Science.gov

Sample records for abnormal cerebral perfusion

  1. Fragile X syndrome and cerebral perfusion abnormalities: single-photon emission computed tomographic study.

    PubMed

    Kabakus, Nimet; Aydin, Mustafa; Akin, Haluk; Balci, Tansel Ansal; Kurt, Abdullah; Kekilli, Ersoy

    2006-12-01

    Fragile X syndrome is an inherited disorder caused by a defective gene on the X chromosome. It is associated with developmental or behavioral symptoms and various degrees of mental retardation. Morphologic abnormalities and altered perfusion of various brain areas can underlie these functional disturbances. The aim of this study was to investigate the cerebral perfusion state in patients with fragile X syndrome using single-photon emission computed tomography (SPECT). Structural and functional assessment was also performed by magnetic resonance imaging (MRI) and electroencephalography (EEG). Eight boys with cytogenetically confirmed fragile X syndrome (mean age 8.8 +/- 4.4 years, range 5-18 years), were included. All patients had mental retardation, with a mean IQ of 58.9 +/- 8.8 (range 40-68), and additional neurobehavioral symptoms. SPECT revealed cerebral perfusion abnormalities in six patients (75%), most commonly in the frontoparietotemporal area and prominent in the right hemisphere. The SPECT and EEG findings were concordant: hypoperfused areas in SPECT corresponded to regions of persistent slow-wave paroxysms on EEG. On the other hand, cranial MRI was abnormal qualitatively only in two patients (25%) showing cerebellar and vermal hypoplasia and cerebral hemispheric asymmetry. Our results indicate that cerebral perfusion abnormalities, which are correlated with electrophysiologic findings but not necessarily with anatomic abnormalities, can underlie the pathogenesis of the clinical findings observed in fragile X syndrome.

  2. Cerebral perfusion pressure and abnormal intracranial pressure wave forms: their relation to outcome in birth asphyxia.

    PubMed

    Raju, T N; Vidyasagar, D; Papazafiratou, C

    1981-06-01

    Intracranial pressure (ICP) studies were carried out in 14 infants with severe birth asphyxia and brain damage. A markedly low cerebral perfusion pressure (CPP) was noted in infants who died and in 1 infant who survived with cerebral palsy. The long-term ICP tracing revealed negative waves and plateau waves in 2 infants. Cushing response was noted in 2 infants who had elevated ICP. The value and significance of evaluated CPP and of abnormal waveforms are discussed.

  3. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  4. Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer's disease.

    PubMed

    Lacalle-Aurioles, María; Mateos-Pérez, José M; Guzmán-De-Villoria, Juan A; Olazarán, Javier; Cruz-Orduña, Isabel; Alemán-Gómez, Yasser; Martino, María-Elena; Desco, Manuel

    2014-04-01

    The purpose of this study was to elucidate whether cerebral blood flow (CBF) can better characterize perfusion abnormalities in predementia stages of Alzheimer's disease (AD) than cerebral blood volume (CBV) and whether cortical atrophy is more associated with decreased CBV or with decreased CBF. We compared measurements of CBV, CBF, and mean cortical thickness obtained from magnetic resonance images in a group of healthy controls, patients with mild cognitive impairment (MCI) who converted to AD after 2 years of clinical follow-up (MCI-c), and patients with mild AD. A significant decrease in perfusion was detected in the parietal lobes of the MCI-c patients with CBF parametric maps but not with CBV maps. In the MCI-c group, a negative correlation between CBF values and cortical thickness in the right parahippocampal gyrus suggests an increase in CBF that depends on cortical atrophy in predementia stages of AD. Our study also suggests that CBF deficits appear before CBV deficits in the progression of AD, as CBV abnormalities were only detected at the AD stage, whereas CBF changes were already detected in the MCI stage. These results confirm the hypothesis that CBF is a more sensitive parameter than CBV for perfusion abnormalities in MCI-c patients.

  5. Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer's disease

    PubMed Central

    Lacalle-Aurioles, María; Mateos-Pérez, José M; Guzmán-De-Villoria, Juan A; Olazarán, Javier; Cruz-Orduña, Isabel; Alemán-Gómez, Yasser; Martino, María-Elena; Desco, Manuel

    2014-01-01

    The purpose of this study was to elucidate whether cerebral blood flow (CBF) can better characterize perfusion abnormalities in predementia stages of Alzheimer's disease (AD) than cerebral blood volume (CBV) and whether cortical atrophy is more associated with decreased CBV or with decreased CBF. We compared measurements of CBV, CBF, and mean cortical thickness obtained from magnetic resonance images in a group of healthy controls, patients with mild cognitive impairment (MCI) who converted to AD after 2 years of clinical follow-up (MCI-c), and patients with mild AD. A significant decrease in perfusion was detected in the parietal lobes of the MCI-c patients with CBF parametric maps but not with CBV maps. In the MCI-c group, a negative correlation between CBF values and cortical thickness in the right parahippocampal gyrus suggests an increase in CBF that depends on cortical atrophy in predementia stages of AD. Our study also suggests that CBF deficits appear before CBV deficits in the progression of AD, as CBV abnormalities were only detected at the AD stage, whereas CBF changes were already detected in the MCI stage. These results confirm the hypothesis that CBF is a more sensitive parameter than CBV for perfusion abnormalities in MCI-c patients. PMID:24424381

  6. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion.

  7. Cerebral-Body Perfusion Model

    DTIC Science & Technology

    1990-07-01

    compared to the 0.5g curve) fall in flow. Fig. 9b, showing the 5g case, strongly suggests a possible, so-called, " luxury perfusion ", in which natural...as the luxury perfusion situation which bypasses the flow with the nutrients it carries (through newly opened collaterals) and result in a "blackout...89-0054 CEREBRAL-BODY PERFUSION MODEL S. Sorek’, J. Bear2, and M., Feinsod3 in Collaboration with K. Allen4, L. Bunt5 and S. Ben-IHaiM6 July 1990

  8. Effect of cardiac dysrhythmia on cerebral perfusion.

    PubMed

    Sand, B J; Rose, H B; Barker, W F

    1976-07-01

    Extracranial carotid arterial obstructive disease has been the entity most commonly associated with transient cerebrovascular insufficiency. A nonobstructive, frequently overlooked cause of cerebral ischemia is cardiac dysrhythmia. We have explored this by observations of experimental animals and of man. Blood flow and pressure in the carotid arteries of dogs were shown to be decreased by mechnically induced premature ventricular contractions. The significance of the cardiogenic contribution to altered cerebrovascular perfusion was studied by ocular and brachial plethysmography in 210 patients suspected by history of having carotid arterial insufficiency. Of the 210 patients, 62 demonstrated abnormal ocular plethysmographic recordings, and of those, nine had dysrhythmias associated with significant deficits of ocular perfusion. Five patients whose recordings were technically suitable for publication are presented to demonstrate the bizarre ocular plethysmographic recordings seen during the dysrhythmic cycle.

  9. Selective cerebral perfusion for cerebral protection: what we do know

    PubMed Central

    Tang, Gilbert H. L.

    2013-01-01

    Selective antegrade cerebral perfusion (SACP) for aortic arch surgery has evolved considerably since it was first reported. Various pressure rates have been investigated through animal models, as has the effect of warmer perfusate temperatures and hematocrit. Clinical research into pH management, the role of unilateral and bilateral perfusion, and core temperatures have further refined the procedure. We recommend the following protocol for SACP: perfusion pressure between 40-60 mmHg, flow rates between 6-10 mL/kg/min, and perfusate temperature of 20-28 °C; core cooling to 18-30 °C contingent on duration of arrest; alpha-stat pH management; hematocrit between 25-30%; near infrared spectroscopy to monitor cerebral perfusion; and bilateral perfusion when prolonged durations of SACP is anticipated. PMID:23977601

  10. A reappraisal of retrograde cerebral perfusion

    PubMed Central

    2013-01-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients. PMID:23977600

  11. Reversible changes in diffusion- and perfusion-based imaging in cerebral venous sinus thrombosis.

    PubMed

    Lin, Ning; Wong, Andrew K; Lipinski, Lindsay J; Mokin, Maxim; Siddiqui, Adnan H

    2016-02-01

    Diffusion- and perfusion-based imaging studies are regularly used in patients with ischemic stroke. Cerebral venous sinus thrombosis (CVST) is a rare cause of stroke and is primarily treated by systemic anticoagulation. Endovascular intervention can be considered in cases of failed medical therapy, yet the prognostic value of diffusion- and perfusion-based imaging for CVST has not been clearly established. We present a patient with CVST whose abnormal findings on MRI and CT perfusion images were largely reversed after endovascular treatment.

  12. Whole-Brain Computed Tomographic Perfusion Imaging in Acute Cerebral Venous Sinus Thrombosis

    PubMed Central

    Mokin, Maxim; Ciambella, Chelsey C.; Masud, Muhammad W.; Levy, Elad I.; Snyder, Kenneth V.; Siddiqui, Adnan H.

    2016-01-01

    Background Acute cerebral venous sinus thrombosis (VST) can be difficult to diagnose because of its diverse clinical presentation. The utility of perfusion imaging for diagnosing VST is not well understood. Summary We retrospectively reviewed cases of acute VST in patients who underwent whole-brain (320-detector-row) computed tomographic (CT) perfusion imaging in combination with craniocervical CT venography. Perfusion maps that were analyzed included cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak. Among the 10 patients with acute VST included in this study, 9 had perfusion abnormalities. All perfusion abnormalities were localized in areas adjacent to the occluded sinus and did not match typical anterior or posterior circulation arterial territories. Bilateral perfusion deficits were seen in 4 cases. In 2 cases, parenchymal hemorrhage was diagnosed on noncontrast CT imaging; in those cases, focal CBV and CBF were reduced. Key Messages Whole-brain CT perfusion imaging with 320-detector-row scanners can further assist in establishing the diagnosis of VST by detecting perfusion abnormalities corresponding to venous and not arterial territories. CT perfusion could assist in the differentiation between focal reversible changes, such as those caused by vasogenic edema, and irreversible changes due to infarction. PMID:27051406

  13. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  14. Coupling between resting cerebral perfusion and EEG.

    PubMed

    O'Gorman, R L; Poil, S-S; Brandeis, D; Klaver, P; Bollmann, S; Ghisleni, C; Lüchinger, R; Martin, E; Shankaranarayanan, A; Alsop, D C; Michels, L

    2013-07-01

    While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21-48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2-4 Hz and theta: 4-7 Hz), middle (alpha: 8-13 Hz), and high (beta: 13-30 Hz and gamma: 30-45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.

  15. Decreased Cerebral Blood Flow in Chronic Pediatric Mild TBI: An MRI Perfusion Study

    PubMed Central

    Wang, Yang; West, John D.; Bailey, Jessica N.; Westfall, Daniel R.; Xiao, Hui; Arnold, Todd W.; Kersey, Patrick A.; Saykin, Andrew J.; McDonald, Brenna C.

    2015-01-01

    We evaluated cerebral blood flow (CBF) in chronic pediatric mild traumatic brain injury (mTBI) using arterial spin labeling (ASL) magnetic resonance imaging perfusion. mTBI patients showed lower CBF than controls in bilateral frontotemporal regions, with no between-group cognitive differences. Findings suggest ASL may be useful to assess functional abnormalities in pediatric mTBI. PMID:25649779

  16. Identification of cerebral perfusion using arterial spin labeling in patients with seizures in acute settings

    PubMed Central

    Yoo, Roh-Eul; Yoon, Byung-Woo; Lee, Sang Kun; Lee, Soon-Tae; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-hoon; Sohn, Chul-Ho; Park, Sun-Won; Han, Moon Hee

    2017-01-01

    This study aimed to explore the utility of arterial spin labeling perfusion-weighted imaging (ASL-PWI) in patients with suspected seizures in acute settings. A total of 164 patients who underwent ASL-PWI for suspected seizures in acute settings (with final diagnoses of seizure [n = 129], poststroke seizure [n = 18], and seizure mimickers [n = 17]), were included in this retrospective study. Perfusion abnormality was analyzed for: (1) pattern, (2) multifocality, and (3) atypical distribution against vascular territories. Perfusion abnormality was detected in 39% (50/129) of the seizure patients, most (94%, 47/50) being the hyperperfusion pattern. Of the patients with perfusion abnormality, multifocality or hemispheric involvement and atypical distribution against vascular territory were revealed in 46% (23/50) and 98% (49/50), respectively. In addition, seizures showed characteristic features including hyperperfusion (with or without non-territorial distribution) on ASL-PWI, thus differentiating them from poststroke seizures or seizure mimickers. In patients in whom seizure focus could be localized on both EEG and ASL-PWI, the concordance rate was 77%. The present study demonstrates that ASL-PWI can provide information regarding cerebral perfusion status in patients with seizures in acute settings and has the potential to be used as a non-invasive imaging tool to identify the cerebral perfusion in patients with seizures. PMID:28291816

  17. Prolonged cerebral "luxury perfusion" after removal of a convexity meningioma.

    PubMed

    Lunsford, L D; Selker, R G

    1979-04-01

    Following total removal of a convexity meningioma, serial computerized tomographic scans disclosed massive hemispheric contrast enhancement compatible with "luxury perfusion". Maximum enhancement occurred one month following the operation and resolved two months postoperatively. Luxury perfusion appeared to be associated with slowly resolving cerebral edema.

  18. Best strategy for cerebral protection in arch surgery - antegrade selective cerebral perfusion and adequate hypothermia

    PubMed Central

    Mohr, Friedrich W.; Etz, Christian D.

    2013-01-01

    Aortic arch surgery remains a complex surgical operation that necessitates specific neuroprotection strategies. Various approaches, such as hypothermic circulatory arrest (HCA), retrograde cerebral perfusion, and antegrade selective cerebral perfusion (aSCP), have each enjoyed periods of popularity. However, while the overall surgical approach tend to favour HCA with aSCP, technical factors, such as perfusion site, perfusate temperature and flow rate and pH management, have not been conclusively elucidated. The optimal extent of hypothermia during circulatory arrest is also unclear, particularly with recent partiality for warmer temperatures. The following perspective details the preferred surgical practice for cerebral protection in aortic arch surgery, based on existing evidence. PMID:23977602

  19. Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus

    SciTech Connect

    Hosenpud, J.D.; Montanaro, A.; Hart, M.V.; Haines, J.E.; Specht, H.D.; Bennett, R.M.; Kloster, F.E.

    1984-08-01

    Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment, major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.

  20. How to Perfuse: Concepts of Cerebral Protection during Arch Replacement

    PubMed Central

    Habertheuer, Andreas; Wiedemann, Dominik; Kocher, Alfred; Laufer, Guenther; Vallabhajosyula, Prashanth

    2015-01-01

    Arch surgery remains undoubtedly among the most technically and strategically challenging endeavors in cardiovascular surgery. Surgical interventions of thoracic aneurysms involving the aortic arch require complete circulatory arrest in deep hypothermia (DHCA) or elaborate cerebral perfusion strategies with varying degrees of hypothermia to achieve satisfactory protection of the brain from ischemic insults, that is, unilateral/bilateral antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP). Despite sophisticated and increasingly individualized surgical approaches for complex aortic pathologies, there remains a lack of consensus regarding the optimal method of cerebral protection and circulatory management during the time of arch exclusion. Many recent studies argue in favor of ACP with various degrees of hypothermic arrest during arch reconstruction and its advantages have been widely demonstrated. In fact ACP with more moderate degrees of hypothermia represents a paradigm shift in the cardiac surgery community and is widely adopted as an emergent strategy; however, many centers continue to report good results using other perfusion strategies. Amidst this important discussion we review currently available surgical strategies of cerebral protection management and compare the results of recent European multicenter and single-center data. PMID:26713319

  1. Perfusion Neuroimaging Abnormalities Alone Distinguish National Football League Players from a Healthy Population

    PubMed Central

    Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.

    2016-01-01

    Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This

  2. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography.

    PubMed

    Baron, J C; Bousser, M G; Rey, A; Guillard, A; Comar, D; Castaigne, P

    1981-01-01

    Tomographic images of cerebral blood flow (CBF) and oxygen extraction fraction (OEF) using the 15O continuous inhalation technique, and positron emission tomography, were obtained from a patient with cerebral ischemia distal to an occluded left internal carotid artery. There was a focal mismatch between CBF and oxygen metabolism in the brain supplied by the middle cerebral artery where CBF was decreased and OEF increased ("misery-perfusion syndrome" as opposed to "luxury-perfusion syndrome"). These abnormalities were most marked in the parieto-occipital watershed area. After left superficial temporal to middle cerebral artery anastomosis, the clinical attacks ceased and a repeat study did not demonstrate the previous CBF and OEF abnormalities. This suggests that this pattern of abnormalities indicates potential viable tissue. The concept of "misery-perfusion" may be of some importance in the pathophysiological mechanisms of hemodynamic cerebral ischemia and serve as a rational basis for revascularization procedures.

  3. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism.

    PubMed

    Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O'Donnell, Martha

    2012-07-01

    Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], and lactate to Cr) and diffusion-weighted imaging and perfusion-weighted imaging to assess cerebral water distribution (apparent diffusion coefficient [ADC] values) and cerebral blood flow (CBF) in three groups of juvenile rats (hyperglycemic, ketotic, and normal control). ATP-to-Pi ratio was reduced in both hyperglycemic and ketotic rats in comparison with controls. PCr-to-Pi ratio was reduced in the ketotic group, and there was a trend toward reduction in the hyperglycemic group. No significant differences were observed in NAA-to-Cr or lactate-to-Cr ratio. Cortical ADC was reduced in both groups (indicating brain cell swelling). Cortical CBF was also reduced in both groups. We conclude that both hyperglycemia and ketosis independently cause reductions in cerebral high-energy phosphates, CBF, and cortical ADC values. These effects may play a role in the pathophysiology of DKA-related brain injury.

  4. Frequency and patterns of abnormality detected by iodine-123 amine emission CT after cerebral infarction

    SciTech Connect

    Brott, T.G.; Gelfand, M.J.; Williams, C.C.; Spilker, J.A.; Hertzberg, V.S.

    1986-03-01

    Single photon emission computed tomography (SPECT) was performed in 31 patients with cerebral infarction and 13 who had had transient ischemic attacks, using iodine-123-labeled N,N,N'-trimethyl-N'-(2-hydroxyl-3-methyl-5-iodobenzyl)-1,3-propanediamin e (I-123-HIPDM) as the radiopharmaceutical. SPECT scans were compared with computed tomographic (CT) scans. SPECT was as sensitive as CT in detecting cerebral infarction (94% vs. 84%). The abnormalities were larger on the SPECT scans than on the CT scans in 19 cases, equal in seven, and smaller in five (SPECT abnormalities greater than or equal to CT abnormalities in 86% of cases). Fifteen of 30 patients with hemispheric infarction had decreased perfusion (decreased uptake of I-123-HIPDM) to the cerebellar hemisphere contralateral to the cerebral hemisphere involved by the infarction (crossed cerebellar diaschisis). Nine of these 15 patients had major motor deficits, while only one of the 15 without crossed cerebellar diaschisis had a major motor deficit.

  5. Affective psychosis, Hashimoto's thyroiditis, and brain perfusion abnormalities: case report

    PubMed Central

    2007-01-01

    Background It has recently become evident that circulating thyroid antibodies are found in excess among patients suffering from mood disorders. Moreover, a manic episode associated with Hashimoto's thyroiditis has recently been reported as the first case of bipolar disorder due to Hashimoto's encephalopathy. We report a case in which Hashimoto's thyroiditis was suspected to be involved in the deteriorating course of mood disorder and discuss potential pathogenic mechanisms linking thyroid autoimmunity with psychopathology. Case presentation A 43-year-old woman, with a history of recurrent depression since the age of 31, developed manic, psychotic, and soft neurological symptoms across the last three years in concomitance with her first diagnosis of Hashimoto's thyroiditis. The patient underwent a thorough medical and neurological workup. Circulating thyroperoxidase antibodies were highly elevated but thyroid function was adequately maintained with L-thyroxine substitution. EEG was normal and no other signs of current CNS inflammation were evidenced. However, brain magnetic resonance imaging evidenced several non-active lesions in the white matter from both hemispheres, suggestive of a non-specific past vasculitis. Brain single-photon emission computed tomography showed cortical perfusion asymmetry particularly between frontal lobes. Conclusion We hypothesize that abnormalities in cortical perfusion might represent a pathogenic link between thyroid autoimmunity and mood disorders, and that the rare cases of severe Hashimoto's encephalopathy presenting with mood disorder might be only the tip of an iceberg. PMID:18096026

  6. Scaling of cerebral blood perfusion in primates and marsupials.

    PubMed

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates.

  7. Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics

    PubMed Central

    Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Feng-Chi; Hung, Sheng-Che; Chen, Ko-Kung; Yu, Deuerling-Zheng; Wu, Chun-Hsien Frank; Liou, Jy-Kang Adrian

    2016-01-01

    Abstract Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis. Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared. For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50). We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification. PMID:27196456

  8. Abnormal myocardial perfusion and risk of heart failure in patients with type 2 diabetes mellitus

    PubMed Central

    Utrera-Lagunas, Marcelo; Orea-Tejeda, Arturo; Castillo-Martínez, Lilia; Balderas-Muñoz, Karla; Keirns-Davis, Candace; Espinoza-Rosas, Sarahi; Sánchez-Ortíz, Néstor Alonso; Olvera-Mayorga, Gabriela

    2013-01-01

    BACKGROUND: Diabetes is a major risk factor for heart failure (HF), although the pathophysiological processes have not been clarified. OBJECTIVE: To determine the prevalence of HF and of abnormal myocardial perfusion in diabetic patients evaluated using technetium (99m) sestamibi single-photon emission computed tomography. METHODS: An observational cross-sectional study was conducted that included patients with type 2 diabetes mellitus who underwent echocardiography to diagnose HF and a pharmacological stress test with intravenous dipyridamole to examine cardiac scintigraphic perfusion abnormalities. Clinical and biochemical data were also collected. RESULTS: Of the 160 diabetic patients included, 92 (57.6%) were in HF and 68 (42.5%) were not. When patients were stratified according to the presence of abnormal myocardial perfusion, those with abnormal perfusion had a higher prevalence of HF (93%) than those with normal perfusion (44.4%) (P<0.0001). Patients with HF weighed more (P=0.03), used insulin less frequently (P=0.01), had lower total cholesterol (P=0.05) and high-density lipoprotein cholesterol concentrations (P=0.002), and a greater number of their myocardial segments showed abnormal perfusion (P≤0.001). More HF patients had a history of myocardial infarction (P<0.001) compared with those without HF. In a logistic regression analysis, the number of segments exhibiting abnormal myocardial perfusion was an independent risk factor for HF. CONCLUSIONS: The prevalence of HF in diabetic patients was high and HF predominantly occured in association with myocardial ischemia. PMID:24294048

  9. Anticardiolipin antibodies in HIV infection: association with cerebral perfusion defects as detected by 99mTc-HMPAO SPECT.

    PubMed Central

    Rubbert, A; Bock, E; Schwab, J; Marienhagen, J; Nüsslein, H; Wolf, F; Kalden, J R

    1994-01-01

    Anticardiolipin antibodies (ACA) belong to a heterogeneous group of antibodies directed against negatively charged phospholipids. In patients with rheumatic disorders, their presence has been correlated to the occurrence of thromboembolic complications, thrombocytopenia, abortions and other disease manifestations. Several studies have revealed the detection of mostly high-titre ACA in a significant proportion of HIV-infected patients without any known clinical relationship. In our study, ACA were detected in 17/34 HIV-infected patients, and their presence was significantly associated with the detection of cerebral perfusion abnormalities by 99mTc-HMPAO SPECT. SPECT scans were classified as normal or as focal or diffuse defects in uptake. Most patients (13/16) with cerebral perfusion defects had elevated ACA titres in contrast to 4/18 patients with normal SPECT findings (P = 0.002). Focal uptake defects were always associated with the presence of ACA. No correlation to clinical features or other laboratory parameters was evident. Our results suggest a possible implication of autoimmune mechanisms in the pathogenesis of cerebral perfusion abnormalities detected by SPECT scanning in HIV-infected patients. However, further studies are needed to evaluate the clinical significance and to develop possible therapeutic consequences. Images Fig. 1 Fig. 2 Fig. 3 PMID:7994900

  10. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  11. [Abnormal absence of displacement of the cerebral median line].

    PubMed

    de Tribolet, N; Oberson, R

    1975-03-08

    The angiographic cerebral midline is described. It is pointed out that the midline may be abnormally undisplaced despite the presence of a unilateral or bilateral expansive lesion. The causes of such abnormal non-displacement of the midline are reviewed in the light of examples, and the importance is stressed of bilateral carotid angiograms, sometimes with oblique series, in the case of head injuries and certain tumors.

  12. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    SciTech Connect

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-11-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis.

  13. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes.

    PubMed

    Miners, J Scott; Palmer, Jennifer C; Tayler, Hannah; Palmer, Laura E; Ashby, Emma; Kehoe, Patrick G; Love, Seth

    2014-01-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.

  14. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes

    PubMed Central

    Miners, J. Scott; Palmer, Jennifer C.; Tayler, Hannah; Palmer, Laura E.; Ashby, Emma; Kehoe, Patrick G.; Love, Seth

    2014-01-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways. PMID:25309424

  15. Distinct cerebral perfusion patterns in FTLD and AD

    PubMed Central

    Hu, W.T.; Wang, Z.; Lee, V.M.-Y.; Trojanowski, J.Q.; Detre, J.A.; Grossman, M.

    2010-01-01

    Objective: We examined the utility of distinguishing between patients with frontotemporal lobar degeneration (FTLD) and Alzheimer disease (AD) using quantitative cerebral blood flow (CBF) imaging with arterial spin labeled (ASL) perfusion MRI. Methods: Forty-two patients with FTLD and 18 patients with AD, defined by autopsy or CSF-derived biomarkers for AD, and 23 matched controls were imaged with a continuous ASL method to quantify CBF maps covering the entire brain. Results: Patients with FTLD and AD showed distinct patterns of hypoperfusion and hyperperfusion. Compared with controls, patients with FTLD showed significant hypoperfusion in regions of the frontal lobe bilaterally, and hyperperfusion in posterior cingulate and medial parietal/precuneus regions. Compared with controls, patients with AD showed significant hypoperfusion in the medial parietal/precuneus and lateral parietal cortex, and hyperperfusion in regions of the frontal lobe. Direct comparison of patient groups showed significant inferior, medial, and dorsolateral frontal hypoperfusion in FTLD, and significant hypoperfusion in bilateral lateral temporal-parietal and medial parietal/precuneus regions in AD. Conclusions: Doubly dissociated areas of hypoperfusion in FTLD and AD are consistent with areas of significant histopathologic burden in these groups. ASL is a potentially useful biomarker for distinguishing patients with these neurodegenerative diseases. GLOSSARY Aβ42 = β-amyloid1-42; AD = Alzheimer disease; ASL = arterial spin labeling; bvFTD = behavioral-variant frontotemporal dementia; cASL = continuous arterial spin labeling; CBS = corticobasal syndrome; CBF = cerebral blood flow; dACC = dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; FDR = false detection rate; FTLD = frontotemporal lobar degeneration; GM = gray matter; iFC = inferior frontal cortex; MCI = mild cognitive impairment; MNI = Montreal Neurological Institute; mTC = middle temporal cortex; OFC

  16. Double tracer autoradiographic method for sequential evaluation of regional cerebral perfusion

    SciTech Connect

    Matsuda, H.; Tsuji, S.; Oba, H.; Kinuya, K.; Terada, H.; Sumiya, H.; Shiba, K.; Mori, H.; Hisada, K.; Maeda, T. )

    1989-01-01

    A new double tracer autoradiographic method for the sequential evaluation of altered regional cerebral perfusion in the same animal is presented. This method is based on the sequential injection of two tracers, {sup 99m}Tc-hexamethylpropyleneamine oxime and N-isopropyl-({sup 125}I)p-iodoamphetamine. This method is validated in the assessment of brovincamine effects on regional cerebral perfusion in an experimental model of chronic brain ischemia in the rat. The drug enhanced perfusion recovery in low-flow areas, selectively in surrounding areas of infarction. The results suggest that this technique is of potential use in the study of neuropharmacological effects applied during the experiment.

  17. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application.

    PubMed

    Hartkamp, Nolan S; Petersen, Esben T; De Vis, Jill B; Bokkers, Reinoud P H; Hendrikse, Jeroen

    2013-08-01

    A knowledge of the exact cerebral perfusion territory which is supplied by any artery is of great importance in the understanding and diagnosis of cerebrovascular disease. The development and optimization of territorial arterial spin labeling (T-ASL) MRI techniques in the past two decades have made it possible to visualize and determine the cerebral perfusion territories in individual patients and, more importantly, to do so without contrast agents or otherwise invasive procedures. This review provides an overview of the development of ASL techniques that aim to visualize the general cerebral perfusion territories or the territory of a specific artery of interest. The first efforts of T-ASL with pulsed, continuous and pseudo-continuous techniques are summarized and subsequent clinical studies using T-ASL are highlighted. In the healthy population, the perfusion territories of the brain-feeding arteries are highly variable. This high variability requires special consideration in specific patient groups, such as patients with cerebrovascular disease, stroke, steno-occlusive disease of the large arteries and arteriovenous malformations. In the past, catheter angiography with selective contrast injection was the only available method to visualize the cerebral perfusion territories in vivo. Several T-ASL methods, sometimes referred to as regional perfusion imaging, are now available that can easily be combined with conventional brain MRI examinations to show the relationship between the cerebral perfusion territories, vascular anatomy and brain infarcts or other pathology. Increased availability of T-ASL techniques on clinical MRI scanners will allow radiologists and other clinicians to gain further knowledge of the relationship between vasculature and patient diagnosis and prognosis. Treatment decisions, such as surgical revascularization, may, in the near future, be guided by information provided by T-ASL MRI in close correlation with structural MRI and quantitative

  18. Visualization of pressure-dependent luxury perfusion in a patient with subacute cerebral infarction.

    PubMed

    Cho, I H; Hayashida, K; Kume, N; Shimotsu, Y; Miyashita, K

    1998-08-01

    Luxury perfusion characterized by depressed metabolism compared with CBF might be changed by decreasing cerebral perfusion pressure during the sitting position. A 77-yr-old man with subacute cerebral infarction was studied with brain X-ray computed tomography (CT), raise-up test with 99mTc-d,1-hexamethylpropyleneamine oxime (HMPAO) brain single photon emission tomography (SPECT) and positron emission tomography (PET). Brain X-ray CT revealed a low-density area in the left middle cerebral artery (MCA) anterior area. Raise-up 99mTc-HMPAO brain SPECT revealed decreased uptake in the left MCA anterior area in the sitting position and subsequent supine 99mTc-HMPAO brain SPECT revealed hot accumulation there. PET study in the supine position demonstrated some differences between CBF and the cerebral metabolic rate for oxygen in the left MCA anterior area, indicating luxury perfusion. CBF in the area of luxury perfusion might be decreased during the sitting or standing position and increased during the supine position by dysautoregulation of the cerebral vessels in the luxury perfusion during the subacute infarct.

  19. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  20. Cerebral perfusion and psychometric testing in military amateur boxers and controls.

    PubMed Central

    Kemp, P M; Houston, A S; Macleod, M A; Pethybridge, R J

    1995-01-01

    The objective was to compare two neurophysiological variables in active amateur boxers with non-boxing sportsmen. 41 boxers and 27 controls were given psychometric tests: 34 boxers and 34 controls underwent technetium-99m hexamethylpropyleneamineoxime single photon emission computerised tomography (Tc-99m HMPAO SPECT) cerebral perfusion scans. The controls performed better at most aspects of the psychometric tests. Boxers who had fought fewer bouts had a tendency to perform better at psychometric tests than those boxers who had fought more bouts. Tc-99m HMPAO SPECT cerebral perfusion scanning showed that controls had less aberrations in cerebral perfusion than the boxers. In conclusion, significant differences were shown in two neurophysiological variables between young amateur sportsmen who box and those who do not. The long term effects of these findings remain unknown. PMID:7561914

  1. The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease

    PubMed Central

    Alosco, Michael L; Gunstad, John; Jerskey, Beth A; Xu, Xiaomeng; Clark, Uraina S; Hassenstab, Jason; Cote, Denise M; Walsh, Edward G; Labbe, Donald R; Hoge, Richard; Cohen, Ronald A; Sweet, Lawrence H

    2013-01-01

    Background It is well established that aging and vascular processes interact to disrupt cerebral hemodynamics in older adults. However, the independent effects of cerebral perfusion on neurocognitive function among older adults remain poorly understood. We examined the associations among cerebral perfusion, cognitive function, and brain structure in older adults with varying degrees of vascular disease using perfusion magnetic resonance imaging (MRI) arterial spin labeling (ASL). Materials and methods 52 older adults underwent neuroimaging and were administered the Mini Mental State Examination (MMSE), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and measures of attention/executive function. ASL and T1-weighted MRI were used to quantify total brain perfusion, total brain volume (TBV), and cortical thickness. Results Regression analyses showed reduced total brain perfusion was associated with poorer performance on the MMSE, RBANS total index, immediate and delayed memory composites, and Trail Making Test B. Reduced frontal lobe perfusion was associated with worse executive and memory function. A similar pattern emerged between temporal lobe perfusion and immediate memory. Regression analyses revealed that decreased total brain perfusion was associated with smaller TBV and mean cortical thickness. Regional effects of reduced total cerebral perfusion were found on temporal and parietal lobe volumes and frontal and temporal cortical thickness. Discussion Reduced cerebral perfusion is independently associated with poorer cognition, smaller TBV, and reduced cortical thickness in older adults. Conclusion Prospective studies are needed to clarify patterns of cognitive decline and brain atrophy associated with cerebral hypoperfusion. PMID:24363966

  2. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  3. Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography

    SciTech Connect

    O'Gara, P.T.; Bonow, R.O.; Maron, B.J.; Damske, B.A.; Van Lingen, A.; Bacharach, S.L.; Larson, S.M.; Epstein, S.E.

    1987-12-01

    Myocardial ischemia may play a critical role in the symptomatic presentation and natural history of hypertrophic cardiomyopathy (HCM). To assess the relative prevalence and functional significance of myocardial perfusion abnormalities in patients comprising the broad clinical spectrum of HCM, we studied 72 patients (ages 12 to 69 years, mean 40) using thallium-201 emission computed tomography. Imaging was performed immediately after maximal exercise and again after a 3 hr delay. Regional perfusion defects were identified in 41 of the 72 patients (57%). Fixed or only partially reversible defects were evident in 17 patients, 14 of whom (82%) had left ventricular ejection fractions of less than 50% at rest. Twenty-four patients demonstrated perfusion defects during exercise that completely reversed at rest; all had normal or hyperdynamic left ventricular systolic function (ejection fraction greater than or equal to 50%). Perfusion abnormalities were present in all regions of the left ventricle. However, the fixed defects were observed predominantly in segments of the left ventricular wall that were of normal or only mildly increased (15 to 20 mm) thickness; in contrast, a substantial proportion (41%) of the completely reversible defects occurred in areas of moderate-to-marked wall thickness (greater than or equal to 20 mm, p less than .001). Neither a history of chest pain nor its provocation with treadmill exercise was predictive of an abnormal thallium study, since regional perfusion defects were present in 10 of 18 (56%) completely asymptomatic patients, compared with 31 of 54 (58%) symptomatic patients. These data indicate that myocardial perfusion abnormalities occur commonly among patients with HCM. Fixed or only partially reversible defects suggestive of myocardial scar and/or severe ischemia occur primarily in patients with impaired systolic performance.

  4. Intracranial CT angiography obtained from a cerebral CT perfusion examination

    SciTech Connect

    Gratama van Andel, H. A. F.; Venema, H. W.; Majoie, C. B.; Den Heeten, G. J.; Grimbergen, C. A.; Streekstra, G. J.

    2009-04-15

    CT perfusion (CTP) examinations of the brain are performed increasingly for the evaluation of cerebral blood flow in patients with stroke and vasospasm after subarachnoid hemorrhage. Of the same patient often also a CT angiography (CTA) examination is performed. This study investigates the possibility to obtain CTA images from the CTP examination, thereby possibly obviating the CTA examination. This would save the patient exposure to radiation, contrast, and time. Each CTP frame is a CTA image with a varying amount of contrast enhancement and with high noise. To improve the contrast-to-noise ratio (CNR) we combined all 3D images into one 3D image after registration to correct for patient motion between time frames. Image combination consists of weighted averaging in which the weighting factor of each frame is proportional to the arterial contrast. It can be shown that the arterial CNR is maximized in this procedure. An additional advantage of the use of the time series of CTP images is that automatic differentiation between arteries and veins is possible. This feature was used to mask veins in the resulting 3D images to enhance visibility of arteries in maximum intensity projection (MIP) images. With a Philips Brilliance 64 CT scanner (64x0.625 mm) CTP examinations of eight patients were performed on 80 mm of brain using the toggling table technique. The CTP examination consisted of a time series of 15 3D images (2x64x0.625 mm; 80 kV; 150 mAs each) with an interval of 4 s. The authors measured the CNR in images obtained with weighted averaging, images obtained with plain averaging, and images with maximal arterial enhancement. The authors also compared CNR and quality of the images with that of regular CTA examinations and examined the effectiveness of automatic vein masking in MIP images. The CNR of the weighted averaged images is, on the average, 1.73 times the CNR of an image at maximal arterial enhancement in the CTP series, where the use of plain averaging

  5. Intravascular Perfusion of Carbon Black Ink Allows Reliable Visualization of Cerebral Vessels

    PubMed Central

    Hasan, Mohammad R.; Herz, Josephine; Hermann, Dirk M.; Doeppner, Thorsten R.

    2013-01-01

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes1 (i.e. carmine red, India ink) or latex with2 or without3 carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen3. Maeda et al.2 have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound4. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner5. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion5. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries. PMID:23328838

  6. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels.

    PubMed

    Hasan, Mohammad R; Herz, Josephine; Hermann, Dirk M; Doeppner, Thorsten R

    2013-01-04

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes (i.e. carmine red, India ink) or latex with or without carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen. Maeda et al. have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.

  7. Hypertension-Induced Vascular Remodeling Contributes to Reduced Cerebral Perfusion and the Development of Spontaneous Stroke in Aged SHRSP Rats

    DTIC Science & Technology

    2010-01-01

    induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats Erica C Henning1...spontaneously-hypertensive, stroke-prone (SHRSP) rats is of particular interest because the pathogenesis is believed to be similar to that in the...cerebral infarction and the specific role of cerebral perfusion in disease development. Twelve female SHRSP rats (age: - 1 year) were Imaged within 1

  8. Perfusion of a cerebral protective solution enhances neuroprotection in a rabbit model of occlusion-reperfusion: prolonged cerebral dormancy time.

    PubMed

    Ye, Libin; Hua, Aiyuan; Dai, Bo; Lu, Tingting; Zhang, Zhaolin; Ye, Meilin; Weintraub, Michael; Li, Qingdi Quentin

    2014-01-01

    In the present study, we investigated the effect of a cerebral protective solution on prolongation of cerebral dormancy time in a rabbit model of occlusion-reperfusion. In a control group, rabbits were anesthetized and the four cerebral arteries (the left and right common carotid arteries and vertebral arteries) were occluded for 7.5 min followed by reperfusion. All six rabbits in the control group died. In contrast, a second group underwent perfusion of a cerebral protective solution for 15 min between artery occlusion and reperfusion. All six rabbits in this group survived. However, when the perfusion solution was changed to 5% glucose solution or rabbit plasma in two other groups, the rabbits in both the latter two groups also died. Neuroprotection was also observed when the protective solution was administered for 30-60 min after the onset of artery occlusion and before the return of blood flow (reperfusion). To understand the high rate of thrombotic stroke in the clinic, we assessed the influence of different organ tissue infusions on blood coagulation in vitro and found that blood clotting occurred faster in the presence of brain tissue infusion compared to liver, kidney, and heart tissue infusions. These results indicate a higher rate of thrombosis in brain tissue compared to any of the other tissues tested. The current study shows that perfusion of a cerebral protective solution produced a significant neuroprotective benefit in our rabbit model of occlusion-reperfusion, suggesting that administration of a cerebral protective solution may be an effective approach for the treatment of ischemic stroke.

  9. Flat-panel volumetric computed tomography in cerebral perfusion: evaluation of three rat stroke models.

    PubMed

    Juenemann, Martin; Goegel, Sinja; Obert, Martin; Schleicher, Nadine; Ritschel, Nouha; Doenges, Simone; Eitenmueller, Inka; Schwarz, Niko; Kastaun, Sabrina; Yeniguen, Mesut; Tschernatsch, Marlene; Gerriets, Tibo

    2013-09-30

    Flat-panel volumetric computed tomography (fpVCT) is a non-invasive approach to three-dimensional small animal imaging. The capability of volumetric scanning and a high resolution in time and space enables whole organ perfusion studies. We aimed to assess feasibility and validity of fpVCT in cerebral perfusion measurement with impaired hemodynamics by evaluation of three well-established rat stroke models for temporary and permanent middle cerebral artery occlusion (MCAO). Male Wistar rats were randomly assigned to temporary (group I: suture model) and permanent (group II: suture model; III: macrosphere model) MCAO and to a control group. Perfusion scans with respect to cerebral blood flow (CBF) and volume (CBV) were performed 24h post intervention by fpVCT, using a Gantry rotation time of 1s and a total scanning time of 30s. Postmortem analysis included infarct-size calculation by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Infarct volumes did not differ significantly throughout intervention groups. After permanent MCAO, CBF significantly decreased in subcortical regions to 78.2% (group II, p=0.005) and 79.9% (group III, p=0.012) and in total hemisphere to 77.4% (group II, p=0.010) and 82.0% (group III, p=0.049). CBF was less impaired with temporary vessel occlusion. CBV measurement revealed no significant differences. Results demonstrate feasibility of cerebral perfusion quantification in rats with the fpVCT, which can be a useful tool for non-invasive dynamic imaging of cerebral perfusion in rodent stroke models. In addition to methodological advantages, CBF data confirm the macrosphere model as a useful alternative to the suture model for permanent experimental MCAO.

  10. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  11. Positron emission tomography in ischaemic stroke: cerebral perfusion and metabolism after stroke onset.

    PubMed

    Yasaka, M; Read, S J; O'Keefe, G J; Egan, G F; Pointon, O; McKay, W J; Donnan, G A

    1998-10-01

    PET studies were performed in 37 patients up to 1 month after ischaemic stroke to observe the relationships between cerebral blood flow (CBF), rate of cerebral oxygen metabolism (CMRO(2)) and oxygen extraction fraction (OEF) with time. PET findings were classified as misery perfusion (two patients), luxury perfusion (15 patients), matched hypoperfusion-hypometabolism (17 patients) or normal (nine patients). Misery perfusion was seen up to 3 days post-stroke, suggesting an extended time window during which at least some tissue may be salvageable. Luxury perfusion, an indication of non-nutritional flow, was seen as early as 30 h and as late as 23 days, but more commonly between 3 and 7 days. A matched reduction of CBF and CMRO(2) was seen during all time periods, but as early as 27 hours. Since this was associated with severely impaired CBF, presumably from the onset of stroke, it can be assumed that the duration of cerebral tissue survival is less than 27 h under these conditions. We inferred that, for maximal tissue recovery, therapy will need to be introduced within 27 h after stroke, but that at least some potential for recovery exists up to 3 days.

  12. Non-Invasive Respiratory Impedance Enhances Cerebral Perfusion in Healthy Adults

    PubMed Central

    Favilla, Christopher G.; Parthasarathy, Ashwin B.; Detre, John A.; Yodh, Arjun G.; Mullen, Michael T.; Kasner, Scott E.; Gannon, Kimberly; Messé, Steven R.

    2017-01-01

    Optimization of cerebral blood flow (CBF) is the cornerstone of clinical management in a number of neurologic diseases, most notably ischemic stroke. Intrathoracic pressure influences cardiac output and has the potential to impact CBF. Here, we aim to quantify cerebral hemodynamic changes in response to increased respiratory impedance (RI) using a non-invasive respiratory device. We measured cerebral perfusion under varying levels of RI (6 cm H2O, 9 cm H2O, and 12 cm H2O) in 20 healthy volunteers. Simultaneous measurements of microvascular CBF and middle cerebral artery mean flow velocity (MFV), respectively, were performed with optical diffuse correlation spectroscopy and transcranial Doppler ultrasound. At a high level of RI, MFV increased by 6.4% compared to baseline (p = 0.004), but changes in cortical CBF were non-significant. In a multivariable linear regression model accounting for end-tidal CO2, RI was associated with increases in both MFV (coefficient: 0.49, p < 0.001) and cortical CBF (coefficient: 0.13, p < 0.001), although the magnitude of the effect was small. Manipulating intrathoracic pressure via non-invasive RI was well tolerated and produced a small but measurable increase in cerebral perfusion in healthy individuals. Future studies in acute ischemic stroke patients with impaired cerebral autoregulation are warranted in order to assess whether RI is feasible as a novel non-invasive therapy for stroke. PMID:28261153

  13. Cerebral perfusion imaging with iodine 123-labeled amines

    SciTech Connect

    Holman, B.L.; Hill, T.C.; Polak, J.F.; Lee, R.G.; Royal, H.D.; O'Leary, D.H.

    1984-10-01

    Two amines, N-isopropyl p-iodoamphetamine and N,N,N'-trimethyl-N'-(2-hydroxyl-3-methyl-5-iodobenzyl)-1,3-prop anediamine, have been labeled with iodine 123. The brain uptake of these radioactive tracers is proportional to cerebral blood flow. These tracers are retained in the brain for a sufficiently long time so that imaging can be performed with standard, readily available instrumentation. Transaxial tomography with amines is useful in acute cerebral infarction, in which the x-ray computed tomographic scan may be normal for several days after onset of symptoms while the uptake of radioisotope-labeled amines will be altered immediately after the onset of the stroke. It is also useful in examining patients with cerebral vascular disease and in the preoperative examination of patients with partial epilepsy.

  14. Luxury perfusion syndrome in cerebral vascular disease evaluated with technetium-99m HM-PAO.

    PubMed

    Spreafico, G; Cammelli, F; Gadola, G; Freschi, R; Zancaner, F

    1987-03-01

    A recently developed Tc-99m radiocompound, hexamethylpropyleneamine oxime (Tc-99m HM-PAO), exhibits favorable properties for regional cerebral blood flow study in man. The authors present a case of luxury perfusion syndrome observed in a 72-year-old patient with acute stroke and a right-sided hemiplegia, documented by planar scintigraphy and SPECT study in correlation with CT scan. The metabolic basis of this phenomenon is discussed and the usefulness of assessing regional brain perfusion by Tc-99m HM-PAO with conventional nuclear medicine equipment is underlined.

  15. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure

    PubMed Central

    Taylor, Curtis R.; Hanna, Mina; Behnke, Bradley J.; Stabley, John N.; McCullough, Danielle J.; Davis, Robert T.; Ghosh, Payal; Papadopoulos, Anthony; Muller-Delp, Judy M.; Delp, Michael D.

    2013-01-01

    Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 μm and GC: 215±5 μm) with no difference in medial wall thickness (SF: 12.4±1.6 μm; GC: 12.2±1.2 μm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.—Taylor, C. R., Hanna, M., Behnke, B. J., Stabley, J. N., McCullough, D. J., Davis III, R. T., Ghosh, P., Papadopoulos, A., Muller-Delp, J. M., Delp, M. D. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated

  16. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.

    PubMed

    Seifert, Thomas; Fisher, James P; Young, Colin N; Hartwich, Doreen; Ogoh, Shigehiko; Raven, Peter B; Fadel, Paul J; Secher, Niels H

    2010-10-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1) (P < 0.01) and cardiac output by approximately 40% (P < 0.05), but did not affect mean arterial pressure. The central cardiovascular responses to exercise with glycopyrrolate were similar to the control responses, except that cardiac output did not increase during static handgrip with glycopyrrolate. Glycopyrrolate did not significantly affect cerebral metabolism during static handgrip, but a parallel increase in MCA V(mean) (approximately 16%; P < 0.01) and CBF (approximately 12%; P < 0.01) during static handgrip, as well as the increase in MCA V(mean) during cycling (approximately 15%; P < 0.01), were abolished by glycopyrrolate (P < 0.05). Thus, during both cycling and static handgrip, a cholinergic receptor mechanism is important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen.

  17. Association of frontal gray matter volume and cerebral perfusion in heroin addiction: a multimodal neuroimaging study.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Schmid, Otto; Riecher-Rössler, Anita; Wiesbeck, Gerhard A; Huber, Christian G; Lang, Undine E; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2013-01-01

    Structure and function are closely related in the healthy human brain. In patients with chronic heroin exposure, brain imaging studies have identified long-lasting changes in gray matter (GM) volume. More recently, we showed that acute application of heroin in dependent patients results in hypoperfusion of fronto-temporal areas compared with the placebo condition. However, the relationship between structural and cerebral blood flow (CBF) changes in heroin addiction has not yet been investigated. Moreover, it is not known whether there is any interaction between the chronic structural changes and the short and long-term effects on perfusion caused by heroin. Using a double-blind, within-subject design, heroin or placebo (saline) was administered to 14 heroin-dependent patients from a stable heroin-assisted treatment program, in order to observe acute short-term effects. Arterial spin labeling (ASL) was used to calculate perfusion quantification maps in both treatment conditions, while Voxel-Based Morphometry (VBM) was conducted to calculate regional GM density. VBM and ASL data were used to calculate homologous correlation fields by Biological Parametric Mapping (BPM) and a whole-brain Pearson r correlation. We correlated each perfusion condition (heroin and placebo) separately with a VBM sample that was identical for the two treatment conditions. It was assumed that heroin-associated perfusion is manifested in short-term effects, while placebo-associated perfusion is more related to long-term effects. In order to restrict our analyses to fronto-temporal regions, we used an explicit mask for our analyses. Correlation analyses revealed a significant positive correlation in frontal areas between GM and both perfusion conditions (heroin and placebo). Heroin-associated perfusion was also negatively correlated with GM in the inferior temporal gyrus on both hemispheres. These findings indicate that, in heroin-dependent patients, low GM volume is positively associated with

  18. MR spectroscopy and MR perfusion character of cerebral sparganosis: a case report

    PubMed Central

    Chiu, C-H; Chiou, T-L; Hsu, Y-H; Yen, P-S

    2010-01-01

    The authors report the case of a 46-year-old woman with cerebral sparganosis resulting from infection with a larva of Spirometra. Computed tomography and magnetic resonance imaging revealed a mass lesion with prominent perifocal oedema in the left parietal lobe. Advanced imaging pulse sequences, including MR spectroscopy and MR perfusion, were performed. During surgery for the removal of a granuloma, the parasite was discovered and excised. Following treatment, the patient's neurological deficits markedly improved. PMID:20139254

  19. Cerebral Perfusion and Gray Matter Changes Associated With Chemotherapy-Induced Peripheral Neuropathy

    PubMed Central

    Nudelman, Kelly N.H.; McDonald, Brenna C.; Wang, Yang; Smith, Dori J.; West, John D.; O'Neill, Darren P.; Zanville, Noah R.; Champion, Victoria L.; Schneider, Bryan P.

    2016-01-01

    Purpose To investigate the longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN) symptoms (sx) and brain perfusion changes in patients with breast cancer. Interaction of CIPN-sx perfusion effects with known chemotherapy-associated gray matter density decrease was also assessed to elucidate the relationship between CIPN and previously reported cancer treatment–related brain structural changes. Methods Patients with breast cancer treated with (n = 24) or without (n = 23) chemotherapy underwent clinical examination and brain magnetic resonance imaging at the following three time points: before treatment (baseline), 1 month after treatment completion, and 1 year after the 1-month assessment. CIPN-sx were evaluated with the self-reported Functional Assessment of Cancer Therapy/Gynecologic Oncology Group–Neurotoxicity four-item sensory-specific scale. Perfusion and gray matter density were assessed using voxel-based pulsed arterial spin labeling and morphometric analyses and tested for association with CIPN-sx in the patients who received chemotherapy. Results Patients who received chemotherapy reported significantly increased CIPN-sx from baseline to 1 month, with partial recovery by 1 year (P < .001). CIPN-sx increase from baseline to 1 month was significantly greater for patients who received chemotherapy compared with those who did not (P = .001). At 1 month, neuroimaging showed that for the group that received chemotherapy, CIPN-sx were positively associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions associated with pain processing (P < .001). Longitudinal magnetic resonance imaging analysis in the group receiving chemotherapy indicated that CIPN-sx and associated perfusion changes from baseline to 1 month were also positively correlated with gray matter density change (P < .005). Conclusion Peripheral neuropathy symptoms after systemic chemotherapy for breast cancer are associated with

  20. Retrograde cerebral perfusion (RCP) in aortic arch surgery: efficacy and possible mechanisms of brain protection.

    PubMed

    Bavaria, J E; Pochettino, A

    1997-07-01

    Retrograde cerebral perfusion (RCP) was first introduced to treat air embolism during cardiopulmonary bypass (CPB). Its use was reintroduced to extend the safety of hypothermic circulatory arrest (HCA) during operations involving an open aortic arch. RCP seems to prevent cerebral rewarming during HCA. Both clinical and animal data suggest that RCP provides between 10% and 30% of baseline cerebral blood flow when administered through the superior vena cava (SVC) at jugular pressures of 20 to 25 mm Hg. RCP flows producing jugular venous pressures higher than 30 mm Hg may cause cerebral edema. Cerebral blood flow generated by RCP is able to sustain some cerebral metabolic activity, yet is not able to fully meet cerebral energy demands even at temperatures of 12 degrees to 18 degrees C. RCP may further prevent embolic events during aortic arch surgery when administered at moderate jugular vein pressures (< 40 mm Hg). Clinical results suggest that RCP, when applied during aortic arch reconstruction, may extend the safe HCA period and improve morbidity and mortality, especially when HCA times are more than 60 minutes. RCP applied in patients and severe carotid and brachiocephalic occlusive disease may be ineffective, and caution is in order when RCP times are greater than 90 minutes.

  1. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    SciTech Connect

    Dowdle, S.C.; Human, D.G.; Mann, M.D. )

    1990-08-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis.

  2. Assessment of Specific Characteristics of Abnormal General Movements: Does It Enhance the Prediction of Cerebral Palsy?

