of patients without dementia. PCT was performed in 35 patients: 20 with Alzheimer disease (mean age, 69.7 ± 5.5 years) and 15 control subjects (mean age, 67.5 ± 3.5 years). Control subjects were elderly individuals with no cognitive problems who were admitted with headaches. All PCT examinations were performed on a 4-slice CT unit. The PCT analysis software program was used to calculate regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional time-to-peak (rTTP) values in the bilateral frontal, temporal, and occipital cortices, and bilateral lentiform nucleus. rCBF values in the bilateral frontal and temporal cortices and bilateral lentiform nucleus were significantly lower in the patients with Alzheimer disease than in the control subjects. There were no significant differences in rCBV values between Alzheimer disease and the control group. rTTP values in all cortical areas and bilateral lentiform nucleus were significantly higher in the patients with Alzheimer disease than in the control subjects. PCT is a rapid and reliable imaging modality for evaluating brain perfusion in Alzheimer disease.

  18. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  19. Is a combination of Tc-SPECT or perfusion weighted magnetic resonance imaging with spinal tap test helpful in the diagnosis of normal pressure hydrocephalus?

    PubMed

    Hertel, F; Walter, C; Schmitt, M; Mörsdorf, M; Jammers, W; Busch, H P; Bettag, M

    2003-04-01

    The aim of this study was to evaluate the combination of spinal tap test (STT) with cerebral perfusion measurement assessed either by Tc-bicisate-SPECT (Tc-SPECT) or perfusion weighted MRI (pwMRI), or both, for a better preoperative selection of promising candidates for shunt operations in suspected idiopathic normal pressure hydrocephalus. 27 consecutive patients were examined with a standard clinical protocol (assessed by the Homburg Hydrocephalus Scale (HHS)) as well as with 99m Tc-bicisate-SPECT (n=27) or additionally by pwMRI (n=12) before and after STT. The results of these examinations were compared preoperatively for each patient and correlated with postoperative clinical outcome after shunt surgery. Nine patients showed both, a clinical improvement, and increased cerebral perfusion after STT. They underwent shunt surgery with good to excellent results. In another nine patients increasing cerebral perfusion was detected although they did not show a clear clinical improvement after STT. Six of them also received a shunt operation with good to excellent outcome. Three patients of the last group could have an operation. Nine patients did not show any clinical improvement or any kind of increasing cerebral perfusion after STT. Therefore, they did not undergo surgery. The results of SPECT and pwMRI correlated in 92 % of the patients (11 of 12). It is concluded that a combination of clinical assessment with SPECT or pwMRI is helpful in the preoperative selection of patients for shunting procedures with suspected NPH syndrome. This combination is a minimal invasive and objective test modality that is superior to STT alone. Further studies are necessary for a comparison of the described imaging techniques with different diagnostic tests in this difficult field of cerebral disease.

  20. Simultaneous acquisition of perfusion image and dynamic MR angiography using time‐encoded pseudo‐continuous ASL

    PubMed Central

    Helle, Michael; Koken, Peter; Van Cauteren, Marc; van Osch, Matthias J. P.

    2017-01-01

    Purpose Both dynamic magnetic resonance angiography (4D‐MRA) and perfusion imaging can be acquired by using arterial spin labeling (ASL). While 4D‐MRA highlights large vessel pathology, such as stenosis or collateral blood flow patterns, perfusion imaging provides information on the microvascular status. Therefore, a complete picture of the cerebral hemodynamic condition could be obtained by combining the two techniques. Here, we propose a novel technique for simultaneous acquisition of 4D‐MRA and perfusion imaging using time‐encoded pseudo‐continuous arterial spin labeling. Methods The time‐encoded pseudo‐continuous arterial spin labeling module consisted of a first subbolus that was optimized for perfusion imaging by using a labeling duration of 1800 ms, whereas the other six subboli of 130 ms were used for encoding the passage of the labeled spins through the arterial system for 4D‐MRA acquisition. After the entire labeling module, a multishot 3D turbo‐field echo‐planar‐imaging readout was executed for the 4D‐MRA acquisition, immediately followed by a single‐shot, multislice echo‐planar‐imaging readout for perfusion imaging. The optimal excitation flip angle for the 3D turbo‐field echo‐planar‐imaging readout was investigated by evaluating the image quality of the 4D‐MRA and perfusion images as well as the accuracy of the estimated cerebral blood flow values. Results When using 36 excitation radiofrequency pulses with flip angles of 5 or 7.5°, the saturation effects of the 3D turbo‐field echo‐planar‐imaging readout on the perfusion images were relatively moderate and after correction, there were no statistically significant differences between the obtained cerebral blood flow values and those from traditional time‐encoded pseudo‐continuous arterial spin labeling. Conclusions This study demonstrated that simultaneous acquisition of 4D‐MRA and perfusion images can be achieved by using time‐encoded pseudo

  1. Neurodevelopmental Outcomes Following Regional Cerebral Perfusion with Neuromonitoring for Neonatal Aortic Arch Reconstruction

    PubMed Central

    Andropoulos, Dean B.; Easley, R. Blaine; Brady, Ken; McKenzie, E. Dean; Heinle, Jeffrey S.; Dickerson, Heather A.; Shekerdemian, Lara S.; Meador, Marcie; Eisenman, Carol; Hunter, Jill V.; Turcich, Marie; Voigt, Robert G.; Fraser, Charles D.

    2013-01-01

    Background In this study we report magnetic resonance imaging (MRI) brain injury, and 12 month neurodevelopmental outcomes, when regional cerebral perfusion (RCP) is utilized for neonatal aortic arch reconstruction. Methods Fifty seven neonates receiving RCP during aortic arch reconstruction were enrolled in a prospective outcome study. RCP flows were determined by near-infrared spectroscopy and transcranial Doppler monitoring. Brain MRI were performed preoperatively and 7 days postoperatively. Bayley Scales of Infant Development III was performed at 12 months. Results Mean RCP time was 71 ± 28 minutes (range 5–121), mean flow 56.6 ± 10.6 ml/kg/min. New postoperative MRI brain injury was seen in 40% of patients. For 35 RCP patients at age 12 months, mean Bayley III composite standard scores were: Cognitive = 100.1 ± 14.6,(range 75–125); Language = 87.2 ± 15.0, (range 62–132); Motor = 87.9 ± 16.8, (range 58–121).Increasing duration of RCP was not associated with adverse neurodevelopmental outcomes. Conclusions Neonatal aortic arch repair with RCP utilizing a neuromonitoring strategy results in 12-month cognitive outcomes that are at reference population norms; language and motor outcomes are lower than the reference population norms by 0.8–0.9 standard deviation. This largest RCP group with neurodevelopmental outcomes published to date demonstrates that this technique is effective and safe in supporting the brain during neonatal aortic arch reconstruction. PMID:22766302

  2. Relations of Blood Pressure and Head Injury to Regional Cerebral Blood Flow

    PubMed Central

    Allen, Allyssa J.; Katzel, Leslie I.; Wendell, Carrington R.; Siegel, Eliot L.; Lefkowitz, David; Waldstein, Shari R.

    2016-01-01

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults -69% men, 90% white, mean age= 66.9 years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness cerebral blood flow in men only. Specifically, among men with a history of head injury, higher systolic blood pressure was associated with lower levels of perfusion in the left orbital (β=-3.21, p=.024) and left dorsolateral (β=-2.61, p=.042) prefrontal cortex, and left temporal cortex (β=-3.36, p=.014); higher diastolic blood pressure was marginally associated with lower levels of perfusion in the left dorsolateral prefrontal cortex (β=-2.79, p=.051). Results indicate that men with a history of head injury may be particularly vulnerable to the impact of higher blood pressure on cerebral perfusion in left anterior cortical regions, thus potentially enhancing risk for adverse brain and neurocognitive outcomes. PMID:27206865

  3. The regional cerebral blood flow changes in major depressive disorder with and without psychotic features.

    PubMed

    Gonul, Ali Saffet; Kula, Mustafa; Bilgin, Arzu Guler; Tutus, Ahmet; Oguz, Aslan

    2004-09-01

    Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.

  4. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    PubMed

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery.

    PubMed

    Uebleis, C; Groebner, M; von Ziegler, F; Becker, A; Rischpler, C; Tegtmeyer, R; Becker, C; Lehner, S; Haug, A R; Cumming, P; Bartenstein, P; Franz, W M; Hacker, M

    2012-10-01

    There has been a lack of standardized workup guidelines for patients with congenital abnormal origin of a coronary artery from the opposite sinus (ACAOS). We aimed to evaluate the use of cardiac hybrid imaging using multi-detector row CT (MDCT) for coronary CT angiography (Coronary CTA) and stress-rest myocardial perfusion SPECT (MPS) for comprehensive diagnosis of symptomatic adult patients with ACAOS. Seventeen symptomatic patients (12 men; 54 ± 13 years) presenting with ACAOS underwent coronary CTA and MPS. Imaging data were analyzed by conventional means, and with additional use of 3D image fusion to allocate stress induced perfusion defects (PD) to their supplying coronary arteries. An anomalous RCA arose from the left anterior sinus in eight patients, an abnormal origin from the right sinus was detected in nine patients (5 left coronary arteries, LCA and 4 LCx). Five of the 17 patients (29%) demonstrated a reversible PD in MPS. There was no correlation between the anatomical variants of ACAOS and the presence of myocardial ischemia. Image fusion enabled the allocation of reversible PD to the anomalous vessel in three patients (two cases in the RCA and the other in the LCA territory); PD in two patients were allocated to the territory of artery giving rise to the anomalies, rather than the anomalies themselves. In a small cohort of adult symptomatic patients with ACAOS anomaly there was no relation found between the specific anatomical variant and the appearance of stress induced myocardial ischemia using cardiac hybrid imaging.

  6. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croughwell, N.; Lyth, M.; Quill, T.J.

    1990-11-01

    We tested the hypothesis that insulin-dependent diabetic patients with coronary artery bypass graft surgery experience altered coupling of cerebral blood flow and oxygen consumption. In a study of 23 patients (11 diabetics and 12 age-matched controls), cerebral blood flow was measured using 133Xe clearance during nonpulsatile, alpha-stat blood gas managed cardiopulmonary bypass at the conditions of hypothermia and normothermia. In diabetic patients, the cerebral blood flow at 26.6 +/- 2.42 degrees C was 25.3 +/- 14.34 ml/100 g/min and at 36.9 +/- 0.58 degrees C it was 27.3 +/- 7.40 ml/100 g/min (p = NS). The control patients increased cerebralmore » blood flow from 20.7 +/- 6.78 ml/100 g/min at 28.4 +/- 2.81 degrees C to 37.6 +/- 8.81 ml/100 g/min at 36.5 +/- 0.45 degrees C (p less than or equal to 0.005). The oxygen consumption was calculated from jugular bulb effluent and increased from hypothermic values of 0.52 +/- 0.20 ml/100 g/min in diabetics to 1.26 +/- 0.28 ml/100 g/min (p = 0.001) at normothermia and rose from 0.60 +/- 0.27 to 1.49 +/- 0.35 ml/100 g/min (p = 0.0005) in the controls. Thus, despite temperature-mediated changes in oxygen consumption, diabetic patients did not increase cerebral blood flow as metabolism increased. Arteriovenous oxygen saturation gradients and oxygen extraction across the brain were calculated from arterial and jugular bulb blood samples. The increase in arteriovenous oxygen difference between temperature conditions in diabetic patients and controls was significantly different (p = 0.01). These data reveal that diabetic patients lose cerebral autoregulation during cardiopulmonary bypass and compensate for an imbalance in adequate oxygen delivery by increasing oxygen extraction.« less

  7. Assessment of cerebral blood perfusion reserve with acetazolamide using 3D spiral ASL MRI: Preliminary experience in pediatric patients.

    PubMed

    Hu, Houchun H; Li, Zhiqiang; Pokorney, Amber L; Chia, Jonathan M; Stefani, Niccolo; Pipe, James G; Miller, Jeffrey H

    2017-01-01

    To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy.

    PubMed

    Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K

    2017-12-01

    Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98

  9. Neonatal White Matter Abnormalities an Important Predictor of Neurocognitive Outcome for Very Preterm Children

    PubMed Central

    Woodward, Lianne J.; Clark, Caron A. C.; Bora, Samudragupta; Inder, Terrie E.

    2012-01-01

    Background Cerebral white matter abnormalities on term MRI are a strong predictor of motor disability in children born very preterm. However, their contribution to cognitive impairment is less certain. Objective Examine relationships between the presence and severity of cerebral white matter abnormalities on neonatal MRI and a range of neurocognitive outcomes assessed at ages 4 and 6 years. Design/Methods The study sample consisted of a regionally representative cohort of 104 very preterm (≤32 weeks gestation) infants born from 1998–2000 and a comparison group of 107 full-term infants. At term equivalent, all preterm infants underwent a structural MRI scan that was analyzed qualitatively for the presence and severity of cerebral white matter abnormalities, including cysts, signal abnormalities, loss of white matter volume, ventriculomegaly, and corpus callosal thinning/myelination. At corrected ages 4 and 6 years, all children underwent a comprehensive neurodevelopmental assessment that included measures of general intellectual ability, language development, and executive functioning. Results At 4 and 6 years, very preterm children without cerebral white matter abnormalities showed no apparent neurocognitive impairments relative to their full-term peers on any of the domain specific measures of intelligence, language, and executive functioning. In contrast, children born very preterm with mild and moderate-to-severe white matter abnormalities were characterized by performance impairments across all measures and time points, with more severe cerebral abnormalities being associated with increased risks of cognitive impairment. These associations persisted after adjustment for gender, neonatal medical risk factors, and family social risk. Conclusions Findings highlight the importance of cerebral white matter connectivity for later intact cognitive functioning amongst children born very preterm. Preterm born children without cerebral white matter abnormalities on

  10. Myocardial function and perfusion in the CREST syndrome variant of progressive systemic sclerosis. Exercise radionuclide evaluation and comparison with diffuse scleroderma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.

    1984-09-01

    Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patientsmore » with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease.« less

  11. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  13. Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning

    PubMed Central

    Fujiwara, Shunrou; Yoshioka, Yoshichika; Matsuda, Tsuyoshi; Nishimoto, Hideaki; Ogawa, Akira; Ogasawara, Kuniaki; Beppu, Takaaki

    2016-01-01

    In the previous studies, carbon monoxide (CO) poisoning showed an imbalance between cerebral perfusion and metabolism in the acute phase and the brain temperature (BT) in these patients remained abnormally high from the acute to the subacute phase. As observed in chronic ischemic patients, BT can continuously remain high depending on impairments of cerebral blood flow and metabolism; this is because heat removal and production system in the brain may mainly be maintained by the balance of these two factors; thus, cerebral white matter damage (WMD) affecting normal metabolism may affect the BT in patients with CO poisoning. Here, we investigated whether the BT correlates with the degree of WMD in patients with subacute CO-poisoning. In 16 patients with subacute CO-poisoning, the BT and degree of WMD were quantitatively measured by using magnetic resonance spectroscopy and the fractional anisotropy (FA) value from diffusion tensor imaging dataset. Consequently, the BT significantly correlated with the degree of WMD. In particular, BT observed in patients with delayed neuropsychiatric sequelae, a crucial symptom with sudden-onset in the chronic phase after CO exposure, might indicate cerebral hypo-metabolism and abnormal hemodynamics like “matched perfusion,” in which the reduced perfusion matches the reduced metabolism. PMID:27819312

  14. Intraoperative Magnetic Resonance Imaging of Cerebral Oxygen Metabolism During Resection of Brain Lesions.

    PubMed

    Stadlbauer, Andreas; Merkel, Andreas; Zimmermann, Max; Sommer, Björn; Buchfelder, Michael; Meyer-Bäse, Anke; Rössler, Karl

    2017-04-01

    Tissue oxygen tension is an important parameter for brain tissue viability and its noninvasive intraoperative monitoring in the whole brain is of highly clinical relevance. The purpose of this study was the introduction of a multiparametric quantitative blood oxygenation dependent magnetic resonance imaging (MRI) approach for intraoperative examination of oxygen metabolism during the resection of brain lesions. Sixteen patients suffering from brain lesions were examined intraoperatively twice (before craniotomy and after gross-total resection) via the quantitative blood oxygenation dependent technique and a 1.5-Tesla MRI scanner, which is installed in an operating room. The MRI protocol included T2*- and T2 mapping and dynamic susceptibility weighted perfusion. Data analysis was performed with a custom-made, in-house MatLab software for calculation of maps of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) as well as of cerebral blood volume and cerebral blood flow. Perilesional edema showed a significant increase in both perfusion (cerebral blood volume +21%, cerebral blood flow +13%) and oxygen metabolism (OEF +32%, CMRO 2  +16%) after resection of the lesions. In perilesional nonedematous tissue only, however, oxygen metabolism (OEF +19%, CMRO 2  +11%) was significantly increased, but not perfusion. No changes were found in normal brain. Fortunately, no neurovascular adverse events were observed. This approach for intraoperative examination of oxygen metabolism in the whole brain is a new application of intraoperative MRI additionally to resection control (residual tumor detection) and updating of neuronavigation (brain shift detection). It may help to detect neurovascular adverse events early during surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults

    PubMed Central

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909

  16. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmarian, J.J.; Verani, M.S.

    1991-05-21

    Exercise thallium-201 perfusion scintigraphy has been used extensively over the last decade for the detection and localization of coronary artery disease. Single-photon emission computed tomography (SPECT) is a refinement of presently available techniques, offering improved identification over planar imaging of individual vessel stenosis and quantification of the extent of abnormally perfused myocardium. In this review, the planar and SPECT techniques are discussed in light of the most recently published large patient series, and with regard to the many factors that affect the sensitivity and specificity of perfusion imaging in identifying coronary artery disease. The clinical implications of exercise perfusion scintigraphymore » and its future applications in cardiology practice are discussed.67 references.« less

  17. Association of Retinopathy and Retinal Microvascular Abnormalities with Stroke and Cerebrovascular Disease

    PubMed Central

    Hughes, Alun D; Falaschetti, Emanuela; Witt, Nicholas; Wijetunge, Sumangali; Thom, Simon A McG; Tillin, Therese; Aldington, Steve J; Chaturvedi, Nish

    2016-01-01

    Background and purpose Abnormalities of the retinal circulation may be associated with cerebrovascular disease. We investigated associations between retinal microvascular abnormalities and 1) strokes and subclinical cerebral infarcts and 2) cerebral white matter lesions in a UK-based tri-ethnic population-based cohort. Methods 1185 participants (age 68.8±6.1y; 77% male) underwent retinal imaging and cerebral MRI. Cerebral infarcts and white matter hyperintensities (WMH) were identified on MRI, retinopathy was graded and retinal vessels were measured. Results Higher retinopathy grade (odds ratio (OR) = 1.40 (1.16, 1.70)), narrower arteriolar diameter (OR = 0.98 (0.97, 0.99)), fewer symmetrical arteriolar bifurcations (OR = 0.84 (0.75, 0.95)), higher arteriolar optimality deviation (OR = 1.16 (1.00, 1.34)) and more tortuous venules (OR = 1.20(1.09, 1.32)) were associated with strokes/infarcts and WMH. Associations with quantitative retinal microvascular measures were independent of retinopathy. Conclusions Abnormalities of the retinal microvasculature are independently associated with stroke, cerebral infarcts and white matter lesions. PMID:27729577

  18. Neurodevelopmental outcomes after regional cerebral perfusion with neuromonitoring for neonatal aortic arch reconstruction.

    PubMed

    Andropoulos, Dean B; Easley, R Blaine; Brady, Ken; McKenzie, E Dean; Heinle, Jeffrey S; Dickerson, Heather A; Shekerdemian, Lara S; Meador, Marcie; Eisenman, Carol; Hunter, Jill V; Turcich, Marie; Voigt, Robert G; Fraser, Charles D

    2013-02-01

    In this study we report magnetic resonance imaging (MRI) brain injury and 12-month neurodevelopmental outcomes when regional cerebral perfusion (RCP) is used for neonatal aortic arch reconstruction. Fifty-seven neonates receiving RCP during aortic arch reconstruction were enrolled in a prospective outcome study. RCP flows were determined by near-infrared spectroscopy and transcranial Doppler monitoring. Brain MRI was performed preoperatively and 7 days postoperatively. Bayley Scales of Infant Development III was performed at 12 months. Mean RCP time was 71 ± 28 minutes (range, 5 to 121 minutes) and mean flow was 56.6 ± 10.6 mL/kg/min. New postoperative MRI brain injury was seen in 40% of patients. For 35 RCP patients at age 12 months, mean Bayley Scales III Composite standard scores were: Cognitive, 100.1 ± 14.6 (range, 75 to 125); Language, 87.2 ± 15.0 (range, 62 to 132); and Motor, 87.9 ± 16.8 (range, 58 to 121). Increasing duration of RCP was not associated with adverse neurodevelopmental outcomes. Neonatal aortic arch repair with RCP using a neuromonitoring strategy results in 12-month cognitive outcomes that are at reference population norms. Language and motor outcomes are lower than the reference population norms by 0.8 to 0.9 standard deviations. The neurodevelopmental outcomes in this RCP cohort demonstrate that this technique is effective and safe in supporting the brain during neonatal aortic arch reconstruction. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report.

    PubMed

    Haeren, R H L; Rijkers, K; Schijns, O E M G; Dings, J; Hoogland, G; van Zandvoort, M A M J; Vink, H; van Overbeeke, J J

    2018-06-01

    The cerebral microcirculation and its glycocalyx, a matrix coating the luminal endothelium, are key regulators of capillary permeability and cerebral blood flow. Microvascular abnormalities are described in several neurological disorders. However, assessment of the cerebral microcirculation and glycocalyx has mainly been performed ex vivo. Here, the technical feasibility of in vivo assessment of the human cerebral microcirculation and its glycocalyx using sidestream dark field (SDF) imaging is discussed. Intraoperative assessment requires the application of a sterile drape covering the camera (slipcover). First, sublingual measurements with and without slipcover were performed in a healthy control to assess the impact of this slipcover. Subsequently, using SDF imaging, the sublingual (reference), cortical, and hippocampal microcirculation and glycocalyx were evaluated in patients who underwent resective brain surgery as treatment for drug-resistant temporal lobe epilepsy. Finally, vessel density, and the perfused boundary region (PBR), a validated gauge of glycocalyx health, were calculated using GlycoCheck © software. The addition of a slipcover affects vessel density and PBR values in a control subject. The cerebral measurements in five patients were more difficult to obtain than the sublingual ones. This was probably at least partly due to the introduction of a sterile slipcover. Results on vessel density and PBR showed similar patterns at all three measurement sites. This is the first report on in vivo assessment of the human cerebrovascular glycocalyx. Assessment of the glycocalyx is an additional application of in vivo imaging of the cerebral microcirculation using SDF technique. This method enables functional analysis of the microcirculation and glycocalyx, however the addition of a sterile slipcover affects the measurements. SDF imaging is a safe, quick, and straightforward technique to evaluate the functional cerebral microcirculation and glycocalyx

  20. Detection of necrotic neural response in super-acute cerebral ischemia using activity-induced manganese-enhanced (AIM) MRI.

    PubMed

    Inoue, Yasuo; Aoki, Ichio; Mori, Yuki; Kawai, Yuko; Ebisu, Toshihiko; Osaka, Yasuhiko; Houri, Takashi; Mineura, Katsuyoshi; Higuchi, Toshihiro; Tanaka, Chuzo

    2010-04-01

    Immediate and certain determination of the treatable area is important for choosing risky treatments such as thrombolysis for brain ischemia, especially in the super-acute phase. Although it has been suggested that the mismatch between regions displaying 'large abnormal perfusion' and 'small abnormal diffusion' indicates a treatable area on an MRI, it has also been reported that the mismatch region is an imperfect approximation of the treatable region named the 'penumbra'. Manganese accumulation reflecting calcium influx into cells was reported previously in a middle cerebral artery occlusion (MCAO) model using activity-induced manganese-enhanced (AIM) MRI. However, in the super-acute phase, there have been no reports about mismatches between areas showing changes to the apparent diffusion coefficient (ADC) and regions that are enhanced in AIM MRI. It is expected that the AIM signal can be enhanced immediately after cerebral ischemia in the necrotic core region due to calcium influx. In this study, a remote embolic rat model, created using titanium-oxide macrospheres, was used to observe necrotic neural responses in the super-acute phase after ischemia. In addition, images were evaluated by comparison between ADC, AIM MRI, and histology. The signal enhancement in AIM MRI was detected at 2 min after the cerebral infarction using a remote embolic method. The enhanced area on the AIM MRI was significantly smaller than that on the ADC map. The tissue degeneration highlighted by histological analysis corresponded more closely to the enhanced area on the AIM MRI than that on the ADC map. Thus, the manganese-enhanced region in brain ischemia might indicate 'necrotic' irreversible tissue that underwent calcium influx. 2010 John Wiley & Sons, Ltd.

  1. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  2. Hippocampal Dysfunction in Gulf War Veterans: Investigation with ASL Perfusion MR Imaging and Physostigmine Challenge

    PubMed Central

    Li, Xiufeng; Spence, Jeffrey S.; Buhner, David M.; Hart, John; Cullum, C. Munro; Biggs, Melanie M.; Hester, Andrea L.; Odegard, Timothy N.; Carmack, Patrick S.; Haley, Robert W.

    2011-01-01

    Purpose: To determine, with arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging and physostigmine challenge, if abnormal hippocampal blood flow in ill Gulf War veterans persists 11 years after initial testing with single photon emission computed tomography and nearly 20 years after the 1991 Gulf War. Materials and Methods: The local institutional review board approved this HIPAA-compliant study. Veterans were screened for contraindications and gave written informed consent before the study. In a semiblinded retrospective protocol, veterans in three Gulf War illness groups—syndrome 1 (impaired cognition), syndrome 2 (confusion-ataxia), and syndrome 3 (central neuropathic pain)—and a control group received intravenous infusions of saline in an initial session and physostigmine in a second session, 48 hours later. Each infusion was followed by measurement of hippocampal regional cerebral blood flow (rCBF) with pulsed ASL. A mixed-effects linear model adjusted for age was used to test for differences in rCBF after the cholinergic challenge across the four groups. Results: Physostigmine significantly decreased hippocampal rCBF in control subjects (P < .0005) and veterans with syndrome 1 (P < .05) but significantly increased hippocampal rCBF in veterans with syndrome 2 (P < .005) and veterans with syndrome 3 (P < .002). The abnormal increase in rCBF was found to have progressed to the left hippocampus of the veterans with syndrome 2 and to both hippocampi of the veterans with syndrome 3. Conclusion: Chronic hippocampal perfusion dysfunction persists or worsens in veterans with certain Gulf War syndromes. ASL MR imaging examination of hippocampal rCBF in a cholinergic challenge experiment may be useful as a diagnostic test for this condition. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101715/-/DC1 PMID:21914840

  3. Abnormal cerebral functional connectivity in esophageal cancer patients with theory of mind deficits in resting state.

    PubMed

    Cao, Yin; Xiang, JianBo; Qian, Nong; Sun, SuPing; Hu, LiJun; Yuan, YongGui

    2015-01-01

    To explore the function of the default mode network (DMN) in the psychopathological mechanisms of theory of mind deficits in patients with an esophageal cancer concomitant with depression in resting the state. Twenty-five cases of esophageal cancer with theory of mind deficits (test group) that meet the diagnostic criteria of esophageal cancer and neuropsychological tests, including Beck depression inventory, reading the mind in the eyes, and Faux pas, were included, Another 25 cases of esophageal cancer patients but without theory of mind deficits (control group) were enrolled. Each patient completed a resting-state functional magnetic resonance imaging. The functional connectivity intensities within the cerebral regions in the DMN of all the enrolled patients were analyzed. The results of each group were compared. The functional connectivity of the bilateral prefrontal central region with the precuneus, bilateral posterior cingulate gyrus and bilateral ventral anterior cingulate gyrus in the patients of the test group were all reduced significantly (P < 0.05). In the resting state, the functional connectivity is abnormal in the cerebral regions in the DMN of esophageal cancer patients with theory of mind deficits. The theory of mind deficits might have an important function in the pathogenesis of esophageal cancer.

  4. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  5. Variation in Perfusion Strategies for Neonatal and Infant Aortic Arch Repair: Contemporary Practice in the STS Congenital Heart Surgery Database.

    PubMed

    Meyer, David B; Jacobs, Jeffrey P; Hill, Kevin; Wallace, Amelia S; Bateson, Brian; Jacobs, Marshall L

    2016-09-01

    Regional cerebral perfusion (RCP) is used as an adjunct or alternative to deep hypothermic circulatory arrest (DHCA) for neonates and infants undergoing aortic arch repair. Clinical studies have not demonstrated clear superiority of either strategy, and multicenter data regarding current use of these strategies are lacking. We sought to describe the variability in contemporary practice patterns for use of these techniques. The Society of Thoracic Surgeons Congenital Heart Surgery Database (2010-2013) was queried to identify neonates and infants whose index operation involved aortic arch repair with cardiopulmonary bypass. Perfusion strategy was classified as isolated DHCA, RCP (with less than or equal to ten minutes of DHCA), or mixed (RCP with more than ten minutes of DHCA). Data were analyzed for the entire cohort and stratified by operation subgroups. Overall, 4,523 patients (105 centers) were identified; median age seven days (interquartile range: 5.0-13.0). The most prevalent perfusion strategy was RCP (43%). Deep hypothermic circulatory arrest and mixed perfusion accounted for 32% and 16% of cases, respectively. In all, 59% of operations involved some period of RCP. Regional cerebral perfusion was the most prevalent perfusion strategy for each operation subgroup. Neither age nor weight was associated with perfusion strategy, but reoperations were less likely to use RCP (31% vs 45%, P < .001). The combined duration of RCP and DHCA in the RCP group was longer than the DHCA time in the DHCA group (45 vs 36 minutes, P < .001). There is considerable variability in practice regarding perfusion strategies for arch repair in neonates and infants. In contemporary practice, RCP is the most prevalent perfusion strategy for these procedures. Use of DHCA is also common. Further investigation is warranted to ascertain possible relative merits of the various perfusion techniques. © The Author(s) 2016.

