Science.gov

Sample records for abnormal chest x-ray

  1. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  2. Chest X-Ray

    MedlinePlus Videos and Cool Tools

    ... Site Index A-Z Spotlight Recently posted: Anal Cancer Facet Joint Block Video: Lung Cancer Screening Video: Upper GI Tract X-ray Video: ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  3. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... x-rays. top of page What does the equipment look like? The equipment typically used for chest x-rays consists of ... tube is positioned about six feet away. The equipment may also be arranged with the x-ray ...

  4. Chest x-ray

    MedlinePlus

    ... also be done if you have signs of tuberculosis , lung cancer , or other chest or lung diseases . ... the blood vessels Pneumonia Scarring of lung tissue Tuberculosis In the heart: Problems with the size or ...

  5. Aspergillosis - chest x-ray (image)

    MedlinePlus

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  6. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  7. Coccidioidomycosis - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows the affects of a fungal infection, coccidioidomycosis. In the middle of the left lung (seen on the ... defined borders. Other diseases that may explain these x-ray findings include lung abscesses, chronic pulmonary tuberculosis, chronic ...

  8. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  9. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  10. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification...-rays as described in Appendix A. (b) A chest X-ray to establish the existence of pneumoconiosis...

  11. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification...-rays as described in Appendix A. (b) A chest X-ray to establish the existence of pneumoconiosis...

  12. [Lateral chest X-rays. Radiographic anatomy].

    PubMed

    García Villafañe, C; Pedrosa, C S

    2014-01-01

    Lateral chest views constitute an essential part of chest X-ray examinations, so it is fundamental to know the anatomy on these images and to be able to detect the variations manifested on these images in different diseases. The aim of this article is to review the normal anatomy and main normal variants seen on lateral chest views. For teaching purposes, we divide the thorax into different spaces and analyze each in an orderly way, especially emphasizing the anatomic details that are most helpful for locating lesions that have already been detected in the posteroanterior view or for detecting lesions that can be missed in the posteroanterior view.

  13. Interpretation of the neonatal chest X-ray.

    PubMed

    Barnes, N; Pilling, D W

    1999-11-01

    Most neonatal X-rays are seen initially by a paediatrician without formal training in interpretation of chest X-rays. This article aims to help improve the information obtained from these X-rays which are often complex. Many factors affect accurate interpretation of the neonatal chest X-ray, including good quality radiographs, appropriate viewing conditions and thorough education.

  14. A rare cause of misdiagnosis in chest X-ray

    PubMed Central

    Ortiz-Mendoza, Carlos Manuel

    2016-01-01

    Chest X-ray is a usual tool for family physicians; however, unexpected findings in chest X-ray are a frequent challenge. We present a rare case of pulmonary hilar nodule misdiagnosis in a chest X-ray. An 84-year-old woman was sent with a diagnosis of a right pulmonary hilum nodule. She had a history of chronic obstructive pulmonary disease; so in a chest X-ray, her family physician discovered a “nodule” in her right lung hilum. Her physical exam was not relevant. In our hospital, a thoracic computed tomography (CT) scan verified the mass in the right pulmonary hilum; nevertheless, in a coronal CT scan, the “hilum lump” was the tortuous descending aorta that created an angle. This case illustrates how anatomical changes associated with vascular aging may cause this exceptional pitfall in chest X-ray. PMID:28217605

  15. Coal worker's lungs - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows coal worker's lungs. There are diffuse, small, light areas on both sides (1 to 3 mm) in ... the lungs. Diseases that may result in an x-ray like this include: simple coal workers pneumoconiosis (CWP) - ...

  16. Eigen analysis for classifying chest x-ray images

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.

    2004-10-01

    A method first employed for face recognition has been employed to analyse a set of chest x-ray images. After marking certain common features on the images, they are registered by means of an affine transformation. The differences between each registered image and the mean of all images in the set are computed and the first K principal components are found, where K is less than or equal to the number of images in the set. These form eigenimages (we have coined the term 'eigenchests') from which an approximation to any one of the original images can be reconstructed. Since the method effectively treats each pixel as a dimension in a hyperspace, the matrices concerned are huge; we employ the method developed by Turk and Pentland for face recognition to make the computations tractable. The K coefficients for the eigenimages encode the variation between images and form the basis for discriminating normal from abnormal. Preliminary results have been obtained for a set of eigenimages formed from a set of normal chests and tested on separate sets of normals and patients with pneumonia. The distributions of coefficients have been observed to be different for the two test sets and work is continuing to determine the most sensitive method for detecting the differences.

  17. Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom

    NASA Astrophysics Data System (ADS)

    Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.

    2017-02-01

    The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.

  18. Lung boundary detection in pediatric chest x-rays

    NASA Astrophysics Data System (ADS)

    Candemir, Sema; Antani, Sameer; Jaeger, Stefan; Browning, Renee; Thoma, George R.

    2015-03-01

    Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.

  19. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    ... chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and the heart ... ray shows a mass in the right upper lung, indicated with the arrow (seen on the left ...

  20. Viewing Another Person's Eye Movements Improves Identification of Pulmonary Nodules in Chest X-Ray Inspection

    ERIC Educational Resources Information Center

    Litchfield, Damien; Ball, Linden J.; Donovan, Tim; Manning, David J.; Crawford, Trevor

    2010-01-01

    Double reading of chest x-rays is often used to ensure that fewer abnormalities are missed, but very little is known about how the search behavior of others affects observer performance. A series of experiments investigated whether radiographers benefit from knowing where another person looked for pulmonary nodules, and whether the expertise of…

  1. Respiratory distress in newborn: evaluation of chest X-rays.

    PubMed

    Roggini, M; Pepino, D; D'Avanzo, M; Andreoli, G M; Ceccanti, S; Capocaccia, P

    2010-06-01

    We discuss the anatomic and pathophysiological patterns of preterm and term newborn. Particular attention is directed to technical artefacts relating to the interpretation of chest radiography. We analyze the reading of chest X-Ray of preterm with low birth weight and poor lung maturation. Are also taken into account X-Ray features relating to alveolar "recruitment" and radiographic changes after surfactant's administration. We highlight the most important paintings of bruncopulmonary dysplasia and its evolution. The most frequent neonatal pulmonary inflammation and thoraco-pulmonary malformation, that may affect more the neonatologist, are mentioned. We discuss the new diagnostic approach with non invasive techniques (ultrasound) in the neonatal distress. Some easily recognizable congenital heart disease are finally describes.

  2. Radiological findings in megaesophagus secondary to Chagas disease: chest X-ray and esophagogram*

    PubMed Central

    Abud, Thiago Giansante; Abud, Lucas Giansante; Vilar, Vanessa Sales; Szejnfeld, Denis; Reibscheid, Samuel

    2016-01-01

    Objective To identify and classify the radiographic patterns of megaesophagus in Chagas disease, as seen on esophagograms and chest X-rays. Materials and Methods This was a prospective study of 35 patients diagnosed with esophageal disease via manometry. The changes found on esophagograms were stratified according to Rezende's classification, divided into four categories (grades I through IV) determined by the degree of dilatation and impairement of esophageal motility. We subsequently correlated that ranking with the chest X-ray findings: gastric air bubble; air-fluid level; and mediastinal widening. Results Among the 35 patients, the esophageal disease was classified as grade I in 9 (25.7%), grade II in 3 (8.6%), grade III in 19 (54.3%), and grade IV in 4 (11.4%). None of the patients with grade I esophageal disease showed changes on chest X-rays. In two of the three patients with grade II disease, there was no gastric air-bubble, although there were no other findings in any of the grade II patients. Of the 19 patients with grade III disease, 15 had abnormal findings on X-rays. All four patients with grade IV disease showed abnormalities. Conclusion The use of Rezende's classification is feasible, encompassing findings ranging from the subtle changes that characterize the initial phases of esophageal disease to the complete akinesia seen in dolicomegaesophagus. Chest X-ray findings are more common in patients with advanced stages of the disease and indicate the degree of esophageal involvement in Chagas disease. PMID:28100930

  3. Ultrasound detection of pneumothorax compared with chest X-ray and computed tomography scan.

    PubMed

    Nagarsheth, Khanjan; Kurek, Stanley

    2011-04-01

    Pneumothorax after trauma can be a life threatening injury and its care requires expeditious and accurate diagnosis and possible intervention. We performed a prospective, single blinded study with convenience sampling at a Level I trauma center comparing thoracic ultrasound with chest X-ray and CT scan in the detection of traumatic pneumothorax. Trauma patients that received a thoracic ultrasound, chest X-ray, and chest CT scan were included in the study. The chest X-rays were read by a radiologist who was blinded to the thoracic ultrasound results. Then both were compared with CT scan results. One hundred and twenty-five patients had a thoracic ultrasound performed in the 24-month period. Forty-six patients were excluded from the study due to lack of either a chest X-ray or chest CT scan. Of the remaining 79 patients there were 22 positive pneumothorax found by CT and of those 18 (82%) were found on ultrasound and 7 (32%) were found on chest X-ray. The sensitivity of thoracic ultrasound was found to be 81.8 per cent and the specificity was found to be 100 per cent. The sensitivity of chest X-ray was found to be 31.8 per cent and again the specificity was found to be 100 per cent. The negative predictive value of thoracic ultrasound for pneumothorax was 0.934 and the negative predictive value for chest X-ray for pneumothorax was found to be 0.792. We advocate the use of chest ultrasound for detection of pneumothorax in trauma patients.

  4. Failure of chest X-rays to diagnose pneumothoraces after blunt trauma.

    PubMed

    Collins, J A; Samra, G S

    1998-01-01

    We report four cases of occult pneumothorax in patients who had suffered blunt trauma. In each case supine chest X-rays failed to diagnose an anterior pneumothorax. Subsequent spiral computerised tomography scans of the chest showed anterior pneumothoraces in all cases. In two of the cases anterior pneumothoraces were present in spite of a chest drain having been placed in the pleural cavity. We recommend the insertion of anteriorly positioned chest drains to relieve pneumothoraces in severely injured trauma patients.

  5. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits OFFICE OF WORKERS... Appendix A to Part 718—Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) The... procedures are used in administering and interpreting X-rays and that the best available medical...

  6. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits OFFICE OF WORKERS... Appendix A to Part 718—Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) The... procedures are used in administering and interpreting X-rays and that the best available medical...

  7. Detecting rare, abnormally large grains by x-ray diffraction

    DOE PAGES

    Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; ...

    2015-07-16

    Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth andmore » shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.« less

  8. Detecting rare, abnormally large grains by x-ray diffraction

    SciTech Connect

    Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; Van Campen, Douglas; Mehta, Apurva

    2015-07-16

    Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth and shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.