    ERIC Educational Resources Information Center

    Hamer, Elisa G.; Bos, Arend F.; Hadders-Algra, Mijna

    2011-01-01

    Aim: Abnormal general movements at around 3 months corrected age indicate a high risk of cerebral palsy (CP). We aimed to determine whether specific movement characteristics can improve the predictive power of definitely abnormal general movements. Method: Video recordings of 46 infants with definitely abnormal general movements at 9 to 13 weeks…

  3. Do thallium myocardial perfusion scan abnormalities predict survival in sarcoid patients without cardiac symptoms

    SciTech Connect

    Kinney, E.L.; Caldwell, J.W. )

    1990-07-01

    Whereas the total mortality rate for sarcoidosis is 0.2 per 100,000, the prognosis, when the heart is involved, is very much worse. The authors used the difference in mortality rate to infer whether thallium 201 myocardial perfusion scan abnormalities correspond to myocardial sarcoid by making the simplifying assumption that if they do, then patients with abnormal scans will be found to have a death rate similar to patients with sarcoid heart disease. The authors therefore analyzed complete survival data on 52 sarcoid patients without cardiac symptoms an average of eighty-nine months after they had been scanned as part of a protocol. By use of survival analysis (the Cox proportional hazards model), the only variable that was significantly associated with survival was age. The patients' scan pattern, treatment status, gender, and race were not significantly related to survival. The authors conclude that thallium myocardial perfusion scans cannot reliably be used to diagnose sarcoid heart disease in sarcoid patients without cardiac symptoms.

  4. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia

    PubMed Central

    Zhang, Peizhen; Shi, Xiangrong

    2014-01-01

    The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis. PMID:25504012

  5. Cerebral perfusion during canine hypothermic cardiopulmonary bypass: effect of arterial carbon dioxide tension.

    PubMed

    Johnston, W E; Vinten-Johansen, J; DeWitt, D S; O'Steen, W K; Stump, D A; Prough, D S

    1991-09-01

    Cerebral blood flow (radioactive microspheres), intracranial pressure (subdural bolt), and retinal histopathology were examined in 20 dogs undergoing 150 minutes of hypothermic (28 degrees C) cardiopulmonary bypass to compare alpha-stat (arterial carbon dioxide tension, 40 +/- 1 mm Hg; n = 10) and pH-stat (arterial carbon dioxide tension, 61 +/- 1 mm Hg; n = 10) techniques of arterial carbon dioxide tension management. Pump flow (80 mL.kg-1.min-1), mean aortic pressure (78 +/- 2 mm Hg), and hemoglobin level (87 +/- 3 g/L [8.7 +/- 0.3 g/dL]) were maintained constant. During bypass, intracranial pressure progressively increased in the alpha-stat group from 6.0 +/- 1.0 to 13.9 +/- 1.8 mm Hg (p less than 0.05) and in the pH-stat group from 7.7 +/- 1.1 to 14.7 +/- 1.4 mm Hg (p less than 0.05), although there was no evidence of loss of intracranial compliance or intracranial edema formation as assessed by brain water content. With cooling, cerebral blood flow decreased by 56% to 62% in the alpha-stat group (p less than 0.05) and by 48% to 56% in the pH-stat group (p less than 0.05). However, 30 minutes after rewarming to 37 degrees C, cerebral blood flow in both groups failed to increase and remained significantly depressed compared with baseline values. Both groups showed similar amounts of ischemic retinal damage, with degeneration of bipolar cells found in the inner nuclear layer in 67% of animals. We conclude that, independent of the arterial carbon dioxide tension management technique, (1) cerebral perfusion decreased comparably during prolonged hypothermic bypass, (2) intracranial pressure increases progressively, (3) ischemic damage to retinal cells occurs despite maintenance of aortic pressure and flow, and (4) a significant reduction in cerebral perfusion persists after rewarming.

  6. Longitudinal Cerebral Perfusion Change in Transient Global Amnesia Related to Left Posterior Medial Network Disruption

    PubMed Central

    Jang, Jae-Won; Park, Young Ho; Park, So Young; Wang, Min Jeong; Lim, Jae-Sung; Kim, Sung-Hun; Chun, In KooK; Yang, Youngsoon; Kim, SangYun

    2015-01-01

    Background The pathophysiology of transient global amnesia (TGA) is not fully understood. Previous studies using single photon emission computed tomography (SPECT) have reported inconclusive results regarding cerebral perfusion. This study was conducted to identify the patterns of regional cerebral blood flow (rCBF) in TGA patients via longitudinal SPECT analysis. An association between the observed SPECT patterns and a pathophysiological mechanism was considered. Methods Based on the TGA registry database of Seoul National University Bundang Hospital, 22 TGA patients were retrospectively identified. The subjects underwent initial Tc-99m-ethyl cysteinate dimer (ECD) SPECT within 4 days of an amnestic event and underwent follow-up scans approximately 6 months later. The difference in ECD uptake between the two scans was measured via voxel-based whole brain analysis, and the quantified ECD uptake was tested using a paired t-test. Results The TGA patients had significantly decreased cerebral perfusion at the left precuneus (P<0.001, uncorrected) and at the left superior parietal and inferior temporal gyrus according to the voxel-based whole brain analysis (P<0.005, uncorrected). A difference in the quantified ECD uptake between the 2 scans was also found at the left precuneus among the 62 cortical volumes of interest (P = 0.018, Cohen’s d = -0.25). Conclusion We identified left hemispheric lateralized hypoperfusion that may be related to posterior medial network disruption. These findings may be a contributing factor to the pathophysiology of TGA. PMID:26690067

  7. Hepatic perfusion abnormalities during treatment with hepatic arterial infusion chemotherapy: Value of CT arteriography using an implantable port system

    SciTech Connect

    Seki, Hiroshi; Kimura, Motomasa; Kamura, Takeshi; Miura, Tsutomu

    1996-05-01

    The purpose of this study was to evaluate CT arteriography (CTA) using an implantable port system in the detection of perfusion abnormalities occurring during hepatic arterial infusion chemotherapy (HAIC). In 51 patients with unresectable primary and metastatic liver tumors, who had implanted port systems for HAIC, CTA examinations through the infusion pump were performed. When perfusion abnormalities were found, selective angiography and/or digital subtraction angiography using the implantable port system were performed to determine the etiology. Forty-nine perfusion abnormalities were detected in 32 patients. Intrahepatic hypoperfusion was found in 24 cases. Of 11 patients in whom correction of the hypoperfusion was attempted, it was successful in 10. Of 13 patients in whom correction was not attempted, 6 patients showed progressive disease in nonperfused areas. Intrahepatic hyperperfusion was found in 14 cases, which showed no subsequent complication. Extrahepatic perfusion was found in 11 cases. We consider CTA to be useful in detecting perfusion abnormalities that may compromise HAIC. 22 refs., 3 figs., 3 tabs.

  8. Management of traumatic brain injury: nursing practice guidelines for cerebral perfusion and brain tissue oxygenation (PbtO2) systems.

    PubMed

    Hession, Diane

    2008-01-01

    Traditional modes of preventing brain cell death in traumatic brain injury (TBI) focus on the enhancement of cerebral perfusion pressure and control of intracranial pressure. Brain tissue oxygenation (PbtO2) monitoring systems are currently available to provide early detection of diminished cerebral oxygenation, and ultimately, ischemia. Research has demonstrated that early detection in PbtO2 is a more delicate measurement of cerebral blood flow and oxygenation. Monitoring PbtO2, in conjunction with cerebral perfusion pressure and intracranial pressure, has been shown to be a better guide to the prevention and treatment of secondary cerebral ischemia. This article reviews TBI, a PbtO2 monitor system description and indications for use, and the importance of nursing practice guidelines and education. With proper guidelines and education, this new technology can be used effectively by bedside clinicians and educators in adult and pediatric intensive care units.

  9. Intraoperative imaging of cortical cerebral perfusion by time-resolved thermography and multivariate data analysis.

    PubMed

    Steiner, Gerald; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias

    2011-01-01

    A new approach to cortical perfusion imaging is demonstrated using high-sensitivity thermography in conjunction with multivariate statistical data analysis. Local temperature changes caused by a cold bolus are imaged and transferred to a false color image. A cold bolus of 10 ml saline at ice temperature is injected systemically via a central venous access. During the injection, a sequence of 735 thermographic images are recorded within 2 min. The recorded data cube is subjected to a principal component analysis (PCA) to select slight changes of the cortical temperature caused by the cold bolus. PCA reveals that 11 s after injection the temperature of blood vessels is shortly decreased followed by an increase to the temperature before the cold bolus is injected. We demonstrate the potential of intraoperative thermography in combination with multivariate data analysis to image cortical cerebral perfusion without any markers. We provide the first in vivo application of multivariate thermographic imaging.

  10. Recovery from aphasia and neglect after subcortical stroke: neuropsychological and cerebral perfusion study.

    PubMed Central

    Vallar, G; Perani, D; Cappa, S F; Messa, C; Lenzi, G L; Fazio, F

    1988-01-01

    Cortical regional cerebral perfusion was assessed by N, N, N1-trimethyl-N1-(2)-hydroxy-3-methyl-5-(I-123) iodobenzyl-1, 3-propanediamine 2 HCl I-123 (HIPDM) and single photon emission computerised tomography (SPECT) in six aphasic and two neglect patients with unilateral subcortical vascular lesions. Assessments were carried out both in the acute phase and after a period ranging from 1 to 6 months after stroke onset. In all patients an almost complete spontaneous recovery occurred and was associated with a significant improvement of cortical perfusion. A relationship between severity of aphasia and degree of cortical hypoperfusion was found, in both the acute and the follow up assessments, in the aphasic subgroup. Images PMID:2465386

  11. Cerebral Perfusion Changes in Post-Concussion Syndrome: A Prospective Controlled Cohort Study

    PubMed Central

    Marcil, Lorenzo D.; Dewey, Deborah; Carlson, Helen L.; MacMaster, Frank P.; Brooks, Brian L.; Lebel, R. Marc

    2017-01-01

    Abstract The biology of post-concussive symptoms is unclear. Symptoms are often increased during activities, and have been linked to decreased cerebrovascular reactivity and perfusion. The aim of this study was to examine cerebral blood flow (CBF) in children with different clinical recovery patterns following mild traumatic brain injury (mTBI). This was a prospective controlled cohort study of children with mTBI (ages 8 to 18 years) who were symptomatic with post-concussive symptoms at one month post-injury (symptomatic, n = 27) and children who had recovered quickly (asymptomatic, n = 24). Pseudo continuous arterial spin labeling magnetic resonance imaging (MRI) was used to quantify CBF. The mTBI groups were imaged at 40 days post-injury. Global and regional CBF were compared with healthy controls of similar age and sex but without a history of mTBI (n = 21). Seventy-two participants (mean age: 14.1 years) underwent neuroimaging. Significant differences in CBF were found: global CBF was higher in the symptomatic group and lower in the asymptomatic group compared with controls, (F(2,69) 9.734; p < 0.001). Post-injury symptom score could be predicted by pre-injury symptoms and CBF in presence of mTBI (adjusted R2 = 0.424; p < 0.001). Altered patterns of cerebral perfusion are seen following mTBI and are associated with the recovery trajectory. Symptomatic children have higher CBF. Children who “recovered” quickly, have decreased CBF suggesting that clinical recovery precedes the cerebral recovery. Further longitudinal studies are required to determine if these perfusion patterns continue to change over time. PMID:27554429

  12. Optimizing cerebral perfusion pressure during fiberoptic bronchoscopy in severe head injury: effect of hyperventilation.

    PubMed

    Previgliano, I J; Ripoll, P I; Chiappero, G; Galíndez, F; Germani, L; González, D H; Ferrari, N; Hlavnicka, A; Purvis, C

    2002-01-01

    The aim of this study was to evaluate if Hyperventilation (HV) could avoid the Intracranial Pressure (ICP) peak that occurs during Fiberoptic Bronchoscopy (FB) in severely head injured patients. A Cerebral Perfusion Pressure (CPP) > 75 mmHg was maintained in 34 patients, with a subgroup randomized to receive controlled HV during FB. Measurements were done before the procedure, during maximum ICP values and 30 minutes after FB. The HV group had minor ICP values after FB, without differences in CPP and ICP peak values.

  13. [Intracranial and cerebral perfusion pressure in neurosurgical patients during anaesthesia with xenon].

    PubMed

    Rylova, A V; Gavrilov, A G; Lubnin, A Iu; Potapov, A A

    2014-01-01

    Despite difficulties in providing xenon anaesthesia, xenon still seems to be attractive for neurosurgical procedures. But data upon its effect on intracranial (ICP) and cerebral perfusion pressure (CPP) remains controversial. We monitored ICP and CPP in patients with or without intracranial hypertension during xenon inhalation in different concentrations. Our results suggest that caution should be used while inhaling xenon in high anaesthetic concentration in patients wiith known intracranial hypertension. We also address new possibilities of xenon use, e.g., for sedation in neurosurgery. The study was supported by Russian Fund for Fundamental Research, grant number 13-04-01640.

  14. Arterial Spin-Labeled Perfusion Combined with Segmentation Techniques to Evaluate Cerebral Blood Flow in White and Gray Matter of Children with Sickle Cell Anemia

    PubMed Central

    Helton, Kathleen J.; Paydar, Amir; Glass, John; Weirich, Eric M.; Hankins, Jane; Li, Chin-Shang; Smeltzer, Matthew P.; Wang, Winfred C.; Ware, Russell E.; Ogg, Robert J.

    2015-01-01

    Background Changes in cerebral perfusion are an important feature of the pathophysiology of sickle cell anemia (SCA); cerebrovascular ischemia occurs frequently and leads to neurocognitive deficits, silent infarcts, and overt stroke. Non-invasive MRI methods to measure cerebral blood flow (CBF) by arterial spin labeling (ASL) afford new opportunities to characterize disease- and therapy-induced changes in cerebral hemodynamics in patients with SCA. Recent studies have documented elevated gray matter (GM) CBF in untreated children with SCA, but no measurements of white matter (WM) CBF have been reported. Procedures Pulsed ASL with automated brain image segmentation-classification techniques were used to determine the CBF in GM, WM, and abnormal white matter (ABWM) of 21 children with SCA, 18 of whom were receiving hydroxyurea therapy. Results GM and WM CBF were highly associated (R2 =.76, p< 0.0001) and the GM to WM CBF ratio was 1.6 (95% confidence interval: 1.43-1.83). Global GM CBF in our treated cohort was 87 ± 24 mL/min/100 g, a value lower than previously reported in untreated patients with SCA. CBF was elevated in normal appearing WM (43 ± 14 mL/min/100 g) but decreased in ABWM (6 ± 12 mL/min/100 g), compared to published normal pediatric controls. Hemispheric asymmetry in CBF was noted in most patients. Conclusions These perfusion measurements suggest that hydroxyurea may normalize GM CBF in children with SCA, but altered perfusion in WM may persist. This novel combined approach for CBF quantification will facilitate prospective studies of cerebral vasculopathy in SCA, particularly regarding the effects of treatments such as hydroxyurea. PMID:18937311

  15. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12

    PubMed Central

    Jafari-Khouzani, Kourosh; Emblem, Kyrre E.; Kalpathy-Cramer, Jayashree; Bjørnerud, Atle; Vangel, Mark G.; Gerstner, Elizabeth R.; Schmainda, Kathleen M.; Paynabar, Kamran; Wu, Ona; Wen, Patrick Y.; Batchelor, Tracy; Rosen, Bruce; Stufflebeam, Steven M.

    2015-01-01

    OBJECTIVES This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS DSC-MRI is highly repeatable in high-grade glioma patients. PMID:26055170

  16. Cerebral blood flow abnormalities in children with sickle cell disease: a systematic review.

    PubMed

    Behpour, Amir M; Shah, Prakesh S; Mikulis, David J; Kassner, Andrea

    2013-03-01

    A systematic review was performed to assess whether cerebral blood flow with different imaging modalities could identify brain abnormalities in children with sickle cell disease where structural magnetic resonance imaging and transcranial Doppler velocity appeared normal. A total of 11 studies were identified which reported cerebral blood flow abnormalities alongside structural magnetic resonance imaging or transcranial Doppler velocity abnormalities in patients with sickle cell disease. Potential for bias was assessed with the quality assessment of diagnostic accuracy studies scale in addition to treatment bias. Subjects of each study were categorized into patients with and without stroke. The prevalence of abnormalities for each modality was then separately calculated in each group. The included studies had mostly moderate degrees of bias. The prevalence of blood flow abnormalities compared with structural magnetic resonance imaging abnormalities was equal to or lower in patients with stroke and equal to or greater in patients without stroke. Blood flow abnormalities were more prevalent than transcranial Doppler abnormalities in four studies of patients without stroke and in one study of patients with stroke. The studies suggest that the assessment of cerebral blood flow in sickle cell disease can be of potential value in addressing brain abnormalities at the tissue level; however, further studies are warranted.

  17. Cerebral ultrasound abnormalities in preterm infants caused by late-onset sepsis

    PubMed Central

    van den Dungen, F. A. M.; Vermeulen, R. J.; van Weissenbruch, M. M.

    2017-01-01

    Introduction This study describes cerebral ultrasound abnormalities caused by late-onset sepsis (LOS) in very preterm infants with a gestational age of < 32 weeks and/or birthweight < 1500 grams. Methods The prospective study (“INFANT study”) included 117 preterm infants with suspected LOS. Proven LOS was defined as a positive blood culture after 72 hours of life. In case of coagulase-negative staphylococci an elevated C-reactive protein was additionally required to establish proven LOS. Patients were identified as proven LOS and patients with only clinical symptoms of LOS. Cerebral ultrasound images were obtained in the first week after birth, during/after LOS and before discharge. Cerebral findings were divided in no/minor and major abnormalities. Results Eighty-six preterm infants had proven LOS and 31 preterm infants had only clinical signs of LOS. Four infants were excluded because pre-existing major brain abnormalities. No significant differences (p = 0.624) for incidence of major brain abnormalities on cerebral ultrasound were found. Conclusion No differences were revealed in prevalence of major brain abnormalities between the groups with proven LOS and with clinical signs of LOS. Both infants with a gram negative sepsis developed major brain abnormalities, whereas only two of 66 preterm infants coagulase-negative staphylococci sepsis developed major brain abnormalities. PMID:28301503

  18. Time-course of cerebral perfusion and tissue oxygenation in the first 6 h after experimental subarachnoid hemorrhage in rats.

    PubMed

    Westermaier, Thomas; Jauss, Alina; Eriskat, Jörg; Kunze, Ekkehard; Roosen, Klaus

    2009-04-01

    Present knowledge about hemodynamic and metabolic changes after subarachnoid hemorrhage (SAH) originates from neuromonitoring usually starting with aneurysm surgery and animal studies that have been focusing on the first 1 to 3 h after SAH. Most patients, however, are referred to treatment several hours after the insult. We examined the course of hemodynamic parameters, cerebral blood flow, and tissue oxygenation (ptiO2) in the first 6 h after experimental SAH. Sixteen Sprague-Dawley rats were subjected to SAH using the endovascular filament model or served as controls (n=8). Bilateral local cortical blood flow, intracranial pressure, cerebral perfusion pressure, and ptiO2 were followed for 6 h after SAH. After induction of SAH, local cortical blood flow rapidly declined to 22% of baseline and returned to 80% after 6 h. The decline of local cortical blood flow markedly exceeded the decline of cerebral perfusion pressure. ptiO2 declined to 57%, recovered after 2 h, and reached > or =140% of baseline after 6 h. Acute vasoconstriction after SAH is indicated by the marked discrepancy of cerebral perfusion pressure and local cortical blood flow. The excess tissue oxygenation several hours after SAH suggests disturbed oxygen utilization and cerebral metabolic depression. Aside from the sudden increase of intracranial pressure at the time of hemorrhage and delayed cerebral vasospasm, the occurrence of acute vasoconstriction and disturbed oxygen utilization may be additional factors contributing to secondary brain damage after SAH.

  19. Cerebral vasoreactivity to carbon dioxide during cardiopulmonary perfusion at normothermia and hypothermia

    SciTech Connect

    Johnsson, P.; Messeter, K.; Ryding, E.; Kugelberg, J.; Stahl, E. )

    1989-12-01

    With the pH-stat acid-base regulation strategy during hypothermic cardiopulmonary bypass (CPB), carbon dioxide (CO{sub 2}) is generally administered to maintain the partial pressure of arterial CO{sub 2} at a higher level than with the alpha-stat method. With preserved CO{sub 2} vasoreactivity during CPB, this induction of respiratory acidosis can lead to a much higher cerebral blood flow level than is motivated metabolically. To evaluate CO{sub 2} vasoreactivity, cerebral blood flow was measured using a xenon 133 washout technique before, during, and after CPB at different CO{sub 2} levels in patients who were undergoing coronary artery bypass grafting with perfusion at either hypothermia or normothermia. The overall CO{sub 2} reactivity was 1.2 mL/100 g/min/mm Hg. There was no difference between the groups. The CO{sub 2} reactivity was not affected by temperature or CPB. The induced hemodilution resulted in higher cerebral blood flow levels during CPB, although this was counteracted by the temperature-dependent decrease in the hypothermia group. After CPB, a transient increase in cerebral blood flow was noted in the hypothermia group, the reason for which remains unclear. The study shows that manipulation of the CO{sub 2} level at different temperatures results in similar changes in cerebral blood flow irrespective of the estimated metabolic demand. This finding further elucidates the question of whether alpha-stat or pH-stat is the most physiological way to regulate the acid-base balance during hypothermic CPB.

  20. CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis.

    PubMed

    Cremers, Charlotte H P; van der Schaaf, Irene C; Wensink, Emerens; Greving, Jacoba P; Rinkel, Gabriel J E; Velthuis, Birgitta K; Vergouwen, Mervyn D I

    2014-02-01

    Delayed cerebral ischemia (DCI) is at presentation a diagnosis per exclusionem, and can only be confirmed with follow-up imaging. For treatment of DCI a diagnostic tool is needed. We performed a systematic review to evaluate the value of CT perfusion (CTP) in the prediction and diagnosis of DCI. We searched PubMed, Embase, and Cochrane databases to identify studies on the relationship between CTP and DCI. Eleven studies totaling 570 patients were included. On admission, cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time-to-peak (TTP) did not differ between patients who did and did not develop DCI. In the DCI time-window (4 to 14 days after subarachnoid hemorrhage (SAH)), DCI was associated with a decreased CBF (pooled mean difference -11.9 mL/100 g per minute (95% confidence interval (CI): -15.2 to -8.6)) and an increased MTT (pooled mean difference 1.5 seconds (0.9-2.2)). Cerebral blood volume did not differ and TTP was rarely reported. Perfusion thresholds reported in studies were comparable, although the corresponding test characteristics were moderate and differed between studies. We conclude that CTP can be used in the diagnosis but not in the prediction of DCI. A need exists to standardize the method for measuring perfusion with CTP after SAH, and optimize and validate perfusion thresholds.

  1. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass

    SciTech Connect

    Croughwell, N.; Lyth, M.; Quill, T.J.; Newman, M.; Greeley, W.J.; Smith, L.R.; Reves, J.G. )

    1990-11-01

    We tested the hypothesis that insulin-dependent diabetic patients with coronary artery bypass graft surgery experience altered coupling of cerebral blood flow and oxygen consumption. In a study of 23 patients (11 diabetics and 12 age-matched controls), cerebral blood flow was measured using 133Xe clearance during nonpulsatile, alpha-stat blood gas managed cardiopulmonary bypass at the conditions of hypothermia and normothermia. In diabetic patients, the cerebral blood flow at 26.6 +/- 2.42 degrees C was 25.3 +/- 14.34 ml/100 g/min and at 36.9 +/- 0.58 degrees C it was 27.3 +/- 7.40 ml/100 g/min (p = NS). The control patients increased cerebral blood flow from 20.7 +/- 6.78 ml/100 g/min at 28.4 +/- 2.81 degrees C to 37.6 +/- 8.81 ml/100 g/min at 36.5 +/- 0.45 degrees C (p less than or equal to 0.005). The oxygen consumption was calculated from jugular bulb effluent and increased from hypothermic values of 0.52 +/- 0.20 ml/100 g/min in diabetics to 1.26 +/- 0.28 ml/100 g/min (p = 0.001) at normothermia and rose from 0.60 +/- 0.27 to 1.49 +/- 0.35 ml/100 g/min (p = 0.0005) in the controls. Thus, despite temperature-mediated changes in oxygen consumption, diabetic patients did not increase cerebral blood flow as metabolism increased. Arteriovenous oxygen saturation gradients and oxygen extraction across the brain were calculated from arterial and jugular bulb blood samples. The increase in arteriovenous oxygen difference between temperature conditions in diabetic patients and controls was significantly different (p = 0.01). These data reveal that diabetic patients lose cerebral autoregulation during cardiopulmonary bypass and compensate for an imbalance in adequate oxygen delivery by increasing oxygen extraction.

  2. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion.

    PubMed

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Baron, Jean-Claude; Urban, Alan

    2017-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject.

  3. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis

    SciTech Connect

    Mills, C.M.; Crooks, L.E.; Kaufman, L.; Brant-Zawadzki, M.

    1984-01-01

    The potential clinical importance of T1 and T2 relaxation times in distinguishing normal and pathologic tissue with magnetic resonance (MR) is discussed and clinical examples of cerebral abnormalities are given. Five patients with cerebral infarction, 15 with multiple sclerosis, two with Wilson disease, and four with tumors were imaged. Hemorrhagic and ischemic cerebrovascular accidents were distinguished using the spin echo technique. In the patients with multiple sclerosis, lesions had prolonged T1 and T2 times, but the definition of plaque was limited by spatial resolution. No abnormalities in signal intensity were seen in the patient with Wilson disease who was no longer severly disabled; abnormal increased signal intensity in the basal ganglia was found in the second patient with Wilson disease. Four tumors produced abnormal T1 and T2 relaxation times but these values alone were not sufficient for tumor characterization.

  4. Myocardial perfusion abnormality in the area of ventricular septum-free wall junction and cardiovascular events in nonobstructive hypertrophic cardiomyopathy.

    PubMed

    Kaimoto, Satoshi; Kawasaki, Tatsuya; Kuribayashi, Toshiro; Yamano, Michiyo; Miki, Shigeyuki; Kamitani, Tadaaki; Matsubara, Hiroaki

    2012-10-01

    Myocardial perfusion abnormality in the left ventricle is known to be prognostic in patients with hypertrophic cardiomyopathy (HCM). Magnetic resonance imaging and necropsy studies on HCM hearts revealed myocardial lesions predominating in the area of ventricular septum-free wall junction. We assessed perfusion abnormality in this area and correlated it with the prognosis of HCM patients. We performed exercise Tc-99m tetrofosmin myocardial scintigraphy in 55 patients with nonobstructive HCM. Perfusion abnormalities were semiquantified using a 5-point scoring system in small areas of anterior junctions of basal, mid, and apical short axis views in addition to a conventional 17-segment model. All patients were prospectively followed for sudden death, cardiovascular death and hospitalization for heart failure or stroke associated with atrial fibrillation. Cardiovascular events occurred in 10 patients during an average follow-up period of 5.7 years. Stress and rest scores from anterior junction, and conventional summed stress score were significantly higher in patients with cardiovascular events than without (all P < 0.05). Anterior junction stress score of >2 produced a sensitivity of 50% and a specificity of 98% for cardiovascular events and was an independent predictor (hazard ratio 8.33; 95% confidence interval, 1.61-43.5; P = 0.01), with rest scores producing similar values, which were higher than summed stress score of >8 (5.68; 1.23-26.3; P = 0.03). The absence of myocardial perfusion abnormality in the narrow area of anterior junction differentiated HCM patients with low-risk.

  5. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment

    PubMed Central

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R.; Stockbower, Grace E.; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A.; Detre, John A.; Wolk, David A.

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or “stress test”, may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  6. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    SciTech Connect

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-04-10

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials.

  7. Intelligent Detection of Abnormal Neonatal Cerebral Haemodynamics in a Neonatal Intensive Care Environment

    DTIC Science & Technology

    2001-10-25

    necessity, with staff demonstrating willingness and interest in their use [2]. Abnormal cerebral haemodynamics is a condition that causes brain death and...vol. 11, 1985, pp:441-449. [4] J.B. McMenamin and J.J. Volpe, “Doppler ultrasonography in the determination of neonatal brain death ”, Ann. Neurol

  8. Neurodynamics of abnormalities in cerebral metabolism and structure in schizophrenia.

    PubMed

    Waddington, J L

    1993-01-01

    Much evidence points to the importance of intrauterine events in the etiology of schizophrenia and suggests a complex interplay between dysfunctional and intact neurons in the pathophysiology of the disorder. This article contrasts what is known of the topographies of metabolic and structural brain abnormalities in schizophrenia at differing stages of the illness. From these contrasts, a schema is elaborated by which subtle neurodevelopmental perturbation in early to middle gestation might give rise to functional and structural abnormalities that ultimately release the diagnostic symptoms of schizophrenia. An interaction between those mechanisms mediating the expression of psychosis and the initially subtle stages of normal aging is posited to act on the substrate of a brain that is already developmentally compromised. Such a process might masquerade as "progression" in the absence of any active disease directly attributable to the original etiological event.

  9. Changes in body temperature of the unanaesthetized monkey produced by sodium and calcium ions perfused through the cerebral ventricles

    PubMed Central

    Myers, R. D.; Veale, W. L.; Yaksh, T. L.

    1971-01-01

    1. In the unanaesthetized Rhesus monkey, solutions containing sodium, calcium, potassium or magnesium in excess of the normal concentration of extracellular fluid were perfused from a lateral to the fourth ventricle through chronically implanted cannulae. 2. Sodium (11·0-88·0 mM in excess of the physiological concentration) perfused through the ventricles, caused an immediate rise in body temperature which was accompanied by vasoconstriction, piloerection and shivering. The latency of the hyperthermia was related directly to the rate of perfusion and the concentration of sodium, whereas the magnitude of the response depended upon the concentration only. When the perfusion was terminated, shivering ceased and the temperature of the monkey returned to the base line level. 3. When calcium ions were perfused in concentrations 2·5-47·9 mM in excess of that of extracellular fluid, a fall in the temperature of the animal occurred. The magnitude of the decreases depended upon the concentration of calcium in the perfusion fluid. Vasodilatation, sedation and a reduction in withdrawal reflexes accompanied the calcium-induced hypothermia. After the perfusion ended, the temperature continued to fall until the monkey began to shiver and vasoconstriction was observed in many skin areas. 4. The perfusion through the cerebral ventricles with modified Krebs solution alone or with the Krebs solution which contained potassium or magnesium ions in concentrations five to ten times normal had virtually no effect on the temperature of the monkey. 5. Since the temperature of the monkey was unchanged as long as the physiological ratio of sodium to calcium in the perfusion fluid remained constant, we conclude that the balance between these two essential cations within the brain stem could determine the neural mechanism whereby the set-point for body temperature of the primate is established. PMID:4999638

  10. Cerebral blood flow in normal and abnormal sleep and dreaming

    SciTech Connect

    Meyer, J.S.; Ishikawa, Y.; Hata, T.; Karacan, I.

    1987-07-01

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreaming CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.

  11. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion during deep hypothermic circulatory arrest in aortic surgery: a meta-analysis of 7023 patients.

    PubMed

    Guo, Shasha; Sun, Yanhua; Ji, Bingyang; Liu, Jinping; Wang, Guyan; Zheng, Zhe

    2015-04-01

    In aortic arch surgery, deep hypothermic circulatory arrest (DHCA) combined with cerebral perfusion is employed worldwide as a routine practice. Even though antegrade cerebral perfusion (ACP) is more widely used than retrograde cerebral perfusion (RCP), the difference in benefit and risk between ACP and RCP during DHCA is uncertain. The purpose of this meta-analysis is to compare neurologic outcomes and early mortality between ACP and RCP in patients who underwent aortic surgery during DHCA. PubMed, EMBASE, and the Cochrane Library were searched using the key words "antegrade," "retrograde," "cerebral perfusion," "cardiopulmonary bypass," "extracorporeal circulation," and "cardiac surgery" for studies reporting on clinical endpoints including early mortality, stroke, temporary neurologic dysfunction (TND), and permanent neurologic dysfunction (PND) in aortic surgery requiring DHCA with ACP or RCP. Heterogeneity was analyzed with the Cochrane Q statistic and I(2) statistic. Publication bias was tested with Begg's funnel plot and Egger's test. Thirty-four studies were included in this meta-analysis, with 4262 patients undergoing DHCA + ACP and 2761 undergoing DHCA + RCP. The overall pooled relative risk for TND was 0.722 (95% CI = [0.579, 0.900]), and the z-score for overall effect was 2.9 (P = 0.004). There was low heterogeneity (I(2) = 18.7%). The analysis showed that patients undergoing DHCA + ACP had better outcomes than those undergoing DHCA + RCP in terms of TND, while there were no significant differences between groups in terms of PND, stroke, and early mortality. This meta-analysis indicates that DHCA + ACP has an advantage over DHCA + RCP in terms of TND, while the two methods show similar results in terms of PND, early mortality, and stroke.

  12. Effect of combined VEGF165/ SDF-1 gene therapy on vascular remodeling and blood perfusion in cerebral ischemia.

    PubMed

    Hu, Guo-Jie; Feng, Yu-Gong; Lu, Wen-Peng; Li, Huan-Ting; Xie, Hong-Wei; Li, Shi-Fang

    2016-12-16

    OBJECTIVE Therapeutic neovascularization is a promising strategy for treating patients after an ischemic stroke; however, single-factor therapy has limitations. Stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) proteins synergistically promote angiogenesis. In this study, the authors assessed the effect of combined gene therapy with VEGF165 and SDF-1 in a rat model of cerebral infarction. METHODS An adenoviral vector expressing VEGF165 and SDF-1 connected via an internal ribosome entry site was constructed (Ad- VEGF165-SDF-1). A rat model of middle cerebral artery occlusion (MCAO) was established; either Ad- VEGF165-SDF-1 or control adenovirus Ad- LacZ was stereotactically microinjected into the lateral ventricle of 80 rats 24 hours after MCAO. Coexpression and distribution of VEGF165 and SDF-1 were examined by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence. The neurological severity score of each rat was measured on Days 3, 7, 14, 21, and 28 after MCAO. Angiogenesis and vascular remodeling were evaluated via bromodeoxyuridine and CD34 immunofluorescence labeling. Relative cerebral infarction volumes were determined by T2-weighted MRI and triphenyltetrazolium chloride staining. Cerebral blood flow, relative cerebral blood volume, and relative mean transmit time were assessed using perfusion-weighted MRI. RESULTS The Ad- VEGF165-SDF-1 vector mediated coexpression of VEGF165 and SDF-1 in multiple sites around the ischemic core, including the cortex, corpus striatum, and hippocampal granular layer. Coexpression of VEGF165 and SDF-1 improved neural function, reduced cerebral infarction volume, increased microvascular density and promoted angiogenesis in the ischemic penumbra, and improved cerebral blood flow and perfusion. CONCLUSIONS Combined VEGF165 and SDF-1 gene therapy represents a potential strategy for improving vascular remodeling and recovery of neural function after cerebral

  13. External carotid artery angioplasty and stenting to augment cerebral perfusion in the setting of subacute symptomatic ipsilateral internal carotid artery occlusion. Case report.

    PubMed

    Adel, Joseph G; Bendok, Bernard R; Hage, Ziad A; Naidech, Andrew M; Miller, Jeffery W; Batjer, H Hunt

    2007-12-01

    The authors performed external carotid artery (ECA) angioplasty and stenting in a 45-year-old man who had presented with right hemispheric crescendo ischemic symptoms stemming from acute right internal carotid artery occlusion (ICAO). This unique application of ECA angioplasty and stenting augmented cerebral perfusion and improved clinical symptoms. In certain situations, ECA stenting can increase cerebral perfusion in the setting of ICAO and ECA stenosis. The authors are the first to describe this approach in this context.

  14. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate

    NASA Astrophysics Data System (ADS)

    Teng, Yichao; Ding, HaiShu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-03-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (CtHb) compared with its original value is also monitored. It is shown that CtHb decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  15. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate.

    PubMed

    Teng, Yichao; Ding, Haishu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-01-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (C(tHb)) compared with its original value is also monitored. It is shown that C(tHb) decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  16. The Effect of Cranioplasty on Cerebral Hemodynamics as Measured by Perfusion Computed Tomography and Doppler Ultrasonography.

    PubMed

    Paredes, Igor; Castaño, Ana María; Cepeda, Santiago; Alén, Jose Antonio Fernández; Salvador, Elena; Millán, Jose María; Lagares, Alfonso

    2016-09-01

    Cranioplasties are performed to protect the brain and correct cosmetic defects, but there is growing evidence that this procedure may result in neurological improvement. We prospectively studied cranioplasties performed at our hospital over a 5-year period. The National Institute of Health Stroke Scale and Barthel index were recorded prior to and within 72 h after the cranioplasty. A perfusion computed tomography (PCT) and transcranial Doppler sonography (TCDS) were performed prior to and 72 h after the surgery. For the PCT, regions irrigated by the anterior cerebral artery, the middle cerebral artery (MCA), the posterior cerebral artery, and the basal ganglia were selected, as well as the mean values for the hemisphere. The sonography was performed in the sitting and the supine position for the MCA and internal carotid. The velocities, pulsatility index, resistance index, and Lindegaard ratio (LR) were obtained, as well as a variation value for the LR (ΔLR = LR sitting - LR supine). Fifty-four patients were included in the study. Of these, 23 (42.6%) patients presented with objective improvement. The mean cerebral blood flow of the defective side (m-CBF-d) increased from 101.86 to 117.17 mL/100 g/min (p = 0.064), and the m-CBF of the healthy side (m-CBF-h) increased from 128.14 to 145.73 mL/100 g/min (p = 0.028). With regard to the TCDS, the ΔLR was greater on the defective side prior the surgery in those patients who showed improvement (1.295 vs. -0.714; p = 0.002). Cranioplasty resulted in clinical improvement in 40% of the patients, with an increase in the post-surgical CBF. The larger variations in the LR when the patient is moved from the sitting to the supine position might predict the clinical improvement.

  17. Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact.

    PubMed

    Jia, Yali; Wang, Ruikang K

    2011-01-01

    Alteration in regional cerebral blood flow (CBF) is the direct result of changes in neuronal activity. It is crucial to monitor the spatio-temporal characteristics of cerebro-vascular blood perfusion in the studies of cerebral diseases. Optical micro-angiography (OMAG) is a recently developed imaging technique capable of resolving 3D distribution of dynamic blood perfusion at a capillary level resolution within microcirculatory beds in vivo. The authors report the applications of OMAG in mouse ischemic stroke model. The study demonstrates that OMAG is a useful method capable of providing in vivo serial assessment of 3D cerebro-vascular pathophysiology with high sensitivity, and therefore, has the potential for use in the study of brain disorders and repairs.

  18. Poppy seed oil protection of the hippocampus after cerebral ischemia and re-perfusion in rats.

    PubMed

    Cevik-Demirkan, A; Oztaşan, N; Oguzhan, E O; Cil, N; Coskun, S

    2012-11-01

    The brain is highly sensitive to hypoxia; this is true particularly of parts that are crucial for cognitive function. The effects of hypoxia are especially dramatic in the hippocampus. We evaluated the potential protective effects of poppy seed oil on the number of hippocampus cells and the serum antioxidant/oxidant status after cerebral ischemia and re-perfusion (CIR). Eighteen rats were divided into three equal groups. Group 1 served as the control group without CIR. Group 2 received poppy seed oil daily by oral gavage at a dose of 0.4 ml/kg, while group 3 was given 0.4 ml/kg saline solution by oral gavage per day; these treatments were continued for one month. Groups 2 and 3 were subjected to CIR induced by clamps on two points of both of the carotid arteries for 45 min followed by 45 min re-perfusion. There were significant decreases in the number of hippocampus cells between groups 1 and 2, and between groups 1 and 3. The mean cell number in group 2 was not significantly different from that of group 3. The serum nitric oxide levels in CIR groups were elevated significantly compared to controls, and were significantly higher in group 2 than in group 3. The glutathione levels were increased significantly in the poppy seed oil treated group compared to the saline CIR groups. The malondialdehyde levels were markedly increased in group 3 compared to both groups 1 and 2. Our study suggests that poppy seed oil can improve antioxidant defense capacity after CIR, although this treatment did not alter significantly the frequency of cell death.

  19. Cerebral perfusion pressure directed therapy following traumatic brain injury and hypotension in swine.

    PubMed

    Malhotra, Ajai K; Schweitzer, John B; Fox, Jerry L; Fabian, Timothy C; Proctor, Kenneth G

    2003-09-01

    There is a paucity of studies, clinical and experimental, attesting to the benefit of cerebral perfusion pressure (CPP) directed pressor therapy following traumatic brain injury (TBI). The current study evaluates this therapy in a swine model of TBI and hypotension. Forty-five anesthetized and ventilated swine received TBI followed by a 45% blood volume bleed. After 1 h, all animals were resuscitated with 0.9% sodium chloride equal to three times the shed blood volume. The experimental group (PHE) received phenylephrine to maintain CPP > 80 mm Hg; the control group (SAL) did not. Outcomes in the first phase (n = 33) of the study were as follows: cerebro-venous oxygen saturation (S(cv)O(2)), cerebro-vascular carbon dioxide reactivity (DeltaS(cv)O(2)), and brain structural damage (beta-amyloid precursor protein [betaAPP] immunoreactivity). In the second phase (n = 12) of the study, extravascular blood free water (EVBFW) was measured in the brain and lung. After resuscitation, intracranial and mean arterial pressures were >15 and >80 mm Hg, respectively, in both groups. CPP declined to 64 +/- 5 mm Hg in the SAL group, despite fluid supplements. CPP was maintained at >80 mm Hg with pressors in the PHE group. PHE animals maintained better S(cv)O(2) (p < 0.05 at 180, 210, 240, 270, and 300 min post-TBI). At baseline, 5% CO(2) evoked a 16 +/- 4% increase in S(cv)O(2), indicating cerebral vasodilatation and luxury perfusion. By 240 min, this response was absent in SAL animals and preserved in PHE animals (p < 0.05). Brain EVBFW was higher in SAL animals; however, lung EVBFW was higher in PHE animals. There was no difference in betaAPP immunoreactivity between the SAL and PHE groups (p > 0.05). In this swine model of TBI and hypotension, CPP directed pressor therapy improved brain oxygenation and maintained cerebro-vascular CO(2) reactivity. Brain edema was lower, but lung edema was greater, suggesting a higher propensity for pulmonary complications.

  20. Effects of postresuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets.

    PubMed

    Lee, Tze-Fun; Tymafichuk, Corinne N; Bigam, David L; Cheung, Po-Yin

    2008-09-01

    Hydrogen peroxide (H2O2) and nitric oxide (NO) contribute to the pathogenesis of cerebral hypoxic-ischemic injury. We evaluated the neuroprotective effect of N-acetyl-l-cysteine (NAC, a free radical scavenger) against oxidative stress and perfusion in a model of neonatal hypoxia-reoxygenation (H-R). Piglets (1-3 d, 1.6-2.3 kg) were randomized into a sham-operated group (without H-R) (n = 5) and two H-R experimental groups (2 h normocapnic alveolar hypoxia followed by 4 h reoxygenation) (n = 7/group). Five minutes after reoxygenation, piglets were given either i.v. saline (H-R controls) or NAC (30 mg/kg bolus then 20 mg/kg/h infusion) in a blinded-randomized fashion. Heart rate, mean arterial pressure, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H2O2 and NO production (electrochemical sensor), cerebral tissue glutathione and nitrotyrosine levels (enzyme-linked immunosorbent assay) were examined. Hypoxic piglets were acidotic (pH 6.88-6.90), which recovered similarly in the H-R groups (p > 0.05 versus shams). Postresuscitation NAC treatment significantly attenuated the increase in cortical H2O2, but not NO, concentration during reoxygenation, with lower cerebral oxidized glutathione levels. NAC-treated piglets had significantly higher carotid oxygen delivery and lower cerebral lactate levels than that of H-R controls with corresponding changes in carotid arterial flow and vascular resistance. In newborn piglets with H-R, postresuscitation administration of NAC reduced cerebral oxidative stress and improved cerebral perfusion.

  1. Luxury perfusion syndrome confirmed by sequential studies of regional cerebral blood flow and volume after extracranial to intracranial bypass surgery: case report.

    PubMed

    Higashi, S; Matsuda, H; Fujii, H; Ito, H; Yamashita, J

    1989-07-01

    We report a case of luxury perfusion syndrome with temporary neurological deterioration after extracranial to intracranial bypass surgery. A preoperative computed tomographic scan showed no detectable infarct, and the measurement of regional cerebral blood flow showed severe depression of ipsilateral hemispheric perfusion. The patient developed temporary neurological deterioration after bypass surgery, with no recognizable pathological signs on postoperative computed tomographic and angiographic studies. Regional cerebral blood flow and volume were more elevated during the period of neurological deterioration than after the subsequent recovery. This strongly suggests that excessive blood flow directed into chronically ischemic brain through a graft may induce a luxury perfusion syndrome resulting in neurological deterioration.

  2. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  3. Quantitative Susceptibility Mapping and Dynamic Contrast Enhanced Quantitative Perfusion in Cerebral Cavernous Angiomas

    PubMed Central

    Mikati, Abdul Ghani; Tan, Huan; Shenkar, Robert; Li, Luying; Zhang, Lingjiao; Guo, Xiaodong; Shi, Changbin; Liu, Tian; Wang, Yi; Shah, Akash; Edelman, Robert; Christoforidis, Gregory; Awad, Issam

    2015-01-01

    Background Hyperpermeability and iron deposition are two central pathophysiological phenomena in human cerebral cavernous malformation (CCM) disease. Here we used two novel magnetic resonance imaging (MRI) techniques to establish a relationship between these phenomena. Methods Subjects with CCM disease (4 sporadic and 18 familial) underwent MRI imaging using the Dynamic Contrast Enhanced Quantitative Perfusion (DCEQP) and Quantitative Susceptibility Mapping (QSM) techniques that measure hemodynamic factors of vessel leak and iron deposition respectively, previously demonstrated in CCM disease. Regions of interest encompassing the CCM lesions were analyzed using these techniques Results Susceptibility measured by QSM was positively correlated with permeability of lesions measured using DCEQP (r=0.49, p=<0.0001). The correlation was not affected by factors including familial predisposition, lesion volume, the contrast agent and the use of statin medication. Susceptibility was correlated with lesional blood volume (r=0.4, p=0.0001), but not with lesional blood flow. Conclusion The correlation between QSM and DCEQP suggests that the phenomena of permeability and iron deposition are related in CCM; hence “more leaky lesions” also manifest a more cumulative iron burden. These techniques might be used as biomarkers to monitor the course of this disease and the effect of therapy. PMID:24302484

  4. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    PubMed

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-21

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies.

  5. Genu recurvatum in cerebral palsy--part B: hamstrings are abnormally long in children with cerebral palsy showing knee recurvatum.

    PubMed

    Zwick, Ernst B; Svehlík, Martin; Steinwender, Gerhard; Saraph, Vinay; Linhart, Wolfgang E

    2010-07-01

    Hyperextension of the knee in stance (knee recurvatum) is a common disorder in patients with spastic cerebral palsy (CP). A group 35 children with CP (47 lower limbs) was divided into two subgroups according to the timing of maximum knee extension during the stance phase of gait. Gait analysis and musculoskeletal modelling data were compared with a control group of 12 normally developing children. We observed no difference in kinematics between the CP groups who showed an equinus position of the foot at initial contact. Both groups showed increased external extensor moments across the knee. The muscle-tendon lengths of the hamstrings were abnormally long at initial contact, and in both recurvatum groups, contracted faster compared with the control group. Surface electromyography revealed prolonged activity of the hamstrings in stance and early activation in swing. Abnormally long hamstrings at initial contact together with equinus position of the foot are the main causes of genu recurvatum in children with CP.

  6. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy

    SciTech Connect

    Udelson, J.E.; Bonow, R.O.; O'Gara, P.T.; Maron, B.J.; Van Lingen, A.; Bacharach, S.L.; Epstein, S.E.

    1989-05-01

    Recent studies indicate that reversible 201Tl perfusion defects, compatible with silent myocardial ischemia, commonly develop during exercise in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy (HCM). To determine whether this represents a dynamic process that may be modified favorably by medical therapy, we studied 29 asymptomatic or minimally symptomatic patients with HCM, aged 12-55 years (mean, 28), with exercise 201Tl emission computed tomography under control conditions and again after 1 week of oral verapamil (mean dosage, 453 mg/day). Treadmill time increased slightly during verapamil (21.0 +/- 3.6 to 21.9 +/- 2.7 minutes, p less than 0.005), but peak heart rate-blood pressure product was unchanged (26.3 +/- 6.0 X 10(3)) compared with 25.0 +/- 6.4 X 10(3). Two midventricular short-axis images per study were divided into five regions each, and each of these 10 regions was then analyzed on a 0-2 scale by three observers blinded with regard to the patients' therapy. Average regional scores of 1.5 or less were considered to represent perfusion defects, and a change in regional score of 0.5 or more was considered to constitute a significant change. During control studies, 15 patients (52%) developed perfusion defects with exercise (average, 3.7 regions per patient). In 14 of these patients, all perfusion defects completely reversed after 3 hours of rest; one patient had fixed defects. After administration of verapamil, exercise perfusion scores improved in 10 of the 14 patients (71%) with reversible defects; there was overall improvement in 34 of 50 (68%) regions with initially reversible perfusion defects.

  7. Predicting Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery to Middle Cerebral Artery Bypass based on Intraoperative Perfusion-Weighted Magnetic Resonance Imaging.

    PubMed

    Wang, Defeng; Zhu, Fengping; Fung, Ka Ming; Zhu, Wei; Luo, Yishan; Chu, Winnie Chiu Wing; Mok, Vincent Chung Tong; Wu, Jinsong; Shi, Lin; Ahuja, Anil T; Mao, Ying

    2015-09-14

    Moyamoya disease leads to the formation of stenosis in the cerebrovasculature. A superficial temporal artery to middle cerebral artery (STA-MCA) bypass is an effective treatment for the disease, yet it is usually associated with postoperative cerebral hyperperfusion syndrome (CHS). This study aimed to evaluate cerebral hemodynamic changes immediately after surgery and assess whether a semiquantitative analysis of an intraoperative magnetic resonance perfusion-weighted image (PWI) is useful for predicting postoperative CHS. Fourteen patients who underwent the STA-MCA bypass surgery were included in this study. An atlas-based registration method was employed for studying hemodynamics in different cerebral regions. Pre- versus intraoperative and group-wise comparisons were conducted to evaluate the hemodynamic changes. A postoperative increase in relative cerebral blood flow (CBF) at the terminal MCA territory (P = 0.035) and drop in relative mean-time-transit at the central MCA territory (P = 0.012) were observed in all patients. However, a significant raise in the increasing ratio of relative-CBF at the terminal MCA territory was only found in CHS patients (P = 0.023). The cerebrovascular changes of the patients after revascularization treatment were confirmed. Intraoperative PWI might be helpful in predicting the change in relative-CBF at MCA terminal territory which might indicate a risk of CHS.

  8. 99mTc-ECD brain perfusion SPECT imaging for the assessment of brain perfusion in cerebral palsy (CP) patients with evaluation of the effect of hyperbaric oxygen therapy

    PubMed Central

    Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid

    2015-01-01

    Objective: The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. Methods: A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. Results: A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. Conclusion: This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value. PMID:25785099

  9. (13)N-Ammonia PET/CT Detection of Myocardial Perfusion Abnormalities in Beagle Dogs After Local Heart Irradiation.

    PubMed

    Song, Jianbo; Yan, Rui; Wu, Zhifang; Li, Jianguo; Yan, Min; Hao, Xinzhong; Liu, Jianzhong; Li, Sijin

    2017-04-01

    Our objective was to determine the potential value of (13)N-ammonia PET/CT myocardial perfusion imaging (MPI) for early detection of myocardial perfusion changes induced by radiation damage. Methods: Thirty-six Beagle dogs were randomly divided into a control group (n = 18) or an irradiation group (n = 18). The latter underwent local irradiation to the left ventricular anterior cardiac wall with a single dose of 20 Gy, whereas the former received sham irradiation. All dogs underwent (13)N-ammonia PET/CT MPI 1 wk before irradiation and at 3, 6, and 12 mo after sham or local irradiation. One week after undergoing (13)N-ammonia PET/CT MPI, the irradiation group underwent coronary angiography. Six randomly selected dogs from each group were sacrificed and used to detect pathologic cardiac injury at 3, 6, and 12 mo after irradiation. Results: Compared with the control group and baseline, the irradiation group showed significantly increased perfusion in the irradiated area of the heart at 3 mo after irradiation, perfusion reduction at 6 mo after irradiation, and a perfusion defect at 12 mo after irradiation. There was no significant difference in the left ventricular ejection fraction between the control and irradiation groups at baseline or at 3 mo after irradiation. The irradiation group showed a reduction of left ventricular ejection fraction compared with the control group at 6 mo (50.0% ± 8.1% vs. 59.3% ± 4.1%, P = 0.016) and 12 mo (47.2% ± 6.7% vs. 57.4% ± 3.3%, P = 0.002) after irradiation. No coronary stenosis was observed in the irradiation group. Regional wall motion abnormalities appeared in the irradiated area at 6 mo after irradiation, and its extent was enlarged at 12 mo after irradiation. Pathologic changes were observed; radiation-induced myocardial tissue damage and microvascular fibrosis in the irradiated area progressively increased over time. Conclusion:(13)N-ammonia PET/CT MPI can dynamically detect myocardial perfusion changes together with

  10. Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage.

    PubMed

    Malinova, Vesna; Dolatowski, Karoline; Schramm, Peter; Moerer, Onnen; Rohde, Veit; Mielke, Dorothee

    2016-07-01

    OBJECT This prospective study investigated the role of whole-brain CT perfusion (CTP) studies in the identification of patients at risk for delayed ischemic neurological deficits (DIND) and of tissue at risk for delayed cerebral infarction (DCI). METHODS Forty-three patients with aneurysmal subarachnoid hemorrhage (aSAH) were included in this study. A CTP study was routinely performed in the early phase (Day 3). The CTP study was repeated in cases of transcranial Doppler sonography (TCD)-measured blood flow velocity (BFV) increase of > 50 cm/sec within 24 hours and/or on Day 7 in patients who were intubated/sedated. RESULTS Early CTP studies revealed perfusion deficits in 14 patients, of whom 10 patients (72%) developed DIND, and 6 of these 10 patients (60%) had DCI. Three of the 14 patients (21%) with early perfusion deficits developed DCI without having had DIND, and the remaining patient (7%) had neither DIND nor DCI. There was a statistically significant correlation between early perfusion deficits and occurrence of DIND and DCI (p < 0.0001). A repeated CTP was performed in 8 patients with a TCD-measured BFV increase > 50 cm/sec within 24 hours, revealing a perfusion deficit in 3 of them (38%). Two of the 3 patients (67%) developed DCI without preceding DIND and 1 patient (33%) had DIND without DCI. In 4 of the 7 patients (57%) who were sedated and/or comatose, additional CTP studies on Day 7 showed perfusion deficits. All 4 patients developed DCI. CONCLUSIONS Whole-brain CTP on Day 3 after aSAH allows early and reliable identification of patients at risk for DIND and tissue at risk for DCI. Additional CTP investigations, guided by TCD-measured BFV increase or persisting coma, do not contribute to information gain.