  6. Utero-placental perfusion Doppler indices in growth restricted fetuses: effect of sildenafil citrate.

    PubMed

    El-Sayed, Mohamed Adel; Saleh, Said Abdel-Aty; Maher, Mohammad Ahmed; Khidre, Asmaa Mohamed

    2018-04-01

    To assess efficacy and tolerability of sildenafil citrate on utero-placental blood flow and fetal growth in pregnancies complicated by fetal growth restriction (FGR). From March 2015, a randomized controlled trial of 54 patients at 24 weeks or more complicated by FGR and abnormal Doppler indices were randomly allocated 1:1 into an intervention arm (receive sildenafil citrate, 50 mg) or a control arm (receive placebo). The primary outcomes were changes occurred in the Doppler parameters 2 h following drug administration. Baseline characteristics were similar between groups. Significant difference was observed in the Delta uterine and umbilical Doppler indices among sildenafil group as compared to placebo group (p < 0.001). Middle cerebral Doppler indices, however, decreased significantly after sildenafil, which could be the result of shifting more blood to improve the utero-placental perfusion. No difference regarding Delta cerebro-placental ratio among both groups (p = 0.979). Sildenafil was also associated with pregnancy prolongation (p = .0001), increased gestational age at delivery (p = .004), improved neonatal weight (p = .0001), and less admission to neonatal intensive care unit (p = .03). No adverse effects reported in both treatment arms. Sildenafil citrate, by its vasodilator effect, can improve utero-placental blood flow in pregnancies complicated by FGR and abnormal Doppler. gov Registry: NCT02362399.

  7. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  8. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    PubMed

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  9. [ARTCEREB irrigation and perfusion solution for cerebrospinal surgery: pharmacological assessment using human astrocytes exposed to test solutions].

    PubMed

    Nishimura, Masuhiro; Doi, Kazuhisa; Enomoto, Riyo; Lee, Eibai; Naito, Shinsaku; Yamauchi, Aiko

    2009-09-01

    ARTCEREB irrigation and perfusion solution (Artcereb) is a preparation intended for the irrigation and perfusion of the cerebral ventricles, and it is therefore important to evaluate the effects of Artcereb on brain cells. In vitro assessment of the effects of Artcereb in cell cultures of human fetal astrocytes was conducted in comparison with normal saline and lactated Ringer's solution. The effects of exposure to Artcereb were evaluated based on microscopic images of the mitochondria stained with rhodamine 123. The effects of exposure to Artcereb on cell function were also evaluated by quantitative analysis of mitochondrial activity based on rhodamine 123 and (3)H-thymidine incorporation. Morphological changes in nuclear structure were also evaluated. The results of the present study showed that cell function in cell cultures of human astrocytes was relatively unaffected by exposure to Artcereb as compared with normal saline or lactated Ringer's solution, suggesting that Artcereb has less effect on brain cells than normal saline or lactated Ringer's solution when used for the irrigation or perfusion of the cerebral ventricles.

  10. [Lung perfusion studies after percutaneous closure of patent ductus arteriosus using the Amplatzer Duct Occluder in children].

    PubMed

    Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván

    2015-01-01

    The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusion<40% was considered abnormal. The device implantation was successful in all patients. Average perfusion of left lung was 44.7±4.9% (37.8-61.4). Five patients (16.6%) showed decreased perfusion of the left lung. Age, low weight, the length of the ductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  11. Bilateral ophthalmic artery occlusion in rhino-orbito-cerebral mucormycosis.

    PubMed

    Song, Yoo Mi; Shin, Sun Young

    2008-03-01

    To report a case of bilateral ophthalmic artery occlusion in rhino-orbito-cerebral mucormycosis. Reviewed clinical charts, photographs, and fluorescein angiography An 89-year-old man with poorly controlled diabetes developed sudden bilateral ptosis, complete ophthalmoplegia of the right eye, and superior rectus palsy of the left eye. Brain and orbit magnetic resonance imaging showed midbrain infarction and mild diffuse sinusitis. On the 2nd day of hospitalization, sudden visual loss and light reflex loss developed. There were retinal whitening, absence of retinal arterial filling, and a total lack of choroidal perfusion on fluorescein angiography of the right eye. The left eye showed a cherry red spot in the retina and the absence of retinal arterial filling and partial choroidal perfusion on fluorescein angiography. On rhinologic examination, mucormyosis was noticed. Despite treatment, visual acuity and light reflex did not recover and he died 4 days after admission. Bilateral ophthalmic artery occlusion can occur in rhino-orbital-cerebral mucormycosis.

  12. Modulation of resting brain cerebral blood flow by the GABA B agonist, baclofen: A longitudinal perfusion fMRI study

    PubMed Central

    Franklin, Teresa R.; Wang, Ze; Sciortino, Nathan; Harper, Derek; Li, Yin; Hakun, Jonathan; Kildea, Susan; Kampman, Kyle; Ehrman, Ron; Detre, John A.; O’Brien, Charles P.; Childress, Anna Rose

    2011-01-01

    Background Preclinical studies confirm that the GABA B agonist, baclofen blocks dopamine release in the reward-responsive ventral striatum (VS) and medial prefrontal cortex, and consequently, blocks drug motivated behavior. Its mechanism in humans is unknown. Here, we used continuous arterial spin labeled (CASL) perfusion fMRI to examine baclofen’s effects on blood flow in the human brain. Methods Twenty-one subjects (all smokers, 12 females) were randomized to receive either baclofen (80 mg/day; N = 10) or placebo (N = 11). A five minute quantitative perfusion fMRI resting baseline (RB) scan was acquired at two time points; prior to the dosing regimen (Time 1) and on the last day of 21 days of drug administration (Time 2). SPM2 was employed to compare changes in RB from Time 1 to 2. Results Baclofen diminished cerebral blood flow (CBF) in the VS and mOFC and increased it in the lateral OFC, a region involved in suppressing previously rewarded behavior. CBF in bilateral insula was also blunted by baclofen (T values ranged from −11.29 to 15.3 at p = 0.001, 20 contiguous voxels). CBF at Time 2 was unchanged in placebo subjects. There were no differences between groups in side effects or cigarettes smoked per day (at either time point). Conclusions Baclofen’s modulatory actions on regions involved in motivated behavior in humans are reflected in the resting state and provide insight into the underlying mechanism behind its potential to block drug-motivated behavior, in preclinical studies, and its putative effectiveness as an anti-craving/anti-relapse agent in humans. PMID:21333466

  13. Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography.

    PubMed

    Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut

    2006-01-01

    Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.

  14. Neuroimaging patterns of cerebral hyperperfusion

    NASA Astrophysics Data System (ADS)

    Semenov, S.; Portnov, Yu; Semenov, A.; Korotkevich, A.; Kokov, A.

    2017-08-01

    Cerebral hyperperfusion syndrome (CHS) after revascularization is a rare phenomenon associated with post-ischemic (reactive) hyperemia and acute pathological hyperperfusion. First described on perfusion CT as a very often moderate CBF increase, MTT/TTP decrease within 30% like a temporary effect, according to a short-time deterioration of neurological symptoms (vestibular ataxia - 58%, vegetative dysfunction - 100%, asthenic syndrome - 100%) in early postoperative period in patients with cardiac ischemia who had undergone coronary artery bypass surgery. The acute pathological hyperperfusion carotid revascularization is a casuistic phenomenon with two- or three-fold CBV and MTT/TTP increase and high hemorrhage risk. Besides, we detected similar exchanges via perfusion CT called benign hyperemia, which marks extension of MTT/TTP and an increase of CBV from 27% to 48% (average 30%), but with normal CBF-parameters, indicating that venous stasis in acute venous ischemic stroke due cerebral venous sinus-trombosis (68%), only 6% in cardioembolic stroke and appears never in arterial stroke. Territorial coincidence registered for perifocal of necrosis zones of benign hyperemia and vasogenic edema accompanied on MRI (DWI, ADC). Secondary hemorrhagic transformation registered for primary non-hemorrhagic venous stroke in 27%, only in 9% for arterial stroke and in 60% for cardioembolic stroke. Probably, congestion is an increasingly predisposing factor secondary hemorrhaging than necrosis.

  15. Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats

    NASA Technical Reports Server (NTRS)

    Wilkerson, M. Keith; Colleran, Patrick N.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to test the hypothesis that regional brain blood flow and vascular resistance are altered by acute and chronic head-down tail suspension (HDT). Regional cerebral blood flow, arterial pressure, heart rate, and vascular resistance were measured in a group of control rats during normal standing and following 10 min of HDT and in two other groups of rats after 7 and 28 days of HDT. Heart rate was not different among conditions, whereas mean arterial pressure was elevated at 10 min of HDT relative to the other conditions. Total brain blood flow was reduced from that during standing by 48, 24, and 27% following 10 min and 7 and 28 days of HDT, respectively. Regional blood flows to all cerebral tissues and the eyes were reduced with 10 min of HDT and remained lower in the eye, olfactory bulbs, left and right cerebrum, thalamic region, and the midbrain with 7 and 28 days of HDT. Total brain vascular resistance was 116, 44, and 38% greater following 10 min and 7 and 28 days of HDT, respectively, relative to that during control standing. Vascular resistance was elevated in all cerebral regions with 10 min of HDT and remained higher than control levels in most brain regions. These results demonstrate that HDT results in chronic elevations in total and regional cerebral vascular resistance, and this may be the underlying stimulus for the HDT-induced smooth muscle hypertrophy of cerebral resistance arteries.

  16. Association of Retinopathy and Retinal Microvascular Abnormalities With Stroke and Cerebrovascular Disease.

    PubMed

    Hughes, Alun D; Falaschetti, Emanuela; Witt, Nicholas; Wijetunge, Sumangali; Thom, Simon A McG; Tillin, Therese; Aldington, Steve J; Chaturvedi, Nish

    2016-11-01

    Abnormalities of the retinal circulation may be associated with cerebrovascular disease. We investigated associations between retinal microvascular abnormalities and (1) strokes and subclinical cerebral infarcts and (2) cerebral white matter lesions in a UK-based triethnic population-based cohort. A total of 1185 participants (age, 68.8±6.1 years; 77% men) underwent retinal imaging and cerebral magnetic resonance imaging. Cerebral infarcts and white matter hyperintensities were identified on magnetic resonance imaging, retinopathy was graded, and retinal vessels were measured. Higher retinopathy grade (odds ratio [OR], 1.40 [95% confidence interval (95% CI), 1.16-1.70]), narrower arteriolar diameter (OR, 0.98 [95% CI, 0.97-0.99]), fewer symmetrical arteriolar bifurcations (OR, 0.84 [95% CI, 0.75-0.95]), higher arteriolar optimality deviation (OR, 1.16 [95% CI, 1.00-1.34]), and more tortuous venules (OR, 1.20 [95% CI, 1.09-1.32]) were associated with strokes/infarcts and white matter hyperintensities. Associations with quantitative retinal microvascular measures were independent of retinopathy. Abnormalities of the retinal microvasculature are independently associated with stroke, cerebral infarcts, and white matter lesions. © 2016 American Heart Association, Inc.

  17. Sildenafil citrate and uteroplacental perfusion in fetal growth restriction

    PubMed Central

    Dastjerdi, Marzieh Vahid; Hosseini, Sayedehafagh; Bayani, Leila

    2012-01-01

    Background: To determine whether the phosphodiesterase type 5 inhibitor, Sildenafil citrate, affects uteroplacental perfusion. Materials and Methods: Based on a randomized double-blinded and placebo-controlled trial, forty one pregnant women with documented intrauterine growth retardation at 24-37 weeks of gestation were evaluated for the effect of a single dose of Sildenafil citrate on uteroplacental circulation as determined by Doppler ultrasound study of the umbilical and middle cerebral arteries. Statistical analysis included χ2-test to compare proportions, and independent-samples t-test and paired student's t-test to compare continuous variables. Results: Sildenafil group fetuses demonstrated a significant decrease in systolic/diastolic ratios (0.60 [SD 0.40] [95% Cl 0.37-0.84], P=0.000), and pulsatility index (0.12 [SD 0.15] [95% Cl 0.02-0.22], P=0.019) for the umbilical artery and a significant increase in middle cerebral artery pulsatility index (MCA PI) (0.51 [SD 0.60] [95% Cl 0.16-0.85], P=0.008). Conclusion: Doppler velocimetry index values reflect decreased placental bed vascular resistance after Sildenafil. Sildenafil citrate can improve fetoplacental perfusion in pregnancies complicated by intrauterine growth restriction. It could be a potential therapeutic strategy to improve uteroplacental blood flow in pregnancies with fetal growth restriction (FGR). PMID:23798922

  18. Influence of angiographic collateral circulation on myocardial perfusion in patients with chronic total occlusion of a single coronary artery and no prior myocardial infarction.

    PubMed

    Aboul-Enein, Fatma; Kar, Saibal; Hayes, Sean W; Sciammarella, Maria; Abidov, Aiden; Makkar, Raj; Friedman, John D; Eigler, Neal; Berman, Daniel S

    2004-06-01

    The functional role of various angiographic grades for coronary collaterals remains controversial. The aim of this study was to assess the influence of the Rentrop angiographic grading of coronary collaterals on myocardial perfusion in patients with single-vessel chronic total occlusion (CTO) and no prior myocardial infarction (MI). The study included 56 patients with single-vessel CTO and no prior MI who underwent rest-stress myocardial perfusion SPECT and coronary angiography within 6 mo. All patients had angiographic evidence of coronary collaterals. Patients were divided according to the Rentrop classification: Group I had grade 1 or 2 (n = 25) and group II had grade 3 collaterals (n = 31). Group I had a higher frequency of resting regional wall motion abnormalities on left ventriculography (52.6% vs. 19.2% [P = 0.019]). The mean perfusion scores of the overall population showed severe and extensive stress perfusion defects (summed stress score of 14.1 +/- 7.1 and summed difference score of 12.9 +/- 6.9) but minimal resting perfusion defects (summed rest score of 1.0 +/- 2.7). No perfusion scores differed between the 2 groups. The perfusion findings suggested that chronic stunning rather than hibernation is the principal cause of regional wall motion abnormalities in these patients. In the setting of single-vessel CTO and no prior MI, coronary collaterals appear to protect against resting perfusion defects. Excellent angiographic collaterals may prevent resting regional wall motion abnormalities but do not appear to protect against stress-induced perfusion defects.

  19. Multimodality Monitoring for Cerebral Perfusion Pressure Optimization in Comatose Patients with Intracerebral Hemorrhage

    PubMed Central

    Ko, Sang-Bae; Choi, H. Alex; Parikh, Gunjan; Helbok, Raimund; Schmidt, J. Michael; Lee, Kiwon; Badjatia, Neeraj; Claassen, Jan; Connolly, E. Sander; Mayer, Stephan A.

    2011-01-01

    Background and Purpose Limited data exists to recommend specific cerebral perfusion pressure (CPP) targets in patients with intracerebral hemorrhage (ICH). We sought to determine the feasibility of brain multimodality monitoring (MMM) for optimizing CPP and potentially reducing secondary brain injury after ICH. Methods We retrospectively analyzed brain MMM data targeted at perihematomal brain tissue in 18 comatose ICH patients (median monitoring: 164 hours). Physiological measures were averaged over one-hour intervals corresponding to each microdialysis sample. Metabolic crisis (MC) was defined as a lactate/pyruvate ratio (LPR) >40 with a brain glucose concentration <0.7 mmol/L. Brain tissue hypoxia (BTH) was defined as PbtO2 <15 mm Hg. Pressure reactivity index (PRx) and oxygen reactivity index (ORx) were calculated. Results Median age was 59 years, median GCS score 6, and median ICH volume was 37.5 ml. The risk of BTH, and to a lesser extent MC, increased with lower CPP values. Multivariable analyses showed that CPP <80 mm Hg was associated with a greater risk of BTH (OR 1.5, 95% CI 1.1–2.1, P=0.01) compared to CPP >100 mm Hg as a reference range. Six patients died (33%). Survivors had significantly higher CPP and PbtO2 and lower ICP values starting on post-bleed day 4, whereas LPR and PRx values were lower, indicating preservation of aerobic metabolism and pressure autoregulation. Conclusions PbtO2 monitoring can be used to identify CPP targets for optimal brain tissue oxygenation. In patients who do not undergo MMM, maintaining CPP >80 mm Hg may reduce the risk of BTH. PMID:21852615

  20. Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis

    PubMed Central

    Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O

    2016-01-01

    A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177

  1. Pathophysiology of dysarthria in cerebral palsy.

    PubMed Central

    Neilson, P D; O'Dwyer, N J

    1981-01-01

    Electromyograms were recorded with hooked-wire electrodes from sixteen lip, tongue and jaw muscles in six normal and seven cerebral palsied adult subjects during a variety of speech and non-speech tasks. The recorded patterns of muscle activity fail to support a number of theories concerning the pathophysiology of dysarthria in cerebral palsy. There was no indication of weakness in individual articulator muscles. There was no evidence of uncontrolled sustained background activity or of abnormal tonic stretch reflex responses in lip or tongue muscles. Primitive or pathological reflexes could not be elicited by orofacial stimulation. No imbalance between positive and negative oral responses was observed. The view that random involuntary movement disrupts essentially normal voluntary control in athetosis was not supported. Each cerebral palsied subject displayed an idiosyncratic pattern of abnormal muscle activity which was reproduced across repetitions of the same phrase, indicating a consistent defect in motor programming. PMID:7334387

  2. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    PubMed

    Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S

    2014-01-15

    The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Near-Infrared Spectroscopy versus Magnetic Resonance Imaging To Study Brain Perfusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia

    PubMed Central

    Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.

    2014-01-01

    Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990

  4. Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock.

    PubMed

    Lima, Alexandre; van Genderen, Michel E; van Bommel, Jasper; Klijn, Eva; Jansem, Tim; Bakker, Jan

    2014-06-19

    Recent clinical studies have shown a relationship between abnormalities in peripheral perfusion and unfavorable outcome in patients with circulatory shock. Nitroglycerin is effective in restoring alterations in microcirculatory blood flow. The aim of this study was to investigate whether nitroglycerin could correct the parameters of abnormal peripheral circulation in resuscitated circulatory shock patients. This interventional study recruited patients who had circulatory shock and who persisted with abnormal peripheral perfusion despite normalization of global hemodynamic parameters. Nitroglycerin started at 2 mg/hour and doubled stepwise (4, 8, and 16 mg/hour) each 15 minutes until an improvement in peripheral perfusion was observed. Peripheral circulation parameters included capillary refill time (CRT), skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue oxygen saturation (StO2) during a reactive hyperemia test (RincStO2). Measurements were performed before, at the maximum dose, and after cessation of nitroglycerin infusion. Data were analyzed by using linear model for repeated measurements and are presented as mean (standard error). Of the 15 patients included, four patients (27%) responded with an initial nitroglycerin dose of 2 mg/hour. In all patients, nitroglycerin infusion resulted in significant changes in CRT, Tskin-diff, and PI toward normal at the maximum dose of nitroglycerin: from 9.4 (0.6) seconds to 4.8 (0.3) seconds (P < 0.05), from 3.3 °C (0.7 °C) to 0.7 °C (0.6 °C) (P < 0.05), and from [log] -0.5% (0.2%) to 0.7% (0.1%) (P < 0.05), respectively. Similar changes in StO2 and RincStO2 were observed: from 75% (3.4%) to 84% (2.7%) (P < 0.05) and 1.9%/second (0.08%/second) to 2.8%/second (0.05%/second) (P < 0.05), respectively. The magnitude of changes in StO2 was more pronounced for StO2 of less than 75%: 11% versus 4%, respectively (P < 0.05). Dose-dependent infusion of nitroglycerin reverted abnormal peripheral perfusion and

  5. Protective effect of agmatine on a reperfusion model after transient cerebral ischemia: Temporal evolution on perfusion MR imaging and histopathologic findings.

    PubMed

    Kim, D J; Kim, D I; Lee, S K; Suh, S H; Lee, Y J; Kim, J; Chung, T S; Lee, J E

    2006-04-01

    The goal of thrombolytic therapy in patients with acute ischemic stroke is early recanalization, but this may result in delayed reperfusion injury. The purpose of this study was to evaluate the neuroprotective effect of agmatine in a transient ischemic cat model by using MR perfusion imaging and histopathologic analyses. One-hour temporary occlusion of the left middle cerebral artery of cats was performed in the control ischemia group (n = 10), and 100 mg/kg of agmatine was intravenously injected immediately after recanalization in the agmatine-treated group (n = 15). MR imaging was performed at 1, 24, and 48 hours after recanalization, and the perfusion patterns were investigated. Terminal-deoxynucleotidyl transferase mediated nick and end-labeling (TUNEL) and hematoxylin-eosin (H&E) stainings were performed at the corresponding sections. In the control ischemia group, the number of TUNEL-positive cells was significantly increased in the areas with reperfusion hyperemia (P < .05). In the agmatine-treated group, no significant increase in the number of TUNEL-positive cells was noted in the areas of reperfusion hyperemia. The difference in the number of TUNEL-positive cells between the control ischemia and agmatine-treated group in the areas of reperfusion hyperemia was significant (P < .05). The total number of TUNEL-positive cells and the area of severe ischemic neuronal damage on H&E stain were also significantly attenuated in the agmatine-treated cats compared with the control ischemia cats (P < .05). Our results suggest that agmatine has neuroprotective effects against reperfusion injury and ischemia.

  6. Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumor grading.

    PubMed

    Server, Andrés; Graff, Bjørn A; Orheim, Tone E Døli; Schellhorn, Till; Josefsen, Roger; Gadmar, Øystein B; Nakstad, Per H

    2011-06-01

    To assess the diagnostic accuracy of microvascular leakage (MVL), cerebral blood volume (CBV) and blood flow (CBF) values derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MR imaging) for grading of cerebral glial tumors, and to estimate the correlation between vascular permeability/perfusion parameters and tumor grades. A prospective study of 79 patients with cerebral glial tumors underwent DSC-MR imaging. Normalized relative CBV (rCBV) and relative CBF (rCBF) from tumoral (rCBVt and rCBFt), peri-enhancing region (rCBVe and rCBFe), and the value in the tumor divided by the value in the peri-enhancing region (rCBVt/e and rCBFt/e), as well as MVL, expressed as the leakage coefficient K(2) were calculated. Hemodynamic variables and tumor grades were analyzed statistically and with Pearson correlations. Receiver operating characteristic (ROC) curve analyses were also performed for each of the variables. The differences in rCBVt and the maximum MVL (MVL(max)) values were statistically significant among all tumor grades. Correlation analysis using Pearson was as follows: rCBVt and tumor grade, r = 0.774; rCBFt and tumor grade, r = 0.417; MVL(max) and tumor grade, r = 0.559; MVL(max) and rCBVt, r = 0.440; MVL(max) and rCBFt, r = 0.192; and rCBVt and rCBFt, r = 0.605. According to ROC analyses for distinguishing tumor grade, rCBVt showed the largest areas under ROC curve (AUC), except for grade III from IV. Both rCBVt and MVL(max) showed good discriminative power in distinguishing all tumor grades. rCBVt correlated strongly with tumor grade; the correlation between MVL(max) and tumor grade was moderate.

  7. Effect of combination therapy with the angiotensin receptor blocker losartan plus hydrochlorothiazide on brain perfusion in patients with both hypertension and cerebral hemodynamic impairment due to symptomatic chronic major cerebral artery steno-occlusive disease: a SPECT study.

    PubMed

    Saura, Hiroaki; Ogasawara, Kuniaki; Suzuki, Taro; Kuroda, Hiroki; Yamashita, Takeshi; Kobayashi, Masakazu; Terasaki, Kazunori; Ogawa, Akira

    2012-01-01

    While the combination of an angiotensin receptor blocker with thiazide diuretics produces a clinically beneficial reduction in blood pressure in patients who otherwise only partially respond to monotherapy with an angiotensin receptor blocker, blood pressure-lowering therapy with combination antihypertensive drug regimens in patients with cerebral hemodynamic impairment may adversely affect cerebral hemodynamics. The purpose of the present exploratory study was to determine whether blood pressure-lowering therapy with the combination of the angiotensin receptor blocker losartan plus hydrochlorothiazide (LPH) worsens brain perfusion in patients with both hypertension and cerebral hemodynamic impairment due to symptomatic chronic major cerebral artery steno-occlusive disease. Patients with losartan-resistant hypertension and reduced cerebrovascular reactivity (CVR) to acetazolamide due to symptomatic chronic internal carotid artery (ICA) or middle cerebral artery (MCA) steno-occlusive disease were prospectively entered into the present study and received 50 mg/day of losartan plus 12.5 mg/day of hydrochlorothiazideat 14 weeks after the last ischemic event. Cerebral blood flow (CBF) and CVR were measured before and 12 weeks after initiating LPH using N-isopropyl-p-[(123)I]-iodoamphetamine single-photon emission computed tomography (SPECT). A region of interest (ROI) was automatically placed in the MCA territory on each SPECT image using a three-dimensional stereotactic ROI template. None of the 18 patients who participated in the study experienced any new neurological symptoms or adverse effects related to antihypertensive drugs. Systolic (p < 0.001) and diastolic (p < 0.001) blood pressures were significantly reduced after the administration of LPH, with average reductions of 11 mm Hg in systolic blood pressure and 10 mm Hg in diastolic blood pressure. While in the affected hemisphere CBF did not differ between measurements taken before and after the administration

  8. Anesthesia for arthroscopic shoulder surgery in the beach chair position: monitoring of cerebral oxygenation using combined bispectral index and near-infrared spectroscopy.

    PubMed

    Kawano, Hiroaki; Matsumoto, Tomomi

    2014-10-01

    Recent research has shown that cerebrovascular complications following shoulder surgery performed in the beach chair position under general anesthesia arise secondary to cerebral ischemia. Appropriate management of cerebral oxygenation is thus one of the primary goals of anesthetic management during such procedures. The present report describes the case of a 65-year-old male patient, in which both bispectral index (BIS) and near-infrared spectroscopy (NIRS) were used to monitor cerebral oxygenation. During the positioning, we observed an increased suppression ratio (SR) while BIS and regional cerebral oxygen saturation (rSO2) were at adequate level. In view of the difference in blood pressure between the heart and the base of the brain, blood pressure was maintained to ensure adequate cerebral perfusion. Although intraoperative rSO2 was at or around the cut-off point (a 12% relative decrease from baseline), no marked decrease in BIS or further increase in the SR was observed. Monitoring of cerebral perfusion using combined BIS and NIRS optimized anesthetic management during the performance of arthroscopic shoulder surgery in the beach chair position.

  9. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.

    Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBFmore » was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.« less

  10. Early primary biliary cholangitis is characterised by brain abnormalities on cerebral magnetic resonance imaging.

    PubMed

    Grover, V P B; Southern, L; Dyson, J K; Kim, J U; Crossey, M M E; Wylezinska-Arridge, M; Patel, N; Fitzpatrick, J A; Bak-Bol, A; Waldman, A D; Alexander, G J; Mells, G F; Chapman, R W; Jones, D E J; Taylor-Robinson, S D

    2016-11-01

    Brain change can occur in primary biliary cholangitis (PBC), potentially as a result of cholestatic and/or inflammatory processes. This change is linked to systemic symptoms of fatigue and cognitive impairment. To identify whether brain change occurs early in PBC. If the change develops early and is progressive, it may explain the difficulty in treating these symptoms. Early disease brain change was explored in 13 patients with newly diagnosed biopsy-proven precirrhotic PBC using magnetisation transfer, diffusion-weighted imaging and 1 H magnetic resonance spectroscopy. Results were compared to 17 healthy volunteers. Cerebral magnetisation transfer ratios were reduced in early PBC, compared to healthy volunteers, in the thalamus, putamen and head of caudate with no greater reduction in patients with greater symptom severity. Mean apparent diffusion coefficients were increased in the thalamus only. No 1 H magnetic resonance spectroscopy abnormalities were seen. Serum manganese levels were elevated in all PBC patients, but no relationship was seen with imaging or symptom parameters. There were no correlations between neuroimaging data, laboratory data, symptom severity scores or age. This is the first study to be performed in this precirrhotic patient population, and we have highlighted that neuroimaging changes are present at a much earlier stage than previously demonstrated. The neuroimaging abnormalities suggest that the brain changes seen in PBC occur early in the pathological process, even before significant liver damage has occurred. If such changes are linked to symptom pathogenesis, this could have important implications for the timing of second-line-therapy use. © 2016 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  11. The importance of bilateral monitoring of cerebral oxygenation (NIRS): Clinical case of asymmetry during cardiopulmonary bypass secondary to previous cerebral infarction.

    PubMed

    Matcan, S; Sanabria Carretero, P; Gómez Rojo, M; Castro Parga, L; Reinoso-Barbero, F

    2018-03-01

    Cerebral oximetry based on near infrared spectroscopy (NIRS) technology is used to determine cerebral tissue oxygenation. We hereby present the clinical case of a 12-month old child with right hemiparesis secondary to prior left middle cerebral artery stroke 8 months ago. The child underwent surgical enlargement of the right ventricular outflow tract (RVOT) with cardiopulmonary bypass. During cardiopulmonary bypass, asymmetric NIRS results were detected between both hemispheres. The utilization of multimodal neuromonitoring (NIRS-BIS) allowed acting on both perfusion pressure and anesthetic depth to balance out the supply and demand of cerebral oxygen consumption. No new neurological sequelae were observed postoperatively. We consider bilateral NIRS monitoring necessary in order to detect asymmetries between cerebral hemispheres. Although asymmetries were not present at baseline, they can arise intraoperatively and its monitoring thus allows the detection and treatment of cerebral ischemia-hypoxia in the healthy hemisphere, which if undetected and untreated would lead to additional neurological damage. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Cerebral hemodynamics and metabolism in patients with symptomatic occlusion of the internal carotid artery.