  9. Non-malignant chest x ray changes in patients with mesothelioma in a large cohort of asbestos insulation workers.

    PubMed Central

    Lilis, R; Ribak, J; Suzuki, Y; Penner, L; Bernstein, N; Selikoff, I J

    1987-01-01

    To assess the prevalence of non-malignant chest x ray abnormalities in cases of mesothelioma 184 cases of mesothelioma (72 pleural and 112 peritoneal) which had occurred in a cohort of asbestos insulation workers followed up since 1967 were studied. Chest x ray films of satisfactory quality, on which the presence or absence of non-malignant radiological changes indicating interstitial pulmonary fibrosis or pleural fibrosis or both, could be assessed with a high degree of certainty were available. In some cases (20% for pleural mesothelioma, 11.6% for peritoneal mesothelioma) non-malignant radiological changes were not radiologically detectable. Parenchymal interstitial fibrosis (small irregular opacities) only was found in a proportion of cases (25.4% of pleural mesotheliomas, 12.5% of peritoneal mesotheliomas). Pleural fibrosis only was detected in 17% of cases of pleural mesothelioma and 27% of cases of peritoneal mesothelioma. Most patients had both parenchymal and pleural fibrosis. Although these results tend to indicate that in peritoneal mesothelioma the proportion of pleural fibrosis is significantly higher, these findings might have been due to the fact that in most cases of pleural mesothelioma non-malignant changes were interpreted in one hemithorax only. In 46 cases (21 pleural, 25 peritoneal) in which sufficient lung tissue was available histopathology of lung parenchyma indicated the presence of interstitial fibrosis; in 20 (43.5%) of these the chest x ray film had been read as negative. Thus the absence of radiologically detectable small opacities on the chest x ray film does not exclude the existence of interstitial pulmonary fibrosis in cases of mesothelioma among insulation workers. With lower levels of exposure (such as in family contacts of asbestos workers) it is conceivable that mesothelioma might occur in the absence of interstitial pulmonary fibrosis. PMID:3606969

  10. Annual Screening with Chest X-Ray Does Not Reduce Lung Cancer Deaths

    Cancer.gov

    Annual screening for lung cancer using a standard chest x-ray does not reduce the risk of dying from lung cancer when compared with no annual screening, according to findings from the NCI-led Prostate, Lung, Colorectal, and Ovarian (PLCO) screening trial.

  11. X-ray tube current modulation and patient doses in chest CT.

    PubMed

    He, Wenjun; Huda, Walter; Magill, Dennise; Tavrides, Emily; Yao, Hai

    2011-01-01

    The aim of the study was to investigate how patient effective doses vary as a function of X-ray tube projection angle, as well as the patient long axis, and quantify how X-ray tube current modulation affects patient doses in chest CT examinations. Chest examinations were simulated for a gantry CT scanner geometry with projections acquired for a beam width of 4 cm. PCXMC 2.0.1 was used to calculate patient effective doses at 15° intervals around the patient's isocentre, and at nine locations along the patient long axis. Idealised tube current modulation schemes were modelled as a function of the X-ray tube angle and the patient long axis. Tube current modulations were characterised by the modulation amplitude R, which was allowed to vary between 1.5 and 5. Effective dose maxima occur for anteroposterior projections at the location of the (radiosensitive) breasts. The maximum to minimum ratio of effective doses as a function of the patient long axis was 4.9, and as a function of the X-ray tube angle was 2.1. Doubling the value of R reduces effective doses from longitudinal modulation alone by ∼4% and from angular modulation alone by ∼2%. In chest CT, tube current modulation schemes currently have longitudinal R values of ∼2.2, and angular R values that range between 1.5 and 3.4. Current X-ray tube current modulation schemes are expected to reduce patient effective doses in chest CT examinations by ∼10%, with longitudinal modulation accounting for two-thirds and angular modulation for the remaining one-third.

  12. Image quality of digital chest X-rays: wet versus dry laser printers.

    PubMed

    Zähringer, M; Wassmer, G; Krug, B; Winnekendonk, G; Gossmann, A; Lackner, K J

    2001-09-01

    The aim of this study was to compare the image quality of digital chest x-rays (Thoravision) obtained with 2 "wet" laser imagers of different matrix sizes and a "dry" system. Fifty chest x-rays in 2 planes were printed out in normal (100%) and reduced (61%) format using 3 different systems: 2 "wet" laser imagers (Agfa Matrix LR 3300, 4256 x 5174 pixels, 315 dpi; Agfa Scopix LR 5200, 8512 x 10348 pixels, 630 dpi), and one "dry" system (Agfa Drystar 3000,4352 x 5295 pixels, 330 dpi). All tests yielded normal findings. Anonymous images were evaluated by 4 independent reviewers on record forms rating the detectability of predefined anatomic structures. When the image quality of diagnosis-relevant, anatomic structures was evaluated on digital chest x-rays reproduced in normal and reduced format, the wet laser imagers did not show significant advantages over the dry system, Agfa Drystar 3000. The Agfa Drystar 3000 system is a feasible alternative for reproducing digital images, particularly for decentralized archives.

  13. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  14. Prospective gated chest tomosynthesis using CNT X-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Burk, Laurel; Wu, Gongting; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2015-03-01

    Chest tomosynthesis is a low-dose 3-D imaging modality that has been shown to have comparable sensitivity as CT in detecting lung nodules and other lung pathologies. We have recently demonstrated the feasibility of stationary chest tomosynthesis (s-DCT) using a distributed CNT X-ray source array. The technology allows acquisition of tomographic projections without moving the X-ray source. The electronically controlled CNT x-ray source also enables physiologically gated imaging, which will minimize image blur due to the patient's respiration motion. In this paper, we investigate the feasibility of prospective gated chest tomosynthesis using a bench-top s-DCT system with a CNT source array, a high- speed at panel detector and realistic patient respiratory signals captured using a pressure sensor. Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phantom were acquired at different respiration rate, with and without gating for image quality comparison. Metal beads of 2 mm diameter were placed on the pig lung for quantitative measure of the image quality. Without gating, the beads were blurred to 3:75 mm during a 3 s tomosynthesis acquisition. When gated to the end of the inhalation and exhalation phase the detected bead size reduced to 2:25 mm, much closer to the actual bead size. With gating the observed airway edges are sharper and there are more visible structural details in the lung. Our results demonstrated the feasibility of prospective gating in the s-DCT, which substantially reduces image blur associated with lung motion.

  15. Identification of unknown body using DNA analysis and dental characteristics in chest X-ray photograph.

    PubMed

    Minaguchi, Kiyoshi; Maruyama, Sayaka; Kasahara, Iku; Nohira, Chizuru; Hanaoka, Yoichi; Tsai, Tohkai; Kiriyama, Hitoshi; Takahashi, Nobuyuki

    2005-11-01

    An unknown skeletonized body was identified by DNA analysis and dental information. The body had already been cremated when a candidate for the unknown body was proposed. Therefore, for DNA analysis we used teeth that had been kept for a long time after use for serological examination. We also used a chest X-ray photograph of the candidate and photographs of dentition, as well as dental X-ray photographs taken when the unknown body was found. Because DNA obtained from teeth was highly degraded, we amplified three PCR fragments to determine the 766 bp mitochondrial DNA (mtDNA) sequence including HV1 and HV2. Polymorphism of the ABO locus was also analyzed using small PCR fragments. Although the isolated DNA was contaminated, probably with DNA from a different individual, DNA polymorphisms of mtDNA and the ABO locus could be analyzed. We discuss the reliability of our conclusions from the point of view of the necessity of constructing an accurate mtDNA database. Although a dentist who had treated the teeth of the unknown body could not be found, a chest X-ray photograph for medical diagnosis was very useful in comparing dental characteristics, as it included an image of the frontal part of the lower jaw and upper teeth.

  16. Complete blood counts, liver function tests, and chest x-rays as routine screening in early-stage breast cancer: value added or just cost?

    PubMed

    Louie, Raphael J; Tonneson, Jennifer E; Gowarty, Minda; Goodney, Philip P; Barth, Richard J; Rosenkranz, Kari M

    2015-11-01

    Current National Comprehensive Cancer Network guidelines for breast cancer staging include pre-treatment complete blood count (CBC) and liver function tests (LFT) to screen for occult metastatic disease. To date, the relevance of these tests in detecting metastatic disease in asymptomatic women with early-stage breast cancer (Stage I/II) has not been demonstrated. Although chest x-rays are no longer recommended in the NCCN guidelines, many centers continue to include this imaging as part of their screening process. We aim to determine the clinical and financial impact of these labs and x-rays in the evaluation of early-stage breast cancer patients. A single institution IRB-approved retrospective chart review was conducted of patients with biopsy-proven invasive breast cancer treated from January 1, 2005–December 31, 2009. We collected patient demographics, clinical and pathologic staging, chest x-ray, CBC, and LFT results at the time of referral. Patients were stratified according to radiographic stage at the time of diagnosis. We obtained Medicare reimbursement fees for cost analysis. From 2005 to 2009, 1609 patients with biopsy-proven invasive breast cancer were treated at our institution. Of the 1082 patients with radiographic stage I/II disease, 27.3 % of patients had abnormal CBCs. No additional testing was performed to evaluate these abnormalities. In the early-stage population, 24.7 % of patients had elevated LFTs, resulting in 84 additional imaging studies. No metastatic disease was detected. The cost of CBC, LFTs and chest x-rays was $110.20 per patient, totaling $106,410.99. Additional tests prompted by abnormal results cost $58,143.30 over the five-year period. We found that pre-treatment CBCs, LFTs, and chest x-rays did not improve detection of occult metastatic disease but resulted in additional financial costs. Avoiding routine ordering of these tests would save the US healthcare system $25.7 million annually.

  17. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  18. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Tucker, Andrew W.; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David H.; Lu, Jianping; Zhou, Otto

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs-1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm-1 along the scanning direction, and 3.4 cycles mm-1 perpendicular to the scanning direction. As the angular coverage of 11.6°-34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible.

  19. An image processing system for digital chest X-ray images.

    PubMed

    Cocklin, M; Gourlay, A; Jackson, P; Kaye, G; Miessler, M; Kerr, I; Lams, P

    1984-01-01

    This paper investigates the requirements for image processing of digital chest X-ray images. These images are conventionally recorded on film and are characterised by large size, wide dynamic range and high resolution. X-ray detection systems are now becoming available for capturing these images directly in photoelectronic-digital form. In this report, the hardware and software facilities required for handling these images are described. These facilities include high resolution digital image displays, programmable video look up tables, image stores for image capture and processing and a full range of software tools for image manipulation. Examples are given of the application of digital image processing techniques to this class of image.

  20. Immunological profile of chest x-ray-negative, asymptomatic asbestos workers

    SciTech Connect

    Lahat, N.; Sobel, E.; Djerassi, L.; Kaufman, G.; Horenstein, L.; Gruener, N.

    1988-01-01

    Several immunologic parameters, both humoral and cellular, were studied in the serum and peripheral blood lymphocytes derived from chest x-ray-negative, asymptomatic asbestos workers. All humoral and cellular parameters were intact, except the con-A-induced T cell suppressor activity and T cell division in autologous mixed lymphocyte reaction, which were significantly elevated in the asbestos plant workers. The significance of these increased T cell activities in asbestos exposed people is not clear, and further clinical and immunological follow-up is warranted.

  1. Atlas-based rib-bone detection in chest X-rays.

    PubMed

    Candemir, Sema; Jaeger, Stefan; Antani, Sameer; Bagci, Ulas; Folio, Les R; Xu, Ziyue; Thoma, George

    2016-07-01

    This paper investigates using rib-bone atlases for automatic detection of rib-bones in chest X-rays (CXRs). We built a system that takes patient X-ray and model atlases as input and automatically computes the posterior rib borders with high accuracy and efficiency. In addition to conventional atlas, we propose two alternative atlases: (i) automatically computed rib bone models using Computed Tomography (CT) scans, and (ii) dual energy CXRs. We test the proposed approach with each model on 25 CXRs from the Japanese Society of Radiological Technology (JSRT) dataset and another 25 CXRs from the National Library of Medicine CXR dataset. We achieve an area under the ROC curve (AUC) of about 95% for Montgomery and 91% for JSRT datasets. Using the optimal operating point of the ROC curve, we achieve a segmentation accuracy of 88.91±1.8% for Montgomery and 85.48±3.3% for JSRT datasets. Our method produces comparable results with the state-of-the-art algorithms. The performance of our method is also excellent on challenging X-rays as it successfully addressed the rib-shape variance between patients and number of visible rib-bones due to patient respiration.