  11. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency

    PubMed Central

    Coffinier, Catherine; Chang, Sandy Y.; Nobumori, Chika; Tu, Yiping; Farber, Emily A.; Toth, Julia I.; Fong, Loren G.; Young, Stephen G.

    2010-01-01

    Nuclear lamins are components of the nuclear lamina, a structural scaffolding for the cell nucleus. Defects in lamins A and C cause an array of human diseases, including muscular dystrophy, lipodystrophy, and progeria, but no diseases have been linked to the loss of lamins B1 or B2. To explore the functional relevance of lamin B2, we generated lamin B2-deficient mice and found that they have severe brain abnormalities resembling lissencephaly, with abnormal layering of neurons in the cerebral cortex and cerebellum. This neuronal layering abnormality is due to defective neuronal migration, a process that is dependent on the organized movement of the nucleus within the cell. These studies establish an essential function for lamin B2 in neuronal migration and brain development. PMID:20145110

  12. Cerebral perfusion pressure and risk of brain hypoxia in severe head injury: a prospective observational study

    PubMed Central

    Marín-Caballos, Antonio J; Murillo-Cabezas, Francisco; Cayuela-Domínguez, Aurelio; Domínguez-Roldán, Jose M; Rincón-Ferrari, M Dolores; Valencia-Anguita, Julio; Flores-Cordero, Juan M; Muñoz-Sánchez, M Angeles

    2005-01-01

    Introduction Higher and lower cerebral perfusion pressure (CPP) thresholds have been proposed to improve brain tissue oxygen pressure (PtiO2) and outcome. We study the distribution of hypoxic PtiO2 samples at different CPP thresholds, using prospective multimodality monitoring in patients with severe traumatic brain injury. Methods This is a prospective observational study of 22 severely head injured patients admitted to a neurosurgical critical care unit from whom multimodality data was collected during standard management directed at improving intracranial pressure, CPP and PtiO2. Local PtiO2 was continuously measured in uninjured areas and snapshot samples were collected hourly and analyzed in relation to simultaneous CPP. Other variables that influence tissue oxygen availability, mainly arterial oxygen saturation, end tidal carbon dioxide, body temperature and effective hemoglobin, were also monitored to keep them stable in order to avoid non-ischemic hypoxia. Results Our main results indicate that half of PtiO2 samples were at risk of hypoxia (defined by a PtiO2 equal to or less than 15 mmHg) when CPP was below 60 mmHg, and that this percentage decreased to 25% and 10% when CPP was between 60 and 70 mmHg and above 70 mmHg, respectively (p < 0.01). Conclusion Our study indicates that the risk of brain tissue hypoxia in severely head injured patients could be really high when CPP is below the normally recommended threshold of 60 mmHg, is still elevated when CPP is slightly over it, but decreases at CPP values above it. PMID:16356218

  13. Cerebral perfusion pressure, microdialysis biochemistry and clinical outcome in patients with traumatic brain injury

    PubMed Central

    2011-01-01

    Background Traumatic Brain Injury (TBI) is a major cause of death and disability. It has been postulated that brain metabolic status, intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are related to patients' outcome. The aim of this study was to investigate the relationship between CPP, ICP and microdialysis parameters and clinical outcome in TBIs. Results Thirty four individuals with severe brain injury hospitalized in an intensive care unit participated in this study. Microdialysis data were collected, along with ICP and CPP values. Glasgow Outcome Scale (GOS) was used to evaluate patient outcome at 6 months after injury. Fifteen patients with a CPP greater than 75 mmHg, L/P ratio lower than 37 and Glycerol concentration lower than 72 mmol/l had an excellent outcome (GOS 4 or 5), as opposed to the remaining 19 patients. No patient with a favorable outcome had a CPP lower than 75 mmHg or Glycerol concentration and L/P ratio greater than 72 mmol/l and 37 respectively. Data regarding L/P ratio and Glycerol concentration were statistically significant at p = 0.05 when patients with favorable and unfavorable outcome were compared. In a logistic regression model adjusted for age, sex and Glasgow Coma Scale on admission, a CPP greater than 75 mmHg was marginally statistically significantly related to outcome at 6 months after injury. Conclusions Patients with favorable outcome had certain common features in terms of microdialysis parameters and CPP values. An individualized approach regarding CPP levels and cut -off points for Glycerol concentration and L/P ratio are proposed. PMID:22168902

  14. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study.

    PubMed

    Honda, Mitsuru; Ichibayashi, Ryo; Yokomuro, Hiroki; Yoshihara, Katsunori; Masuda, Hiroyuki; Haga, Daisuke; Seiki, Yoshikatsu; Kudoh, Chiaki; Kishi, Taichi

    2016-08-15

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1-3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3-4, GCS5-6, and GCS7-8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients.

  15. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study

    PubMed Central

    HONDA, Mitsuru; ICHIBAYASHI, Ryo; YOKOMURO, Hiroki; YOSHIHARA, Katsunori; MASUDA, Hiroyuki; HAGA, Daisuke; SEIKI, Yoshikatsu; KUDOH, Chiaki; KISHI, Taichi

    2016-01-01

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  16. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment

    PubMed Central

    Zhou, Joanne; Butler, Erin E.; Rose, Jessica

    2017-01-01

    Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP. PMID:28367118

  17. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  18. Pseudo-continuous arterial spin labeling imaging of cerebral blood perfusion asymmetry in drug-naïve patients with first-episode major depression

    PubMed Central

    Chen, Guangdong; Bian, Haiman; Jiang, Deguo; Cui, Mingwei; Ji, Shengzhang; Liu, Mei; Lang, Xu; Zhuo, Chuanjun

    2016-01-01

    Many previous studies have reported that regional cerebral blood flow (rCBF) aberrations may be one of the pathological characteristics of depression and rCBF has demonstrated a certain degree of asymmetry. However, studies investigating the cerebral blood perfusion asymmetry changes of drug-naïve patients experiencing their first episode of major depression using pseudo-continuous arterial spin labeling (pCASL) are rare. Ten drug-naïve patients experiencing their first major depression episode and 15 healthy volunteers were enrolled in the current study. A novel pCASL method was applied to whole brain MRI scans of all of the samples. The Statistics Parameter Mapping and Relative Expression Software Tool software packages were used for the pre-processing and statistical analysis of the two sets of images, and the differences in the cerebral blood perfusion at the whole brain level were compared between the two groups. Compared with the healthy control group, the cerebral perfusion of the depression patients showed an asymmetric pattern. Decreased cerebral blood perfusion regions were primarily located in the left hemisphere, specifically in the left temporal lobe, frontal lobe and cingulate cortex [P<0.05 and cluster size ≥30 with false discovery rate (FDR) correction]. Simultaneously, increased perfusion regions were predominantly located in the right hemisphere, specifically in the right cerebellum, thalamus, frontal lobe and anterior cingulate cortex (P<0.05 and cluster size ≥30, with FDR correction). Thus, pCASL may characterize the alterations in cerebral blood perfusion of patients with depression. PMID:28101340

  19. Three-dimensional mapping of local cerebral perfusion in alcoholic encephalopathy with and without Wernicke-Korsakoff syndrome

    SciTech Connect

    Hata, T.; Meyer, J.S.; Tanahashi, N.; Ishikawa, Y.; Imai, A.; Shinohara, T.; Velez, M.; Fann, W.E.; Kandula, P.; Sakai, F.

    1987-02-01

    Seventeen severe chronic alcoholic patients with and without Wernicke-Korsakoff syndrome (WKS) were examined prospectively after being treated by withdrawal from alcohol. The WKS patients also received thiamine supplements. Three-dimensional measurements of local cerebral blood flow (LCBF) and local partition coefficients (L lambda) were made utilizing xenon contrast computed tomography (Xe CT-CBF). Results were displayed as color-coded brain maps before and after treatment and these were correlated with neurological and cognitive examinations. Before treatment chronic alcoholics without WKS (n = 10) showed diffuse reductions of LCBF values throughout all gray matter including hypothalamus, vicinity of nucleus basalis of Meynert, thalamus, and basal ganglia. Similar, but more severe, reductions were seen in patients with WKS (n = 7), however, white matter perfusion was also reduced. In WKS, most prominent reductions of LCBF were also seen in hypothalamus and basal forebrain nuclei but thalamus, basal ganglia, and limbic systems were severely reduced. After treatment, both groups with alcoholic encephalopathy showed marked clinical improvement and cerebral perfusion was restored toward normal. Chronic alcohol abuse, in the absence of thiamine deficiency, reduces CBF by direct neurotoxic effects. If thiamine deficiency is also present, more severe and localized hemodynamic reductions are superimposed.

  20. Three-dimensional mapping of local cerebral perfusion in alcoholic encephalopathy with and without Wernicke-Korsakoff syndrome.

    PubMed

    Hata, T; Meyer, J S; Tanahashi, N; Ishikawa, Y; Imai, A; Shinohara, T; Velez, M; Fann, W E; Kandula, P; Sakai, F

    1987-02-01

    Seventeen severe chronic alcoholic patients with and without Wernicke-Korsakoff syndrome (WKS) were examined prospectively after being treated by withdrawal from alcohol. The WKS patients also received thiamine supplements. Three-dimensional measurements of local cerebral blood flow (LCBF) and local partition coefficients (L lambda) were made utilizing xenon contrast computed tomography (Xe CT-CBF). Results were displayed as color-coded brain maps before and after treatment and these were correlated with neurological and cognitive examinations. Before treatment chronic alcoholics without WKS (n = 10) showed diffuse reductions of LCBF values throughout all gray matter including hypothalamus, vicinity of nucleus basalis of Meynert, thalamus, and basal ganglia. Similar, but more severe, reductions were seen in patients with WKS (n = 7), however, white matter perfusion was also reduced. In WKS, most prominent reductions of LCBF were also seen in hypothalamus and basal forebrain nuclei but thalamus, basal ganglia, and limbic systems were severely reduced. After treatment, both groups with alcoholic encephalopathy showed marked clinical improvement and cerebral perfusion was restored toward normal. Chronic alcohol abuse, in the absence of thiamine deficiency, reduces CBF by direct neurotoxic effects. If thiamine deficiency is also present, more severe and localized hemodynamic reductions are superimposed.

  1. The Effect of Equal Ratio Ventilation on Oxygenation, Respiratory Mechanics, and Cerebral Perfusion Pressure During Laparoscopy in the Trendelenburg Position.

    PubMed

    Jo, Youn Yi; Kim, Ji Young; Chang, Young Jin; Lee, Sehwan; Kwak, Hyun Jeong

    2016-06-01

    The aim of this study was to investigate the effects of equal ratio ventilation (ERV) on oxygenation, respiratory mechanics, and the cerebral perfusion pressure during pneumoperitoneum in the Trendelenburg position. Thirty patients undergoing laparoscopic low anterior resection (25 to 65 y) were enrolled. Mechanical ventilator was set to volume-controlled mode at an inspiratory to expiratory (I:E) ratio of 1:2 with a tidal volume of 8 mL/kg of ideal body weight with a 5 cm H2O positive end-expiratory pressure. Twenty minutes after pneumoperitoneum in the Trendelenburg position, the I:E ratio was changed to 1:1 for 20 minutes and then restored to 1:2. No significant changes in arterial oxygen tension and respiratory compliance after adopting ERV. Mean arterial pressure and cerebral perfusion pressure decreased significantly over time after adopting the Trendelenburg position during pneumoperitoneum (P=0.014 and 0.005, respectively). In conclusion, there was no improvement in oxygenation or respiratory mechanics with ERV.

  2. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice.

    PubMed

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-Ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.

  3. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice

    PubMed Central

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner. PMID:26869994

  4. Antegrade cerebral perfusion at 25 °C for arch reconstruction in newborns and children preserves perioperative cerebral oxygenation and serum creatinine

    PubMed Central

    Gupta, Bhawna; Dodge-Khatami, Ali; Tucker, Juan; Taylor, Mary B.; Maposa, Douglas; Urencio, Miguel

    2016-01-01

    Background Antegrade cerebral perfusion (ACP) typically is used with deep hypothermia for cerebral protection during aortic arch reconstructions. The impact of ACP on cerebral oxygenation and serum creatinine at a more tepid 25 °C was studied in newborns and children. Methods Between 2010 and 2014, 61 newborns and children (<5 years old) underwent aortic arch reconstruction using moderate hypothermia (25.0±0.9 °C) with ACP and a pH-stat blood gas management strategy. These included 44% Norwood-type operations, 30% isolated arch reconstructions, and 26% arch reconstructions with other major procedures. Median patient age at surgery was 9 days (range, 3 days–4.7 years). Cerebral oxygenation (NIRS) was monitored continuously perioperatively for 120 hours. Serum creatinine was monitored daily. Results Median cardiopulmonary bypass (CPB) and cross clamp times were 181 minutes (range, 82–652 minutes) and 72 minutes (range, 10–364 minutes), respectively. ACP was performed at a mean flow rate of 46±6 mL/min/kg for a median of 48 minutes (range, 10–123 minutes). Cerebral and somatic NIRS were preserved intraoperatively and remained at baseline postoperatively during the first 120 hours. Peak postoperative serum creatinine levels averaged 0.7±0.3 mg/dL for all patients. There were 4 (6.6%) discharge mortalities. Six patients (9.8%) required ECMO support. Median postoperative length of hospital and intensive care unit (ICU) stay were 16 days(range, 4–104 days) and 9 days (range, 1–104 days), respectively. Two patients (3.3%) received short-term peritoneal dialysis for fluid removal, and none required hemodialysis. Three patients (4.9%) had an isolated seizure which resolved with medical therapy, and none had a neurologic deficit or stroke. Conclusions ACP at 25 °C preserved perioperative cerebral oxygenation and serum creatinine for newborns and children undergoing arch reconstruction. Early outcomes are encouraging, and additional study is warranted to

  5. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients

    PubMed Central

    Lin, Chun Fu; Hsu, Sanford P. C.; Lin, Chung Jung; Guo, Wan Yuo; Liao, Chih Hsiang; Chu, Wei Fa; Hung, Sheng Che; Shih, Yang Shin; Lin, Yen Tzu

    2016-01-01

    Purpose We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH). Methods Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated. Results Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4% Conclusion CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH. PMID:26986626

  6. Outcome, Pressure Reactivity and Optimal Cerebral Perfusion Pressure Calculation in Traumatic Brain Injury: A Comparison of Two Variants.

    PubMed

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Santos, Edgar; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates the outcome prediction and calculation of optimal cerebral perfusion pressure (CPPopt) in 307 patients after severe traumatic brain injury (TBI) based on cerebrovascular reactivity calculation of a moving correlation correlation coefficient, named PRx, between mean arterial pressure (ABP) and intracranial pressure (ICP). The correlation coefficient was calculated from simultaneously recorded data using different frequencies. PRx was calculated from oscillations between 0.008 and 0.05Hz and the longPRx (L-PRx) was calculated from oscillations between 0.0008 and 0.016 Hz. PRx was a significant mortality predictor, whereas L-PRx was not. CPPopt for pooled data was higher for L-PRx than for PRx, with no statistical difference. Mortality was associated with mean CPP below CPPopt. Severe disability was associated with CPP above CPPopt (PRx). These relationships were not statistically significant for CPPopt (L-PRx). We conclude that PRx and L-PRx cannot be used interchangeably.

  7. Sonographic parenchymal and brain perfusion imaging: preliminary results in four patients following decompressive surgery for malignant middle cerebral artery infarct.

    PubMed

    Schlachetzki, F; Hoelscher, T; Dorenbeck, U; Greiffenberg, B; Marienhagen, J; Ullrich, O W; Bogdahn, U

    2001-01-01

    To investigate new methods of diagnostic transcranial sonography for brain parenchymal, vascular and perfusion imaging, we performed 3-D native tissue harmonic transcranial sonography (3D-nthTCS), 3-D transcranial color-coded duplex sonography (3D-TCCS), and "loss-of-correlation" imaging (LOC-TCCS) in four patients following early hemicraniectomy due to space-occupying "malignant" middle cerebral artery infarction (MMCAI). Three-dimensional datasets, utilizing 3D-nthTCS and 3D-TCCS, were created and up to 10 axial 2-D B-mode image planes, similar to CCT, reconstructed in each patient. Three-dimensional reconstructions of the circle of Willis documented one persistent carotid-T occlusion and three recanalizations of the MCA. LOC-TCCS, based on stimulated acoustic emission from an ultrasound (US) contrast agent, demonstrated a perfusion deficit in 2 of 3 patients, with regard to their infarcts. Concluding, 3D-nthTCS, 3D-TCCS and LOC-TCCS are promising tools for bedside monitoring, early prognosis and treatment evaluation for MMCAI in the postoperative period. Further studies should be performed to standardize these new methods and evaluate their applications through the intact calvarina.

  8. Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats

    NASA Technical Reports Server (NTRS)

    Wilkerson, M. Keith; Colleran, Patrick N.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to test the hypothesis that regional brain blood flow and vascular resistance are altered by acute and chronic head-down tail suspension (HDT). Regional cerebral blood flow, arterial pressure, heart rate, and vascular resistance were measured in a group of control rats during normal standing and following 10 min of HDT and in two other groups of rats after 7 and 28 days of HDT. Heart rate was not different among conditions, whereas mean arterial pressure was elevated at 10 min of HDT relative to the other conditions. Total brain blood flow was reduced from that during standing by 48, 24, and 27% following 10 min and 7 and 28 days of HDT, respectively. Regional blood flows to all cerebral tissues and the eyes were reduced with 10 min of HDT and remained lower in the eye, olfactory bulbs, left and right cerebrum, thalamic region, and the midbrain with 7 and 28 days of HDT. Total brain vascular resistance was 116, 44, and 38% greater following 10 min and 7 and 28 days of HDT, respectively, relative to that during control standing. Vascular resistance was elevated in all cerebral regions with 10 min of HDT and remained higher than control levels in most brain regions. These results demonstrate that HDT results in chronic elevations in total and regional cerebral vascular resistance, and this may be the underlying stimulus for the HDT-induced smooth muscle hypertrophy of cerebral resistance arteries.

  9. [A Case of Ruptured Peripheral Cerebral Aneurysm at Abnormal Vessels Associated with Middle Cerebral Artery Stenosis:Similarity to Moyamoya Disease].

    PubMed

    Miyazaki, Hajime; Kohno, Kanehisa; Tanaka, Hideo; Fukumoto, Shinya; Ichikawa, Haruhisa; Onoue, Shinji; Fumoto, Noriyuki; Ozaki, Saya; Maeda, Toshiharu

    2016-04-01

    We report a case of ruptured peripheral cerebral aneurysm at abnormal vessels associated with severe stenosis at the middle cerebral artery (MCA). A 66-year-old woman was admitted at our hospital with headache on foot. Computed tomography (CT) showed intracerebral hemorrhage in the left fronto-basal area. Three-dimensional-CT and conventional angiogram revealed abnormal vessels, which were similar to those seen in moyamoya disease, with a small enhancement close to the hematoma. On day 11, subsequent cerebral angiogram demonstrated an aneurysm at the peripheral portion of an abnormal vessel arising from the left A2. On day 17, soon after the diagnosis of the ruptured aneurysm was made (while still at the subacute stage), we operated on the aneurysm. Superficial temporal artery (STA)-MCA anastomosis was also performed to preserve cerebral blood flow and reduce hemodynamic stress. Several days after the operation, she had transient aphasia due to hyperperfusion of the MCA territory, but eventually recovered with no neurological deficit at discharge. Follow-up study revealed revascularization from the branches of the external carotid artery as well as the STA. On admission, we initially thought that this patient had abnormal vessels associated with arteriosclerotic MCA stenosis. However, the postoperative clinical course as well as the histopathological specimens of both the abnormal artery with the aneurysm and the STA revealed similar findings to those of moyamoya disease. Although this case did not satisfy the criteria for moyamoya disease, it is conceivable that a single arterial occlusive lesion associated with moyamoya-like vessels might develop in the same mechanism with that of moyamoya disease.

  10. Optical microangiography reveals collateral blood perfusion dynamics in mouse cerebral cortex after focal stroke

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2015-03-01

    Arteriolo-arteriolar anastomosis's role in regulating blood perfusion through penetrating arterioles during stroke is yet to be discovered. We apply ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate vessel diameter and red blood cell velocity changes in large number of pial and penetrating arterioles in relation with arteriolo-arteriolar anastomosis (AAA) during and after focal stroke. Thanks to the high sensitivity of UHS-OMAG, we were able to image pial microvasculature up to capillary level through a cranial window (9 mm2), and DOMAG provided clear image of penetrating arterioles up to 500μm depth. Results showed that penetrating arterioles close to a strong AAA connection dilate whereas penetrating arterioles constrict significantly in weaker AAA regions. These results suggest that AAA plays a major role in active regulation of the pial arterioles, and weaker AAA connections lead to poor blood perfusion to penumbra through penetrating arterioles.

  11. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    PubMed

    Denier, Niklaus; Gerber, Hana; Vogel, Marc; Klarhöfer, Markus; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Lang, Undine E; Borgwardt, Stefan; Walter, Marc

    2013-01-01

    Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI) in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration). Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo) before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL) sequence based on a flow-sensitive alternating inversion recovery (FAIR) spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo) readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8), using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC), the left medial prefrontal cortex (mPFC) and in the insula (both hemispheres). Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  12. An Assessment of Fetal Cerebral and Hepatic Perfusion in Normal Pregnancy and Pre-Eclampsia Using Three-Dimensional Ultrasound

    PubMed Central

    Addley, Susan; Ali, Amanda

    2017-01-01

    Background Pre-eclampsia and placental causes of intrauterine growth restriction (IUGR) are part of the same spectrum of disorders. In IUGR, there is preferential shunting of blood to the fetal brain at the expense of other organs. We wanted to demonstrate that this also occurs in pre-eclampsia using three dimensional (3D) ultrasound. The 3D indices of perfusion are: flow index (FI), vascular index (VI) and vascularisation flow index (VFI) which reflect tissue vascularity and flow intensity. Methods Fourteen normal pregnant women and 14 with diagnosed pre-eclampsia were recruited. Scanning was conducted by 2 observers using a Voluson E8 machine. Perfusion was measured at a pre-defined position within the fetal brain and fetal liver. The power Doppler signals were quantified using the ‘histogram facility’ to generate 3 indices of vascularity: FI, VI and VFI. The unpaired t-test was used to compare differences between groups. The hypothesis was that fetal brain FI, VI and VFI would be similar between women with normal pregnancy and women with pre-eclampsia, but measurements would be reduced in the fetal liver in women with pre-eclampsia. Results Maternal characteristics of age, body mass index and gestation were not different between groups. The depth of insonnation did not differ between groups. Fetal cerebral perfusion was not different between women with a normal pregnancy compared to women with pre-eclampsia. The mean (SD) for FI was 22.4 (5.7) vs. 21.1 (4.3) respectively (p=0.49). For VI, the mean (SD) was as 64.7 (40.4) vs. 79.1 (27.4) respectively (p=0.28). For VFI, the mean (SD) was 14.8 (10.3) vs. 16.1 (5.5) respectively (p = 0.66). Fetal hepatic perfusion was not different between women with a normal pregnancy compared to women with pre-eclampsia. The mean (SD) for FI was 34.4 (19.9) vs. 27.8 (11.0) respectively (p = 0.28). For VI, mean (SD) was 67.6 (36.0) vs. 87.3 (25.8) respectively (p=0.11). For VFI, the mean (SD) was 19.6 (11.6) vs. 23.1 (10

  13. Lesion area detection using source image correlation coefficient for CT perfusion imaging.

    PubMed

    Fan Zhu; Rodriguez Gonzalez, David; Carpenter, Trevor; Atkinson, Malcolm; Wardlaw, Joanna

    2013-09-01

    Computer tomography (CT) perfusion imaging is widely used to calculate brain hemodynamic quantities such as cerebral blood flow, cerebral blood volume, and mean transit time that aid the diagnosis of acute stroke. Since perfusion source images contain more information than hemodynamic maps, good utilization of the source images can lead to better understanding than the hemodynamic maps alone. Correlation-coefficient tests are used in our approach to measure the similarity between healthy tissue time-concentration curves and unknown curves. This information is then used to differentiate penumbra and dead tissues from healthy tissues. The goal of the segmentation is to fully utilize information in the perfusion source images. Our method directly identifies suspected abnormal areas from perfusion source images and then delivers a suggested segmentation of healthy, penumbra, and dead tissue. This approach is designed to handle CT perfusion images, but it can also be used to detect lesion areas in magnetic resonance perfusion images.

  14. Total Coronary Atherosclerotic Plaque Burden Assessment by CT Angiography for Detecting Obstructive Coronary Artery Disease Associated with Myocardial Perfusion Abnormalities

    PubMed Central

    Kishi, Satoru; Magalhães, Tiago A.; Cerci, Rodrigo J.; Matheson, Matthew B.; Vavere, Andrea; Tanami, Yutaka; Kitslaar, Pieter H.; George, Richard T.; Brinker, Jeffrey; Miller, Julie M.; Clouse, Melvin E.; Lemos, Pedro A.; Niinuma, Hiroyuki; Reiber, Johan H.C.; Rochitte, Carlos E.; Rybicki, Frank J.; Di Carli, Marcelo F.; Cox, Christopher; Lima, Joao A.C.; Arbab-Zadeh, Armin

    2016-01-01

    Background Total atherosclerotic plaque burden assessment by CT angiography (CTA) is a promising tool for diagnosis and prognosis of coronary artery disease (CAD) but its validation is restricted to small clinical studies. We tested the feasibility of semi-automatically derived coronary atheroma burden assessment for identifying patients with hemodynamically significant CAD in a large cohort of patients with heterogenous characteristics. Methods This study focused on the CTA component of the CORE320 study population. A semi-automated contour detection algorithm quantified total coronary atheroma volume defined as the difference between vessel and lumen volume. Percent atheroma volume (PAV = [total atheroma volume/total vessel volume]×100) was the primary metric for assessment (n=374). The area under the receiver operating characteristic curve (AUC) determined the diagnostic accuracy for identifying patients with hemodynamically significant CAD defined as ≥50% stenosis by quantitative coronary angiography and associated myocardial perfusion abnormality by SPECT. Results Of 374 patients, 139 (37%) had hemodynamically significant CAD. The AUC for PAV was 0.78 (95% confidence interval [CI] 0.73–0.83) compared to 0.84 [0.79–0.88] by standard expert CTA interpretation (p=0.02). Accuracy for both CTA (0.91 [0.87, 0.96]) and PAV (0.86 [0.81–0.91]) increased after excluding patients with history of CAD (p<0.01 for both). Bland-Altman analysis revealed good agreement between two observers ( bias of 280.2 mm3 [161.8, 398.7]). Conclusions A semi-automatically derived index of total coronary atheroma volume yields good accuracy for identifying patients with hemodynamically significant CAD, though marginally inferior to CTA expert reading. These results convey promise for rapid, reliable evaluation of clinically relevant CAD. PMID:26817414

  15. [Alterations in cerebral perfusion in patients with systemic sclerosis and cognitive impairment].

    PubMed

    Moreno-Gutiérrez, Juan; Coria-Moctezuma, Luis Alonso; del Pilar Cruz-Domínguez, María; Vera-Lastra, Olga Lidia

    2015-01-01

    Introducción: la esclerosis sistémica (ES) es una enfermedad autoinmune, sistémica, caracterizada por fibrosis, alteraciones inmunológicas y vasculares. La hipoperfusión cerebral puede ser causada por isquemia. Los trastornos cognitivos son causa importante de morbilidad. El objetivo de este estudio fue determinar la frecuencia de alteraciones en la perfusión cerebral (PC) en pacientes con ES y deterioro cognitivo (DC). Métodos: se estudiaron 88 pacientes con ES. A todos se les aplicó el Test de Montreal (TM) para evaluar el DC. A 15 pacientes con DC que cumplieron con los criterios (sin hipertensión arterial sistémica, diabetes mellitus, evento vascular cerebral, vasculitis, hipotiroidismo, depresión, sin ingesta de fármacos que interfieran con la evaluación cognitiva), se les midió la PC mediante Gamagrama Cerebral Perfusorio (GCP).Resultados: de los 88 pacientes con ES, 58 tuvieron DC con el TM. La PC se encontró disminuida en 12/15. La disminución de la PC se observó en los siguientes lóbulos (frontal en 9/15; temporal en 7/15, y parietal en 3/15. La concordancia entre el TM y GC fue 60 % para el lóbulo frontal, 46 % para el lóbulo temporal y 13 % parietal.Conclusiones: el DC es frecuente en la ES, la disminución de la PC fue más común en el lóbulo frontal, predominado en los pacientes de mayor edad y tiempo de evolución de la ES.

  16. Intraoperative blood pressure and cerebral perfusion: strategies to clarify hemodynamic goals.

    PubMed

    Williams, Monica; Lee, Jennifer K

    2014-07-01

    Blood pressure can vary considerably during anesthesia. If blood pressure falls outside the limits of cerebrovascular autoregulation, children can become at risk of cerebral ischemic or hyperemic injury. However, the blood pressure limits of autoregulation are unclear in infants and children, and these limits can shift after brain injury. This article will review autoregulation, considerations for the hemodynamic management of children with brain injuries, and research on autoregulation monitoring techniques.

  17. Identification of hemodynamically compromised regions by means of cerebral blood volume mapping utilizing computed tomography perfusion imaging.

    PubMed

    Takahashi, Satoshi; Tanizaki, Yoshio; Akaji, Kazunori; Kimura, Hiroaki; Katano, Takehiro; Suzuki, Kentaro; Mochizuki, Yoichi; Shidoh, Satoka; Nakazawa, Masaki; Yoshida, Kazunari; Mihara, Ban

    2017-04-01

    The aim of the study was to evaluate the potential role of computed tomography perfusion (CTP) imaging in identifying hemodynamically compromised regions in patients with occlusive cerebrovascular disease. Twelve patients diagnosed with either occlusion or severe stenosis of the internal carotid artery or the M1 portion of the middle cerebral artery underwent CTP imaging. The data was analyzed by an automated ROI-determining software. Patients were classified into two subgroups: an asymptomatic group consisting of three patients in whom perfusion pressure distal to the site of occlusion/stenosis (PPdis) could be maintained in spite of the arterial occlusion/stenosis, and a symptomatic group consisting of nine patients in whom PPdis could not be maintained enough to avoid watershed infarction. Four CTP-related parameters were independently compared between the two groups. Significant differences were determined using a two-sample t-test. When statistically significant differences were identified, cut-off points were calculated using ROC curves. Analysis revealed statistically significant differences between the asymptomatic and symptomatic subgroups only in the measure of relCBV (p=0.028). Higher relCBV values were observed in the symptomatic subgroup. ROC curve analysis revealed 1.059 to be the optimal relCBV cut-off value for distinguishing between the asymptomatic and symptomatic subgroups. The data revealed that, in patients whose PPdis is maintained, relCBV remains around 1.00. Conversely, in patients whose PPdis decreased, relCBV increased. From these findings, we conclude that elevation of relCBV as observed using CTP imaging accurately reflects the extent of compensatory vasodilatation involvement and can identify hemodynamically compromised regions.

  18. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study.

    PubMed

    Kim, Junghoon; Whyte, John; Patel, Sunil; Avants, Brian; Europa, Eduardo; Wang, Jiongjiong; Slattery, John; Gee, James C; Coslett, H Branch; Detre, John A

    2010-08-01

    Non-invasive measurement of resting state cerebral blood flow (CBF) may reflect alterations of brain structure and function after traumatic brain injury (TBI). However, previous imaging studies of resting state brain in chronic TBI have been limited by several factors, including measurement in relative rather than absolute units, use of crude spatial registration methods, exclusion of subjects with substantial focal lesions, and exposure to ionizing radiation, which limits repeated assessments. This study aimed to overcome those obstacles by measuring absolute CBF with an arterial spin labeling perfusion fMRI technique, and using an image preprocessing protocol that is optimized for brains with mixed diffuse and focal injuries characteristic of moderate and severe TBI. Resting state CBF was quantified in 27 individuals with moderate to severe TBI in the chronic stage, and 22 demographically matched healthy controls. In addition to global CBF reductions in the TBI subjects, more prominent regional hypoperfusion was found in the posterior cingulate cortices, the thalami, and multiple locations in the frontal cortices. Diffuse injury, as assessed by tensor-based morphometry, was mainly associated with reduced CBF in the posterior cingulate cortices and the thalami, where the greatest volume losses were detected. Hypoperfusion in superior and middle frontal cortices, in contrast, was associated with focal lesions. These results suggest that structural lesions, both focal and diffuse, are the main contributors to the absolute CBF alterations seen in chronic TBI, and that CBF may serve as a tool to assess functioning neuronal volume. We also speculate that resting reductions in posterior cingulate perfusion may reflect alterations in the default-mode network, and may contribute to the attentional deficits common in TBI.

  19. Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance.

    PubMed

    Liebert, A; Wabnitz, H; Steinbrink, J; Möller, M; Macdonald, R; Rinneberg, H; Villringer, A; Obrig, H

    2005-01-15

    We present a minimally invasive optical method, that is, multi-channel time-domain diffuse near-infrared reflectometry of the head to assess cerebral blood perfusion that is applicable at the bed-side and repetitively at short intervals. Following intravenous injection of an ICG bolus, its transit through intra- and extracerebral tissue is monitored based on changes in moments of distributions of times of flight of photons, recorded with a 4-channel instrument simultaneously on both hemispheres. In healthy volunteers, we found that variance of distributions of times of flight of photons is well suited to assess latency and initial slope of the increase in absorption of intracerebral tissue due to the bolus. We successfully applied our method in two patients demonstrating a reversible cerebral perfusion deficit in an ischemic stroke patient who was treated by thrombolysis and in another patient with a permanent impaired unilateral perfusion due to ipsilateral internal carotid artery occlusion. In either case, we observed a difference in bolus transit time between the hemispheres. In the stroke patient, this difference resolved when re-evaluated 1 day after thrombolysis. The study demonstrates the necessity of a technique with sub-nanosecond time resolution to allow for depth discrimination if clinical perfusion monitoring of cerebrovascular diseases is addressed by optical methods.

  20. TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging

    SciTech Connect

    Li, Ke; Niu, Kai; Wu, Yijing; Chen, Guang-Hong

    2015-06-15

    Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTP technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom and canine stroke models. Based upon this cascaded model, it has been discovered that, as long as the spatial resolution and noise properties of the 4D source CT images are given, the 3D MTF and NPS of the final CTP maps can be analytically derived for a given set of processing methods and parameters. The cascaded model analysis also identified that the most critical technical factor in CTP is how to acquire and reconstruct high quality source images; it has very little to do with the denoising techniques often used after parametric perfusion calculations. This explained why PICCS resulted in a five-fold dose reduction or substantial improvement in image quality. Conclusion: Technical innovations generated promising results towards achieving high quality and sub-mSv CTP imaging for reliable and safe assessment of acute ischemic strokes. K. Li, K. Niu, Y. Wu: Nothing to

  1. Cerebral Perfusion Pressure Targets Individualized to Pressure-Reactivity Index in Moderate to Severe Traumatic Brain Injury: A Systematic Review.

    PubMed

    Needham, Edward; McFadyen, Charles; Newcombe, Virginia; Synnot, Anneliese J; Czosnyka, Marek; Menon, David

    2017-03-01

    Traumatic brain injury (TBI) frequently triggers a disruption of cerebral autoregulation. The cerebral perfusion pressure (CPP) at which autoregulation is optimal ("CPPopt") varies between individuals, and can be calculated based on fluctuations between arterial blood pressure and intracranial pressure. This review assesses the effect of individualizing CPP targets to pressure reactivity index (a measure of autoregulation) in patients with TBI. Cochrane Central Register of Controlled Trials, MEDLINE®, Embase, and Cumulative Index of Nursing and Allied Health Literature were searched in March 2015 for studies assessing the effect of targeting CPPopt in TBI. We included all studies that assessed the impact of targeting CPPopt on outcomes including mortality, neurological outcome, and physiological changes. Risk of bias was assessed using the RTI Item Bank and evidence quality was considered using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. Eight cohort studies (based on six distinct data sets) assessing the association between CPPopt and mortality, Glasgow Outcome Scale and physiological measures in TBI were included. The quality of evidence was deemed very low based on the GRADE criteria. Although the data suggest an association between variation from CPPopt and poor clinical outcome at 6 months, the quality of evidence prevents firm conclusions, particularly regarding causality, from being drawn. Available data suggest that targeting CPPopt might represent a technique to improve outcomes following TBI, but currently there is insufficient high-quality data to support a recommendation for use in clinical practice. Further prospective, randomized controlled studies should be undertaken to clarify its role in the acute management of TBI.

  2. Additive global cerebral blood flow normalization in arterial spin labeling perfusion imaging.

    PubMed

    Stewart, Stephanie B; Koller, Jonathan M; Campbell, Meghan C; Perlmutter, Joel S; Black, Kevin J

    2015-01-01

    To determine how different methods of normalizing for global cerebral blood flow (gCBF) affect image quality and sensitivity to cortical activation, pulsed arterial spin labeling (pASL) scans obtained during a visual task were normalized by either additive or multiplicative normalization of modal gCBF. Normalization by either method increased the statistical significance of cortical activation by a visual stimulus. However, image quality was superior with additive normalization, whether judged by intensity histograms or by reduced variability within gray and white matter.

  3. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy

    PubMed Central

    Kwon, Hae-Yeon

    2017-01-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5–13 years of age in I–III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject’s guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity. PMID:28265153

  4. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy.

    PubMed

    Kwon, Hae-Yeon

    2017-02-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5-13 years of age in I-III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject's guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity.

  5. Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations.

    PubMed

    Wang, Ze

    2012-12-01

    Denoising is critical to improving the quality and stability of cerebral blood flow (CBF) quantification in arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) due to the intrinsic low signal-to-noise-ratio (SNR) of ASL data. Previous studies have been focused on reducing the spatial or temporal noise using standard filtering techniques, and less attention has been paid to two global nuisance effects, the residual motion artifacts and the global signal fluctuations. Since both nuisances affect the whole brain, removing them in advance should enhance the CBF quantification quality for ASL MRI. The purpose of this paper was to assess this potential benefit. Three methods were proposed to suppress each or both of the two global nuisances. Their performances for CBF quantification were validated using ASL data acquired from 13 subjects. Evaluation results showed that covarying out both global nuisances significantly improved temporal SNR and test-retest stability of CBF measurement. Although the concept of removing both nuisances is not technically novel per se, this paper clearly showed the benefits for ASL CBF quantification. Dissemination of the proposed methods in a free ASL data processing toolbox should be of interest to a broad range of ASL users.

  6. High-sensitivity cerebral perfusion mapping in mice by kbGRASE-FAIR at 9.4 T.

    PubMed

    Zheng, Bingwen; Lee, Philip Teck Hock; Golay, Xavier

    2010-11-01

    The combination of flow-sensitive alternating inversion recovery (FAIR) and single-shot k-space-banded gradient- and spin-echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal-to-noise ratio (SNR) analysis showed that kbGRASE-FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single-shot echo planar imaging (EPI)-FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE-FAIR showed a more stable response to 5% CO(2) than did those with EPI-FAIR. The results establish kbGRASE-FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T.

  7. Beyond Patient Reported Pain: Perfusion Magnetic Resonance Imaging Demonstrates Reproducible Cerebral Representation of Ongoing Post-Surgical Pain

    PubMed Central

    Howard, Matthew A.; Krause, Kristina; Khawaja, Nadine; Massat, Nathalie; Zelaya, Fernando; Schumann, Gunter; Huggins, John P.; Vennart, William; Williams, Steven C. R.; Renton, Tara F.

    2011-01-01

    Development of treatments for acute and chronic pain conditions remains a challenge, with an unmet need for improved sensitivity and reproducibility in measuring pain in patients. Here we used pulsed-continuous arterial spin-labelling [pCASL], a relatively novel perfusion magnetic-resonance imaging technique, in conjunction with a commonly-used post-surgical model, to measure changes in regional cerebral blood flow [rCBF] associated with the experience of being in ongoing pain. We demonstrate repeatable, reproducible assessment of ongoing pain that is independent of patient self-report. In a cross-over trial design, 16 participants requiring bilateral removal of lower-jaw third molars underwent pain-free pre-surgical pCASL scans. Following extraction of either left or right tooth, repeat scans were acquired during post-operative ongoing pain. When pain-free following surgical recovery, the pre/post-surgical scanning procedure was repeated for the remaining tooth. Voxelwise statistical comparison of pre and post-surgical scans was performed to reveal rCBF changes representing ongoing pain. In addition, rCBF values in predefined pain and control brain regions were obtained. rCBF increases (5–10%) representing post-surgical ongoing pain were identified bilaterally in a network including primary and secondary somatosensory, insula and cingulate cortices, thalamus, amygdala, hippocampus, midbrain and brainstem (including trigeminal ganglion and principal-sensory nucleus), but not in a control region in visual cortex. rCBF changes were reproducible, with no rCBF differences identified across scans within-session or between post-surgical pain sessions. This is the first report of the cerebral representation of ongoing post-surgical pain without the need for exogenous tracers. Regions of rCBF increases are plausibly associated with pain and the technique is reproducible, providing an attractive proposition for testing interventions for on-going pain that do not rely

  8. Cerebral perfusion differences in women currently with and recovered from anorexia nervosa.

    PubMed

    Sheng, Min; Lu, Hanzhang; Liu, Peiying; Thomas, Binu P; McAdams, Carrie J

    2015-05-30

    Anorexia nervosa is a serious psychiatric disorder characterized by restricted eating, a pursuit of thinness, and altered perceptions of body shape and size. Neuroimaging in anorexia nervosa has revealed morphological and functional alterations in the brain. A better understanding of physiological changes in anorexia nervosa could provide a brain-specific health marker relevant to treatment and outcomes. In this study, we applied several advanced magnetic resonance imaging (MRI) techniques to quantify regional and global cerebral blood flow (CBF) in 25 healthy women (HC), 23 patients currently with anorexia (AN-C) and 19 patients in long-term weight recovery following anorexia (AN-WR). Specifically, CBF was measured with pseudo-continuous arterial spin labeling (pCASL) MRI and then verified by a different technique, phase contrast (PC) MRI. Venous T2 values were determined by T2 relaxation under spin tagging (TRUST) MRI, and were used to corroborate the CBF results. These novel techniques were implemented on a standard 3T MRI scanner without any exogenous tracers, and the total scan duration was less than 10min. Voxel-wise comparison revealed that the AN-WR group showed lower CBF in bilateral temporal and frontal lobes than the AN-C group. Compared with the HC group, the AN-C group also showed higher CBF in the right temporal lobe. Whole-brain-averaged CBF was significantly decreased in the AN-WR group compared with the AN-C group, consistent with the PC-MRI results. Venous T2 values were lower in the AN-WR group than in the AN-C group, consistent with the CBF results. A review of prior work examining CBF in anorexia nervosa is included in the discussion. This study identifies several differences in the cerebral physiological alterations in anorexia nervosa, and finds specific differences relevant to the current state of the disorder.

  9. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion.

    PubMed

    Lucas, Samuel J E; Ainslie, Philip N; Murrell, Carissa J; Thomas, Kate N; Franz, Elizabeth A; Cotter, James D

    2012-08-01

    Regular exercise improves the age-related decline in cerebral blood flow (CBF) and is associated with improved cognitive function; however, less is known about the direct relationship between CBF and cognitive function. We examined the influence of healthy aging on the capability of acute exercise to improve cognition, and whether exercise-induced improvements in cognition are related to CBF and cortical hemodynamics. Middle cerebral artery blood flow velocity (MCAv; Doppler) and cortical hemodynamics (NIRS) were measured in 13 young (24±5 y) and 9 older (62±3 y) participants at rest and during cycling at 30% and 70% of heart rate range (HRR). Cognitive performance was assessed using a computer-adapted Stroop task (i.e., test of executive function cognition) at rest and during exercise. Average response times on the Stroop task were slower for the older compared to younger group for both simple and difficult tasks (P<0.01). Independent of age, difficult-task response times improved during exercise (P<0.01), with the improvement greater at 70% HRR exercise (P=0.04 vs. 30% HRR). Higher MCAv was correlated with faster response times for simple and difficult tasks at rest (R(2)=0.47 and R(2)=0.47, respectively), but this relation uncoupled progressively during exercise. Exercise-induced increases in MCAv were similar and unaltered during cognitive tasks for both age groups. In contrast, prefrontal cortical hemodynamic NIRS measures [oxyhemoglobin (O(2)Hb) and total hemoglobin (tHb)] were differentially affected by exercise intensity, age and cognitive task; e.g., there were smaller increases in [O(2)Hb] and [tHb] in the older group between exercise intensities (P<0.05). These data indicate that: 1) Regardless of age, cognitive (executive) function is improved while exercising; 2) while MCAv is strongly related to cognition at rest, this relation becomes uncoupled during exercise, and 3) there is dissociation between global CBF and regional cortical oxygenation and

  10. Effects of minocycline add-on treatment on brain morphometry and cerebral perfusion in recent-onset schizophrenia.

    PubMed

    Chaves, Cristiano; Marque, Cristiane R; Maia-de-Oliveira, João P; Wichert-Ana, Lauro; Ferrari, Thiago B; Santos, Antonio C; Araújo, David; Machado-de-Sousa, João P; Bressan, Rodrigo A; Elkis, Helio; Crippa, José A; Guimarães, Francisco S; Zuardi, Antônio W; Baker, Glen B; Dursun, Serdar M; Hallak, Jaime E C

    2015-02-01

    Increasing evidence suggests that the tetracycline antibiotic minocycline has neuroprotective effects and is a potential treatment for schizophrenia. However, the mechanisms of action of minocycline in the CNS remain elusive. The aim of this study was to investigate the effects of minocycline on brain morphology and cerebral perfusion in patients with recent-onset schizophrenia after 12months of a randomized double-blind, placebo-controlled clinical trial of minocycline add-on treatment. This study included 24 outpatients with recent-onset schizophrenia randomized for 12months of adjuvant treatment with minocycline (200mg/d) or placebo. MRI (1.5T) and [(99m)Tc]-ECD SPECT brain scans were performed at the end of the 12-month of trial. Between-condition comparisons of SPECT and MRI brain images were performed using statistical parametric mapping and analyzed by voxel-based morphometry (VBM). Minocycline adjuvant treatment significantly reduced positive and negative symptoms when compared with placebo. The VBM analysis of MRI scans showed that the patients in the placebo group had significant lower gray matter volumes in the midposterior cingulate cortex and in the precentral gyrus in comparison with the patients in the minocycline group. In addition, a decreased ECD uptake in the minocycline condition was observed in fronto-temporal areas. These results suggest that minocycline may protect against gray matter loss and modulate fronto-temporal areas involved in the pathophysiology of schizophrenia. Furthermore, minocycline add-on treatment may be a potential treatment in the early stages of schizophrenia and may ameliorate clinical deterioration and brain alterations observed in this period.

  11. Paradoxical Air Microembolism Induces Cerebral Bioelectrical Abnormalities and Occasionally Headache in Patent Foramen Ovale Patients With Migraine

    PubMed Central

    Sevgi, Eser Başak; Erdener, Sefik Evren; Demirci, Mehmet; Topcuoglu, Mehmet Akif; Dalkara, Turgay

    2012-01-01

    Background Although controversial, paradoxical embolism via patent foramen ovale (PFO) may account for some of the migraine attacks in a subset of migraine with aura (MA) patients. Induction of MA attacks with air bubble injection during transcranial Doppler ultrasound in MA patients with PFO supports this view. It is likely that cerebral embolism in patients with right-to-left shunt induces bioelectrical abnormalities to initiate MA under some conditions. Methods and Results We investigated changes in cerebral bioelectrical activity after intravenous microbubble injection in 10 MA patients with large PFO and right-to-left cardiac shunt. Eight PFO patients without migraine but with large right-to-left shunt and 12 MA patients without PFO served as controls. Four MA patients with PFO were reexamined with sham injections of saline without microbubbles. Bioelectrical activity was evaluated using spectral electroencephalography and, passage of microbubbles through cerebral arteries was monitored with transcranial Doppler ultrasound. Microbubble embolism caused significant electroencephalographic power increase in MA+PFO patients but not in control groups including the sham-injected MA+PFO patients. Headache developed in 2 MA with PFO patients after microbubble injection. Conclusions These findings demonstrate that air microembolism through large PFOs may cause cerebral bioelectrical disturbances and, occasionally, headache in MA patients, which may reflect an increased reactivity of their brain to transient subclinical hypoxia–ischemia, and suggest that paradoxical embolism is not a common cause of migraine but may induce headache in the presence of a large PFO and facilitating conditions. PMID:23316313

  12. [A successfully procedure for the high risk redo-aortic valve replacement under profound hypothermic circulatory arrest and selective cerebral perfusion].

    PubMed

    Tanaka, T; Watanabe, T; Koike, H; Nakamura, M; Abe, T

    1998-07-01

    A 45-year-old female with atypical coactation of aorta and aortic regurgitation was treated with aortic valve replacement and extra-anastomic bypass between the ascending aorta and the left common iliac artery using a 12 mm woven dacron graft in 1978. She had complained of palpitation and shortness of breath six years after surgery, cinefluoroscopy demonstrated prosthetic valve dysfunction. Thrombolytic therapy was carried out to improve the valve function, but it did not result in improvement. Therefore, we decided to proceed with re-surgery. During a median sternotomy, massive bleeding from the substernal graft occurred. Therefore, we abandoned the re-surgery at that time. Then, her general condition was getting worse and she had occasional pulmonary edema fifteen years after the initial surgery. She finally underwent redo-aortic valve replacement with the aid of profound hypothermic circulatory arrest and selective cerebral perfusion. There was no cerebral complication after the re-surgery and she is now leading normal life. A median sternotomy under profound hypothermic circulatory arrest and selective cerebral perfusion was a very useful and safe procedure for patients who had risks of inadvertent injury to the aorta or the heart during the re-surgery.

  13. Assessment of the ability of myocardial contrast echocardiography with harmonic power Doppler imaging to identify perfusion abnormalities in patients with Kawasaki disease at rest and during dipyridamole stress.

    PubMed

    Ishii, M; Himeno, W; Sawa, M; Iemura, M; Furui, J; Muta, H; Sugahara, Y; Egami, K; Akagi, T; Ishibashi, M; Kato, H

    2002-01-01

    The aim of our study was to assess the ability of myocardial contrast echocardiography (MCE) with harmonic power Doppler imaging (HPDI) to identify perfusion abnormalities in patients with Kawasaki disease at rest and during pharmacological stress imaging with dipyridamole. Results were compared with those of 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) imaging as the clinical reference standard. MCE with HPDI was performed on 20 patients with a history of Kawasaki disease. Images were obtained at baseline and during dipyridamole infusion (0.56 mg x kg(-1)) in the apical two- and four-chamber views. Myocardial opacification suitable for the analysis was obtained in all patients. Nine patients with stenotic lesions had a reversible defect after dipyridamole infusion detected by both MCE with HPDI and SPECT, and 3 patients with a history of myocardial infarction had a partially or completely irreversible defect detected by both methods. Three patients with coronary aneurysm without stenotic lesion, 4 patients with regressed coronary aneurysm, and 2 patients with normal coronary artery in acute phase also had normal perfusion at rest and after pharmacological stress by both methods. A 96% concordance (kappa = 0.87) was obtained when comparing the respective segmental perfusion scores using the two methods at baseline, and an 86% concordance (kappa = 0.81) was obtained at postdipyridamole infusion. After combining baseline and postdipyridamole images, each segment was labeled as having normal perfusion, irreversible defects, or reversible defects. Using these classifications, concordance for the two methods was 92% (kappa = 0.87). MCE with HPDI is a safe and feasible method by which to detect asymptomatic ischemia due to severe stenotic lesion, and it may be an important addition to the modalities used to identify patients at risk for myocardial infarction as a complication of Kawasaki disease.

  14. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.

  15. No evidence of perfusion abnormalities in the basal ganglia of a patient with generalized chorea-ballism and polycythaemia vera: analysis using subtraction SPECT co-registered to MRI.

    PubMed

    Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An

    2008-10-01

    Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.

  16. Cerebral blood flow and oxygenation in infants after birth asphyxia. Clinically useful information?

    PubMed

    Greisen, Gorm

    2014-10-01

    The term 'luxury perfusion' was coined nearly 50 years ago after observation of bright-red blood in the cerebral veins of adults with various brain pathologies. The bright-red blood represents decreased oxygen extraction and hence the perfusion is 'luxurious' compared to oxygen needs. Gradual loss of cellular energy charge during the hours following severe birth asphyxia was observed twenty years later by sequential cranial magnetic resonance spectroscopy. This led to the concept of delayed energy failure that is linked to mitochondrial dysfunction and apoptotic cell death. Abnormally increased perfusion and lack of normal cerebral blood flow regulation are also typically present, but whether the perfusion abnormalities at this secondary stage are detrimental, beneficial, or a mere epiphenomenon remains elusive. In contrast, incomplete reoxygenation of the brain during and following resuscitation is likely to compromise outcome. The clinical value of cerebral oximetry in this context can only be examined in a randomised clinical trial.

  17. Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome.

    PubMed

    Kristensen, B; Malm, J; Fagerland, M; Hietala, S O; Johansson, B; Ekstedt, J; Karlsson, T

    1996-03-01

    OBJECTIVES--(1) to evaluate regional cerebral blood flow (rCBF) with single photon emission computed tomography and 99mTc-hexamethylpropyleneamine oxime in patients with the idiopathic adult hydrocephalus syndrome (IAHS); (2) to examine regional cerebral blood flow (rCBF), gait, and psychometric functions before and after CSF removal (CSF tap test); (3) to assess abnormalities in subcortical white matter by MRI. METHODS--Thirty one patients fulfilling the criteria for IAHS (according to history and clinical and neuroradiological examination) were studied. Quantified gait measurements, psychometric testing, and rCBF before and after removal of CSF were obtained. Pressure of CSF and CSF outflow conductance were investigated with a constant pressure infusion method. Brain MRI was used to quantify the severity of white matter lesions and periventricular hyperintensities. In IAHS a widespread rCBF hypoperfusion pattern was depicted, with a caudal frontal and temporal grey matter and subcortical white matter reduction of rCBF as the dominant feature. Removal of CSF was not accompanied by a concomitant increase in rCBF. Significant white matter lesions were detected only in a minority of patients by MRI. An altered CSF hydrodynamic state with a higher CSF pressure and lower conductance was confirmed. IAHS is characterised by an abnormal CSF hydrodynamic state, associated with a widespread rCBF reduction with preference for subcortical white matter and frontal-temporal cortical regions. Furthermore in most patients MRI did not show white matter changes suggestive of a coexistent subcortical arteriosclerotic encephalopathy. At least in the idiopathic group of patients with AHS, measurements of rCBF before and after temporary relief of the CSF hydrodynamic disturbance will not provide additional information that would be helpful in the preoperative evaluation but is suggestive of a preserved autoregulation of rCBF.