    PubMed

    Rutgers, D R; van Osch, M J P; Kappelle, L J; Mali, W P T M; van der Grond, J

    2003-03-01

    The goals of this study were to investigate (1) whether the concentrations of choline, creatine, and N-acetyl aspartate (NAA) in cerebral white matter are changed in patients with symptomatic occlusion of the internal carotid artery (ICA) and (2) whether possible changes in metabolite concentration are related to regional cerebral perfusion or cerebral vasoreactivity. In 19 patients (mean+/-SD age, 60+/-9 years), white matter metabolite concentrations were measured with proton MR spectroscopic imaging on average 4+/-2 months after symptoms occurred. In selected voxels, corresponding cerebral blood flow and volume, mean transit time, and time-to-bolus peak were determined with dynamic susceptibility contrast MRI. Cerebral CO2 reactivity was determined with transcranial Doppler sonography. No significant changes in choline and creatine concentrations were observed. NAA concentration was significantly reduced in the hemisphere on the side of the symptomatic ICA (9.1+/-1.7 mmol/L) compared with the contralateral hemisphere (10.5+/-1.7 mmol/L, P<0.005) and control subjects (10.5+/-0.9 mmol/L, P<0.01). Although no significant interhemispheric difference in NAA concentration was found in patients who presented with retinal ischemia, patients with cerebral ischemia had a significantly lower NAA concentration in the symptomatic hemisphere (9.0+/-1.7 mmol/L) compared with the asymptomatic hemisphere (10.4+/-1.6 mmol/L, P<0.05). In all patients, NAA concentration was not significantly correlated with quantitative cerebral perfusion parameters or CO2 reactivity. Patients with symptomatic ICA occlusion may show chronic neuronal damage in cerebral white matter as evidenced by reduced NAA concentration. This seems to be related to previous symptomatology rather than to the cerebral hemodynamic status in a chronic stage.

  13. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  14. Left globus pallidus abnormality in never-medicated patients with schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Early, T.S.; Reiman, E.M.; Raichle, M.E.

    1987-01-01

    Schizophrenia is a severe psychiatric disorder characterized by onset in young adulthood, the occurrence of hallucinations and delusions, and the development of enduring psychosocial disability. The pathophysiology of this disorder remains unknown. Studies of cerebral blood flow and metabolism designed to identify brain abnormalities in schizophrenia have been limited by inadequate methods of anatomical localization and the possibility of persistent medication effects. The authors have now used positron emission tomography and a validated method of anatomical localization in an attempt to identify abnormalities of regional cerebral blood flow in newly diagnosed never-medicated patients with schizophrenia. An exploratory study of 5more » patients and 10 normal control subjects identified abnormally high blood flow in the left globus pallidus of patients with schizophrenia. A replication study of 5 additional patients and 10 additional control subjects confirmed this finding. No other abnormalities were found.« less

  15. Assessment of specific characteristics of abnormal general movements: does it enhance the prediction of cerebral palsy?

    PubMed

    Hamer, Elisa G; Bos, Arend F; Hadders-Algra, Mijna

    2011-08-01

    Abnormal general movements at around 3 months corrected age indicate a high risk of cerebral palsy (CP). We aimed to determine whether specific movement characteristics can improve the predictive power of definitely abnormal general movements. Video recordings of 46 infants with definitely abnormal general movements at 9 to 13 weeks corrected age (20 males; 26 females; median gestational age 30wks; median birthweight 1200g) were analysed for the following characteristics: presence of fidgety, cramped synchronized, stiff, or jerky movements and asymmetrical tonic neck reflex pattern. Neurological condition (presence or absence of CP), gross motor development (Alberta Infant Motor Scales), quality of motor behaviour (Infant Motor Profile), functional mobility (Pediatric Evaluation of Disability Inventory), and Mental Developmental Index (Bayley Scales) were assessed at 18 months corrected age. Infants were excluded from participating in the study if they had severe congenital anomalies or if their caregivers had an insufficient knowledge of the Dutch language. Of the 46 assessed infants, 10 developed spastic CP (Gross Motor Function Classification System levels I to V; eight bilateral spastic CP, two unilateral spastic CP). The absence of fidgety movements and the presence of predominantly stiff movements were associated with CP (Fisher's exact test, p=0.018 and p=0.007 respectively) and lower Infant Motor Profile scores (Mann-Whitney U test, p=0.015 and p=0.022 respectively); stiff and predominantly stiff movements were associated with lower Alberta Infant Motor Scales scores (Mann-Whitney U test, p=0.01 and p=0.004 respectively). Cramped synchronized movements and the asymmetrical tonic neck reflex pattern were not related to outcome. None of the movement characteristics were associated with Pediatric Evaluation of Disability Inventory scores or the Mental Developmental Index. The assessment of fidgety movements and movement stiffness may improve the predictive

  16. [Advances in genetic research of cerebral palsy].

    PubMed

    Wang, Fang-Fang; Luo, Rong; Qu, Yi; Mu, De-Zhi

    2017-09-01

    Cerebral palsy is a group of syndromes caused by non-progressive brain injury in the fetus or infant and can cause disabilities in childhood. Etiology of cerebral palsy has always been a hot topic for clinical scientists. More and more studies have shown that genetic factors are closely associated with the development of cerebral palsy. With the development and application of various molecular and biological techniques such as chromosome microarray analysis, genome-wide association study, and whole exome sequencing, new achievements have been made in the genetic research of cerebral palsy. Chromosome abnormalities, copy number variations, susceptibility genes, and single gene mutation associated with the development of cerebral palsy have been identified, which provides new opportunities for the research on the pathogenesis of cerebral palsy. This article reviews the advances in the genetic research on cerebral palsy in recent years.

  17. The clinical implications of myocardial perfusion abnormalities in patients with esophageal or lung cancer after chemoradiation therapy.

    PubMed

    Gayed, Isis; Gohar, Salman; Liao, Zhongxing; McAleer, Mary; Bassett, Roland; Yusuf, Syed Wamique

    2009-06-01

    This study aims to identify the clinical implications of myocardial perfusion defects after chemoradiation therapy (CRT) in patients with esophageal and lung cancer. We retrospectively compared myocardial perfusion imaging (MPI) results before and after CRT in 16 patients with esophageal cancer and 24 patients with lung cancer. New MPI defects in the radiation therapy (RT) fields were considered related to RT. Follow-up to evaluate for cardiac complications and their relation with the results of MPI was performed. Statistical analysis identified predictors of cardiac morbidities. Eleven females and twenty nine males at a mean age of 66.7 years were included. Five patients (31%) with esophageal cancer and seven patients (29%) with lung cancer developed myocardial ischemia in the RT field at mean intervals of 7.0 and 8.4 months after RT. The patients were followed-up for mean intervals of 15 and 23 months in the esophageal and lung cancer groups, respectively. Seven patients in each of the esophageal (44%) and lung (29%) cancer patients (P = 0.5) developed cardiac complications of which one patient with esophageal cancer died of complete heart block. Six out of the fourteen patients (43%) with cardiac complication had new ischemia on MPI after CRT of which only one developed angina. The remaining eight patients with cardiac complications had normal MPI results. MPI result was not a statistically significant predictor of future cardiac complications after CRT. A history of congestive heart failure (CHF) (P = 0.003) or arrhythmia (P = 0.003) is a significant predictor of cardiac morbidity after CRT in univariate analysis but marginal predictors when multivariate analysis was performed (P = 0.06 and 0.06 for CHF and arrhythmia, respectively). Cardiac complications after CRT are more common in esophageal than lung cancer patients but the difference is not statistically significant. MPI abnormalities are frequently seen after CRT but are not predictive of future cardiac

  18. Is ultrasound perfusion imaging capable of detecting mismatch? A proof-of-concept study in acute stroke patients.

    PubMed

    Reitmeir, Raluca; Eyding, Jens; Oertel, Markus F; Wiest, Roland; Gralla, Jan; Fischer, Urs; Giquel, Pierre-Yves; Weber, Stefan; Raabe, Andreas; Mattle, Heinrich P; Z'Graggen, Werner J; Beck, Jürgen

    2017-04-01

    In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson's chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.

  19. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.

    PubMed

    Hu, Kun; Peng, C K; Czosnyka, Marek; Zhao, Peng; Novak, Vera

    2008-03-01

    Cerebral autoregulation (CA) is an most important mechanism responsible for the relatively constant blood flow supply to brain when cerebral perfusion pressure varies. Its assessment in nonacute cases has been relied on the quantification of the relationship between noninvasive beat-to-beat blood pressure (BP) and blood flow velocity (BFV). To overcome the nonstationary nature of physiological signals such as BP and BFV, a computational method called multimodal pressure-flow (MMPF) analysis was recently developed to study the nonlinear BP-BFV relationship during the Valsalva maneuver (VM). The present study aimed to determine (i) whether this method can estimate autoregulation from spontaneous BP and BFV fluctuations during baseline rest conditions; (ii) whether there is any difference between the MMPF measures of autoregulation based on intra-arterial BP (ABP) and based on cerebral perfusion pressure (CPP); and (iii) whether the MMPF method provides reproducible and reliable measure for noninvasive assessment of autoregulation. To achieve these aims, we analyzed data from existing databases including: (i) ABP and BFV of 12 healthy control, 10 hypertensive, and 10 stroke subjects during baseline resting conditions and during the Valsalva maneuver, and (ii) ABP, CPP, and BFV of 30 patients with traumatic brain injury (TBI) who were being paralyzed, sedated, and ventilated. We showed that autoregulation in healthy control subjects can be characterized by specific phase shifts between BP and BFV oscillations during the Valsalva maneuver, and the BP-BFV phase shifts were reduced in hypertensive and stroke subjects (P < 0.01), indicating impaired autoregulation. Similar results were found during baseline condition from spontaneous BP and BFV oscillations. The BP-BFV phase shifts obtained during baseline and during VM were highly correlated (R > 0.8, P < 0.0001), showing no statistical difference (paired-t test P > 0.47). In TBI patients there were strong correlations

  20. Nonlinear Assessment of Cerebral Autoregulation from Spontaneous Blood Pressure and Cerebral Blood Flow Fluctuations

    PubMed Central

    Peng, C. K.; Czosnyka, Marek; Zhao, Peng

    2009-01-01

    Cerebral autoregulation (CA) is an most important mechanism responsible for the relatively constant blood flow supply to brain when cerebral perfusion pressure varies. Its assessment in nonacute cases has been relied on the quantification of the relationship between noninvasive beat-to-beat blood pressure (BP) and blood flow velocity (BFV). To overcome the nonstationary nature of physiological signals such as BP and BFV, a computational method called multimodal pressure-flow (MMPF) analysis was recently developed to study the nonlinear BP–BFV relationship during the Valsalva maneuver (VM). The present study aimed to determine (i) whether this method can estimate autoregulation from spontaneous BP and BFV fluctuations during baseline rest conditions; (ii) whether there is any difference between the MMPF measures of autoregulation based on intra-arterial BP (ABP) and based on cerebral perfusion pressure (CPP); and (iii) whether the MMPF method provides reproducible and reliable measure for noninvasive assessment of autoregulation. To achieve these aims, we analyzed data from existing databases including: (i) ABP and BFV of 12 healthy control, 10 hypertensive, and 10 stroke subjects during baseline resting conditions and during the Valsalva maneuver, and (ii) ABP, CPP, and BFV of 30 patients with traumatic brain injury (TBI) who were being paralyzed, sedated, and ventilated. We showed that autoregulation in healthy control subjects can be characterized by specific phase shifts between BP and BFV oscillations during the Valsalva maneuver, and the BP–BFV phase shifts were reduced in hypertensive and stroke subjects (P < 0.01), indicating impaired autoregulation. Similar results were found during baseline condition from spontaneous BP and BFV oscillations. The BP–BFV phase shifts obtained during baseline and during VM were highly correlated (R > 0.8, P < 0.0001), showing no statistical difference (paired-t test P > 0.47). In TBI patients there were strong

  1. Higher cerebral oxygen saturation may provide higher urinary output during continuous regional cerebral perfusion.

    PubMed

    Miyamoto, Takashi; Miyaji, Kagami; Okamoto, Hirotsugu; Kohira, Satoshi; Tomoyasu, Takahiro; Inoue, Nobuyuki; Ohara, Kuniyoshi

    2008-10-31

    We examined the hypothesis that higher cerebral oxygen saturation (rSO2) during RCP is correlated with urinary output. Between December 2002 and August 2006, 12 patients aged 3 to 61 days and weighing 2.6 to 3.4 kg underwent aortic arch repair with RCP. Urinary output and rSO2 were analyzed retrospectively. Data were assigned to either of 2 groups according to their corresponding rSO2: Group A (rSO2 < or = 75%) and Group B (rSO2 < 75%). Seven and 5 patients were assigned to Group A and Group B, respectively.Group A was characterized by mean radial arterial pressure (37.9 +/- 9.6 vs 45.8 +/- 7.8 mmHg; P = 0.14) and femoral arterial pressure (6.7 +/- 6.1 vs 20.8 +/- 14.6 mmHg; P = 0.09) compared to Group B. However, higher urinary output during CPB (1.03 +/- 1.18 vs 0.10 +/- 0.15 ml.kg-1.h-1; P = 0.03). Furthermore our results indicate that a higher dose of Chlorpromazine was used in Group A (2.9 +/- 1.4 vs 1.7 +/- 1.0 mg/kg; P = 0.03). Higher cerebral oxygenation may provide higher urinary output due to higher renal blood flow through collateral circulation.

  2. CT Perfusion in Acute Stroke: "Black Holes" on Time-to-Peak Image Maps Indicate Unsalvageable Brain.

    PubMed

    Meagher, Ruairi; Shankar, Jai Jai Shiva

    2016-11-01

    CT perfusion is becoming important in acute stroke imaging to determine optimal patient-management strategies. The purpose of this study was to examine the predictive value of time-to-peak image maps and, specifically, a phenomenon coined a "black hole" for assessing infarcted brain tissue at the time of scan. Acute stroke patients were screened for the presence of black holes and their follow-up imaging (noncontrast CT or MR) was reviewed to assess for infarcted brain tissue. Of the 23 patients with signs of acute ischemia on CT perfusion, all had black holes. The black holes corresponded with areas of infarcted brain on follow-up imaging (specificity 100%). Black holes demonstrated significantly lower cerebral blood volumes (P < .001) and cerebral blood flow (P < .001) compared to immediately adjacent tissue. Black holes on time-to-peak image maps represent areas of unsalvageable brain. Copyright © 2016 by the American Society of Neuroimaging.

  3. Feasibility of dual-low scheme combined with iterative reconstruction technique in acute cerebral infarction volume CT whole brain perfusion imaging.

    PubMed

    Wang, Tao; Gong, Yi; Shi, Yibing; Hua, Rong; Zhang, Qingshan

    2017-07-01

    The feasibility of application of low-concentration contrast agent and low tube voltage combined with iterative reconstruction in whole brain computed tomography perfusion (CTP) imaging of patients with acute cerebral infarction was investigated. Fifty-nine patients who underwent whole brain CTP examination and diagnosed with acute cerebral infarction from September 2014 to March 2016 were selected. Patients were randomly divided into groups A and B. There were 28 cases in group A [tube voltage, 100 kV; contrast agent, iohexol (350 mg I/ml), reconstructed by filtered back projection] and 31 cases in group B [tube voltage, 80 kV; contrast agent, iodixanol (270 mg I/ml), reconstructed by algebraic reconstruction technique]. The artery CT value, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), dose length product, effective dose (ED) of radiation and brain iodine intake of both groups were measured and statistically analyzed. Two physicians carried out kappa (κ) analysis on the consistency of image quality evaluation. The difference in subjective image quality evaluation between the groups was tested by χ 2 . The differences in CT value, SNR, CNR, CTP and CT angiography subjective image quality evaluation between both groups were not statistically significant (P>0.05); the diagnosis rate of the acute infarcts between the two groups was not significantly different; while the ED and iodine intake in group B (dual low-dose group) were lower than group A. In conclusion, combination of low tube voltage and iterative reconstruction technique, and application of low-concentration contrast agent (270 mg I/ml) in whole brain CTP examination reduced ED and iodine intake without compromising image quality, thereby reducing the risk of contrast-induced nephropathy.

  4. Relationship of Intraoperative Cerebral Oxygen Saturation to Neurodevelopmental Outcome and Brain MRI at One Year of Age in Infants Undergoing Biventricular Repair

    PubMed Central

    Kussman, Barry D.; Wypij, David; Laussen, Peter C.; Soul, Janet S.; Bellinger, David C.; DiNardo, James A.; Robertson, Richard; Pigula, Frank A.; Jonas, Richard A.; Newburger, Jane W.

    2010-01-01

    Background Near-infrared spectroscopy (NIRS) monitoring of cerebral oxygen saturation (rSO2) has become routine in many centers, but no studies have reported the relationship of intraoperative NIRS to long-term neurodevelopmental outcomes after cardiac surgery. Methods and Results Of 104 infants undergoing biventricular repair without aortic arch reconstruction, 89 (86%) returned for neurodevelopmental testing at age 1 year. The primary NIRS variable was the integrated rSO2 (area under the curve) for rSO2 ≤ 45%; secondary variables were the average and minimum rSO2 by perfusion phase and at specific time points. Psychomotor (PDI) and Mental Development Indexes of the Bayley Scales, head circumference, neurologic examination, and abnormalities on brain MRI did not differ between subjects according to a threshold level for rSO2 of 45%. Lower PDI scores were modestly associated with lower average (r=0.23; P=0.03) and minimum rSO2 (r=0.22; P=0.04) during the 60 minute period following cardiopulmonary bypass (CPB), but not with other perfusion phases. Hemosiderin foci on brain MRI were associated with lower average rSO2 from post-induction to 60 minutes post-CPB (71±10 vs. 78±6%; P=0.01), and lower average rSO2 during the rewarming phase (72±12 vs. 83±9%; P=0.003) and during the 60 minute period following CPB (65±11 vs. 75±10%; P=0.009). In regression analyses adjusting for age ≤ 30 days, PDI score (P=0.02) and brain hemosiderin (P=0.04) remained significantly associated with rSO2 during the 60 minute period following CPB. Conclusions Perioperative periods of diminished cerebral oxygen delivery, as indicated by rSO2, are associated with one-year PDI and brain MRI abnormalities among infants undergoing reparative heart surgery. Clinical Trial Registration Information http://clinicaltrials.gov/ct2/show/NCT00006183 PMID:20606124

  5. Arterial spin labeling reveals relationships between resting cerebral perfusion and motor learning in Parkinson's disease.

    PubMed

    Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L

    2018-05-09

    Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.

  6. Contrast MR of the brain after high-perfusion cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonson, T.M.; Yuh, W.T.C.; Hindman, B.J.

    1994-01-01

    To study the efficacy of contrast MR imaging in the evaluation of central nervous system complications in the cardiopulmonary bypass patient and attempt to explain their pathophysiology based on the MR appearance and the cardiopulmonary bypass protocol. Nineteen patients were prospectively studied with contrast MR examinations the day before and 3 to 7 days after cardiopulmonary bypass, to determine the nature, extent, and number of new postoperative MR abnormalities. Cardiopulmonary bypass parameters used in our institution included: membrane oxygenation, arterial filtration with a pore size of 25 [mu]m, and a relatively high perfusion rate to produce a cardiac index ofmore » 2.0 to 2.5 L min per m[sup 2]. The preoperative noncontrast MR examination showed age-related changes and/or signs of ischemia in 60% of patients on the day before surgery. However, there was no abnormal enhancement or new T2 abnormalities on any postoperative MR examination to suggest hypoperfusion or emboli. None of the 19 patients developed overt neurologic deficits postoperatively. Review of the cardiopulmonary bypass protocol used indicated significant variations in technique at different institutions. Contrast MR imaging demonstrated no new abnormalities in patients after cardiopulmonary bypass performed with strict in-line arterial filtration and relatively high perfusion. MR imaging is feasible in the early postoperative period after cardiopulmonary bypass and may offer a convenient method for evaluation of the neurologic impact of technical factors associated with cardiopulmonary bypass. 17 refs.« less

  7. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life.

    PubMed

    Janaillac, Marie; Beausoleil, Thierry P; Barrington, Keith J; Raboisson, Marie-Josée; Karam, Oliver; Dehaes, Mathieu; Lapointe, Anie

    2018-04-01

    Haemodynamic assessment during the transitional period in preterm infants is challenging. We aimed to describe the relationships between cerebral regional tissue oxygen saturation (CrSO 2 ), perfusion index (PI), echocardiographic, and clinical parameters in extremely preterm infants in their first 72 h of life. Twenty newborns born at < 28 weeks of gestation were continuously monitored with CrSO 2 and preductal PI. Cardiac output was measured at H6, H24, H48, and H72. The median gestational age and birth weight were 25.0 weeks (24-26) and 750 g (655-920), respectively. CrSO 2 and preductal PI had r values < 0.35 with blood gases, lactates, haemoglobin, and mean blood pressure. Cardiac output significantly increased over the 72 h of the study period. Fifteen patients had at least one episode of low left and/or right ventricular output (RVO), during which there was a strong correlation between CrSO 2 and superior vena cava (SVC) flow (at H6 (r = 0.74) and H24 (r = 0.86)) and between PI and RVO (at H6 (r = 0.68) and H24 (r = 0.92)). Five patients had low SVC flow (≤ 40 mL/kg/min) at H6, during which PI was strongly correlated with RVO (r = 0.98). CrSO 2 and preductal PI are strongly correlated with cardiac output during low cardiac output states. What is Known: • Perfusion index and near-infrared spectroscopy are non-invasive tools to evaluate haemodynamics in preterm infants. • Pre- and postductal perfusion indexes strongly correlate with left ventricular output in term infants, and near-infrared spectroscopy has been validated to assess cerebral oxygenation in term and preterm infants. What is New: • Cerebral regional tissue oxygen saturation and preductal perfusion index were strongly correlated with cardiac output during low cardiac output states. • The strength of the correlation between cerebral regional tissue oxygen saturation, preductal perfusion index, and cardiac output varied in the first 72 h of life, reflecting

  8. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    NASA Astrophysics Data System (ADS)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P < 0.001). In the context of diagnosing schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  9. Myocardial perfusion characteristics during machine perfusion for heart transplantation.

    PubMed

    Peltz, Matthias; Cobert, Michael L; Rosenbaum, David H; West, LaShondra M; Jessen, Michael E

    2008-08-01

    Optimal parameters for machine perfusion preservation of hearts prior to transplantation have not been determined. We sought to define regional myocardial perfusion characteristics of a machine perfusion device over a range of conditions in a large animal model. Dog hearts were connected to a perfusion device (LifeCradle, Organ Transport Systems, Inc, Frisco, TX) and cold perfused at differing flow rates (1) at initial device startup and (2) over the storage interval. Myocardial perfusion was determined by entrapment of colored microspheres. Myocardial oxygen consumption (MVO(2)) was estimated from inflow and outflow oxygen differences. Intra-myocardial lactate was determined by (1)H magnetic resonance spectroscopy. MVO(2) and tissue perfusion increased up to flows of 15 mL/100 g/min, and the ratio of epicardial:endocardial perfusion remained near 1:1. Perfusion at lower flow rates and when low rates were applied during startup resulted in decreased capillary flow and greater non-nutrient flow. Increased tissue perfusion correlated with lower myocardial lactate accumulation but greater edema. Myocardial perfusion is influenced by flow rates during device startup and during the preservation interval. Relative declines in nutrient flow at low flow rates may reflect greater aortic insufficiency. These factors may need to be considered in clinical transplant protocols using machine perfusion.

  10. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    PubMed

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  11. Respiratory and psychiatric abnormalities in chronic symptomatic hyperventilation.

    PubMed Central

    Bass, C; Gardner, W N

    1985-01-01

    Many physicians believe that the hyperventilation syndrome is invariably associated with anxiety or undiagnosed organic disease such as asthma and pulmonary embolus, or both. Twenty one patients referred by specialist physicians with unexplained somatic symptoms and unequivocal chronic hypocapnia (resting end tidal Pco2 less than or equal to 4 kPa (30 mm Hg) on repeated occasions during prolonged measurement) were investigated. All but one complained of inability to take a satisfying breath. Standard lung function test results and chest radiographs were normal in all patients, but histamine challenge showed bronchial hyper-reactivity in two of 20 patients tested, and skin tests to common allergens were positive in three of 18. Ventilation-perfusion scanning was abnormal in a further three of 15 patients studied, with unmatched perfusion defects in two and isolated ventilation defects in one. None of the 21 had thyrotoxicosis, severe coronary heart disease, or other relevant cardiovascular abnormalities. Ten of the 21 patients were neurotic and suffered from chronic psychiatric disturbance characterised by anxiety, panic, and phobic symptoms. The remainder had no detectable psychiatric disorders but reported proportionately more somatic than anxiety symptoms. Severe hyperventilation can occur in the absence of formal psychiatric or detectable respiratory or other organic abnormalities. Asthma and pulmonary embolus must be specifically excluded. PMID:3922504

  12. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling.

    PubMed

    Gimelli, Alessia; Liga, Riccardo; Clemente, Alberto; Marras, Gavino; Kusch, Annette; Marzullo, Paolo

    2017-01-12

    Single-photon emission computed-tomography (SPECT) allows the quantification of LV eccentricity index (EI), a measure of cardiac remodeling. We sought to evaluate the feasibility of EI measurement with SPECT myocardial perfusion imaging and its interactions with relevant LV functional and structural parameters. Four-hundred and fifty-six patients underwent myocardial perfusion imaging on a Cadmium-Zinc-Telluride (CZT) camera. The summed rest, stress, and difference scores were calculated. From rest images, the LV end-diastolic (EDV) and end-systolic volumes, ejection fraction (EF), and peak filling rate (PFR) were calculated. In every patient, the EI, ranging from 0 (sphere) to 1 (line), was computed using a dedicated software (QGS/QPS; Cedars-Sinai Medical Center). Three-hundred and thirty-eight/456 (74%) patients showed a normal EF (>50%), while 26% had LV systolic dysfunction. The EI was computed from CZT images with excellent reproducibility (interclass correlation coefficient: 0.99, 95% CI 0.98-0.99). More impaired EI values correlated with the presence of a more abnormal LV perfusion (P < .001), function (EF and PFR, P < .001), and structure (EDV, P < .001). On multivariate analysis, higher EDV (P < .001) and depressed EF (P = .014) values were independent predictors of abnormal EI. The evaluation of LV eccentricity is feasible on gated CZT images. Abnormal EI associates with significant cardiac structural and functional abnormalities.

  13. Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock

    PubMed Central

    2014-01-01

    Introduction Recent clinical studies have shown a relationship between abnormalities in peripheral perfusion and unfavorable outcome in patients with circulatory shock. Nitroglycerin is effective in restoring alterations in microcirculatory blood flow. The aim of this study was to investigate whether nitroglycerin could correct the parameters of abnormal peripheral circulation in resuscitated circulatory shock patients. Methods This interventional study recruited patients who had circulatory shock and who persisted with abnormal peripheral perfusion despite normalization of global hemodynamic parameters. Nitroglycerin started at 2 mg/hour and doubled stepwise (4, 8, and 16 mg/hour) each 15 minutes until an improvement in peripheral perfusion was observed. Peripheral circulation parameters included capillary refill time (CRT), skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue oxygen saturation (StO2) during a reactive hyperemia test (RincStO2). Measurements were performed before, at the maximum dose, and after cessation of nitroglycerin infusion. Data were analyzed by using linear model for repeated measurements and are presented as mean (standard error). Results Of the 15 patients included, four patients (27%) responded with an initial nitroglycerin dose of 2 mg/hour. In all patients, nitroglycerin infusion resulted in significant changes in CRT, Tskin-diff, and PI toward normal at the maximum dose of nitroglycerin: from 9.4 (0.6) seconds to 4.8 (0.3) seconds (P <0.05), from 3.3°C (0.7°C) to 0.7°C (0.6°C) (P <0.05), and from [log] -0.5% (0.2%) to 0.7% (0.1%) (P <0.05), respectively. Similar changes in StO2 and RincStO2 were observed: from 75% (3.4%) to 84% (2.7%) (P <0.05) and 1.9%/second (0.08%/second) to 2.8%/second (0.05%/second) (P <0.05), respectively. The magnitude of changes in StO2 was more pronounced for StO2 of less than 75%: 11% versus 4%, respectively (P <0.05). Conclusions Dose-dependent infusion of nitroglycerin reverted

  14. High quality high spatial resolution functional classification in low dose dynamic CT perfusion using singular value decomposition (SVD) and k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-03-01

    Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps

  15. Influence of perfusate temperature on nasal potential difference.

    PubMed

    Bronsveld, Inez; Vermeulen, François; Sands, Dorotha; Leal, Teresinha; Leonard, Anissa; Melotti, Paola; Yaakov, Yasmin; de Nooijer, Roel; De Boeck, Kris; Sermet, Isabelle; Wilschanski, Michael; Middleton, Peter G

    2013-08-01

    Nasal potential difference (NPD) quantifies abnormal ion transport in cystic fibrosis. It has gained acceptance as an outcome measure for the investigation of new therapies. To quantify the effect of solution temperature on NPD, we first examined the effect of switching from room temperature (20-25°C) to warmed (32-37°C) solutions and vice versa during each perfusion step. Secondly, standard protocols were repeated at both temperatures in the same subjects. Changing solution temperature did not alter NPD during perfusion with Ringer's solution (<1 mV) (p>0.1). During perfusion with zero chloride solution, changing from room temperature to warmed solutions tended to decrease absolute NPD (i.e. it became less negative) by 0.9 mV (p>0.1); changing from warmed to room temperature increased NPD by 2.1 mV (p<0.05). During isoprenaline perfusion, changing from room temperature to warmed solutions increased NPD by 1.5 mV (p<0.01) and from warmed to room temperature decreased NPD by 1.4 mV (p<0.05). For full protocols at room temperature or warmed in the same subjects, mean values were similar (n = 24). During warmed perfusion, group results for total chloride response had a larger standard deviation. As this increased variability will probably decrease the power of trials, this study suggests that solutions at room temperature should be recommended for the measurement of NPD.