  2. A Solitary Feature-based Lung Nodule Detection Approach for Chest X-Ray Radiographs.

    PubMed

    Li, Xuechen; Shen, Linlin; Luo, Suhuai

    2017-01-31

    Lung cancer is one of the most deadly diseases. It has a high death rate and its incidence rate has been increasing all over the world. Lung cancer appears as a solitary nodule in chest x-ray radiograph (CXR). Therefore, lung nodule detection in CXR could have a significant impact on early detection of lung cancer. Radiologists define a lung nodule in chest x-ray radiographs as "solitary white nodule-like blob". However, the solitary feature has not been employed for lung nodule detection before. In this paper, a solitary feature-based lung nodule detection method was proposed. We employed stationary wavelet transform and convergence index filter to extract the texture features and used AdaBoost to generate white nodule-likeness map. A solitary feature was defined to evaluate the isolation degree of candidates. Both the isolation degree and the white nodule-likeness were used as final evaluation of lung nodule candidates. The proposed method shows better performance and robustness than those reported in previous research. More than 80% and 93% of lung nodules in the lung field in the JSRT database were detected when the false positives per image was two and five, respectively. The proposed approach has the potential of being used in clinical practice.

  3. Gray-scale transform and evaluation for digital x-ray chest images on CRT monitor

    NASA Astrophysics Data System (ADS)

    Furukawa, Isao; Suzuki, Junji; Ono, Sadayasu; Kitamura, Masayuki; Ando, Yutaka

    1997-04-01

    In this paper, an experimental evaluation of a super high definition (SHD) imaging system for digital x-ray chest images is presented. The SHD imaging system is proposed as a platform for integrating conventional image media. We are involved in the use of SHD images in the total digitizing of medical records that include chest x-rays and pathological microscopic images, both which demand the highest level of quality among the various types of medical images. SHD images use progressive scanning and have a spatial resolution of 2000 by 2000 pixels or more and a temporal resolution (frame rate) of 60 frames/sec or more. For displaying medical x-ray images on a CRT, we derived gray scale transform characteristics based on radiologists' comments during the experiment, and elucidated the relationship between that gray scale transform and the linearization transform for maintaining the linear relationship with the luminance of film on a light box (luminance linear transform). We then carried out viewing experiments based on a five-stage evaluation. Nine radiologists participated in our experiment, and the ten cases evaluated included pulmonary fibrosis, lung cancer, and pneumonia. The experimental results indicated that conventional film images and those on super high definition CRT monitors have nearly the same quality. They also show that the gray scale transform for CRT images decided according to radiologists' comments agrees with the luminance linear transform in the high luminance region. And in the low luminance region, it was found that the gray scale transform had the characteristics of level expansion to increase the number of levels that can be expressed.

  4. Impact of chest X-ray before discharge in asymptomatic children after cardiac surgery--prospective evaluation.

    PubMed

    Quandt, Daniel; Knirsch, Walter; Niesse, Oliver; Schraner, Thomas; Dave, Hitendu; Kretschmar, Oliver

    2013-01-01

    In many paediatric cardiac units chest radiographs are performed routinely before discharge after cardiac surgery. These radiographs contribute to radiation exposure. To evaluate the diagnostic impact of routine chest X-rays before discharge in children undergoing open heart surgery and to analyze certain risk factors predicting pathologic findings. This was a prospective (6 months) single-centre observational clinical study. One hundred twenty-eight consecutive children undergoing heart surgery underwent biplane chest X-ray at a mean of 13 days after surgery. Pathologic findings on chest X-rays were defined as infiltrate, atelectasis, pleural effusion, pneumothorax, or signs of fluid overload. One hundred nine asymptomatic children were included in the final analysis. Risk factors, such as age, corrective versus palliative surgery, reoperation, sternotomy versus lateral thoracotomy, and relevant pulmonary events during postoperative paediatric intensive care unit (PICU) stay, were analysed. In only 5.5 % (6 of 109) of these asymptomatic patients were pathologic findings on routine chest X-ray before discharge found. In only three of these cases (50 %), subsequent noninvasive medical intervention (increasing diuretics) was needed. All six patients had relevant pulmonary events during their PICU stay. Risk factor analysis showed only pulmonary complications during PICU stay to be significantly associated (p = 0.005) with pathologic X-ray findings. Routine chest radiographs before discharge after cardiac surgery can be omitted in asymptomatic children with an uneventful and straightforward perioperative course. Chest radiographs before discharge are warrantable if pulmonary complications did occur during their PICU stay, as this is a risk factor for pathologic findings in chest X-rays before discharge.

  5. Ultrasound for Localization of Central Venous Catheter: A Good Alternative to Chest X-Ray?

    PubMed Central

    Kamalipour, Hamid; Ahmadi, Sedigheh; Kamali, Karmella; Moaref, Alireza; Shafa, Masih; Kamalipour, Parsa

    2016-01-01

    Background Chest radiography after central venous catheter (CVC) insertion is the main method of verifying the catheter location. Despite the widespread use of radiography for detecting catheter position, x-ray may not always be readily available, especially in the operating room. Objectives We aimed to compare contrast-enhanced ultrasonography (CEUS) and chest radiography for detecting the correct location of CVCs. Methods One hundred sixteen consecutive patients with indications for CVC before cardiac surgery were enrolled in this observational study. After catheter insertion, CEUS was performed. Portable radiography was obtained postoperatively in the intensive care unit. Sensitivity, specificity, and predictive values were determined by comparing the ultrasonography results with radiographic findings as a reference standard. Results Chest radiography revealed 16 CVC misplacements: two cases of intravascular and 14 cases of right atrium (RA) misplacement. CEUS detected 11 true catheter malpositionings in the RA, while it could not recognize seven catheter placements correctly. CEUS showed two false RA misplacements and five falsely correct CVC positions. A sensitivity of 98% and specificity of 69% were achieved for CEUS in detecting CVC misplacements. Positive and negative predictive values were 95% and 85%, respectively. The interrater agreement (kappa) between CEUS and radiography was 0.72 (P < 0.001). Conclusions Despite close concordance between ultrasonography and chest radiography, CEUS is not a suitable alternative for standard chest radiography in detecting CVC location; however, considering its high sensitivity and acceptable specificity in our study, its usefulness as a triage method for detecting CVC location on a real-time basis in the operating room cannot be ignored. PMID:27847699

  6. Radiation doses to paediatric patients and comforters undergoing chest X rays.

    PubMed

    Sulieman, A; Vlychou, M; Tsougos, I; Theodorou, K

    2011-09-01

    Pneumonia is an important cause of hospital admission among children in the developed world and it is estimated to be responsible for 3-18 % of all paediatric admissions. Chest X ray is an important examination for pneumonia diagnosis and for evaluation of complications. This study aims to determine the entrance surface dose (ESD), organ, effective doses and propose a local diagnostic reference level. The study was carried out at the university hospital of Larissa, Greece. Patients were divided into three groups: organ and effective doses were estimated using National Radiological Protection Board software. The ESD was determined by thermoluminescent dosemeters for 132 children and 76 comforters. The average ESD value was 55 ± 8 µGy. The effective dose for patients was 11.2 ± 5 µSv. The mean radiation dose for comforter is 22 ± 3 µGy. The radiation dose to the patients is well within dose constraint, in the light of the current practice.

  7. Severity Quantification of Pediatric Viral Respiratory Illnesses in Chest X-ray Images

    PubMed Central

    Okada, Kazunori; Golbaz, Marzieh; Mansoor, Awais; Perez, Geovanny F; Pancham, Krishna; Khan, Abia; Nino, Gustavo; Linguraru, Marius George

    2015-01-01

    Accurate assessment of severity of viral respiratory illnesses (VRIs) allows early interventions to prevent morbidity and mortality in young children. This paper proposes a novel imaging biomarker framework with chest X-ray image for assessing VRI’s severity in infants, developed specifically to meet the distinct challenges for pediatric population. The proposed framework integrates three novel technical contributions: a) lung segmentation using weighted partitioned active shape model, b) obtrusive object removal using graph cut segmentation with asymmetry constraint, and c) severity quantification using information-theoretic heterogeneity measures. This paper presents our pilot experimental results with a dataset of 148 images and the ground-truth severity scores given by a board-certified pediatric pulmonologist, demonstrating the effectiveness and clinical relevance of the presented framework. PMID:26736226

  8. Tuberculosis contact investigation using interferon-gamma release assay with chest x-ray and computed tomography.

    PubMed

    Fujikawa, Akira; Fujii, Tatsuya; Mimura, Satoshi; Takahashi, Ryota; Sakai, Masao; Suzuki, Shinya; Kyoto, Yukishige; Uwabe, Yasuhide; Maeda, Shinji; Mori, Toru

    2014-01-01

    Between September 2009 and January 2010, 6 members of the Japanese Eastern Army, who had completed the same training program, were diagnosed with active tuberculosis (TB) on different occasions. The Ministry of Defense conducted a contact investigation of all members who had come into contact with the infected members. The purpose of this study was to verify the efficacy of the TB screening protocol used in this investigation. A total of 884 subjects underwent interferon-gamma release assay (IGRA) and chest X-ray. The 132 subjects who were IGRA positive or with X-ray findings suggestive of TB subsequently underwent chest computer tomography (CT). Chest CT was performed for 132 subjects. Based on CT findings, 24 (2.7%) subjects were classified into the active TB group, 107 (12.1%) into the latent tuberculosis infection (LTBI) group, and 753 (85.2%) into the non-TB group. The first 2 groups underwent anti-TB therapy, and all 3 groups were followed for 2 years after treatment. Although one subject in the active TB group experienced relapse during the follow-up period, no patient in the LTBI or non-TB groups developed TB. IGRA and chest X-ray, followed by chest CT for those IGRA positive or with suspicious X-ray findings, appears to be an effective means of TB contact screening and infection prevention.

  9. Aspergillus and mucormycosis presenting with normal chest X-ray in an immunocompromised host.

    PubMed

    Gupta, Vipin; Rajagopalan, Natarajan; Patil, Mahantesh; Shivaprasad, C

    2014-04-09

    Invasive aspergillus and mucormycosis infection are not uncommon in immunocompromised individuals. Endobronchial fungal infections have been reported in the literature, especially in patient's with diabetes complicated by diabetic ketoacidosis, but end bronchial coinfection with aspergillus and mucormycosis without pulmonary involvement has not been described in the literature. We report the case of a woman with diabetes who presented with gastrointestinal symptoms, ketoacidosis and respiratory distress, with an apparently normal chest X-ray. Investigations revealed a cavitatory lesion in the left lower lobe of the lungs on CT scan. Bronchoscopy revealed intense mucosal oedema and whitish plaques at the lower end of the trachea and right main stem bronchus with a normal left bronchial tree. Microbiological and pathological results confirmed aspergillus and mucormycosis. Despite aggressive medical management, the patient deteriorated and died of respiratory failure. Strong suspicion of invasive fungal infections in immunocompromised patients with respiratory failure and minimal chest infiltrates, early fibreoptic bronchoscopy and early aggressive treatment is crucial for the patient's survival.