  18. Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome.

    PubMed Central

    Kristensen, B; Malm, J; Fagerland, M; Hietala, S O; Johansson, B; Ekstedt, J; Karlsson, T

    1996-01-01

    OBJECTIVES--(1) to evaluate regional cerebral blood flow (rCBF) with single photon emission computed tomography and 99mTc-hexamethylpropyleneamine oxime in patients with the idiopathic adult hydrocephalus syndrome (IAHS); (2) to examine regional cerebral blood flow (rCBF), gait, and psychometric functions before and after CSF removal (CSF tap test); (3) to assess abnormalities in subcortical white matter by MRI. METHODS--Thirty one patients fulfilling the criteria for IAHS (according to history and clinical and neuroradiological examination) were studied. Quantified gait measurements, psychometric testing, and rCBF before and after removal of CSF were obtained. Pressure of CSF and CSF outflow conductance were investigated with a constant pressure infusion method. Brain MRI was used to quantify the severity of white matter lesions and periventricular hyperintensities. In IAHS a widespread rCBF hypoperfusion pattern was depicted, with a caudal frontal and temporal grey matter and subcortical white matter reduction of rCBF as the dominant feature. Removal of CSF was not accompanied by a concomitant increase in rCBF. Significant white matter lesions were detected only in a minority of patients by MRI. An altered CSF hydrodynamic state with a higher CSF pressure and lower conductance was confirmed. IAHS is characterised by an abnormal CSF hydrodynamic state, associated with a widespread rCBF reduction with preference for subcortical white matter and frontal-temporal cortical regions. Furthermore in most patients MRI did not show white matter changes suggestive of a coexistent subcortical arteriosclerotic encephalopathy. At least in the idiopathic group of patients with AHS, measurements of rCBF before and after temporary relief of the CSF hydrodynamic disturbance will not provide additional information that would be helpful in the preoperative evaluation but is suggestive of a preserved autoregulation of rCBF. PMID:8609504

  19. Abnormal resting regional cerebral blood flow patterns and their correlates in schizophrenia

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.; Tant, S.R.; Robinson, L.; Prakash, R.

    1988-06-01

    Regional cerebral blood flow (CBF) was measured under resting conditions in 108 right-handed schizophrenic inpatients and a matched group of normal controls with the xenon 133 inhalation technique. Forty-six patients were free of all medication for two weeks. There were no significant differences in CBF to the two hemispheres. The patients showed a comparatively reduced anteroposterior (AP) gradient for CBF. Though there were no differences in frontal flow, the patients had higher flow to several postcentral brain regions, bilaterally. Cerebral blood flow in the patients correlated inversely with age and positively with carbon dioxide level. Women had higher flow than men. Duration of the illness was the only significant predictor of the reduced AP gradient in patients. Higher left temporal and right parietal flow were found to be the best discriminators between patients and controls. Mean hemispheric flow to both hemispheres and several brain regions correlated with the total score and the item, unusual thought content, of the Brief Psychiatric Rating Scale. There were no differences in regional CBF between medicated and unmedicated patients.

  20. Brain perfusion and markers of neurodegeneration in rapid eye movement sleep behavior disorder.

    PubMed

    Vendette, Mélanie; Gagnon, Jean-François; Soucy, Jean-Paul; Gosselin, Nadia; Postuma, Ronald B; Tuineag, Maria; Godin, Isabelle; Montplaisir, Jacques

    2011-08-01

    Potential early markers of neurodegeneration such as subtle motor signs, reduced color discrimination, olfactory impairment, and brain perfusion abnormalities have been reported in idiopathic rapid eye movement sleep behavior disorder, a risk factor for Parkinson's disease and Lewy body dementia. The aim of this study was to reproduce observations of regional cerebral blood flow abnormalities in a larger independent sample of patients and to explore correlations between regional cerebral blood flow and markers of neurodegeneration. Twenty patients with idiopathic rapid eye movement sleep behavior disorder and 20 healthy controls were studied by single-photon emission computerized tomography. Motor examination, color discrimination, and olfactory identification were examined. Patients with rapid eye movement sleep behavior disorder showed decreased regional cerebral blood flow in the frontal cortex and in medial parietal areas and increased regional cerebral blood flow in subcortical regions including the bilateral pons, putamen, and hippocampus. In rapid eye movement sleep behavior disorder, brain perfusion in the frontal cortex and occipital areas was associated with poorer performance in the color discrimination test. Moreover, a relationship between loss of olfactory discrimination and regional cerebral blood flow reduction in the bilateral anterior parahippocampal gyrus, a region known to be involved in olfactory functions, was found. This study provides further evidence of regional cerebral blood flow abnormalities in rapid eye movement sleep behavior disorder that are similar to those seen in Parkinson's disease and Lewy body dementia. Moreover, regional cerebral blood flow anomalies were associated with markers of neurodegeneration.

  1. Evaluation by quantitative 99m-technetium MIBI SPECT and echocardiography of myocardial perfusion and wall motion abnormalities in patients with dobutamine-induced ST-segment elevation.

    PubMed

    Elhendy, A; Geleijnse, M L; Roelandt, J R; van Domburg, R T; Cornel, J H; TenCate, F J; Postma-Tjoa, J; Reijs, A E; el-Said, G M; Fioretti, P M

    1995-09-01

    ST-segment elevation during exercise testing has been attributed to myocardial ischemia and wall motion abnormalities (WMA). However, the functional significance of ST-segment elevation during dobutamine stress testing (DST) has not been evaluated in patients referred for diagnostic evaluation of myocardial ischemia. DST (up to 40 micrograms/kg/min) with simultaneous echocardiography and technetium-99m sestamibi single-photon emission computed tomography (SPECT) was performed in 229 consecutive patients with suspected myocardial ischemia who were unable to perform an adequate exercise test; 127 (55%) had a previous acute myocardial infarction (AMI). ST elevation was defined as > or = 1 mm new or additional J point elevations with a horizontal or upsloping ST segment lasting 80 ms. Reversible perfusion defects on SPECT and new or worsening WMA during stress on echocardiography were considered diagnostic of ischemia. ST elevation occurred in 40 patients (17%) during the test; 34 of them (85%) had previous AMI. All patients with ST-segment elevation had abnormal scintigrams (fixed or reversible defects, or both) and abnormal wall motion (fixed or transient defect, or both) at peak stress. In patients who had ST elevation and no previous AMI (n = 6), ischemia was detected in all by echocardiography and in 5 (83%) by SPECT. In patients with previous AMI, the prevalence of ischemia was not different with or without ST elevation (53% vs 43% by echocardiography and 53% vs 48% by SPECT, respectively). Baseline regional wall motion score in the infarct zone was higher in patients with ST elevation.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    PubMed Central

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-01-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4±2.3years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS. PMID:20615010

  3. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  4. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Mattsson, Niklas; Tosun, Duygu; Insel, Philip S; Simonson, Alix; Jack, Clifford R; Beckett, Laurel A; Donohue, Michael; Jagust, William; Schuff, Norbert; Weiner, Michael W

    2014-05-01

    Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to

  5. Assessment of intravascular and extravascular mechanisms of myocardial perfusion abnormalities in obstructive hypertrophic cardiomyopathy by myocardial contrast echocardiography

    PubMed Central

    Soliman, Osama I I; Knaapen, Paul; Geleijnse, Marcel L; Dijkmans, Pieter A; Anwar, Ashraf M; Nemes, Attila; Michels, Michelle; Vletter, Wim B; Lammertsma, Adriaan A

    2007-01-01

    Objectives To assess mechanisms of myocardial perfusion impairment in patients with hypertrophic cardiomyopathy (HCM). Methods Fourteen patients with obstructive HCM (mean (SD) age 53 (10) years, 11 men) underwent intravenous adenosine myocardial contrast echocardiography (MCE), positron emission tomography (PET) and cardiac catheterisation. Fourteen healthy volunteers (mean age 31 (4) years, 11 men) served as controls. Relative myocardial blood volume (rBV), exchange flow velocity (β), myocardial blood flow (MBF), MBF reserve (MFR) and endocardial‐to‐subepicardial (endo‐to‐epi) MBF ratio were measured from the steady state and contrast replenishment time–intensity curves. Results Patients with HCM had lower rest MBF (for LVRPP‐corrected)—mean (SD) (0.92 (0.12) vs 1.13 (0.25) ml/min/g, p<0.01)—and hyperaemic MBF—(2.56 (0.49) vs 4.34 (0.78) ml/min/g, p<0.01) than controls. Resting rBV was lower in patients with HCM (0.094 (0.016) vs 0.138 (0.014) ml/ml), and during hyperaemia (0.104 (0.018) ml/ml vs 0.185 (0.024) ml/ml) (all p<0.001) than in controls. β tended to be higher in HCM at rest (9.4 (4.6) vs 7.7 (4.2) ml/min) and during hyperaemia (25.8 (6.4) vs 23.1 (6.2) ml/min) than in controls. Septal endo‐to‐epi MBF decreased during hyperaemia (0.86 (0.15) to 0.64 (0.18), p<0.01). rBV was inversely correlated with left ventricular (LV) mass index (p<0.05). Both hyperaemic and endo‐to‐epi MBF were inversely correlated with LV end‐diastolic pressure, LV mass index, and LV outflow tract pressure gradient (all p<0.05). MCE‐derived MBF correlated well with PET at rest (r = 0.84) and hyperaemia (r = 0.87) (all p<0.001). Conclusions In patients with HCM, LV end‐diastolic pressure, LV outflow tract pressure gradient, and LV mass index are independent predictors of rBV and hyperaemic MBF. PMID:17488767

  6. Comparison of cerebral blood flow data obtained by computed tomography (CT) perfusion with that obtained by xenon CT using 320-row CT.

    PubMed

    Takahashi, Satoshi; Tanizaki, Yoshio; Kimura, Hiroaki; Akaji, Kazunori; Kano, Tadashige; Suzuki, Kentaro; Takayama, Youhei; Kanzawa, Takao; Shidoh, Satoka; Nakazawa, Masaki; Yoshida, Kazunari; Mihara, Ban

    2015-03-01

    Cerebral blood flow (CBF) data obtained by computed tomography perfusion (CTP) imaging have been shown to be qualitative data rather than quantitative, in contrast with data obtained by other imaging methods, such as xenon CT (XeCT) imaging. Thus, interpatient comparisons of CBF values themselves obtained by CTP may be inaccurate. In this study, we have compared CBF ratios as well as CBF values obtained from CTP-CBF data to those obtained from XeCT-CBF data for the same patients to determine CTP-CBF parameters that can be used for interpatient comparisons. The data used in the present study were obtained as volume data using 320-row CT. The volume data were applied to an automated region of interest-determining software (3DSRT, version 3.5.2 ) and converted to 59 slices of 2 mm interval standardized images. In the present study, we reviewed 10 patients with occlusive cerebrovascular diseases (CVDs) undergoing both CTP and XeCT in the same period. Our study shows that ratios of CBF measurements, such as hemodynamic stress distribution (perforator-to-cortical flow ratio of middle cerebral artery [MCA] region) or the left/right ratio for the region of the MCA, calculated using CTP data have been shown to correlate well with the same ratios calculated using XeCT data. These results suggest that such CBF ratios could be useful for generating interpatient comparisons of CTP-CBF data obtained by 320-row CT among patients with occlusive CVD.

  7. Is moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion superior to deep hypothermic circulatory arrest in elective aortic arch surgery?

    PubMed

    Poon, Shi Sum; Estrera, Anthony; Oo, Aung; Field, Mark

    2016-09-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was whether moderate hypothermia circulatory arrest with selective antegrade cerebral perfusion (SACP) is more beneficial than deep hypothermic circulatory arrest in elective aortic arch surgery. Altogether, 1028 papers were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. There were four retrospective observational studies, one prospective randomized controlled trial and one meta-analysis study. There were no local or neuromuscular complications related to axillary arterial cannulation reported. In the elective setting, four studies showed that the in-hospital mortality for moderate hypothermia is consistently low, ranging from 1.0 to 4.3%. In a large series of hemiarch replacement comparing 682 cases of deep hypothermia with 94 cases of moderate hypothermia with SACP, 20 cases (2.8%) of permanent neurological deficit were reported, compared to 3 cases (3.2%) in moderate hypothermia. Three observational studies and a meta-analysis study did not identify an increased risk of postoperative renal failure and dialysis following either deep or moderate hypothermia although a higher incidence of stroke was reported in the meta-analysis study with deep hypothermia (12.7 vs 7.3%). Longer cardiopulmonary bypass time and circulatory arrest time were reported in four studies for deep hypothermia, suggesting an increased time required for systemic cooling and rewarming in that group. Overall, these findings suggested that in elective aortic arch surgery, moderate hypothermia with selective antegrade cerebral perfusion adapted to the duration of circulatory arrest can be performed safely with acceptable mortality and morbidity outcomes. The risk of spinal cord

  8. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury?

    PubMed

    Kirkman, M A; Smith, M

    2014-01-01

    Measurement of intracranial pressure (ICP) and mean arterial pressure (MAP) is used to derive cerebral perfusion pressure (CPP) and to guide targeted therapy of acute brain injury (ABI) during neurointensive care. Here we provide a narrative review of the evidence for ICP monitoring, CPP estimation, and ICP/CPP-guided therapy after ABI. Despite its widespread use, there is currently no class I evidence that ICP/CPP-guided therapy for any cerebral pathology improves outcomes; indeed some evidence suggests that it makes no difference, and some that it may worsen outcomes. Similarly, no class I evidence can currently advise the ideal CPP for any form of ABI. 'Optimal' CPP is likely patient-, time-, and pathology-specific. Further, CPP estimation requires correct referencing (at the level of the foramen of Monro as opposed to the level of the heart) for MAP measurement to avoid CPP over-estimation and adverse patient outcomes. Evidence is emerging for the role of other monitors of cerebral well-being that enable the clinician to employ an individualized multimodality monitoring approach in patients with ABI, and these are briefly reviewed. While acknowledging difficulties in conducting robust prospective randomized studies in this area, such high-quality evidence for the utility of ICP/CPP-directed therapy in ABI is urgently required. So, too, is the wider adoption of multimodality neuromonitoring to guide optimal management of ICP and CPP, and a greater understanding of the underlying pathophysiology of the different forms of ABI and what exactly the different monitoring tools used actually represent.

  9. [Perfusion computed tomography makes it possible to overcome important SITS-MOST exclusion criteria for the endovenous thrombolysis of cerebral infarction].

    PubMed

    Cortijo, E; Calleja, A I; Garcia-Bermejo, P; Perez-Fernandez, S; Del Monte, J M; Tellez, N; Campos-Blanco, D M; Garcia-Porrero, M A; Fernandez-Herranz, M R; Arenillas-Lara, J F

    2012-03-01

    AIM. To study the frequency, safety and efficacy of perfusion computed tomography (PCT), through identification of brain tissue-at-risk, to guide intravenous thrombolysis in stroke patients with regulatory exclusion criteria (SITS-MOST and ECASS-3). PATIENTS AND METHODS. We studied consecutive acute non-lacunar ischemic stroke patients. After conventional CT was considered eligible, PCT was performed in the following circumstances: 4.5 to 6 h window, wake-up stroke or unknown time of onset; extent early infarct signs on CT; minor or severe stroke; seizures or loss of consciousness. Intravenous 0.9 mg/kg alteplase was indicated if: cerebral blood volume lesion covered < 1/3 of middle cerebral artery territory; mismatch > 20% between mean transit time and cerebral blood volume maps existed; and informed consent. SITS-MOST safety-efficacy parameters were used as endpoint variables. RESULTS. Between May 2009-April 2010, 66 hyperacute ischemic stroke patients a priori not eligible for intravenous thrombolysis underwent PCT. Indications were: > 4.5 h in 18 patients, wake up stroke or unknown onset in 25, extent infarct signs in 6, seizures at onset in 11, and minor stroke (NIHSS < 4) in 6. Twenty-nine (44%) of them finally received intravenous thrombolysis. Symptomatic hemorrhagic transformation occurred in 2 (6.9%) patient and 18 (62.1%) achieved a modified Rankin scale score equal or less than 2 on day 90. CONCLUSION. A high proportion of acute stroke patients with SITS-MOST and ECASS-3 exclusion criteria can be safely and efficaciously treated with intravenous thrombolysis using a PCT selection protocol. However randomized control trials will be needed to confirm our results.

  10. Viable neurons with luxury perfusion in hydrocephalus.

    PubMed

    Wong, C Y; Luciano, M G; MacIntyre, W J; Brunken, R C; Hahn, J F; Go, R T

    1997-09-01

    A woman with hydrocephalus due to aqueductal stenosis had functional imaging of cerebral perfusion and metabolism to demonstrate the effects of endoscopic third ventriculostomy--a new form of internal surgical shunting. Technetium-99m-ECD SPECT and 18F-FDG PET showed regional luxury perfusion at the left frontal region. Three months after a successful third ventriculostomy, a repeated imaging of cerebral perfusion and metabolism showed resolution of luxury perfusion and global improvement of both perfusion and metabolism. This concurred with postoperative clinical improvement. The paired imaging of cerebral perfusion and metabolism provides more information than just imaging perfusion or metabolism. Thus, the detection of perfusion and metabolism mismatch may open a new window of opportunity for surgical intervention.

  11. Nerve cell nuclear and nucleolar abnormalities in the human oedematous cerebral cortex. An electron microscopic study using cortical biopsies.

    PubMed

    Castejón, O J; Arismendi, G J

    2004-01-01

    Cerebral cortical biopsies of 17 patients with clinical diagnosis of congenital hydrocephalus, complicated brain trauma, cerebellar syndrome and vascular anomaly were examined with the transmission electron microscope to study the nuclear and nucleolar abnormalities induced by moderate and severe brain oedema, and the associated anoxic-ischemic conditions of brain tissue. In infant patients with congenital hydrocephalus and Arnold-Chiari malformation two different structural patterns of immature chromatin organization were found: the clear type characterized by a clear granular and fibrillar structure of euchromatin, scarce heterochromatin masses and few perichromatin granules, and a dense granular and fibrillar euchromatin with abundant and scattered heterochromatin masses, and increased number of perichromatin granules. The lobulated nuclei exhibited an irregularly dilated and fragmented perinuclear cistern, and areas of apparently intact nuclear pore complexes alternating with regions of nuclear pore complex disassembly. In moderate traumatic brain injuries some nucleoli exhibit apparent intact nucleolar substructures, and in severe brain oedema some nucleoli appeared shrunken and irregularly outlined with one or two fibrillar centers, and others were disintegrated. The nuclear and nucleolar morphological alterations are discussed in relation with oxidative stress, peroxidative damage, hemoglobin-induced cytotoxicity, calcium overload, glutamate excitotoxicity, and caspase activation.

  12. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency

    PubMed Central

    Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.

    2013-01-01

    Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713

  13. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives

    PubMed Central

    2014-01-01

    The role of conventional Magnetic Resonance Imaging (MRI) in the detection of cerebral tumors has been well established. However its excellent soft tissue visualization and variety of imaging sequences are in many cases non-specific for the assessment of brain tumor grading. Hence, advanced MRI techniques, like Diffusion-Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI) and Dynamic-Susceptibility Contrast Imaging (DSCI), which are based on different contrast principles, have been used in the clinical routine to improve diagnostic accuracy. The variety of quantitative information derived from these techniques provides significant structural and functional information in a cellular level, highlighting aspects of the underlying brain pathophysiology. The present work, reviews physical principles and recent results obtained using DWI/DTI and DSCI, in tumor characterization and grading of the most common cerebral neoplasms, and discusses how the available MR quantitative data can be utilized through advanced methods of analysis, in order to optimize clinical decision making. PMID:25609475

  14. Sequential hypothesis testing for automatic detection of task-related changes in cerebral perfusion in a brain-computer interface.

    PubMed

    Faulkner, Hayley G; Myrden, Andrew; Li, Michael; Mamun, Khondaker; Chau, Tom

    2015-11-01

    Evidence suggests that the cerebral blood flow patterns accompanying cognitive activity are retained in many locked-in patients. These patterns can be monitored using transcranial Doppler ultrasound (TCD), a medical imaging technique that measures bilateral cerebral blood flow velocities. Recently, TCD has been proposed as an alternative imaging modality for brain-computer interfaces (BCIs). However, most previous TCD-BCI studies have performed offline analyses with impractically lengthy tasks. In this study, we designed a BCI that automatically differentiates between counting and verbal fluency tasks using sequential hypothesis testing to make decisions as quickly as possible. Ten able-bodied participants silently alternated between counting and verbal fluency tasks within the paradigm of a simulated on-screen keyboard. During this experiment, blood flow velocities were recorded within the left and right middle cerebral arteries using bilateral TCD. Twelve features were used to characterize TCD signals. In a simulated online analysis, sequential hypothesis testing was used to update estimates of class probability every 250 ms as TCD data were processed. Classification was terminated once a threshold level of certainty was reached. Mean classification accuracy across all participants was 72% after an average of 23s, compared to an offline analysis which obtained a classification accuracy of 80% after 45 s. This represents a substantial gain in data transmission rate, while maintaining classification accuracies exceeding 70%. Furthermore, a range of decision times between 19 and 28s was observed, suggesting that the ability of sequential hypothesis testing to adapt the task duration for each individual participant is critical to achieving consistent performance across participants. These results indicate that sequential hypothesis testing is a promising alternative for online TCD-BCIs.

  15. Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM.

    PubMed

    Mathias, C J; Welch, M J; Raichle, M E; Mintun, M A; Lich, L L; McGuire, A H; Zinn, K R; John, E K; Green, M A

    1990-03-01

    Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM and Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of [64Cu]-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and [64Cu]-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that [62Cu]-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.

  16. Diffusion Tensor Imaging Detects Early Cerebral Cortex Abnormalities in Neuronal Architecture Induced by Bilateral Neonatal Enucleation: An Experimental Model in the Ferret

    PubMed Central

    Bock, Andrew S.; Olavarria, Jaime F.; Leigland, Lindsey A.; Taber, Erin N.; Jespersen, Sune N.; Kroenke, Christopher D.

    2010-01-01

    Diffusion tensor imaging (DTI) is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA), that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7) in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi-staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy. PMID:21048904

  17. Value of Perfusion-Weighted MR Imaging in the Assessment of Early Cerebral Alterations in Neurologically Asymptomatic HIV-1-Positive and HCV-Positive Patients

    PubMed Central

    Bladowska, Joanna; Knysz, Brygida; Zimny, Anna; Małyszczak, Krzysztof; Kołtowska, Anna; Szewczyk, Paweł; Gąsiorowski, Jacek; Furdal, Michał; Sąsiadek, Marek J.

    2014-01-01

    Background and Purpose Asymptomatic central nervous system (CNS) involvement occurs in the early stage of the human immunodeficiency virus (HIV) infection. It has been documented that the hepatitis C virus (HCV) can replicate in the CNS. The aim of the study was to evaluate early disturbances in cerebral microcirculation using magnetic resonance (MR) perfusion-weighted imaging (PWI) in asymptomatic HIV-1-positive and HCV-positive patients, as well as to assess the correlation between PWI measurements and the clinical data. Materials and Methods Fifty-six patients: 17 HIV-1-positive non-treated, 18 HIV-1-positive treated with combination antiretroviral therapy (cART), 7 HIV-1/HCV-positive non-treated, 14 HCV-positive before antiviral therapy and 18 control subjects were enrolled in the study. PWI was performed with a 1.5T MR unit using dynamic susceptibility contrast (DSC) method. Cerebral blood volume (CBV) measurements relative to cerebellum (rCBV) were evaluated in the posterior cingulated region (PCG), basal ganglia (BG), temporoparietal (TPC) and frontal cortices (FC), as well as in white matter of frontoparietal areas. Correlations of rCBV values with immunologic data and liver histology activity index (HAI) were analyzed. Results Significantly lower rCBV values were found in the right TPC and left FC as well as in PCG in HIV-1-positive naïve (p = 0.009; p = 0.020; p = 0.012), HIV-1 cART treated (p = 0.007; p = 0.009; p = 0.033), HIV-1/HCV-positive (p = 0.007; p = 0.027; p = 0.045) and HCV-positive patients (p = 0.010; p = 0.005; p = 0.045) compared to controls. HIV-1-positive cART treated and HIV-1/HCV-positive patients demonstrated lower rCBV values in the right FC (p = 0.009; p = 0.032, respectively) and the left TPC (p = 0.036; p = 0.005, respectively), while HCV-positive subjects revealed lower rCBV values in the left TPC region (p = 0.003). We found significantly elevated rCBV values in

  18. Microdialysis Assessment of Cerebral Perfusion during Cardiac Arrest, Extracorporeal Life Support and Cardiopulmonary Resuscitation in Rats – A Pilot Trial

    PubMed Central

    Schober, Andreas; Warenits, Alexandra M.; Testori, Christoph; Weihs, Wolfgang; Hosmann, Arthur; Högler, Sandra; Sterz, Fritz; Janata, Andreas; Scherer, Thomas; Magnet, Ingrid A. M.; Ettl, Florian; Laggner, Anton N.; Herkner, Harald; Zeitlinger, Markus

    2016-01-01

    Cerebral metabolic alterations during cardiac arrest, cardiopulmonary resuscitation (CPR) and extracorporeal cardiopulmonary life support (ECLS) are poorly explored. Markers are needed for a more personalized resuscitation and post—resuscitation care. Aim of this study was to investigate early metabolic changes in the hippocampal CA1 region during ventricular fibrillation cardiac arrest (VF-CA) and ECLS versus conventional CPR. Male Sprague-Dawley rats (350g) underwent 8min untreated VF-CA followed by ECLS (n = 8; bloodflow 100ml/kg), mechanical CPR (n = 18; 200/min) until return of spontaneous circulation (ROSC). Shams (n = 2) were included. Glucose, glutamate and lactate/pyruvate ratio were compared between treatment groups and animals with and without ROSC. Ten animals (39%) achieved ROSC (ECLS 5/8 vs. CPR 5/18; OR 4,3;CI:0.7–25;p = 0.189). During VF-CA central nervous glucose decreased (0.32±0.1mmol/l to 0.04±0.01mmol/l; p<0.001) and showed a significant rise (0.53±0.1;p<0.001) after resuscitation. Lactate/pyruvate (L/P) ratio showed a 5fold increase (31 to 164; p<0.001; maximum 8min post ROSC). Glutamate showed a 3.5-fold increase to (2.06±1.5 to 7.12±5.1μmol/L; p<0.001) after CA. All parameters normalized after ROSC with no significant differences between ECLS and CPR. Metabolic changes during ischemia and resuscitation can be displayed by cerebral microdialysis in our VF-CA CPR and ECLS rat model. We found similar microdialysate concentrations and patterns of normalization in both resuscitation methods used. Institutional Protocol Number: GZ0064.11/3b/2011 PMID:27175905

  19. Age-related increase in cross-sensory noise in resting and steady-state cerebral perfusion

    PubMed Central

    Hugenschmidt, Christina E.; Mozolic, Jennifer L.; Tan, Huan; Kraft, Robert A.; Laurienti, Paul J.

    2010-01-01

    Behavioral research indicates that healthy aging is accompanied by maintenance of voluntary attentional function in many situations, suggesting older adults are able to use attention to enhance and suppress neural activity. However, other experiments show increased distractibility with age, suggesting a failure of attention. One hypothesis for these apparently conflicting findings is that older adults experience a greater sensory processing load at baseline compared to younger adults. In this situation, older adults might successfully modulate sensory cortical activity relative to a baseline referent condition, but the increased baseline load results in more activity than younger adults after attentional modulation. This hypothesis was tested by comparing average functional brain activity in auditory cortex using quantitative perfusion imaging during resting state and steady-state visual conditions. It was observed that older adults demonstrated greater processing of task-irrelevant auditory background noise than younger adults in both conditions. As expected, auditory activity was attenuated relative to rest during a visually engaging task for both older and younger participants. However, older adults continued to show greater auditory processing than their younger counterparts even after this task modulation. Furthermore, auditory activity during the visual task was predictive of cross-sensory distraction on a behavioral task in older adults. Together, these findings suggest that older adults are more distractible than younger, and the cause of this increased distractibility may lie in baseline brain functioning. PMID:19415481

  20. Tumor volume, luxury perfusion, and regional blood volume changes in man visualized by subtraction computerized tomography.

    PubMed

    Penn, R D; Walser, R; Kurtz, D; Ackerman, L

    1976-04-01

    Computer and photographic methods for producing subtractions of computerized axial tomographic (CAT) scans have been developed. By subtracting point for point a normal scan from one taken after intravenous infusion of contrast material, a picture of the contrast in the cerebral vessels is created. By this method, tumor size and degree of vascularity may be assessed. Furthermore, abnormalities in perfusion and changes in blood volume due to mass effects and edema may be detected. Subtracting scans should add to the diagnostic potential of CAT and provide a noninvasive way to study vascular changes in cerebral disease.

  1. Sequential thallium-201 myocardial perfusion studies after successful percutaneous transluminal coronary artery angioplasty: delayed resolution of exercise-induced scintigraphic abnormalities

    SciTech Connect

    Manyari, D.E.; Knudtson, M.; Kloiber, R.; Roth, D.

    1988-01-01

    To characterize the sequential changes of myocardial perfusion scintigraphy in patients with coronary artery disease (CAD) after complete revascularization, 43 patients underwent exercise thallium-201 (/sup 201/Tl) myocardial perfusion scintigraphy before and at 9 +/- 5 days, 3.3 +/- 0.6, and 6.8 +/- 1.2 months after percutaneous transluminal coronary angioplasty (PTCA). Only patients with single-vessel CAD, without previous myocardial infarction, and without evidence of restenosis at 6 to 9 months after PTCA were included. Perfusion scans were analyzed blindly with the use of a new quantitative method to define regional myocardial perfusion in the topographic distribution of each coronary artery, which was shown to be reproducible (r = .94 or higher and SEE of 7% or less, between repeated measures by one and two operators). At 4 to 18 days after PTCA, the mean treadmill walking time increased by 123 +/- 42 sec, mean exercise-induced ST segment depression decreased by 0.6 +/- 0.3 mm, group maximal heart rate increased by 20 +/- 9 beats/min, and group systolic blood pressure at peak exercise increased by 24 +/- 10 mm Hg, compared with pre-PTCA values (p less than .001). However, no group differences were noted in these variables between the three post-PTCA stages. Myocardial perfusion in the distribution of the affected (dilated) coronary artery, on the other hand, improved progressively. In the 45 degree left anterior oblique view for instance, myocardial perfusion increased at 9 days after PTCA (from 68 +/- 24% before PTCA to 91 +/- 9%, p less than .001) and at 3.3 months after PTCA (101 +/- 8%, p less than .05 vs 9 days after PTCA), but no further significant changes were seen at 6.8 months after PTCA (102 +/- 8%). Similar changes were noted in the other two views. No relationship between minor complications during PTCA and delayed improvement on the /sup 201/Tl was observed.

  2. Abnormalities of CSF flow patterns in the cerebral aqueduct in treatment-resistant late-life depression: a potential biomarker of microvascular angiopathy.

    PubMed

    Naish, Josephine H; Baldwin, Robert C; Patankar, Tufail; Jeffries, Suzanne; Burns, Alistair S; Taylor, Christopher J; Waterton, John C; Jackson, Alan

    2006-09-01

    There is growing evidence that microvascular angiopathy (MVA) plays an important role in the development of dementia and affective disorders in older people. At currently available image resolutions it is not possible to image directly the vascular changes associated with MVA, but the effects on blood and cerebrospinal fluid (CSF) flow may be detectable. The aim of this study was to investigate a potential biomarker for MVA based on MRI of abnormalities in CSF flow. Since there is considerable indirect evidence that treatment resistance in late-onset depressive disorder is related to MVA, we assessed the method in a group of 22 normal volunteers and 29 patients with responsive (N=21) or treatment-resistant (N=8) late-onset depressive disorder. Single-slice quantified phase-contrast (PC) images of cerebral blood and CSF flow were collected at 15 points over a cardiac cycle, and the resulting flow curves were parameterized. Significant differences in the CSF flow (width of systolic flow peak and diastolic flow volume, both P<0.01) through the cerebral aqueduct were observed for the group of treatment-resistant patients when compared to age matched controls. No significant difference was observed for a group of 21 patients with treatment-responsive depression. The findings support the hypothesis that MR measurement of CSF flow abnormalities provides a biomarker of MVA, and thus could have application in a wide range of age-related diseases.

  3. Luxury perfusion phenomenon in acute herpes simplex virus encephalitis.

    PubMed

    Tanaka, M; Uesugi, M; Igeta, Y; Kondo, S; Sun, X; Hirai, S

    1995-02-01

    In a patient with acute herpes simplex virus (HSV) encephalitis, positron emission tomography (PET) demonstrated increased cerebral blood flow in the affected temporal lobe accompanied by reduction in the cerebral oxygen extraction fraction and the cerebral metabolic rate of oxygen, i.e., luxury perfusion. Follow-up PET studies showed reduction in cerebral perfusion until it was more closely coupled with oxygen metabolism after the resolution of the acute inflammation. These findings support previous single photon emission computed tomographic data and provide a pathophysiological background for the occurrence of hyperperfusion in HSV encephalitis. This is an interesting example of the luxury perfusion phenomenon occurring in a disease other than cerebral ischemia.

  4. Biphasic thallium 201 SPECT-imaging for the noninvasive diagnosis of myocardial perfusion abnormalities in a child with Kawasaki disease--a case report

    SciTech Connect

    Hausdorf, G.; Nienaber, C.A.; Spielman, R.P.

    1988-02-01

    The mucocutaneous lymph node syndrome (Kawasaki disease) is of increasing importance for the pediatric cardiologist, for coronary aneurysms with the potential of thrombosis and subsequent stenosis can develop in the course of the disease. The authors report a 2 1/2-year-old female child in whom, fourteen months after the acute phase of Kawasaki disease, myocardial infarction occurred. Biphasic thallium 201 SPECT-imaging using dipyridamole depicted anterior wall ischemia and inferolateral infarction. This case demonstrates that noninvasive vasodilation-redistribution thallium 201 SPECT-imaging has the potential to predict reversible myocardial perfusion defects and myocardial necrosis, even in small infants with Kawasaki disease.

  5. Anti-Aβ Autoantibodies in Amyloid Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer’s Disease and Cerebral Amyloid Angiopathy

    PubMed Central

    DiFrancesco, Jacopo C.; Longoni, Martina; Piazza, Fabrizio

    2015-01-01

    Amyloid-related imaging abnormalities (ARIA) represent the major severe side effect of amyloid-beta (Aβ) immunotherapy for Alzheimer’s disease (AD). Early biomarkers of ARIA represent an important challenge to ensure safe and beneficial effects of immunotherapies, given that different promising clinical trials in prodromal and subjects at risk for AD are underway. The recent demonstration that cerebrospinal fluid (CSF) anti-Aβ autoantibodies play a key role in the development of the ARIA-like events characterizing cerebral amyloid angiopathy-related inflammation generated great interest in the field of immunotherapy. Herein, we critically review the growing body of evidence supporting the monitoring of CSF anti-Aβ autoantibody as a promising candidate biomarker for ARIA in clinical trials. PMID:26441825

  6. Differential diagnosis of regional cerebral hyperfixation of TC-99m HMPAO on SPECT imaging

    SciTech Connect

    Shirazi, P.; Konopka, L.; Crayton, J.W.

    1994-05-01

    Accurate diagnostic evaluation of patients with neurologic and neuropsychiatric disease is important because early treatment may halt disease progression and prevent impairment or disability. Cerebral hyperfixation of HMPAO has been ascribed to luxury perfusion following ischemic infarction. The present study sought to identify other conditions that also display radiotracer hyperfixation in order to develop a differential diagnosis of this finding on SPECT imaging. Two hundred fifty (n=250) successive cerebral SPECT images were reviewed for evidence of HMPAO hyperfixation. Hyperfixation was defined as enhanced focal perfusion surrounded by a zone of diminished or normal cerebral perfusion. All patients were scanned after intravenous injection of 25 mCi Tc-99m HMPAO. Volume-rendered and oblique images were obtained with a Trionix triple-head SPECT system using ultra high resolution fan beam collimators. Thirteen (13/250; 5%) of the patients exhibited regions of HMPAO hyperfixation. CT or MRI abnormalities were detected in 6/13 cases. Clinical diagnoses in these patients included intractable psychosis, post-traumatic stress disorder, alcohol and narcotic dependence, major depression, acute closed-head trauma, hypothyroidism, as well as subacute ischemic infarction. A wide variety of conditions may be associated with cerebral hyperfixation of HMPAO. These conditions include neurologic and psychiatric diagnoses, and extend the consideration of hyperfixation beyond ischemic infarction. Consequently, a differential diagnosis of HMPAO hyperfixation may be broader than originally considered, and this may suggest a fundamental role for local cerebral hyperperfusion. Elucidation of the fundamental mechanism(s) for cerebral hyperperfusion requires further investigation.

  7. In Acute Stroke, Can CT Perfusion-Derived Cerebral Blood Volume Maps Substitute for Diffusion-Weighted Imaging in Identifying the Ischemic Core?

    PubMed Central

    Copen, William A.; Morais, Livia T.; Wu, Ona; Schwamm, Lee H.; Schaefer, Pamela W.; González, R. Gilberto; Yoo, Albert J.

    2015-01-01

    Background and Purpose In the treatment of patients with suspected acute ischemic stroke, increasing evidence suggests the importance of measuring the volume of the irreversibly injured “ischemic core.” The gold standard method for doing this in the clinical setting is diffusion-weighted magnetic resonance imaging (DWI), but many authors suggest that maps of regional cerebral blood volume (CBV) derived from computed tomography perfusion imaging (CTP) can substitute for DWI. We sought to determine whether DWI and CTP-derived CBV maps are equivalent in measuring core volume. Methods 58 patients with suspected stroke underwent CTP and DWI within 6 hours of symptom onset. We measured low-CBV lesion volumes using three methods: “objective absolute,” i.e. the volume of tissue with CBV below each of six published absolute thresholds (0.9–2.5 mL/100 g), “objective relative,” whose six thresholds (51%-60%) were fractions of mean contralateral CBV, and “subjective,” in which two radiologists (R1, R2) outlined lesions subjectively. We assessed the sensitivity and specificity of each method, threshold, and radiologist in detecting infarction, and the degree to which each over- or underestimated the DWI core volume. Additionally, in the subset of 32 patients for whom follow-up CT or MRI was available, we measured the proportion of CBV- or DWI-defined core lesions that exceeded the follow-up infarct volume, and the maximum amount by which this occurred. Results DWI was positive in 72% (42/58) of patients. CBV maps’ sensitivity/specificity in identifying DWI-positive patients were 100%/0% for both objective methods with all thresholds, 43%/94% for R1, and 83%/44% for R2. Mean core overestimation was 156–699 mL for objective absolute thresholds, and 127–200 mL for objective relative thresholds. For R1 and R2, respectively, mean±SD subjective overestimation were -11±26 mL and -11±23 mL, but subjective volumes differed from DWI volumes by up to 117 and 124

  8. Thallium-201 myocardial perfusion imaging in myocarditis

    SciTech Connect

    Tamaki, N.; Yonekura, Y.; Kadota, K.; Kambara, H.; Torizuka, K.

    1985-08-01

    TI-201 myocardial perfusion imaging was performed in six patients with clinically documented myocarditis. Each case manifested electrocardiographic abnormalities with elevation of serum cardiac enzymes and no significant stenosis of the coronary arteries observed on angiogram. Resting TI-201 images were visually assessed by three observers. Focal perfusion defects were observed in three cases (50%), among which two showed multiple perfusion defects. Emission computed tomography using TI-201 clearly delineated multifocal lesions in the first case. On the other hand, no significant perfusion defects were noted in the remaining three cases. Thus, myocarditis should be considered as one of the disease entities that may produce perfusion defects on TI-201 myocardial imaging.

  9. Objective 3D surface evaluation of intracranial electrophysiologic correlates of cerebral glucose metabolic abnormalities in children with focal epilepsy.

    PubMed

    Jeong, Jeong-Won; Asano, Eishi; Kumar Pilli, Vinod; Nakai, Yasuo; Chugani, Harry T; Juhász, Csaba

    2017-03-21

    To determine the spatial relationship between 2-deoxy-2[(18) F]fluoro-D-glucose (FDG) metabolic and intracranial electrophysiological abnormalities in children undergoing two-stage epilepsy surgery, statistical parametric mapping (SPM) was used to correlate hypo- and hypermetabolic cortical regions with ictal and interictal electrocorticography (ECoG) changes mapped onto the brain surface. Preoperative FDG-PET scans of 37 children with intractable epilepsy (31 with non-localizing MRI) were compared with age-matched pseudo-normal pediatric control PET data. Hypo-/hypermetabolic maps were transformed to 3D-MRI brain surface to compare the locations of metabolic changes with electrode coordinates of the ECoG-defined seizure onset zone (SOZ) and interictal spiking. While hypometabolic clusters showed a good agreement with the SOZ on the lobar level (sensitivity/specificity = 0.74/0.64), detailed surface-distance analysis demonstrated that large portions of ECoG-defined SOZ and interictal spiking area were located at least 3 cm beyond hypometabolic regions with the same statistical threshold (sensitivity/specificity = 0.18-0.25/0.94-0.90 for overlap 3-cm distance); for a lower threshold, sensitivity for SOZ at 3 cm increased to 0.39 with a modest compromise of specificity. Performance of FDG-PET SPM was slightly better in children with smaller as compared with widespread SOZ. The results demonstrate that SPM utilizing age-matched pseudocontrols can reliably detect the lobe of seizure onset. However, the spatial mismatch between metabolic and EEG epileptiform abnormalities indicates that a more complete SOZ detection could be achieved by extending intracranial electrode coverage at least 3 cm beyond the metabolic abnormality. Considering that the extent of feasible electrode coverage is limited, localization information from other modalities is particularly important to optimize grid coverage in cases of large hypometabolic cortex. Hum Brain Mapp, 2017. © 2017

  10. Regional cerebral abnormalities measured by frequency-domain near-infrared spectroscopy in pediatric patients during extracorporeal membrane oxygenation.

    PubMed

    Tian, Fenghua; Jenks, Christopher; Potter, Donald; Miles, Darryl; Raman, Lakshmi

    2016-12-02

    Extracorporeal membrane oxygenation (ECMO) is a form of advanced cardio-respiratory support provided to critically ill patients with severe respiratory and/or cardiovascular failure. While children undergoing ECMO therapy have significant risk for neurological morbidity, currently there is a lack of reliable bedside tool to detect the neurologic events for patients on ECMO. This study assessed the feasibility of frequency-domain near-infrared spectroscopy (NIRS) for detection of intracranial complications during ECMO therapy. The frequency-domain NIRS device measured the absorption coefficient (µa) and reduced scattering coefficient (µs') at six cranial positions from seven pediatric patients (0-16 years) during ECMO support and five healthy controls (2-14 years). Regional abnormalities in both absorption and scattering were identified among ECMO patients. A main finding in this study is that the abnormalities in scattering appear to be associated with lower-than-normal µs' values in regional areas of the brain. Since light scattering originates from the intracellular structures (such as nuclei and mitochondria), a reduction in scattering primarily reflects loss or decreased density of the brain matter. The results from this study indicate a potential to use the frequency-domain NIRS as a safe and complementary technology for detection of intracranial complications during ECMO therapy.

  11. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    SciTech Connect

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B. )

    1990-09-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct.

  12. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways

    PubMed Central

    HOON, ALEXANDER H; STASHINKO, ELAINE E; NAGAE, LIDIA M; LIN, DORIS DM; KELLER, JENNIFER; BASTIAN, AMY; CAMPBELL, MICHELLE L; LEVEY, ERIC; MORI, SUSUMU; JOHNSTON, MICHAEL V

    2010-01-01

    AIM Cerebral palsy (CP) is frequently linked to white matter injury in children born preterm. Diffusion tensor imaging (DTI) is a powerful technique providing precise identification of white matter microstructure. We investigated the relationship between DTI-observed thalamocortical (posterior thalamic radiation) injury, motor (corticospinal tract) injury, and sensorimotor function. METHOD Twenty-eight children born preterm(16 males, 12 females; mean age 5y 10mo, SD 2y 6mo, range 16mo–13y; mean gestational age at birth 28wks, SD 2.7wks, range 23–34wks) were included in this case–control study. Twenty-one children had spastic diplegia, four had spastic quadriplegia, two had hemiplegia, and one had ataxic hypotonic CP; 15 of the participants walked independently. Normative comparison data were obtained from 35 healthy age-matched children born at term(19 males, 16 females; mean age 5y 9mo, SD 4y 4mo, range 15mo–15y). Two-dimensional DTI color maps were created to evaluate 26 central white matter tracts, which were graded by a neuroradiologist masked to clinical status. Quantitative measures of touch, proprioception, strength (dynamometer), and spasticity (modified Ashworth scale) were obtained from a subset of participants. RESULTS All 28 participants with CP had periventricular white-matter injury on magnetic resonance imaging. Using DTI color maps, there was more severe injury in the posterior thalamic radiation pathways than in the descending corticospinal tracts. Posterior thalamic radiation injury correlated with reduced contralateral touch threshold, proprioception, and motor severity, whereas corticospinal tract injury did not correlate with motor or sensory outcome measures. INTERPRETATION These findings extend previous research demonstrating that CP in preterm children reflects disruption of thalamocortical connections as well as descending corticospinal pathways. PMID:19416315

  13. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  14. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  15. Computed tomography perfusion imaging in spectacular shrinking deficit.

    PubMed

    Lee, Vivien H; John, Sayona; Mohammad, Yousef; Prabhakaran, Shyam

    2012-02-01

    Spectacular shrinking deficit (SSD) is characterized by abrupt onset of a major hemispheric stroke syndrome, followed by dramatic and rapid improvement. We retrospectively identified patients with SSD diagnosed at our institution between December 1, 2007, and June 30, 2009. We reviewed computed tomography perfusion (CTP) imaging to determine perfusion defect as a measure of initial ischemic penumbra, and magnetic resonance imaging diffusion-weighted imaging (DWI) to determine the final infarct core. Among the 472 consecutive ischemic stroke patients, 126 (27%) presented with major hemispheric ischemic stroke syndrome, defined as National Institutes of Health Stroke Scale score (NIHSS) ≥8 in the territory of the middle cerebral artery (MCA) or internal carotid artery (ICA). Out of these patients, we identified 8 SSD patients with available CTP data. In these 8 patients, the mean time to dramatic recovery was 3.4 hours (range, 0.75-7 hours), and the mean time from onset to CTP was 12.7 hours (range, 3-30 hours). All 8 patients had perfusion abnormalities in portions of the MCA territory (partial MCA territory in 5 patients and complete MCA territory in 3 patients). The mean time from onset to MRI DWI was 15.5 hours (range, 7.9-34 hours). Restricted diffusion was present in all patients in the corresponding MCA distribution. Vascular imaging revealed MCA occlusion in 2 patients. Cervical vascular imaging revealed carotid occlusion in 2 patients and high-grade carotid stenosis in 2 patients. The stroke mechanisms were cardioembolism in 2 patients, large artery in 4 patients, and unknown in 2 patients. Four patients had repeat CTP imaging available that demonstrated eventual resolution of the perfusion defect. SSD is associated with a "shrinking" clinical syndrome and a "shrinking" perfusion pattern on CTP that lags behind clinical recovery. CTP imaging corroborates that a larger territory is at risk in SSD and contributes to better understanding of SSD.

  16. Three-region perfusion strategy for aortic arch reconstruction in the Norwood.

    PubMed

    Karavas, Alexandros N; Deschner, Benjamin W; Scott, John W; Mettler, Bret A; Bichell, David P

    2011-09-01

    We describe a new method of selective regional perfusion during arch reconstruction in the Norwood procedure. The strategy involves direct sequential perfusion of the coronary and splanchnic circulations coupled with continuous cerebral perfusion, while repairing the arch in a distal to proximal fashion. This technique provides the potential for decreased coronary and splanchnic ischemic times, which in combination with continuous selective cerebral perfusion may further allow for warmer operating temperatures and decreased overall bypass times.

  17. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    PubMed Central

    Durazzo, Timothy C.; Meyerhoff, Dieter J.; Murray, Donna E.

    2015-01-01

    Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain. PMID:26193290

  18. Intraoperative Perfusion Computed Tomography in Carotid Endarterectomy: Initial Experience in 16 Cases

    PubMed Central

    Xue, Zhe; Peng, Dingwei; Sun, Zhenghui; Wu, Chen; Xu, Bainan; Wang, Fuyu; Zhou, Dingbiao; Dong, Tianxiang

    2016-01-01

    Background This study aimed to evaluate the changes in perfusion computed tomography (PCT) parameters in carotid endarterectomy (CEA), and to discuss the use of intraoperative PCT in CEA. Material/Methods Sixteen patients with carotid stenosis who also underwent CEA with intraoperative CT were recruited in this study. We calculated quantitative data on cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), and the relative parameter values, including relative CBF (rCBF), relative CBV (rCBV), and relative TTP (rTTP). The role of PCT was assessed and compared to conventional monitoring methods. Results There were no significant differences in any of the parameters in the anterior cerebral artery (ACA) territory (P>0.05). In the middle cerebral artery (MCA) territory, the CBF and CBV increased and TTP decreased in the operated side during CEA; the rCBF and rCBV increased and the rTTP decreased significantly (P<0.05). In 16 patients, CT parameters were improved, SSEP was normal, and MDU was abnormal. In 3 patients, CBF increased by more than 70% during CEA. Relative PCT parameters are sensitive indicators for detecting early cerebral hemodynamic changes during CEA. Cerebral hemodynamics changed significantly in the MCA territory during CEA. Conclusions Intraoperative PCT could be an important adjuvant monitoring method in CEA. PMID:27657307

  19. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  20. [Compromized myocardial perfusion in arrhythmias (author's transl)].

    PubMed

    Simon, H; Neumann, G; Felix, R; Hedde, H; Schaede, A; Thurn, P; Winkler, C

    1977-09-15

    In 7 patients with arrhythmias of various origin the myocardial scintigram displayed either a diffuse or circumscript defect of the perfusion. The coronary arteriogram was normal in all patients. The localized defect of the perfusion in 2 patients was in the region of the upper part of the interventricular septum. Both had a left bundle brunch block. A correlation between the perfusion defect and the electrophysiological abnormality seems probable. The perfusion defect in one of the patients is most probably caused by a previous myocarditis followed by fibrous changes. In the other 6 patients the cause for the perfusion defect is not obvious. A history of myocarditis is missing. The presence of "small vessel disease" in those patients has however to be considered. Our results point to the relation between an abnormality of the microcirculation and arrhythmias in younger patients.

  1. Early Support of Intracranial Perfusion

    DTIC Science & Technology

    2013-10-01

    automated real-time vital signs monitoring data” was funded by USAF (MSA); UM PI: Deborah Stein  The project, titled “Noninvasive intracranial pressure ...scoring of cerebral perfusion pressure and intracranial pressure provides a Brain Trauma Index that predicts outcome in patients with severe TBI... intracranial pressure dose index: Dynamic 3-D scoring in the assessment of Traumatic Brain Injury Proceedings of American Association for the Surgery of

  2. [Intermittent focal cerebral ischemia in hypotension due to pacemaker syndrome].

    PubMed

    Hagendorff, A; Pizzulli, L; Dettmers, C; Block, A; Omran, H; Hartmann, A; Manz, M; Lüderitz, B

    1994-12-01

    A pacemaker syndrome manifested as transient sensoric aphasia in a 68-year-old woman with a VVI-pace-maker implanted after SA-block. The attack occurred during long-term blood pressure recording and Holter monitoring. Borderline hypotension was documented during ventricular pacing which induced a retrograde excitation of the atrium. Clinical investigations excluded any intracranial abnormality, any source of embolism or stenosis of extra- and intracranial cerebral arteries. Cerebral blood flow measurements revealed a significant increase during pacing at elevated heart rate. Therefore, a device for AV-sequential pacing was implanted and basic pacing rate was elevated. The present case report indicates that focal and not only global cerebral ischemia can be produced by an impairment of systemic hemodynamics due to hypotension and a pacemaker syndrome. Improvement of cerebral blood flow during pacing is an unexpected finding contrasting with the concept of autoregulation. In addition, pacemaker implantation should be discussed in patients with transient cerebral perfusion deficits if an improvement of cerebral blood flow is documented along with rising heart rate.

  3. Regulation of cerebral autoregulation by carbon dioxide.

    PubMed

    Meng, Lingzhong; Gelb, Adrian W

    2015-01-01

    Cerebral autoregulation describes a mechanism that maintains cerebral blood flow stable despite fluctuating perfusion pressure. Multiple nonperfusion pressure processes also regulate cerebral perfusion. These mechanisms are integrated. The effect of the interplay between carbon dioxide and perfusion pressure on cerebral circulation has not been specifically reviewed. On the basis of the published data and speculation on the aspects that are without supportive data, the authors offer a conceptualization delineating the regulation of cerebral autoregulation by carbon dioxide. The authors conclude that hypercapnia causes the plateau to progressively ascend, a rightward shift of the lower limit, and a leftward shift of the upper limit. Conversely, hypocapnia results in the plateau shifting to lower cerebral blood flows, unremarkable change of the lower limit, and unclear change of the upper limit. It is emphasized that a sound understanding of both the limitations and the dynamic and integrated nature of cerebral autoregulation fosters a safer clinical practice.

  4. Clinical Use of CT Perfusion For Diagnosis and Prediction of Lesion Growth in Acute Ischemic Stroke

    PubMed Central

    Huisa, Branko N; Neil, William P; Schrader, Ronald; Maya, Marcel; Pereira, Benedict; Bruce, Nhu T; Lyden, Patrick D

    2012-01-01

    Background and Purpose CT perfusion (CTP) mapping in research centers correlates well with diffusion weighted imaging (DWI) lesions and may accurately differentiate the infarct core from ischemic penumbra. The value of CTP in real-world clinical practice has not been fully established. We investigated the yield of CTP– derived cerebral blood volume (CBV) and mean transient time (MTT) for the detection of cerebral ischemia and ischemic penumbra in a sample of acute ischemic stroke (AIS) patients. Methods We studied 165 patients with initial clinical symptoms suggestive of AIS. All patients had an initial non-contrast head CT, CT Perfusion (CTP), CT angiogram (CTA) and follow up brain MRI. The obtained perfusion images were used for image processing. CBV, MTT and DWI lesion volumes were visually estimated and manually traced. Statistical analysis was done using R-2.14.and SAS 9.1. Results All normal DWI sequences had normal CBV and MTT studies (N=89). Seventy-three patients had acute DWI lesions. CBV was abnormal in 23.3% and MTT was abnormal in 42.5% of these patients. There was a high specificity (91.8%)but poor sensitivity (40.0%) for MTT maps predicting positive DWI. Spearman correlation was significant between MTT and DWI lesions (ρ=0.66, p>0.0001) only for abnormal MTT and DWI lesions>0cc. CBV lesions did not correlate with final DWI. Conclusions In real-world use, acute imaging with CTP did not predict stroke or DWI lesions with sufficient accuracy. Our findings argue against the use of CTP for screening AIS patients until real-world implementations match the accuracy reported from specialized research centers. PMID:23253533

  5. The age-dependent effects of a single-dose methylphenidate challenge on cerebral perfusion in patients with attention-deficit/hyperactivity disorder.