  16. Higher cerebral oxygen saturation may provide higher urinary output during continuous regional cerebral perfusion

    PubMed Central

    Miyamoto, Takashi; Miyaji, Kagami; Okamoto, Hirotsugu; Kohira, Satoshi; Tomoyasu, Takahiro; Inoue, Nobuyuki; Ohara, Kuniyoshi

    2008-01-01

    Objective We examined the hypothesis that higher cerebral oxygen saturation (rSO2) during RCP is correlated with urinary output. Methods Between December 2002 and August 2006, 12 patients aged 3 to 61 days and weighing 2.6 to 3.4 kg underwent aortic arch repair with RCP. Urinary output and rSO2 were analyzed retrospectively. Data were assigned to either of 2 groups according to their corresponding rSO2: Group A (rSO2 ≦ 75%) and Group B (rSO2 < 75%). Results Seven and 5 patients were assigned to Group A and Group B, respectively. Group A was characterized by mean radial arterial pressure (37.9 ± 9.6 vs 45.8 ± 7.8 mmHg; P = 0.14) and femoral arterial pressure (6.7 ± 6.1 vs 20.8 ± 14.6 mmHg; P = 0.09) compared to Group B. However, higher urinary output during CPB (1.03 ± 1.18 vs 0.10 ± 0.15 ml·kg-1·h-1; P = 0.03). Furthermore our results indicate that a higher dose of Chlorpromazine was used in Group A (2.9 ± 1.4 vs 1.7 ± 1.0 mg/kg; P = 0.03). Conclusion Higher cerebral oxygenation may provide higher urinary output due to higher renal blood flow through collateral circulation. PMID:18973699

  17. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    PubMed

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  18. Cerebral blood flow variations in CNS lupus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushner, M.J.; Tobin, M.; Fazekas, F.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebralmore » ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.« less

  19. Right ventricular stress-induced perfusion defects and late gadolinium enhancement in coronary artery disease.

    PubMed

    Milks, Michael Wesley; Upadhya, Bharathi; Hall, Michael E; Vasu, Sujethra; Hundley, William Gregory; Stacey, Richard Brandon

    2015-01-01

    The assessment of right ventricular (RV) perfusion defects has remained challenging during vasodilator stress perfusion with cardiovascular magnetic resonance (CMR). The significance of RV signal abnormalities during vasodilator stress perfusion and late gadolinium-enhanced CMR is yet uncertain. Among 61 individuals who underwent adenosine CMR stress testing before cardiac catheterization, we assessed the severity of coronary artery stenoses, mortality, the presence of stress and rest perfusion defects, as well as the presence of late gadolinium enhancement (LGE). Right ventricular stress-induced perfusion defects were positively associated with left anterior descending artery and proximal right coronary artery stenoses but were negatively associated with left circumflex artery stenoses. The presence of RVLGE was associated with mortality, but 77% of those with RVLGE also had left ventricular LGE. Proximal right coronary artery and left anterior descending artery stenoses are positively associated, whereas left circumflex artery stenoses are negatively associated with RV stress-induced perfusion defects. Right ventricular LGE was associated with mortality, but further study is needed to determine whether this is independent of left ventricular LGE.

  20. The effect of modified Blalock-Taussig shunt size and coarctation severity on coronary perfusion after the Norwood operation.

    PubMed

    Corsini, Chiara; Biglino, Giovanni; Schievano, Silvia; Hsia, Tain-Yen; Migliavacca, Francesco; Pennati, Giancarlo; Taylor, Andrew M

    2014-08-01

    The size of the modified Blalock-Taussig shunt and the additional presence of aortic coarctation can affect the hemodynamics of the Norwood physiology. Multiscale modeling was used to gather insight into the effects of these variables, in particular on coronary perfusion. A model was reconstructed from cardiac magnetic resonance imaging data of a representative patient, and then simplified with computer-aided design software. Changes were systematically imposed to the semi-idealized three-dimensional model, resulting in a family of nine models (3-, 3.5-, and 4-mm shunt diameter; 0%, 60%, and 90% coarctation severity). Each model was coupled to a lumped parameter network representing the remainder of the circulation to run multiscale simulations. Simulations were repeated including the effect of preserved cerebral perfusion. The concomitant presence of a large shunt and tight coarctation was detrimental in terms of coronary perfusion (13.4% maximal reduction, 1.07 versus 0.927 mL/s) and oxygen delivery (29% maximum reduction, 422 versus 300 mL·min(-1)·m(-2)). A variation in the ratio of pulmonary to systemic blood flow from 0.9 to 1.6 also indicated a "stealing" phenomenon to the detriment of the coronary circulation. A difference could be further appreciated in the computational ventricular pressure-volume loops, with augmented systolic pressures and decreased stroke volumes for tighter coarctation. Accounting for constant cerebral perfusion did not produce substantially different results. Multiscale simulations performed in a parametric fashion revealed a reduction in coronary perfusion in the presence of a large modified Blalock-Taussig shunt and severe coarctation in Norwood patients. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.

    PubMed

    DE Simone, Roberto; Ranieri, Angelo; Bonavita, Vincenzo

    2017-03-01

    Two critical functions for the control of intracranial fluids dynamics are carried on the venous side of the perfusion circuit: the first is the avoidance of cortical veins collapse during the physiological increases of cerebrospinal fluid (CSF) pressure in which they are immersed. The second, is the generation of an abrupt venous pressure drop at the confluence of the cortical veins with the dural sinuses that is required to allow a CSF outflow rate balanced with its production. There is evidence that both of these effects are ensured by a Starling resistor mechanism (a fluid dynamic construct that governs the flow in collapsible tubes exposed to variable external pressure) acting at the confluence of cortical veins in the dural sinus. This implies that, in normal circumstances of perfusion balance, a certain degree of venous collapse physiologically occurs at the distal end of the cortical vein. This is passively modulated by the transmural pressure of the venous wall (i.e. the difference between internal blood pressure and external CSF pressure). The mechanism provides that the blood pressure of the cortical vein upstream the collapsed segment is dynamically maintained a few mmHg higher than the CSF pressure, so as to prevent their collapse during the large physiological fluctuations of the intracranial pressure. Moreover, the partial collapse of the vein confluence also generates a sharp pressure drop of the blood entering into the sinus. The CSF is drained in dural sinus through arachnoid villi proportionally to its pressure gradient with the sinus blood. The venous pressure drop between cortical veins and dural sinus is therefore needed to ensure that the CSF can leave the cranio-spinal space with the same speed with which it is produced, without having to reach a too high pressure, which would compress the cortical veins. Notably, the mechanism requires that the walls of the dural sinuses are rigid enough to avoid the collapse under the external

  2. The perfused swine uterus model: long-term perfusion

    PubMed Central

    2012-01-01

    Background It has previously been shown that the viability of swine uteri can be maintained within the physiological range in an open perfusion model for up to 8 hours. The aim of this study was to assess medium- to long-term perfusion of swine uteri using a modified Krebs–Ringer bicarbonate buffer solution (KRBB) in the established open perfusion model. Methods In an experimental study at an infertility institute, 30 swine uteri were perfused: group 1: n = 11, KRBB; group 2: n = 8, modified KRBB with drainage of perfusate supernatant; group 3: n = 11, modified KRBB with drainage of perfusate every 2 h and substitution with fresh medium. Modified and conventional KRBB were compared with regard to survival and contraction parameters: intrauterine pressure (IUP), area under the curve (AUC), and frequency of contractions (F). Results Modified KRBB showed significantly higher IUP, AUC, and F values than perfusion with conventional KRBB. In group 3, the organ survival time of up to 17 h, with a 98% rate of effective contraction time, differed significantly from group 1 (P < 0.001). Conclusions Using modified KRBB in combination with perfusate substitution improves the open model for perfusion of swine uteri with regard to survival time and quality of contraction parameters. This model can be used for medium- to long-term perfusion of swine uteri, allowing further metabolic ex vivo studies in a cost-effective way and with little logistic effort. PMID:23241226

  3. In vitro experiments of cerebral blood flow during aspiration thrombectomy: potential effects on cerebral perfusion pressure and collateral flow.

    PubMed

    Lally, Frank; Soorani, Mitra; Woo, Timothy; Nayak, Sanjeev; Jadun, Changez; Yang, Ying; McCrudden, John; Naire, Shailesh; Grunwald, Iris; Roffe, Christine

    2016-09-01

    Mechanical thrombectomy with stent retriever devices is associated with significantly better outcomes than thrombolysis alone in the treatment of acute ischemic stroke. Thrombus aspiration achieves high patency rates, but clinical outcomes are variable. The aim of this study was to examine the effect of different suction conditions on perfusate flow during aspiration thrombectomy. A computational fluid dynamics model of an aspiration device within a patent and occluded blood vessel was used to simulate flow characteristics using fluid flow solver software. A physical particulate flow model of a patent vessel and a vessel occluded by thrombus was then used to visualize flow direction and measure flow rates with the aspiration catheter placed 1-10 mm proximal of the thrombus, and recorded on video. The mathematical model predicted that, in a patent vessel, perfusate is drawn from upstream of the catheter tip while, in an occluded system, perfusate is drawn from the vessel proximal to the device tip with no traction on the occlusion distal of the tip. The in vitro experiments confirmed the predictions of this model. In the occluded vessel aspiration had no effect on the thrombus unless the tip of the catheter was in direct contact with the thrombus. These experiments suggest that aspiration is only effective if the catheter tip is in direct contact with the thrombus. If the catheter tip is not in contact with the thrombus, aspirate is drawn from the vessels proximal of the occlusion. This could affect collateral flow in vivo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Aortic arch reconstruction: deep and moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion.

    PubMed

    Wu, YanWen; Xiao, LiQiong; Yang, Ting; Wang, Lei; Chen, Xin

    2017-07-01

    To compare the effects of moderate and deep hypothermic circulatory arrest (DHCA) with selective antegrade cerebral perfusion (SACP) during aortic arch surgery in adult patients and to offer the evidence for the detection of the temperature which provides best brain protection in the subjects who accept aortic arch reconstruction surgery. A total of 109 patients undergoing surgery of the aortic arch were divided into the moderate hypothermic circulatory arrest group (Group I) and the deep hypothermic circulatory arrest group (Group II). We recorded the data of the patients and their cardiopulmonary bypass (CPB) time, aortic clamping time, SACP time and postoperative anesthetized recovery time, tracheal intubation time, time in the intensive care unit (ICU) and postoperative neurologic dysfunction. Patient characteristics were similar in the two groups. There were four patients who died in Group II and 1 patient in Group I. There were no significant differences in aortic clamping time of each group (111.4±58.4 vs. 115.9±16.2) min; SACP time (27.4±5.9 vs. 23.5±6.1) min of the moderate hypothermic circulatory arrest group and the deep hypothermic circulatory arrest group; there were significant differences in cardiopulmonary bypass time (207.4±20.9 vs. 263.8±22.6) min, postoperative anesthetized recovery time (19.0±11.1 vs. 36.8±25.3) hours, extubation time (46.4±15.1 vs. 64.4±6.0) hours; length of stay in the intensive care unit (ICU) (4.7±1.7 vs. 8±2.3) days and postoperative neurologic dysfunction in the two groups. Compared to deep hypothermic circulatory arrest, moderate hypothermic circulatory arrest can provide better brain protection and achieve good clinical results.

  5. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  6. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair.

    PubMed

    Kussman, Barry D; Wypij, David; Laussen, Peter C; Soul, Janet S; Bellinger, David C; DiNardo, James A; Robertson, Richard; Pigula, Frank A; Jonas, Richard A; Newburger, Jane W

    2010-07-20

    Near-infrared spectroscopy monitoring of cerebral oxygen saturation (rSo(2)) has become routine in many centers, but no studies have reported the relationship of intraoperative near-infrared spectroscopy to long-term neurodevelopmental outcomes after cardiac surgery. Of 104 infants undergoing biventricular repair without aortic arch reconstruction, 89 (86%) returned for neurodevelopmental testing at 1 year of age. The primary near-infrared spectroscopy variable was the integrated rSo(2) (area under the curve) for rSo(2) perfusion phase and at specific time points. Psychomotor and mental development indexes of the Bayley scales, head circumference, neurological examination, and abnormalities on brain magnetic resonance imaging did not differ between subjects according to a threshold level for rSo(2) of 45%. Lower Psychomotor Development Index scores were modestly associated with lower average (r=0.23, P=0.03) and minimum (r=0.22, P=0.04) rSo(2) during the 60-minute period after cardiopulmonary bypass but not with other perfusion phases. Hemosiderin foci on brain magnetic resonance imaging were associated with lower average rSo(2) from postinduction to 60 minutes post cardiopulmonary bypass (71+/-10% versus 78+/-6%, P=0.01) and with lower average rSO(2) during the rewarming phase (72+/-12% versus 83+/-9%, P=.003) and during the 60-minute period following cardiopulmonary bypass (65+/-11% versus 75+/-10%, P=0.009). In regression analyses that adjusted for age cerebral oxygen delivery, as indicated by rSo(2), are associated with 1-year Psychomotor Development Index and brain magnetic resonance imaging abnormalities among infants undergoing reparative heart surgery. Clinical

  7. Thirst-Dependent Activity of the Insular Cortex Reflects its Emotion-Related Subdivision: A Cerebral Blood Flow Study.

    PubMed

    Meier, Lea; Federspiel, Andrea; Jann, Kay; Wiest, Roland; Strik, Werner; Dierks, Thomas

    2018-04-26

    Recent studies investigating neural correlates of human thirst have identified various subcortical and telencephalic brain areas. The experience of thirst represents a homeostatic emotion and a state that slowly evolves over time. Therefore, the present study aims at systematically examining cerebral perfusion during the parametric progression of thirst. We measured subjective thirst ratings, serum parameters and cerebral blood flow in 20 healthy subjects across four different thirst stages: intense thirst, moderate thirst, subjective satiation and physiological satiation. Imaging data revealed dehydration-related perfusion differences in previously identified brain areas, such as the anterior cingulate cortex, the middle temporal gyrus and the insular cortex. However, significant differences across all four thirst stages (including the moderate thirst level), were exclusively found in the posterior insular cortex. The subjective thirst ratings over the different thirst stages, however, were associated with perfusion differences in the right anterior insula. These findings add to our understanding of the insular cortex as a key player in human thirst - both on the level of physiological dehydration and the level of the subjective thirst experience. Copyright © 2018. Published by Elsevier Ltd.

  8. Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, Y.; Ichiya, Y.; Otsuka, M.

    1990-12-01

    This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less

  9. Delayed coma in head injury: consider cerebral fat embolism.

    PubMed

    Metting, Zwany; Rödiger, Lars A; Regtien, Joost G; van der Naalt, Joukje

    2009-09-01

    To describe a case of a young man with delayed coma after mild head injury, suggestive of cerebral fat embolism (CFE). To underline the value of MR imaging in the differential diagnosis of secondary deterioration in mild head injury. A 21-year-old man admitted with mild head injury after a fall with facial fractures and long bone fractures. He was admitted to the intensive care unit and was mechanically ventilated. Weaning was not possible because of desaturations and pulmonary congestion. Low platelet count and anaemia developed. On several time points during his admission cerebral imaging data were obtained. Non-contrast CT on admission was normal while follow-up MRI showed extensive white matter abnormalities. These imaging abnormalities combined with the clinical presentation suggests cerebral fat embolism (CFE) as the most likely cause of secondary deterioration in our patient. In head injured patients with long bone fractures one should consider cerebral fat embolism. When the classical clinical syndrome is not present, MR imaging is warranted for diagnosis and to exclude other causes of secondary deterioration.

  10. Prognostic value of perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage.

    PubMed

    Hu, Xibin; Bai, Xueqin; Zai, Ning; Sun, Xinhai; Zhu, Laimin; Li, Xian

    2016-07-01

    This study intends to investigate the prognostic value of perfusion-weighted magnetic resonance imaging in acute intracerebral hemorrhage. Demographic, clinical and biochemical data between acute intracerebral hemorrhage (AICH) and healthy volunteer groups were assessed in this study, such as rCBV and MTT values. The optimal cutoff values of rCBV and MTT for diagnosing AICH were determined by the ROC curves. Apart from that, we also investigated the association between rCBV/MTT values and cerebral hematoma volumes of AICH patients. The unconditional logistic regression was conducted to determine significant risk factors for AICH. AICH patients have significantly lower rCBV and higher MTT compared to the control group (all P < 0.05). As suggested by the relatively high sensitivity and specificity, both rCBV and MTT values could be utilized for AICH diagnosis. Moreover, rCBV and MTT were significantly associated with the cerebral hematoma volumes of AICH patients (all P < 0.05). Results from unconditional logistic regression analysis revealed that MTT was a significant risk factor for AICH (P < 0.05 and OR > 1), while rCBV is considered as a protective factor (P < 0.05 and OR < 1). Perfusion-weighted magnetic resonance imaging produces a high prognostic value for diagnosing AICH.

  11. Effects of noninvasive facial nerve stimulation in the dog middle cerebral artery occlusion model of ischemic stroke.

    PubMed

    Borsody, Mark K; Yamada, Chisa; Bielawski, Dawn; Heaton, Tamara; Castro Prado, Fernando; Garcia, Andrea; Azpiroz, Joaquín; Sacristan, Emilio

    2014-04-01

    Facial nerve stimulation has been proposed as a new treatment of ischemic stroke because autonomic components of the nerve dilate cerebral arteries and increase cerebral blood flow when activated. A noninvasive facial nerve stimulator device based on pulsed magnetic stimulation was tested in a dog middle cerebral artery occlusion model. We used an ischemic stroke dog model involving injection of autologous blood clot into the internal carotid artery that reliably embolizes to the middle cerebral artery. Thirty minutes after middle cerebral artery occlusion, the geniculate ganglion region of the facial nerve was stimulated for 5 minutes. Brain perfusion was measured using gadolinium-enhanced contrast MRI, and ATP and total phosphate levels were measured using 31P spectroscopy. Separately, a dog model of brain hemorrhage involving puncture of the intracranial internal carotid artery served as an initial examination of facial nerve stimulation safety. Facial nerve stimulation caused a significant improvement in perfusion in the hemisphere affected by ischemic stroke and a reduction in ischemic core volume in comparison to sham stimulation control. The ATP/total phosphate ratio showed a large decrease poststroke in the control group versus a normal level in the stimulation group. The same stimulation administered to dogs with brain hemorrhage did not cause hematoma enlargement. These results support the development and evaluation of a noninvasive facial nerve stimulator device as a treatment of ischemic stroke.

  12. Automated quantification of myocardial perfusion SPECT using simplified normal limits.

    PubMed

    Slomka, Piotr J; Nishina, Hidetaka; Berman, Daniel S; Akincioglu, Cigdem; Abidov, Aiden; Friedman, John D; Hayes, Sean W; Germano, Guido

    2005-01-01

    To simplify development of normal limits for myocardial perfusion SPECT (MPS), we implemented a quantification scheme in which normal limits are derived without visual scoring of abnormal scans or optimization of regional thresholds. Normal limits were derived from same-day TI-201 rest/Tc-99m-sestamibi stress scans of male (n = 40) and female (n = 40) low-likelihood patients. Defect extent, total perfusion deficit (TPD), and regional perfusion extents were derived by comparison to normal limits in polar-map coordinates. MPS scans from 256 consecutive patients without known coronary artery disease, who underwent coronary angiography, were analyzed. The new method of quantification (TPD) was compared with our previously developed quantification system and visual scoring. The receiver operator characteristic area under the curve for detection of 50% or greater stenoses by TPD (0.88 +/- 0.02) was higher than by visual scoring (0.83 +/- 0.03) ( P = .039) or standard quantification (0.82 +/- 0.03) ( P = .004). For detection of 70% or greater stenoses, it was higher for TPD (0.89 +/- 0.02) than for standard quantification (0.85 +/- 0.02) ( P = .014). Sensitivity and specificity were 93% and 79%, respectively, for TPD; 81% and 85%, respectively, for visual scoring; and 80% and 73%, respectively, for standard quantification. The use of stress mode-specific normal limits did not improve performance. Simplified quantification achieves performance better than or equivalent to visual scoring or quantification based on per-segment visual optimization of abnormality thresholds.

  13. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    PubMed

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Comparison of neurocognitive results after coronary artery bypass grafting and thoracic aortic surgery using retrograde cerebral perfusion.

    PubMed

    Miyairi, Takeshi; Takamoto, Shinichi; Kotsuka, Yutaka; Takeuchi, Atsuko; Yamanaka, Katsuo; Sato, Hajime

    2005-07-01

    Retrograde cerebral perfusion (RCP) is used as an adjunctive method to hypothermic circulatory arrest to enhance cerebral protection in patients undergoing thoracic aortic surgery. It remains unclear whether RCP provides improved neurological and neuropsychological outcome. Forty-six patients undergoing thoracic aortic surgery using RCP, and 28 undergoing coronary artery bypass grafting (CABG; n = 28) with CPB, were enrolled in the study. Patients receiving RCP were subdivided into two groups, those with less than 60 min of RCP (S-RCP; n = 27) and with 60 min or more (L-RCP; n = 19). The patients' neurocognitive state was assessed by the revised Wechsler Adult Intelligence Scale a few days before operation, at 2-3 weeks and 4-6 months after operation. There were no stroke, seizure, and hospital mortality in either group. Significant decline between baseline and early scores were seen in three subtests (digit span, arithmetic, and picture completion) for S-RCP and four (digit span, arithmetic, picture completion, and picture arrangement) for L-RCP. Significant decline between baseline and late scores were seen in one subtest (arithmetic) for S-RCP, four (digit span, arithmetic, picture completion, and picture arrangement) for L-RCP, and one (object assembly) for CABG. The mean change of scores for one late test (digit symbol) was significantly lower in S-RCP than in CABG. The mean change of scores for three early tests (digit span, vocabulary, and picture arrangement) and four late tests (information, digit span, picture completion, and picture arrangement) were significantly lower in L-RCP than in CABG. Stepwise logistic regression analysis disclosed that, after considering the other variables, significant difference in test score changes were observed between CABG and L-RCP for two early tests (picture completion and digit symbol) as well as for three late tests (digit span, similarities, and picture completion). None of test score changes showed significant

  15. Perfusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping

    2003-05-01

    To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.

  16. Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Pérez-Girbés, Alexandre; Aparici-Robles, Fernando; Alberich-Bayarri, Ángel; Revert-Ventura, Antonio; Martí-Bonmatí, Luis; García-Gómez, Juan M

    2018-06-01

    Purpose To determine if preoperative vascular heterogeneity of glioblastoma is predictive of overall survival of patients undergoing standard-of-care treatment by using an unsupervised multiparametric perfusion-based habitat-discovery algorithm. Materials and Methods Preoperative magnetic resonance (MR) imaging including dynamic susceptibility-weighted contrast material-enhanced perfusion studies in 50 consecutive patients with glioblastoma were retrieved. Perfusion parameters of glioblastoma were analyzed and used to automatically draw four reproducible habitats that describe the tumor vascular heterogeneity: high-angiogenic and low-angiogenic regions of the enhancing tumor, potentially tumor-infiltrated peripheral edema, and vasogenic edema. Kaplan-Meier and Cox proportional hazard analyses were conducted to assess the prognostic potential of the hemodynamic tissue signature to predict patient survival. Results Cox regression analysis yielded a significant correlation between patients' survival and maximum relative cerebral blood volume (rCBV max ) and maximum relative cerebral blood flow (rCBF max ) in high-angiogenic and low-angiogenic habitats (P < .01, false discovery rate-corrected P < .05). Moreover, rCBF max in the potentially tumor-infiltrated peripheral edema habitat was also significantly correlated (P < .05, false discovery rate-corrected P < .05). Kaplan-Meier analysis demonstrated significant differences between the observed survival of populations divided according to the median of the rCBV max or rCBF max at the high-angiogenic and low-angiogenic habitats (log-rank test P < .05, false discovery rate-corrected P < .05), with an average survival increase of 230 days. Conclusion Preoperative perfusion heterogeneity contains relevant information about overall survival in patients who undergo standard-of-care treatment. The hemodynamic tissue signature method automatically describes this heterogeneity, providing a set of vascular habitats with high

  17. Comparison of O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study.

    PubMed

    Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans-J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2018-05-01

    To compare the diagnostic performance of O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) and perfusion-weighted magnetic resonance imaging (PWI) for the diagnosis of progressive or recurrent glioma. Thirty-two pretreated gliomas (25 progressive or recurrent tumors, 7 treatment-related changes) were investigated with 18 F-FET PET and PWI via a hybrid PET/magnetic resonance scanner. Volumes of interest with a diameter of 16 mm were centered on the maximum of abnormality in the tumor area in PET and PWI maps (relative cerebral blood volume, relative cerebral blood flow, mean transit time) and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios as well as dynamic data for 18 F-FET uptake were calculated. Diagnostic accuracies were evaluated by receiver operating characteristic analyses, calculating the area under the curve. 18 F-FET PET showed a significant greater sensitivity to detect abnormalities in pretreated gliomas than PWI (76% vs. 52%, P = 0.03). The maximum tumor-to-brain ratio of 18 F-FET PET was the only parameter that discriminated treatment-related changes from progressive or recurrent gliomas (area under the curve, 0.78; P = 0.03, best cut-off 2.61; sensitivity 80%, specificity 86%, accuracy 81%). Among patients with signal abnormality in both modalities, 75% revealed spatially incongruent local hot spots. This pilot study suggests that 18 F-FET PET is superior to PWI to diagnose progressive or recurrent glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2001-10-25

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  19. Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia.

    PubMed

    Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui

    2017-03-27

    Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.

  20. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia

    PubMed Central

    Cockburn, Neil; Kovacs, Michael

    2016-01-01

    CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155–180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion. PMID:27347877

  1. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  2. Brain Perfusion and Arterial Blood Flow Velocity During Prolonged Body Tilting.

    PubMed

    Montero, David; Rauber, Sven

    2016-08-01

    It remains unknown whether brain perfusion is preserved and mirrored by middle cerebral blood flow velocity (MCA BFV) during prolonged changes in body posture. Herein, we examined the impact of sustained (180 min) 30° head-up (HUT) and head-down (HDT) tilt on brain perfusion, as determined by MCA BFV and blood flow in the extracranial arteries. In 10 healthy male subjects, arterial diameters, BFVs, and blood flows were determined in the left internal carotid (ICA) and vertebral (VA) arteries using duplex Doppler ultrasound in supine rest, and 5, 20, 60, 120, and 180 min following 30° HUT and HDT. MCA BFV was recorded throughout with transcranial Doppler ultrasound. ICA as well as VA diameters and blood flows were unaltered during HUT. Likewise, brain blood flow and MCA BFV were preserved with HUT. In the HDT protocol, ICA and VA diameters were gradually increased, although ICA, VA, and brain blood flows were preserved. MCA BFV was progressively reduced during HDT. In addition, MCA BFV was positively associated with ICA BFV (β = 0.9) and negatively associated with ICA diameter (β = -125.5). MCA BFV was positively associated with brain blood flow during HUT (β = 0.2) but not HDT. Brain perfusion is preserved whereas MCA BFV is progressively decreased and associated with extracranial arterial BFV during sustained 30° HDT. Therefore, MCA BFV may not be a surrogate of brain perfusion in conditions including prolonged HDT. Montero D, Rauber S. Brain perfusion and arterial blood flow velocity during prolonged body tilting. Aerosp Med Hum Perform. 2016; 87(8):682-687.

  3. Efficacy of superficial temporal artery-middle cerebral artery double anastomoses in a patient with rapidly progressive moyamoya disease: case report.

    PubMed

    Yokosawa, Michiko; Hayashi, Toshiaki; Shirane, Reizo; Tominaga, Teiji

    2014-01-01

    Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction.

  4. Efficacy of Superficial Temporal Artery-Middle Cerebral Artery Double Anastomoses in a Patient with Rapidly Progressive Moyamoya Disease: Case Report

    PubMed Central

    YOKOSAWA, Michiko; HAYASHI, Toshiaki; SHIRANE, Reizo; TOMINAGA, Teiji

    2014-01-01

    Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction. PMID:24584280

  5. Fractional flow reserve and myocardial viability as assessed by SPECT perfusion scintigraphy in patients with prior myocardial infarction.