  10. Interest of chest X-ray in tailoring the diagnostic strategy in patients with suspected pulmonary embolism.

    PubMed

    Robin, Philippe; Le Roux, Pierre-Yves; Tissot, Valentin; Delluc, Aurélien; Le Duc-Pennec, Alexandra; Abgral, Ronan; Palard, Xavier; Couturaud, Francis; Le Gal, Grégoire; Salaun, Pierre-Yves

    2015-09-01

    Current diagnostic strategies for pulmonary embolism rely on the sequential use of noninvasive diagnostic tests including ventilation-perfusion (V/Q) scan and computed tomography pulmonary angiography (CTPA). V/Q scan remains criticized because of a high proportion of nondiagnostic test results, especially when the chest X-ray (CXR) is abnormal. The present study assesses whether CXR results have an impact on the conclusiveness of a noninvasive diagnostic strategy of pulmonary embolism based on the combination of pretest probability, compression ultrasonography, V/Q scan, and CTPA. Patients suspected of having pulmonary embolism were managed according to a validated diagnostic strategy. All patients underwent a CXR within 24 h of the suspicion of pulmonary embolism. CXR results were correlated to strategy conclusiveness, as assessed by the rate of required CTPA as per the diagnostic algorithm. Two hundred and twenty-three patients were retrospectively analyzed. CXRs were considered as normal in 108 (48%) patients and abnormal in 115 (52%) patients. According to the diagnostic algorithm, a CTPA was required to reach a diagnostic conclusion in 11 (10%) patients of the normal CXR group, and in 14 (12%) patients of the abnormal CXR group (P > 0.05). In this study, the presence of CXR abnormalities did not have an impact on the conclusiveness of a diagnostic strategy of pulmonary embolism based on V/Q scan. CXR abnormalities should likely not be regarded as a contraindication to the use of V/Q scan in patients with suspected pulmonary embolism.

  11. Annual Screening with Chest X-Ray Does Not Reduce Lung Cancer Deaths | Division of Cancer Prevention

    Cancer.gov

    Annual screening for lung cancer using a standard chest x-ray does not reduce the risk of dying from lung cancer when compared with no annual screening, according to findings from the NCI-led Prostate, Lung, Colorectal, and Ovarian (PLCO) screening trial. |

  12. [Adaptive Wiener filter based on Gaussian mixture distribution model for denoising chest X-ray CT image].

    PubMed

    Tabuchi, Motohiro; Yamane, Nobumoto; Morikawa, Yoshitaka

    2008-05-20

    In recent decades, X-ray CT imaging has become more important as a result of its high-resolution performance. However, it is well known that the X-ray dose is insufficient in the techniques that use low-dose imaging in health screening or thin-slice imaging in work-up. Therefore, the degradation of CT images caused by the streak artifact frequently becomes problematic. In this study, we applied a Wiener filter (WF) using the universal Gaussian mixture distribution model (UNI-GMM) as a statistical model to remove streak artifact. In designing the WF, it is necessary to estimate the statistical model and the precise co-variances of the original image. In the proposed method, we obtained a variety of chest X-ray CT images using a phantom simulating a chest organ, and we estimated the statistical information using the images for training. The results of simulation showed that it is possible to fit the UNI-GMM to the chest X-ray CT images and reduce the specific noise.

  13. The accuracy of mobile teleradiology in the evaluation of chest X-rays.

    PubMed

    Schwartz, Adam B; Siddiqui, Gina; Barbieri, John S; Akhtar, Amana L; Kim, Woojin; Littman-Quinn, Ryan; Conant, Emily F; Gupta, Narainder K; Pukenas, Bryan A; Ramchandani, Parvati; Lev-Toaff, Anna S; Tobey, Jennifer D; Torigian, Drew A; Praestgaard, Amy H; Kovarik, Carrie L

    2014-12-01

    We assessed the diagnostic accuracy of digital photographs of plain film chest X-rays (CXRs) obtained using a mobile phone. The study was a randomized, non-inferiority trial, in which physical plain film CXRs viewed on a light box were compared with digital photographs of plain film CXRs. CXRs were selected from a database of radiology studies to show common pathologies found in Botswana associated with pneumonia, lung carcinoma, tuberculosis, pneumothorax and interstitial disease, as well as normal findings. The pre-selected diagnoses were subsequently verified by a second radiologist. Seven radiologists were randomized to review 75 plain film CXRs on light boxes before viewing 75 digital photographs, or vice versa. Their responses were considered correct if they matched the pre-defined diagnosis. For both modalities, the correct diagnosis was provided in 79% of cases; for plain film CXRs, the correct diagnosis was provided in 82% of cases and for digital photographs the correct diagnosis was provided in 76% of cases. The difference in diagnostic accuracy was -5.7% (95% CI: -10.8% to -0.5%), which confirmed non-inferiority (P<0.001) for the primary outcome of diagnostic accuracy. A subgroup analysis demonstrated non-inferiority for lung carcinoma and pneumonia images, although non-inferiority was not achieved for pneumothorax, tuberculosis, interstitial disease or normal images. The study demonstrates that digital photographs of CXRs obtained via a mobile phone equipped with a digital camera are non-inferior to plain film CXRs.

  14. The completeness of chest X-ray procedure codes in the Danish National Patient Registry

    PubMed Central

    Hjertholm, Peter; Flarup, Kaare Rud; Guldbrandt, Louise Mahncke; Vedsted, Peter

    2017-01-01

    Objective The aim of this validation study was to assess the completeness of the registrations of chest X-rays (CXR) in two different versions of the Danish National Patient Registry (DNPR). Material and methods We included electronic record data on CXR performed on patients aged 40 to 99 years from nine radiology departments covering 20 Danish hospitals. From each department, we included data from three randomly selected weeks between 2004 and 2011 (reference standard). In two versions of the DNPR from the State Serum Institute (SSI) and Statistics Denmark, respectively, we investigated the proportion of registered CXR compared to the reference standard. Furthermore, we compared the completeness of the recorded data according to the responsible department (main department). Results We identified 11,235 patients and 12,513 CXR in the reference standard. The data from the SSI contained 12,265 (98%) CXR, whereas the data from Statistics Denmark comprised 9,151 (73.1%) CXR. The completeness of the SSI data was fairly constant across years, radiology departments, medical specialties, and age groups. The data from Statistics Denmark was almost complete in 2011 (95.8%). However, for the remaining study period, the data with radiology departments registered as the main department were lacking in the version from Statistics Denmark, and so the overall completeness was 73.1%. Conclusion The completeness of CXR registrations varied between 98% and 73% depending on the information source, and this should be considered when investigating radiology services in the basis of DNPR. PMID:28293121

  15. Lung ultrasound and chest x-ray for detecting pneumonia in an acute geriatric ward

    PubMed Central

    Ticinesi, Andrea; Lauretani, Fulvio; Nouvenne, Antonio; Mori, Giulia; Chiussi, Giulia; Maggio, Marcello; Meschi, Tiziana

    2016-01-01

    Abstract Background: Our aim was to compare the accuracy of lung ultrasound (LUS) and standard chest x-ray (CXR) for diagnosing pneumonia in older patients with acute respiratory symptoms (dyspnea, cough, hemoptysis, and atypical chest pain) admitted to an acute-care geriatric ward. Methods: We enrolled 169 (80 M, 89 F) multimorbid patients aged 83.0 ± 9.2 years from January 1 to October 31, 2015. Each participant underwent CXR and bedside LUS within 6 hours from ward admission. LUS was performed by skilled clinicians, blinded to CXR results and clinical history. The final diagnosis (pneumonia vs no-pneumonia) was established by another clinician reviewing clinical and laboratory data independent of LUS results and possibly prescribing chest contrast-enhanced CT. Diagnostic parameters of CXR and LUS were compared with McNemar test on the whole cohort and after stratification for Rockwood Clinical Frailty Scale. Results: Diagnostic accuracy for pneumonia (96 patients) was significantly higher in LUS (0.90, 95% confidence interval [CI] 0.83–0.96) compared with CXR (0.67, 95%CI 0.60–0.74, P < 0.001). LUS had a better sensitivity (0.92, 95%CI 0.86–0.97 vs 0.47, 95%CI 0.37–0.57) and negative predictive value (0.95, 95% CI 0.83–0.96 vs 0.57, 95%CI 0.48–0.56). In those patients with frailty (n = 87 with Rockwood Clinical Frailty Scale ≥5), LUS maintained a high diagnostic accuracy, but CXR did not (P = 0.0003). Interobserver agreement for LUS, calculated in a subsample of 29 patients, was high (k = 0.90). Conclusions: In multimorbid patients admitted to an acute geriatric ward, LUS was more accurate than CXR for the diagnosis of pneumonia, particularly in those with frailty. A wider use of LUS should be implemented in this setting. PMID:27399134

  16. Are chest X-rays mandatory following central venous recatheterization over a wire?

    PubMed

    Amshel, C E; Palesty, J A; Dudrick, S J

    1998-06-01

    Exchange of a central venous catheter (CVC) over a guidewire is a frequent clinical procedure, especially in surgical intensive care units. At most hospitals, a chest X-ray (CXR) is obtained routinely after recatheterization to confirm accurate catheter placement and to rule out complications such as pneumothorax. We hypothesized that the incidence of complications after central venous recatheterization over a guidewire is too low to justify automatic performance and the associated expense of a routine postprocedure CXR. Initially we undertook a retrospective study of a total of 295 patients with a Swan-Ganz catheter (SGC), of which 92 SGCs were exchanged over a guidewire for a CVC between July 1, 1994, and June 30, 1996, at a university-affiliated community hospital. Age, gender, duration of SGC placement, type of central catheter used for exchange with the SGC, and CXRs and their reports were noted. From July 1, 1996, to October 1, 1997, the study has been continued prospectively. Thus far, in this ongoing investigation, we have identified 505 patients (201 prospective) who had a SGC placed, 210 (116 prospective) of whom had their SGC removed electively, leaving the SGC introducer in place for advancement of a guidewire, and subsequent replacement by a CVC. Of all the patients with a SGC, 40 per cent had the SGC replaced with a CVC over a guidewire, and follow-up CXRs and their reports confirmed that all exchanged triple lumen catheter tips were appropriately positioned in the superior vena cava with zero complications. With the advent of managed care, a savings of $115/CXR (one view X-ray and reading cost at our hospital) would be gained without the added risk of radiation exposure to the patient if a CXR were not mandatory after an uncomplicated guidewire replacement of a central line. It appears from these data that a CXR is not justified as a routine study after replacement of all CVCs over a wire from the standpoints of both patient risk and expense