    PubMed

    Schrantee, A; Mutsaerts, Hjmm; Bouziane, C; Tamminga, Hgh; Bottelier, M A; Reneman, L

    2017-01-01

    Methylphenidate (MPH) is a stimulant drug and an effective treatment for attention-deficit/hyperactivity disorder (ADHD) in both children and adults. Pre-clinical studies suggest that the response to stimulants is dependent on age, which may reflect the ontogeny of the dopamine (DA) system, which continues to develop throughout childhood and adolescence. Therefore, the aim of this study was to investigate the modulating effect of age on the cerebral blood flow (CBF) response to MPH in stimulant treatment-naive children and adults with ADHD. Ninety-eight stimulant treatment-naive male pediatric (10-12 years) and adult (23-40 years) patients with ADHD were included in this study. The CBF response to an acute challenge with MPH (0.5 mg/kg) was measured using arterial spin labeling (ASL) pharmacological magnetic resonance imaging, as a proxy for DA function. Region-of-interest (ROI) analyses were carried out for the striatum, thalamus and medial prefrontal cortex and in addition voxel-wise analyses were conducted. An acute challenge with MPH decreased CBF in both children and adults in cortical areas, although to a greater extent in adults. In contrast, ROI analyses showed that MPH decreased thalamic CBF only in children, but not adults. Our findings highlight the importance of taking the developmental perspective into account when studying the effects of stimulants in ADHD patients.

  6. Regional cerebral oxygen saturation guided cerebral protection in a parturient with Takayasu's arteritis undergoing cesarean section: a case report.

    PubMed

    Xiao, Wei; Wang, Tianlong; Fu, Wenya; Wang, Fengying; Zhao, Lei

    2016-09-01

    The objective of this case report is to present the successful use of regional cerebral oxygen saturation (rScO2) monitoring guided cerebral protection for cesarean delivery in a parturient with Takayasu's arteritis at 38weeks' gestation. The parturient presented with impaired cerebral and renal perfusion. Titrated epidural anesthesia was performed. During the procedure, we used rScO2 guided cerebral protection strategies, which helped to optimize cerebral oxygen delivery and prevent cerebral complications.

  7. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.

    PubMed

    Henriksen, L

    1986-06-01

    CBF and related parameters were studied in 68 patients before, during, and following cardiopulmonary bypass. CBF was measured using the intraarterial 133Xe injection method. The extracorporeal circuit was nonpulsatile with a bubble oxygenator administering 3-5% CO2 in the main group of hypercapnic patients (n = 59) and no CO2 in a second group of hypocapnic patients. In the hypercapnic patients, marked changes in CBF occurred during bypass. Evidence was found of a brain luxury perfusion that could not be related to the effect of CO2 per se. Mean CBF was 29 ml/100 g/min just before bypass, 49 ml/100 g/min at steady-state hypothermia (27 degrees C), reached a maximum of 73 ml/100 g/min during the rewarming phase (32 degrees C), fell to 56 ml/100 g/min at steady-state normothermic bypass (37 degrees C), and was 48 ml/100 g/min shortly after bypass was stopped. Addition of CO2 evoked systemic vasodilation with low blood pressure and a rebound hyperemia. The hypocapnic group responded more physiologically to the induced changes in hematocrit (Htc) and temperature, CBF being 25, 23, 25, 34, and 35 ml/100 g/min, respectively, during the five corresponding periods. Carbon dioxide was an important regulator of CBF during all phases of cardiac surgery, the responsiveness of CBF being approximately 4% for each 1-mm Hg change of PaCO2. The level of MABP was important for the CO2 response. At low blood pressure states, the CBF responsiveness to changes in PaCO2 was almost abolished. An optimal level of PaCO2 during hypothermic bypass of approximately 25 mm Hg (at actual temperature) is recommended. A normal autoregulatory response of CBF to changes in blood pressure was found during and following bypass. The lower limit of autoregulation was at pressure levels of approximately 50-60 mm Hg. CBF autoregulation was almost abolished at PaCO2 levels of greater than 50 mm Hg. The degree of hemodilution neither affected the CO2 response nor impaired CBF autoregulation, although, as

  8. Acute cerebral vascular accident associated with hyperperfusion.

    PubMed

    Soin, J S; Burdine, J A

    1976-01-01

    Cerebral radionuclide angiography can demonstrate decreased or normal radioactivity in the affected region during the arterial phase in patients who have sustained a cerebral vascular accident and thus enhances the diagnostic specificity of the static brain image. In an occasional patient, however, a seemingly paradoxical pattern of regional hyperperfusion with a return to normal or subnormal perfusion following the acute phase has been observed. This phenomenon, called "luxury perfusion," has been defined using intra-arterial 133Xe for semiquantitative cerebral blood flow measurements and should be kept in mind as a potentially misleading cerebral imaging pattern.

  9. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  10. Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury.

    PubMed Central

    Kirkpatrick, P J; Smielewski, P; Czosnyka, M; Pickard, J D

    1994-01-01

    A method for monitoring cortical perfusion by laser Doppler flowmetry (LDF) in the neurointensive care unit is described. Out of 22 patients with head injuries, reliable and long term recordings were obtained in 16. Laser Doppler flowmetry registered changes in cortical microcirculatory flow in response to spontaneous waves of raised intracranial pressure, and to therapeutic manoeuvres that altered the cerebral perfusion pressure. Comparisons of variations in flux signal with cerebral perfusion pressure provided an indication of the autoregulatory state of the cortical microcirculation, and analysis of raw LDF data demonstrated an autoregulatory breakpoint of cerebral perfusion pressure of 58 mm Hg, below which cortical perfusion failed. Although middle cerebral artery flow velocities were generally tightly coupled with LDF signal changes, episodes of uncoupling were seen. The potential uses and limitations of LDF in the neurointensive care setting are discussed. Images PMID:7964816

  11. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging.

    PubMed

    Jiang, Chun-Juan; Wang, Zhong-Juan; Zhao, Yan-Jun; Zhang, Zhui-Yang; Tao, Jing-Jing; Ma, Jian-Yong

    2016-09-01

    Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  12. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging

    PubMed Central

    Jiang, Chun-juan; Wang, Zhong-juan; Zhao, Yan-jun; Zhang, Zhui-yang; Tao, Jing-jing; Ma, Jian-yong

    2016-01-01

    Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury. PMID:27857749

  13. Postoperative luxury perfusion syndrome in patients with severe subarachnoid hemorrhage treated by early aneurysmal clipping.

    PubMed

    Ohta, H

    1990-01-01

    Cerebral blood flow (CBF) was measured in 90 patients who underwent early aneurysmal clipping after subarachnoid hemorrhage (SAH). Measurements were made by a noninvasive, two-dimensional method involving intravenous injection of 133Xe. Patients of Hunt and Hess grades I and II exhibited normal to slightly subnormal CBF, without significant changes, during the study period. Grades III-V patients had almost normal CBF in the early postoperative period, but their CBF gradually decreased, becoming significantly low after day 31. It is noteworthy that in grades IV and V patients, CBF was abnormally high in the acute stage, relative to their poor neurological condition; these patients were considered to have the "global luxury perfusion syndrome." The syndrome was not uncommon in patients with severe SAH. Possible causative or contributory factors are attempts to surgically reduce intracranial pressure, which leads to increased cerebral perfusion pressure, and concomitant global dysautoregulation. In patients with this syndrome, maneuvers intended to increase CBF should be avoided, as they may aggravate brain swelling or cause hemorrhagic events. Positron emission tomographic studies will provide more accurate and useful information concerning the management of SAH patients.

  14. Stroke prognosis by applying double thresholds on CT-perfusion-brain images

    NASA Astrophysics Data System (ADS)

    Chokchaitam, Somchart; Santipromwong, Nittaya; Muengtaweepongsa, Sombat

    2013-03-01

    The CT-perfusion image shows information of brain abnormalities such as its size and location. Generally, neurologist diagnoses stroke disease using CT-perfusion images such as Cerebral blood flow (CBF), cerebral blood volume (CBV). In our previous report, we applied threshold technique to divide amount of CBV and CBF into low and high level. Then, their levels are applied to identify normal tissue areas, dead tissue areas (infract core) and blood-cot tissue areas (infract penumbra). However, it's not totally correct, if the same threshold is applied to the whole area (it must depend on size of blood vessel in that area. In this report, we propose double thresholds to divided CBV and CBF into 3 levels: very low, medium and very high levels. Very low and very high levels are definitely implied to bad areas and good areas, respectively. The proposed double thresholds makes stroke prognosis more accurate. The simulation results confirm that our proposed results closed to results defined from neurologist comparing to the conventional results.

  15. Walking abnormalities

    MedlinePlus

    ... or head trauma Brain tumor Cerebrovascular accident (stroke) Cerebral palsy Cervical spondylosis with myelopathy (a problem with the ... 22. Read More Arthritis Bunions Central nervous system Cerebral palsy Dizziness Ingrown toenail Multiple sclerosis Muscular dystrophy Myositis ...

  16. Autonomic control of cerebral circulation: exercise.

    PubMed

    Ogoh, Shigehiko

    2008-12-01

    On the basis of measurement techniques that require steady-state hemodynamic conditions when the measurement of cerebral blood flow (CBF) is being obtained, cerebral autoregulation (CA) maintains CBF stable over a wide range of cerebral perfusion pressures. When an acute (or dynamic) change in cerebral perfusion pressure (seconds) is imposed, CBF is not maintained. For example, after thigh cuff occlusion, its release induces an acute drop in arterial blood pressure (ABP). The sharp decrease in CBF indicates that CA was unable to respond to the dynamic (or rapid) changes in cerebral perfusion pressure. Therefore, control mechanisms of arterial pressure with short time constants must contribute importantly to CBF regulation. In order for CA to be effective, the cerebral perfusion pressure must lie within an autoregulatory range of perfusion pressures. The traditional thinking is that changes in sympathetic tone have a limited effect on CBF at rest. However, moderate- to heavy-intensity exercise causes only moderate increases in CBF despite large increases in sympathetic activity and ABP. Animal studies demonstrate that increases in sympathetic nerve activity cause cerebral vasoconstriction and protection against disruption of the blood-brain barrier. These findings suggest that the regulation of CBF during exercise is modulated not only by CA but also by autonomic nervous system and the arterial baroreflex-mediated control of the systemic circulation.

  17. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  18. Signal changes on magnetic resonance perfusion images with arterial spin labeling after carotid endarterectomy

    PubMed Central

    Shimogawa, Takafumi; Morioka, Takato; Sayama, Tetsuro; Haga, Sei; Akiyama, Tomoaki; Murao, Kei; Kanazawa, Yuka; Furuta, Yoshihiko; Sakata, Ayumi; Arakawa, Shuji

    2016-01-01

    Background: Cerebral hyperperfusion after carotid endarterectomy (CEA) is defined as an increase in ipsilateral cerebral blood flow (CBF). Practically, however, prompt and precise assessment of cerebral hyperperfusion is difficult because of limitations in the methodology of CBF measurement during the perioperative period. Arterial spin labeling (ASL) is a completely noninvasive and repeatable magnetic resonance perfusion imaging technique that uses magnetically-labelled blood water as an endogenous tracer. To clarify the usefulness of ASL in the management of cerebral hyperperfusion, we investigated signal changes by ASL with a single 1.5-s post-labeling delay on visual inspection. Methods: Thirty-two consecutive patients who underwent CEA were enrolled in this retrospective study. Results: On postoperative day 1, 22 (68.8%) and 4 (12.5%) patients exhibited increased ASL signals bilaterally (Group A) and on the operated side (Group B), respectively. Follow-up ASL showed improvement in these findings. Six (18.8%) patients showed no change (Group C). There was no apparent correlation between ASL signals on postoperative day 1 and the preoperative hemodynamic state, including the cerebrovascular reserve (P = 0.2062). Three (9.4%) patients developed cerebral hyperperfusion syndrome (two in Group A and one in Group B). Coincidence in the localization of increased ASL signals and electroencephalographic abnormalities was noted in these patients. Conclusion: Visual analysis of ASL with a single post-labeling delay overestimates CBF and cannot identify patients at risk of cerebral hyperperfusion syndrome probably because of the strong effect of the shortened arterial transit time immediately after CEA. However, ASL may be used as for screening. PMID:28144479

  19. Cerebral oximetry: a replacement for pulse oximetry?

    PubMed

    Frost, Elizabeth A M

    2012-10-01

    Cerebral oximetry has been around for some 3 decades but has had a somewhat checkered history regarding application and reliability. More recently several monitors have been approved in the United States and elsewhere and the technique is emerging as a useful tool for assessing not only adequate cerebral oxygenation but also tissue oxygenation and perfusion in other organs.

  20. Lung Perfusion Scanning in Hepatic Cirrhosis

    PubMed Central

    Stanley, N. N.; Ackrill, P.; Wood, J.

    1972-01-01

    Abnormal lung perfusion scans using radioactive particles were found in five out of six cases of hepatic cirrhosis with arterial hypoxaemia. None had clinical evidence of cardiopulmonary disease or signs of pulmonary embolism on arteriography. The scan defects are probably caused by a disorder of the pulmonary microvasculature, which may show regional variation in severity. ImagesFIG. 1FIG. 2 PMID:4645896

  1. Caffeine induced changes in cerebral circulation

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1985-09-01

    While the caffeine induced cerebral vasoconstriction is well documented, the effects of oral ingestion of the drug in a dose range comparable to the quantities in which it is usually consumed and the intensity and duration of the associated reduction in cerebral circulation are unknown. Cerebral blood flow was measured via the TTXenon inhalation technique before and thirty and ninety minutes after the oral administration of 250 mg of caffeine or a placebo, under double-blind conditions. Caffeine ingestion was found to be associated with significant reductions in cerebral perfusion thirty and ninety minutes later. The placebo group showed no differences between the three sets of cerebral blood flow values.

  2. Abnormalities of Cerebral Deep Medullary Veins on 7 Tesla MRI in Amnestic Mild Cognitive Impairment and Early Alzheimer's Disease: A Pilot Study.

    PubMed

    Bouvy, Willem H; Kuijf, Hugo J; Zwanenburg, Jaco J M; Koek, Huiberdina L; Kappelle, L Jaap; Luijten, Peter R; Ikram, M Kamran; Biessels, Geert Jan

    2017-03-06

    Cerebral small vessel disease (SVD) contributes to cognitive impairment and dementia. SVD may affect veins, but veins are difficult to detect with 1.5 and 3T MRI. We compared deep medullary veins (DMVs) visualized on 7T-MRI between patients with early Alzheimer's sisease (eAD; n = 17) or amnestic MCI (aMCI; n = 12) and controls (n = 40). The number and density of DMVs was similar in patients and controls, but tortuosity was higher in eAD (Cohen's d = 0.7, 95% CI: 0.1-1.2, p = 0.02) and aMCI (Cohen's d = 0.8, 95% CI: 0.2-1.5, p = 0.01), independent of brain atrophy. Venous changes provide a new perspective on vascular involvement in dementia.

  3. Abnormal N-Glycosylation of a Novel Missense Creatine Transporter Mutant, G561R, Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization.

    PubMed

    Uemura, Tatsuki; Ito, Shingo; Ohta, Yusuke; Tachikawa, Masanori; Wada, Takahito; Terasaki, Tetsuya; Ohtsuki, Sumio

    2017-01-01

    Cerebral creatine deficiency syndromes (CCDSs) are caused by loss-of-function mutations in creatine transporter (CRT, SLC6A8), which transports creatine at the blood-brain barrier and into neurons of the central nervous system (CNS). This results in low cerebral creatine levels, and patients exhibit mental retardation, poor language skills and epilepsy. We identified a novel human CRT gene missense mutation (c.1681 G>C, G561R) in Japanese CCDSs patients. The purpose of the present study was to evaluate the reduction of creatine transport in G561R-mutant CRT-expressing 293 cells, and to clarify the mechanism of its functional attenuation. G561R-mutant CRT exhibited greatly reduced creatine transport activity compared to wild-type CRT (WT-CRT) when expressed in 293 cells. Also, the mutant protein is localized mainly in intracellular membrane fraction, while WT-CRT is localized in plasma membrane. Western blot analysis revealed a 68 kDa band of WT-CRT protein in plasma membrane fraction, while G561R-mutant CRT protein predominantly showed bands at 55, 110 and 165 kDa in crude membrane fraction. The bands of both WT-CRT and G561R-mutant CRT were shifted to 50 kDa by N-glycosidase treatment. Our results suggest that the functional impairment of G561R-mutant CRT was probably caused by incomplete N-linked glycosylation due to misfolding during protein maturation, leading to oligomer formation and changes of cellular localization.

  4. Models of Cerebral-Body Perfusion and Cerebral Chemical Transport.

    DTIC Science & Technology

    1988-03-01

    These are encased in semi-rigid wafs to prevent collapse in all but extreme conditions of compression. The Cerebro -Spinal Fluid is contained In two...additional compartment. Extra Ventricular CSF + Spinal Fluid (FEV) - The cisterns sulci and spinal fluid compart- ment maintains a free communication...body’s arteries. Abdominal (BD ) - This compartment is subject to volume changes initiated by the environ- ment pressure, inferior vena cave and the

  5. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment.

    PubMed

    Bauer, Corinna M; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J; Bex, Peter; Merabet, Lotfi B

    2014-08-01

    Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients.

  6. Evaluating the Role of Reduced Oxygen Saturation and Vascular Damage in Traumatic Brain Injury Using Magnetic Resonance Perfusion-Weighted Imaging and Susceptibility-Weighted Imaging and Mapping.

    PubMed

    Kou, Zhifeng; Ye, Yongquan; Haacke, Ewart Mark

    2015-10-01

    The cerebral vasculature, along with neurons and axons, is vulnerable to biomechanical insult during traumatic brain injury (TBI). Trauma-induced vascular injury is still an underinvestigated area in TBI research. Cerebral blood flow and metabolism could be important future treatment targets in neural critical care. Magnetic resonance imaging offers a number of key methods to probe vascular injury and its relationship with traumatic hemorrhage, perfusion deficits, venous blood oxygen saturation changes, and resultant tissue damage. They make it possible to image the hemodynamics of the brain, monitor regional damage, and potentially show changes induced in the brain's function not only acutely but also longitudinally following treatment. These methods have recently been used to show that even mild TBI (mTBI) subjects can have vascular abnormalities, and thus they provide a major step forward in better diagnosing mTBI patients.

  7. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  8. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging

    PubMed Central

    Martin, Alastair J.; Alexander, Matthew D.; McCoy, David B.; Cooke, Daniel L.; Lillaney, Prasheel; Moftakhar, Parham; Amans, Matthew R.; Settecase, Fabio; Nicholson, Andrew; Dowd, Christopher F.; Halbach, Van V.; Higashida, Randall T.; McDermott, Michael W.; Saloner, David; Hetts, Steven W.

    2016-01-01

    Background and Purpose To evaluate the ability of IA MR perfusion to characterize meningioma blood supply. Methods Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA) and intravenous (IV) T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA) dural, internal carotid artery (ICA) dural, or pial. MR perfusion data regions of interest (ROIs) were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM), relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and mean transit time (MTT). Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling. Results 18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11), ICA dural (n = 4), or pial (n = 3). FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion. PMID:27802268

  9. Amylin Treatment Reduces Neuroinflammation and Ameliorates Abnormal Patterns of Gene Expression in the Cerebral Cortex of an Alzheimer’s Disease Mouse Model

    PubMed Central

    Wang, Erming; Zhu, Haihao; Wang, Xiaofan; Gower, Adam C.; Wallack, Max; Blusztajn, Jan Krzysztof; Kowall, Neil; Qiu, Wei Qiao

    2017-01-01

    Our recent study has demonstrated that peripheral amylin treatment reduces the amyloid pathology in the brain of Alzheimer’s disease (AD) mouse models, and improves their learning and memory. We hypothesized that the beneficial effects of amylin for AD was beyond reducing the amyloids in the brain, and have now directly tested the actions of amylin on other aspects of AD pathogenesis, especially neuroinflammation. A 10-week course of peripheral amylin treatment significantly reduced levels of cerebral inflammation markers, Cd68 and Iba1, in amyloid precursor protein (APP) transgenic mice. Mechanistic studies indicated the protective effect of amylin required interaction with its cognate receptor because silencing the amylin receptor expression blocked the amylin effect on Cd68 in microglia. Using weighted gene co-expression network analysis, we discovered that amylin treatment influenced two gene modules linked with amyloid pathology: 1) a module related to proinflammation and transport/vesicle process that included a hub gene of Cd68, and 2) a module related to mitochondria function that included a hub gene of Atp5b. Amylin treatment restored the expression of most genes in the APP cortex toward levels observed in the wild-type (WT) cortex in these two modules including Cd68 and Atp5b. Using a human dataset, we found that the expression levels of Cd68 and Atp5b were significantly correlated with the neurofibrillary tangle burden in the AD brain and with their cognition. These data suggest that amylin acts on the pathological cascade in animal models of AD, and further supports the therapeutic potential of amylin-type peptides for AD. PMID:27911303

  10. Does Preoperative Measurement of Cerebral Blood Flow with Acetazolamide Challenge in Addition to Preoperative Measurement of Cerebral Blood Flow at the Resting State Increase the Predictive Accuracy of Development of Cerebral Hyperperfusion after Carotid Endarterectomy? Results from 500 Cases with Brain Perfusion Single-photon Emission Computed Tomography Study

    PubMed Central

    OSHIDA, Sotaro; OGASAWARA, Kuniaki; SAURA, Hiroaki; YOSHIDA, Koji; FUJIWARA, Shunro; KOJIMA, Daigo; KOBAYASHI, Masakazu; YOSHIDA, Kenji; KUBO, Yoshitaka; OGAWA, Akira

    2015-01-01

    The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[123I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using 123I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion. PMID:25746308

  11. Does preoperative measurement of cerebral blood flow with acetazolamide challenge in addition to preoperative measurement of cerebral blood flow at the resting state increase the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy? Results from 500 cases with brain perfusion single-photon emission computed tomography study.

    PubMed

    Oshida, Sotaro; Ogasawara, Kuniaki; Saura, Hiroaki; Yoshida, Koji; Fujiwara, Shunro; Kojima, Daigo; Kobayashi, Masakazu; Yoshida, Kenji; Kubo, Yoshitaka; Ogawa, Akira

    2015-01-01

    The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[(123)I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using (123)I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion.

  12. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  13. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  14. Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis

    SciTech Connect

    Kahan, A.; Devaux, J.Y.; Amor, B.; Menkes, C.J.; Weber, S.; Nitenberg, A.; Venot, A.; Guerin, F.; Degeorges, M.; Roucayrol, J.C.

    1986-05-29

    Heart disease in patients with progressive systemic sclerosis may be due in part to myocardial ischemia caused by a disturbance of the coronary microcirculation. To determine whether abnormalities of myocardial perfusion in this disorder are potentially reversible, we evaluated the effect of the coronary vasodilator nifedipine on myocardial perfusion assessed by thallium-201 scanning in 20 patients. Thallium-201 single-photon-emission computerized tomography was performed under control conditions and 90 minutes after 20 mg of oral nifedipine. The mean (+/- SD) number of left ventricular segments with perfusion defects decreased from 5.3 +/- 2.0 to 3.3 +/- 2.2 after nifedipine (P = 0.0003). Perfusion abnormalities were quantified by a perfusion score (0 to 2.0) assigned to each left ventricular segment and by a global perfusion score (0 to 18) for the entire left ventricle. The mean perfusion score in segments with resting defects increased from 0.97 +/- 0.24 to 1.26 +/- 0.44 after nifedipine (P less than 0.00001). The mean global perfusion score increased from 11.2 +/- 1.7 to 12.8 +/- 2.4 after nifedipine (P = 0.003). The global perfusion score increased by at least 2.0 in 10 patients and decreased by at least 2.0 in only 1. These observations reveal short-term improvement in thallium-201 myocardial perfusion with nifedipine in patients with progressive systemic sclerosis. The results are consistent with a potentially reversible abnormality of coronary vasomotion in this disorder, but the long-term therapeutic effects of nifedipine remain to be determined.

  15. A novel quantification method for determining previously undetected silent infarcts on MR-perfusion in patients following carotid endarterectomy

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Imielinska, Celina; Rosiene, Joel; Rampersad, Anita; Zurica, Joseph; Wilson, David; Halazun, Hadi; Williams, Susan C.; Ligneli, Angela; D'Ambrosio, Anthony; Sughrue, Michael; Connolly, E. S., Jr.; Heyer, Eric J.

    2005-04-01

    The purpose of this paper is to evaluate the post-operative Magnetic Resonance Perfusion (MRP) scans of patients undergoing carotid endarterectomy (CEA), using a novel image-analysis algorithm, to determine if post-operative neurocognitive decline is associated with cerebral blood flow changes. CEA procedure reduces the risk of stroke in appropriately selected patients with significant carotid artery stenosis. However, 25% of patients experience subtle cognitive deficits after CEA compared to a control group. It was hypothesized that abnormalities in cerebral blood flow (CBF) are responsible for these cognitive deficits. A novel algorithm for analyzing MR-perfusion (MRP) scans to identify and quantify the amount of CBF asymmetry in each hemisphere was developed and to quantify the degree of relative difference between three corresponding vascular regions in the ipsilateral and contralateral hemispheres, the Relative Difference Map (RDM). Patients undergoing CEA and spine surgery (controls) were examined preoperatively, and one day postoperatively with a battery of neuropsychometric (NPM) tests, and labeled "injured" patients with significant cognitive deficits, and "normal" if they demonstrated no decline in neurocognitive function. There are apparently significant RDM differences with MRP scans between the two hemispheres in patients with cognitive deficits which can be used to guide expert reviews of the imagery. The proposed methodology aids in the analysis of MRP parameters in patients with cognitive impairment.

  16. Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement

    PubMed Central

    Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm

    2016-01-01

    Abstract: Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart–lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart–lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart–lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures. PMID:27729705

  17. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer's disease?

    PubMed

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer's disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization.

  18. Is the Cerebellum the Optimal Reference Region for Intensity Normalization of Perfusion MR Studies in Early Alzheimer’s Disease?

    PubMed Central

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer’s disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization. PMID:24386081

  19. Cerebral Hemodynamics in Asphyxiated Newborns Undergoing Hypothermia Therapy: Pilot Findings Using a Multiple-Time-Scale Analysis

    PubMed Central

    Chalak, Lina F; Tian, Fenghua; Tarumi, Takashi; Zhang, Rong

    2015-01-01

    Background Improved quantitative assessment of cerebral hemodynamics in newborns might enable us to optimize cerebral perfusion. Our objective was to develop an approach to assess cerebral hemodynamics across multiple time scales during the first 72 hours of life in newborns during hypothermia therapy. Methods Spontaneous oscillations in mean arterial pressure (MAP) and regional cerebral tissue oxygen saturation (SctO2) were analyzed using a moving window correlation (MWC) method with time scales ranging from 0.15 to 8 hours in this pilot methodology study. Abnormal neurodevelopmental outcome was defined by Bayley III scores and/or cerebral palsy by 24 months of age using receiver operating curve (ROC). Results Multiple-time-scale correlations between MAP and SctO2 oscillations were tested in 10 asphyxiated newborns undergoing hypothermia therapy. Large non induced fluctuations in the blood pressure were observed during cooling in all five infants with abnormal outcomes. Notably, these infants had two distinct patterns of correlation: a positive in-phase correlation at the short time scales (15 min), and/or a negative anti-phase correlations observed at long time scales (4 hrs.). Both the in-phase (AUC 0.6, [95% CI 0.2–0.95]) and anti-phase correlations (AUC 0.75, [95% CI 0.4–0.95]) appeared to be related to an abnormal outcome. Conclusions Our observations suggest that the time scale is an important factor that needs to be standardized in the assessment of neonatal cerebral hemodynamics. PMID:26858217

  20. [CT perfusion for assessment of brain stem ischemic lesions].

    PubMed

    Saifullina, E I; Iksanova, G R

    2007-01-01

    Modern neurovisualization modalities - CT and MRI with cerebral circulation assessment was used for diagnosis of cerebrovascular disturbances in patients admitted to the Emergency Care Hospital of Ufa. CT and MRI perfusion methods appeared to be highly effective both in diagnosis and treatment efficacy monitoring of acute stroke.

  1. Cerebral hyperperfusion syndrome.

    PubMed

    van Mook, Walther N K A; Rennenberg, Roger J M W; Schurink, Geert Willem; van Oostenbrugge, Robert Jan; Mess, Werner H; Hofman, Paul A M; de Leeuw, Peter W

    2005-12-01

    Cerebral hyperperfusion syndrome (CHS) after carotid endarterectomy is characterised by ipsilateral headache, hypertension, seizures, and focal neurological deficits. If not treated properly it can result in severe brain oedema, intracerebral or subarachnoid haemorrhage, and death. Knowledge of CHS among physicians is limited. Most studies report incidences of CHS of 0-3% after carotid endarterectomy. CHS is most common in patients with increases of more than 100% in perfusion compared with baseline after carotid endarterectomy and is rare in patients with increases in perfusion less than 100% compared with baseline. The most important risk factors in CHS are diminished cerebrovascular reserve, postoperative hypertension, and hyperperfusion lasting more than several hours after carotid endarterectomy. Impaired autoregulation as a result of endothelial dysfunction mediated by generation of free oxygen radicals is implicated in the pathogenesis of CHS. Treatment strategies are directed towards regulation of blood pressure and limitation of rises in cerebral perfusion. Complete recovery happens in mild cases, but disability and death can occur in more severe cases. More information about CHS and early institution of adequate treatment are of paramount importance in order to prevent these potentially severe complications.

  2. Myocardial perfusion as an indicator of graft patency after coronary artery bypass surgery. [Thallium 201

    SciTech Connect

    Kolibash, A.J.; Call, T.D.; Bush, C.A.; Tetalman, M.R.; Lewis, R.P.

    1980-05-01

    Stress and resting myocardial perfusion were assessed in 38 patients who received 96 grafts. Stress perfusion was evaluated with thallium-201 and resting myocardial blood flow distribution with radiolabeled particles. When both stress and rest perfusion were normal, graft patency was 82% (51 of 62 grafts). Graft patency was also high (81%, 13 of 16) in areas where stress perfusion abnormalities resolved or become less apparent at rest. However, when stress perfusion defects remained unchanged at rest, the graf was likely to be occuluded (73%, 11 of 15). Maintenance of normal rest perfusion or improvement of rest perfusion postoperatively was also associated with a high graft patency rate (80%, 35 of 44), whereas the development of new rest perfusion defects postoperatively implied graft occlusion (86%, six of seven).

  3. Augmentation of Regional Cerebral Blood Flow by Microvascular Anastomosis

    DTIC Science & Technology

    1974-06-01

    flow and oxygen consumption in man. Physiol, Rev, 39:183-238, 1959, 9. Lassen, N, A, The luxury - perfusion syndrome and its possible relation to...phenomena of autoregulation and luxury perfusion . Neurology 18:613-621, 1968. 15. Ya§argil, M. G. Microsurgery Applied to Neurosurgery, pp. 105-119...autoregulation of flow was tested using Neo-Synephrine or oligemic hypotension to effect changes in cerebral perfusion pressure. Vasoreactivity to hypercapnia

  4. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  5. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.

  6. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  7. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia.

    PubMed

    Thomas, Taya; Miners, Scott; Love, Seth

    2015-04-01

    Perfusion is reduced in the cerebral neocortex in Alzheimer's disease. We have explored some of the mechanisms, by measurement of perfusion-sensitive and disease-related proteins in post-mortem tissue from Alzheimer's disease, vascular dementia and age-matched control brains. To distinguish physiological from pathological reduction in perfusion (i.e. reduction exceeding the decline in metabolic demand), we measured the concentration of vascular endothelial growth factor (VEGF), a protein induced under conditions of tissue hypoxia through the actions of hypoxia-inducible factors, and the myelin associated glycoprotein to proteolipid protein 1 (MAG:PLP1) ratio, which declines in chronically hypoperfused brain tissue. To evaluate possible mechanisms of hypoperfusion, we also measured the levels of amyloid-β40, amyloid-β42, von Willebrand factor (VWF; a measure of microvascular density) and the potent vasoconstrictor endothelin 1 (EDN1); we assayed the activity of angiotensin I converting enzyme (ACE), which catalyses the production of another potent vasoconstrictor, angiotensin II; and we scored the severity of arteriolosclerotic small vessel disease and cerebral amyloid angiopathy, and determined the Braak tangle stage. VEGF was markedly increased in frontal and parahippocampal cortex in Alzheimer's disease but only slightly and not significantly in vascular dementia. In frontal cortex the MAG:PLP1 ratio was significantly reduced in Alzheimer's disease and even more so in vascular dementia. VEGF but not MAG:PLP1 increased with Alzheimer's disease severity, as measured by Braak tangle stage, and correlated with amyloid-β42 and amyloid-β42: amyloid-β40 but not amyloid-β40. Although MAG:PLP1 tended to be lowest in cortex from patients with severe small vessel disease or cerebral amyloid angiopathy, neither VEGF nor MAG:PLP1 correlated significantly with the severity of structural vascular pathology (small vessel disease, cerebral amyloid angiopathy or VWF

  8. NeuroGam Software Analysis in Epilepsy Diagnosis Using 99mTc-ECD Brain Perfusion SPECT Imaging.

    PubMed

    Fu, Peng; Zhang, Fang; Gao, Jianqing; Jing, Jianmin; Pan, Liping; Li, Dongxue; Wei, Lingge

    2015-09-20

    BACKGROUND The aim of this study was to explore the value of NeuroGam software in diagnosis of epilepsy by 99Tcm-ethyl cysteinate dimer (ECD) brain imaging. MATERIAL AND METHODS NeuroGam was used to analyze 52 cases of clinically proven epilepsy by 99Tcm-ECD brain imaging. The results were compared with EEG and MRI, and the positive rates and localization to epileptic foci were analyzed. RESULTS NeuroGam analysis showed that 42 of 52 epilepsy cases were abnormal. 99Tcm-ECD brain imaging revealed a positive rate of 80.8% (42/52), with 36 out of 42 patients (85.7%) clearly showing an abnormal area. Both were higher than that of brain perfusion SPECT, with a consistency of 64.5% (34/52) using these 2 methods. Decreased regional cerebral blood flow (rCBF) was observed in frontal (18), temporal (20), and parietal lobes (2). Decreased rCBF was seen in frontal and temporal lobes in 4 out of 36 patients, and in temporal and parietal lobes of 2 out of 36 patients. NeuroGam further showed that the abnormal area was located in a different functional area of the brain. EEG abnormalities were detected in 29 out of 52 patients (55.8%) with 16 cases (55.2%) clearly showing an abnormal area. MRI abnormalities were detected in 17 out of 43 cases (39.5%), including 9 cases (52.9%) clearly showing an abnormal area. The consistency of NeuroGam software analysis, and EEG and MRI were 48.1% (25/52) and 34.9% (15/43), respectively. CONCLUSIONS NeuroGam software analysis offers a higher sensitivity in detecting epilepsy than EEG or MRI. It is a powerful tool in 99Tcm-ECD brain imaging.

  9. Abdominal perfusion computed tomography.

    PubMed

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-02-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.

  10. Abdominal Perfusion Computed Tomography

    PubMed Central

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M. Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-01-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis. PMID:25610249

  11. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    PubMed

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a (99m)technetium-hexamethylpropylene amine oxime ((99m)Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain.

  12. Cerebral Hypoperfusion in Hereditary Coproporphyria (HCP): A Single Photon Emission Computed Tomography (SPECT) Study

    PubMed Central

    Valle, Guido; Guida, Claudio Carmine; Nasuto, Michelangelo; Totaro, Manuela; Aucella, Filippo; Frusciante, Vincenzo; Di Mauro, Lazzaro; Potenza, Adele; Savino, Maria; Stanislao, Mario; Popolizio, Teresa; Guglielmi, Giuseppe; Giagulli, Vito Angelo; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2016-01-01

    Background: Hereditary Coproporphyria (HCP) is characterized by abdominal pain, neurologic symptoms and psychiatric disorders, even if it might remain asymptomatic. The pathophysiology of both neurologic and psychiatric symptoms is not fully understood. Therefore, aiming to evaluate a possible role of brain blood flow disorders, we have retrospectively investigated cerebral perfusion patterns in Single Photon Emission Computed Tomography (SPECT) studies in HCP patients. Materials & Methods: We retrospectively evaluated the medical records of patients diagnosed as being affected by HCP. A total of seven HCP patients had been submitted to brain perfusion SPECT study with 99mTc-Exametazime (hexamethylpropyleneamine oxime, HMPAO) or with its functionally equivalent 99mTc-Bicisate (ECD or Neurolite) according with common procedures. In 3 patients the scintigraphic study had been repeated for a second time after the first evaluation at 3, 10 and 20 months, respectively. All the studied subjects had been also submitted to an electromyographic and a Magnetic Resonance Imaging (MRI) study of the brain. Results: Mild to moderate perfusion defects were detected in temporal lobes (all 7 patients), frontal lobes (6 patients) and parietal lobes (4 patients). Occipital lobe, basal ganglia and cerebellar involvement were never observed. In the three subjects in which SPECT study was repeated, some recovery of hypo-perfused areas and appearance of new perfusion defects in other brain regions have been found. In all patients electromyography resulted normal and MRI detected few unspecific gliotic lesions only in one patient. Discussion & Conclusions: Since perfusion abnormalities were usually mild to moderate, this can probably explain the normal pattern observed at MRI studies. Compared to MRI, SPECT with 99mTc showed higher sensitivity in HCP patients. Changes observed in HCP patients who had more than one study suggest that transient perfusion defects might be due to a brain

  13. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma

    PubMed Central

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-01-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review. PMID:27761184

  14. Goal-directed-perfusion in neonatal aortic arch surgery

    PubMed Central

    Purbojo, Ariawan; Muench, Frank; Juengert, Joerg; Rueffer, André

    2016-01-01

    Reduction of mortality and morbidity in congenital cardiac surgery has always been and remains a major target for the complete team involved. As operative techniques are more and more standardized and refined, surgical risk and associated complication rates have constantly been reduced to an acceptable level but are both still present. Aortic arch surgery in neonates seems to be of particular interest, because perfusion techniques differ widely among institutions and an ideal form of a so called “total body perfusion (TBP)” is somewhat difficult to achieve. Thus concepts of deep hypothermic circulatory arrest (DHCA), regional cerebral perfusion (RCP/with cardioplegic cardiac arrest or on the perfused beating heart) and TBP exist in parallel and all carry an individual risk for organ damage related to perfusion management, chosen core temperature and time on bypass. Patient safety relies more and more on adequate end organ perfusion on cardiopulmonary bypass, especially sensitive organs like the brain, heart, kidney, liver and the gut, whereby on adequate tissue protection, temperature management and oxygen delivery should be visualized and monitored. PMID:27709094

  15. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  16. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.

    PubMed

    Iwata, Sachiko; Tachtsidis, Ilias; Takashima, Sachio; Matsuishi, Toyojiro; Robertson, Nicola J; Iwata, Osuke

    2014-10-01

    Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO₂ index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO₂ index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO₂ index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the

  17. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  18. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  19. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation.

  20. Blood-brain barrier permeability imaging using perfusion computed tomography

    PubMed Central

    Avsenik, Jernej; Bisdas, Sotirios; Popovic, Katarina Surlan

    2015-01-01

    Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases. Conclusions. Blood-brain barrier permeability can be evaluated in vivo by perfusion computed tomography - an efficient diagnostic method that involves the sequential acquisition of tomographic images during the intravenous administration of iodinated contrast material. The major clinical applications of perfusion computed tomography are in acute stroke and in brain tumor imaging. PMID:26029020

  1. [Portable peristaltic perfusion pumps].

    PubMed

    Magallón Pedrera, I; Soto Torres, I

    1999-11-01

    Portable peristaltic perfusion pumps allow one to administer pharmaceuticals in hospitals as well as in primary health care centers and furthermore these pumps present multiple advantages for patients and their families since they make it possible to carry out treatment in a patient's home while at the same time lowering the costs involved. The authors analyze the most out standing aspects of portable peristaltic perfusion pumps along with their characteristics, installation, programming, and how to turn them on; in addition, the authors list the maintenance care which these pumps require.

  2. Multiple brain abscesses from isolated cerebral mucormycosis.

    PubMed Central

    Escobar, A; Del Brutto, O H

    1990-01-01

    A report is presented of a patient with cerebral mucormycosis without rhinosinusal or systemic evidence of the disease. The predisposing condition was drug-induced immunosuppression. Computed tomography (CT) showed focal areas of abnormal enhancement which correlated with necropsy findings of localised parenchymal brain damage; this represented encapsulated brain abscesses, a rare form of presentation of cerebral mucormycosis. Images PMID:2351973

  3. Baseline brain perfusion and brain structure in patients with major depression: a multimodal magnetic resonance imaging study

    PubMed Central

    Vasic, Nenad; Wolf, Nadine D.; Grön, Georg; Sosic-Vasic, Zrinka; Connemann, Bernhard J.; Sambataro, Fabio; von Strombeck, Anna; Lang, Dirk; Otte, Stefanie; Dudek, Manuela; Wolf, Robert C.

    2015-01-01

    Background Abnormal regional cerebral blood flow (rCBF) and grey matter volume have been frequently reported in patients with major depressive disorder (MDD). However, it is unclear to what extent structural and functional change co-occurs in patients with MDD and whether markers of neural activity, such as rCBF, can be predicted by structural change. Methods Using MRI, we investigated resting-state rCBF and brain structure in patients with MDD and healthy controls between July 2008 and January 2013. We acquired perfusion images obtained with continuous arterial spin labelling, used voxel-based morphometry to assess grey matter volume and integrated biological parametric mapping analyses to investigate the impact of brain atrophy on rCBF. Results We included 43 patients and 29 controls in our study. Frontotemporal grey matter volume was reduced in patients compared with controls. In patients, rCBF was reduced in the anterior cingulate and bilateral parahippocampal areas and increased in frontoparietal and striatal regions. These abnormalities were confirmed by analyses with brain volume as a covariate. In patients with MDD there were significant negative correlations between the extent of depressive symptoms and bilateral parahippocampal rCBF. We found a positive correlation between depressive symptoms and rCBF for right middle frontal cortical blood flow. Limitations Medication use in patients has to be considered as a limitation of our study. Conclusion Our data suggest that while changes of cerebral blood flow and brain volume co-occur in patients with MDD, structural change is not sufficient to explain altered neural activity in patients at rest. Abnormal brain structure and function in patients with MDD appear to reflect distinct levels of neuropathology. PMID:26125119

  4. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia

    PubMed Central

    Walenski, Matthew; Chen, YuFen; Caplan, David; Rapp, Brenda; Grunewald, Kristin; Nunez, Mia; Zinbarg, Richard; Parrish, Todd B.

    2017-01-01

    Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere), no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI) analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0–6 mm), with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function. PMID:28357141

  5. Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia.

    PubMed

    Barker, Rachel; Ashby, Emma L; Wellington, Dannielle; Barrow, Vivienne M; Palmer, Jennifer C; Kehoe, Patrick G; Esiri, Margaret M; Love, Seth

    2014-05-01

    of reduced ratio of myelin-associated glycoprotein to proteolipid protein 1 are likely to be protective physiological responses to reduced white matter perfusion. Further analysis of the Bristol cohort showed that endothelin 1 was reduced in the white matter in Alzheimer's disease (P < 0.05) compared with control subjects, but not in vascular dementia, in which endothelin 1 tended to be elevated, perhaps reflecting abnormal regulation of white matter perfusion in vascular dementia. Our findings demonstrate the potential of post-mortem measurement of myelin proteins and mediators of vascular function, to assess physiological and pathological processes involved in the regulation of cerebral perfusion in Alzheimer's disease and vascular dementia.

  6. Cerebral blood flow modulation insufficiency in brain networks in multiple sclerosis: A hypercapnia MRI study.

    PubMed

    Marshall, Olga; Chawla, Sanjeev; Lu, Hanzhang; Pape, Louise; Ge, Yulin

    2016-12-01

    Cerebrovascular reactivity measures vascular regulation of cerebral blood flow and is responsible for maintaining healthy neurovascular coupling. Multiple sclerosis exhibits progressive neurodegeneration and global cerebrovascular reactivity deficits. This study investigates varied degrees of cerebrovascular reactivity impairment in different brain networks, which may be an underlying cause for functional changes in the brain, affecting long-distance projection integrity and cognitive function; 28 multiple sclerosis and 28 control subjects underwent pseudocontinuous arterial spin labeling perfusion MRI to measure cerebral blood flow under normocapnia (room air) and hypercapnia (5% carbon dioxide gas mixture) breathing. Cerebrovascular reactivity, measured as normocapnic to hypercapnic cerebral blood flow percent increase normalized by end-tidal carbon dioxide change, was determined from seven functional networks (default mode, frontoparietal, somatomotor, visual, limbic, dorsal, and ventral attention networks). Group analysis showed significantly decreased cerebrovascular reactivity in patients compared to controls within the default mode, frontoparietal, somatomotor, and ventral attention networks after multiple comparison correction. Regression analysis showed a significant correlation of cerebrovascular reactivity with lesion load in the default mode and ventral attention networks and with gray matter atrophy in the default mode network. Functional networks in multiple sclerosis patients exhibit varied amounts of cerebrovascular reactivity deficits. Such blood flow regulation abnormalities may contribute to functional communication disruption in multiple sclerosis.

  7. Dynamic functional cerebral blood volume responses to normobaric hyperoxia in acute ischemic stroke

    PubMed Central

    Wu, Ona; Lu, Jie; Mandeville, Joseph B; Murata, Yoshihiro; Egi, Yasu; Dai, Guangping; Marota, John J; Diwan, Izzuddin; Dijkhuizen, Rick M; Kwong, Kenneth K; Lo, Eng H; Singhal, Aneesh B

    2012-01-01

    Studies suggest that neuroprotective effects of normobaric oxygen (NBO) therapy in acute stroke are partly mediated by hemodynamic alterations. We investigated cerebral hemodynamic effects of repeated NBO exposures. Serial magnetic resonance imaging (MRI) was performed in Wistar rats subjected to focal ischemic stroke. Normobaric oxygen-induced functional cerebral blood volume (fCBV) responses were analyzed. All rats had diffusion-weighted MRI (DWI) lesions within larger perfusion deficits, with DWI lesion expansion after 3 hours. Functional cerebral blood volume responses to NBO were spatially and temporally heterogeneous. Contralateral healthy tissue responded consistently with vasoconstriction that increased with time. No significant responses were evident in the acute DWI lesion. In hypoperfused regions surrounding the acute DWI lesion, tissue that remained viable until the end of the experiment showed relative preservation of mean fCBV at early time points, with some rats showing increased fCBV (vasodilation); however, these regions later exhibited significantly decreased fCBV (vasoconstriction). Tissue that became DWI abnormal by study-end initially showed marginal fCBV changes that later became moderate fCBV reductions. Our results suggest that a reverse-steal hemodynamic effect may occur in peripheral ischemic zones during NBO treatment of focal stroke. In addition, CBV responses to NBO challenge may have potential as an imaging marker to distinguish ischemic core from salvageable tissues. PMID:22739619

  8. Basilar artery migraine and reversible imaging abnormalities.

    PubMed

    Maytal, J; Libman, R B; Lustrin, E S

    1998-01-01

    We report a case of a basilar artery migraine in a 17-year-old boy with transient CT and MR abnormalities after each of two migraine episodes. A repeat MR study 6 months after the last event showed complete resolution of the lesion. Transient abnormalities on brain images similar to those shown in our case have been reported in patients with migraine and other neurologic conditions and are most likely related to cerebral vasogenic edema.

  9. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging

    PubMed Central

    Teune, Laura K.; Renken, Remco J.; de Jong, Bauke M.; Willemsen, Antoon T.; van Osch, Matthias J.; Roerdink, Jos B.T.M.; Dierckx, Rudi A.; Leenders, Klaus L.

    2014-01-01

    Introduction Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Methods Nineteen PD patients and seventeen healthy controls underwent [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Results Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. Conclusion We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients. PMID:25068113

  10. Brain perfusion asymmetry in patients with oral somatic delusions.

    PubMed

    Umezaki, Yojiro; Katagiri, Ayano; Watanabe, Motoko; Takenoshita, Miho; Sakuma, Tomomi; Sako, Emi; Sato, Yusuke; Toriihara, Akira; Uezato, Akihito; Shibuya, Hitoshi; Nishikawa, Toru; Motomura, Haruhiko; Toyofuku, Akira

    2013-06-01

    Oral cenesthopathy is a somatic delusion or hallucination involving the oral area and is categorized as a delusional disorder, somatic type. The pathophysiology of this intractable condition remains obscure. In this study, we clarified the pathophysiology of oral cenesthopathy by evaluating regional brain perfusion. We performed single photon emission computed tomography (SPECT) using (99m)Tc-ethylcysteinate dimer in 16 subjects (cenesthopathy:control = 8:8). The SPECT images were visually assessed qualitatively, and quantitative analyses were also performed using a three-dimensional stereotactic region-of-interest template. The visual assessment revealed a right > left perfusion asymmetry in broad areas of the brain among the patients. The quantitative analysis confirmed that the regional cerebral blood flow values on the right side were significantly larger than those on the left side for most areas of the brain in the patients. A comparison of the R/(R + L) ratios in both groups confirmed the significant brain perfusion asymmetry between the two sides in the callosomarginal, precentral, and temporal regions in the patients. Qualitative evaluation of the SPECT images revealed right > left brain perfusion asymmetry in broad regions of the brain. Moreover, the quantitative analyses confirmed the perfusion asymmetry between the two sides in the frontal and temporal areas. Those may provide the key for elucidation of the pathophysiology of oral cenesthopathy.

  11. Multiple medullary venous malformations decreasing cerebral blood flow: Case report

    SciTech Connect

    Tomura, N.; Inugami, A.; Uemura, K.; Hadeishi, H.; Yasui, N. )

    1991-02-01

    A rare case of multiple medullary venous malformations in the right cerebral hemisphere is reported. The literature review yielded only one case of multiple medullary venous malformations. Computed tomography scan showed multiple calcified lesions with linear contrast enhancement representing abnormal dilated vessels and mild atrophic change of the right cerebral hemisphere. Single-photon emission computed tomography using N-isopropyl-p-({sup 123}I) iodoamphetamine demonstrated decreased cerebral blood flow in the right cerebral hemisphere.

  12. Correlation of CT cerebral vascular territories with function. 3. Middle cerebral artery

    SciTech Connect

    Berman, S.A.; Hayman, L.A.; Hinck, V.C.

    1984-05-01

    Schematic displays are presented of the cerebral territories supplied by branches of the middle cerebral artery as they would appear on axial and coronal computed tomographic (CT) scan sections. Companion diagrams of regional cortical function and a discussion of the fiber tracts are provided to simplify correlation of clinical deficits with coronal and axial CT abnormalities.

  13. Oxygen supply to the fetal cerebral circulation in hypoplastic left heart syndrome: a simulation study based on the theoretical models of fetal circulation.

    PubMed

    Sakazaki, Sayaka; Masutani, Satoshi; Sugimoto, Masaya; Tamura, Masanori; Kuwata, Seiko; Kurishima, Clara; Saiki, Hirofumi; Iwamoto, Yoichi; Ishido, Hirotaka; Senzaki, Hideaki

    2015-03-01

    Hypoxia due to congenital heart diseases (CHDs) adversely affects brain development during the fetal period. Head circumference at birth is closely associated with neuropsychiatric development, and it is considerably smaller in newborns with hypoplastic left heart syndrome (HLHS) than in normal newborns. We performed simulation studies on newborns with CHD to evaluate the cerebral circulation during the fetal period. The oxygen saturation of cerebral blood flow in newborns with CHD was simulated according to a model for normal fetal circulation in late pregnancy. We compared the oxygen saturation of cerebral blood flow between newborns with tricuspid atresia (TA; a disease showing univentricular circulation and hypoplasia of the right ventricle), those with transposition of the great arteries (TGA; a disease showing abnormal mixing of arterial and venous blood), and those with HLHS. The oxygen saturation of cerebral blood flow in newborns with normal circulation was 75.7 %, whereas it was low (49.5 %) in both newborns with HLHS and those with TA. Although the oxygen level is affected by the blood flow through the foramen ovale, the oxygen saturation in newborns with TGA was even lower (43.2 %). These data, together with previous reports, suggest that the cerebral blood flow rate is decreased in newborns with HLHS, and the main cause was strongly suspected to be retrograde cerebral perfusion through a patent ductus arteriosus. This study provides important information about the neurodevelopmental prognosis of newborns with HLHS and suggests the need to identify strategies to resolve this unfavorable cerebral circulatory state in utero.

  14. Simultaneous Individually Controlled Upper and Lower Body Perfusion for Valve-Sparing Root and Total Aortic Arch Replacement: A Case Study

    PubMed Central

    Fernandes, Philip; Mayer, Rick; Adams, Corey; Chu, Michael W.A.