    PubMed

    Beleslin, Branko; Dobric, Milan; Sobic-Saranovic, Dragana; Giga, Vojislav; Stepanovic, Jelena; Djordjevic-Dikic, Ana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Stankovic, Goran; Orlic, Dejan; Petrasinovic, Zorica; Pavlovic, Smiljana; Obradovic, Vladimir; Ostojic, Miodrag

    2010-10-01

    In patients with previous myocardial infarction (MI), assessment of myocardial viability and physiological significance of coronary artery stenoses are essential for appropriate guidance of revascularization. The aim of the study was to evaluate the relation between fractional flow reserve (FFR) and myocardial viability as assessed by gated SPECT MIBI perfusion scintigraphy in patients with previous MI undergoing elective PCI. The study population consisted of 26 patients (mean age 55 ± 7 years; 21 male) with a previous MI and a significant coronary stenosis in a single infarct-related coronary vessel for which PCI was being performed. In all patients, FFR was evaluated before and immediately after PCI. SPECT imaging was done before and 3 ± 1 months after PCI. A region representing the MI was considered viable if MIBI uptake was ≥55% of the normal region. Improvement in perfusion after revascularization was considered achieved if perfusion abnormalities decreased by 5% or more and there was a decrease in segmental score of ≥1 in three segments in PCI-related vascular territory. Extent of perfusion abnormalities decreased from 32 ± 16% to 27 ± 19% after PCI (P < .001). In patients with myocardial viability in comparison to patients with no viability, there was significant difference in FFR before PCI (.57 ± .14 vs .76 ± .12, P = .002), despite almost the same values of diameter stenosis of infarct-related artery (63 ± 8% vs 64 ± 3%, respectively, P = .572). In addition, FFR prior to PCI was related to improvement in perfusion abnormalities after revascularization (P = .047), as well as with peak activity of creatine-kinase measured during previous MI (r = .56, P = .005). Lower values of FFR before angioplasty are associated with myocardial viability and functional improvement as assessed by SPECT perfusion scintigraphy.

  6. Non-invasive assessment of vasospasm following aneurysmal SAH using C-arm FDCT parenchymal blood volume measurement in the neuro-interventional suite: Technical feasibility

    PubMed Central

    Downer, Jonathan; Corkill, Rufus; Byrne, James V

    2015-01-01

    Introduction Cerebral vasospasm is the leading cause of morbidity and mortality in patients with aneurysmal subarachnoid haemorrhage (SAH) surviving the initial ictus. Commonly used techniques for vasospasm assessment are digital subtraction angiography and transcranial Doppler sonography. These techniques can reliably identify only the major vessel spasm and fail to estimate its haemodynamic significance. To overcome these issues and to enable comprehensive non-invasive assessment of vasospasm inside the interventional suite, a novel protocol involving measurement of parenchymal blood volume (PBV) using C-arm flat detector computed tomography (FDCT) was implemented. Materials and methods Patients from the neuro-intensive treatment unit (ITU) with suspected vasospasm following aneurysmal SAH were scanned with a biplane C-arm angiography system using an intravenous contrast injection protocol. The PBV maps were generated using prototype software. Contemporaneous clinically indicated MR scan including the diffusion- and perfusion-weighted sequences was performed. C-arm PBV maps were compared against the MR perfusion maps. Results Distribution of haemodynamic impairment on C-arm PBV maps closely matched the pattern of abnormality on MR perfusion maps. On visual comparison between the two techniques, the extent of abnormality indicated PBV to be both cerebral blood flow and cerebral blood volume weighted. Conclusion C-arm FDCT PBV measurements allow an objective assessment of the severity and localisation of cerebral hypoperfusion resulting from vasospasm. The technique has proved feasible and useful in very sick patients after aneurysmal SAH. The promise shown in this early study indicates that it deserves further evaluation both for post-SAH vasospasm and in other relevant clinical settings. PMID:26017197

  7. Non-invasive assessment of vasospasm following aneurysmal SAH using C-arm FDCT parenchymal blood volume measurement in the neuro-interventional suite: Technical feasibility.

    PubMed

    Kamran, Mudassar; Downer, Jonathan; Corkill, Rufus; Byrne, James V

    2015-08-01

    Cerebral vasospasm is the leading cause of morbidity and mortality in patients with aneurysmal subarachnoid haemorrhage (SAH) surviving the initial ictus. Commonly used techniques for vasospasm assessment are digital subtraction angiography and transcranial Doppler sonography. These techniques can reliably identify only the major vessel spasm and fail to estimate its haemodynamic significance. To overcome these issues and to enable comprehensive non-invasive assessment of vasospasm inside the interventional suite, a novel protocol involving measurement of parenchymal blood volume (PBV) using C-arm flat detector computed tomography (FDCT) was implemented. Patients from the neuro-intensive treatment unit (ITU) with suspected vasospasm following aneurysmal SAH were scanned with a biplane C-arm angiography system using an intravenous contrast injection protocol. The PBV maps were generated using prototype software. Contemporaneous clinically indicated MR scan including the diffusion- and perfusion-weighted sequences was performed. C-arm PBV maps were compared against the MR perfusion maps. Distribution of haemodynamic impairment on C-arm PBV maps closely matched the pattern of abnormality on MR perfusion maps. On visual comparison between the two techniques, the extent of abnormality indicated PBV to be both cerebral blood flow and cerebral blood volume weighted. C-arm FDCT PBV measurements allow an objective assessment of the severity and localisation of cerebral hypoperfusion resulting from vasospasm. The technique has proved feasible and useful in very sick patients after aneurysmal SAH. The promise shown in this early study indicates that it deserves further evaluation both for post-SAH vasospasm and in other relevant clinical settings. © The Author(s) 2015.

  8. Cerebral vasculopathy in children with sickle cell anemia.

    PubMed

    Fasano, Ross M; Meier, Emily R; Hulbert, Monica L

    2015-01-01

    Sickle cell anemia (SCA)-associated cerebral vasculopathy and moyamoya is a unique entity reflecting the abnormal interactions between sickled red blood cells (RBCs) and the cerebral arterial endothelium. Endothelial injury, coagulation activation, and the inflammatory response generated by sickled RBCs are implicated in the development of cerebral vasculopathy, but the pathophysiology remains incompletely understood. SCA-specific screening and treatment guidelines have successfully reduced the incidence of overt strokes in this high-risk population. However, despite aggressive hematological management, many children with cerebral vasculopathy due to SCA have progressive vasculopathy and recurrent strokes; therefore, more effective therapies, such as revascularization surgery and curative hematopoietic stem cell transplant, are urgently needed. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  10. Role of spiral volumetric computed tomographic scanning in the assessment of patients with clinical suspicion of pulmonary embolism and an abnormal ventilation/perfusion lung scan.

    PubMed Central

    van Rossum, A. B.; Treurniet, F. E.; Kieft, G. J.; Smith, S. J.; Schepers-Bok, R.

    1996-01-01

    BACKGROUND: A study was carried out to evaluate the potential place of spiral volumetric computed tomography (SVCT) in the diagnostic strategy for pulmonary embolism. METHODS: In a prospective study 249 patients with clinical suspicion of pulmonary embolism were evaluated with various imaging techniques. In all patients a ventilation/perfusion (V/Q) scan was performed. Seventy seven patients with an abnormal V/Q scan underwent SVCT. Pulmonary angiography was then performed in all 42 patients with a non-diagnostic V/Q scan and in three patients with a high probability V/Q scan without emboli on the SVCT scan. Patients with an abnormal perfusion scan also underwent ultrasonography of the legs for the detection of deep vein thrombosis. RESULTS: One hundred and seventy two patients (69%) had a normal V/Q scan. Forty two patients (17%) had a non-diagnostic V/Q scan, and in five of these patients pulmonary emboli were found both by SVCT and pulmonary angiography. In one patient, although SVCT showed no emboli, the angiogram was positive for pulmonary embolism. In one of the 42 patients the SVCT scan showed an embolus which was not confirmed by pulmonary angiography. The other 35 patients showed no sign of emboli. Thirty five patients (14%) had a high probability V/Q scan, and in 32 patients emboli were seen on SVCT images. Two patients had both a negative SVCT scan and a negative pulmonary angiogram. In one who had an inconclusive SVCT scan pulmonary angiography was positive. The sensitivity for pulmonary embolism was 95% and the specificity 97%; the positive and negative predicted values of SVCT were 97% and 97%, respectively. CONCLUSIONS: SVCT is a relatively noninvasive test for pulmonary embolism which is both sensitive and specific and which may serve as an alternative to ventilation scintigraphy and possibly to pulmonary angiography in the diagnostic strategy for pulmonary embolism. Images PMID:8658363

  11. Myocardial perfusion imaging with thallium-201: correlation with coronary arteriography and electrocardiography

    PubMed Central

    Sternberg, Leonard; Wald, Robert W.; Feiglin, David H.I.; Morch, John E.

    1978-01-01

    Myocardial perfusion imaging with thallium-201 and electrocardiography with the subject at rest and undergoing submaximal treadmill exercise were performed in 19 men and 3 women. Selective coronary arteriography and left ventriculography showed that 7 had normal coronary arteries and 15 had coronary artery disease. The 11 persons with electrocardiographic evidence of an old myocardial infarct (q waves) had a perfusion defect at rest in the area of the infarct and a segmental abnormality of wall motion apparent on the left ventriculogram corresponding to the perfusion defect. Myocardial perfusion imaging and electrocardiography were equally sensitive in detecting coronary artery disease in exercising individuals: perfusion defects were noted in 7 of the 15 persons with coronary artery disease, and diagnostic ST-segment depression was present in 8 of the 15. Combination of the results of the two tests with exercise permitted the identification of 11 of the 15 persons and improved the sensitivity. Combination of the results of rest and exercise imaging and electrocardiography permitted the identification of 94% of the patients with coronary artery disease. Myocardial perfusion imaging with 201TI in the subject at rest is a sensitive indicator of previous myocardial infarction. Imaging after the subject has exercised is a useful adjunct to conventional exercise electrocardiography, especially in those whose exercise electrocardiogram is non-interpretable. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:630487

  12. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    PubMed

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  13. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.

  14. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke.

    PubMed

    Xiao, Ming; Li, Qiang; Feng, Hua; Zhang, Le; Chen, Yujie

    2017-01-01

    During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  15. Effects of cilazapril on the cerebral circulation in spontaneously hypertensive rats.

    PubMed

    Clozel, J P; Kuhn, H; Hefti, F

    1989-12-01

    Chronic hypertension is associated with a lower cerebral vascular reserve due to thickening of the media of cerebral vessels. The goal of the present study was to determine if long-term inhibition of angiotensin converting enzyme with cilazapril, a new long-acting angiotensin converting enzyme inhibitor, could improve cerebral vascular reserve. For this purpose, two groups of 12 spontaneously hypertensive rats were compared. One group was treated with 10 mg/kg/day cilazapril from 14 weeks to 33 weeks of age and was compared with a group treated with placebo. A third group of 12 Wistar-Kyoto rats treated with placebo was used as reference. At the end of the treatment period, cerebral vascular reserve was evaluated by measuring cerebral blood flow (radioactive microspheres) at rest and during maximal vasodilation induced by seizures provoked by bicuculline. Then, the rats were perfusion-fixed, and morphometry of the cerebral vasculature was performed. Cerebral vascular reserve was severely impaired in the spontaneously hypertensive rats since their maximal cerebral blood flow was decreased by 52% compared with the Wistar-Kyoto rats. Cilazapril normalized cerebral blood flow reserve. This normalization was associated with a decreased thickness of the medial layer in the carotid artery, the middle cerebral artery, and in the pial arteries larger than 100 microns. Further studies are required to determine whether this decreased medial thickness is due to the normalization of blood pressure induced by cilazapril or to the reduction of trophic factors such as angiotensin II.

  16. Cranial Ultrasound Lesions in the NICU Predict Cerebral Palsy at Age 2 Years in Children Born at Extremely Low Gestational Age

    PubMed Central

    Kuban, Karl C. K.; Allred, Elizabeth N.; O’Shea, T. Michael; Paneth, Nigel; Pagano, Marcello; Dammann, Olaf; Leviton, Alan; Du Plessis, Adré; Westra, Sjirk J.; Miller, Cindy R.; Bassan, Haim; Krishnamoorthy, Kalpathy; Junewick, Joseph; Olomu, Nicholas; Romano, Elaine; Seibert, Joanna; Engelke, Steve; Karna, Padmani; Batton, Daniel; O’Connor, Sunila E.; Keller, Cecelia E.

    2009-01-01

    Our prospective cohort study of extremely low gestational age newborns evaluated the association of neonatal head ultrasound abnormalities with cerebral palsy at age 2 years. Cranial ultrasounds in 1053 infants were read with respect to intraventricular hemorrhage, ventriculomegaly, and echolucency, by multiple sonologists. Standardized neurological examinations classified cerebral palsy, and functional impairment was assessed. Forty-four percent with ventriculomegaly and 52% with echolucency developed cerebral palsy. Compared with no ultrasound abnormalities, children with echolucency were 24 times more likely to have quadriparesis and 29 times more likely to have hemiparesis. Children with ventriculomegaly were 17 times more likely to have quadriparesis or hemiparesis. Forty-three percent of children with cerebral palsy had normal head ultrasound. Focal white matter damage (echolucency) and diffuse damage (late ventriculomegaly) are associated with a high probability of cerebral palsy, especially quadriparesis. Nearly half the cerebral palsy identified at 2 years is not preceded by a neonatal brain ultrasound abnormality. PMID:19168819

  17. Mortality and Outcome Comparison Between Brain Tissue Oxygen Combined with Intracranial Pressure/Cerebral Perfusion Pressure-Guided Therapy and Intracranial Pressure/Cerebral Perfusion Pressure-Guided Therapy in Traumatic Brain Injury: A Meta-Analysis.

    PubMed

    Xie, Qiang; Wu, Hai-Bing; Yan, Yu-Feng; Liu, Meng; Wang, Er-Song

    2017-04-01

    The combination of brain tissue oxygen and standard intracranial pressure (ICP)/cerebral perfusion pressure (CPP)-guided therapy is thought to improve traumatic brain injury (TBI) prognosis compared with standard ICP/CPP-guided therapy. However, related results of previous observational studies and recently published cohort studies and randomized controlled trials (RCTs) remain controversial. The objective of this study was to compare the effect of the combined therapy with that of standard ICP/CPP-guided therapy on mortality rate, favorable outcome, ICP/CPP, and length of stay (LOS). We systematically searched PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and Web of Science in July 2016 for studies comparing the combined therapy and standard ICP/CPP-guided therapy. Random-effect and fixed-effect models were used for pooled analyses. After screening 362 studies, 8 cohort studies and 1 RCT were included. Primary outcomes were mortality and favorable outcome. The overall mortality risk ratio showed no obvious advantages between the 2 groups (risk ratio [RR], 0.76; 95% confidence interval [CI], 0.54-1.06) and discharge mortality (RR, 1.01; 95% CI, 0.80-1.26) and 3-month mortality (RR, 0.77; 95% CI, 0.53-1.12). Compared with the ICP/CPP group, the combined group was more likely to achieve better outcome during the 6 months after TBI (RR, 1.26; 95% CI, 1.04-1.52) or exactly at 6 months (RR, 1.34; 95% CI, 1.07-1.68), whereas ICP (standardized mean difference [SMD], -0.19; 95% CI, -0.43 to 0.05), CPP (SMD, 0.13; 95% CI, -0.09 to 0.35), and LOS (SMD, 0.13; 95% CI, -0.11 to 0.37) showed no obvious differences. Compared with standard ICP/CPP-guided therapy, brain tissue oxygen combined with ICP/CPP-guided therapy improved long-term outcomes without any effects on mortality, ICP/CPP, or LOS. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J; Martin, T; Young, S

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152more » projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB

  19. Large enhancement of perfusion contribution on fMRI signal

    PubMed Central

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2012-01-01

    The perfusion contribution to the total functional magnetic resonance imaging (fMRI) signal was investigated using a rat model with mild hypercapnia at 9.4 T, and human subjects with visual stimulation at 4 T. It was found that the total fMRI signal change could be approximated as a linear superposition of ‘true' blood oxygenation level-dependent (BOLD; T2/T2*) effect and the blood flow-related (T1) effect. The latter effect was significantly enhanced by using short repetition time and large radiofrequency pulse flip angle and became comparable to the ‘true' BOLD signal in response to a mild hypercapnia in the rat brain, resulting in an improved contrast-to-noise ratio (CNR). Bipolar diffusion gradients suppressed the intravascular signals but had no significant effect on the flow-related signal. Similar results of enhanced fMRI signal were observed in the human study. The overall results suggest that the observed flow-related signal enhancement is likely originated from perfusion, and this enhancement can improve CNR and the spatial specificity for mapping brain activity and physiology changes. The nature of mixed BOLD and perfusion-related contributions in the total fMRI signal also has implication on BOLD quantification, in particular, the BOLD calibration model commonly used to estimate the change of cerebral metabolic rate of oxygen. PMID:22395206

  20. Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome.

    PubMed

    Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Fukuda, Hiroshi; Mori, Etsuro

    2013-05-01

    Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder and is generally regarded as a genetic model of obesity. Individuals with PWS exhibit behavioral symptoms including temper tantrums, rigid thinking, and compulsive behavior. The most striking feature of PWS is abnormal eating behavior, including hyperphagia, intense preoccupation with food, and incessant food seeking. To explore brain regions associated with the behavioral symptoms of PWS, we investigated differences in resting-state regional cerebral blood flow (rCBF) between individuals with PWS and healthy controls. Correlation analyses were also performed to examine the relationship between rCBF and altered eating behavior in PWS individuals. Twelve adults with PWS and 13 age- and gender-matched controls underwent resting-state single photon emission computerized tomography (SPECT) with N-isopropyl-p-[(123)I] iodoamphetamine (IMP). The rCBF data were analyzed on a voxel-by-voxel basis using SPM5 software. The results demonstrated that compared with controls, individuals with PWS had significantly lower rCBF in the right thalamus, left insular cortex, bilateral lingual gyrus, and bilateral cerebellum. They had significantly higher rCBF in the right inferior frontal gyrus, left middle/inferior frontal gyrus (anterior and posterior clusters), and bilateral angular gyrus. Additionally, rCBF in the left insula, which was significantly lower in PWS individuals, was negatively correlated with the eating behavior severity score. These results suggest that specific brain regions, particularly the left insula, may be partly responsible for the behavioral symptoms in PWS. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Impact of Methamphetamine on Regional Metabolism and Cerebral Blood Flow after Traumatic Brain Injury

    PubMed Central

    O'Phelan, Kristine; Ernst, Thomas; Park, Dalnam; Stenger, Andrew; Denny, Katherine; Green, Deborah; Chang, Cherylee; Chang, Linda

    2014-01-01

    Substance abuse is a frequent comorbid condition among patients with Traumatic Brain Injury (TBI), but little is known about its potential additive or interactive effects on tissue injury or recovery from TBI. This study aims to evaluate changes in regional metabolism and cerebral perfusion in subjects who used methamphetamine(METH) prior to sustaining a TBI. We hypothesized that METH use would decrease pericontusional cerebral perfusion and markers of neuronal metabolism, in TBI patients compared to those without METH use. Methods This is a single center prospective observational study. Adults with moderate and severe TBI were included. MRI scanning was performed on a 3 Tesla scanner. MP-RAGE and FLAIR sequences as well as Metabolite spectra of NAA and lactate in pericontusional and contralateral voxels identified on the MP-RAGE scans. A spiral-based FAIR sequence was used for the acquisition of cerebral blood flow (CBF) maps. Regional CBF images were analyzed using Image J open source software. Pericontusional and contralateral CBF, NAA and lactate were assessed in the entire cohort and in the METH and non-METH groups. Results 17 subjects completed the MR studies. Analysis of entire cohort: Pericontusional NAA concentrations (5.81 ± 2.0 mM/kg) were 12% lower compared to the contralateral NAA (6.98 ± 1.2 mM/kg; p=0.03). Lactate concentrations and CBF were not significantly different between the two regions, however, regional cerebral blood flow was equally reduced in the two regions. Subgroup analysis: 41% of subjects tested positive for METH. The mean age, Glasgow Coma Scale and time to scan did not differ between groups. The two subject groups also had similar regional NAA and lactate. Pericontusional CBF was 60% lower in the METH users than the non-users, p=0.04; contralateral CBF did not differ between the groups. Conclusion This small study demonstrates that tissue metabolism is regionally heterogeneous after TBI and pericontusional perfusion was

  2. Material properties of rat middle cerebral arteries at high strain rates.

    PubMed

    Bell, E David; Converse, Matthew; Mao, Haojie; Unnikrishnan, Ginu; Reifman, Jaques; Monson, Kenneth L

    2018-03-19

    Traumatic brain injury (TBI), resulting from either impact- or non-impact blast-related mechanisms, is a devastating cause of death and disability. The cerebral blood vessels, which provide critical support for brain tissue in both health and disease, are commonly injured in TBI. However, little is known about how vessels respond to traumatic loading, particularly at rates relevant to blast. To better understand vessel responses to trauma, the objective of this project was to characterize the high-rate response of passive cerebral arteries. Rat middle cerebral arteries were isolated and subjected to high-rate deformation in the axial direction. Vessels were perfused at physiological pressures and stretched to failure at strain rates ranging from approximately 100 to 1300 s-1. Although both in vivo stiffness and failure stress increased significantly with strain rate, failure stretch did not depend on rate.

  3. Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging.

    PubMed

    Bybee, Kevin A; Lee, John; Markiewicz, Richard; Longmore, Ryan; McGhie, A Iain; O'Keefe, James H; Hsu, Bai-Ling; Kennedy, Kevin; Thompson, Randall C; Bateman, Timothy M

    2010-04-01

    A limitation of stress myocardial perfusion imaging (MPI) is the inability to detect non-obstructive coronary artery disease (CAD). One advantage of MPI with a hybrid CT device is the ability to obtain same-setting measurement of the coronary artery calcium score (CACS). Utilizing our single-center nuclear database, we identified 760 consecutive patients with: (1) no CAD history; (2) a normal clinically indicated Rb-82 PET/CT stress perfusion study; and (3) a same-setting CAC scan. 487 of 760 patients (64.1%) had subclinical CAD based on an abnormal CACS. Of those with CAC, the CACS was > or =100, > or =400, and > or =1000 in 47.0%, 22.4%, and 8.4% of patients, respectively. Less than half of the patients with CAC were receiving aspirin or statin medications prior to PET/CT imaging. Patients with CAC were more likely to be initiated or optimized on proven medical therapy for CAD immediately following PET/CT MPI compared to those without CAC. Subclinical CAD is common in patients without known CAD and normal myocardial perfusion assessed by hybrid PET/CT imaging. Identification of CAC influences subsequent physician prescribing patterns such that those with CAC are more likely to be treated with proven medical therapy for the treatment of CAD.

  4. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

    PubMed Central

    Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.

    2016-01-01

    Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229

  5. Prognostic implications of atrial fibrillation in patients undergoing myocardial perfusion single-photon emission computed tomography.

    PubMed

    Abidov, Aiden; Hachamovitch, Rory; Rozanski, Alan; Hayes, Sean W; Santos, Marcia M; Sciammarella, Maria G; Cohen, Ishac; Gerlach, James; Friedman, John D; Germano, Guido; Berman, Daniel S

    2004-09-01

    The aim of this research was to determine whether presence of atrial fibrillation (AF) provides incremental prognostic information relative to myocardial perfusion single-photon emission computed tomography (MPS) with respect to risk of cardiac death (CD). The prognostic significance of AF in patients undergoing MPS is not known. A total of 16,048 consecutive patients undergoing MPS were followed-up for a mean of 2.21 +/- 1.15 years for the development of CD. Of those, 384 patients (2.4%) had AF. Cox proportional hazards method was used to compare clinical and perfusion data for the prediction of CD in patients with and without AF. Atrial fibrillation was a significant predictor of CD in patients with normal (1.6% per year vs. 0.4% per year in non-AF patients), mildly abnormal (6.3% per year vs. 1.2% per year), and severely abnormal MPS (6.4% per year vs. 3.7% per year) (p < 0.001 for all). By multivariable analysis, AF patients had worse survival (p = 0.001) even after adjustment for the variables most predictive of CD: age, diabetes, shortness of breath, use of vasodilator stress, rest heart rate, and the nuclear variables. In the 4,239 patients with left ventricular ejection fraction evaluated by gated MPS, AF demonstrated incremental prognostic value not only over clinical and nuclear variables, but also over left ventricular ejection in predicting CD (p = 0.014). The presence of AF independently increases the risk of cardiac events over perfusion and function variables in patients undergoing MPS. Patients with AF have a high risk of CD, even when MPS is only mildly abnormal. Whether patients with AF and mildly abnormal MPS constitute a group more deserving of early referral to cardiac catheterization is a question warranting further study.

  6. [Hypothermia and cerebral protection after head trauma. Influence of blood gases modifications].

    PubMed

    Odri, A; Geeraerts, T; Vigué, B

    2009-04-01

    The usefulness of therapeutic hypothermia is highly debated after traumatic brain injury. A neuroprotective effect has been demonstrated only in experimental studies: decrease in cerebral metabolism, restoration of ATP level, better control of cerebral edema and cellular effects. Despite negative multicenter clinical studies, therapeutic hypothermia is still used to a better control of intracranial pressure. However, important issues need to be clarified, particularly the level and duration of hypothermia, the depth and modalities of sedation. A clear understanding of blood gases variations induced by hypothermia is needed to understand the cerebral perfusion and oxygenation changes. It is essential to recognize and to use hypothermia-induced physiological hypocapnia and alkalosis under strict control of cerebral oxygen balance (jugular venous saturation or tissue PO(2)) and also to take into account the increased affinity of hemoglobin for oxygen. Management of post-traumatic intracranial hypertension using hypothermia, directed by intracranial pressure level, and consequently for long duration, is potentially beneficial but needs further clarification.

  7. Cerebral gigantism (Sotos' syndrome) and cataracts.

    PubMed

    Yeh, H; Price, R L; Lonsdale, D

    1978-01-01

    A five-year-old girl with cerebral gigantism (Sotos' syndrome) and cataracts is described. Sotos' syndrome, characterized by generalized gigantism with normal endocrine studies has rarely been reported with ocular abnormalities and never with cataracts. It is important to study any child with cataracts for systemic disease.

  8. Neurologic abnormalities in murderers.

    PubMed

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  9. 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging.

    PubMed

    Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A

    2011-07-01

    Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.

  10. Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.

    PubMed

    Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław

    2015-04-17

    Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

  11. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    PubMed

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  12. Importance of tissue perfusion in ST segment elevation myocardial infarction patients undergoing reperfusion strategies: role of adenosine.

    PubMed

    Forman, Mervyn B; Jackson, Edwin K

    2007-11-01

    High risk ST segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy continue to exhibit significant morbidity and mortality due in part to myocardial reperfusion injury. Importantly, preclinical studies demonstrate that progressive microcirculatory failure (the "no-reflow" phenomenon) contributes significantly to myocardial reperfusion injury. Diagnostic techniques to measure tissue perfusion have validated this concept in humans, and it is now clear that abnormal tissue perfusion occurs frequently in STEMI patients undergoing reperfusion therapy. Moreover, because tissue perfusion correlates poorly with epicardial blood flow (TIMI flow grade), clinical studies show that tissue perfusion is an independent predictor of early and late mortality in STEMI patients and is associated with infarct size, ventricular function, CHF and ventricular arrhythmias. The mechanisms responsible for abnormal tissue perfusion are multifactorial and include both mechanical obstruction and vasoconstrictor humoral factors. Adenosine, an endogenous nucleoside, maintains microcirculatory flow following reperfusion by activating four well-characterized extracellular receptors. Because activation of adenosine receptors attenuates the mechanical and functional mechanisms leading to the "no reflow" phenomenon and activates other cardioprotective pathways as well, it is not surprising that both experimental and clinical studies show striking myocardial salvage with intravenous infusions of adenosine administered in the peri-reperfusion period. For example, a post hoc analysis of the AMISTAD II trial indicates a significant reduction in 1 and 6-month mortality in STEMI patients undergoing reperfusion therapy who are treated with adenosine within 3 hours of symptoms. In conclusion, adenosine's numerous cardioprotective effects, including attenuation of the "no-reflow" phenomenon, support its use in high risk STEMI undergoing reperfusion.

  13. Selective motor control correlates with gait abnormality in children with cerebral palsy.

    PubMed

    Chruscikowski, Emily; Fry, Nicola R D; Noble, Jonathan J; Gough, Martin; Shortland, Adam P

    2017-02-01

    Children with bilateral cerebral palsy (CP) commonly have limited selective motor control (SMC). This affects their ability to complete functional tasks. The impact of impaired SMC on walking has yet to be fully understood. Measures of SMC have been shown to correlate with specific characteristics of gait, however the impact of SMC on overall gait pattern has not been reported. This study explored SMC data collected as part of routine gait analysis in children with bilateral CP. As part of their clinical assessment, SMC was measured with the Selective Control Assessment of the Lower Extremities (SCALE) in 194 patients with bilateral cerebral palsy attending for clinical gait analysis at a single centre. Their summed SCALE score was compared with overall gait impairment, as measured by Gait Profile Score (GPS). Score on SCALE showed a significant negative correlation with GPS (r s =-0.603, p<0.001). Cerebral injuries in CP result in damage to the motor tracts responsible for SMC. Our results indicate that this damage is also associated with changes in the development of walking pattern in children with CP. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. High-altitude cerebral oedema mimicking stroke.

    PubMed

    Yanamandra, Uday; Gupta, Amul; Patyal, Sagarika; Varma, Prem Prakash

    2014-03-26

    High-altitude cerebral oedema (HACO) is the most fatal high-altitude illness seen by rural physicians practising in high-altitude areas. HACO presents clinically with cerebellar ataxia, features of raised intracranial pressure (ICP) and coma. Early identification is important as delay in diagnosis can be fatal. We present two cases of HACO presenting with focal deficits mimicking stroke. The first patient presented with left-sided hemiplegia associated with the rapid deterioration in the sensorium. Neuroimaging revealed features suggestive of vasogenic oedema. The second patient presented with monoplegia of the lower limb. Neuroimaging revealed perfusion deficit in anterior cerebral artery territory. Both patients were managed with dexamethasone and they improved dramatically. Clinical picture and neuroimaging closely resembled acute ischaemic stroke in both cases. Thrombolysis in these patients would have been disastrous. Recent travel to high altitude, young age, absence of atherosclerotic risk factors and features of raised ICP concomitantly directed the diagnosis to HACO.