  17. Role of the trauma-room chest x-ray film in assessing the patient with severe blunt traumatic injury

    PubMed Central

    McLellan, Barry A.; Ali, Jameel; Towers, Mark J.; Sharkey, P. William

    1996-01-01

    Objectives To examine the accuracy of standard trauma-room chest x-ray films in assessing blunt abdominal trauma and to determine the significance of missed injuries under these circumstances. Design A retrospective review. Setting A regional trauma unit in a tertiary-care institution. Patients Multiply injured trauma patients admitted between January 1988 and December 1990 who died within 24 hours of injury and in whom an autopsy was done. Intervention Standard radiography of the chest. Main Outcome Measures Chest injuries diagnosed and recorded by the trauma room team from standard anteroposterior x-ray films compared with the findings at autopsy and with review of the films by a staff radiologist initially having no knowledge of the injuries and later, if injuries remained undetected, having knowledge of the autopsy findings. Results Thirty-seven patients met the study criteria, and their cases were reviewed. In 11 cases, significant injuries were noted at autopsy and not by the trauma-room team, and in 7 cases these injuries were also missed by the reviewing radiologist. Injuries missed by the team were: multiple rib fractures (11 cases), sternal fractures (3 cases), diaphragmatic tear (2 cases) and intimal aortic tear (1 case). In five cases, chest tubes were not inserted despite the presence (undiagnosed) of multiple rib fractures and need for intubation and positive-pressure ventilation. Conclusions Significant blunt abdominal trauma, potentially requiring operative management or chest-tube insertion, may be missed on the initial anteroposterior chest x-ray film. Caution must therefore be exercised in interpreting these films in the trauma resuscitation room. PMID:8599789

  18. Measurement of radiotherapy x-ray skin dose on a chest wall phantom.

    PubMed

    Quach, K Y; Morales, J; Butson, M J; Rosenfeld, A B; Metcalfe, P E

    2000-07-01

    Sufficient skin dose needs to be delivered by a radiotherapy chest wall treatment regimen to ensure the probability of a near surface tumor recurrence is minimized. To simulate a chest wall treatment a hemicylindrical solid water phantom of 7.5 cm radius was irradiated with 6 MV x-rays using 20x20 cm2 and 10x20 cm2 fields at 100 cm source surface distance (SSD) to the base of the phantom. A surface dose profile was obtained from 0 to 180 degrees, in 10 degrees increments around the circumference of the phantom. Dosimetry results obtained from radiochromic film (effective depth of 0.17 mm) were used in the investigation, the superficial doses were found to be 28% (of Dmax) at the 0 degrees beam entry position and 58% at the 90 degrees oblique beam position. Superficial dose results were also obtained using extra thin thermoluminescent dosimeters (TLD) (effective depth 0.14 mm) of 30% at 0 degrees, 57% at 90 degrees, and a metal oxide semiconductor field effect transistor (MOSFET) detector (effective depth 0.5 mm) of 43% at 0 degrees, 62% at 90 degrees. Because the differences in measured superficial doses were significant and beyond those related to experimental error, these differences are assumed to be mostly attributable to the effective depth of measurement of each detector. We numerically simulated a bolus on/bolus off technique and found we could increase the coverage to the skin. Using an alternate "bolus on," "bolus off" regimen, the skin would receive 36.8 Gy at 0 degrees incidence and 46.4 Gy at 90 degrees incidence for a prescribed midpoint dose of 50 Gy. From this work it is evident that, as the circumference of the phantom is traversed the SSD increases and hence there is an inverse square fluence fall-off, this is more than offset by the increase in skin dose due to surface curvature to a plateau at about 90 degrees. Beyond this angle it is assumed that beam attenuation through the phantom and inverse square fall-off is causing the surface dose to

  19. Assessment of Limited Chest X-ray Technique in Postcardiac Surgery Management

    PubMed Central

    Salehi, Mehrdad; Saberi, Kianoush; Rahmanian, Mehrzad; Bakhshandeh, Ali Reza; Sharifi, Shahnaz

    2017-01-01

    Objectives: The objective of this study is to investigate the safety of elimination of chest radiography in the postcardiac surgery Intensive Care Unit (ICU). Methods and Design: We compared patients in two different groups of routine CXR (RCXR) and limited CXR (LCXR) and their diagnostic and therapeutic outcome in a University hospital-based single center from 2014 to 2016. 3 CXR in the RCXR group and 1 CXR in the limited group was performed, in addition to on-demand criteria. Measurement and Main Results: A total of 978 samples were acceptable for analysis which 55.21% of RCXR and 59.50% of LCXR were male patients. In total, 523 abnormalities in RCXR group and 154 occasions in LCXR group resulted in 26.73% diagnostic efficacy for RCXRs and 28.57% for LCXR. From 1956 CXR that was taken in RCXR group, 72 occasions required intervention (3.68%) and 84 cases out of 539 (15.58%) LCXR needed an action to therapy. This means a 14.40% in RCXRs’ abnormalities and 56.00% of LCXRs’ abnormalities were accompanied with some interventions. Conclusions: Abolishing routine CXR in the ICUs would not be harmful for the patients, and it can be managed based on their clinical status and other safer imaging techniques. PMID:28074793

  20. Prevalence of occupational pleural thickening: a look at chest x-rays from the first National Health and Nutrition Examination Survey

    SciTech Connect

    Rogan, W.J.; Gladenn, B.C.; Ragan, B.; Anderson, H.A.

    1987-11-01

    The prevalence of occupational pleural thickening in the United States in the mid-1970s was estimated; since asbestos often reduces pleural thickening, this estimate in turn was used to estimate the presence of asbestos exposure. Chest x-rays obtained by the 1971-1975 National Health and Nutrition Examination Survey were reread by three readers using the International Labour Office criteria for diagnosis of pleural thickening consistent with dust exposure. All 289 x-rays showing any pleural abnormalities plus a 3-to-1 age-, sex-, and race-matched control series were reread. Using two of three readings as positive, and extrapolating to the US population from this defined sample, the authors showed that 2.3% of males and 0.2% of females had occupational pleural thickening on x-ray, with a strong increase with age in white males. This provides a US population estimate of 1.3 million people with occupational pleural thickening and approximately 8 million people with asbestos exposure in the mid-1970s. This cohort might make a substantial contribution to cancer mortality into the next century.

  1. [Recommendations for reporting benign asbestos-related findings in chest X-ray and CT to the accident insurances].

    PubMed

    Kraus, T; Borsch-Galetke, E; Elliehausen, H J; Frank, K; Hering, K G; Hieckel, H G; Hofmann-Preiss, K; Jacques, W; Jeremie, U; Kotschy-Lang, N; Mannes, E; Otten, H; Raab, W; Raithel, H J; Schneider, W D; Tuengerthal, S

    2009-12-01

    Asbestos-related diseases still play an important role in occupational medicine. The detection of benign asbestos-related diseases is one condition for the compensation of asbestos-related lung cancer in Germany. Due to the increasing use of computed tomography, asbestos-related diseases are more frequently detected in the early stages. The present article proposes recommendations for the findings which have to be reported as suspicious for being asbestos-related based on a) chest X-rays and b) computed tomography using the International Classification System for Occupational and Environmental Respiratory Diseases (ICOERD).

  2. [Patterns of pulmonary vascularization on plain-film chest X-rays].

    PubMed

    Rodríguez Carnero, P; Bustos García de Castro, A

    2014-01-01

    Plain chest films are a fundamental tool in the practice of medicine. The apparent simplicity of plain chest films sometimes leads us to forget that interpreting them correctly can provide very valuable information, especially if the interpretation is grounded in key clinical information. To interpret a plain chest film, it is important to pay attention to the pulmonary vascularization. This article reviews the normal shape and distribution of the pulmonary vessels on plain chest films and the most common pathologic vascular patterns, including those seen in pulmonary hypertension, hyperemia, hypovascularization, and alternative perfusion.

  3. Anatomy-based transmission factors for technique optimization in portable chest x-ray

    NASA Astrophysics Data System (ADS)

    Liptak, Christopher L.; Tovey, Deborah; Segars, William P.; Dong, Frank D.; Li, Xiang

    2015-03-01

    Portable x-ray examinations often account for a large percentage of all radiographic examinations. Currently, portable examinations do not employ automatic exposure control (AEC). To aid in the design of a size-specific technique chart, acrylic slabs of various thicknesses are often used to estimate x-ray transmission for patients of various body thicknesses. This approach, while simple, does not account for patient anatomy, tissue heterogeneity, and the attenuation properties of the human body. To better account for these factors, in this work, we determined x-ray transmission factors using computational patient models that are anatomically realistic. A Monte Carlo program was developed to model a portable x-ray system. Detailed modeling was done of the x-ray spectrum, detector positioning, collimation, and source-to-detector distance. Simulations were performed using 18 computational patient models from the extended cardiac-torso (XCAT) family (9 males, 9 females; age range: 2-58 years; weight range: 12-117 kg). The ratio of air kerma at the detector with and without a patient model was calculated as the transmission factor. Our study showed that the transmission factor decreased exponentially with increasing patient thickness. For the range of patient thicknesses examined (12-28 cm), the transmission factor ranged from approximately 21% to 1.9% when the air kerma used in the calculation represented an average over the entire imaging field of view. The transmission factor ranged from approximately 21% to 3.6% when the air kerma used in the calculation represented the average signals from two discrete AEC cells behind the lung fields. These exponential relationships may be used to optimize imaging techniques for patients of various body thicknesses to aid in the design of clinical technique charts.

  4. Entrance surface dose and image quality: comparison of adult chest and abdominal X-ray examinations in general practitioner clinics, public and private hospitals in Malaysia.

    PubMed

    Hambali, Ahmad Shariff; Ng, Kwan-Hoong; Abdullah, Basri Johan Jeet; Wang, Hwee-Beng; Jamal, Noriah; Spelic, David C; Suleiman, Orhan H

    2009-01-01

    This study was undertaken to compare the entrance surface dose (ESD) and image quality of adult chest and abdominal X-ray examinations conducted at general practitioner (GP) clinics, and public and private hospitals in Malaysia. The surveyed facilities were randomly selected within a given category (28 GP clinics, 20 public hospitals and 15 private hospitals). Only departmental X-ray units were involved in the survey. Chest examinations were done at all facilities, while only hospitals performed abdominal examinations. This study used the x-ray attenuation phantoms and protocols developed for the Nationwide Evaluation of X-ray Trends (NEXT) survey program in the United States. The ESD was calculated from measurements of exposure and clinical geometry. An image quality test tool was used to evaluate the low-contrast detectability and high-contrast detail performance under typical clinical conditions. The median ESD value for the adult chest X-ray examination was the highest (0.25 mGy) at GP clinics, followed by private hospitals (0.22 mGy) and public hospitals (0.17 mGy). The median ESD for the adult abdominal X-ray examination at public hospitals (3.35 mGy) was higher than that for private hospitals (2.81 mGy). Results of image quality assessment for the chest X-ray examination show that all facility types have a similar median spatial resolution and low-contrast detectability. For the abdominal X-ray examination, public hospitals have a similar median spatial resolution but larger low-contrast detectability compared with private hospitals. The results of this survey clearly show that there is room for further improvement in performing chest and abdominal X-ray examinations in Malaysia.

  5. Visualizing and enhancing a deep learning framework using patients age and gender for chest x-ray image retrieval

    NASA Astrophysics Data System (ADS)

    Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit

    2016-03-01

    We explore the combination of text metadata, such as patients' age and gender, with image-based features, for X-ray chest pathology image retrieval. We focus on a feature set extracted from a pre-trained deep convolutional network shown in earlier work to achieve state-of-the-art results. Two distance measures are explored: a descriptor-based measure, which computes the distance between image descriptors, and a classification-based measure, which performed by a comparison of the corresponding SVM classification probabilities. We show that retrieval results increase once the age and gender information combined with the features extracted from the last layers of the network, with best results using the classification-based scheme. Visualization of the X-ray data is presented by embedding the high dimensional deep learning features in a 2-D dimensional space while preserving the pairwise distances using the t-SNE algorithm. The 2-D visualization gives the unique ability to find groups of X-ray images that are similar to the query image and among themselves, which is a characteristic we do not see in a 1-D traditional ranking.