    2011-01-01

    Abstract: Optimal perfusion strategies for extensive aortic resection in patients with mega-aortic syndromes include: tailored myocardial preservation, antegrade cerebral perfusion, controlled hypothermia and selective organ perfusion. Typically, the aortic arch resection and elephant trunk procedure are performed under hypothermic circulatory arrest with myocardial and cerebral protection. However, mesenteric and systemic ischemia occur during circulatory arrest and commonly rely upon deep hypothermia alone for metabolic protection. We hypothesized that simultaneously controlled mesenteric and systemic perfusion can attenuate some of the metabolic debt accrued during circulatory arrest, which may help improve perioperative outcomes. The perfusion strategy consisted of delivering a 1 to 3 liter per minute flow at 25°C to the head/upper body via right axillary graft and simultaneous perfusion to the lower body/mesenteric organs of 1 to 3 liters per minute at 30°C via a right femoral arterial graft. We describe our technique of simultaneous mesenteric, systemic, cerebral and myocardial perfusion, and protection utilized for a young male patient with Marfan’s syndrome, while undergoing a valve sparing root replacement, total arch replacement and elephant trunk reconstruction. This perfusion technique allowed us to deliver differential flow rates and temperatures to the upper and lower body (cold head/warm lower body perfusion) to minimize ischemic debt and quickly reverse metabolic derangements. PMID:22416605

  15. Puerarin Attenuates Cerebral Damage by Improving Cerebral Microcirculation in Spontaneously Hypertensive Rats

    PubMed Central

    Wu, Xu-Dong; Wang, Chen; Zhang, Zhen-Ying; Fu, Yan; Liu, Feng-Ying; Liu, Xiu-Hua

    2014-01-01

    Puerariae Lobatae Radix (Gegen in Chinese) is the dried root of Pueraria lobata, a semiwoody, perennial, and leguminous vine native to China. Puerarin is one of the effective components of isoflavones isolated from the root of Pueraria lobata. Previous studies showed that extracts derived from the root of Pueraria lobata possessed antihypertensive effect. Our study is to investigate whether puerarin contributes to prevention of stroke by improving cerebral microcirculation in rats. Materials and Methods. Video microscopy and laser Doppler perfusion imaging on the pia mater were used to measure the diameter of microvessel and blood perfusion in 12-week old spontaneously hypertensive rats (SHRs) and age-matched normotensive WKY rats. Histological alterations were observed by hematoxylin and eosin staining, and microvessel density in cerebral tissue was measured by immunohistochemical analysis with anti-Factor VIII antibody. Cell proliferation was detected by [3H]-TdR incorporation, and activities of p42/44 mitogen activated protein kinases (p42/44 MAPKs) were detected by western blot analysis in cultured cerebral microvascular endothelial cells (MECs). Results. Intravenous injection of puerarin relaxed arterioles and increased the blood flow perfusion in the pia mater in SHRs. Puerarin treatment for 14 days reduced the blood pressure to a normal level in SHRs (P < 0.05) and increased the arteriole diameter in the pia mater significantly as compared with vehicle treatment. Arteriole remodeling, edema, and ischemia in cerebral tissue were attenuated in puerarin-treated SHRs. Microvessel density in cerebral tissue was greater with puerarin than with vehicle treatment. Puerarin-treated MECs showed greater proliferation and p42/44 MAPKs activities than vehicle treatment. Conclusions. Puerarin possesses effects of antihypertension and stroke prevention by improved microcirculation in SHRs, which results from the increase in cerebral blood perfusion both by arteriole

  16. Puerarin attenuates cerebral damage by improving cerebral microcirculation in spontaneously hypertensive rats.

    PubMed

    Wu, Xu-Dong; Wang, Chen; Zhang, Zhen-Ying; Fu, Yan; Liu, Feng-Ying; Liu, Xiu-Hua

    2014-01-01

    Puerariae Lobatae Radix (Gegen in Chinese) is the dried root of Pueraria lobata, a semiwoody, perennial, and leguminous vine native to China. Puerarin is one of the effective components of isoflavones isolated from the root of Pueraria lobata. Previous studies showed that extracts derived from the root of Pueraria lobata possessed antihypertensive effect. Our study is to investigate whether puerarin contributes to prevention of stroke by improving cerebral microcirculation in rats. Materials and Methods. Video microscopy and laser Doppler perfusion imaging on the pia mater were used to measure the diameter of microvessel and blood perfusion in 12-week old spontaneously hypertensive rats (SHRs) and age-matched normotensive WKY rats. Histological alterations were observed by hematoxylin and eosin staining, and microvessel density in cerebral tissue was measured by immunohistochemical analysis with anti-Factor VIII antibody. Cell proliferation was detected by [(3)H]-TdR incorporation, and activities of p42/44 mitogen activated protein kinases (p42/44 MAPKs) were detected by western blot analysis in cultured cerebral microvascular endothelial cells (MECs). Results. Intravenous injection of puerarin relaxed arterioles and increased the blood flow perfusion in the pia mater in SHRs. Puerarin treatment for 14 days reduced the blood pressure to a normal level in SHRs (P < 0.05) and increased the arteriole diameter in the pia mater significantly as compared with vehicle treatment. Arteriole remodeling, edema, and ischemia in cerebral tissue were attenuated in puerarin-treated SHRs. Microvessel density in cerebral tissue was greater with puerarin than with vehicle treatment. Puerarin-treated MECs showed greater proliferation and p42/44 MAPKs activities than vehicle treatment. Conclusions. Puerarin possesses effects of antihypertension and stroke prevention by improved microcirculation in SHRs, which results from the increase in cerebral blood perfusion both by arteriole

  17. Myocardial perfusion scintigraphy and coronary disease risk factors in systemic lupus erythematosus

    PubMed Central

    Sella, E; Sato, E; Leite, W; Filho, J; Barbieri, A

    2003-01-01

    Objective: To evaluate the prevalence of myocardial perfusion abnormalities and the possible association between myocardial perfusion defects and traditional coronary artery disease (CAD) risk factors as well as systemic lupus erythematosus (SLE) related risk factors. Patients and methods: Female patients with SLE, disease duration >5 years, age 18–55 years, who had used steroids for at least one year were enrolled. Traditional CAD risk factors evaluated were arterial hypertension, diabetes mellitus, dyslipidaemia, postmenopausal status, smoking, obesity, and premature family CAD profile. Myocardial perfusion scintigraphy was evaluated by single photon emission computed tomography with technetium 99m-sestamibi at rest and after dipyridamole induced stress. Results: Eight two female patients with SLE without angina pectoris with mean (SD) age 37 (10) years, disease duration 127 (57) months, SLE Disease Activity Index (SLEDAI) score 6 (5), and SLICC/ACR-DI score 2 (2) were evaluated. Myocardial perfusion abnormalities were found in 23 patients (28%). The mean (SD) number of CAD risk factors was 2.2 (1.6). There was a significant positive correlation between age and number of CAD risk factors. Lower high density lipoprotein (HDL) cholesterol level showed a significant association with abnormal scintigraphy. Logistic regression analysis showed that lower HDL cholesterol level and diabetes mellitus were associated with myocardial perfusion abnormalities. Current vasculitis was also associated with abnormal scintigraphy. Conclusions: Lower HDL cholesterol level and diabetes mellitus have a significant influence on abnormal myocardial perfusion results found in asymptomatic patients with SLE. Current vasculitis was associated with abnormal myocardial scintigraphy. These data suggest that abnormal myocardial scintigraphy may be related to subclinical atherosclerosis. PMID:14583569

  18. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  19. Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients.

    PubMed

    Ekbal, Nasirul J; Dyson, Alex; Black, Claire; Singer, Mervyn

    2013-06-01

    Alterations in oxygen transport and use are integral to the development of multiple organ failure; therefore, the ultimate goal of resuscitation is to restore effective tissue oxygenation and cellular metabolism. Hemodynamic monitoring is the cornerstone of management to promptly identify and appropriately manage (impending) organ dysfunction. Prospective randomized trials have confirmed outcome benefit when preemptive or early treatment is directed toward maintaining or restoring adequate tissue perfusion. However, treatment end points remain controversial, in large part because of current difficulties in determining what constitutes "optimal." Information gained from global whole-body monitoring may not detect regional organ perfusion abnormalities until they are well advanced. Conversely, the ideal "canary" organ that is readily accessible for monitoring, yet offers an early and sensitive indicator of tissue "unwellness," remains to be firmly identified. This review describes techniques available for real-time monitoring of tissue perfusion and metabolism and highlights novel developments that may complement or even supersede current tools.

  20. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    NASA Astrophysics Data System (ADS)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P < 0.001). In the context of diagnosing schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  1. Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia.

    PubMed

    Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui

    2017-03-27

    Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.

  2. Cerebral Hypoxia

    MedlinePlus

    ... and neurological abnormalities such as amnesia, personality regression, hallucinations, memory loss, and muscle spasms and twitches may ... and neurological abnormalities such as amnesia, personality regression, hallucinations, memory loss, and muscle spasms and twitches may ...

  3. ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain

    PubMed Central

    Welker, K.; Boxerman, J.; Kalnin, A.; Kaufmann, T.; Shiroishi, M.; Wintermark, M.

    2016-01-01

    SUMMARY MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice. PMID:25907520

  4. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  5. Monitoring of cerebral autoregulation.

    PubMed

    Czosnyka, Marek; Miller, Chad

    2014-12-01

    Pressure autoregulation is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure (CPP). Static autoregulation represents how far cerebrovascular resistance changes when CPP varies, and dynamic autoregulation represents how fast these changes happen. Both have been monitored in the setting of neurocritical care to aid prognostication and contribute to individualizing CPP targets in patients. Failure of autoregulation is associated with a worse outcome in various acute neurological diseases. Several studies have used transcranial Doppler ultrasound, intracranial pressure (ICP with vascular reactivity as surrogate measure of autoregulation), and near-infrared spectroscopy to continuously monitor the impact of spontaneous fluctuations in CPP on cerebrovascular physiology and to calculate derived variables of autoregulatory efficiency. Many patients who undergo such monitoring demonstrate a range of CPP in which autoregulatory efficiency is optimal. Management of patients at or near this optimal level of CPP is associated with better outcomes in traumatic brain injury. Many of these studies have utilized the concept of the pressure reactivity index, a correlation coefficient between ICP and mean arterial pressure. While further studies are needed, these data suggest that monitoring of autoregulation could aid prognostication and may help identify optimal CPP levels in individual patients.

  6. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  7. Lung scan perfusion defects limited to matching pleural effusions: low probability of pulmonary embolism

    SciTech Connect

    Bedont, R.A.; Datz, F.L.

    1985-12-01

    Patients with a new pleural effusion are often sent for a ventilation-perfusion scan to exclude a pulmonary embolism. This retrospective study assessed the probability of pulmonary embolism when a pleural effusion and a perfusion defect of similar size are the only significant imaging abnormalities. In 451 reports of patients who were scanned for suspected pulmonary embolism, 53 had perfusion defects secondary to pleural effusion without other significant perfusion defects. Using pulmonary angiography, venography, analysis of pleural fluid, clinical course, and other radiographic and laboratory studies to establish the final diagnosis, only two patients had documented venous thrombotic disease: one had pulmonary emboli, the other thrombophlebitis. Lung scans having significant perfusion defects limited to pleural effusions and matching them in size have a low probability for pulmonary embolism.

  8. Objective Quantification of the Regional Distribution of Radioactivity in Cerebral Emission Computed Tomography

    NASA Astrophysics Data System (ADS)

    Harris, Gordon Jonathan

    It is essential in the analysis of emission computed tomography (ECT) scans of the living human brain to be able to reliably and objectively obtain regional quantitative data. Therefore, the following thesis describes new methods for the analysis of the regional distribution of radioactivity in brain ECT images, which reduces the variability inherent in observer guided region of interest placement. The analysis methods developed include the definition of a cortical ring for producing a "cortical circumferential profile" of the cortical distribution of radioactivity. This method treats the cortex as a continuous annulus on the outer brain rim. The outer boundary of the brain can be defined either manually, or using a matched, registered magnetic resonance image (MRI), which can also be used for analysis of discrete subcortical regions, a difficult task using ECT images alone. The methods developed here were then applied to the analysis of alterations in the regional cerebral perfusion patterns which are seen in neuro-psychiatric illness. Alzheimer's Dementia, Obsessive-Compulsive Disorder and HIV Dementia were all found to have perfusion abnormalities compared to matched control groups.

  9. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  10. Magnetic resonance imaging of luxury perfusion of the optic nerve head in anterior ischemic optic neuropathy.

    PubMed

    Yovel, Oren S; Katz, Miriam; Leiba, Hana

    2012-09-01

    A 49-year-old woman with painless reduction in visual acuity in her left eye was found to have nonarteritic anterior ischemic optic neuropathy (NAION). Fluorescein angiography revealed optic disc capillary leakage consistent with "luxury perfusion." Contrast-enhanced FLAIR magnetic resonance imaging (MRI) showed marked enhancement of the left optic disc. Resolution of the optic disc edema and the MRI abnormalities followed a similar time course. This report appears unique in documenting the MRI findings of luxury perfusion in NAION.

  11. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  12. Harmonic analysis of perfusion pumps.

    PubMed

    Dougherty, F Carroll; Donovan, F M; Townsley, Mary I

    2003-12-01

    The controversy over the use of nonpulsatile versus pulsatile pumps for maintenance of normal organ function during ex vivo perfusion has continued for many years, but resolution has been limited by lack of a congruent mathematical definition of pulsatility. We hypothesized that the waveform frequency and amplitude, as well as the underlying mean distending pressure are all key parameters controlling vascular function. Using discrete Fourier Analysis, our data demonstrate the complexity of the pulmonary arterial pressure waveform in vivo and the failure of commonly available perfusion pumps to mimic in vivo dynamics. In addition, our data show that the key harmonic signatures are intrinsic to the perfusion pumps, are similar for flow and pressure waveforms, and are unchanged by characteristics of the downstream perfusion circuit or perfusate viscosity.

  13. Correlation between high perfusion syndrome and stent restenosis after stent implantation

    PubMed Central

    Li, Yingyi; Tang, Lingtao; Qi, Dong; Wang, Chunlei; Zhang, Suxia; Hu, Pengfei; Wang, Yun; Zhang, Bogang; Zhang, Kunxi

    2016-01-01

    The present study was conducted to determine the correlation between high perfusion syndrome and stent restenosis after cerebral vascular stent implantation. A total of 146 patients diagnosed with cerebral vascular stenosis and stent implantation were selected. A total of 55 cases (37.67%) of cerebral hyperperfusion syndrome patients were diagnosed by xenon-enhanced computer tomography (Xe-CT) examination and clinical symptoms within 3 days after surgery and were chosen as the observation group. A total of 91 cases were selected as the control group. After treatment, blood flow of the anterior cerebral artery, middle cerebral artery, posterior cerebral artery, anterior border zone, posterior border zone and the inner border zone of the two groups increased, with values in the observation group increasing more significantly, and the differences were statistically significant (P<0.05). The rate of restenosis and target lesion diameter one month and one year after operation in the observation group were significantly higher than those in the control group (P<0.05). Multivariate logistic regression analysis showed that the mean systolic blood pressure (mSBP), mean diastolic blood pressure (mDBP), stenosis rate of cerebral vascular diameter and high perfusion syndrome were independent risk factors for restenosis (P<0.05). The application of Xe-CT examination is important for early diagnosis of hyperperfusion syndrome. Hyperperfusion syndrome and the occurrence of stent restenosis are closely related. mSBP, mDBP, cerebral blood vessel diameter stenosis rate and high perfusion comprehensive syndrome are the independent risk factors of restenosis. PMID:28101162

  14. Assessment of the intrapulmonary ventilation-perfusion distribution after the Fontan procedure for complex cardiac anomalies: Relation to pulmonary hemodynamics

    SciTech Connect

    Matsushita, T.; Matsuda, H.; Ogawa, M.; Ohno, K.; Sano, T.; Nakano, S.; Shimazaki, Y.; Nakahara, K.; Arisawa, J.; Kozuka, T. )

    1990-03-15

    In 12 patients who underwent the Fontan procedure for complex cardiac anomalies, lung scanning with xenon-133 was performed to assess the intrapulmonary ventilation-perfusion distribution, and comparison was made with a control group. All data were then analyzed in relation to either pre- or postoperative pulmonary hemodynamic data. In ventilation scans, the intrapulmonary distribution in the right lung was almost normal. In perfusion scans, an abnormal increased upper to lower lobe perfusion ratio greater than the normal value found in the control group was noted in seven patients (58.3%). There was a significant correlation (p less than 0.02) between the upper to lower lobe perfusion ratio and postoperative pulmonary vascular resistance. Furthermore, this perfusion ratio correlated inversely with the preoperative (p less than 0.005) and postoperative (p less than 0.02) right pulmonary artery area index, defined as the ratio of cross-sectional area to the normal value. Of five patients with less than 90% arterial oxygen saturation, four showed an abnormal distribution of pulmonary blood flow greater than the normal perfusion ratio. No patient had evidence of a pulmonary arteriovenous fistula by the echocardiographic contrast study. These results suggest that abnormal distribution of pulmonary blood flow to the upper lung segment may develop in patients after the Fontan procedure, and that insufficient size of the pulmonary artery before operation and the consequent postoperative elevation of pulmonary vascular resistance may be responsible for this perfusion abnormality.

  15. Partial aortic occlusion and cerebral venous steal: venous effects of arterial manipulation in acute stroke.

    PubMed

    Pranevicius, Osvaldas; Pranevicius, Mindaugas; Liebeskind, David S

    2011-05-01

    Acute ischemic stroke therapy emphasizes early arterial clot lysis or removal. Partial aortic occlusion has recently emerged as an alternative hemodynamic approach to augment cerebral perfusion in acute ischemic stroke. The exact mechanism of cerebral flow augmentation with partial aortic occlusion remains unclear and may involve more than simple diversion of arterial blood flow from the lower body to cerebral collateral circulation. The cerebral venous steal hypothesis suggests that even a small increase in tissue pressure in the ischemic area will divert blood flow to surrounding regions with lesser tissue pressures. This may cause no-reflow (absence of flow after restoration of arterial patency) in the ischemic core and "luxury perfusion" in the surrounding regions. Such maldistribution may be reversed with increased venous pressure titrated to avoid changes in intracranial pressure. We propose that partial aortic occlusion enhances perfusion in the brain by offsetting cerebral venous steal. Partial aortic occlusion redistributes blood volume into the upper part of the body, manifested by an increase in central venous pressure. Increased venous pressure recruits the collapsed vascular network and, by eliminating cerebral venous steal, corrects perifocal perfusion maldistribution analogous to positive end-expiratory pressure recruitment of collapsed airways to decrease ventilation/perfusion mismatch in the lungs.

  16. Bilateral basal Xe-133 retention and ventilation/perfusion patterns in mild and subclinical congestive heart failure

    SciTech Connect

    Lee, H.K.; Skarzynski, J.J.; Spadaro, A. )

    1989-12-01

    The Xe-133 ventilation pattern in congestive heart failure (CHF) was assessed using 24 inpatient ventilation/perfusion studies performed to rule out pulmonary embolism. Patients with histories of CHF, myocardial infarction (MI), and cardiomyopathy were included in the study. Frank pulmonary edema, pulmonary embolism, and other known lung diseases such as chronic obstructive lung disease, tumor, and pneumonia were excluded. Fifteen of the 24 patients had abnormal ventilation scans. Twelve of the 15 showed bilateral basal Xe-133 retention on washout; the remaining 3 showed diffuse, posterior regional retention. On perfusion scans, 14 of the 15 abnormal ventilation patients showed evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, or patchy perfusion, and all of them had a history of CHF or cardiac disease. Nine of the 24 patients had normal ventilation scans, including normal washout patterns. Seven of the nine had normal perfusion (p less than 0.01). Four of the nine normal ventilation patients had a history of cardiac disease or CHF but no recent acute MI. Bilateral basal regional Xe-133 retention, coupled with perfusion scan evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, and patchy perfusion pattern, appears to be a sensitive and characteristic ventilation/perfusion finding in mild or subclinical CHF.

  17. Cerebral Paragonimiasis.

    PubMed

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  18. A comparative analysis of the dependences of the hemodynamic parameters on changes in ROI's position in perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo

    2013-05-01

    This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.

  19. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  20. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy A A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  1. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  2. Sequential assessment of regional cerebral blood flow, regional cerebral blood volume, and blood-brain barrier in focal cerebral ischemia: a case report

    SciTech Connect

    Di Piero, V.; Perani, D.; Savi, A.; Gerundini, P.; Lenzi, G.L.; Fazio, F.

    1986-06-01

    Regional CBF (rCBF) and regional cerebral blood volume (rCBV) were evaluated by N,N,N'-trimethyl-N'-(2)-hydroxy-3-methyl-5-(123I)iodobenzyl-1, 3-propanediamine-2 HCl- and /sup 99m/TC-labeled red blood cells, respectively, and single-photon emission computerized tomography (SPECT) in a patient with focal cerebral ischemia. Sequential transmission computerized tomography (TCT) and SPECT functional data were compared with clinical findings to monitor the pathophysiological events occurring in stroke. A lack of correlation between rCBF-rCBV distributions and blood-brain barrier (BBB) breakdown was found in the acute phase. In the face of more prolonged alteration of BBB, as seen by TCT enhancement, a rapid evolution of transient phenomena such as luxury perfusion was shown by SPECT studies. Follow-up of the patient demonstrated a correlation between the neurological recovery and a parallel relative improvement of the cerebral perfusion.

  3. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion.

    PubMed Central

    Vexler, Z S; Roberts, T P; Bollen, A W; Derugin, N; Arieff, A I

    1997-01-01

    Apoptosis is thought to be important in the pathogenesis of cerebral ischemia. The mechanism of apoptosis induction remains unclear but several studies suggest that it is preferentially triggered by mild/moderate microcirculatory disturbances. We examined in cats whether induction of apoptosis after 2.5 h of unilateral middle cerebral artery occlusion plus 10 h of reperfusion is influenced by the degree of cerebral microcirculatory disturbance. Quantitative monitoring over time of the disturbances of cerebral microcirculation in ischemic brain areas and evaluation of cytotoxic edema associated with perfusion deficits was achieved by using two noninvasive magnetic resonance imaging techniques: (a) high-speed echo planar imaging combined with a bolus of magnetic susceptibility contrast agent; and (b) diffusion-weighted imaging. Apoptosis-positive cells were counted in anatomic areas with different severity of ischemic injury characterized by magnetic resonance imaging, triphenyltetrazolium chloride, and hemotoxylin and eosin staining. The number of apoptosis-positive cells was significantly higher in anatomic areas with severe perfusion deficits during occlusion and detectable histologic changes 10 h after reperfusion. In contrast, in areas where perfusion was reduced but maintained during occlusion there were no detectable histological changes and significantly fewer apoptosis-positive cells. A similar number of cells that undergo apoptosis were shown in regions with transient or prolonged subtotal perfusion deficits. These results suggest that the apoptotic process is induced in the ischemic core and contributes significantly in the degeneration of neurons associated with transient ischemia. PMID:9077555

  4. Diagnosis, treatment, and prevention of cerebral palsy.

    PubMed

    O'Shea, Thomas Michael

    2008-12-01

    Cerebral palsy is the most prevalent cause of persisting motor function impairment with a frequency of about 1/500 births. In developed countries, the prevalence rose after introduction of neonatal intensive care, but in the past decade, this trend has reversed. A recent international workshop defined cerebral palsy as "a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain." In a majority of cases, the predominant motor abnormality is spasticity; other forms of cerebral palsy include dyskinetic (dystonia or choreo-athetosis) and ataxic cerebral palsy. In preterm infants, about one-half of the cases have neuroimaging abnormalities, such as echolucency in the periventricular white matter or ventricular enlargement on cranial ultrasound. Among children born at or near term, about two-thirds have neuroimaging abnormalities, including focal infarction, brain malformations, and periventricular leukomalacia. In addition to the motor impairment, individuals with cerebral palsy may have sensory impairments, cognitive impairment, and epilepsy. Ambulation status, intelligence quotient, quality of speech, and hand function together are predictive of employment status. Mortality risk increases incrementally with increasing number of impairments, including intellectual, limb function, hearing, and vision. The care of individuals with cerebral palsy should include the provision of a primary care medical home for care coordination and support; diagnostic evaluations to identify brain abnormalities, severity of neurologic and functional abnormalities, and associated impairments; management of spasticity; and care for associated problems such as nutritional deficiencies, pain, dental care, bowel and bladder continence, and orthopedic complications. Current strategies to decrease the risk of cerebral palsy include interventions to

  5. Comparison of I-123 IMP cerebral uptake and MR spectroscopy following experimental carotid occlusion

    SciTech Connect

    Holman, B.L.; Jolesz, F.A.; Polak, J.F.; Kronauge, J.F.; Adams, D.F.

    1985-07-01

    Both I-123 IMP scintigraphy and MRI have been suggested as sensitive detectors of changes shortly after acute cerebral infarction. We compared the uptake of N-isopropyl I-123 p-iodoamphetamine (IMP) and MR spectroscopy of the brain after internal carotid artery ligation. Thirteen gerbils were lightly anesthetized with ether. After neck dissection, an internal carotid artery was occluded. After 2.8 hours, 100 muCi I-123 IMP was injected intravenously into the 13 experimental animals plus three controls. Seven gerbils remained asymptomatic while six developed hemiparesis. At 3 hours after ligation, the animals were killed. The brains were bisected and T1 and T2 relaxation times were determined for the right and left hemispheres by MR spectroscopy immediately after dissection. I-123 IMP uptake was then determined in the samples. Interhemispheric differences in uptake for I-123 IMP were 0.1 +/- 1.7% (SEM) in the control, 33.5 +/- 10% in the asymptomatic and 54.6 +/- 9.7% in the symptomatic animals. Significant differences were seen with I-123 IMP in 6/7 asymptomatic and 6/6 symptomatic animals. In conclusion, I-123 is more sensitive than T1 or T2 relaxation times for the detection of cerebral perfusion abnormalities. Prolongation in T1 and T2 relaxation times correlates closely with increased brain tissue water content and the development of symptoms, indicators of structural brain damage and probable infarction.

  6. Autoregulation of cerebral blood circulation under orthostatic tests

    NASA Technical Reports Server (NTRS)

    Gayevyy, M. D.; Maltsev, V. G.; Pogorelyy, V. E.

    1980-01-01

    Autoregulation of cerebral blood flow (ACBF) under orthostatic tests (OT) was estimated in acute experiments on rabbits and cats under local anesthesia according to changes of perfusion pressure (PP) in carotid arteries, cerebral blood flow, pressure in the venous system of the brain, and resistance of cerebral vessels. The OT were conducted by turning a special table with the animal fastened to it from a horizontal to a vertical (head up or head down) position at 40 to 80 deg. In most experiments ACBF correlated with the changes of PP. Different variations of ACBF and its possible mechanisms are discussed.

  7. CT Perfusion with Acetazolamide Challenge in C6 Gliomas and Angiogenesis

    PubMed Central

    Feng, Xiao-Yuan; Qiang, Jin-Wei; Zhang, Jia-wen; Wang, Yong-gang; Liu, Ying

    2015-01-01

    Background This study was performed to investigate the correlation between CT perfusion with acetazolamide challenge and angiogenesis in C6 gliomas. Methods Thirty-two male Sprague-Dawley rats were evaluated. The rats were divided randomly to four groups: eight rats with orthotopically implanted C6 gliomas at 10-days old (Group A), eight rats with gliomas at 14-days old (Group B), eight rats with gliomas at 18-days old (Group C), eight rats with orthotopically injected normal saline served as controls. CT perfusion was performed before and after administration of acetazolamide. Changes in perfusion parameters due to acetazolamide administration were calculated and analyzed. Results Elevated carbon dioxide partial pressure and decreased pH were found in all 32 rats post acetazolamide challenge (P<0.01). Cerebral blood flowpre-challenge was increased in group C (95.0±2.5 ml/100g/min), as compared to group B (80.1±11.3 ml/100g/min) and group A (63.1±2.1 ml/100g/min). Cerebral blood flow percentage changes were detected with a reduction in group C (54.2±4.8%) as compared to controls (111.3±22.2%). Cerebral blood volume pre-challenge was increased in group C (50.8±1.7ml/100g), as compared to group B (45.7±1.9 ml/100g) and group A (38.2±0.8 ml/100g). Cerebral blood volume percentage changes were decreased in group C (23.5±4.6%) as compared to controls (113.5±30.4%). Angiogenesis ratio = [(CD105-MVD) / (FVIII-MVD)] ×100%. Positive correlations were observed between CD105-microvessel density, angiogenesis ratio, vascular endothelial growth factor, proliferation marker and cerebral blood flowpre-challenge, cerebral blood volume pre-challenge. Negative correlations were observed between CD105-microvessel density and cerebral blood flow percentage changes (P<0.01, correlation coefficient r=-0.788), cerebral blood volume percentage changes (P<0.01, r=-0.703). Negative correlations were observed between angiogenesis ratio, vascular endothelial growth factor

  8. Cerebral palsy.

    PubMed

    Colver, Allan; Fairhurst, Charles; Pharoah, Peter O D

    2014-04-05

    The syndrome of cerebral palsy encompasses a large group of childhood movement and posture disorders. Severity, patterns of motor involvement, and associated impairments such as those of communication, intellectual ability, and epilepsy vary widely. Overall prevalence has remained stable in the past 40 years at 2-3·5 cases per 1000 livebirths, despite changes in antenatal and perinatal care. The few studies available from developing countries suggest prevalence of comparable magnitude. Cerebral palsy is a lifelong disorder; approaches to intervention, whether at an individual or environmental level, should recognise that quality of life and social participation throughout life are what individuals with cerebral palsy seek, not improved physical function for its own sake. In the past few years, the cerebral palsy community has learned that the evidence of benefit for the numerous drugs, surgery, and therapies used over previous decades is weak. Improved understanding of the role of multiple gestation in pathogenesis, of gene environment interaction, and how to influence brain plasticity could yield significant advances in treatment of the disorder. Reduction in the prevalence of post-neonatal cerebral palsy, especially in developing countries, should be possible through improved nutrition, infection control, and accident prevention.

  9. Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia

    PubMed Central

    Nesper, Peter L.; Scarinci, Fabio

    2017-01-01

    Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) non-perfusion. Eleven eyes from 11 patients (6 women, age 31–68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP non-perfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)-OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT. PMID:28068435

  10. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  11. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... JavaScript. A pulmonary ventilation/perfusion scan involves two nuclear scan tests to measure breathing (ventilation) and circulation ( ... In: Mettler FA, Guiberteau MJ, eds. Essentials of Nuclear Medicine Imaging . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  12. Human cortical perfusion and the arterial pulse: a near-infrared spectroscopy study

    PubMed Central

    Kwan, Hon C; Cheng, Anita; Liu, Ruth; Borrett, Donald S

    2004-01-01

    Background The pulsatile nature of the arterial pulse induces a pulsatile perfusion pattern which can be observed in human cerebral cortex with non-invasive near-infrared spectroscopy. The present study attempts to establish a quantitative relation between these two events, even in situations of very weak signal-to-noise ratio in the cortical perfusion signal. The arterial pulse pattern was extracted from the left middle finger by means of plethesmographic techniques. Changes in cortical perfusion were detected with a continuous-wave reflectance spectrophotometer on the scalp overlying the left prefrontal cortex. Cross-correlation analysis was performed to provide evidence for a causal relation between the arterial pulse and relative changes in cortical total hemoglobin. In addition, the determination of the statistical significance of this relation was established by the use of phase-randomized surrogates. Results The results showed statistically significant cross correlation between the arterial and perfusion signals. Conclusions The approach designed in the present study can be utilized for a quantitative and continuous assessment of the perfusion states of the cerebral cortex in experimental and clinical settings even in situations of extremely low signal-to-noise ratio. PMID:15113424

  13. A 4D CT digital phantom of an individual human brain for perfusion analysis

    PubMed Central

    Brune, Christoph; van Ginneken, Bram; Prokop, Mathias

    2016-01-01

    Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose. PMID:27917312

  14. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  15. Encephaloduroarteriosynangiosis for cerebral proliferative angiopathy with cerebral ischemia.

    PubMed

    Kono, Kenichi; Terada, Tomoaki

    2014-12-01

    Cerebral proliferative angiopathy (CPA) is a rare clinical entity. This disorder is characterized by diffuse vascular abnormalities with intermingled normal brain parenchyma, and is differentiated from classic arteriovenous malformations. The management of CPA in patients presenting with nonhemorrhagic neurological deficits due to cerebral ischemia is challenging and controversial. The authors report a case of adult CPA with cerebral ischemia in which neurological deficits were improved after encephaloduroarteriosynangiosis (EDAS). A 28-year-old man presented with epilepsy. Magnetic resonance imaging and angiography showed a diffuse vascular network (CPA) in the right hemisphere. Antiepileptic medications were administered. Four years after the initial onset of epilepsy, the patient's left-hand grip strength gradually decreased over the course of 1 year. The MRI studies showed no infarcts, but technetium-99m-labeled ethyl cysteinate dimer ((99m)Tc-ECD) SPECT studies obtained with acetazolamide challenge demonstrated hypoperfusion and severely impaired cerebrovascular reactivity over the affected hemisphere. This suggested that the patient's neurological deficits were associated with cerebral ischemia. The authors performed EDAS for cerebral ischemia, and the patient's hand grip strength gradually improved after the operation. Follow-up angiography studies obtained 7 months after the operation showed profound neovascularization through the superficial temporal artery and the middle meningeal artery. A SPECT study showed slight improvement of hypoperfusion at the focal region around the right motor area, indicating clinical improvement from the operation. The authors conclude that EDAS may be a treatment option for CPA-related hypoperfusion.

  16. Patient-Specific Detection of Cerebral Blood Flow Alterations as Assessed by Arterial Spin Labeling in Drug-Resistant Epileptic Patients

    PubMed Central

    Boscolo Galazzo, Ilaria; Storti, Silvia Francesca; Del Felice, Alessandra; Pizzini, Francesca Benedetta; Arcaro, Chiara; Formaggio, Emanuela; Mai, Roberto; Chappell, Michael; Beltramello, Alberto; Manganotti, Paolo

    2015-01-01

    Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients. PMID:25946055

  17. Relation of global and regional left ventricular function to tomographic thallium-201 myocardial perfusion in patients with prior myocardial infarction

    SciTech Connect

    Stratton, J.R.; Speck, S.M.; Caldwell, J.H.; Martin, G.V.; Cerqueira, M.; Maynard, C.; Davis, K.B.; Kennedy, J.W.; Ritchie, J.L.

    1988-07-01

    To determine the relation between regional myocardial perfusion and regional wall motion in humans, tomographic thallium-201 imaging and two-dimensional echocardiography at rest were performed on the same day in 83 patients 4 to 12 weeks after myocardial infarction. Myocardial perfusion and wall motion were assessed independently in five left ventricular regions (total 415 regions). Regional myocardial perfusion was quantitated as a percent of the region infarcted (range 0 to 100%) using a previously validated method. Wall motion was graded on a four point scale as 1 = normal (n = 266 regions), 2 = hypokinesia (n = 64), 3 = akinesia (n = 70), 4 = dyskinesia (n = 13) or not evaluable (n = 2). Regional wall motion correlated directly with the severity of the perfusion deficit (r = 0.68, p less than 0.0001). Among normally contracting regions, the mean perfusion defect score was only 2 +/- 4. Increasingly severe wall motion abnormalities were associated with larger perfusion defect scores (hypokinesia = 6 +/- 5, akinesia = 11 +/- 7 and dyskinesia = 18 +/- 5, all p less than 0.01 versus normal. Among regions with normal wall motion, only 3% had a perfusion defect score greater than or equal to 10. Conversely, among 68 regions with a large (greater than or equal to 10) perfusion defect, only 13% had normal motion whereas 87% had abnormal wall motion. The relation between perfusion and wall motion noted for the entire cohort was also present in subgroups of patients with anterior or inferior infarction. In patients with prior myocardial infarction, the severity of the tomographic thallium perfusion defect correlates directly with echocardiographically defined wall motion abnormalities, both globally and regionally.

  18. Abnormal distribution of pulmonary blood flow in aortic valve disease

    PubMed Central

    Goodenday, Lucy S.; Simon, George; Craig, Hazel; Dalby, Lola

    1970-01-01

    Wasted ventilatory volume (VD) and its ratio to tidal volume (VD/VT) were measured at rest and during exertion in 17 patients with aortic valve disease. We considered VD/VT to indicate abnormal ventilation: perfusion relations if it did not decrease on exertion, or if the exercising value was greater than 40 per cent. Plain chest radiographs were independently examined for evidence of diversion of pulmonary blood to the upper lobes. There was significant agreement (p<0·05) between radiographic and pulmonary function estimations of abnormality. This suggests that the raised pulmonary venous pressure associated with left ventricular failure creates an abnormal pattern of blood flow through the lung, which is responsible for causing inadequate perfusion with respect to ventilation. Images PMID:5420086

  19. Limited myocardial perfusion reserve in patients with left ventricular hypertrophy

    SciTech Connect

    Goldstein, R.A.; Haynie, M. )

    1990-03-01

    Experimental studies in animals have suggested that coronary flow reserve may be limited in patients with left ventricular hypertrophy (LVH). Accordingly, to noninvasively determine the effect of LVH on myocardial perfusion reserve, 25 patients, 9 with LVH and 16 controls, underwent positron imaging with rubidium-82 (82Rb) (30-55 mCi) or nitrogen-13 (13N) ammonia (12-19 mCi) at rest and following intravenous dipyridamole and handgrip stress. LVH was documented by echocardiographic and/or electrocardiographic measurements. LVH patients had either no chest pain (n = 8) and/or a normal coronary angiogram (n = 6). Nine simultaneous transaxial images were acquired, and the mean ratio of stress to rest activity (S:R), based on all regions for each heart, was calculated as an estimate of myocardial perfusion reserve. There were no regional differences in activity (i.e., perfusion defects) in any of the studies. S:R averaged 1.41 +/- 0.10 (s.d.) for controls and 1.06 +/- 0.09 for patients with LVH (p less than 0.0001). These data provide support for an abnormality in perfusion reserve in patients with LVH.

  20. Single perfusion defect and pulmonary embolism: Angiographic correlation

    SciTech Connect

    Catania, T.A.; Caride, V.J. )

    1990-03-01

    One hundred and thirty-three ventilation-perfusion scans (V-P) with angiographic correlation were retrospectively reviewed to evaluate the frequency of pulmonary emboli (PE) in single perfusion defects (SPD), regardless of ventilation or radiographic findings. By angiography, 15 of 30 SPD cases had PE. Demographic data and clinical presentation were similar for PE and non-PE patients. However, 9 out of 15 patients with PE had recent surgery compared to none of the non-PE patients. SPD were seen in areas of ventilation and chest x-ray abnormalities in 12 of 15 PE and 11 of 19 non-PE cases. Size of the actual lesion was underestimated by scintigraphy in most cases. In 7 of 15 PE cases, the perfusion defect was larger than the corresponding ventilation abnormality. Most SPD were located at the bases. Twelve of 15 SPD in the PE group were at the posterior basilar segment. In the appropriate clinical setting, SPD carries at least a moderate probability for PE. When the clinical suspicion is high, a pulmonary angiography will be needed to confirm the diagnosis.

  1. Cerebral Malaria.

    PubMed

    Marsden, P D; Bruce-Chwatt, L J

    1975-01-01

    Cerebral malaria is an acute diffuse encephalopathy associated only with Plasmodium falciparum. It is probably a consequence of the rapid proliferation of the parasites in the body of man in relation to red cell invasion, and results in stagnation of blood flow in cerebralcapillaries with thromobotic occlusion of large numbers of cerebral capillaries. The subsequent cerebral pathology is cerebral infarction with haemorrhage and cerebral oedema. The wide prevalence of P. falciparum in highly endemic areas results in daily challenges to patients from several infected mosquitoes. It is thus important to understand the characteristics of P. falciparum, since this is one of the most important protozoan parasites of man and severe infection from it constitutes one of the few real clinical emergencies in tropical medicine. One of the more important aspects of the practice of medicine in the tropics is to establish a good understanding of the pattern of medical practice in that area. This applies to malaria as well as to other diseases. The neophyte might be somewhat surprised to learn, for example that an experienced colleague who lives in a holoendemic malarious area such as West Africa, sees no cerebral malaria. But the explanation is simple when the doctor concerned has a practice which involves treating adults only. Cerebral malaria is rare in adults, because in highly endemic areas, by the age of 1 year most of the infants in a group under study have already experienced their first falciparum infection. By the time they reach adult life, they have a solid immunity against severe falciparum infections. In fact, "clinical malaria" could occur in such a group under only two circumstances: 1) in pregnancy, a patent infection with P. falciparum might develop, probably due to an IgG drain across the placenta to the foetus;2) in an individual who has constantly taken antimalarials and who may have an immunity at such a low level that when antimalarial therapy is interrupted

  2. Myocardial perfusion echocardiography and coronary microvascular dysfunction

    PubMed Central

    Barletta, Giuseppe; Del Bene, Maria Riccarda

    2015-01-01

    Our understanding of coronary syndromes has evolved in the last two decades out of the obstructive atherosclerosis of epicardial coronary arteries paradigm to include anatomo-functional abnormalities of coronary microcirculation. No current diagnostic technique allows direct visualization of coronary microcirculation, but functional assessments of this circulation are possible. This represents a challenge in cardiology. Myocardial contrast echocardiography (MCE) was a breakthrough in echocardiography several years ago that claimed the capability to detect myocardial perfusion abnormalities and quantify coronary blood flow. Research demonstrated that the integration of quantitative MCE and fractional flow reserve improved the definition of ischemic burden and the relative contribution of collaterals in non-critical coronary stenosis. MCE identified no-reflow and low-flow within and around myocardial infarction, respectively, and predicted the potential functional recovery of stunned myocardium using appropriate interventions. MCE exhibited diagnostic performances that were comparable to positron emission tomography in microvascular reserve and microvascular dysfunction in angina patients. Overall, MCE improved echocardiographic evaluations of ischemic heart disease in daily clinical practice, but the approval of regulatory authorities is lacking. PMID:26730291

  3. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation

    PubMed Central

    Hayen, Anja; Herigstad, Mari; Kelly, Michael; Okell, Thomas W.; Murphy, Kevin; Wise, Richard G.; Pattinson, Kyle T.S.

    2013-01-01

    Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9 cmH2O for 270 s) and viewed an intermittent 2 Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data. PMID:23108273

  4. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation.

    PubMed

    Hayen, Anja; Herigstad, Mari; Kelly, Michael; Okell, Thomas W; Murphy, Kevin; Wise, Richard G; Pattinson, Kyle T S

    2013-02-01

    Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9cmH2O for 270s) and viewed an intermittent 2Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data.

  5. Cerebral angiography

    MedlinePlus

    ... skull Bulging of a blood vessel in the brain ( aneurysm ) Abnormal connection between the arteries and veins in ... Editorial team. Related MedlinePlus Health Topics Arteriovenous Malformations Brain Aneurysm Vascular Diseases Vasculitis X-Rays Browse the Encyclopedia ...

  6. Positron emission tomography demonstrated localized luxury perfusion in subacute sclerosing panencephalitis.

    PubMed

    Yoshikawa, H; Fueki, N; Yoneyama, H; Ogawa, M; Sakuragawa, N

    1990-10-01

    Positron emission tomography (PET) was performed on two patients in different stages of subacute sclerosing panencephalitis (SSPE) and compared with the concurrent computed tomography (CT) findings and clinical status. Case 1, which was in stage II, showed luxury perfusion in the anterior half of the cerebrum and decreases of cerebral blood flow and oxygen metabolism in the right frontal watershed zone, where CT showed low density. Case 2, which was in stage III, showed marked decreases of cerebral blood flow and cerebral metabolic rate of oxygen in all regions except the occipital region. The present PET study demonstrated that SSPE showed inflammatory-destructive progression and rostral-caudal progression. Further, it was suspected that low density on CT scan, especially in the watershed zone, resulted partly from disturbances in cerebral circulation.

  7. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma.

    PubMed

    Wong, Kelvin K; Fung, Steve H; New, Pamela Z; Wong, Stephen T C

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem.

  8. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma

    PubMed Central

    Wong, Kelvin K.; Fung, Steve H.; New, Pamela Z.; Wong, Stephen T. C.

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  9. Usefulness of dipyridamole-thallium-201 perfusion scanning for distinguishing ischemic from nonischemic cardiomyopathy

    SciTech Connect

    Eichhorn, E.J.; Kosinski, E.J.; Lewis, S.M.; Hill, T.C.; Emond, L.H.; Leland, O.S.

    1988-11-01

    To determine noninvasively the etiology of left ventricular (LV) dysfunction, 22 patients with a diagnosis of cardiomyopathy determined via cardiac catheterization and 5 normal control subjects underwent radionuclide ventriculography and intravenous dipyridamole-thallium-201 perfusion scanning. Both ischemically and nonischemically induced LV dysfunction had comparable global LV ejection fractions (24 +/- 6 vs 23 +/- 8%, respectively) and extent of segmental wall motion abnormalities. Right ventricular ejection fraction was significantly better in the group with an ischemic etiology of LV dysfunction (41 +/- 26 vs 13 +/- 10%, p less than 0.005) but significant group overlap was present. However, computer-assisted analysis of dipyridamole-thallium-201 myocardial perfusion scanning demonstrated more homogeneous myocardial perfusion in idiopathic cardiomyopathy (mean perfusion defect 25 +/- 11 vs 6 +/- 6%, p less than 0.001) and successfully predicted the correct etiology of LV dysfunction in 20 of 22 (91%) patients.

  10. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease

    SciTech Connect

    Mahmarian, J.J.; Verani, M.S. )

    1991-05-21

    Exercise thallium-201 perfusion scintigraphy has been used extensively over the last decade for the detection and localization of coronary artery disease. Single-photon emission computed tomography (SPECT) is a refinement of presently available techniques, offering improved identification over planar imaging of individual vessel stenosis and quantification of the extent of abnormally perfused myocardium. In this review, the planar and SPECT techniques are discussed in light of the most recently published large patient series, and with regard to the many factors that affect the sensitivity and specificity of perfusion imaging in identifying coronary artery disease. The clinical implications of exercise perfusion scintigraphy and its future applications in cardiology practice are discussed.67 references.

  11. Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques

    PubMed Central

    Li, Ka-Loh; Ostergaard, Leif; Calamante, Fernando

    2014-01-01

    Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI. PMID:25246817

  12. Natural course of treated pulmonary embolism. Evaluation by perfusion lung scintigraphy, gas exchange, and chest roentgenogram.

    PubMed

    Prediletto, R; Paoletti, P; Fornai, E; Perissinotto, A; Petruzzelli, S; Formichi, B; Ruschi, S; Palla, A; Giannella-Neto, A; Giuntini, C

    1990-03-01

    Perfusion lung scintigrams, pulmonary gas exchange data, and chest roentgenograms were obtained in 33 patients during acute embolism and over the following six months in order to assess their clinical usefulness in monitoring the effect of therapy. To this purpose, the measurement of pulmonary gas exchange and the presence of chest x-ray findings were compared with perfusion lung scintigraphic abnormalities both at diagnosis and after 7, 30, and 180 days during treatment. More than 50 percent of the pulmonary arterial tree was obstructed at diagnosis, and a large part of perfusion recovery was complete within the first month. All of the gas exchange parameters were abnormal at diagnosis, and the rate of their improvement was related to that of perfusion recovery. Interestingly, PaO2st (ie, PaO2 corrected for hyperventilation) and VE tended to return to normal during the first month as a consequence of the progressive recovery of perfusion, whereas oxygen and carbon dioxide gradients and physiologic dead space showed the persistence of some abnormalities six months after diagnosis. Significant correlations were observed between the number of ULSs evaluated on the perfusion lung scintigram (and considered an index of the severity of pulmonary embolization) and all of the gas exchange parameters at diagnosis (correlation coefficients averaged from 0.41 to 0.73) and after 7 and 30 days. The enlargement of the right descending pulmonary artery and particularly the "sausage" sign and the Westermark sign were significantly associated with a higher degree of gas exchange impairment and with a more severe embolization. In conclusion, this study demonstrates that perfusion lung scintigraphy has a primary role in monitoring the recovery of patients with pulmonary embolism under treatment. Moreover, the chest roentgenogram may help in this purpose. A second major result is that the simple measurement of some gas exchange parameters may allow the assessment of functional

  13. Cerebral malaria

    PubMed Central

    Newton, C.; Hien, T. T.; White, N.

    2000-01-01

    Cerebral malaria may be the most common non-traumatic encephalopathy in the world. The pathogenesis is heterogenous and the neurological complications are often part of a multisystem dysfunction. The clinical presentation and pathophysiology differs between adults and children. Recent studies have elucidated the molecular mechanisms of pathogenesis and raised possible interventions. Antimalarial drugs, however, remain the only intervention that unequivocally affects outcome, although increasing resistance to the established antimalarial drugs is of grave concern. Artemisinin derivatives have made an impact on treatment, but other drugs may be required. With appropriate antimalarial drugs, the prognosis of cerebral malaria often depends on the management of other complications—for example, renal failure and acidosis. Neurological sequelae are increasingly recognised, but further research on the pathogenesis of coma and neurological damage is required to develop other ancillary treatments.

 PMID:10990500

  14. Acute effects of three isoflavone class phytoestrogens and a mycoestrogen on cerebral microcirculation.

    PubMed

    Salom, Juan B; Castelló-Ruiz, María; Pérez-Asensio, Fernando J; Burguete, María C; Torregrosa, Germán; Alborch, Enrique

    2007-08-01

    Phytoestrogens and mycoestrogens are naturally occurring plant and fungus secondary metabolites with estrogen-like structure and/or actions. We aimed to check the hypothesis that phytoestrogens and mycoestrogens, due to their ability to elicit cerebral vasodilation, can induce acute increases in brain blood perfusion. For this purpose, we continuously recorded cerebrocortical perfusion by laser-Doppler flowmetry in anesthetized rats receiving intracarotid infusions (1 mg/kg) of one of the following estrogenic compounds: biochanin A, daidzein, genistein or zearalanone. We have shown the ability of two isoflavone class phytoestrogens (daidzein and biochanin A) and the mycoestrogen zearalanone to induce acute increases in brain blood flow when locally infused into the cerebral circulation of anesthetized rats. The isoflavone genistein failed to induce a significant increase in brain perfusion. No concomitant changes in blood pressure were recorded during the cerebral effects of the estrogenic compounds. Therefore, these microcirculatory effects were due to direct actions of the estrogenic compounds on the cerebrovascular bed.

  15. [Posterior cerebral artery infarctions with possible interaction between hypoperfusion and embolism].

    PubMed

    Durand-Birchenall, J; Bugnicourt, J-M

    2013-12-01

    Although embolism and hypoperfusion may well occur concurrently in a non-negligible proportion of cerebral infarction patients, there is currently lack of proof, especially in the posterior circulation. Here, we are reporting on a case of multiple cerebral infarctions in a patient with neurofibromatosis type 1, multiple vascular abnormalities of the posterior cerebral circulation and intracranial artery occlusion. We hypothesize that cerebral blood flow impairment may have affected the clearance and destination of embolic particles.

  16. Changes in regional cerebral blood flow with Chaihu-Shugan-San in the treatment of major depression

    PubMed Central

    Qiu, Juan; Hu, Sui-Yu; Shi, Guang-Qing; Wang, Su-e

    2014-01-01

    Background: Chaihu-Shugan-San (CHSGS) is a well-known Chinese traditional prescription used for depression. Objective: To observe the regional cerebral blood flow (rCBF) changes in patients with major depression and to investigate rCBF and clinical response to CHSGS. Materials and Methods: A total of 33 unmedicated patients with major depression and 12 healthy comparison subjects underwent single photon emission computed tomography (SPECT) imaging. A total of 33 unmedicated patients with major depression all met the diagnostic criteria of stagnation of liver qi of traditional Chinese medicine and were divided into two groups: CHSGS group (n = 20) and fluoxetine group (n = 13). SPECT imaging was restudied in posttreatment. Results: SPECT detected abnormalities in all (100.0%) patients both in CHSGS group and fluoxetine group. All healthy subjects were normal results. The depressed patients showed rCBF decreased in the multiple regions. The semiquantitative values of bilateral frontal and left temporal lobes both in CHSGS group and fluoxetine group were lower than that in healthy group (P < 0.05). Reexamined SPECT after 8 weeks treatment with CHSGS showed the consistency between the increase in perfusion defects and the improvement of clinical cerebral symptoms. The semiquantitative values increased in posttreatment, when compared with pretreatment (P < 0.05). Conclusion: SPECT represents a sensitive tool to detect the major depressive disorder, which show the rCBF decreased. rCBF perfusion defects can be reversed and clinical symptoms can be improved by CHSGS treatment. CHSGS treatment is effective, well-tolerated, and safe for depression. By semiquantitative analysis, SPECT can objectively detect rCBF changes that is useful for guiding treatment. PMID:25422553

  17. Cerebral vasculopathy in children with sickle cell anemia.

    PubMed

    Fasano, Ross M; Meier, Emily R; Hulbert, Monica L

    2015-01-01

    Sickle cell anemia (SCA)-associated cerebral vasculopathy and moyamoya is a unique entity reflecting the abnormal interactions between sickled red blood cells (RBCs) and the cerebral arterial endothelium. Endothelial injury, coagulation activation, and the inflammatory response generated by sickled RBCs are implicated in the development of cerebral vasculopathy, but the pathophysiology remains incompletely understood. SCA-specific screening and treatment guidelines have successfully reduced the incidence of overt strokes in this high-risk population. However, despite aggressive hematological management, many children with cerebral vasculopathy due to SCA have progressive vasculopathy and recurrent strokes; therefore, more effective therapies, such as revascularization surgery and curative hematopoietic stem cell transplant, are urgently needed.

  18. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  19. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  20. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  1. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  2. Mechanisms of Astrocyte-Mediated Cerebral Edema

    PubMed Central

    Stokum, Jesse A.; Kurland, David B.; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4- dependent edema formation. PMID:24996934

  3. Liver Abnormalities in Cardiac Diseases and Heart Failure

    PubMed Central

    Alvarez, Alicia M.; Mukherjee, Debabrata

    2011-01-01

    Heart failure (HF) is characterized by the inability of systemic perfusion to meet the body's metabolic demands and is usually caused by cardiac pump dysfunction and may occasionally present with symptoms of a noncardiac disorder such as hepatic dysfunction. The primary pathophysiology involved in hepatic dysfunction from HF is either passive congestion from increased filling pressures or low cardiac output and the consequences of impaired perfusion. Passive hepatic congestion due to increased central venous pressure may cause elevations of liver enzymes and both direct and indirect serum bilirubin. Impaired perfusion from decreased cardiac output may be associated with acute hepatocellular necrosis with marked elevations in serum aminotransferases. Cardiogenic ischemic hepatitis (“shock liver”) may ensue following an episode of profound hypotension in patients with acute HF. We discuss pathophysiology and identification of liver abnormalities that are commonly seen in patients with HF. PMID:22942628

  4. Quantification of brain perfusion with tracers retained by the brain

    SciTech Connect

    Pupi, A.; Bacciottini, L.; De Cristofaro, M.T.R.; Formiconi, A.R.; Castagnoli, A.