  15. Optical microangiography reveals collateral blood perfusion dynamics in mouse cerebral cortex after focal stroke

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2015-03-01

    Arteriolo-arteriolar anastomosis's role in regulating blood perfusion through penetrating arterioles during stroke is yet to be discovered. We apply ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate vessel diameter and red blood cell velocity changes in large number of pial and penetrating arterioles in relation with arteriolo-arteriolar anastomosis (AAA) during and after focal stroke. Thanks to the high sensitivity of UHS-OMAG, we were able to image pial microvasculature up to capillary level through a cranial window (9 mm2), and DOMAG provided clear image of penetrating arterioles up to 500μm depth. Results showed that penetrating arterioles close to a strong AAA connection dilate whereas penetrating arterioles constrict significantly in weaker AAA regions. These results suggest that AAA plays a major role in active regulation of the pial arterioles, and weaker AAA connections lead to poor blood perfusion to penumbra through penetrating arterioles.

  16. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    PubMed

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  17. Optoacoustic mapping of cerebral blood oxygenation in humans

    NASA Astrophysics Data System (ADS)

    Petrov, Yuriy; Prough, Donald S.; Petrov, Irene Y.; Richardson, C. Joan; Fonseca, Rafael A.; Robertson, Claudia S.; Esenaliev, Rinat O.

    2017-03-01

    Noninvasive, transcranial mapping, monitoring, and imaging are highly important for detection and management of cerebral abnormalities and neuroscience research. Mapping, imaging, and monitoring of cerebral blood oxygenation are necessary for diagnostics and management of patients with traumatic brain injury, stroke, and other neurological conditions. We proposed to use optoacoustic technology for noninvasive, transcranial monitoring and imaging. In this work, we developed optoacoustic systems for mapping of cerebral blood oxygenation in humans and tested them in adults and neonates. The systems provide noninvasive, transcranial optoacoustic measurements in the transmission (forward) and reflection (backward) modes in the near infrared spectral range. Novel, ultra-sensitive probes were built for detection of optoacoustic signals and measurement of blood oxygenation in neonates and adults. Cerebral oxygenation was measured at different lateral sites from the superior sagittal sinus (SSS), a large central cerebral vein, located immediately beneath the midline of the human skull. In neonates, cerebral oxygenation was measured through open anterior and posterior fontanelles. Optoacoustic signal detection at different locations allowed for mapping of cerebral blood oxygenation. Our future studies will be focused on 3D mapping of cerebral blood oxygenation.

  18. Basal Ganglia Perfusion in Fibromyalgia is Related to Pain Disability and Disease Impact: An Arterial Spin Labeling Study.

    PubMed

    Shokouhi, Mahsa; Davis, Karen D; Moulin, Dwight E; Morley-Forster, Pat; Nielson, Warren R; Bureau, Yves; St Lawrence, Keith

    2016-06-01

    Pain disability is a major impediment to fibromyalgia (FM) patients' quality of life. Neuroimaging studies have demonstrated abnormal pain processing in FM. However, it is not known whether there are brain abnormalities linked to pain disability. Understanding neural correlates of pain disability in FM, independent from pain intensity, could provide a framework to guide future more efficient therapy strategies to improve patients' functional ability. We used arterial spin labeling to image cerebral blood flow (CBF) in 23 FM patients and 16 controls. Functional connectivity was also estimated using blood oxygenation level-dependent imaging to further investigate the possible underpinnings of the observed CBF changes. Among patients, CBF in the basal ganglia correlated negatively with pain disability index and positively with the overall impact of FM (Fibromyalgia Impact Questionnaire) but did not correlate with pain intensity. Whole-brain analysis revealed no CBF differences between the 2 groups; however, post hoc analysis in the basal ganglia showed CBF reductions mainly in the right putamen and right lateral globus pallidus in patients, likely reflecting the negative correlation with the pain disability index. However, the connectivity of the corresponding corticobasal ganglia-thalamus loop, that is, motor network (the connection between supplementary motor area, putamen, and thalamus) remained intact. Basal ganglia perfusion reflects long-term symptoms, including somatic and psychological components of FM rather than pain intensity. These CBF findings may reflect differences in behavioral and psychological responses between patients.

  19. Cerebral hemodynamic and metabolic changes caused by brain retraction after aneurysmal subarachnoid hemorrhage.

    PubMed

    Yundt, K D; Grubb, R L; Diringer, M N; Powers, W J

    1997-03-01

    The cerebral hemodynamic and metabolic effects of aneurysmal subarachnoid hemorrhage are complex. To investigate the impact of surgical retraction, we analyzed position emission tomography (PET) studies that measured the regional cerebral metabolic rate for oxygen, regional oxygen extraction fraction, and regional cerebral blood flow in four patients before and after right frontotemporal craniotomies for clipping of ruptured anterior circulation aneurysms. Preoperative studies were conducted 1 day before surgery and postoperative studies 6 to 17 days after surgery. No patient had hydrocephalus or intracerebral hematoma. At the time of the second PET study, none of the patients had signs of clinical vasospasm. Regional measurements were obtained from the right ventrolateral frontal and anterior temporal regions corresponding to the area of retraction and compared to the same regions in the opposite hemisphere. To establish a quantitative means to differentiate between hemodynamic and metabolic changes related to arterial vasospasm and those caused by brain retraction, we studied a second group of preoperative patients, who had undergone PET during angiographic and clinical vasospasm. There was a 45% reduction in regional cerebral metabolic rate for oxygen (1.87 +/- 0.22 to 1.04 +/- 0.28 ml 100 g-1 min-1) and 32% reduction in regional oxygen extraction fraction (0.41 +/- 0.04 to 0.28 +/- 0.03) in the region of retraction but no change in the opposite hemisphere (paired t test; P = 0.042 and 0.003, respectively). There was no change in regional cerebral blood flow in any region. Brain retraction produced a focal area of tissue injury at the site of retractor blade placement, as compared to more diffuse vascular territory changes produced by vasospasm. This reduction in the cerebral metabolic rate of oxygen and the oxygen extraction fraction indicates a primary reduction in metabolism and uncoupling of flow and metabolism (luxury perfusion). Similar findings of luxury

  20. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    PubMed

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea

  1. Renal perfusion scintiscan

    MedlinePlus

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  2. Prediction of vascular abnormalities on CT angiography in patients with acute headache.

    PubMed

    Alons, Imanda M E; Goudsmit, Ben F J; Jellema, Korné; van Walderveen, Marianne A A; Wermer, Marieke J H; Algra, Ale

    2018-05-09

    Patients with acute headache increasingly undergo CT-angiography (CTA) to evaluate underlying vascular causes. The aim of this study is to determine clinical and non-contrast CT (NCCT) criteria to select patients who might benefit from CTA. We retrospectively included patients with acute headache who presented to the emergency department of an academic medical center and large regional teaching hospital and underwent NCCT and CTA. We identified factors that increased the probability of finding a vascular abnormality on CTA, performed multivariable regression analyses and determined discrimination with the c-statistic. A total of 384 patients underwent NCCT and CTA due to acute headache. NCCT was abnormal in 194 patients. Among these, we found abnormalities in 116 cases of which 99 aneurysms. In the remaining 190 with normal NCCT we found abnormalities in 12 cases; four unruptured aneurysms, three cerebral venous thrombosis', two reversible cerebral vasoconstriction syndromes, two cervical arterial dissections and one cerebellar infarction. In multivariable analysis abnormal NCCT, lowered consciousness and presentation within 6 hr of headache onset were independently associated with abnormal CTA. The c-statistic of abnormal NCCT alone was 0.80 (95% CI: 0.75-0.80), that also including the other two variables was 0.84 (95% CI: 0.80-0.88). If NCCT was normal no other factors could help identify patients at risk for abnormalities. In patients with acute headache abnormal NCCT is the strongest predictor of a vascular abnormality on CTA. If NCCT is normal no other predictors increase the probability of finding an abnormality on CTA and diagnostic yield is low. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  3. TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Niu, Kai; Wu, Yijing

    2015-06-15

    Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTPmore » technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom and canine stroke models. Based upon this cascaded model, it has been discovered that, as long as the spatial resolution and noise properties of the 4D source CT images are given, the 3D MTF and NPS of the final CTP maps can be analytically derived for a given set of processing methods and parameters. The cascaded model analysis also identified that the most critical technical factor in CTP is how to acquire and reconstruct high quality source images; it has very little to do with the denoising techniques often used after parametric perfusion calculations. This explained why PICCS resulted in a five-fold dose reduction or substantial improvement in image quality. Conclusion: Technical innovations generated promising results towards achieving high quality and sub-mSv CTP imaging for reliable and safe assessment of acute ischemic strokes. K. Li, K. Niu, Y. Wu

  4. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

    PubMed

    Doshi, Hardik; Wiseman, Natalie; Liu, Jun; Wang, Wentao; Welch, Robert D; O'Neil, Brian J; Zuk, Conor; Wang, Xiao; Mika, Valerie; Szaflarski, Jerzy P; Haacke, E Mark; Kou, Zhifeng

    2015-01-01

    Mild traumatic brain injury (mTBI) is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI), we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL). We found increases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

  5. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease?

    PubMed

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F

    2015-01-01

    A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer's disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion- the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain- is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.

  6. Indian-Ink Perfusion Based Method for Reconstructing Continuous Vascular Networks in Whole Mouse Brain

    PubMed Central

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247

  7. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation.

    PubMed

    Berman, Daniel S; Abidov, Aiden; Kang, Xingping; Hayes, Sean W; Friedman, John D; Sciammarella, Maria G; Cohen, Ishac; Gerlach, James; Waechter, Parker B; Germano, Guido; Hachamovitch, Rory

    2004-01-01

    Recently, a 17-segment model of the left ventricle has been recommended as an optimally weighted approach for interpreting myocardial perfusion single photon emission computed tomography (SPECT). Methods to convert databases from previous 20- to new 17-segment data and criteria for abnormality for the 17-segment scores are needed. Initially, for derivation of the conversion algorithm, 65 patients were studied (algorithm population) (pilot group, n = 28; validation group, n = 37). Three conversion algorithms were derived: algorithm 1, which used mid, distal, and apical scores; algorithm 2, which used distal and apical scores alone; and algorithm 3, which used maximal scores of the distal septal, lateral, and apical segments in the 20-segment model for 3 corresponding segments of the 17-segment model. The prognosis population comprised 16,020 consecutive patients (mean age, 65 +/- 12 years; 41% women) who had exercise or vasodilator stress technetium 99m sestamibi myocardial perfusion SPECT and were followed up for 2.1 +/- 0.8 years. In this population, 17-segment scores were derived from 20-segment scores by use of algorithm 2, which demonstrated the best agreement with expert 17-segment reading in the algorithm population. The prognostic value of the 20- and 17-segment scores was compared by converting the respective summed scores into percent myocardium abnormal. Conversion algorithm 2 was found to be highly concordant with expert visual analysis by the 17-segment model (r = 0.982; kappa = 0.866) in the algorithm population. In the prognosis population, 456 cardiac deaths occurred during follow-up. When the conversion algorithm was applied, extent and severity of perfusion defects were nearly identical by 20- and derived 17-segment scores. The receiver operating characteristic curve areas by 20- and 17-segment perfusion scores were identical for predicting cardiac death (both 0.77 +/- 0.02, P = not significant). The optimal prognostic cutoff value for either 20

  8. Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers.

    PubMed

    London, Edythe D; Simon, Sara L; Berman, Steven M; Mandelkern, Mark A; Lichtman, Aaron M; Bramen, Jennifer; Shinn, Ann K; Miotto, Karen; Learn, Jennifer; Dong, Yun; Matochik, John A; Kurian, Varughese; Newton, Thomas; Woods, Roger; Rawson, Richard; Ling, Walter

    2004-01-01

    Mood disturbances in methamphetamine (MA) abusers likely influence drug use, but the neurobiological bases for these problems are poorly understood. To assess regional brain function and its possible relationships with negative affect in newly abstinent MA abusers. Two groups were compared by measures of mood and cerebral glucose metabolism ([18F]fluorodeoxyglucose positron emission tomography) during performance of a vigilance task. Participants were recruited from the general community to a research center. Seventeen abstaining (4-7 days) MA abusers (6 women) were compared with 18 control subjects (8 women). Self-reports of depressive symptoms and anxiety were measured, as were global and relative glucose metabolism in the orbitofrontal, cingulate, lateral prefrontal, and insular cortices and the amygdala, striatum, and cerebellum. Abusers of MA provided higher self-ratings of depression and anxiety than control subjects and differed significantly in relative regional glucose metabolism: lower in the anterior cingulate and insula and higher in the lateral orbitofrontal area, middle and posterior cingulate, amygdala, ventral striatum, and cerebellum. In MA abusers, self-reports of depressive symptoms covaried positively with relative glucose metabolism in limbic regions (eg, perigenual anterior cingulate gyrus and amygdala) and ratings of state and trait anxiety covaried negatively with relative activity in the anterior cingulate cortex and left insula. Trait anxiety also covaried negatively with relative activity in the orbitofrontal cortex and positively with amygdala activity. Abusers of MA have abnormalities in brain regions implicated in mood disorders. Relationships between relative glucose metabolism in limbic and paralimbic regions and self-reports of depression and anxiety in MA abusers suggest that these regions are involved in affective dysregulation and may be an important target of intervention for MA dependence.

  9. Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats.

    PubMed

    Bragin, Denis E; Kameneva, Marina V; Bragina, Olga A; Thomson, Susan; Statom, Gloria L; Lara, Devon A; Yang, Yirong; Nemoto, Edwin M

    2017-03-01

    Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood-brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved.

  10. Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats

    PubMed Central

    Kameneva, Marina V; Bragina, Olga A; Thomson, Susan; Statom, Gloria L; Lara, Devon A; Yang, Yirong; Nemoto, Edwin M

    2016-01-01

    Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood–brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved. PMID:28155574

  11. Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME.

    PubMed

    Arenillas, Juan F; Cortijo, Elisa; García-Bermejo, Pablo; Levy, Elad I; Jahan, Reza; Goyal, Mayank; Saver, Jeffrey L; Albers, Gregory W

    2017-01-01

    We aimed to evaluate how predefined candidate cerebral perfusion parameters correlate with collateral circulation status and to assess their capacity to predict infarct growth in patients with acute ischemic stroke (AIS) eligible for endovascular therapy. Patients enrolled in the SWIFT PRIME trial with baseline computed tomography perfusion (CTP) scans were included. RAPID software was used to calculate mean relative cerebral blood volume (rCBV) in hypoperfused regions, and hypoperfusion index ratio (HIR). Blind assessments of collaterals were performed using CT angiography in the whole sample and cerebral angiogram in the endovascular group. Reperfusion was assessed on 27-h CTP; infarct volume was assessed on 27-h magnetic resonance imaging/CT scans. Logistic and rank linear regression models were conducted. We included 158 patients. High rCBV ( p = 0.03) and low HIR ( p = 0.03) were associated with good collaterals. A positive association was found between rCBV and better collateral grades on cerebral angiography ( p = 0.01). Baseline and 27-h follow-up CTP were available for 115 patients, of whom 74 (64%) achieved successful reperfusion. Lower rCBV predicted a higher infarct growth in successfully reperfused patients ( p = 0.038) and in the endovascular treatment group ( p = 0.049). Finally, rCBV and HIR may serve as markers of collateral circulation in AIS patients prior to endovascular therapy. Unique identifier: NCT0165746.

  12. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation

    PubMed Central

    Hayen, Anja; Herigstad, Mari; Kelly, Michael; Okell, Thomas W.; Murphy, Kevin; Wise, Richard G.; Pattinson, Kyle T.S.

    2013-01-01

    Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9 cmH2O for 270 s) and viewed an intermittent 2 Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data. PMID:23108273

  13. Comparing model-based and model-free analysis methods for QUASAR arterial spin labeling perfusion quantification.

    PubMed

    Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J

    2013-05-01

    Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.

  14. The ultrastructural characteristics of porcine hepatocytes donated after cardiac death and preserved with warm machine perfusion preservation.

    PubMed

    Bochimoto, Hiroki; Matsuno, Naoto; Ishihara, Yo; Shonaka, Tatsuya; Koga, Daisuke; Hira, Yoshiki; Nishikawa, Yuji; Furukawa, Hiroyuki; Watanabe, Tsuyoshi

    2017-01-01

    The effects of warm machine perfusion preservation of liver grafts donated after cardiac death on the intracellular three-dimensional ultrastructure of the organelles in hepatocytes remain unclear. Here we analyzed comparatively the ultrastructure of the endomembrane systems in porcine hepatocytes under warm ischemia and successive hypothermic and midthermic machine perfusion preservation, a type of the warm machine perfusion. Porcine liver grafts which had a warm ischemia time of 60 minutes were perfused for 4 hours with modified University of Wisconsin gluconate solution. Group A grafts were preserved with hypothermic machine perfusion preservation at 8°C constantly for 4 hours. Group B grafts were preserved with rewarming up to 22°C by warm machine perfusion preservation for 4 hours. An analysis of hepatocytes after 60 minutes of warm ischemia by scanning electron microscope revealed the appearance of abnormal vacuoles and invagination of mitochondria. In the hepatocytes preserved by subsequent hypothermic machine perfusion preservation, strongly swollen mitochondria were observed. In contrast, the warm machine perfusion preservation could preserve the functional appearance of mitochondria in hepatocytes. Furthermore, abundant vacuoles and membranous structures sequestrating cellular organelles like autophagic vacuoles were frequently observed in hepatocytes after warm machine perfusion preservation. In conclusion, the ultrastructure of the endomembrane systems in the hepatocytes of liver grafts changed in accordance with the temperature conditions of machine perfusion preservation. In addition, temperature condition of the machine perfusion preservation may also affect the condition of the hepatic graft attributed to autophagy systems, and consequently alleviate the damage of the hepatocytes.

  15. INTRAVENOUS REGIONAL ANTIBIOTIC PERFUSION THERAPY AS AN ADJUNCTIVE TREATMENT FOR DIGITAL LESIONS IN SEABIRDS.

    PubMed

    Fiorello, Christine V

    2017-03-01

    Foot infections are a common problem among seabirds in wildlife rehabilitation. Pododermatitis and digital infections are often challenging to treat because of the presence of suboptimal substrates, abnormal weight-bearing due to injuries, and suboptimal nutritional or health status. Seabirds represent the majority of animals requiring rehabilitation after oil spills, and foot problems are a common reason for euthanasia among these birds. Antibiotic intravenous regional perfusion therapy is frequently used in humans and other species to treat infections of the distal extremities, but it has not been evaluated in seabirds. During the 2015 Refugio oil spill response, four birds with foot lesions (pododermatitis, osteomyelitis, or both) were treated with ampicillin/sulbactam administered intravenously to the affected limb(s) in addition to systemic antibiotics and anti-inflammatories. Three of the birds, all brown pelicans ( Pelecanus occidentalis ) recovered rapidly and were released. Two of these birds had acute pododermatitis and were treated once with intravenous regional perfusion. They were released approximately 3 wk after the perfusion therapy. The third pelican had osteomyelitis of a digit. It was treated twice with intravenous regional perfusion and was released about 1 mo after the initial perfusion therapy. The fourth bird, a Pacific loon ( Gavia pacifica ), was treated once with perfusion therapy but did not respond to treatment and was euthanatized. No serious adverse effects were observed. This technique should be explored further in avian species.

  16. Sotos syndrome (cerebral gigantism): analysis of 8 cases.

    PubMed

    Melo, Débora Gusmão; Acosta, Angelina Xavier; Salles, Maria Aparecida de Almeida; Pina-Neto, João Monteiro de; Castro, José Daniel Vieira de; Santos, Antonio Carlos

    2002-06-01

    Sotos syndrome or cerebral gigantism is characterized by macrocephaly, overgrowth, mental retardation and central nervous system abnormalities. Congenital heart defects may be present. We report 8 patients with this syndrome and relate their clinical features, neuroimaging and echocardiographic findings.

  17. Cerebral and somatic oxygen saturations after repair of tetralogy of Fallot: effects of extubation on regional blood flow.

    PubMed

    Bronicki, Ronald A; Checchia, Paul A; Anas, Nick G; Adams, Gerald J; Penny, Daniel J; Bleiweis, Mark S; Shekerdemian, Lara S

    2013-02-01

    After repair of tetralogy of Fallot, some patients experience a low cardiac output state owing to right ventricular diastolic failure. Negative-pressure ventilation has been shown to improve cardiac output in these patients. What has not been evaluated is the effect of extubation and loading of the respiratory muscles on the distribution of cardiac output after repair of tetralogy of Fallot. In 23 consecutive patients undergoing repair of tetralogy of Fallot, standard hemodynamic variables, central venous oxygen saturations, and near infrared spectroscopy of the brain, mesenteric, and renal circulations were monitored for 30 minutes before and after extubation. With extubation, the systolic blood pressure increased significantly from 96 ± 11 to 106 ± 15 mm Hg (p = 0.002) while the heart rate remained unchanged. With extubation, the central venous oxygen saturation increased significantly from 65% ± 7% to 70% ± 10% (p = 0.003). Cerebral oxygen saturations increased significantly from 67% ± 10% to 72% ± 9% (p = 0.0001), whereas mesenteric oxygenation fell significantly from 74% ± 15% to 72% ± 15% (p = 0.04). Renal oxygenation was unaffected by extubation. Cardiac output and cerebral oxygenation increased significantly during spontaneous respiration, the latter suggesting that the brain was in or approaching an oxygen supply-dependent state before extubation. Despite the increase in cardiac output, the presumed increase in respiratory pump perfusion, as well as the concurrent increase in cerebral perfusion, came at the expense of mesenteric perfusion. Renal oxygenation remained unchanged with extubation. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Proximal Bright Vessel Sign on Arterial Spin Labeling Magnetic Resonance Imaging in Acute Cardioembolic Cerebral Infarction.

    PubMed

    Kato, Ayumi; Shinohara, Yuki; Kuya, Keita; Sakamoto, Makoto; Kowa, Hisanori; Ogawa, Toshihide

    2017-07-01

    The congestion of spin-labeled blood at large-vessel occlusion can present as hyperintense signals on perfusion magnetic resonance imaging with 3-dimensional pseudo-continuous arterial spin labeling (proximal bright vessel sign). The purpose of this study was to clarify the difference between proximal bright vessel sign and susceptibility vessel sign in acute cardioembolic cerebral infarction. Forty-two patients with cardioembolic cerebral infarction in the anterior circulation territory underwent magnetic resonance imaging including diffusion-weighted imaging, 3-dimensional pseudo-continuous arterial spin labeling perfusion magnetic resonance imaging, T2*-weighted imaging, and 3-dimensional time-of-flight magnetic resonance angiography using a 3-T magnetic resonance scanner. Visual assessments of proximal bright vessel sign and the susceptibility vessel sign were performed by consensus of 2 experienced neuroradiologists. The relationship between these signs and the occlusion site of magnetic resonance angiography was also investigated. Among 42 patients with cardioembolic cerebral infarction, 24 patients showed proximal bright vessel sign (57.1%) and 25 showed susceptibility vessel sign (59.5%). There were 19 cases of proximal bright vessel sign and susceptibility vessel sign-clear, 12 cases of proximal bright vessel sign and susceptibility vessel sign-unclear, and 11 mismatched cases. Four out of 6 patients with proximal bright vessel sign-unclear and susceptibility vessel sign-clear showed distal middle cerebral artery occlusion, and 2 out of 5 patients with proximal bright vessel sign-clear and susceptibility vessel sign-unclear showed no occlusion on magnetic resonance angiography. Proximal bright vessel sign is almost compatible with susceptibility vessel sign in patients with cardioembolic cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. [Trismus, pseudobulbar syndrome and cerebral deep venous thrombosis].

    PubMed

    Alecu, C; De Bray, J M; Penisson-Besnier, I; Pasco-Papon, A; Dubas, F

    2001-03-01

    We report a case of cerebral deep venous thrombosis that manifested clinically by a pseudobulbar syndrome with major trismus, abnormal movements and static cerebellar syndrome. To our knowledge, only three other cases of deep cerebral venous thrombosis associated with cerebellar or pseudobulbar syndrome have been published since 1985. The relatively good prognosis in our patient could be explained by the partially intact internal cerebral veins as well as use of early anticoagulant therapy. There was a spontaneous hyperdensity of the falx cerebri and the tentorium cerebelli on the brain CT scan, an aspect highly contributive to diagnosis. This hyperdensity of the falx cerebri was found in 19 out of 22 cases of deep venous thrombosis detailed in the literature.

  20. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria.

    PubMed

    Potchen, Michael J; Birbeck, Gretchen L; Demarco, J Kevin; Kampondeni, Sam D; Beare, Nicholas; Molyneux, Malcolm E; Taylor, Terrie E

    2010-04-01

    To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Survey of the clinical assessment and utility of near-infrared cerebral oximetry in cardiac surgery.

    PubMed

    Zacharias, David G; Lilly, Kevin; Shaw, Cynthia L; Pirundini, Paul; Rizzo, Robert J; Body, Simon C; Longford, Nicholas T

    2014-04-01

    Near-infrared cerebral oximetry increasingly is used for monitoring during cardiac surgery. Nonetheless, the scientific basis for incorporating this technology into clinical practice, the indications for when to do so, and standard diagnostic and treatment algorithms for defining abnormal values are yet to be rigorously defined. The authors hypothesized that there would be (1) variation in clinical use and practices for near-infrared spectroscopy (NIRS), and (2) variation in management of patients when clinicians are provided with NIRS information. In order to test this hypothesis, they sought to assess the nature and strength of response heterogeneity among anesthesiologists and cardiac perfusionists when provided with cardiac surgery patient scenarios and cerebral oximetry data. A prospectively collected survey. A hospital-based, multi-institutional, multinational study. By e-mail, the authors surveyed the membership of the Society of Cardiovascular Anesthesiologists and the online Cardiovascular Perfusion Forum. This survey was focused on ascertaining what actions clinicians would take in each scenario, given case information and cerebral oximetry tracings. Questions were based on 11 patient scenarios selected to represent small, large, symmetric, or asymmetric decreases in measured regional cerebral oxygen saturation (rScO2) encountered during cardiac surgery. Information on the respondents' (n = 796; 73% anesthesiologists) clinical practice, demography, and cerebral oximetry utilization was collected. An index of dispersion was used to assess response heterogeneity overall and within demographic subgroups. The majority of respondents indicated that cerebral oximetry monitoring was either useful or an essential monitor, especially perfusionists and clinicians who used cerebral oximetry most frequently. There were marked differences in responses between perfusionists and anesthesiologists for 4 of the 6 scenarios (p<0.005 for each of these 4 scenarios) occurring

  2. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction

    PubMed Central

    Trimble, Mark A.; Borges-Neto, Salvador; Honeycutt, Emily F.; Shaw, Linda K.; Pagnanelli, Robert; Chen, Ji; Iskandrian, Ami E.; Garcia, Ernest V.; Velazquez, Eric J.

    2010-01-01

    Background Using phase analysis of gated single photon emission computed tomography (SPECT) imaging, we examined the relation between myocardial perfusion, degree of electrical dyssynchrony, and degree of SPECT-derived mechanical dyssynchrony in patients with left ventricular (LV) dysfunction. Methods and Results We retrospectively examined 125 patients with LV dysfunction and ejection fraction of 35% or lower. Fourier analysis converts regional myocardial counts into a continuous thickening function, allowing resolution of phase of onset of myocardial thickening. The SD of LV phase distribution (phase SD) and histogram bandwidth describe LV phase dispersion as a measure of dyssynchrony. Heart failure (HF) patients with perfusion abnormalities ities have higher degrees of dyssynchrony measured by median phase SD (45.5° vs 27.7°, P < .0001) and bandwidth (117.0° vs 73.0°, P = .0006). HF patients with prolonged QRS durations have higher degrees of dyssynchrony measured by median phase SD (54.1° vs 34.7°, P < .0001) and bandwidth (136.5° vs 99.0°, P = .0005). Mild to moderate correlations exist between QRS duration and phase analysis indices of phase SD (r = 0.50) and bandwidth (r = 0.40). Mechanical dyssynchrony (phase SD >43°) was 43.2%. Conclusions HF patients with perfusion abnormalities or prolonged QRS durations QRS durations have higher degrees of mechanical dyssynchrony. Gated SPECT myocardial perfusion imaging can quantify myocardial function, perfusion, and dyssynchrony and may help in evaluating patients for cardiac resynchronization therapy. PMID:18761269

  3. Abnormal regional cerebral blood flow in systemic lupus erythematosus patients with psychiatric symptoms.

    PubMed

    Oda, Kenji; Matsushima, Eisuke; Okubo, Yoshiro; Ohta, Katsuya; Murata, Yuji; Koike, Ryuji; Miyasaka, Nobuyuki; Kato, Motoichiro

    2005-07-01

    Single-photon emission computed tomography (SPECT) studies have demonstrated decreased regional cerebral blood flow (rCBF) in systemic lupus erythematosus (SLE) patients. However, no study has done voxel-based analysis using statistical parametric mapping (SPM) that can evaluate rCBF objectively, and the relationship between rCBF and psychiatric symptoms has not been well investigated. Using L,L-ethyl cysteinate dimer (99mTc ECD) SPECT and SPM, we aimed to clarify the association of rCBF changes with psychiatric symptoms in SLE patients whose magnetic resonance imaging (MRI) showed no morphological abnormalities. Twenty SLE patients and 19 healthy volunteers underwent 99mTc ECD SPECT. Data were collected from August 2000 to March 2003. SLE was diagnosed according to American College of Rheumatology criteria, and psychiatric symptoms were diagnosed according to ICD-10 criteria. On the basis of the modified Carbotte, Denburg, and Denburg method, the patients were classified into 3 groups: a group with major psychiatric symptoms (hallucinosis, delusional disorder, and mood disorder), a group with minor psychiatric symptoms (anxiety disorder, dissociative disorder, and emotionally labile disorder), and a group without psychiatric symptoms. Gross organic lesions were ruled out by brain MRI. Group comparisons of rCBF were performed with analysis using SPM99. SLE patients without MRI lesions showed decreased rCBF in the posterior cingulate gyrus and thalamus. The reduction in rCBF was overt in patients with major psychiatric symptoms. Our study indicated that SLE patients may have dysfunction in the posterior cingulate gyrus and thalamus and that this may be associated with the severity of psychiatric symptoms.