  6. [Screening chest X-ray examination with kinetic analysis using flat-panel detector].

    PubMed

    Sanada, Shigeru; Tanaka, Rie; Kobayashi, Takeshi; Suzuki, Masayuki; Inoue, Hitoshi

    2003-11-01

    We are developing dynamic screening radiography to provide kinetic information for lung respiratory examination using a flat-panel-detector (FPD) system. We modified the FPD system (CANON CXDI-22) to take sequential images for a short period of time (10 seconds, 3 frames/sec). Sequential chest radiographs from full inspiration to expiration were taken and analyzed for diaphragm movement and density changes in local lung areas to objectively detect respiratory anomalies. Our methods derived some respiratory functions such as regional air passage and lung structure movement, and suggested that the degree of chronic obstructive pulmonary disease and interstitial pneumonia could be evaluated quantitatively.

  7. Can routine trauma bay chest x-ray be bypassed with an extended focused assessment with sonography for trauma examination?

    PubMed

    Soult, Michael C; Weireter, Leonard J; Britt, Rebecca C; Collins, Jay N; Novosel, Timothy J; Reed, Scott F; Britt, L D

    2015-04-01

    The objective of this study was to investigate the feasibility of using ultrasound (US) in place of portable chest x-ray (CXR) for the rapid detection of a traumatic pneumothorax (PTX) requiring urgent decompression in the trauma bay. All patients who presented as a trauma alert to a single institution from August 2011 to May 2012 underwent an extended focused assessment with sonography for trauma (FAST). The thoracic cavity was examined using four-view US imaging and were interpreted by a chief resident (Postgraduate Year 4) or attending staff. US results were compared with CXR and chest computed tomography (CT) scans, when obtained. The average age was 37.8 years and 68 per cent of the patients were male. Blunt injury occurred in 87 per cent and penetrating injury in 12 per cent of activations. US was able to predict the absence of PTX on CXR with a sensitivity of 93.8 per cent, specificity of 98 per cent, and a negative predictive value of 99.9 per cent compared with CXR. The only missed PTX seen on CXR was a small, low anterior, loculated PTX that was stable for transport to CT. The use of thoracic US during the FAST can rapidly and safely detect the absence of a clinically significant PTX. US can replace routine CXR obtained in the trauma bay and allow more rapid initiation of definitive imaging studies.

  8. Chest x ray films from construction workers: International Labour Office (ILO 1980) classification compared with routine readings.

    PubMed Central

    Albin, M; Engholm, G; Fröström, K; Kheddache, S; Larsson, S; Swantesson, L

    1992-01-01

    The extent of agreement between International Labour Office (ILO) and clinical readings of chest x ray films from construction workers was studied. From a survey of 5898 workers 258 subjects with a profusion of small opacities of > or = 1/1 and a stratified sample of subjects with profusion < 1/1 were selected. Only 41% of the films classified as ILO profusion category > or = 1/1 were clinically recorded as non-normal for the parenchyma. The proportion of films recorded as pneumoconiotic (or possibly so) was especially low for irregular opacities (22%), but increased with the profusion category (both rounded and irregular) as well as with the size of rounded opacities (p 3/11, q 12/25, r 3/4). Only with the profusion category > or = 2/1 were most of the films recorded as pneumoconiotic. The specificity and sensitivity were highest in the geographical areas where a few clinical readers had assessed many films each. The proportion of false negative clinical reports was low for circumscribed pleural thickening of the chest wall (9%) and diaphragmatic pleural thickening (6%). For calcified pleural changes and for the combination of diffuse pleural thickening and obliteration of the costophrenic angle, false negative reports were absent. The present study shows an unsatisfactory sensitivity for clinical compared with ILO readings as a means for screening the parenchyma of workers with a risk of pneumoconiosis. PMID:1472445

  9. NIH-funded study shows 20 percent reduction in lung cancer mortality with low-dose CT compared to chest X-ray: | Division of Cancer Prevention

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray. The primary research results from the National Lung Screening Trial (NLST) were published online today in the New England Journal of Medicine. |

  10. Comparison of image quality among three X-ray systems for chest radiography: first step in optimisation.

    PubMed

    Nocetti, D; Ubeda, C; Calcagno, S; Acevedo, J; Pardo, D

    2015-07-01

    The aim of this study was to compare the performance of three digital X-ray systems [one flat-panel (DR) and two computed radiography (CR)] for chest radiography in terms of the entrance surface air kerma (ESAK) delivered to a polymethyl methacrylate phantom of 20 cm (equivalent to an adult patient) and image quality through of numerical evaluations using a test object (TO). The tube charge applied was ranged from 0.6 to 32 mAs, to a fixed tension of 125 kVp. The DR system presented the highest mean values of ESAK (615.9 µGy) along with the highest signal-to-noise ratio values, whereas CR systems showed a better high-contrast spatial resolution. Differences were statistically significant in both cases regarding the tube charge used. Thus, this parameter should be mainly considered to optimise the radiological protection through exposure settings selected. This survey represents the first effort to achieve optimisation in digital radiology for Chile.

  11. Pleuro-pulmonary tumours detected by clinical and chest X-ray analyses in rats transplanted with mesothelioma cells

    PubMed Central

    Pimpec-Barthes, F Le; Bernard, I; Alsamad, I Abd; Renier, A; Kheuang, L; Fleury-Feith, J; Devauchelle, P; Colonna, F Quintin; Riquet, M; Jaurand, M C

    1999-01-01

    New strategies for cancer therapy must be developed, especially in severe neoplasms such as malignant pleural mesothelioma. Animal models of cancer, as close as possible to the human situation, are needed to investigate novel therapeutical approaches. Orthotopic transplantation of cancer cells is then relevant and efforts should be made to follow up tumour evolution in animals. In the present study, we developed a method for the orthotopic growth of mesothelioma cells in the pleural cavity of Fischer 344 and nude rats, along with a procedure for clinical survey. Two mesothelioma cell lines, of rat and human origin, were inoculated by transthoracic puncture. Body weight determination and chest X-ray analyses permitted the follow-up of tumour evolution by identifying different stages. Autopsies showed that tumours localized on the whole pleural cavity (diaphragm, parietal pleura), mediastinum and pericardium. Tumour morphology and antigenic characteristics were consistent with those of the inoculated cells and were similar in both types of rats inoculated with the same cell type. These results demonstrate that mesothelioma formation in rats can be followed up by clinical and radiographic survey after gentle intrathoracic inoculation of mesothelioma cells, thus allowing the definition of stages of interest for further experimental trials. © 1999 Cancer Research Campaign PMID:10604731

  12. Chest X Ray?

    MedlinePlus

    ... Topics Cough Heart Failure Idiopathic Pulmonary Fibrosis Pneumonia Sarcoidosis Send a link to NHLBI to someone by ... such as pneumonia, heart failure, lung cancer, tuberculosis, sarcoidosis, and lung tissue scarring, called fibrosis. Doctors may ...

  13. The Effect of False-Positive Results on Subsequent Participation in Chest X-ray Screening for Lung Cancer

    PubMed Central

    Sato, Akira; Hamada, Shota; Urashima, Yuki; Tanaka, Shiro; Okamoto, Hiroaki; Kawakami, Koji

    2016-01-01

    Background High attendance rates and regular participation in disease screening programs are important contributors to program effectiveness. The objective of this study was to examine the effects of an initial false-positive result in chest X-ray screening for lung cancer on subsequent screening participation. Methods This historical cohort study analyzed individuals who first participated in a lung cancer screening program conducted by Yokohama City between April 2007 and March 2011, and these participants were retrospectively tracked until March 2013. Subsequent screening participation was compared between participants with false-positive results and those with negative results in evaluation periods between 365 (for the primary outcome) and 730 days. The association of screening results with subsequent participation was evaluated using a generalized linear regression model, with adjustment for characteristics of patients and screening. Results The proportions of subsequent screening participation within 365 days were 12.9% in 3132 participants with false-positive results and 6.7% in 15 737 participants with negative results. Although the differences in attendance rates were reduced with longer cutoffs, participants with false-positive results were consistently more likely to attend subsequent screening than patients with negative results (P < 0.01). The predictors of subsequent screening participation were false-positive results (risk ratio [RR] 1.72; 95% confidence interval [CI], 1.54–1.92), older age (RR 1.17; 95% CI, 1.11–1.23), male sex (RR 1.46; 95% CI, 1.29–1.64), being a current smoker (RR 0.80; 95% CI, 0.69–0.93), current employment (RR 0.79; 95% CI, 0.70–0.90), and being screened at a hospital cancer center (vs public health centers; RR 1.36; 95% CI, 1.15–1.60). Conclusions Our findings indicated that subsequent participation in lung cancer screening was more likely among participants with false-positive results in an initial screening than

  14. Radiological surveillance of formerly asbestos-exposed power industry workers: rates and risk factors of benign changes on chest X-ray and MDCT

    PubMed Central

    2014-01-01

    Background To determine the prevalence of asbestos-related changes on chest X-ray (CXR) and low-dose multidetector-row CT (MDCT) of the thorax in a cohort of formerly asbestos-exposed power industry workers and to assess the importance of common risk factors associated with specific radiological changes. Methods To assess the influence of selected risk factors (age, time since first exposure, exposure duration, cumulative exposure and pack years) on typical asbestos-related radiographic changes, we employed multiple logistic regression and receiver operating characteristic (ROC) analysis. Results On CXR, pleural changes and asbestosis were strongly associated with age, years since first exposure and exposure duration. The MDCT results showed an association between asbestosis and age and between plaques and exposure duration, years since first exposure and cumulative exposure. Parenchymal changes on CXR and MDCT, and diffuse pleural thickening on CXR were both associated with smoking. Using a cut-off of 55 years for age, 17 years for exposure duration and 28 years for latency, benign radiological changes in the cohort with CXR could be predicted with a sensitivity of 82.0% for all of the three variables and a specificity of 47.4%, 39.0% and 40.6%, respectively. Conclusions Participants aged 55 years and older and those with an asbestos exposure of at least 17 years or 28 years since first exposure should be seen as having an increased risk of abnormal radiological findings. For implementing a more focused approach the routine use of low-dose MDCT rather than CXR at least for initial examinations would be justified. PMID:24808921

  15. A More Efficient, Radiation-Free Alternative to Systematic Chest X-Ray for the Detection of Embolized Seeds to the Lung

    SciTech Connect

    Morrier, Janelle; Chretien, Mario; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2010-11-15

    Purpose: To evaluate the efficacy of a seed-migration detector and to compare its performance to fluoroscopy and postoperative chest radiographs. Methods and Materials: A gamma scintillation survey meter was converted to a seed-migration detector by adding a shield on the probe detection window. The detector response to three {sup 125}I seed activities was characterized for different source-to-detector distances in water. The detector was used to perform a chest evaluation on 737 patients at their first postoperative visit. When the detector showed positive activity, seed migration was confirmed by taking a chest radiograph and by looking at the region with fluoroscopy. Results: One hundred and three patients (14.0%) presented at least one embolized seed. This accounts for 123 of the 39,887 seeds. Eighty-seven, 12, and 4 patients had respectively one, two, and three seed embolization. Compared with the seed-migration detector, detection based on fluoroscopy would have led to 13 false-negative detections (of 103, or 12.6%), and the radiograph would have resulted in 31 or 30.1%. More important, standard chest X-ray would have required a survey and extra radiation dose to lung to 100% of the patients, rather than the 14% who required it. Conclusions: The usual recommendation to perform chest radiographs at the first follow-up visit to scan lungs for embolized seeds should be revised because of the high false-negative rate. Scintillator-based gamma counter detector provides superior detection sensitivity and should be adopted as a standard of practice. Chest X-ray could be limited to documenting cases of positive migration.