    1991-12-31

    Almost a decade ago, tracers, labelled with {sup 123}I and {sup 99m}Tc, that are retained by the brain, started to be used for studies of regional brain perfusion (regional cerebral blood flow, rCBF). To date, these tracers have been used for brain perfusion imaging with SPECT in brain disorders as well as for physiological activation protocols. Only seldom, however, have they been used in protocols that quantitatively measure rCBF. Nevertheless, comparative studies with perfusion reference tracers have repeatedly demonstrated that the brain uptake of these brain-retained tracers is correlated to perfusion, the major determinant of the distribution of these tracers in the brain. The brain kinetics of {sup 99m}Tc HMPAO, which is the tracer most commonly used, was described with a two-compartment tissue model. The theoretical approach, which is, in itself, sufficient for modeling quantitative measurements with {sup 99m}Tc HMPAO, initially suggested the possibility of empirically narrowing the distance between the brain`s regional uptake of the tracer and rCBF with a linearization algorithm which uses the cerebellum as the reference region. The value of this empirical method is hampered by the fact that the cerebellum can be involved in cerebrovascular disease (i.e. cerebellar diaschisis) as well as in several other brain disorders (e.g. anxiety, and dementia of the Alzheimer type). It also was proposed that different reference regions (occipital, whole slice, or whole brain) should be selected in relation to the brain disorder under study. However, this approach does not solve the main problem because it does not equip us with a reliable tool to evaluate rCBF with a high predictive value, and, at the same time, to reduce intersubject variability. The solution would be to measure a quantitative parameter which directly reflects rCBF, such as the unidirectional influx constant of the freely diffusible flow-limited tracers. 45 refs., 3 figs., 1 tab.

  5. Diagnostic Performance of Resting CT Myocardial Perfusion in Patients With Possible Acute Coronary Syndrome

    PubMed Central

    Branch, Kelley R.; Busey, Janet; Mitsumori, Lee M.; Strote, Jared; Caldwell, James H.; Busch, Joshua H.; Shuman, William P.

    2014-01-01

    OBJECTIVE Coronary CT angiography has high sensitivity, but modest specificity, to detect acute coronary syndrome. We studied whether adding resting CT myocardial perfusion imaging improved the detection of acute coronary syndrome. SUBJECTS AND METHODS Patients with low-to-intermediate cardiac risk presenting with possible acute coronary syndrome received both the standard of care evaluation and a research thoracic 64-MDCT examination. Patients with an obstructive (> 50%) stenosis or a nonevaluable coronary segment on CT were diagnosed with possible acute coronary syndrome. CT perfusion was determined by applying gray and color Hounsfield unit maps to resting CT angiography images. Adjudicated patient diagnoses were based on the standard of care and 3-month follow-up. Patient-level diagnostic performance for acute coronary syndrome was calculated for coronary CT, CT perfusion, and combined techniques. RESULTS A total of 105 patients were enrolled. Of the nine (9%) patients with acute coronary syndrome, all had obstructive CT stenoses but only three had abnormal CT perfusion. CT perfusion was normal in all other patients. To detect acute coronary syndrome, CT angiography had 100% sensitivity, 89% specificity, and a positive predictive value of 45%. For CT perfusion, specificity and positive predictive value were each 100%, and sensitivity was 33%. Combined cardiac CT and CT perfusion had similar specificity but a higher positive predictive value (100%) than did CT angiography. CONCLUSION Resting CT perfusion using CT angiographic images may have high specificity and may improve CT positive predictive value for acute coronary syndrome without added radiation and contrast. However, normal resting CT perfusion cannot exclude acute coronary syndrome. PMID:23617513

  6. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  7. Normal and abnormal lid function.

    PubMed

    Rucker, Janet C

    2011-01-01

    This chapter on lid function is comprised of two primary sections, the first on normal eyelid anatomy, neurological innervation, and physiology, and the second on abnormal eyelid function in disease states. The eyelids serve several important ocular functions, the primary objectives of which are protection of the anterior globe from injury and maintenance of the ocular tear film. Typical eyelid behaviors to perform these functions include blinking (voluntary, spontaneous, or reflexive), voluntary eye closure (gentle or forced), partial lid lowering during squinting, normal lid retraction during emotional states such as surprise or fear (startle reflex), and coordination of lid movements with vertical eye movements for maximal eye protection. Detailed description of the neurological innervation patterns and neurophysiology of each of these lid behaviors is provided. Abnormal lid function is divided by conditions resulting in excessive lid closure (cerebral ptosis, apraxia of lid opening, blepharospasm, oculomotor palsy, Horner's syndrome, myasthenia gravis, and mechanical) and those resulting in excessive lid opening (midbrain lid retraction, facial nerve palsy, and lid retraction due to orbital disease).

  8. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    PubMed Central

    Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-01-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability. PMID:26633914

  9. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  10. Investigating cerebral oedema using poroelasticity.

    PubMed

    Vardakis, John C; Chou, Dean; Tully, Brett J; Hung, Chang C; Lee, Tsong H; Tsui, Po-Hsiang; Ventikos, Yiannis

    2016-01-01

    Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model).

  11. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  12. Perfusion decellularization of whole organs.

    PubMed

    Guyette, Jacques P; Gilpin, Sarah E; Charest, Jonathan M; Tapias, Luis F; Ren, Xi; Ott, Harald C

    2014-01-01

    The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4-5 d) and scaled to clinically relevant models (porcine and human organs, 12-14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.

  13. Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage.

    PubMed

    Cetas, J S; Lee, D R; Alkayed, N J; Wang, R; Iliff, J J; Heinricher, M M

    2009-10-06

    Symptomatic ischemia following aneurysmal subarachnoid hemorrhage (SAH) is common but poorly understood and inadequately treated. Severe constriction of the major arteries at the base of the brain, termed vasospasm, traditionally has been thought to be a proximal event underlying these ischemias, although microvascular changes also have been described. The vast majority of studies aimed at understanding the pathogenesis of ischemic deficits, and vasospasm have focused on the interaction of the "spasmogen" of the extravasated blood with the smooth muscle and endothelium of the arteries. This has led to a comparative neglect of the contribution of the CNS to the maintenance of cerebral perfusion. In the present study, we focused on the role of the rostral ventromedial medulla (RVM) in modulating cerebral perfusion at rest and following an experimental SAH in the rat. Changes in cerebral blood flow (CBF) were measured using laser-Doppler flowmetry and three-dimensional optical microangiography. Focal application of a GABA(A) receptor agonist and antagonist was used to respectively inactivate and activate the RVM. We show here that the RVM modulates cerebral blood flow under resting conditions, and further, contributes to restoration of cerebral perfusion following a high-grade SAH. Failure of this brainstem compensatory mechanism could be significant for acute perfusion deficits seen in patients following subarachnoid hemorrhage.

  14. Computation of ventilation-perfusion ratio with Kr-81m in pulmonary embolism

    SciTech Connect

    Meignan, M.; Simonneau, G.; Oliveira, L.; Harf, A.; Cinotti, L.; Cavellier, J.F.; Duroux, P.; Ansquer, J.C.; Galle, P.

    1984-02-01

    Diagnostic difficulties occur in pulmonary embolism (PE) during visual analysis of ventilation-perfusion images in matched defects or in chronic obstructive lung disease (COPD). In 44 patients with angiographically confirmed PE and in 40 patients with COPD, the regional ventilation-perfusion ratios (V/Q) were therefore computed using krypton-81m for each perfusion defect, and were displayed in a functional image. In patients with PE and mismatched defects, a high V/Q (1.96) was observed. A V/Q > 1.25 was also found in nine of 11 patients having PE and indeterminate studies (studies with perfusion abnormalities matched by radiographic abnormalities). COPD was characterized by matched defects and low V/Q. The percentage of patients correctly classified as having PE or COPD increased from 56% when considering the match or mismatched character to 88% when based on a V/Q of 1.25 in the region of the perfusion defect. This quantitative analysis, therefore, seems useful in classifying patients with scintigraphic suspicion of PE.

  15. Human immunodeficiency virus-infected subjects have no altered myocardial perfusion.

    PubMed

    Catzin-Kuhlmann, Andres; Orea-Tejeda, Arturo; Castillo-Martínez, Lilia; Colín-Ramírez, Eloisa; Asz, Daniel; Aguirre, Víctor H; Herrera, Luis E; Valles, Victoria; Aguilar-Salinas, Carlos A; Sierra, Juan; Calva, Juan J

    2007-10-31

    We assessed myocardial perfusion (blinded interpretation of a single-photon emission computed tomography) and known risk factors for atherosclerosis in 105 randomly selected human immunodeficiency virus (HIV)-infected patients in a clinic in Mexico City and in a community sample of 105 age and gender-matched infection-free subjects. An abnormal scan was obtained in 4.8% of the infected and in 7.6% of the non-infected subjects. Severity of scintigraphic abnormalities was similar in both groups. In these Mexican HIV-infected patients, despite a long time of infection and of exposure to combined antiretroviral therapy and to other classical risk factors for atherosclerosis, there was no evidence of increased risk for abnormal myocardial perfusion. Dissimilar magnitude in the hazard of coronary heart disease may occur among infected populations with different frequencies of traditional predisposing factors for cardiovascular illness.

  16. Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network.

    PubMed

    Claassen, Jurgen A H R; Meel-van den Abeelen, Aisha S S; Simpson, David M; Panerai, Ronney B

    2016-04-01

    Cerebral autoregulation is the intrinsic ability of the brain to maintain adequate cerebral perfusion in the presence of blood pressure changes. A large number of methods to assess the quality of cerebral autoregulation have been proposed over the last 30 years. However, no single method has been universally accepted as a gold standard. Therefore, the choice of which method to employ to quantify cerebral autoregulation remains a matter of personal choice. Nevertheless, given the concept that cerebral autoregulation represents the dynamic relationship between blood pressure (stimulus or input) and cerebral blood flow (response or output), transfer function analysis became the most popular approach adopted in studies based on spontaneous fluctuations of blood pressure. Despite its sound theoretical background, the literature shows considerable variation in implementation of transfer function analysis in practice, which has limited comparisons between studies and hindered progress towards clinical application. Therefore, the purpose of the present white paper is to improve standardisation of parameters and settings adopted for application of transfer function analysis in studies of dynamic cerebral autoregulation. The development of these recommendations was initiated by (but not confined to) theCerebral Autoregulation Research Network(CARNet -www.car-net.org).

  17. Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network

    PubMed Central

    Meel-van den Abeelen, Aisha SS; Simpson, David M; Panerai, Ronney B

    2016-01-01

    Cerebral autoregulation is the intrinsic ability of the brain to maintain adequate cerebral perfusion in the presence of blood pressure changes. A large number of methods to assess the quality of cerebral autoregulation have been proposed over the last 30 years. However, no single method has been universally accepted as a gold standard. Therefore, the choice of which method to employ to quantify cerebral autoregulation remains a matter of personal choice. Nevertheless, given the concept that cerebral autoregulation represents the dynamic relationship between blood pressure (stimulus or input) and cerebral blood flow (response or output), transfer function analysis became the most popular approach adopted in studies based on spontaneous fluctuations of blood pressure. Despite its sound theoretical background, the literature shows considerable variation in implementation of transfer function analysis in practice, which has limited comparisons between studies and hindered progress towards clinical application. Therefore, the purpose of the present white paper is to improve standardisation of parameters and settings adopted for application of transfer function analysis in studies of dynamic cerebral autoregulation. The development of these recommendations was initiated by (but not confined to) the Cerebral Autoregulation Research Network (CARNet – www.car-net.org). PMID:26782760

  18. Stress-first single photon emission computed myocardial perfusion imaging

    PubMed Central

    Aquino, C I; Scarano, M; Squame, F; Casaburi, G; Nori, S L; Pace, L

    2016-01-01

    Background Myocardial perfusion imaging (MPI) with single photon emission tomography (SPET) is widely used in coronary artery disease evaluation. Recently major dosimetric concerns have arisen. The aim of this study was to evaluate if a pre-test scoring system could predict the results of stress SPET MPI, thus avoiding two radionuclide injections. Methods All consecutive patients (n=309) undergoing SPET MPI during the first 6 months of 2014 constituted the study group. The scoring system is based on these characteristics: age >65 years (1 point), diabetes (2 points), typical chest pain (2 points), congestive heart failure (3 points), abnormal ECG (4 points), male gender (4 points), and documented previous CAD (5 points). The patients were divided on the basis of the prediction score into 3 classes of risk for an abnormal stress-first protocol. Results An abnormal stress SPET MPI was present in 7/31 patients (23%) with a low risk score, in 24/90 (27%) with an intermediate score risk, and in 124/188 (66%) with an high score risk. ROC curve analysis showed good prediction of abnormal stress MPI. Conclusions Our results suggest an appropriate use of a pre-test clinical prediction formula of abnormal stress MPI in a routine clinical setting. PMID:27896227

  19. Cumulative Effects of Repeated Brief Cerebral Ischemia

    DTIC Science & Technology

    1994-01-01

    Lactate in the Isolated , Perfused Dog Brain during Anoxia and Postanoxic Recovery, J. Biol. Chem., 248:2489-2496 1975. 8) Nilsson B, Norberg K...Flexible System of Enzy-1 8.6 15.4 matic Analysis, New York, Academic Press, pp 174-177 2 10.9 10.8 Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW 3...Nilsson B, Norberg K, Nordstrom CH, Siesjo BK (1975) Rate of 7 7.9 9.1 energy utilization in the cerebral cortex of rats. Acta Physiol14.5 8.5 Scand 93:569

  20. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  1. A patient-specific visualization tool for comprehensive analysis of coronary CTA and perfusion MRI data

    NASA Astrophysics Data System (ADS)

    Kirisli, H. A.; Gupta, V.; Kirschbaum, S.; Neefjes, L.; van Geuns, R. J.; Mollet, N.; Lelieveldt, B. P. F.; Reiber, J. H. C.; van Walsum, T.; Niessen, W. J.

    2011-03-01

    Cardiac magnetic resonance perfusion imaging (CMR) and computed tomography angiography (CTA) are widely used to assess heart disease. CMR is used to measure the global and regional myocardial function and to evaluate the presence of ischemia; CTA is used for diagnosing coronary artery disease, such as coronary stenoses. Nowadays, the hemodynamic significance of coronary artery stenoses is determined subjectively by combining information on myocardial function with assumptions on coronary artery territories. As the anatomy of coronary arteries varies greatly between individuals, we developed a patient-specific tool for relating CTA and perfusion CMR data. The anatomical and functional information extracted from CTA and CMR data are combined into a single frame of reference. Our graphical user interface provides various options for visualization. In addition to the standard perfusion Bull's Eye Plot (BEP), it is possible to overlay a 2D projection of the coronary tree on the BEP, to add a 3D coronary tree model and to add a 3D heart model. The perfusion BEP, the 3D-models and the CTA data are also interactively linked. Using the CMR and CTA data of 14 patients, our tool directly established a spatial correspondence between diseased coronary artery segments and myocardial regions with abnormal perfusion. The location of coronary stenoses and perfusion abnormalities were visualized jointly in 3D, thereby facilitating the study of the relationship between the anatomic causes of a blocked artery and the physiological effects on the myocardial perfusion. This tool is expected to improve diagnosis and therapy planning of early-stage coronary artery disease.

  2. Prognostic value of thallium-201 perfusion defects in idiopathic dilated cardiomyopathy

    SciTech Connect

    Doi, Y.L.; Chikamori, T.; Tukata, J.; Yonezawa, Y.; Poloniecki, J.D.; Ozawa, T.; McKenna, W.J. )

    1991-01-15

    To assess the prognostic significance of thallium-201 perfusion defects in patients with idiopathic dilated cardiomyopathy (IDC), 43 patients underwent thallium scintigraphy in addition to clinical, echocardiographic, angiographic and hemodynamic evaluation. Eleven patients had no significant thallium perfusion abnormality, 19 had multiple small defects and 13 had a large defect. During 3.2 +/- 2.2 years, 14 patients had disease-related mortality. The patients who died had a higher incidence of ventricular tachycardia (71 vs 31%; p less than 0.02), increased cardiothoracic ratio (60 +/- 6 vs 54 +/- 6; p = 0.005), decreased fractional shortening (11 +/- 6 vs 15 +/- 5; p less than 0.05), increased pulmonary wedge pressure (15 +/- 7 vs 10 +/- 6 mm Hg; p = 0.05), increased left ventricular end-diastolic pressure (21 +/- 8 vs 14 +/- 6 mm Hg; p = 0.02) and abnormal thallium perfusion defects (13 of 14 vs 16 of 26; p less than 0.05) compared with survivors. Age, gender, left ventricular end-systolic and end-diastolic dimensions, cardiac index and ejection fraction were not statistically different in the survivors versus the patients who died. Kaplan-Meier survival estimates at 1, 3 and 5 years were 100% in patients without significant perfusion abnormality; 89, 77 and 64%, respectively, in patients with multiple small defects; and 84, 76 and 30%, respectively, in patients with a large defect (p less than 0.025 by log rank test).

  3. INTRAVENOUS REGIONAL ANTIBIOTIC PERFUSION THERAPY AS AN ADJUNCTIVE TREATMENT FOR DIGITAL LESIONS IN SEABIRDS.

    PubMed

    Fiorello, Christine V

    2017-03-01

    Foot infections are a common problem among seabirds in wildlife rehabilitation. Pododermatitis and digital infections are often challenging to treat because of the presence of suboptimal substrates, abnormal weight-bearing due to injuries, and suboptimal nutritional or health status. Seabirds represent the majority of animals requiring rehabilitation after oil spills, and foot problems are a common reason for euthanasia among these birds. Antibiotic intravenous regional perfusion therapy is frequently used in humans and other species to treat infections of the distal extremities, but it has not been evaluated in seabirds. During the 2015 Refugio oil spill response, four birds with foot lesions (pododermatitis, osteomyelitis, or both) were treated with ampicillin/sulbactam administered intravenously to the affected limb(s) in addition to systemic antibiotics and anti-inflammatories. Three of the birds, all brown pelicans ( Pelecanus occidentalis ) recovered rapidly and were released. Two of these birds had acute pododermatitis and were treated once with intravenous regional perfusion. They were released approximately 3 wk after the perfusion therapy. The third pelican had osteomyelitis of a digit. It was treated twice with intravenous regional perfusion and was released about 1 mo after the initial perfusion therapy. The fourth bird, a Pacific loon ( Gavia pacifica ), was treated once with perfusion therapy but did not respond to treatment and was euthanatized. No serious adverse effects were observed. This technique should be explored further in avian species.

  4. Myocardial perfusion imaging with thallium-201: correlation with coronary arteriography and electrocardiography

    PubMed Central

    Sternberg, Leonard; Wald, Robert W.; Feiglin, David H.I.; Morch, John E.

    1978-01-01

    Myocardial perfusion imaging with thallium-201 and electrocardiography with the subject at rest and undergoing submaximal treadmill exercise were performed in 19 men and 3 women. Selective coronary arteriography and left ventriculography showed that 7 had normal coronary arteries and 15 had coronary artery disease. The 11 persons with electrocardiographic evidence of an old myocardial infarct (q waves) had a perfusion defect at rest in the area of the infarct and a segmental abnormality of wall motion apparent on the left ventriculogram corresponding to the perfusion defect. Myocardial perfusion imaging and electrocardiography were equally sensitive in detecting coronary artery disease in exercising individuals: perfusion defects were noted in 7 of the 15 persons with coronary artery disease, and diagnostic ST-segment depression was present in 8 of the 15. Combination of the results of the two tests with exercise permitted the identification of 11 of the 15 persons and improved the sensitivity. Combination of the results of rest and exercise imaging and electrocardiography permitted the identification of 94% of the patients with coronary artery disease. Myocardial perfusion imaging with 201TI in the subject at rest is a sensitive indicator of previous myocardial infarction. Imaging after the subject has exercised is a useful adjunct to conventional exercise electrocardiography, especially in those whose exercise electrocardiogram is non-interpretable. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:630487

  5. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  6. High-altitude cerebral oedema mimicking stroke

    PubMed Central

    Yanamandra, Uday; Gupta, Amul; Patyal, Sagarika; Varma, Prem Prakash

    2014-01-01

    High-altitude cerebral oedema (HACO) is the most fatal high-altitude illness seen by rural physicians practising in high-altitude areas. HACO presents clinically with cerebellar ataxia, features of raised intracranial pressure (ICP) and coma. Early identification is important as delay in diagnosis can be fatal. We present two cases of HACO presenting with focal deficits mimicking stroke. The first patient presented with left-sided hemiplegia associated with the rapid deterioration in the sensorium. Neuroimaging revealed features suggestive of vasogenic oedema. The second patient presented with monoplegia of the lower limb. Neuroimaging revealed perfusion deficit in anterior cerebral artery territory. Both patients were managed with dexamethasone and they improved dramatically. Clinical picture and neuroimaging closely resembled acute ischaemic stroke in both cases. Thrombolysis in these patients would have been disastrous. Recent travel to high altitude, young age, absence of atherosclerotic risk factors and features of raised ICP concomitantly directed the diagnosis to HACO. PMID:24671373

  7. [99mTc-ECD dynamic SPECT in "luxury perfusion" of subacute stroke].

    PubMed

    Ogasawara, K; Fujiwara, S; Yoshimoto, T

    1995-11-01

    To evaluate the cerebral pharmacokinetics of 99mTc-ethyl cysteinate dimer (99mTc-ECD) at blood flow levels beyond the normal range, we investigated "luxury perfusion" in subacute stroke, ictal hyperperfusion in epilepsy and post-decompressive hyperemia in head trauma. All 7 patients showed a hyperactive area on SPECT studies using 99mTc-HM-PAO. 99mTc-ECD static image demonstrated a hyperactive area in both epilepsy and head trauma, and a hypoactive area in "luxury perfusion." On the dynamic SPECT of 99mTc-ECD in both epilepsy and head trauma, brain distribution of the tracer was determined within 2 min. postinjection and remained stable for up to 1 hour; however, "luxury perfusion" area showed a change from initial hyperactivity to late hypoactivity with the passage of time. The time activity curve in "luxury perfusion" area demonstrated a steep decrease of counts/pixel for up to 4-5 minutes postinjection, and a moderate decrease in the following phase. The early wash-out mechanism of 99mTc-ECD from "luxury perfusion" area can be described by a biexponential function including an initial steep decrease representing the rapid loss of the lipophilic complexes which were not metabolized in injured brain tissue.

  8. Brain hemorrhage after endovascular reperfusion therapy of ischemic stroke: a threshold-finding whole-brain perfusion CT study.

    PubMed

    Renú, Arturo; Laredo, Carlos; Tudela, Raúl; Urra, Xabier; Lopez-Rueda, Antonio; Llull, Laura; Oleaga, Laura; Amaro, Sergio; Chamorro, Ángel

    2017-01-01

    Endovascular reperfusion therapy is increasingly used for acute ischemic stroke treatment. The occurrence of parenchymal hemorrhage is clinically relevant and increases with reperfusion therapies. Herein we aimed to examine the optimal perfusion CT-derived parameters and the impact of the duration of brain ischemia for the prediction of parenchymal hemorrhage after endovascular therapy. A cohort of 146 consecutive patients with anterior circulation occlusions and treated with endovascular reperfusion therapy was analyzed. Recanalization was assessed at the end of reperfusion treatment, and the rate of parenchymal hemorrhage at follow-up neuroimaging. In regression analyses, cerebral blood volume and cerebral blood flow performed better than Delay Time maps for the prediction of parenchymal hemorrhage. The most informative thresholds (receiver operating curves) for relative cerebral blood volume and relative cerebral blood flow were values lower than 2.5% of normal brain. In binary regression analyses, the volume of regions with reduced relative cerebral blood volume and/or relative cerebral blood flow was significantly associated with an increased risk of parenchymal hemorrhage, as well as delayed vessel recanalization. These results highlight the relevance of the severity and duration of ischemia as drivers of blood-brain barrier disruption in acute ischemic stroke and support the role of perfusion CT for the prediction of parenchymal hemorrhage.

  9. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2007-11-02

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  10. Myocardial function and perfusion in the CREST syndrome variant of progressive systemic sclerosis. Exercise radionuclide evaluation and comparison with diffuse scleroderma

    SciTech Connect

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Owens, G.R.; Steen, V.D.; Rodnan, G.P.

    1984-09-01

    Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patients with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease.

  11. [Dynamic cerebral computed tomography. A contribution to the nosology of cerebral space-occupying processes?].

    PubMed

    Westphal, M

    1983-12-01

    Dynamic cerebral studies were carried out in 21 patients with cerebral abnormalities. Thirteen had tumours and eight showed vascular abnormalities. In most cases the diagnosis was confirmed by histology, but occasionally by angiography or by computed tomography and the clinical course. Dynamic cerebral studies were performed, involving the production of concentration-time curves following bolus injection of ordinary contrast medium. The type of contrast enhancement gave a better indication of the nature of the lesion. The method can be used together with the more common type of investigations, such as plain scans and contrast scans. The small number of patients requires further studies with larger numbers; for this a multi-centric study would be suitable.

  12. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults.

    PubMed

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G; Bendlin, Barbara B

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife.

  13. Clinical investigation survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT

    SciTech Connect

    Cao Yue . E-mail: yuecao@med.umich.edu; Tsien, Christina I.; Nagesh, Vijaya; Junck, Larry; Haken, Randall ten; Ross, Brian D.; Chenevert, Thomas L.; Lawrence, Theodore S.

    2006-03-01

    Purpose: To determine whether cerebral blood volume (CBV) and cerebral blood flow can predict the response of high-grade gliomas to radiotherapy (RT) by taking into account spatial heterogeneity and temporal changes in perfusion. Methods and Materials: Twenty-three patients with high-grade gliomas underwent conformal RT, with magnetic resonance imaging perfusion before and at Weeks 1-2 and 3-4 during RT. Tumor perfusion was classified as high, medium, or low. The prognostic values of pre-RT perfusion and the changes during RT for early prediction of tumor response to RT were evaluated. Results: The fractional high-CBV tumor volume before RT and the fluid-attenuated inversion recovery imaging tumor volume were identified as predictors for survival (p = 0.01). Changes in tumor CBV during the early treatment course also predicted for survival. Better survival was predicted by a decrease in the fractional low-CBV tumor volume at Week 1 of RT vs. before RT, a decrease in the fractional high-CBV tumor volume at Week 3 vs. Week 1 of RT, and a smaller pre-RT fluid-attenuated inversion recovery imaging tumor volume (p = 0.01). Conclusion: Early temporal changes during RT in heterogeneous regions of high and low perfusion in gliomas might predict for different physiologic responses to RT. This might also open the opportunity to identify tumor subvolumes that are radioresistant and might benefit from intensified RT.

  14. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    NASA Astrophysics Data System (ADS)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  15. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 .

  16. Progressive cerebral atrophy in neuromyelitis optica.

    PubMed

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients.

  17. Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

    PubMed Central

    Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik BW

    2015-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (p<10-6), glutamate increased by 4.7% (p<10-4) and creatine and phosphocreatine decreased by 15.2% (p<10-3). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  18. Mapping of the cerebral response to acetazolamide using graded asymmetric spin echo EPI.

    PubMed

    Mukherjee, Bhashkar; Preece, Mark; Houston, Gavin C; Papadakis, Nikolas G; Carpenter, T Adrian; Hall, Laurance D; Huang, Christopher L-H

    2005-11-01

    Cerebral vascular reactivity in different regions of the rat brain was quantitatively characterized by spatial and temporal measurements of blood oxygenation level-dependent (BOLD)-fMRI signals following intravenous administration of the carbonic anhydrase inhibitor acetazolamide: this causes cerebral vasodilatation through a cerebral extracellular acidosis that spares neuronal metabolism and vascular smooth muscle function, thus separating vascular and cerebral metabolic events. An asymmetric spin echo-echo planar imaging (ASE-EPI) pulse sequence sensitised images selectively to oxygenation changes in the microvasculature; use of a surface coil receiver enhanced image signal-to-noise ratios (SNRs). Image SNRs and hardware integrity were verified by incorporating quality assurance procedures; cardiorespiratory stability in the physiological preparations were monitored and maintained through the duration of the experiments. These conditions made it possible to apply BOLD contrast fMRI to map regional changes in cerebral perfusion in response to acetazolamide administration. Thus, fMRI findings demonstrated cerebral responses to acetazolamide that directly paralleled the known physiological actions of acetazolamide and whose time courses were similar through all regions of interest, consistent with acetazolamide's initial distribution in brain plasma, where it affects cerebral haemodynamics by acting at cerebral capillary endothelial cells. However, marked variations in the magnitude of the responses suggested relative perfusion deficits in the hippocampus and white matter regions correlating well with their relatively low vascularity and the known vulnerability of the hippocampus to ischaemic damage.

  19. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  20. Neonatal White Matter Abnormality Predicts Childhood Motor Impairment in Very Preterm Children

    ERIC Educational Resources Information Center

    Spittle, Alicia J.; Cheong, Jeanie; Doyle, Lex W.; Roberts, Gehan; Lee, Katherine J.; Lim, Jeremy; Hunt, Rod W.; Inder, Terrie E.; Anderson, Peter J.

    2011-01-01

    Aim: Children born very preterm are at risk for impaired motor performance ranging from cerebral palsy (CP) to milder abnormalities, such as developmental coordination disorder. White matter abnormalities (WMA) at term have been associated with CP in very preterm children; however, little is known about the impact of WMA on the range of motor…

  1. Cerebral vasospasm pharmacological treatment: an update.

    PubMed

    Siasios, Ioannis; Kapsalaki, Eftychia Z; Fountas, Kostas N

    2013-01-01

    Aneurysmal subarachnoid hemorrhage- (aSAH-) associated vasospasm constitutes a clinicopathological entity, in which reversible vasculopathy, impaired autoregulatory function, and hypovolemia take place, and lead to the reduction of cerebral perfusion and finally ischemia. Cerebral vasospasm begins most often on the third day after the ictal event and reaches the maximum on the 5th-7th postictal days. Several therapeutic modalities have been employed for preventing or reversing cerebral vasospasm. Triple "H" therapy, balloon and chemical angioplasty with superselective intra-arterial injection of vasodilators, administration of substances like magnesium sulfate, statins, fasudil hydrochloride, erythropoietin, endothelin-1 antagonists, nitric oxide progenitors, and sildenafil, are some of the therapeutic protocols, which are currently employed for managing patients with aSAH. Intense pathophysiological mechanism research has led to the identification of various mediators of cerebral vasospasm, such as endothelium-derived, vascular smooth muscle-derived, proinflammatory mediators, cytokines and adhesion molecules, stress-induced gene activation, and platelet-derived growth factors. Oral, intravenous, or intra-arterial administration of antagonists of these mediators has been suggested for treating patients suffering a-SAH vasospam. In our current study, we attempt to summate all the available pharmacological treatment modalities for managing vasospasm.

  2. Cerebral Vasospasm Pharmacological Treatment: An Update

    PubMed Central

    Siasios, Ioannis; Kapsalaki, Eftychia Z.; Fountas, Kostas N.

    2013-01-01

    Aneurysmal subarachnoid hemorrhage- (aSAH-) associated vasospasm constitutes a clinicopathological entity, in which reversible vasculopathy, impaired autoregulatory function, and hypovolemia take place, and lead to the reduction of cerebral perfusion and finally ischemia. Cerebral vasospasm begins most often on the third day after the ictal event and reaches the maximum on the 5th–7th postictal days. Several therapeutic modalities have been employed for preventing or reversing cerebral vasospasm. Triple “H” therapy, balloon and chemical angioplasty with superselective intra-arterial injection of vasodilators, administration of substances like magnesium sulfate, statins, fasudil hydrochloride, erythropoietin, endothelin-1 antagonists, nitric oxide progenitors, and sildenafil, are some of the therapeutic protocols, which are currently employed for managing patients with aSAH. Intense pathophysiological mechanism research has led to the identification of various mediators of cerebral vasospasm, such as endothelium-derived, vascular smooth muscle-derived, proinflammatory mediators, cytokines and adhesion molecules, stress-induced gene activation, and platelet-derived growth factors. Oral, intravenous, or intra-arterial administration of antagonists of these mediators has been suggested for treating patients suffering a-SAH vasospam. In our current study, we attempt to summate all the available pharmacological treatment modalities for managing vasospasm. PMID:23431440

  3. Current management and treatment of cerebral vasospasm complicating SAH.

    PubMed

    Kühn, Anna Luisa; Balami, Joyce Saleh; Grunwald, Iris Quasar

    2013-03-01

    Cerebral vasospasm is a common and serious complication of aneurysmal subarachnoid haemorrhage. Despite the improvements in treatment of aneurysmal subarachnoid haemorrhage (aSAH), cerebral vasospasm complicating aSAH has remained the main cause of morbidity and mortality. Subarachnoid haemorrhage (SAH)-induced vasospasm is a complex entity caused by vasculopathy, impaired autoregulation, and hypovolaemia, causing a regional reduction of cerebral brain perfusion which can then induce ischaemia. Cerebral vasospasm can present either asymptomatically detected only radiologically or symptomatically (delayed ischaemic neurologic deficit). The various diagnostic approaches include the use of transcranial doppler, digital subtraction angiography and multimodal computed tomography (CT) and magnetic resonance (MR) techniques. Although digital subtraction angiography is usually the gold standard for the diagnosis of cerebral vasospam, transcranial doppler is commonly the first-screening method for the detection of cerebral vasospam. The treatment of subarachnoid haemorrhage -induced vasospasm include the use of both medical and endovascular therapy. The aim of this review is to discuss the various current therapeutic options and future perspective measures for reducing cerebral vasospasm induced stroke after SAH.

  4. Perioperative management of patients with lung carcinoma and cerebral metastases

    PubMed Central

    Gheorghita, Eva; Pruna, Viorel Mihai; Neagoe, Luminita; Bucur, Cristina; Cristescu, Catioara; Gorgan, Mircea Radu

    2010-01-01

    ABSTRACT Objective: The present study proposes to present the importance of perioperative therapeutic management in survival prolongation and the quality of life for patients that have undergone surgery for cerebral metastases secondary to pulmonary tumors. Method: During 2001-2009, 40 patients with ages between 43-74 years have been diagnosed in our clinic with pulmonary tumor and cerebral metastases. The patients presented single cerebral lesion (excepting one patient with 2 cerebral metastases) and pulmonary tumor. Intracranial pressure (ICP) was high in all cases. All patients have undergone operation with general anesthesia. Results:For all patients the reduction of ICP and keeping an optimal CPP (cerebral perfusion pressure) was pursued. In 38 cases, general anesthesia was performed with Sevoflurane and opioids (fentanyl, remifentanyl, sufentanyl) and in 2 cases the TIVA (total intravenous anesthesia) technique was used with propofol and remifentanyl. 14 of the patients required intraoperative depletive treatment through administering mannitol 20%. 37 patients (92%) have been discharged with improved neurological condition without showing signs of intracranial hypertension, convulsive seizures and with partially or totally remitted hemiparesis and one patient had worse postoperative neurological status. Conclusion:Pulmonary tumor with cerebral metastases represent an important cause for death rate. To solve secondary cerebral lesions, the perioperative management must include assesment and choosing an anesthesia technique with a proper intraoperative management. PMID:21977115

  5. Severe Cerebral Vasospasm in Patients with Hyperthyroidism.

    PubMed

    Oh, Hyuk-Jin; Yoon, Seok-Mann; Oh, Jae-Sang; Shim, Jai-Joon; Bae, Hack-Gun

    2016-12-01

    Cerebral vasospasm associated with hyperthyroidism has not been reported to cause cerebral infarction. The case reported here is therefore the first of cerebral infarction co-existing with severe vasospasm and hyperthyroidism. A 30-year-old woman was transferred to our hospital in a stuporous state with right hemiparesis. At first, she complained of headache and dizziness. However, she had no neurological deficits or radiological abnormalities. She was diagnosed with hyperthyroidism 2 months ago, but she had discontinued the antithyroid medication herself three days ago. Magnetic resonance imaging and angiography showed cerebral infarction with severe vasospasm. Thus, chemical angioplasty using verapamil was performed two times, and antithyroid medication was administered. Follow-up angiography performed at 6 weeks demonstrated complete recovery of the vasospasm. At the 2-year clinical follow-up, she was alert with mild weakness and cortical blindness. Hyperthyroidism may influence cerebral vascular hemodynamics. Therefore, a sudden increase in the thyroid hormone levels in the clinical setting should be avoided to prevent cerebrovascular accidents. When neurological deterioration is noticed without primary cerebral parenchyma lesions, evaluation of thyroid function may be required before the symptoms occur.

  6. Severe Cerebral Vasospasm in Patients with Hyperthyroidism

    PubMed Central

    Oh, Hyuk-Jin; Oh, Jae-Sang; Shim, Jai-Joon; Bae, Hack-Gun

    2016-01-01

    Cerebral vasospasm associated with hyperthyroidism has not been reported to cause cerebral infarction. The case reported here is therefore the first of cerebral infarction co-existing with severe vasospasm and hyperthyroidism. A 30-year-old woman was transferred to our hospital in a stuporous state with right hemiparesis. At first, she complained of headache and dizziness. However, she had no neurological deficits or radiological abnormalities. She was diagnosed with hyperthyroidism 2 months ago, but she had discontinued the antithyroid medication herself three days ago. Magnetic resonance imaging and angiography showed cerebral infarction with severe vasospasm. Thus, chemical angioplasty using verapamil was performed two times, and antithyroid medication was administered. Follow-up angiography performed at 6 weeks demonstrated complete recovery of the vasospasm. At the 2-year clinical follow-up, she was alert with mild weakness and cortical blindness. Hyperthyroidism may influence cerebral vascular hemodynamics. Therefore, a sudden increase in the thyroid hormone levels in the clinical setting should be avoided to prevent cerebrovascular accidents. When neurological deterioration is noticed without primary cerebral parenchyma lesions, evaluation of thyroid function may be required before the symptoms occur. PMID:28184350

  7. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    PubMed Central

    Mills, Jena N.; Mehta, Vivek; Russin, Jonathan; Amar, Arun P.; Rajamohan, Anandh; Mack, William J.

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND). However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD). Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA), CT Angiography (CTA), and MR Angiography (MRA), are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, 133Xe Clearance, Xenon-Enhanced CT (Xe/CT), Perfusion CT (PCT), and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed. PMID:23476766

  8. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  9. Interictal diffusion and perfusion magnetic resonance imaging features of cats with familial spontaneous epilepsy.

    PubMed

    Mizoguchi, Shunta; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Kuwabara, Takayuki; Fujiwara-Igarashi, Aki; Fujita, Michio

    2017-03-01

    OBJECTIVE To evaluate the usefulness of diffusion and perfusion MRI of the cerebrum in cats with familial spontaneous epilepsy (FSECs) and identify microstructural and functional deficit zones in affected cats. ANIMALS 19 FSECs and 12 healthy cats. PROCEDURES Diffusion-weighted, diffusion tensor, and perfusion-weighted MRI of the cerebrum were performed during interictal periods in FSECs. Imaging findings were compared between FSECs and control cats. Diffusion (apparent diffusion coefficient and fractional anisotropy) and perfusion (relative cerebral blood volume [rCBV], relative cerebral blood flow [rCBF], and mean transit time) variables were measured bilaterally in the hippocampus, amygdala, thalamus, parietal cortex gray matter, and subcortical white matter. Asymmetry of these variables in each region was also evaluated and compared between FSECs and control cats. RESULTS The apparent diffusion coefficient of the total amygdala of FSECs was significantly higher, compared with that of control cats. The fractional anisotropy of the right side and total hippocampus of FSECs was significantly lower, compared with that of control cats. The left and right sides and total hippocampal rCBV and rCBF were significantly lower in FSECs than in control cats. The rCBV and rCBF of the parietal cortex gray matter in FSECs were significantly lower than in control cats. CONCLUSIONS AND CLINICAL RELEVANCE In FSECs, diffusion and perfusion MRI detected microstructural changes and hypoperfusion (lowered function) in the cerebrum during interictal periods from that of healthy cats. These findings indicated that diffusion and perfusion MRI may be useful for noninvasive evaluation of epileptogenic foci in cats.

  10. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  11. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  12. Focally perfused succinate potentiates brain metabolism in head injury patients.

    PubMed

    Jalloh, Ibrahim; Helmy, Adel; Howe, Duncan J; Shannon, Richard J; Grice, Peter; Mason, Andrew; Gallagher, Clare N; Stovell, Matthew G; van der Heide, Susan; Murphy, Michael P; Pickard, John D; Menon, David K; Carpenter, T Adrian; Hutchinson, Peter J; Carpenter, Keri Lh

    2016-01-01

    Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism. Microdialysis perfused disodium 2,3-(13)C2 succinate (12 mmol/L) for 24 h into nine sedated traumatic brain injury patients' brains, with simultaneous microdialysate collection for ISCUS analysis of energy metabolism biomarkers (nine patients) and nuclear magnetic resonance of (13)C-labelled metabolites (six patients). Metabolites 2,3-(13)C2 malate and 2,3-(13)C2 glutamine indicated tricarboxylic acid cycle metabolism, and 2,3-(13)C2 lactate suggested tricarboxylic acid cycle spinout of pyruvate (by malic enzyme or phosphoenolpyruvate carboxykinase and pyruvate kinase), then lactate dehydrogenase-mediated conversion to lactate. Versus baseline, succinate perfusion significantly decreased lactate/pyruvate ratio (p = 0.015), mean difference -12%, due to increased pyruvate concentration (+17%); lactate changed little (-3%); concentrations decreased for glutamate (-43%) (p = 0.018) and glucose (-15%) (p = 0.038). Lower lactate/pyruvate ratio suggests better redox status: cytosolic NADH recycled to NAD(+) by mitochondrial shuttles (malate-aspartate and/or glycerol 3-phosphate), diminishing lactate dehydrogenase-mediated pyruvate-to-lactate conversion, and lowering glutamate. Glucose decrease suggests improved utilisation. Direct tricarboxylic acid cycle supplementation with 2,3-(13)C2 succinate improved human traumatic brain injury brain chemistry, indicated by biomarkers and (13)C-labelling patterns in metabolites.

  13. Effects of video game playing on cerebral blood flow in young adults: a SPECT study.

    PubMed

    Chou, Yuan-Hwa; Yang, Bang-Hung; Hsu, Ju-Wei; Wang, Shyh-Jen; Lin, Chun-Lung; Huang, Kai-Lin; Chien Chang, Alice; Lee, Shin-Min

    2013-04-30

    To study the impact of video game playing on the human brain, the effects of two video games playing on cerebral blood flow (CBF) in young adults were determined. Thirty healthy subjects comprising 18 males and 12 females who were familiar with video game playing were recruited. Each subject underwent three sessions of single photon emission computed tomography (SPECT) with a bolus injection of 20 mCi (99m)Tc ECD IV to measure their CBF. The first measurement was performed as baseline, the second and third measurements were performed after playing two different video games for 30 min, respectively. Statistic parametric mapping (SPM2) with Matlab 6.5 implemented on a personal computer was used for image analysis. CBF was significantly decreased in the prefrontal cortex and significantly increased in the temporal and occipital cortices after both video games playing. Furthermore, decreased CBF in the anterior cingulate cortex (ACC) which was significantly correlated with the number of killed characters was found after the violent game playing. The major finding of hypo-perfusion in prefrontal regions after video game playing is consistent with a previous study showing reduced or abnormal prefrontal cortex functions after video game playing. The second finding of decreased CBF in the ACC after playing the violent video game provides support for a previous hypothesis that the ACC might play a role in regulating violent behavior.

  14. Brain/language relationships identified with diffusion and perfusion MRI: Clinical applications in neurology and neurosurgery.

    PubMed

    Hillis, Argye E

    2005-12-01

    Diffusion and perfusion MRI have contributed to stroke management by identifying patients with tissue "at risk" for further damage in acute stroke. However, the potential usefulness of these imaging modalities, along with diffusion tensor imaging, can be expanded by using these imaging techniques with concurrent assessment of language and other cognitive skills to identify the specific cognitive deficits that are associated with diffusion and perfusion abnormalities in particular brain regions. This paper illustrates how this combined behavioral and imaging methodology can yield information that is useful for predicting specific positive effects of intervention to restore blood flow in hypoperfused regions of brain identified with perfusion MRI, and for predicting negative effects of resection of particular brain regions or fiber bundles. Such data allow decisions about neurological and neurosurgical interventions to be based on specific risks and benefits in terms of functional consequences.

  15. Neuroimaging in cerebrovascular disorders: measurement of cerebral physiology after stroke and assessment of stroke recovery.

    PubMed

    Mountz, James M; Liu, Hong-Gang; Deutsch, Georg

    2003-01-01

    Nuclear medicine imaging can play an important role in the diagnosis of stroke risk, the differential diagnosis of vascular and parenchymal cerebral abnormalities, and the understanding and management of poststroke recovery. Radionuclide brain-imaging methods can assess hemodynamic, vascular, and metabolic status before and after stroke. Several techniques, including vasodilatory stress imaging with regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT), oxygen extraction methods with positron emission tomography (PET), and spectroscopic imaging with magnetic resonance spectroscopic imaging, offer ways to distinguish vascular from parenchymal dysfunction and to determine whether any observed abnormalities in cerebral blood flow are primary or secondary disease manifestations. The value of radionuclide imaging in assessing the efficacy of several interventional surgical procedures is presented. Data from several imaging modalities bearing on the controversial issue of luxury perfusion and reperfusion injury are analyzed, including some of the discrepancies between animal and human clinical data. Imaging evidence for white matter disease and microangiopathy is analyzed, including a quantitative rCBF pattern analysis that distinguishes between typical Alzheimer's disease and microangiopathy by using multivariate analysis of variance curve profile analysis, which shows results of significant differences in the circumferential cortical blood flow profiles at P =.01. Microangiopathy showed rCBF reduction in the frontal and frontotemporal regions as compared with the more typical reduction in posterior temporal-parietal rCBF diminution characteristic of Alzheimer's disease. Several functional neuroimaging approaches to the study of cerebral poststroke reorganization are analyzed in the context of 2 major models of recovery: the resolution of diaschisis and reorganization in spared brain. Research on these issues is presented with SPECT, PET

  16. Review of diagnostic uses of shunt fraction quantification with technetium-99m macroaggregated albumin perfusion scan as illustrated by a case of Osler–Weber–Rendu syndrome

    PubMed Central

    Chokkappan, Kabilan; Kannivelu, Anbalagan; Srinivasan, Sivasubramanian; Babut, Suresh Balasubramanian

    2016-01-01

    Bilateral pulmonary arteriovenous malformations (AVMs) are rare and are often associated with the hereditary hemorrhagic telangiectasia (HHT/Osler–Weber–Rendu) syndrome. We present a woman who presented with neurological symptoms due to a cerebral abscess. On further evaluation, bilateral pulmonary AVMs were identified. The patient was diagnosed with HHT, based on positive family history and multiple cerebral AVMs recognized on subsequent catheter angiogram, in addition to the presence of bilateral pulmonary AVMs. Craniotomy with drainage of the brain abscess and endovascular embolization of the pulmonary AVMs was offered to the patient. As a preembolization work-up, the patient underwent nuclear lung perfusion scan with technetium-99m macroaggregated albumin (Tc-99m MAA) to assess the right-to-left shunt secondary to the pulmonary AVMs. Postembolization follow-up perfusion scan was also obtained to estimate the hemodynamic response. The case is presented to describe the role of Tc-99m MAA perfusion lung scan in preoperatively evaluating patients with pulmonary AVMs and to emphasize on the scan's utility in posttreatment follow-up. Various present day usages of the Tc-99m MAA lung perfusion scan, other than diagnosing pulmonary thromboembolism, are discussed. Providing background knowledge on the physiological and hemodynamic aspects of the Tc-99m MAA lung perfusion scan is also attempted. Various imaging pitfalls and necessary precautions while performing Tc-99m MAA lung perfusion scan are highlighted. PMID:27168866

  17. Cerebral Palsy (For Kids)

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  18. Cerebral Palsy (For Kids)

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy A A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  19. Recurrent Bleeding in Hemorrhagic Moyamoya Disease : Prognostic Implications of the Perfusion Status

    PubMed Central

    Jo, Kyung-Il; Kim, Min Soo; Yeon, Je Young; Kim, Jong-Soo

    2016-01-01

    Objective Hemorrhagic moyamoya disease (hMMD) is associated with a poor clinical course. Furthermore, poorer clinical outcomes occur in cases of recurrent bleeding. However, the effect of hemodynamic insufficiency on rebleeding risk has not been investigated yet. This study evaluated the prognostic implications of the perfusion status during the clinical course of adult hMMD. Methods This retrospective study enrolled 52 adult hMMD patients between April 1995 and October 2010 from a single institute. Demographic data, clinical and radiologic characteristics, including hemodynamic status using single photon emission computed tomography (SPECT), and follow up data were obtained via a retrospective review of medical charts and imaging. Statistical analyses were performed to explore potential prognostic factors. Results Hemodynamic abnormality was identified in 44 (84.6%) patients. Subsequent revascularization surgery was performed in 22 (42.3%) patients. During a 58-month (median, range 3–160) follow-up assessment period, 17 showed subsequent stroke (hemorrhagic n=12, ischemic n=5, Actuarial stroke rate 5.8±1.4%/year). Recurrent hemorrhage was associated with decreased basal perfusion (HR 19.872; 95% CI=1.196–294.117) and omission of revascularization (10.218; 95%; CI=1.532–68.136). Conclusion Decreased basal perfusion seems to be associated with recurrent bleeding. Revascularization might prevent recurrent stroke in hMMD by rectifying the perfusion abnormality. A larger-sized, controlled study is required to address this issue. PMID:26962416

  20. Etiology and implications of dense cavitary ''photopenia'' on myocardial perfusion scintigraphy

    SciTech Connect

    Dae, M.; Canhasi, B.; Botvinick, E.; Olvera, S.; Schechtmann, N.; Engelstad, B.; Hattner, R.; Schiller, N.; O'Connell, W.; Faulkner, D.

    1985-07-01

    Dense cavitary ''photopenia'' was observed on 21 of 200 consecutive stress perfusion scintigrams. A prominent finding in many cases, it sometimes occupied only a portion of the region overlying the ventricular cavity, was often seen in some projections and not others, and was frequently adjacent to myocardial perfusion defects. To distinguish an etiology among reduced cavitary radioactivity, relatively increased background radioactivity, or reduced radioactivity in overlying myocardium, quantitative analysis of cavitary, lung and myocardial radioactivity was performed in patients with dense cavitary ''photopenia,'' with and without lung uptake, and compared with results from studies showing increased lung uptake without cavitary photopenia and with normal studies. The results showed that dense cavitary photopenia was related to reduced radioactivity in overlying myocardium. Correlative imaging studies performed with echocardiography and contrast ventriculography confirmed this relationship to myocardial scar in 15 of 21 patients in whom associated akinesis or dyskinesis was seen. Hence, dense cavitary photopenia on stress perfusion scintigraphy is due to a dense myocardial perfusion abnormality, and is often indicative of related scar and an associated severe contraction abnormality.

  1. The etiology and implications of dense cavitary "photopenia" on myocardial perfusion scintigraphy.

    PubMed

    Dae, M; Canhasi, B; Botvinick, E; Olvera, S; Schechtmann, N; Engelstad, B; Hattner, R; Schiller, N; O'Connell, W; Faulkner, D

    1985-07-01

    Dense cavitary "photopenia" was observed on 21 of 200 consecutive stress perfusion scintigrams. A prominent finding in many cases, it sometimes occupied only a portion of the region overlying the ventricular cavity, was often seen in some projections and not others, and was frequently adjacent to myocardial perfusion defects. To distinguish an etiology among reduced cavitary radioactivity, relatively increased background radioactivity, or reduced radioactivity in overlying myocardium, quantitative analysis of cavitary, lung and myocardial radioactivity was performed in patients with dense cavitary "photopenia," with and without lung uptake, and compared with results from studies showing increased lung uptake without cavitary photopenia and with normal studies. The results showed that dense cavitary photopenia was related to reduced radioactivity in overlying myocardium. Correlative imaging studies performed with echocardiography and contrast ventriculography confirmed this relationship to myocardial scar in 15 of 21 patients in whom associated akinesis or dyskinesis was seen. Hence, dense cavitary photopenia on stress perfusion scintigraphy is due to a dense myocardial perfusion abnormality, and is often indicative of related scar and an associated severe contraction abnormality.

  2. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  3. Rho kinase as a target for cerebral vascular disorders

    PubMed Central

    Bond, Lisa M; Sellers, James R; McKerracher, Lisa

    2015-01-01

    The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations. PMID:26062400

  4. Reproducibility of quantitative planar thallium-201 scintigraphy: quantitative criteria for reversibility of myocardial perfusion defects

    SciTech Connect

    Sigal, S.L.; Soufer, R.; Fetterman, R.C.; Mattera, J.A.; Wackers, F.J. )

    1991-05-01

    Fifty-two paired stress/delayed planar {sup 201}TI studies (27 exercise studies, 25 dipyridamole studies) were processed twice by seven technologists to assess inter- and intraobserver variability. The reproducibility was inversely related to the size of {sup 201}Tl perfusion abnormalities. Intraobserver variability was not different between exercise and dipyridamole studies for lesions of similar size. Based upon intraobserver variability, objective quantitative criteria for reversibility of perfusion abnormalities were defined. These objective criteria were tested prospectively in a separate group of 35 {sup 201}Tl studies and compared with the subjective interpretation of quantitative circumferential profiles. Overall, exact agreement existed in 78% of images (kappa statistic k = 0.66). We conclude that quantification of planar {sup 201}Tl scans is highly reproducible, with acceptable inter- and intraobserver variability. Objective criteria for lesion reversibility correlated well with analysis by experienced observers.

  5. Myocardial performance and perfusion during exercise in patients with coronary artery disease caused by Kawasaki disease

    SciTech Connect

    Paridon, S.M.; Ross, R.D.; Kuhns, L.R.; Pinsky, W.W. )

    1990-01-01

    For a study of the natural history of coronary artery lesions after Kawasaki disease and their effect on myocardial blood flow reserve with exercise, five such patients underwent exercise testing on a bicycle. Oxygen consumption, carbon dioxide production, minute ventilation, and electrocardiograms were monitored continuously. Thallium-201 scintigraphy was performed for all patients. One patient stopped exercise before exhaustion of cardiovascular reserve but had no evidence of myocardial perfusion abnormalities. Four patients terminated exercise because of exhaustion of cardiovascular reserve; one had normal cardiovascular reserve and thallium scintiscans, but the remaining patients had diminished cardiovascular reserve. Thallium scintigrams showed myocardial ischemia in two and infarction in one. No patient had exercise-induced electrocardiographic changes. These results indicate that patients with residual coronary artery lesions after Kawasaki disease frequently have reduced cardiovascular reserve during exercise. The addition of thallium scintigraphy and metabolic measurements to exercise testing improved the detection of exercise-induced abnormalities of myocardial perfusion.