  4. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic

  5. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats.

    PubMed

    Glendenning, Michele L; Lovekamp-Swan, Tara; Schreihofer, Derek A

    2008-11-14

    Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.

  6. Myocardial Perfusion Pattern for Stratification of Ischemic Mitral Regurgitation Response to Percutaneous Coronary Intervention

    PubMed Central

    Goyal, Parag; Kim, Jiwon; Feher, Attila; Ma, Claudia L.; Gurevich, Sergey; Veal, David R.; Szulc, Massimiliano; Wong, Franklin J.; Ratcliffe, Mark B.; Levine, Robert A.; Devereux, Richard B.; Weinsaft, Jonathan W.

    2015-01-01

    Objective Ischemic mitral regurgitation (MR) is common, but its response to percutaneous coronary intervention (PCI) is poorly understood. This study tested utility of myocardial perfusion imaging (MPI) for stratification of MR response to PCI. Methods MPI and echo were performed among patients undergoing PCI. MPI was used to assess stress/rest myocardial perfusion. MR was assessed via echo (performed pre- and post-PCI). Results 317 patients with abnormal myocardial perfusion on MPI underwent echo 25±39 days prior to PCI. MR was present in 52%, among whom 24% had advanced (≥moderate) MR. MR was associated with LV chamber dilation on MPI and echo (both p<0.001). Magnitude of global LV perfusion deficits increased in relation to MR severity (p<0.01). Perfusion differences were greatest for global summed rest scores, which were 1.6-fold higher among patients with advanced MR vs. those with mild MR (p=0.004), and 2.4-fold higher vs. those without MR (p<0.001). In multivariate analysis, advanced MR was associated with fixed perfusion defect size on MPI (OR 1.16 per segment [CI 1.002–1.34], p=0.046) independent of LV volume (OR 1.10 per 10ml [CI 1.04–1.17], p=0.002). Follow-up via echo (1.0±0.6 years) demonstrated MR to decrease (≥1 grade) in 31% of patients, and increase in 12%. Patients with increased MR after PCI had more severe inferior perfusion defects on baseline MPI (p=0.028), whereas defects in other distributions and LV volumes were similar (p=NS). Conclusions Extent and distribution of SPECT-evidenced myocardial perfusion defects impacts MR response to revascularization. Increased magnitude of inferior fixed perfusion defects predicts post-PCI progression of MR. PMID:26049923

  7. Magnetic resonance imaging in children presenting migraine with aura: Association of hypoperfusion detected by arterial spin labelling and vasospasm on MR angiography findings.

    PubMed

    Cadiot, Domitille; Longuet, Romain; Bruneau, Bertrand; Treguier, Catherine; Carsin-Vu, Aline; Corouge, Isabelle; Gomes, Constantin; Proisy, Maïa

    2018-04-01

    Objective A child presenting with a first attack of migraine with aura usually undergoes magnetic resonance imaging (MRI) to rule out stroke. The purpose of this study was to report vascular and brain perfusion findings in children suffering from migraine with aura on time-of-flight MR angiography (TOF-MRA) and MR perfusion imaging using arterial spin labelling (ASL). Methods We retrospectively included all children who had undergone an emergency MRI examination with ASL and TOF-MRA sequences for acute neurological deficit and were given a final diagnosis of migraine with aura. The ASL perfusion maps and TOF-MRA images were independently assessed by reviewers blinded to clinical data. A mean cerebral blood flow (CBF) value was obtained for each cerebral lobe after automatic data post-processing. Results Seventeen children were finally included. Hypoperfusion was identified in one or more cerebral lobes on ASL perfusion maps by visual assessment in 16/17 (94%) children. Vasospasm was noted within the intracranial vasculature on the TOF-MRA images in 12/17 (71%) children. All (100%) of the abnormal TOF-MRA images were associated with homolateral hypoperfusion. Mean CBF values were significantly lower ( P < 0.05) in visually hypoperfused lobes than in normally perfused lobes. Conclusion ASL and TOF-MRA are two totally non-invasive, easy-to-use MRI sequences for children in emergency settings. Hypoperfusion associated with homolateral vasospasm may suggest a diagnosis of migraine with aura.

  8. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  9. Further studies on the role of prostaglandin in fever

    PubMed Central

    Dey, P. K.; Feldberg, W.; Gupta, K. P.; Milton, A. S.; Wendlandt, Sabine

    1974-01-01

    1. Experiments were carried out in unanaesthetized cats to find out if a prostaglandin is the mediator (a) for the long lasting fever which often follows injections of phsyiological salt solutions into the cerebral ventricles or into the cisterna magna, as well as their perfusions through the cerebral ventricles, and (b) for the sodium fever which occurs during a perfusion of the cerebral ventricles with calcium-free artificial c.s.f. A fever mediated by prostaglandin should be accompanied by an increase of prostaglandin activity in cisternal c.s.f., and be abolished or prevented by antipyretics like paracetamol or indomethacin which inhibit prostaglandin synthesis. Both criteria were applied. 2. The fever which follows injections or perfusions of physiological salt solutions appears to be mediated by a prostaglandin of the E series, probably E2 (PGE2) because it was accompanied by increased prostaglandin E-like activity in the c.s.f. and abolished by paracetamol and indomethacin. During the first few days after pre-treatment of the cats with intramuscular chloramphenicol the injections were rarely followed by fever. 3. The fever which occurs during a perfusion with calcium-free artificial c.s.f. appears not to be mediated by prostaglandin, because it was not associated with increased prostaglandin activity in the cisternal effluent, and not prevented by paracetamol or indomethacin, although these antipyretics usually attenuated the fever. 4. A perfusion of the cerebral ventricles with artificial c.s.f. containing calcium in an abnormally high concentration (6·25 mM) brought down fever produced by PGE1, or PGE2, or bacterial pyrogen. PMID:4215879

  10. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer’s Disease?

    PubMed Central

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F.

    2015-01-01

    Abstract A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation. PMID:25720414

  11. CT Perfusion of the Head

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion ... of CT Perfusion of the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion ...

  12. The relationship between cardiac output and dynamic cerebral autoregulation in humans.

    PubMed

    Deegan, B M; Devine, E R; Geraghty, M C; Jones, E; Ólaighin, G; Serrador, J M

    2010-11-01

    Cerebral autoregulation adjusts cerebrovascular resistance in the face of changing perfusion pressures to maintain relatively constant flow. Results from several studies suggest that cardiac output may also play a role. We tested the hypothesis that cerebral blood flow would autoregulate independent of changes in cardiac output. Transient systemic hypotension was induced by thigh-cuff deflation in 19 healthy volunteers (7 women) in both supine and seated positions. Mean arterial pressure (Finapres), cerebral blood flow (transcranial Doppler) in the anterior (ACA) and middle cerebral artery (MCA), beat-by-beat cardiac output (echocardiography), and end-tidal Pco(2) were measured. Autoregulation was assessed using the autoregulatory index (ARI) defined by Tiecks et al. (Tiecks FP, Lam AM, Aaslid R, Newell DW. Stroke 26: 1014-1019, 1995). Cerebral autoregulation was better in the supine position in both the ACA [supine ARI: 5.0 ± 0.21 (mean ± SE), seated ARI: 3.9 ± 0.4, P = 0.01] and MCA (supine ARI: 5.0 ± 0.2, seated ARI: 3.8 ± 0.3, P = 0.004). In contrast, cardiac output responses were not different between positions and did not correlate with cerebral blood flow ARIs. In addition, women had better autoregulation in the ACA (P = 0.046), but not the MCA, despite having the same cardiac output response. These data demonstrate cardiac output does not appear to affect the dynamic cerebral autoregulatory response to sudden hypotension in healthy controls, regardless of posture. These results also highlight the importance of considering sex when studying cerebral autoregulation.

  13. The Frequency and Severity of Magnetic Resonance Imaging Abnormalities in Infants with Mild Neonatal Encephalopathy.

    PubMed

    Walsh, Brian H; Neil, Jeffrey; Morey, JoAnn; Yang, Edward; Silvera, Michelle V; Inder, Terrie E; Ortinau, Cynthia

    2017-08-01

    To assess and contrast the incidence and severity of abnormalities on cerebral magnetic resonance imaging (MRI) between infants with mild, moderate, and severe neonatal encephalopathy who received therapeutic hypothermia. This retrospective cohort studied infants with mild, moderate, and severe neonatal encephalopathy who received therapeutic hypothermia at a single tertiary neonatal intensive care unit between 2013 and 2015. Two neuroradiologists masked to the clinical condition evaluated brain MRIs for cerebral injury after therapeutic hypothermia using the Barkovich classification system. Additional abnormalities not included in this classification system were also noted. The rate, pattern, and severity of abnormalities/injury were compared across the grades of neonatal encephalopathy. Eighty-nine infants received therapeutic hypothermia and met study criteria, 48 with mild neonatal encephalopathy, 35 with moderate neonatal encephalopathy, and 6 with severe neonatal encephalopathy. Forty-eight infants (54%) had an abnormality on MRI. There was no difference in the rate of overall MRI abnormalities by grade of neonatal encephalopathy (mild neonatal encephalopathy 54%, moderate neonatal encephalopathy 54%, and severe neonatal encephalopathy 50%; P= .89). Basal ganglia/thalamic injury was more common in those with severe neonatal encephalopathy (mild neonatal encephalopathy 4%, moderate neonatal encephalopathy 9%, severe neonatal encephalopathy 34%; P = .03). In contrast, watershed injury did not differ between neonatal encephalopathy grades (mild neonatal encephalopathy 36%, moderate neonatal encephalopathy 32%, severe neonatal encephalopathy 50%; P = .3). Mild neonatal encephalopathy is commonly associated with MRI abnormalities after therapeutic hypothermia. The grade of neonatal encephalopathy during the first hours of life may not discriminate adequately between infants with and without cerebral injury noted on MRI after therapeutic hypothermia

  14. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification.

    PubMed

    Gupta, A; Young, R J; Shah, A D; Schweitzer, A D; Graber, J J; Shi, W; Zhang, Z; Huse, J; Omuro, A M P

    2015-06-01

    Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.

  15. Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories

    PubMed Central

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.

    2013-01-01

    Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884

  16. Microvascular perfusion during focal vasogenic brain edema: a scanning laser fluorescence microscopy study.

    PubMed

    Lindsberg, P J; Sirén, A L; Hallenbeck, J M

    1997-01-01

    Controversy exists about the effect of tissue edema on cerebral microcirculation. High spatial resolution is required for observation of extravasation and microcirculation during focal vasogenic edema formation. To study the relationship between tissue edema and perfusion, we developed a technique for simultaneous visualization of extravasation and microvessel perfusion in rats. Focal intracortical microvascular injury was generated with a 1-sec Nd-YAG laser pulse. Evans blue albumin (EBA) was infused 30 min before decapitation to study extravasation and FITC-dextran was injected 30 sec prior to decapitation to examine microvessel perfusion. Computerized scanning laser-excited fluorescence microscopy followed by high resolution image analysis permitted quantitative assessment of both parameters on single fresh-frozen brain sections. Studied at 30 min (3.66 +/- 0.15 mm), 2 hr (4.14 +/- 0.08 mm, P < .05), and 8 hr (4.69 +/- 0.18 mm, P < .01) after injury, the diameter of the circular, sharply demarcated zone of EBA-extravasation increased progressively. At 30 min, microvessels at a zone surrounding the area of EBA-extravasation contained 69 +/- 14% (P < .05) more fluorescent FITC-filling than in the control hemisphere, but the density of perfused microvessels was unchanged. At 2 hr, secondary tissue changes had already occurred in a zone surrounding the initial laser lesion. While severe reduction in the density (-76 +/- 13%, P < .05) of perfused microvessels was observed within 400 to 240 microm inside the border of EBA extravasation, perfusion indexes were normal despite the presence of extravasated plasma constituents within 0-80 microm from the border. In a narrow zone (80 microm) outside the border of extravasation, individual microvessels contained 34 +/- 9% (P < .01) less FITC-fluorescence than those in a homologous area of the uninjured contralateral hemisphere. This report demonstrates the feasibility of simultaneous measurement and high-resolution mapping

  17. A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets.

    PubMed

    Diop, Mamadou; Elliott, Jonathan T; Tichauer, Kenneth M; Lee, Ting-Yim; St Lawrence, Keith

    2009-05-01

    Near-infrared spectroscopy (NIRS) is a promising technique for assessing brain function in newborns, particularly due to its portability and sensitivity to cerebral hemodynamics and oxygenation. Methods for measuring cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) have been developed based on broadband continuous-wave NIRS. However, broadband NIRS apparatus typically have only one detection channel, which limits their applicability to measuring regional CBF and CMRO(2). In this study, a relatively simple multiplexing approach based on electronically controlled mechanical shutters is proposed to expand the detection capabilities from one to eight channels. The tradeoff is an increase in the sampling interval; however, this has negligible effects on CBF measurements for intervals less than or equal to 1 s. The ability of the system to detect focal brain injury was demonstrated in piglets by injecting endothelin-1 (ET-1) into the cerebral cortex. For validation, CBF was independently measured by computed tomography (CT) perfusion. The average reduction in CBF from the source-detector pair that interrogated the injured region was 51%+/-9%, which was in good agreement with the CBF reduction measured by CT perfusion (55%+/-5%). No significant changes in regional CMRO(2) were observed. The average regional differential pathlength prior to ET-1 injection was 8.4+/-0.2 cm (range of 7.1-9.6 cm) and did not significantly change after the injury.

  18. Stress perfusion magnetic resonance imaging to detect coronary artery lesions in children.

    PubMed

    Vijarnsorn, Chodchanok; Noga, Michelle; Schantz, Daryl; Pepelassis, Dion; Tham, Edythe B

    2017-05-01

    Stress perfusion cardiovascular magnetic resonance (CMR) is used widely in adult ischemic heart disease, but data in children is limited. We sought to evaluate feasibility, accuracy and prognostic value of stress CMR in children with suspected coronary artery disease (CAD). Stress CMR was reviewed from two pediatric centers over 5 years using a standard pharmacologic protocol. Wall motion abnormalities, perfusion deficits and late enhancement were correlated with coronary angiogram (CAG) when available, and clinical status at 1 year follow-up for major adverse cardiovascular events (MACE; coronary revascularization, non-fatal myocardial infarction and death due to CAD) was recorded. Sixty-four stress perfusion CMR studies in 48 children (10.9 ± 4.8 years) using adenosine; 59 (92%) and dipyridamole; 5 (8%), were reviewed. Indications were Kawasaki disease (39%), post arterial switch operation (12.5%), post heart transplantation (12.5%), post anomalous coronary artery repair (11%), chest pain (11%), suspected myocarditis or CAD (3%), post coronary revascularization (3%), and others (8%). Twenty-six studies were performed under sedation. Of all studies performed, 66% showed no evidence of ischemia or infarction, 28% had perfusion deficits and 6% had late gadolinium enhancement (LGE) without perfusion deficit. Compared to CAG, the positive predictive value (PPV) of stress CMR was 80% with negative predictive value (NPV) of 88%. At 1 year clinical follow-up, the PPV and NPV of stress CMR to predict MACE were 78 and 98%. Stress-perfusion CMR, in combination with LGE and wall motion-analysis is a feasible and an accurate method of diagnosing CAD in children. In difficult cases, it also helps guide clinical intervention by complementing conventional CAG with functional information.

  19. Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report.

    PubMed

    Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila

    2016-07-20

    Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early

  20. Distributed Perfusion Educational Model: A Shift in Perfusion Economic Realities

    PubMed Central

    Austin, Jon W.; Evans, Edward L.; Hoerr, Harry R.

    2005-01-01

    Abstract: In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  1. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  2. Brain perfusion alterations in depressed patients with Parkinson's disease.

    PubMed

    Kim, Young-Do; Jeong, Hyeonseok S; Song, In-Uk; Chung, Yong-An; Namgung, Eun; Kim, Yong-Duk

    2016-12-01

    Although Parkinson's disease (PD) is frequently accompanied by depression, brain perfusion deficits in PD with depression remain unclear. This study aimed to assess alterations in regional cerebral blood flow (rCBF) in depressed PD patients using 99m Tc hexamethyl-propylene-amine-oxime single-photon emission computed tomography (SPECT). Among 78 patients with PD, 35 patients were classified into the depressed PD group, while the rest (43 patients) was assigned to the nondepressed PD group based on the scores of the Geriatric Depressive Scale (GDS). All participants underwent brain SPECT imaging. The voxel-wise whole-brain analysis and region-of-interest (ROI) analysis of the limbic areas were conducted to compare rCBF between the depressed and nondepressed PD groups. The depressed PD patients demonstrated higher GDS scores than nondepressed patients, whereas between-group differences in the PD severity and cognitive function were not significant. Perfusion in the left cuneus was increased, while that in the right superior temporal gyrus and right medial orbitofrontal cortex was reduced in the depressed PD patients as compared with nondepressed PD patients. In addition, the ROI analysis demonstrated rCBF decreases in the amygdala, anterior cingulate cortex, hippocampus, and parahippocampal gyrus in the depressed PD group. A positive correlation was found between the GDS scores and rCBF in the left cuneus cluster in the depressed PD patients. This study identified the regional pattern of brain perfusion that distinguished depressed from nondepressed PD patients. Hyperperfusion in the occipital areas and hypoperfusion in the fronto-temporo-limbic regions may be potential imaging biomarkers for depression in PD.

  3. Brain Perfusion In Asphyxiated Newborns Treated with Therapeutic Hypothermia

    PubMed Central

    Wintermark, Pia; Hansen, Anne; Gregas, Matthew C.; Soul, Janet; Labrecque, Michelle; Robertson, Richard L.; Warfield, Simon K.

    2012-01-01

    Background and Purpose Induced hypothermia is thought to work partly by mitigating reperfusion injury in asphyxiated term newborns. The purpose of this study is to assess brain perfusion in the first week of life in these newborns. Patients and Methods In this prospective cohort study, magnetic resonance imaging (MRI) and perfusion imaging by arterial spin labeling (ASL-PI) was used to assess brain perfusion in these newborns. We measured regional cerebral blood flow values on 1–2 MRIs obtained during the first week of life and compared them to values obtained in control term newborns. The same or later MRI scans were obtained to define the extent of brain injury. Results Eighteen asphyxiated and four control term newborns were enrolled; eleven asphyxiated newborns were treated with hypothermia. Those developing brain injury despite being treated with induced hypothermia usually displayed hypoperfusion on day of life (DOL) 1, and then hyperperfusion on DOL 2–3 in brain areas subsequently exhibiting injury. Asphyxiated newborns not treated with hypothermia who developed brain injury also displayed hyperperfusion on DOL 1–6 in brain areas displaying injury. Conclusions Our data show that ASL-PI may be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not hypothermia is administered. Since hypothermia for 72 hours may not prevent brain injury when hyperperfusion is found early in the course of neonatal hypoxic-ischemic encephalopathy, such newborns may be candidates for adjustments in their hypothermia therapy or for adjunctive neuroprotective therapies. PMID:21979494

  4. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders

    NASA Astrophysics Data System (ADS)

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-01

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds’ Glx, Cho, Cr in the ACC and HCs’ mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds’ Glx and Cr in the PC and HCs’ mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  5. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders.

    PubMed

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-21

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds' Glx, Cho, Cr in the ACC and HCs' mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds' Glx and Cr in the PC and HCs' mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  6. Development of a cerebral circulation model for the automatic control of brain physiology.

    PubMed

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  7. Is there a need for adjunct cerebral protection in conjunction with deep hypothermic circulatory arrest during noncomplex hemiarch surgery?

    PubMed

    Kaneko, Tsuyoshi; Aranki, Sary F; Neely, Robert C; Yazdchi, Farhang; McGurk, Siobhan; Leacche, Marzia; Shekar, Prem S

    2014-12-01

    Different cerebral protection strategies are currently being practiced during noncomplex hemiarch surgery without randomized control studies to show their relative efficacy. We hypothesized that deep hypothermic circulatory arrest (DHCA) alone was adequate for cerebral protection in noncomplex hemiarch surgery. Four hundred sixty-seven patients underwent noncomplex hemiarch surgery between January 2002 and December 2012. Calcified aortas and total arch surgeries were excluded. DHCA alone was used for 276 patients, DHCA with antegrade cerebral perfusion (ACP) was used for 114 patients, and DHCA with retrograde cerebral perfusion (RCP) was used for 77 patients. Preoperative characteristics were similar between groups (12.3% in the DHCA group, 12.3% in the ACP group, and 10.3% in RCP group were reoperations). Patients in the DHCA group had shorter cardiopulmonary bypass times (193 minutes vs 217 minutes; P ≤ .005) and total lower body ischemic times (21 minutes vs 30 minutes; P ≤ .001) than ACP, but not RCP. Rates of reoperations for bleeding, postoperative stroke, and new renal failure did not differ between groups. New onset of cerebrovascular events were seen in 5.4% of patients in the DHCA group versus 6.2% of patients in the ACP group and 6.4% of patients in the RCP group (all P values > .7). Operative mortality in the DHCA group was 4.7% versus 2.6% in the ACP group and 2.6% in the RCP group (all P values > .4). Cox proportional hazard modeling showed no survival differences between groups. Outcomes and survival using DHCA alone were comparable to adjunct cerebral protection methods in patients undergoing noncomplex hemiarch surgery. DHCA alone is as safe as other adjunct complex cerebral protection techniques and simplifies operation without additional risk. Copyright © 2014. Published by Elsevier Inc.

  8. TGFβ pathway deregulation and abnormal phospho-SMAD2/3 staining in hereditary cerebral hemorrhage with amyloidosis-Dutch type.

    PubMed

    Grand Moursel, Laure; Munting, Leon P; van der Graaf, Linda M; van Duinen, Sjoerd G; Goumans, Marie-Jose T H; Ueberham, Uwe; Natté, Remco; van Buchem, Mark A; van Roon-Mom, Willeke M C; van der Weerd, Louise

    2017-05-29

    Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) pathology, caused by the E22Q mutation in the amyloid β (Aβ) peptide. Transforming growth factor β1 (TGFβ1) is a key player in vascular fibrosis and in the formation of angiopathic vessels in transgenic mice. Therefore, we investigated whether the TGFβ pathway is involved in HCHWA-D pathogenesis in human postmortem brain tissue from frontal and occipital lobes. Components of the TGFβ pathway were analyzed with quantitative RT-PCR. TGFβ1 and TGFβ Receptor 2 (TGFBR2) gene expression levels were significantly increased in HCHWA-D in comparison to the controls, in both frontal and occipital lobes. TGFβ-induced pro-fibrotic target genes were also upregulated. We further assessed pathway activation by detecting phospho-SMAD2/3 (pSMAD2/3), a direct TGFβ down-stream signaling mediator, using immunohistochemistry. We found abnormal pSMAD2/3 granular deposits specifically on HCHWA-D angiopathic frontal and occipital vessels. We graded pSMAD2/3 accumulation in angiopathic vessels and found a positive correlation with the CAA load independent of the brain area. We also observed pSMAD2/3 granules in a halo surrounding occipital vessels, which was specific for HCHWA-D. The result of this study indicates an upregulation of TGFβ1 in HCHWA-D, as was found previously in AD with CAA pathology. We discuss the possible origins and implications of the TGFβ pathway deregulation in the microvasculature in HCHWA-D. These findings identify the TGFβ pathway as a potential biomarker of disease progression and a possible target of therapeutic intervention in HCHWA-D. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  9. Cerebral Blood Flow Velocity and Neurodevelopmental Outcome in Infants Undergoing Surgery for Congenital Heart Disease

    PubMed Central

    Cheng, Henry H.; Wypij, David; Laussen, Peter C.; Bellinger, David C.; Stopp, Christian D.; Soul, Janet S.; Newburger, Jane W.; Kussman, Barry D.

    2014-01-01

    Background Cerebral blood flow velocity (CBFV) measured by transcranial Doppler sonography has provided information on cerebral perfusion in patients undergoing infant heart surgery, but no studies have reported a relationship to early postoperative and long-term neurodevelopmental outcomes. Methods CBFV was measured in infants undergoing biventricular repair without aortic arch reconstruction as part of a trial of hemodilution during cardiopulmonary bypass (CPB). CBFV (Vm, mean; Vs, systolic; Vd, end-diastolic) in the middle cerebral artery and change in Vm (rVm) were measured intraoperatively and up to 18 hours post-CPB. Neurodevelopmental outcomes, measured at 1 year of age, included the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Development-II. Results CBFV was measured in 100 infants: 43 with D-transposition of the great arteries, 36 with tetralogy of Fallot, and 21 with ventricular septal defects. Lower Vm, Vs, Vd, and rVm at18 hours post-CPB were independently related to longer ICU duration of stay (P<0.05). In the 85 patients who returned for neurodevelopmental testing, lower Vm, Vs, Vd and rVm at 18 hours post-CPB were independently associated with lower PDI (P<0.05) and MDI (P<0.05, except Vs: P=0.06) scores. Higher Vs and rVm at 18 hours post-CPB were independently associated with increased incidence of brain injury on MRI in 39 patients. Conclusions Postoperative CBFV after biventricular repair is related to early postoperative and neurodevelopmental outcomes at 1 year of age, possibly indicating that low CBFV is a marker of suboptimal postoperative hemodynamics and cerebral perfusion. PMID:24820395

  10. Regional glucose utilization in infarcted and remote myocardium: its relation to coronary anatomy and perfusion.

    PubMed

    Fragasso, G; Chierchia, S L; Landoni, C; Lucignani, G; Rossetti, E; Sciammarella, M; Vanoli, G E; Fazio, F

    1998-07-01

    -revascularized patients of those remote areas which are apparently normally perfused, but show abnormal fasting FDG uptake after myocardial infarction. Such studies may have important implications for the management of post-infarct patients, as the preservation of coronary vasodilator reserve and myocardial metabolism in remote myocardium may be seen as an additional goal in the treatment of such patients.

  11. Mannitol infusion immediately after reperfusion suppresses the development of focal cortical infarction after temporary cerebral ischemia in gerbils

    PubMed Central

    Ito, Umeo; Hakamata, Yoji; Watabe, Kazuhiko; Oyanagi, Kiyomitsu

    2014-01-01

    Previously we found that, after temporary cerebral ischemia, microvasculogenic secondary focal cerebral cortical ischemia occurred, caused by microvascular obstruction due to compression by swollen astrocytic end-feet, resulting in focal infarction. Herein, we examined whether mannitol infusion immediately after restoration of blood flow could protect the cerebral cortex against the development of such an infarction. If so, the infusion of mannitol might improve the results of vascular reperfusion therapy. We selected stroke-positive animals during the first 10 min after left carotid occlusion performed twice with a 5-h interval, and allocated them into four groups: sham-operated control, no-treatment, mannitol-infusion, and saline-infusion groups. Light- and electron-microscopic studies were performed on cerebral cortices of coronal sections prepared at the chiasmatic level, where the focal infarction develops abruptly in the area where disseminated selective neuronal necrosis is maturing. Measurements were performed to determine the following: (A) infarct size in HE-stained specimens from all groups at 72 and 120 h after return of blood flow; (B) number of carbon-black-suspension-perfused microvessels in the control and at 0.5, 3, 5, 8, 12 and 24 h in the no-treatment and mannitol-infusion groups; (C) area of astrocytic end-feet; and (D) number of mitochondria in the astrocytic end-feet in electron microscopic pictures taken at 5 h. The average decimal fraction area ratio of infarct size in the mannitol group was significantly reduced at 72 and 120 h, associated with an increased decimal fraction number ratio of carbon-black-suspension-perfused microvessels at 3, 5 and 8 h, and a marked reduction in the size of the end-feet at 5 h. Mannitol infusion performed immediately after restitution of blood flow following temporary cerebral ischemia remarkably reduced the size of the cerebral cortical focal infarction by decreasing the swelling of the end

  12. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?

    PubMed Central

    De Silva, T. Michael; Miller, Alyson A.

    2016-01-01

    Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors. PMID:27014073

  13. Measuring Cerebral Hypoperfusion Induced by Hyperventilation Challenge With Intravoxel Incoherent Motion Magnetic Resonance Imaging in Healthy Volunteers.

    PubMed

    Pavilla, Aude; Arrigo, Alessandro; Mejdoubi, Mehdi; Duvauferrier, Régis; Gambarota, Giulio; Saint-Jalmes, Hervé

    The aim of this study was to demonstrate the feasibility to assess cerebral hypoperfusion with a hyperventilation (HV) challenge protocol using intravoxel incoherent motion (IVIM) magnetic resonance imaging. Magnetic resonance imaging experiments were performed on 10 healthy volunteers at 1.5 T, with a diffusion IVIM magnetic resonance imaging protocol using a set of b-values optimized by Cramer-Rao Lower Bound analysis. Hypoperfusion was induced by an HV maneuver. Measurements were performed in normoventilation and HV conditions. Biexponential curve fitting was used to obtain the perfusion fraction (f), pseudodiffusion coefficient (D*), and the product fD* in gray matter (GM) regions of interest (ROIs). Regional cerebral blood flow in the same ROIs was also assessed with arterial spin labeling. The HV challenge led to a diminution of IVIM perfusion-related parameters, with a decrease of f and fD* in the cerebellum (P = 0.03 for f; P = 0.01 for fD*), thalamus GM (P = 0.09 for f; P = 0.01 for fD*), and lenticular nuclei (P = 0.03 for f; P = 0.02 for fD*). Mean GM cerebral blood flow (in mL/100 g tissue/min) measured with arterial spin labeling averaged over all ROIs also decreased (normoventilation: 42.7 ± 4.1 vs HV: 33.2 ± 2.2, P = 0.004) during the HV challenge. The optimized IVIM protocol proposed in the current study allows for measurements of cerebral hypoperfusion that might be of great interest for pathologies diagnosis such as ischemic stroke.