  16. Chest MRI

    MedlinePlus

    ... Topics Aneurysm Chest CT Scan Chest X Ray Pleurisy and Other Pleural Disorders Pulmonary Hypertension Send a ... X Ray Clinical Trials Implantable Cardioverter Defibrillators Pacemaker Pleurisy and Other Pleural Disorders Pulmonary Hypertension Rate This ...

  17. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... be a single postero-anterior projection at full inspiration on a 14 by 17 inch film. Additional chest films or views shall be obtained if they are necessary for clarification and classification. The film... source or focal spot to film distance shall be at least 6 feet; (iii) Only medium-speed film and...

  18. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... be a single postero-anterior projection at full inspiration on a 14 by 17 inch film. Additional chest films or views shall be obtained if they are necessary for clarification and classification. The film... source or focal spot to film distance shall be at least 6 feet; (iii) Only medium-speed film and...

  19. Diagnostic value of FASH ultrasound and chest X-ray in HIV-co-infected patients with abdominal tuberculosis.

    PubMed

    Heller, T; Goblirsch, S; Bahlas, S; Ahmed, M; Giordani, M-T; Wallrauch, C; Brunetti, E

    2013-03-01

    In human immunodeficiency virus (HIV) co-infected tuberculosis (TB) patients with negative acid-fast bacilli smears, chest radiography (CXR) is usually the first imaging step in the diagnostic work-up. Ultrasound, also in the form of focused assessment with sonography for TB-HIV (FASH), is an additional imaging modality used to diagnose extra-pulmonary TB (EPTB). Findings from 82 patients with abdominal TB diagnosed by ultrasound were analysed and compared with CXR results. Enlarged abdominal lymph nodes were seen in 75.6% of the patients, spleen abscesses in 41.2% and liver lesions in 30.6%. CXR showed a miliary pattern in 21.9% of the patients; 26.8% of the CXR had no radiological changes suggestive of pulmonary TB. This patient group would benefit from ultrasound in diagnostic algorithms for HIV-associated EPTB.

  20. [The use of chest X-rays for surveillance of bacterial pneumonias in children in Latin America].

    PubMed

    Lagos, Rosanna; di Fabio, José Luis; Moënne, Karla; Muñoz M, Alma; Wasserman, Steven; de Quadros, Ciro

    2003-05-01

    The Division of Vaccines and Immunization of the Pan American Health Organization (PAHO) is promoting epidemiological surveillance of bacterial pneumonias in children in Latin America in order to generate scientific evidence to support future decisions concerning using vaccines to control such pneumonias in the countries of the Region of the Americas. The diagnosis of these diseases rarely includes bacteriological documentation of the causative agent. Therefore, studies of this type that are carried out around the world accept radiological images of alveolar consolidation as a confirmatory criterion for a presumptively bacterial pneumonia. This piece examines the theoretical rationale and requirements for using thorax radiology as an instrument for epidemiological surveillance of bacterial pneumonias. The piece also summarizes the activities carried out during 2 years of joint efforts between the Center for Vaccine Development (Centro para Vacunas en Desarrollo) of Chile and PAHO's Division of Vaccines and Immunization. During those 2 years, the two groups encouraged the epidemiological study of bacterial pneumonias in Latin American children, using internationally accepted criteria and definitions as well as tools and practical solutions adapted to the reality of the Region of the America. The activities carried out so far show both the need for and the feasibility of standardizing the interpretation of chest radiographs so that they can be used in epidemiological studies.

  1. Eigen nodule: view-based recognition of lung nodule in chest x-ray CT images using subspace method

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiko; Fukano, Gentaro; Takizawa, Hotaka; Mizuno, Shinji; Yamamoto, Shinji; Matsumoto, Tohru; Tateno, Yukio; Iinuma, Takeshi

    2004-05-01

    We previously proposed a recognition method of lung nodules based on experimentally selected feature values (such as contrast, circularities, etc.) of the suspicious shadows detected by our Quoit filter. In this paper, we propose a new recognition method of lung nodule using each CT value itself in ROI (region of interest) area as a feature value. In the clustering stage, first, the suspicious shadows are classified into some clusters using Principal Component (PC) theories. A set of CT values in each ROI is regarded as a feature vector, and then the eigen vectors and the eigen values are calculated for each cluster by applying Principal Component Analysis (PCA). The eigen vectors (we call them Eigen Images) corresponding to the first 10 largest eigen values, are utilized as base vectors for subspaces of the clusters in the feature space. In the discrimination stage, correlations are measured between the unknown shadow and the subspace which is spanned by the Eigen Images. If the correlation with the abnormal subspace is large, the suspicious shadow is determined to be abnormal. Otherwise, it is determined to be normal. By applying our new method, good results have been acquired.

  2. Abdominal x-ray

    MedlinePlus

    ... a kidney stone Identify blockage in the intestine Locate an object that has been swallowed Help diagnose diseases, such as tumors or other conditions Normal Results The x-ray will show normal structures for a person your age. What Abnormal Results Mean Abnormal findings ...

  3. WE-E-18A-02: Enhancement of Lung Tumor Visibility by Dual-Energy X-Ray Imaging in An Anthropomorphic Chest Phantom Study

    SciTech Connect

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U

    2014-06-15

    Purpose: Intrafractional lung tumor motion during radiotherapy can be compensated for by tracking the tumor position using x-ray imaging and adapting the treatment in real-time. However, locating the tumor with an automated template-matching algorithm is often challenging if the tumor is obscured by ribs. This study investigates the feasibility of creating dual-energy (DE) images of the chest with increased tumor visibility on an Elekta XVI system. Methods: An anthropomorphic chest phantom was imaged at two different energies. Low-energy images were obtained at 80 kVp (0.8 mAs); high-energy images at 129 kVp (0.6 mAs, additional 1.26 mm tin filter). A Geant4 Monte-Carlo framework was developed allowing simulation of the x-ray tube, flat-panel detector and phantom in order to optimize the beam energies, filtration and the weighting factor used to subtract the individual images into a synthetic DE image. The weighting factor was selected to minimize the visibility of bones while maintaining a sufficient tumor visibility. We scored the bone visibility as the contrast of tumor (with bone) to tumor (without bone), and similarly of lung tissue (with bone) to lung tissue (without bone). Tumor visibility was quantified as the contrast between tumor and lung tissue (both without bone). Results: In the experimentally obtained DE image the bone visibility was reduced by 79.2% in tumor and by 96.8% in lung tissue while the overall tumor visibility only decreased by 69.5%. The Monte-Carlo simulation yielded similar results reducing the scores by 90.0%, 85.3% and only 71.9%, respectively. Conclusion: This work demonstrates the feasibility of DE imaging to enhance lung tumor detectability. In the future, we hope to further refine the Monte-Carlo simulation to more accurately predict the weighting factors which would aid real-time implementation. Furthermore, we plan to use the Monte-Carlo framework to simulate DE images of actual lung tumors. The authors would like to thank Paul

  4. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging

    PubMed Central

    Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha

    2017-01-01

    This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines. PMID:28272336

  5. Dose evaluation for paediatric chest x-ray examinations in Brazil and Sudan: low doses and reliable examinations can be achieved in developing countries

    NASA Astrophysics Data System (ADS)

    Mohamadain, K. E. M.; da Rosa, L. A. R.; Azevedo, A. C. P.; Guebel, M. R. N.; Boechat, M. C. B.; Habani, F.

    2004-03-01

    Radiation protection in paediatric radiology deserves special attention since it is assumed that children are more sensitive to radiation than adults. The aim of this work is to estimate the entrance skin dose (ESD), the body organ dose (BOD) and the effective dose (E) for chest x-ray exposure of paediatric patients in five large units, three in Sudan and two in Brazil, and to compare the results obtained in both countries with each other and with other values obtained by some European countries. Two examination projections have been investigated, namely, postero-anterior (PA) and antero-posterior (AP). The age intervals considered were: 0-1 year, 1-5 years, 5-10 years and 10-15 years. The results have been obtained with the use of a software called DoseCal. Results of mean ESD for the age interval 1-5 years and AP projection are: 66 µGy (Instituto de Pediatria e Puericultura Martagão Gesteira—IPPMG Hospital), 41, 86 and 68 µGy (Instituto Fernandes Figueira—IFF Hospital), 161 µGy (Omdurman Hospital), 395 µGy (Khartoum Hospital) and 23 µGy (Ahmed Gasim Hospital). In the case of the IFF Hospital, the results refer, respectively, to rooms 1, 2 and for the six mobile equipments. The reference dose values given by the European Guidelines were exceeded in the Khartoum Hospital whilst in all the other hospitals results obtained were below CEC reference values and comparable with the results found in Sweden, Germany, Spain and Italy. The mean E for the same age interval was 11 µSv in the IPPMG, 6, 15 and 11 µSv in the IFF, respectively for rooms 1, 2 and the 6 mobiles, 25 µSv in the Omdurman Hospital, 45 µSv in the Khartoum Hospital and 3 µSv in the Ahmed Gasim Hospital. These are some examples of the large discrepancies that have been detected in this survey.

  6. Upper Third to Lower Third Width Ratio on Chest X-Ray May Predict Severity of Obstruction in Obstructive Lung Disease

    PubMed Central

    Hamidi, Sahand; Shakiba, Maryam; Massahnia, Sara

    2014-01-01

    Background The symptoms and functional limitations due to obstructive lung disease (OLD) are the direct results of airway and lung parenchymal destruction. In these conditions, airflow obstruction leads to increased work of breathing, and gas exchange abnormalities. Hyperinflation, which is inferred from a standard chest radiograph (CXR), may imply increased total lung capacity that can be seen in patients with OLD. Based on experimental observations in OLD patients, we proposed that upper third width in posterioranterior (PA) CXR could be used as a rapid screening method for suggestion of OLD. Materials and Methods In this cross-sectional study, 99 patients admitted to the Respiratory Ward of Razi Medical Center, a teaching referral hospital affiliated to Guilan University of Medical Sciences (GUMS), were entered in the study. The inclusion criteria were any FEV1 with FEV1/FVC <70% or FEV1/FVC>70% with MMEF 75/25 <65%. All cases with diagnostic possibilities other than OLD were excluded. The PA and lateral CXR were performed and 13 measurements – including previous well-known measurements and our proposed new ones- were made by an ordinary ruler on the films. Results There was no significant correlation between the upper third width and superior/inferior (sup/inf) ratio with spirometric indices in patients. When considering only patients with FEV1/FVC <70%, middle third proportion width had a significant correlation with FEV1/FVC. In subgroup analysis when considering sup/inf ratio > 0.8, superior and inferior third widths were correlated with FEV1/FVC and when considering sup/inf ratio > 0.9, sup/inf ratio was significantly correlated with FEV1/FVC and FEV1. Conclusion The sup/inf ratio >0.9 in PA CXR, may be a predictor of obstructive pattern in OLD patients. For better correlation determination, larger and more extensive studies are needed. PMID:25191489

  7. X-ray image enhancement via determinant based feature selection.

    PubMed

    Tappenden, R; Hegarty, J; Broughton, R; Butler, A; Coope, I; Renaud, P

    2013-12-01

    Previous work has investigated the feasibility of using Eigenimage-based enhancement tools to highlight abnormalities on chest X-rays (Butler et al in J Med Imaging Radiat Oncol 52:244-253, 2008). While promising, this approach has been limited by computational restrictions of standard clinical workstations, and uncertainty regarding what constitutes an adequate sample size. This paper suggests an alternative mathematical model to the above referenced singular value decomposition method, which can significantly reduce both the required sample size and the time needed to perform analysis. Using this approach images can be efficiently separated into normal and abnormal parts, with the potential for rapid highlighting of pathology.