  6. Increased ictal perfusion of the thalamus in paroxysmal kinesigenic dyskinesia

    PubMed Central

    Shirane, S; Sasaki, M; Kogure, D; Matsuda, H; Hashimoto, T

    2001-01-01

    The ictal and interictal cerebral blood flow (CBF) were evaluated in a patient with right unilateral short lasting paroxysmal kinesigenic dyskinesia, by means of single photon emission computed tomography (SPECT). The patient was a 6 year old boy with no family history. During an attack, increased CBF was seen in the left thalamus. Subtraction of interictal CBF from ictal CBF disclosed a prominent increase in CBF in the left posterolateral part of the thalamus. This finding suggests that abnormal hyperactivity of thalamic neurons could be responsible for the pathophysiology of paroxysmal kinesigenic dyskinesia in this patient.

 PMID:11511723

  7. Ventilation/perfusion lung scan in pulmonary veno-occlusive disease.

    PubMed

    Seferian, Andrei; Helal, Badia; Jaïs, Xavier; Girerd, Barbara; Price, Laura C; Günther, Sven; Savale, Laurent; Dorfmüller, Peter; Parent, Florence; Sitbon, Olivier; Humbert, Marc; Simonneau, Gérald; Montani, David

    2012-07-01

    Pulmonary veno-occlusive disease (PVOD), a rare form of pulmonary arterial hypertension (PAH), requires histological proof for definitive diagnosis; however, lung biopsy is not recommended in PAH. Recent conjoint European Respiratory Society/European Society of Cardiology guidelines suggest that nonmatched perfusion defects on ventilation/perfusion (V'/Q') lung scanning in PAH patients may suggest PVOD. The aim of our study was to evaluate V'/Q' lung scans in a large cohort of PVOD and idiopathic or heritable PAH patients. V'/Q' lung scans from 70 patients with idiopathic or heritable PAH and 56 patients with confirmed or highly probable PVOD were reviewed in a double-blind manner. The vast majority of V'/Q' lung scans were normal or without significant abnormalities in both groups. No differences in ventilation or perfusion lung scans were observed between PAH and PVOD patients (all p>0.05). Furthermore, no differences were observed between confirmed (n=31) or highly probable PVOD (n=25). Nonmatched perfusion defects were found in seven (10%) idiopathic PAH patients and four (7.1%) PVOD patients (p>0.05). Nonmatched perfusion defects were rarely seen in a large cohort of idiopathic or heritable PAH and PVOD patients. Future recommendations should be amended according to these results suggesting that V'/Q' lung scanning is not useful in discriminating PVOD from idiopathic PAH.

  8. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors.

    PubMed

    Pillai, Jay J; Zacà, Domenico

    2012-08-01

    The coupling mechanism between neuronal firing and cerebrovascular dilatation can be significantly compromised in cerebral diseases, making it difficult to identify eloquent cortical areas near or within resectable lesions by using Blood Oxygen Level Dependent (BOLD) fMRI. Several metabolic and vascular factors have been considered to account for this lesion-induced neurovascular uncoupling (NVU), but no imaging gold standard exists currently for the detection of NVU. However, it is critical in clinical fMRI studies to evaluate the risk of NVU because the presence of NVU may result in false negative activation that may result in inadvertent resection of eloquent cortex, resulting in permanent postoperative neurologic deficits. Although NVU results from a disruption of one or more components of a complex cellular and chemical neurovascular coupling cascade (NCC) MR imaging is only able to evaluate the final step in this NCC involving the ultimate cerebrovascular response. Since anything that impairs cerebrovascular reactivity (CVR) will necessarily result in NVU, regardless of its effect more proximally along the NCC, we can consider mapping of CVR as a surrogate marker of NVU potential. We hypothesized that BOLD breath-hold (BH) CVR mapping can serve as a better marker of NVU potential than T2* Dynamic Susceptibility Contrast gadolinium perfusion MR imaging, because the latter is known to only reflect NVU risk associated with high grade gliomas by determining elevated relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) related to tumor angiogenesis. However, since low and intermediate grade gliomas are not associated with such tumoral hyperperfusion, BOLD BH CVR mapping may be able to detect such NVU potential even in lower grade gliomas without angiogenesis, which is the hallmark of glioblastomas. However, it is also known that glioblastomas are associated with variable NVU, since angiogenesis may not always result in NVU. Perfusion

  9. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  10. Technetium myocardial perfusion agents: an introduction

    SciTech Connect

    English, R.J.; Kozlowski, J.; Tumeh, S.S.; Holman, B.L.

    1987-09-01

    This is the third in a series of four Continuing Education articles on developing radiopharmaceuticals. After reading this article, the reader should be able to: 1) understand the basic concepts of myocardial perfusion imaging; and 2) discuss the advantages of the technetium myocardial perfusion complexes over thallium-201.

  11. Luxury perfusion following anterior ischemic optic neuropathy.

    PubMed

    Friedland, S; Winterkorn, J M; Burde, R M

    1996-09-01

    We present five patients who developed luxury perfusion following anterior ischemic optic neuropathy in whom fluorescein angiography was misinterpreted as "capillary hemangioma" or neovascularization of the disc. In each case, the segment of disc hyperemia corresponded to a spared region of visual field. Luxury perfusion represents a reparative autoregulatory reaction to ischemia.

  12. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  13. Myocardial perfusion with rubidium-82. III. Theory relating severity of coronary stenosis to perfusion deficit

    SciTech Connect

    Mullani, N.A.

    1984-11-01

    The relation between the quantitative perfusion deficit, as measured by emission computerized tomography, and the severity of coronary artery stenosis is important for the noninvasive clinical evaluation of coronary artery disease in man. Positron emission tomography allows direct noninvasive measurement of myocardial perfusion and quantification of the size of the perfusion defect. Given this important imformation, a mathematical model has been derived to gauge the severity of a coronary stenosis from quantitative perfusion measurements in the normal and poststenotic regions of the heart. The theoretical basis is presented for relating regional myocardial perfusion and regional perfusion resistance to total, coronary blood flow and resistance at normal resting flow and during maximal coronary vasodilation. The concept of perfusion reserve is presented as a clinical measure of the severity of a stenosis.

  14. Multiparametric MR Imaging of Diffusion and Perfusion in Contrast-enhancing and Nonenhancing Components in Patients with Glioblastoma.

    PubMed

    Boonzaier, Natalie R; Larkin, Timothy J; Matys, Tomasz; van der Hoorn, Anouk; Yan, Jiun-Lin; Price, Stephen J

    2017-02-27

    Purpose To determine whether regions of low apparent diffusion coefficient (ADC) with high relative cerebral blood volume (rCBV) represented elevated choline (Cho)-to-N-acetylaspartate (NAA) ratio (hereafter, Cho/NAA ratio) and whether their volumes correlated with progression-free survival (PFS) and overall survival (OS) in patients with glioblastoma (GBM). Materials and Methods This retrospective analysis was approved by the local research ethics committee. Volumetric analysis of imaging data from 43 patients with histologically confirmed GBM was performed. Patients underwent preoperative 3-T magnetic resonance imaging with conventional, diffusion-weighted, perfusion-weighted, and spectroscopic sequences. Patients underwent subsequent surgery with adjuvant chemotherapy and radiation therapy. Overlapping low-ADC and high-rCBV regions of interest (ROIs) (hereafter, ADC-rCBV ROIs) were generated in contrast-enhancing and nonenhancing regions. Cho/NAA ratio in ADC-rCBV ROIs was compared with that in control regions by using analysis of variance. All resulting ROI volumes were correlated with patient survival by using multivariate Cox regression. Results ADC-rCBV ROIs within contrast-enhancing and nonenhancing regions showed elevated Cho/NAA ratios, which were significantly higher than those in other abnormal tumor regions (P < .001 and P = .008 for contrast-enhancing and nonenhancing regions, respectively) and in normal-appearing white matter (P < .001 for both contrast-enhancing and nonenhancing regions). After Cox regression analysis controlling for age, tumor size, resection extent, O-6-methylguanine-DNA methyltransferase-methylation, and isocitrate dehydrogenase mutation status, the proportional volume of ADC-rCBV ROIs in nonenhancing regions significantly contributed to multivariate models of OS (hazard ratio, 1.132; P = .026) and PFS (hazard ratio, 1.454; P = .017). Conclusion Volumetric analysis of ADC-rCBV ROIs in nonenhancing regions of GBM can be used to

  15. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are

  16. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  17. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  18. Evolution and resolution of human brain perfusion responses to the stress of induced hypoglycemia.

    PubMed

    Teh, Ming Ming; Dunn, Joel T; Choudhary, Pratik; Samarasinghe, Yohan; Macdonald, Ian; O'Doherty, Michael; Marsden, Paul; Reed, Laurence J; Amiel, Stephanie A

    2010-11-01

    The relationship between the human brain response to acute stress and subjective, behavioural and physiological responses is poorly understood. We have examined the human cerebral response to the intense interoceptive stressor of hypoglycemia, controlling plasma glucose at either normal fasting concentrations (5 mmol/l, n=7) or at hypoglycemia (2.7 mmol/l, n=10) for 1 h in healthy volunteers. Hypoglycemia was associated with symptomatic responses, counterregulatory neuroendocrine responses and a sequential pattern of brain regional engagement, mapped as changes in relative cerebral perfusion using [(15)O]-H(2)O water positron emission tomography. The early cerebral response comprised activation bilaterally in anterior cingulate cortex (ACC) and thalamic pulvinar, with deactivation in posterior parahippocampal gyrus. Later responses (>20 min) engaged bilateral anterior insula, ventral striatum and pituitary. Following resolution of hypoglycemia, the majority of responses returned to baseline, save persistent engagement of the ACC and sustained elevation of growth hormone and cortisol. Catecholamine responses correlated with increased perfusion in pulvinar and medial thalamus, ACC and pituitary, while growth hormone and cortisol responses showed no correlation with thalamic activation but did show additional correlation with the hypothalamus and ventral striatum bilaterally. These data demonstrate complex dynamic responses to the stressor of hypoglycemia that would be expected to drive physiological and behavioural changes to remedy the state. Further, these data show that sustained stress and its aftermath engage distinct sets of brain regions, providing a neural substrate for adaptive or 'allostasic' responses to stressors.

  19. PET evaluation of cerebral blood flow reactivity in symptomatic and asymptomatic carotid artery stenosis

    SciTech Connect

    Dey, H.M.; Brass, L.; Rich, D.

    1994-05-01

    The purpose of this study was to use acetazolamide (AZ) enhanced O-15 water PET to evaluate cerebral perfusion reserve in symptomatic and asymptomatic carotid artery stenosis. We hypothesized that impaired vasoreactivity would be associated with symptomatic disease and a higher likelihood of future ischemic events. Twenty-two patients with significant (>75%) carotid artery occlusion underwent cerebral blood flow imaging at baseline and following AZ infusion. Paired O-15 data sets were coregistered and globally normalized. Regions of interest were drawn on baseline blood flow images and superimposed upon (AZ - baseline) difference images to derive a % change in regional blood flow after AZ administration. The results showed a significant difference in cerebral perfusion reserve between symptomatic (n=19) and asymptomatic (n=3) carotid artery disease.

  20. Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation

    PubMed Central

    Haubrich, Christina; Czosnyka, Marek; Diehl, Rolf; Smielewski, Peter; Czosnyka, Zofia

    2016-01-01

    Several studies have shown that the progression of communicating hydrocephalus is associated with diminished cerebral perfusion and microangiopathy. If communicating hydrocephalus similarly alters the cerebrospinal fluid circulation and cerebral blood flow, both may be related to intracranial mechanoelastic properties as, for instance, the volume pressure compliance. Twenty-three shunted patients with communicating hydrocephalus underwent intraventricular constant-flow infusion with Hartmann’s solution. The monitoring included transcranial Doppler (TCD) flow velocities (FV) in the middle (MCA) and posterior cerebral arteries (PCA), intracranial pressure (ICP), and systemic arterial blood pressure (ABP). The analysis covered cerebral perfusion pressure (CPP), the index of pressure-volume compensatory reserve (RAP), and phase shift angles between Mayer waves (3 to 9 cpm) in ABP and MCA-FV or PCA-FV. Due to intraventricular infusion, the pressure-volume reserve was exhausted (RAP) 0.84+/-0.1 and ICP was increased from baseline 11.5+/-5.6 to plateau levels of 20.7+/-6.4 mmHg. The ratio dRAP/dICP distinguished patients with large 0.1+/-0.01, medium 0.05+/-0.02, and small 0.02+/-0.01 intracranial volume compliances. Both M wave phase shift angles (r = 0.64; p<0.01) and CPP (r = 0.36; p<0.05) displayed a gradual decline with decreasing dRAP/dICP gradients. This study showed that in communicating hydrocephalus, CPP and dynamic cerebral autoregulation in particular, depend on the volume-pressure compliance. The results suggested that the alteration of mechanoelastic characteristics contributes to a reduced cerebral perfusion and a loss of autonomy of cerebral blood flow regulation. Results warrant a prospective TCD follow-up to verify whether the alteration of dynamic cerebral autoregulation may indicate a progression of communicating hydrocephalus. PMID:27415784

  1. Cerebral Edema in Chronic Mountain Sickness: a New Finding

    PubMed Central

    Bao, Haihua; Wang, Duoyao; Zhao, Xipeng; Wu, Youshen; Yin, Guixiu; Meng, Li; Wang, Fangfang; Ma, Lan; Hackett, Peter; Ge, Ri-Li

    2017-01-01

    We observed patients with chronic mountain sickness (CMS) in our clinic who developed progressive neurological deterioration (encephalopathy) and we wished to investigate this. We studied nine such CMS patients, and compared them to 21 CMS patients without encephalopathy, and to 15 healthy control subjects without CMS. All 45 subjects lived permanently at 3200–4000 m. Measurements at 2260 m included CMS symptom score, multi-slice CT, perfusion CT, pulse oximetry (SpO2%), and hemoglobin concentration (Hb). One patient had MRI imaging but not CT; 5 had CSF pressure measurements. CMS subjects had lower SpO2, higher Hb, higher brain blood density, lower mean cerebral blood flow (CBF), and significant cerebral circulatory delay compared to controls. The nine CMS subjects with neurological deterioration showed diffuse cerebral edema on imaging and more deranged cerebral hemodynamics. CSF pressure was elevated in those with edema. We conclude that cerebral edema, a previously unrecognized complication, may develop in CMS patients and cause encephalopathy. Contributing factors appear to be exaggerated polycythemia and hypoxemia, and lower and sluggish CBF compared to CMS patients without cerebral edema; but what triggers this complication is unknown. Recognition and treatment of this serious complication will help reduce morbidity and mortality from CMS. PMID:28233815

  2. Cerebral vascular regulation and brain injury in preterm infants.

    PubMed

    Brew, Nadine; Walker, David; Wong, Flora Y

    2014-06-01

    Cerebrovascular lesions, mainly germinal matrix hemorrhage and ischemic injury to the periventricular white matter, are major causes of adverse neurodevelopmental outcome in preterm infants. Cerebrovascular lesions and neuromorbidity increase with decreasing gestational age, with the white matter predominantly affected. Developmental immaturity in the cerebral circulation, including ongoing angiogenesis and vasoregulatory immaturity, plays a major role in the severity and pattern of preterm brain injury. Prevention of this injury requires insight into pathogenesis. Cerebral blood flow (CBF) is low in the preterm white matter, which also has blunted vasoreactivity compared with other brain regions. Vasoreactivity in the preterm brain to cerebral perfusion pressure, oxygen, carbon dioxide, and neuronal metabolism is also immature. This could be related to immaturity of both the vasculature and vasoactive signaling. Other pathologies arising from preterm birth and the neonatal intensive care environment itself may contribute to impaired vasoreactivity and ineffective CBF regulation, resulting in the marked variations in cerebral hemodynamics reported both within and between infants depending on their clinical condition. Many gaps exist in our understanding of how neonatal treatment procedures and medications have an impact on cerebral hemodynamics and preterm brain injury. Future research directions for neuroprotective strategies include establishing cotside, real-time clinical reference values for cerebral hemodynamics and vasoregulatory capacity and to demonstrate that these thresholds improve long-term outcomes for the preterm infant. In addition, stimulation of vascular development and repair with growth factor and cell-based therapies also hold promise.

  3. Perfusion deconvolution in DSC-MRI with dispersion-compliant bases.

    PubMed

    Pizzolato, Marco; Boutelier, Timothé; Deriche, Rachid

    2017-02-01

    Perfusion imaging of the brain via Dynamic Susceptibility Contrast MRI (DSC-MRI) allows tissue perfusion characterization by recovering the tissue impulse response function and scalar parameters such as the cerebral blood flow (CBF), blood volume (CBV), and mean transit time (MTT). However, the presence of bolus dispersion causes the data to reflect macrovascular properties, in addition to tissue perfusion. In this case, when performing deconvolution of the measured arterial and tissue concentration time-curves it is only possible to recover the effective, i.e. dispersed, response function and parameters. We introduce Dispersion-Compliant Bases (DCB) to represent the response function in the presence and absence of dispersion. We perform in silico and in vivo experiments, and show that DCB deconvolution outperforms oSVD and the state-of-the-art CPI+VTF techniques in the estimation of effective perfusion parameters, regardless of the presence and amount of dispersion. We also show that DCB deconvolution can be used as a pre-processing step to improve the estimation of dispersion-free parameters computed with CPI+VTF, which employs a model of the vascular transport function to characterize dispersion. Indeed, in silico results show a reduction of relative errors up to 50% for dispersion-free CBF and MTT. Moreover, the DCB method recovers effective response functions that comply with healthy and pathological scenarios, and offers the advantage of making no assumptions about the presence, amount, and nature of dispersion.

  4. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  5. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging.

    PubMed

    Thomas, D L; Lythgoe, M F; Pell, G S; Calamante, F; Ordidge, R J

    2000-08-01

    The aim of this review is to describe two recent developments in the use of magnetic resonance imaging (MRI) in the study of biological systems: diffusion and perfusion MRI. Diffusion MRI measures the molecular mobility of water in tissue, while perfusion MRI measures the rate at which blood is delivered to tissue. Therefore, both these techniques measure quantities which have direct physiological relevance. It is shown that diffusion in biological systems is a complex phenomenon, influenced directly by tissue microstructure, and that its measurement can provide a large amount of information about the organization of this structure in normal and diseased tissue. Perfusion reflects the delivery of essential nutrients to tissue, and so is directly related to its status. The concepts behind the techniques are explained, and the theoretical models that are used to convert MRI data to quantitative physical parameters are outlined. Examples of current applications of diffusion and perfusion MRI are given. In particular, the use of the techniques to study the pathophysiology of cerebral ischaemia/stroke is described. It is hoped that the biophysical insights provided by this approach will help to define the mechanisms of cell damage and allow evaluation of therapies aimed at reducing this damage.

  6. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Shannon, J. R.; Costa, F.; Furlan, R.; Biaggioni, I.; Mosqueda-Garcia, R.; Robertson, R. M.; Robertson, D.

    1999-01-01

    BACKGROUND: Chronic orthostatic intolerance (OI) is characterized by symptoms of inadequate cerebral perfusion with standing, in the absence of significant orthostatic hypotension. A heart rate increase of >/=30 bpm is typical. Possible underlying pathophysiologies include hypovolemia, partial dysautonomia, or a primary hyperadrenergic state. We tested the hypothesis that patients with OI have functional abnormalities in autonomic neurons regulating cardiovascular responses. METHODS AND RESULTS: Thirteen patients with chronic OI and 10 control subjects underwent a battery of autonomic tests. Systemic norepinephrine (NE) kinetics were determined with the patients supine and standing before and after tyramine administration. In addition, baroreflex sensitivity, hemodynamic responses to bolus injections of adrenergic agonists, and intrinsic heart rate were determined. Resting supine NE spillover and clearance were similar in both groups. With standing, patients had a greater decrease in NE clearance than control subjects (55+/-5% versus 30+/-7%, P<0.02). After tyramine, NE spillover did not change significantly in patients but increased 50+/-10% in control subjects (P<0.001). The dose of isoproterenol required to increase heart rate 25 bpm was lower in patients than in control subjects (0.5+/-0.05 versus 1.0+/-0.1 microg, P<0.005), and the dose of phenylephrine required to increase systolic blood pressure 25 mm Hg was lower in patients than control subjects (105+/-11 versus 210+/-12 microg, P<0.001). Baroreflex sensitivity was lower in patients (12+/-1 versus 18+/-2 ms/mm Hg, P<0.02), but the intrinsic heart rate was similar in both groups. CONCLUSIONS: The decreased NE clearance with standing, resistance to the NE-releasing effect of tyramine, and increased sensitivity to adrenergic agonists demonstrate dramatically disordered sympathetic cardiovascular regulation in patients with chronic OI.

  7. Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroichiro; Yamauchi, Hideto; Hazama, Shiro; Hamamoto, Hirotsugu; Inoue, Nobuhiro

    1999-10-01

    The cerebral circulation and metabolism of ten preoperative cardiac surgery patients were assessed. Alterations in regional cerebral blood flow (rCBF), measured by 123I-N- isopropyl-p-iodo-amphetamine single-photon emission computed tomography, and in cerebral oxygen metabolism, simultaneously detected by near-infrared spectroscopy (NIRS) before and after acetazolamide administration, were investigated. The rCBF (ml/min/100 g) increased significantly from 40.21 +/- 7.65 to 56.24 +/- 13.69 (p equals 0.001), and a significant increase in oxyhemoglobin (Oxy-Hb) of 13.9% (p equals 0.0022) and total hemoglobin (Total-Hb) of 5.7% (0.0047) along with a significant decrease in deoxyhemoglobin (Deoxy-Hb) of 8.9% (p equals 0.0414) were observed concomitantly. Thus, the Oxy-Hb/Total- Hb ratio (%Oxy-Hb) rose significantly from 67.26 +/- 9.82% to 72.98 +/- 8.09% (p equals 0.0022). Examination of the relationships between individual parameters showed that the percentage changes in rCBF and Oxy-Hb were significantly correlated (r equals 0.758, p equals 0.011). The percentage changes in rCBF and %Oxy-Hb were also correlated significantly (r equals 0.740, p equals 0.014). In conclusion, this evidence suggested that NIRS is able to detect relative changes in cerebral hemodynamics and reflect luxury perfusion induced by acetazolamide.

  8. Evaluation of the middle cerebral artery occlusion techniques in the rat by in-vitro 3-dimensional micro- and nano computed tomography

    PubMed Central

    2010-01-01

    Background Animal models of focal cerebral ischemia are widely used in stroke research. The purpose of our study was to evaluate and compare the cerebral macro- and microvascular architecture of rats in two different models of permanent middle cerebral artery occlusion using an innovative quantitative micro- and nano-CT imaging technique. Methods 4h of middle cerebral artery occlusion was performed in rats using the macrosphere method or the suture technique. After contrast perfusion, brains were isolated and scanned en-bloc using micro-CT (8 μm)3 or nano-CT at 500 nm3 voxel size to generate 3D images of the cerebral vasculature. The arterial vascular volume fraction and gray scale attenuation was determined and the significance of differences in measurements was tested with analysis of variance [ANOVA]. Results Micro-CT provided quantitative information on vascular morphology. Micro- and nano-CT proved to visualize and differentiate vascular occlusion territories performed in both models of cerebral ischemia. The suture technique leads to a remarkable decrease in the intravascular volume fraction of the middle cerebral artery perfusion territory. Blocking the medial cerebral artery with macrospheres, the vascular volume fraction of the involved hemisphere decreased significantly (p < 0.001), independently of the number of macrospheres, and was comparable to the suture method. We established gray scale measurements by which focal cerebral ischemia could be radiographically categorized (p < 0.001). Nano-CT imaging demonstrates collateral perfusion related to different occluded vessel territories after macrosphere perfusion. Conclusion Micro- and Nano-CT imaging is feasible for analysis and differentiation of different models of focal cerebral ischemia in rats. PMID:20509884

  9. Baseline Perfusion Alterations Due to Acute Application of Quetiapine and Pramipexole in Healthy Adults

    PubMed Central

    Scherpiet, Sigrid; Stämpfli, Philipp; Herwig, Uwe; Brühl, Annette B.

    2016-01-01

    Background: The dopaminergic system is implicated in many mental processes and neuropsychiatric disorders. Pharmacologically, drugs with dopamine receptor antagonistic and agonistic effects are used, but their effects on functional brain metabolism are not well known. Methods: In this randomized crossover, placebo-controlled, and rater-blinded study, 25 healthy adults received an acute dose placebo substance (starch), quetiapine (dopamine receptor antagonist), or pramipexole (dopamine agonist of the nonergoline class) 1 hour before the experiment. Background-suppressed 2D pseudo-continuous arterial spin labeling was used to examine whole-brain baseline cerebral blood flow differences induced by the 3 substances. Results: We found that quetiapine reduced perfusion in the occipital (early visual areas) and bilateral cerebellar cortex relative to placebo. In contrast, quetiapine enhanced cerebral blood flow (relative to placebo) in the striatal system (putamen and caudate nucleus) but also in the supplementary motor area, insular-, prefrontal- as well as in the pre- and postcentral cortex. Pramipexole increased cerebral blood flow compared with placebo in the caudate nucleus, putamen, middle frontal, supplementary motor area, and brainstem (substantia nigra), but reduced cerebral blood flow in the posterior thalamus, cerebellum, and visual areas. Pramipexole administration resulted in stronger cerebral blood flow relative to quetiapine in the hypothalamus, cerebellum, and substantia nigra. Conclusions: Our results indicate that quetiapine and pramipexole differentially modulate regional baseline cerebral blood flow. Both substances act on the dopaminergic system, although they affect distinct regions. Quetiapine altered dopaminergic function in frontal, striatal, and motor regions. In contrast, pramipexole affected cerebral blood flow of the nigrostriatal (striatum and substantia nigra) dopaminergic, but less the fronto-insular system. PMID:27466220

  10. The Mouse Isolated Perfused Kidney Technique.

    PubMed

    Czogalla, Jan; Schweda, Frank; Loffing, Johannes

    2016-11-17

    The mouse isolated perfused kidney (MIPK) is a technique for keeping a mouse kidney under ex vivo conditions perfused and functional for 1 hr. This is a prerequisite for studying the physiology of the isolated organ and for many innovative applications that may be possible in the future, including perfusion decellularization for kidney bioengineering or the administration of anti-rejection or genome-editing drugs in high doses to prime the kidney for transplantation. During the time of the perfusion, the kidney can be manipulated, renal function can be assessed, and various pharmaceuticals administered. After the procedure, the kidney can be transplanted or processed for molecular biology, biochemical analysis, or microscopy. This paper describes the perfusate and the surgical technique needed for the ex vivo perfusion of mouse kidneys. Details of the perfusion apparatus are given and data are presented showing the viability of the kidney's preparation: renal blood flow, vascular resistance, and urine data as functional, transmission electron micrographs of different nephron segments as morphological readouts, and western blots of transport proteins of different nephron segments as molecular readout.

  11. Resting cardiointegram: correlation with stress thallium perfusion studies

    SciTech Connect

    Gould, L.A.; Betzu, R.; Judge, D.; Lee, J.; Taddeo, M.; Yang, D.

    1988-04-01

    The cardiointegram is a noninvasive technique for the analysis of the electrical signals of the heart obtained by a transformation of the voltage versus time format by a series of integrations. The stress thallium perfusion study is a widely used test for the detection of coronary artery disease. In order to evaluate the correlation between the resting cardiointegram and the stress thallium 201 perfusion study, 20 patients with normal resting electrocardiograms underwent stress thallium tests and resting cardiointegrams. The cardiointegram was determined on two resting complexes of leads I, II, V4, V5, and V6 and called abnormal if five of ten complexes deviated outside a normalized template. There was concordance of the cardiointegram and the thallium study in 16 of 20 patients (80%). The sensitivity for the detection of coronary artery disease was 71%, and the specificity was 80%. The overall accuracy was 74%. Thus in patients with normal electrocardiograms, the cardiointegram is a useful noninvasive test for the detection of coronary artery disease.

  12. Deiodination of thyroid hormones by the perfused rat liver

    PubMed Central

    Hillier, A. P.

    1972-01-01

    1. An investigation has been made into the deiodination of thyroid hormones by the perfused rat liver. The hormones were labelled with 125I in the phenolic ring and the rate of deiodination was estimated by measuring the release of radio-iodide into the perfusate. 2. At tracer concentrations, 0·98% of the liver thyroxine is deiodinated/5 min. The deiodination of tri-iodothyronine is considerably faster, 3·3%/5 min. 3. Deiodination is very sensitive to changes in temperature. 4. The reaction shows saturation kinetics typical of many enzymes, the reciprocal of the rate of deiodination being proportional to the reciprocal of the hormone concentration in the tissue. The maximum rate of deiodination of each hormone is about 1·5 μg/min for a whole liver preparation weighing 16 g. 5. Tri-iodothyronine inhibits thyroxine deiodination and vice versa, suggesting that a single enzyme is responsible for both reactions. 6. Propyl thiouracil (PTU) at high concentrations inhibits the deiodination of both hormones. 7. An abnormally high rate of deiodination is associated with the actual injection of hormone into the preparation. This suggests that only the free (unbound) hormone in the tissue is directly available to the deiodinating enzyme. 8. About half of the whole body deiodination of thyroxine is relatively insensitive to PTU. It is suggested that most of this type of deiodination is performed in the liver and that the process is one of inactivation. PMID:5033472

  13. Usefulness of myocardial perfusion imaging with exercise testing in children.

    PubMed

    Robinson, Brad; Goudie, Brett; Remmert, Jenna; Gidding, Samuel S

    2012-10-01

    Myocardial perfusion imaging (MPI) provides additional clinical information on children with cardiac disease but will not benefit children with chest pain and normal cardiac studies. This study reviewed all technetium-99 m ((99m)Tc) sestamibi stress MPI studies between 2004 and 2010 performed in association with graded exercise testing (86% with bicycle ergometer, 14% with treadmill). A positive test was defined as a perfusion defect or abnormal ventricular function response. Clinical records were reviewed, including follow-up assessment to determine accuracy of MPI interpretation. False-positive and false-negative rates were recorded. A total of 197 patients (mean age, 13.4 ± 3.6 years, 70% male) underwent 218 MPI studies. Group A had 42 patients (43 studies) with isolated chest pain and normal studies. Of the 43 studies, 39 had negative results, and 4 had false-positive results. Group B had 155 patients (175 studies) with known or suspected cardiac disease, and 39 tests (33 patients) had positive results. Whereas 32 studies were considered true-positive, 7 were false-positive. There was one false-negative test. According to the findings, (99m)Tc sestamibi MPI studies are clinically useful but not perfect tests in the setting of known or suspected cardiac disease based on clinical evaluation, electrocardiography (ECG), or echocardiography. Children who had isolated chest pain with a normal ECG and echocardiogram often have false-positive studies.

  14. Abnormal asymmetry of brain connectivity in schizophrenia.

    PubMed

    Ribolsi, Michele; Daskalakis, Zafiris J; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia.

  15. Ventilation-perfusion imaging in pulmonary papillomatosis

    SciTech Connect

    Espinola, D.; Rupani, H.; Camargo, E.E.; Wagner, H.N. Jr.

    1981-11-01

    Three children with laryngeal papillomas involving the lungs had serial ventilation-perfusion scintigrams to assess results of therapy designed to reduce the bronchial involvement. Different imaging patterns were observed depending on size, number, and location of lesions. In early parenchymal involvement a ventilation-perfusion mismatch was seen. The initial and follow-up studies correlated well with clinical and radiographic findings. This noninvasive procedure is helpful in evaluating ventilatory and perfusion impairment in these patients as well as their response to treatment.

  16. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  17. Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance.

    PubMed

    Patel, Mita B; Mor-Avi, Victor; Kawaji, Keigo; Nathan, Sandeep; Kramer, Christopher M; Lang, Roberto M; Patel, Amit R

    2016-04-01

    In clinical practice, perfusion at rest in vasodilator stress single-photon emission computed tomography is commonly used to confirm myocardial infarction (MI) and ischemia and to rule out artifacts. It is unclear whether perfusion at rest carries similar information in cardiovascular magnetic resonance (CMR). We sought to determine whether chronic MI is associated with abnormal perfusion at rest on CMR. We compared areas of infarct and remote myocardium in 31 patients who underwent vasodilator stress CMR (1.5 T), had MI confirmed by late gadolinium enhancement (LGE scar), and coronary angiography within 6 months. Stress perfusion imaging during gadolinium first pass was followed by reversal with aminophylline (75 to 125 mg), rest perfusion, and LGE imaging. Resting and peak-stress time-intensity curves were used to obtain maximal upslopes (normalized by blood pool upslopes), which were compared between infarcted and remote myocardial regions of interest. At rest, there was no significant difference between the slopes in the regions of interest supplied by arteries with and without stenosis >70% (0.31 ± 0.16 vs 0.26 ± 0.15 1/s), irrespective of LGE scar. However, at peak stress, we found significant differences (0.20 ± 0.11 vs 0.30 ± 0.22 1/s; p <0.05), reflecting the expected stress-induced ischemia. Similarly, at rest, there was no difference between infarcted and remote myocardium (0.27 ± 0.14 vs 0.30 ± 0.17 1/s), irrespective of stenosis, but significant differences were seen during stress (0.21 ± 0.16 vs 0.28 ± 0.18 1/s; p <0.001), reflecting inducible ischemia. In conclusion, abnormalities in myocardial perfusion at rest associated with chronic MI are not reliably detectable on CMR images. Accordingly, unlike single-photon emission computed tomography, normal CMR perfusion at rest should not be used to rule out chronic MI.

  18. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  19. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  20. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  1. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury

    PubMed Central

    Sala, Nathalie; Suys, Tamarah; Zerlauth, Jean-Baptiste; Bouzat, Pierre; Messerer, Mahmoud; Bloch, Jocelyne; Levivier, Marc; Magistretti, Pierre J; Meuli, Reto; Oddo, Mauro

    2013-01-01

    Growing evidence suggests that endogenous lactate is an important substrate for neurons. This study aimed to examine cerebral lactate metabolism and its relationship with brain perfusion in patients with severe traumatic brain injury (TBI). A prospective cohort of 24 patients with severe TBI monitored with cerebral microdialysis (CMD) and brain tissue oxygen tension (PbtO2) was studied. Brain lactate metabolism was assessed by quantification of elevated CMD lactate samples (>4 mmol/L); these were matched to CMD pyruvate and PbtO2 values and dichotomized as glycolytic (CMD pyruvate >119 μmol/L vs. low pyruvate) and hypoxic (PbtO2 <20 mm Hg vs. nonhypoxic). Using perfusion computed tomography (CT), brain perfusion was categorized as oligemic, normal, or hyperemic, and was compared with CMD and PbtO2 data. Samples with elevated CMD lactate were frequently observed (41±8%), and we found that brain lactate elevations were predominantly associated with glycolysis and normal PbtO2 (73±8%) rather than brain hypoxia (14±6%). Furthermore, glycolytic lactate was always associated with normal or hyperemic brain perfusion, whereas all episodes with hypoxic lactate were associated with diffuse oligemia. Our findings suggest predominant nonischemic cerebral extracellular lactate release after TBI and support the concept that lactate may be used as an energy substrate by the injured human brain. PMID:23963367

  2. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema.

    PubMed

    Penet, Marie-France; Viola, Angèle; Confort-Gouny, Sylviane; Le Fur, Yann; Duhamel, Guillaume; Kober, Frank; Ibarrola, Danielle; Izquierdo, Marguerite; Coltel, Nicolas; Gharib, Bouchra; Grau, Georges E; Cozzone, Patrick J

    2005-08-10

    The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.

  3. Perfusion Shift from White to Gray Matter May Account for Processing Speed Deficits in Schizophrenia

    PubMed Central

    Wright, Susan N.; Hong, L. Elliot; Winkler, Anderson M.; Chiappelli, Joshua; Nugent, Katie; Muellerklein, Florian; Du, Xioming; Rowland, Laura M.; Wang, Danny J. J.; Kochunov, Peter

    2016-01-01

    Reduced speed of cerebral information processing is a cognitive deficit associated with schizophrenia. Normal information processing speed (PS) requires intact white matter (WM) physiology to support information transfer. In a cohort of 107 subjects (47/60 patients/controls), we demonstrate that PS deficits in schizophrenia patients are explained by reduced WM integrity, which is measured using diffusion tensor imaging, mediated by the mismatch in WM/gray matter blood perfusion, and measured using arterial spin labeling. Our findings are specific to PS, and testing this hypothesis for patient-control differences in working memory produces no explanation. We demonstrate that PS deficits in schizophrenia can be explained by neurophysiological alterations in cerebral WM. Whether the disproportionately low WM integrity in schizophrenia is due to illness or secondary due to this disorder deserves further examination. PMID:26108347

  4. Evolution of pulmonary perfusion defects demonstrated with contrast-enhanced dynamic MR perfusion imaging.

    PubMed

    Howarth, N R; Beziat, C; Berthezène, Y

    1999-01-01

    Pulmonary perfusion defects can be demonstrated with contrast-enhanced dynamic MR perfusion imaging. We present the case of a patient with a pulmonary artery sarcoma who presented with a post-operative pulmonary embolus and was followed in the post-operative period with dynamic contrast-enhanced MR perfusion imaging. This technique allows rapid imaging of the first passage of contrast material through the lung after bolus injection in a peripheral vein. To our knowledge, this case report is the first to describe the use of this MR technique in showing the evolution of peripheral pulmonary perfusion defects associated with pulmonary emboli.

  5. Patterns of disturbed myocardial perfusion in patients with coronary artery disease. Regional myocardial perfusion in angina pectoris

    SciTech Connect

    Selwyn, A.P.; Forse, G.; Fox, K.; Jonathan, A.; Steiner, R.

    1981-07-01

    Fifty patients who presented with angina pectoris were studied to examine the disturbances of regional myocardial perfusion during stress. Each patient underwent 16-point precordial mapping of the ECG during an exercise test, and coronary and left ventricular angiography. Regional myocardial perfusion was assessed using an atrial pacing test and a short-lived radionuclide, krypton-81m. Eleven patients had negative exercise tests and uniform increases in myocardial activity of krypton-81m of 98 +/- 18.0% during pacing. Ten patients performed 30,000-43,000 J in positive exercise tests. These patients showed abnormal coronary anatomy and increases in myocardial activity of krypton-81m to remote and jeopardized myocardium at the onset of pacing. However, further pacing produced a decrease in activity in the affected segment of 68.0 +/- 9.0% accompanied by ST-segment depression and angina. Twelve patients achieved 26,000-32,000 J in positive exercise tests and had significant coronary artery disease. Atrial pacing produced increased activity of krypton-81m to remote myocardium. The jeopardized segment at first showed no change and then a decrease in regional activity of krypton-81m (89.0 +/- 17%) accompanied by ST-segment depression and chest pain. Seventeen patients achieved only 7000-22,000 J in positive exercise tests. These patients showed abnormal coronary anatomy and developed decreases in regional activity of krypton-81m to the affected segment of myocardium starting at the onset of atrial pacing and decreasing by 88 +/- 0 7.0% below control. We conclude that different patterns of disturbed myocardial distribution of krypton-81m are present during stress-induced ischemia in patients with coronary artery disease. There was a close temporal relationship between these disturbances and ST-segment depression.

  6. Computed tomography perfusion and computed tomography angiography for prediction of clinical outcomes in ischemic stroke patients after thrombolysis

    PubMed Central

    Pan, Jia-wei; Yu, Xiang-rong; Zhou, Shu-yi; Wang, Jian-hong; Zhang, Jun; Geng, Dao-ying; Zhang, Tian-yu; Cheng, Xin; Ling, Yi-feng; Dong, Qiang

    2017-01-01

    Cerebral blood perfusion and cerebrovascular lesions are important factors that can affect the therapeutic efficacy of thrombolysis. At present, the majority of studies focus on assessing the accuracy of lesion location using imaging methods before treatment, with less attention to predictions of outcomes after thrombolysis. Thus, in the present study, we assessed the efficacy of combined computed tomography (CT) perfusion and CT angiography in predicting clinical outcomes after thrombolysis in ischemic stroke patients. The study included 52 patients who received both CT perfusion and CT angiography. Patients were grouped based on the following criteria to compare clinical outcomes: (1) thrombolytic and non-thrombolytic patients, (2) thrombolytic patients with CT angiography showing the presence or absence of a vascular stenosis, (3) thrombolytic patients with CT perfusion showing the presence or absence of hemodynamic mismatch, and (4) different CT angiography and CT perfusion results. Short-term outcome was assessed by the 24-hour National Institution of Health Stroke Scale score change. Long-term outcome was assessed by the 3-month modified Rankin Scale score. Of 52 ischemic stroke patients, 29 were treated with thrombolysis and exhibited improved short-term outcomes compared with those without thrombolysis treatment (23 patients). Patients with both vascular stenosis and blood flow mismatch (13 patients) exhibited the best short-term outcome, while there was no correlation of long-term outcome with CT angiography or CT perfusion findings. These data suggest that combined CT perfusion and CT angiography are useful for predicting short-term outcome, but not long-term outcome, after thrombolysis. PMID:28250755

  7. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  8. [An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI].

    PubMed

    Yamaguchi, H; Igarashi, H; Katayama, Y; Terashi, A

    1998-04-01

    Thrombolytic therapy during the hyperacute stage is important for salvaging dying cerebral tissue. To date, however, accurate non-invasive assessment of an ischemic lesion during the hyperacute stage has not been possible. Perfusion MRI may be the key to the quick diagnosis of ischemic lesions. To assess the feasibility of dynamic contrast enhanced perfusion MRI, echo planar imaging was performed in 10 patients with ischemic stroke. The relative cerebral blood volume (rCBV), mean transit time (MTT), and relative cerebral blood flow(rCBF) were measured based on moment analysis and the gamma variate method. These measurements, however, are not suitable for the detection of cerebral ischemia during the hyperacute stage. Therefore, we additionally studied the changes in a concentration curve (time-delta R* curve) of Gd-DTPA, injected into the median vein of the forearm. From the curve the SUM (delta R*) time to peak and the delta R* peak, which may be calculated quickly, were determined and were compared to rCBV, MTT, and rCBF, respectively. The rCBV and the rCBF in the ischemic regions were less than those in the contralateral healthy regions (p < 0.05), and the MTT in the ischemic regions was longer than that in the contralateral healthy regions (p < 0.05). Additionally, SUM (delta R*) and the delta R* peak in the ischemic regions were less, and the time to peak in the ischemic regions was longer than the value in the contralateral healthy regions (p < 0.05), correlating well to the rCBV, rCBF, and MTT measurements. Also, images of these parameters, depicting the ischemic lesion earlier than conventional T2 weighted images, can be easily made by using an MRI console. These results suggest that the SUM (delta R*), time to peak and the delta R* peak images calculated with dynamic contrast enhanced perfusion MRI may be one of the best techniques for the detection of cerebral ischemic lesions during the hyperacute stage.

  9. Statins and cerebral hemodynamics

    PubMed Central

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  10. Evaluation of cerebral hemodynamic changes by Tc-99m HMPAO SPECT after radiosurgery of small arteriovenous malformations (AVM)

    SciTech Connect

    Liu, R.S.; Yeh, S.H.; Pan, H.C.

    1994-05-01

    Treatment of small AVMs (<3 cm) by stereotaxic radio-surgery using gamma unit has been a promising noninvasive method. However, cerebral hemodynamic changes after gamma unit treatment is obscure. This study assessed the effect of radiosurgery on the regional cerebral blood flow (rCBF) in treatment of small AVMs. Nine patients (pts) with small AVMs were imaged with SPECT using Tc-99m HMPAO prior to stereotactic radio-surgery. The pts were treated with a Leskell gamma unit with doses of radiation in the range of 36 Gy to 44 Gy at target center. All pts underwent HMPAO SPECT scans about 3 months after radiosurgery. Pts were also studied with CT/MR scans. Pre treatment HMPAO SPECT showed decreased rCBF in the regions of nidi of AVMs of all pts and in the adjacent zones in 2 pts. Increased rCBF surrounding the nidus was noted in 2 AVMs. After treatment, rCBF of 2 pts returned to normal, 6 pts showed much improvement of rCBF and 1 remained no change. No more perfusion abnormalities were seen in the adjacent zones of all AVMs after radiosurgery. Cross cerebellar diaschisis noted in one case also disappeared after radiosurgery. Post treatment CT/MR scans showed slightly decrease in size of AVMs in 6 pts. All pts had great improvement after treatment. Normalization of rCBF correlated well with improvements in the neurological symptoms. In conclusion, comparison of pre and post treatment Tc-99m HMPAO SPECT scans were useful in evaluating the effectiveness of gamma unit radiosurgery on small AVMs.

  11. Abnormal development of the lesser wing of the sphenoid with microphthalmos and microcephaly.

    PubMed

    Jacquemin, C; Mullaney, P; Bosley, T M

    2001-02-01

    We report two patients with abnormal development of the lesser wing of the sphenoid bone, globe, optic nerve and cerebral hemisphere without stigmata of neurofibromatosis type 1. The lesser wing of the sphenoid bone was abnormally formed and was not ossified ipsilateral to the dysmorphic eye and underdeveloped cerebral hemisphere. Maldevelopment of the sphenoid wing may interfere with the normal closure of the optic vesicle and normal growth of encephalic structures, possibly by disturbing developmental tissue interactions. These patients may exhibit a type of restricted primary sphenoid dysplasia, while the sphenoid dysplasia of neurofibromatosis type 1 may be secondary to orbital or ocular neurofibromas and other factors associated with that disease.

  12. Regional Cerebral Blood Flow (rCBF) in Developmental Dyslexia: Activation during Reading in a Surface and Deep Dyslexic.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1987-01-01

    The exploratory study examined patterns of regional cerebral blood flow in a surface and a deep dyslexic during reading. Significant differences in gray matter blood flow were found between subjects and normal controls. Also differences existed between the surface and deep dyslexic in the distribution of cortical perfusion. (Author/DB)

  13. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  14. Contrast MR of the brain after high-perfusion cardiopulmonary bypass

    SciTech Connect

    Simonson, T.M.; Yuh, W.T.C.; Hindman, B.J.; Embrey, R.P.; Halloran, J.I.; Behrendt, D.M. )

    1994-01-01

    To study the efficacy of contrast MR imaging in the evaluation of central nervous system complications in the cardiopulmonary bypass patient and attempt to explain their pathophysiology based on the MR appearance and the cardiopulmonary bypass protocol. Nineteen patients were prospectively studied with contrast MR examinations the day before and 3 to 7 days after cardiopulmonary bypass, to determine the nature, extent, and number of new postoperative MR abnormalities. Cardiopulmonary bypass parameters used in our institution included: membrane oxygenation, arterial filtration with a pore size of 25 [mu]m, and a relatively high perfusion rate to produce a cardiac index of 2.0 to 2.5 L min per m[sup 2]. The preoperative noncontrast MR examination showed age-related changes and/or signs of ischemia in 60% of patients on the day before surgery. However, there was no abnormal enhancement or new T2 abnormalities on any postoperative MR examination to suggest hypoperfusion or emboli. None of the 19 patients developed overt neurologic deficits postoperatively. Review of the cardiopulmonary bypass protocol used indicated significant variations in technique at different institutions. Contrast MR imaging demonstrated no new abnormalities in patients after cardiopulmonary bypass performed with strict in-line arterial filtration and relatively high perfusion. MR imaging is feasible in the early postoperative period after cardiopulmonary bypass and may offer a convenient method for evaluation of the neurologic impact of technical factors associated with cardiopulmonary bypass. 17 refs.

  15. Computerized tomography versus perfusion lung scanning in canine radiation lung injury

    SciTech Connect

    Ahmed, I.H.; Logus, J.W.; El-Khatib, E.; Battista, J.J.; Ferri, H.; Lentle, B.C.; Man, G.C.; Man, S.F. )

    1990-03-01

    Computerized tomographic (CT) measurements of lung density were obtained before and serially after thoracic irradiation in dogs to detect the alterations caused by radiation therapy. Fourteen mongrel dogs were given either 2000 cGy (Group A, 10 dogs, right lower zone irradiation), 1000 cGy (Group B, 2 dogs, right lower zone irradiation), or 500 cGy (Group C, 2 dogs, right lung irradiation) in one fraction. Once before and bi-weekly after irradiation, the anesthetized dogs had thoracic CT scans. CT numbers for the irradiated area were compared to their preirradiation control values. Macro-aggregated albumin (MAA) perfusion lung scans were also obtained before and at weekly intervals after irradiation and were evaluated visually and quantitatively for abnormalities. When both these tests were abnormal, or at the end of the scheduled study, the dogs were sacrificed to confirm radiation lung injury histologically. Our results showed that CT numbers (as a measure of tissue density) were higher with higher doses of radiation. Among all the techniques used, only the quantitative assessment of macro-aggregated albumin perfusion scan detected abnormalities in all the dogs given 2000 cGy. Their abnormalities correlated well with the presence of radiation lung damage histologically, however, the applicability of these methods in the detection of early injury has to be further evaluated.

  16. Cerebral microbleeds in a neonatal rat model

    PubMed Central

    Carusillo Theriault, Brianna; Woo, Seung Kyoon; Karimy, Jason K.; Keledjian, Kaspar; Stokum, Jesse A.; Sarkar, Amrita; Coksaygan, Turhan; Ivanova, Svetlana; Gerzanich, Volodymyr

    2017-01-01

    Background In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes) dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter. Methods Pregnant Wistar rats were subjected to intrauterine ischemia (IUI) and low-dose maternal lipopolysaccharide (mLPS) at embryonic day (E) 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks. Results mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2) and protein (CD31, MMP2, MMP9) for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls. Conclusions In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development. PMID:28158198

  17. Visual function and perinatal focal cerebral infarction.

    PubMed Central

    Mercuri, E; Atkinson, J; Braddick, O; Anker, S; Nokes, L; Cowan, F; Rutherford, M; Pennock, J; Dubowitz, L

    1996-01-01

    AIMS: To evaluate the visual function of infants with perinatal cerebral infarction in whom the site and size of the lesion has been determined using magnetic resonance imaging (MRI). METHODS: Twelve infants with cerebral infarction on MRI were studied with a battery of tests specifically designed to evaluate visual function in infancy. This included tests: for visual attention (fixation shifts); of cerebral asymmetry (optokinetic nystagmus, visual fields); for assessment of acuity (forced choice preferential looking); and neurophysiological measures of vision (phase reversal and orientation reversal visual evoked potential). RESULTS: A considerable incidence of abnormalities on at least one of the tests for visual function used was observed. The presence or severity of visual abnormalities could not always be predicted by the site and extent of the lesion seen on imaging. CONCLUSIONS: Early focal lesions affecting the visual pathway can, to some extent, be compensated for by the immature developing brain. These data suggest that all the infants presenting with focal lesions need to be investigated with a detailed assessment of various aspects of vision. Images PMID:8949687

  18. ECMO Maintains Cerebral Blood Flow During Endotoxic Shock in Piglets

    PubMed Central

    Batts, Sherreen G.; Uyehara-Lock, Jane H.; Murata, Lee-Ann; Uyehara, Catherine F. T.

    2016-01-01

    Cerebrovascular injury while on extracorporeal membrane oxygenation (ECMO) may be caused by excessive brain perfusion during hypoxemic reperfusion. Previous studies have postulated that the most vulnerable period of time for cerebrovascular injury is during the transfer period to ECMO. Therefore, our objective was to compare brain perfusion and hemodynamics in a piglet endotoxic shock ECMO model. The effect of ECMO flow on microcirculation of different brain regions was compared between 10 control pigs and six pigs (7–10 kg) administered IV endotoxin to achieve a drop in mean arterial blood pressure (MAP) of at least 30%. Cardiac output (CO), brain oxygen utilization, and microcirculatory blood flow (BF) were compared at baseline and 2 hours after ECMO stabilization. Matching ECMO delivery with baseline CO in control animals increased perfusion (p < 0.05) in all areas of the brain. In contrast, with endotoxin, ECMO returned perfusion closer to baseline levels in all regions of the brain and maintained brain tissue oxygen consumption. Both control and endotoxic pigs showed no evidence of acute neuronal necrosis in histologic cerebral cortical sections examined after 2 hours of ECMO. Results show that during endotoxic shock, transition to ECMO can maintain brain BF equally to all brain regions without causing overperfusion, and does not appear to cause brain tissue histopathologic changes (hemorrhage or necrosis) during the acute stabilization period after ECMO induction. PMID:27442858

  19. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  20. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  1. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  2. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  3. CEREBRAL VENOUS THROMBOSIS AND TURNER SYNDROME: A RARE REPORTED ASSOCIATION.

    PubMed

    Guler, A; Alpaydin, S; Bademkiran, F; Sirin, H; Celebisoy, N

    2015-01-01

    Turner Syndrome is the only known viable chromosomal monosomy, characterised by the complete or partial absence of an X chromosome. It's the most common chromosomal abnormality in females. Apart from the well known dysmorphic features of the syndrome, it has been associated with a number of vascular pathologies; mainly involving the cardiovascular, renovascular, peripheral vascular and cerebrovascular system. It seems striking that thromboembolism is not considered as a feature of the syndrome. Most of the thromboembolism cases are related to the arterial vascular system; except for some rare reported portal venous thrombosis cases, peripheral venous thrombosis cases and to the best of our knowledge a single case of cerebral venous thrombosis with Dandy Walker malformation and polymicrogyria. We herein report a cerebral venous thrombosis case with Turner Syndrome. With no other found underlying etiology, we want to highlight that Turner Syndrome, itself, may have a relationship not only with the cerebral arterial vascular system pathologies but also with the cerebral venous thrombosis.

  4. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  5. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    PubMed

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3) for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  6. Indian-Ink Perfusion Based Method for Reconstructing Continuous Vascular Networks in Whole Mouse Brain

    PubMed Central

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247

  7. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    SciTech Connect

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  8. The effect of captopril on thallium 201 myocardial perfusion in systemic sclerosis

    SciTech Connect

    Kahan, A.; Devaux, J.Y.; Amor, B.; Menkes, C.J.; Weber, S.; Venot, A.; Strauch, G. )

    1990-04-01

    In systemic sclerosis, abnormalities of myocardial perfusion are common and may be caused by a disturbance of the coronary microcirculation. We evaluated the long-term effect of captopril (75 to 150 mg per day) on thallium 201 myocardial perfusion in 12 normotensive patients with systemic sclerosis. Captopril significantly decreased the mean (+/- SD) number of segments with thallium 201 myocardial perfusion defects (6.5 +/- 1.9 at baseline and 4.4 +/- 2.7 after 1 year of treatment with captopril; p less than 0.02) and increased the mean global thallium score (9.6 +/- 1.7 at baseline and 11.4 +/- 2.1 after captopril; p less than 0.05). In a control group of eight normotensive patients with systemic sclerosis who did not receive captopril, no significant modification in thallium results occurred. Side effects with captopril included hypotension (six patients), taste disturbances (one patient), and skin rash (one patient). These side effects subsided when the dosage was reduced. These findings demonstrate that captopril improves thallium 201 myocardial perfusion in patients with systemic sclerosis and may therefore have a beneficial effect on scleroderma myocardial disease.

  9. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.