  14. Study on the cerebrovascular reserve capacity by MR perfusion weighted imaging in SHR

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Dong, Yang; Chen, WenLi; Lin, Xueying; Xing, Da; Huang, Li

    2007-05-01

    Cerebrovascular disease is one of the leading causes of death, and approximately 50% of survivors have a residual neurologic deficit and greater than 25% require chronic care. Cerebrovascular reserve capacity (CVRC) describes how far cerebral perfusion can increase from a baseline value after stimulation. High blood pressure is the most important independent risk factor for stroke and other vascular diseases. The incidence of stroke in the hypertensive is six times higher than in the patient with normal blood pressure. CVRC in the hypertensive was even lower than in control patients. MR perfusion weighted imaging (MR PWI) with the well-established acetazolamide (ACZ) stimulation test has been used for assessing brain function. The aim of this work is to assess the cerebrovascular reserve capacity by MR PWI with "ACZ" tolerance test in spontaneous hypertensive rat (SHR) and to identify its value in evaluating the CVRC. Experimental animal including 3 groups: Wistar-Kyoto rats (WKY) (12-week-old) as control group, SHR (12-week-old and 20-week-old) as experimental group. MR PWI was performed respectively before and after acetazolamide administrated orally in 3 groups on a clinical 1.5 Tesla GE Signa MR fx/i whole-body MR system. The ROI was chosen in the bilateral frontal lobe to measure the value of rCBV, rCBF and MTT. The results showed that before ACZ-test, there was statistic differences between the WKY and SHR(12-week-old), and between SHR(12-week-old) and SHR(20-week-old) in the values of rCBV and rCBF (P>0.05), and after ACZ-test, there were statistic differences between WKY and SHR (20-week-old), and between SHR(12-week-old) and SHR(20-week-old) in the rCBV value (P<0.05). It is concluded that the method of MRI PWI combined with the "ACZ stress test" can provide more qualitative and half-quantitative information on the cerebral perfusion to evaluate the CVRC in SHR.

  15. Smooth muscle‐generated methylglyoxal impairs endothelial cell‐mediated vasodilatation of cerebral microvessels in type 1 diabetic rats

    PubMed Central

    Alomar, Fadhel; Singh, Jaipaul; Jang, Hee‐Seong; Rozanzki, George J; Shao, Chun Hong; Padanilam, Babu J; Mayhan, William G

    2016-01-01

    Background and Purpose Endothelial cell‐mediated vasodilatation of cerebral arterioles is impaired in individuals with Type 1 diabetes (T1D). This defect compromises haemodynamics and can lead to hypoxia, microbleeds, inflammation and exaggerated ischaemia‐reperfusion injuries. The molecular causes for dysregulation of cerebral microvascular endothelial cells (cECs) in T1D remains poorly defined. This study tests the hypothesis that cECs dysregulation in T1D is triggered by increased generation of the mitochondrial toxin, methylglyoxal, by smooth muscle cells in cerebral arterioles (cSMCs). Experimental Approach Endothelial cell‐mediated vasodilatation, vascular transcytosis inflammation, hypoxia and ischaemia‐reperfusion injury were assessed in brains of male Sprague‐Dawley rats with streptozotocin‐induced diabetes and compared with those in diabetic rats with increased expression of methylglyoxal‐degrading enzyme glyoxalase‐I (Glo‐I) in cSMCs. Key Results After 7–8 weeks of T1D, endothelial cell‐mediated vasodilatation of cerebral arterioles was impaired. Microvascular leakage, gliosis, macrophage/neutrophil infiltration, NF‐κB activity and TNF‐α levels were increased, and density of perfused microvessels was reduced. Transient occlusion of a mid‐cerebral artery exacerbated ischaemia‐reperfusion injury. In cSMCs, Glo‐I protein was decreased, and the methylglyoxal‐synthesizing enzyme, vascular adhesion protein 1 (VAP‐1) and methylglyoxal were increased. Restoring Glo‐I protein in cSMCs of diabetic rats to control levels via gene transfer, blunted VAP‐1 and methylglyoxal increases, cECs dysfunction, microvascular leakage, inflammation, ischaemia‐reperfusion injury and increased microvessel perfusion. Conclusions and Implications Methylglyoxal generated by cSMCs induced cECs dysfunction, inflammation, hypoxia and exaggerated ischaemia‐reperfusion injury in diabetic rats. Lowering methylglyoxal produced by cSMCs may be a

  16. Detection of cerebral collateral circulation with Tc-99m HMPAO radionuclide angiography in cerebrovascular diseases: Delayed filling-in sign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.

    1994-05-01

    In patients with internal carotid and major cerebral arterial obstructions, it is clinically important to know the presence of collateral circulation. However, this information is not available from Tc-99m HMPAO perfusion SPECT alone. To investigate the usefulness of Tc-99m HMPAO radionuclide angiography (RNA) in the diagnosis of collaterals, we retrospectively studied 39 patients (pts) cerebrovascular diseases (CVD) with HMPAO RNA and SPECT. Contrast angiography was done on all pts. Of these, 11 internal carotid artery (ICA), 1 anterior cerebral artery (ACA), and 3 middle cerebral artery (MCA) obstructions were found angiographically. Non- or decreased visualization of ICA was found inmore » 11 of 11 pts of ICA obstruction. In 1 pt of ICA obstruction, the collaterals were directly visualized with RNA. Early perfusion deficient area with delayed filling-in with Tc-HMPAO was found in 7 of 11 pts of ICA, 1 of 1 pt of ACA, and 2 of 3 pts of MCA obstructions. In all pts with the delayed filling-in sign on RNA, collateral circulations were confirmed angiographically. We conclude that the delayed filling-in of Tc-HMPAO is a useful sign of collateral circulation in the CVD pts.« less

  17. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are

  18. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis.

    PubMed

    Server, Andrés; Orheim, Tone E Døli; Graff, Bjørn A; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H

    2011-05-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region.

  19. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, J.; Insel, T.R.; Berman, K.F.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during inmore » vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.« less

  20. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.

    PubMed

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-04-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P < 0.001). Similarly, during 100-W exercise, a breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P < 0.001) and MCA V(mean) from 55 to 113 cm/s ( approximately 105%), and facial immersion further increased MCA V(mean) to 122 cm/s ( approximately 88%; both P < 0.001). MCA V(mean) also increased during 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P < 0.001), although Pa(CO(2)) did not significantly change. These results indicate that a breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely because Pa(CO(2)) increases, but the increase in MCA V(mean) becomes larger when combined with facial immersion in cold water independent of Pa(CO(2)).

  1. Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.

    PubMed

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H

    2013-11-01

    To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.

  2. The effect of sildenafil citrate (Viagra) on cerebral blood flow in patients with cerebrovascular risk factors.

    PubMed

    Lorberboym, M; Mena, I; Wainstein, J; Boaz, M; Lampl, Y

    2010-06-01

    Sildenafil citrate is widely used for erectile dysfunction. The present study examined the short-term effects of sildenafil administration in individuals with cerebrovascular risk factors, including patients with a history of stroke. Twenty-five consecutive male patients with erectile dysfunction and vascular risk factors were included in the study. A perfusion brain SPECT study was performed at baseline and 1 h after the oral administration of sildenafil. Associations between any of the risk factors and the perfusion scores were not detected, with the exception of stroke. Stroke patients showed significantly more areas with diminished perfusion after sildenafil administration compared to baseline. In patients with diabetes or hypertension, a dose of 50 mg sildenafil does not appear to produce detrimental effects on cerebral blood flow. However, patients with a history of stroke may be at increased risk of hemodynamic impairment after the use of sildenafil.

  3. [INDIVIDUAL EVALUATION OF LORETA ABNORMALITIES IN IDIOPATHIC GENERALIZED EPILEPSY].

    PubMed

    Clemens, Béla; Puskás, Szilvia; Besenyei, Mónika; Kondákor, István; Hollódy, Katalin; Fogarasi, Andrós; Bense, Katalin; Emri, Miklós; Opposits Gábor; Kovács, Noémi Zsuzsanna; Fekete, István

    2016-03-30

    Contemporary neuroimaging methods disclosed structural and functional cerebral abnormalities in idiopathic generalized epilepsies (IGEs). However, individual electrical (EEG) abnormalities have not been evaluated yet in IGE patients. IGE patients were investigated in the drug-free condition and after 3-6 month of antiepileptic treatment. To estimate the reproducibility of qEEG variables a retrospective recruited cohort of IGE patients was investigated. 19-channel resting state EEG activity was recorded. For each patient a total of 2 minutes EEG activity was analyzed by LORETA (Low Resolution Electromagnetic Tomography). Raw LORETA values were Z-transformed and projected to a MRI template. Z-values outside within the [+3Z] to [-3Z] range were labelled as statistically abnormal. 1. In drug-free condition, 41-50% of IGE patients showed abnormal LORETA values. 2. Abnormal LORETA findings showed great inter-individual variability. 3. Most abnormal LORETA-findings were symmetrical. 4. Most maximum Z-values were localized to frontal or temporal cortex. 5. Succesfull treatment was mostly coupled with disappearence of LORETA-abnormality, persistent seizures were accompanied by persistent LORETA abnormality. 1. LORETA abnormalities detected in the untreated condition reflect seizure-generating property of the cortex in IGE patients. 2. Maximum LORETA-Z abnormalities were topographically congruent with structural abnormalities reported by other research groups. 3. LORETA might help to investigate drug effects at the whole-brain level.

  4. The mechanism of ipsilateral ataxia in lacunar hemiparesis: SPECT perfusion imaging.

    PubMed

    Yamamoto, Ryoo; Johkura, Ken; Nakae, Yoshiharu; Tanaka, Fumiaki

    2015-01-01

    Although ataxic hemiparesis is a common lacunar syndrome, the precise mechanism underlying hemiataxia is not clear. We attempted to identify ataxia-related, cerebral blood flow changes in patients presenting with ataxic hemiparesis after acute capsular infarct. We used 99mTc-ECD brain perfusion single-photon emission computed tomography to evaluate regional cerebral blood flow in 12 patients with ataxic hemiparesis caused by capsular infarct, and we compared the regional blood flow of these patients with that of 11 patients with pure motor hemiparesis caused by similar lesions. The ipsilateral red nucleus blood flow was significantly decreased in the ataxic hemiparesis patients, whereas the ipsilateral red nucleus blood flow was increased in the pure motor hemiparesis patients. Crossed cerebellar diaschisis (decreased contralateral cerebellar blood flow) was seen in ataxic hemiparesis patients; similarly, it was seen in pure motor hemiparesis patients. Our findings suggest that ataxia in hemiparetic patients with capsular infarct can be caused by ipsilateral red nucleus dysfunction secondary to cortico-rubral pathway disruption at the internal capsule.

  5. Cerebral signal intensity abnormalities on T2-weighted MR images in HIV patients with highly active antiretroviral therapy: relationship with clinical parameters and interval changes.

    PubMed

    Hanning, Uta; Husstedt, Ingo W; Niederstadt, Thomas-Ulrich; Evers, Stefan; Heindel, Walter; Kloska, Stephan P

    2011-09-01

    The aim of this study was to assess the relationship between immune state and cerebral signal intensity abnormalities (SIAs) on T2-weighted magnetic resonance images in subjects with human immunodeficiency virus type 1 infection and highly active antiretroviral therapy. Thirty-two subjects underwent a total of 109 magnetic resonance studies. The presence of human immunodeficiency virus-associated neurocognitive disorder, categorized CD4(+) T lymphocyte count, and plasma viral load were assessed for relationship with the severity and interval change of SIAs for different anatomic locations of the brain. Subjects with multifocal patterns of SIAs had CD4(+) cell counts < 200 cells/μL in 66.0%, whereas subjects with diffuse patterns of SIAs had CD4(+) cell counts < 200 cells/μL in only 31.4% (P < .001). Subjects without SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 37.0%, whereas subjects with minor and moderate SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 78.3% and 80.0%, respectively (P < .005). The percentage of subjects with CD4(+) cell counts < 200 cells/μL was 85.7% when there were progressive periventricular SIA changes and 45.5% when periventricular SIA changes were stable in follow-up (P < .05). The presence and progression of cerebral SIAs on T2-weighted magnetic resonance images reflecting cerebral infection with human immunodeficiency virus are significantly related to impaired immune state as measured by CD4(+) cell count. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  6. Perfusion defects in pulmonary perfusion iodine maps: causes and semiology.

    PubMed

    Bustos Fiore, A; González Vázquez, M; Trinidad López, C; Mera Fernández, D; Costas Álvarez, M

    2017-12-14

    to describe the usefulness of dual-energy CT for obtaining pulmonary perfusion maps to provide morphological and functional information in patients with pulmonary embolisms. To review the semiology of perfusion defects due to pulmonary embolism so they can be differentiated from perfusion defects due to other causes: alterations outside the range used in the iodine map caused by other diseases of the lung parenchyma or artifacts. CT angiography of the pulmonary arteries is the technique of choice for the diagnosis of pulmonary embolisms. New dual-energy CT scanners are useful for detecting perfusion defects secondary to complete or partial obstruction of pulmonary arteries and is most useful for detecting pulmonary embolisms in subsegmental branches. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; Elliott, Jonathan T.; Tichauer, Kenneth M.; Lee, Ting-Yim; St. Lawrence, Keith

    2009-05-01

    Near-infrared spectroscopy (NIRS) is a promising technique for assessing brain function in newborns, particularly due to its portability and sensitivity to cerebral hemodynamics and oxygenation. Methods for measuring cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) have been developed based on broadband continuous-wave NIRS. However, broadband NIRS apparatus typically have only one detection channel, which limits their applicability to measuring regional CBF and CMRO2. In this study, a relatively simple multiplexing approach based on electronically controlled mechanical shutters is proposed to expand the detection capabilities from one to eight channels. The tradeoff is an increase in the sampling interval; however, this has negligible effects on CBF measurements for intervals less than or equal to 1 s. The ability of the system to detect focal brain injury was demonstrated in piglets by injecting endothelin-1 (ET-1) into the cerebral cortex. For validation, CBF was independently measured by computed tomography (CT) perfusion. The average reduction in CBF from the source-detector pair that interrogated the injured region was 51%±9%, which was in good agreement with the CBF reduction measured by CT perfusion (55%±5%). No significant changes in regional CMRO2 were observed. The average regional differential pathlength prior to ET-1 injection was 8.4±0.2 cm (range of 7.1-9.6 cm) and did not significantly change after the injury.

  8. Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brusino, F.G.; Reves, J.G.; Smith, L.R.

    1989-04-01

    Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mmmore » Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass.« less

  9. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  10. Evaluation of cerebral function after carotid endarterectomy.

    PubMed

    Uclés, P; Almárcegui, C; Lorente, S; Romero, F; Marco, M

    1997-05-01

    Neuroimaging methods have failed to disclose correlation between degree of cerebral atrophy and blood flow in carotid artery stenosis patients. Moreover, intellectual improvement after carotid endarterectomy does not correlate fully with neuroimaging data in such patients. We performed brain electrical activity mapping and psychological testing before and 4 weeks after operation in 28 patients with symptomatic, high-grade, carotid stenosis. Postoperatively, electroencephalographic (EEG) mean frequency and absolute theta power improved significantly (p < 0.01). Mean frequency increased >1 Hz in most areas while power decreased dramatically, mainly because of resolution of high-voltage foci in 8 patients. Differences were conspicuous in both frontal lobes irrespective of the operated side, which suggests changes in perfusion affecting the whole brain. This is a positive effect of endarterectomy. Mini-Mental test and Set Test for verbal fluency had a positive correlation with the qEEG changes. Quantitative EEG as a measure of cerebral function has disclosed discriminative improvement in the early postoperative period. Our results support the thesis of improvement subsequent to endarterectomy.

  11. Non-invasive assessment of cerebral oxygen metabolism following surgery of congenital heart disease.

    PubMed

    Neunhoeffer, Felix; Sandner, Katharina; Wiest, Milena; Haller, Christoph; Renk, Hanna; Kumpf, Matthias; Schlensak, Christian; Hofbeck, Michael

    2017-07-01

    Cerebral protection is a major issue in the treatment of infants with complex congenital heart disease. We tested a new device combining tissue spectrometry and laser Doppler flowmetry for non-invasive determination of cerebral oxygen metabolism following cardiac surgery in infants. We prospectively measured regional cerebral oxygen saturation cSO 2 and microperfusion (rcFlow) in 43 infants 12-24 h following corrective ( n  = 30) or palliative surgery ( n  = 13) of congenital heart defects. For comparison, cerebral blood flow (CBF) was determined by colour duplex sonography of the extracranial cerebral arteries. Cerebral fractional tissue oxygen extraction, approximated cerebral metabolic rate of oxygen (aCMRO 2 ) and cerebral metabolic rate of oxygen (CMRO 2 ) were calculated. cSO 2 was lower [54.6% (35.7-64.0) vs 59.7% (44.5-81.7); P  < 0.01] after neonatal palliation, while rcFlow [69.7 AU (42.5-165.3) vs 77.0 AU (41.2-168.1); P  = 0.06] and cerebral fractional tissue oxygen extraction [0.34 (0.24-0.82) vs 0.38 (0.17-0.55); P  = 0.63] showed a trend towards lower values. We found a positive correlation between aCMRO 2 and CMRO 2 ( r  = 0.27; P  = 0.03). aCMRO 2 was significantly lower after neonatal palliation [4.0 AU (2.1-6.3) vs 4.9 AU (2.2-15.6); P  = 0.02]. According to our experience, combined photospectrometry and laser Doppler flowmetry enable non-invasive assessment of cerebral oxygen metabolism. The method promises new insights into perioperative cerebral perfusion following palliation or corrective surgery in infancy. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis?

    PubMed

    Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia

    2015-06-01

    Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.

  13. Prediction of subacute infarct size in acute middle cerebral artery stroke: comparison of perfusion-weighted imaging and apparent diffusion coefficient maps.

    PubMed

    Drier, Aurélie; Tourdias, Thomas; Attal, Yohan; Sibon, Igor; Mutlu, Gurkan; Lehéricy, Stéphane; Samson, Yves; Chiras, Jacques; Dormont, Didier; Orgogozo, Jean-Marc; Dousset, Vincent; Rosso, Charlotte

    2012-11-01

    To compare perfusion-weighted (PW) imaging and apparent diffusion coefficient (ADC) maps in prediction of infarct size and growth in patients with acute middle cerebral artery infarct. This study was approved by the local institutional review board. Written informed consent was obtained from all 80 patients. Subsequent infarct volume and growth on follow-up magnetic resonance (MR) images obtained within 6 days were compared with the predictions based on PW images by using a time-to-peak threshold greater than 4 seconds and ADC maps obtained less than 12 hours after middle cerebral artery infarct. ADC- and PW imaging-predicted infarct growth areas and infarct volumes were correlated with subsequent infarct growth and follow-up diffusion-weighted (DW) imaging volumes. The impact of MR imaging time delay on the correlation coefficient between the predicted and subsequent infarct volumes and individual predictions of infarct growth by using receiver operating characteristic curves were assessed. The infarct volume measurements were highly reproducible (concordance correlation coefficient [CCC] of 0.965 and 95% confidence interval [CI]: 0.949, 0.976 for acute DW imaging; CCC of 0.995 and 95% CI: 0.993, 0.997 for subacute DW imaging). The subsequent infarct volume correlated (P<.0001) with ADC- (ρ=0.853) and PW imaging- (ρ=0.669) predicted volumes. The correlation was higher for ADC-predicted volume than for PW imaging-predicted volume (P<.005), but not when the analysis was restricted to patients without recanalization (P=.07). The infarct growth correlated (P<.0001) with PW imaging-DW imaging mismatch (ρ=0.470) and ADC-DW imaging mismatch (ρ=0.438), without significant differences between both methods (P=.71). The correlations were similar among time delays with ADC-predicted volumes but decreased with PW imaging-based volumes beyond the therapeutic window. Accuracies of ADC- and PW imaging-based predictions of infarct growth in an individual prediction were

  14. Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT

    PubMed Central

    Okada, David R.; Ghoshhajra, Brian B.; Blankstein, Ron; Rocha-Filho, Jose A.; Shturman, Leonid D.; Rogers, Ian S.; Bezerra, Hiram G.; Sarwar, Ammar; Gewirtz, Henry; Hoffmann, Udo; Mamuya, Wilfred S.; Brady, Thomas J.; Cury, Ricardo C.

    2010-01-01

    Introduction We have recently described a technique for assessing myocardial perfusion using adenosine-mediated stress imaging (CTP) with dual source computed tomography. SPECT myocardial perfusion imaging (SPECT-MPI) is a widely utilized and extensively validated method for assessing myocardial perfusion. The aim of this study was to determine the level of agreement between CTP and SPECT-MPI at rest and under stress on a per-segment, per-vessel, and per-patient basis. Methods Forty-seven consecutive patients underwent CTP and SPECT-MPI. Perfusion images were interpreted using the 17 segment AHA model and were scored on a 0 (normal) to 3 (abnormal) scale. Summed rest and stress scores were calculated for each vascular territory and patient by adding corresponding segmental scores. Results On a per-segment basis (n = 799), CTP and SPECT-MPI demonstrated excellent correlation: Goodman-Kruskall γ = .59 (P < .0001) for stress and .75 (P < .0001) for rest. On a per-vessel basis (n = 141), CTP and SPECT-MPI summed scores demonstrated good correlation: Pearson r = .56 (P < .0001) for stress and .66 (P < .0001) for rest. On a per-patient basis (n = 47), CTP and SPECT-MPI demonstrated good correlation: Pearson r = .60 (P < .0001) for stress and .76 (P < .0001) for rest. Conclusions CTP compares favorably with SPECT-MPI for detection, extent, and severity of myocardial perfusion defects at rest and stress. PMID:19936863

  15. Non-invasive assessment of cerebral microcirculation with diffuse optics and coherent hemodynamics spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Sassaroli, Angelo; Kainerstorfer, Jana M.; Tgavalekos, Kristen T.; Zang, Xuan

    2016-03-01

    We describe the general principles and initial results of coherent hemodynamics spectroscopy (CHS), which is a new technique for the quantitative assessment of cerebral hemodynamics on the basis of dynamic near-infrared spectroscopy (NIRS) measurements. The two components of CHS are (1) dynamic measurements of coherent cerebral hemodynamics in the form of oscillations at multiple frequencies (frequency domain) or temporal transients (time domain), and (2) their quantitative analysis with a dynamic mathematical model that relates the concentration and oxygen saturation of hemoglobin in tissue to cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). In particular, CHS can provide absolute measurements and dynamic monitoring of CBF, and quantitative measures of cerebral autoregulation. We report initial results of CBF measurements in hemodialysis patients, where we found a lower CBF (54 +/- 16 ml/(100 g-min)) compared to a group of healthy controls (95 +/- 11 ml/(100 g-min)). We also report CHS measurements of cerebral autoregulation, where a quantitative index of autoregulation (its cutoff frequency) was found to be significantly greater in healthy subjects during hyperventilation (0.034 +/- 0.005 Hz) than during normal breathing (0.017 +/- 0.002 Hz). We also present our approach to depth resolved CHS, based on multi-distance, frequency-domain NIRS data and a two-layer diffusion model, to enhance sensitivity to cerebral tissue. CHS offers a potentially powerful approach to the quantitative assessment and continuous monitoring of local brain perfusion at the microcirculation level, with prospective brain mapping capabilities of research and clinical significance.

  16. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-10-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm 3 absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  17. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyck, C.H. van; Lin, C.H.; Smith, E.O.

    1996-11-01

    SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.

  18. Cerebral blood flow velocity and neurodevelopmental outcome in infants undergoing surgery for congenital heart disease.

    PubMed

    Cheng, Henry H; Wypij, David; Laussen, Peter C; Bellinger, David C; Stopp, Christian D; Soul, Janet S; Newburger, Jane W; Kussman, Barry D

    2014-07-01

    Cerebral blood flow velocity (CBFV) measured by transcranial Doppler sonography has provided information on cerebral perfusion in patients undergoing infant heart surgery, but no studies have reported a relationship to early postoperative and long-term neurodevelopmental outcomes. CBFV was measured in infants undergoing biventricular repair without aortic arch reconstruction as part of a trial of hemodilution during cardiopulmonary bypass (CPB); CBFV (Vm, mean; Vs, systolic; Vd, end-diastolic) in the middle cerebral artery and change in Vm (rVm) were measured intraoperatively and up to 18 hours post-CPB. Neurodevelopmental outcomes, measured at 1 year of age, included the psychomotor development index (PDI) and mental development index (MDI) of the Bayley Scales of Infant Development-II. CBFV was measured in 100 infants; 43 with D-transposition of the great arteries, 36 with tetralogy of Fallot, and 21 with ventricular septal defects. Lower Vm, Vs, Vd, and rVm at 18 hours post-CPB were independently related to longer intensive care unit duration of stay (p<0.05). In the 85 patients who returned for neurodevelopmental testing, lower Vm, Vs, Vd, and rVm at 18 hours post-CPB were independently associated with lower PDI (p<0.05) and MDI (p<0.05, except Vs: p=0.06) scores. Higher Vs and rVm at 18 hours post-CPB were independently associated with increased incidence of brain injury on magnetic resonance imaging in 39 patients. Postoperative CBFV after biventricular repair is related to early postoperative and neurodevelopmental outcomes at 1 year of age, possibly indicating that low CBFV is a marker of suboptimal postoperative hemodynamics and cerebral perfusion. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Role of cerebral ultrasound and magnetic resonance imaging in newborns with congenital cytomegalovirus infection.

    PubMed

    Capretti, Maria Grazia; Lanari, Marcello; Tani, Giovanni; Ancora, Gina; Sciutti, Rita; Marsico, Concetta; Lazzarotto, Tiziana; Gabrielli, Liliana; Guerra, Brunella; Corvaglia, Luigi; Faldella, Giacomo

    2014-03-01

    To assess the diagnostic and prognostic value of cerebral magnetic resonance imaging (cMRI) in comparison with that of cerebral ultrasound (cUS) in predicting neurodevelopmental outcome in newborns with congenital cytomegalovirus (CMV) infection. Forty CMV-congenitally infected newborns underwent cUS and cMRI within the first month of life. Clinical course, laboratory findings, visual/hearing function and neurodevelopmental outcome were documented. Thirty newborns showed normal cMRI, cUS and hearing/visual function in the first month of life; none showed CMV-related abnormalities at follow-up. Six newborns showed pathological cMRI and cUS findings (pseudocystis, ventriculomegaly, calcifications, cerebellar hypoplasia) but cMRI provided additional information (white matter abnormalities in three cases, lissencephaly/polymicrogyria in one and a cyst of the temporal lobe in another one); cerebral calcifications were detected in 3/6 infants by cUS but only in 2/6 by cMRI. Four of these 6 infants showed severe neurodevelopmental impairment and five showed deafness during follow-up. Three newborns had a normal cUS, but cMRI documented white matter abnormalities and in one case also cerebellar hypoplasia; all showed neurodevelopmental impairment and two were deaf at follow-up. One more newborn showed normal cUS and cMRI, but brainstem auditory evoked responses were abnormal; psychomotor development was normal at follow-up. Compared with cUS, cMRI disclosed additional pathological findings in CMV-congenitally infected newborns. cUS is a readily available screening tool useful in the identification of infected newborns with major cerebral involvement. Further studies with a larger sample size are needed to determine the prognostic role of MRI, particularly regarding isolated white matter lesions. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium.

    PubMed

    Mathiesen, Line; Rytting, Erik; Mose, Tina; Knudsen, Lisbeth E

    2009-09-01

    Transport of benzo[alpha]pyrene (BaP) across the placenta was examined because it is a ubiquitous and highly carcinogenic substance found in tobacco smoke, polluted air and certain foods. Foetal exposure to this substance is highly relevant but is difficult to estimate. The human placenta is unique compared to other species; since it is available without major ethical obstacles, we have used the human placenta perfusion model to study transport from mother to foetus. Placentas were donated after births at Rigshospitalet in Copenhagen from pregnant mothers who signed an informed consent. BaP is lipophilic and studies using cell culture medium in 6-hr placenta perfusions showed minimal transport through the placenta. To increase the solubility of BaP in perfusion medium and to increase physiological relevance, perfusions were also performed with albumin added to the perfusion medium [2 and 30 mg/ml bovine serum albumin (BSA) and 30 mg/ml human serum albumin (HSA)]. The addition of albumin resulted in increased transfer of BaP from maternal to foetal reservoirs. The transfer was even higher in the presence of an HSA formulation containing acetyltryptophanate and caprylate, resulting in a foetal-maternal concentration (FM) ratio of 0.71 +/- 0.10 after 3 hr and 0.78 +/- 0.11 after 6 hr, whereas the FM ratio in perfusions without albumin was only 0.05 +/- 0.03 after 6 hr of perfusion. Less BaP accumulated in placental tissue in perfusions with added albumin. This shows that transplacental transport of the pro-carcinogenic substance BaP occurs, and emphasizes the importance of adding physiological concentrations of albumin when studying the transport of lipophilic substances.