  8. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  10. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  11. Semi-automated measurements of heart-to-mediastinum ratio on 123I-MIBG myocardial scintigrams by using image fusion method with chest X-ray images

    NASA Astrophysics Data System (ADS)

    Kawai, Ryosuke; Hara, Takeshi; Katafuchi, Tetsuro; Ishihara, Tadahiko; Zhou, Xiangrong; Muramatsu, Chisako; Abe, Yoshiteru; Fujita, Hiroshi

    2015-03-01

    MIBG (iodine-123-meta-iodobenzylguanidine) is a radioactive medicine that is used to help diagnose not only myocardial diseases but also Parkinson's diseases (PD) and dementia with Lewy Bodies (DLB). The difficulty of the segmentation around the myocardium often reduces the consistency of measurement results. One of the most common measurement methods is the ratio of the uptake values of the heart to mediastinum (H/M). This ratio will be a stable independent of the operators when the uptake value in the myocardium region is clearly higher than that in background, however, it will be unreliable indices when the myocardium region is unclear because of the low uptake values. This study aims to develop a new measurement method by using the image fusion of three modalities of MIBG scintigrams, 201-Tl scintigrams, and chest radiograms, to increase the reliability of the H/M measurement results. Our automated method consists of the following steps: (1) construct left ventricular (LV) map from 201-Tl myocardium image database, (2) determine heart region in chest radiograms, (3) determine mediastinum region in chest radiograms, (4) perform image fusion of chest radiograms and MIBG scintigrams, and 5) perform H/M measurements on MIBG scintigrams by using the locations of heart and mediastinum determined on the chest radiograms. We collected 165 cases with 201-Tl scintigrams and chest radiograms to construct the LV map. Another 65 cases with MIBG scintigrams and chest radiograms were also collected for the measurements. Four radiological technologists (RTs) manually measured the H/M in the MIBG images. We compared the four RTs' results with our computer outputs by using Pearson's correlation, the Bland-Altman method, and the equivalency test method. As a result, the correlations of the H/M between four the RTs and the computer were 0.85 to 0.88. We confirmed systematic errors between the four RTs and the computer as well as among the four RTs. The variation range of the H

  12. Real-time synchrotoron radiation X-ray diffraction and abnormal temperature dependence of photoluminescence from erbium silicates on SiO{sub 2}/Si substrates

    SciTech Connect

    Omi, H.; Tawara, T.; Tateishi, M.

    2012-03-15

    The erbium silicate formation processes during annealing in Ar gas were monitored by synchrotron radiation grazing incidence X-ray diffraction (GIXD) in real time and the optical properties of the silicates were investigated by photoluminescence measurements in spectral and time-resolved domains. The GIXD measurements show that erbium silicates and erbium oxide are formed by interface reactions between silicon oxide and erbium oxides deposited on silicon oxide by reactive sputtering in Ar gas and O{sub 2}/Ar mixture gas ambiences. The erbium silicates are formed above 1060 degree sign C in Ar gas ambience and above 1010 degree sign C in O{sub 2}/Ar gas ambience, and erbium silicides are dominantly formed above 1250 degree sign C. The I{sub 15/2}-I{sub 13/2} Er{sup 3+} photoluminescence from the erbium oxide and erbium silicate exhibits abnormal temperature dependence, which can be explained by the phonon-assisted resonant absorption of the 532-nm excitation photons into the {sup 2}H{sub 11/2} levels of Er{sup 3+} ions of the erbium compounds.

  13. Simple X-ray versus ultrasonography examination in blunt chest trauma: effective tools of accurate diagnosis and considerations for rib fractures

    PubMed Central

    Hwang, Eun Gu; Lee, Yunjung

    2016-01-01

    Simple radiography is the best diagnostic tool for rib fractures caused by chest trauma, but it has some limitations. Thus, other tools are also being used. The aims of this study were to investigate the effectiveness of ultrasonography (US) for identifying rib fractures and to identify influencing factors of its effectiveness. Between October 2003 and August 2007, 201 patients with blunt chest trauma were available to undergo chest radiographic and US examinations for diagnosis of rib fractures. The two modalities were compared in terms of effectiveness based on simple radiographic readings and US examination results. We also investigated the factors that influenced the effectiveness of US examination. Rib fractures were detected on radiography in 69 patients (34.3%) but not in 132 patients. Rib fractures were diagnosed by using US examination in 160 patients (84.6%). Of the 132 patients who showed no rib fractures on radiography, 92 showed rib fractures on US. Among the 69 patients of rib fracture detected on radiography, 33 had additional rib fractures detected on US. Of the patients, 76 (37.8%) had identical radiographic and US results, and 125 (62.2%) had fractures detected on US that were previously undetected on radiography or additional fractures detected on US. Age, duration until US examination, and fracture location were not significant influencing factors. However, in the group without detected fractures on radiography, US showed a more significant effectiveness than in the group with detected fractures on radiography (P=0.003). US examination could detect unnoticed rib fractures on simple radiography. US examination is especially more effective in the group without detected fractures on radiography. More attention should be paid to patients with chest trauma who have no detected fractures on radiography. PMID:28119889

  14. Time and resources of peripherally inserted central catheter insertion procedures: a comparison between blind insertion/chest X-ray and a real time tip navigation and confirmation system

    PubMed Central

    Tomaszewski, Kenneth J; Ferko, Nicole; Hollmann, Sarah S; Eng, Simona C; Richard, Howard M; Rowe, Lynn; Sproule, Susan

    2017-01-01

    Background The Sherlock 3CG™ Tip Confirmation System (TCS) provides real-time peripherally inserted central catheter (PICC) tip insertion information using passive magnetic navigation and patient cardiac electrical activity. It is an alternative tip confirmation method to fluoroscopy or chest X-ray for PICC tip insertion confirmation in adults. The purpose of this study was to evaluate time and cost of the Sherlock 3CG TCS and blind insertion with chest X-ray tip confirmation (BI/CXR) for PICC insertions. Methods A cross-sectional, observational Time and Motion study was conducted. Data were collected at four hospitals in the US. Two hospitals used Sherlock 3CG TCS and two hospitals used BI/CXR to place/confirm successful PICC tip location. Researchers observed PICC insertions, collecting data from the beginning (ie, PICC kit opening) to catheter tip confirmation (ie, released for intravenous [IV] therapy). An economic model was developed to project outcomes for a larger population. Results A total of 120 subjects were enrolled, with 60 subjects enrolled in each arm and 30 enrolled at each of the four US hospitals. The mean time from initiation of the PICC procedure to the time to release for IV therapy was 33.93 minutes in the Sherlock 3CG arm and 176.32 minutes in the BI/CXR arm (p < 0.001). No malpositions were observed for PICC insertions using the Sherlock 3CG TCS, while 20% of subjects in the BI/CXR arm had a malposition. BI/CXR subjects had significantly more total malpositions (mean 0.23 vs. 0, p < 0.001). For a hypothetical population of 1,000 annual patients, adoption of Sherlock 3CG TCS was predicted to be cost saving compared with BI/CXR in all three analysis years. Conclusion The results from this study demonstrate that Sherlock 3CG TCS, when compared with BI/CXR, is a superior alternative with regard to time to release subject to therapy, malposition rates, and minimization of X-ray exposure. PMID:28223832

  15. Use of computerized tomography and chest x-rays in evaluating efficacy of aerosolized recombinant human DNase in cystic fibrosis patients younger than age 5 years: a preliminary study.

    PubMed

    Nasr, S Z; Kuhns, L R; Brown, R W; Hurwitz, M E; Sanders, G M; Strouse, P J

    2001-05-01

    The aim of this study was to evaluate the ability of high-resolution computerized tomography (HRCT) of the chest and chest x-rays (CXR) to determine efficacy of inhaled recombinant human DNase (rhDNase) in cystic fibrosis (CF) patients younger than 5 years of age. A randomized, double-blind, placebo-controlled pilot study of 12 patients with CF younger than 5 years of age, attending the University of Michigan Cystic Fibrosis Center (Ann Arbor, MI) was conducted. The changes in the HRCT and CXR score from baseline to day 100 of therapy were assessed using a previously validated scoring system. The mean changes of HRCT scores between the rhDNase and placebo groups were found to be significant at the 95% level, with mean change +/- SE mean of - 1.00 +/- 0.53 and 0.58 +/- 0.24 for rhDNase and placebo groups, respectively (P = 0.02). The difference in CXR score was not significant between the two groups. An analysis was performed to relate HRCT subscores to CXR score; only thickening of the intra-interlobular septae was significantly correlated with the total CXR score (r = - 0.7, P < 0.01). There was improvement in the parents' assessments of the patients' well-being, with improvement in physical activity, decreased cough, sleep quality, and appetite in those subjects receiving rhDNase. We conclude that the administration of rhDNase was associated with improvement in the HRCT scan in CF patients younger than 5 years of age. Findings indicate that HRCT of the chest is useful and sensitive in studying responses to therapy in patients with CF lung disease. To our knowledge, this is the first report of the use of HRCT to assess the effectiveness of a therapeutic modality in so young a CF patient population.

  16. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  17. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  18. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  19. X-ray

    MedlinePlus

    ... think you might be pregnant. Alternative Names Radiography Images X-ray X-ray References Geleijns J, Tack ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  20. Extremity x-ray

    MedlinePlus

    ... sensitive to the risks of an x-ray. Images X-ray References Kelly DM. Congenital anomalies of ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  1. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  2. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  3. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  4. Chronic cough and a normal chest X-ray - a simple systematic approach to exclude common causes before referral to secondary care: a retrospective cohort study.

    PubMed

    Turner, Richard D; Bothamley, Graham H

    2016-03-03

    Chronic cough is common in the community and can cause significant morbidity. It is not clear how closely treatment guidelines are used in general practice, or how often specialist referral is indicated. We aimed to assess the management of chronic cough in primary care before referral to a cough clinic, and to assess the outcome of managing chronic cough with an approach of simple investigation and empirical treatment trials. Data were extracted from the records of all patients attending a district general hospital respiratory clinic over a two-year period with isolated chronic cough lasting ⩾8 weeks. The clinic assessed symptoms with a cough-severity visual analogue scale and the Leicester Cough Questionnaire. Among 266 patients, the most frequent diagnoses were asthma (29%), gastro-oesophageal reflux (22%) and angiotensin-converting enzyme inhibitor use (14%). In all, 12% had unexplained chronic cough. Common diagnoses had often not been excluded in primary care: only 21% had undergone spirometry, 86% had undergone chest radiography and attempts to exclude asthma with corticosteroids had been made only in 39%. In the clinic few investigations were conducted that were not available in primary care. Substantial improvements in symptoms occurred with a median (interquartile range) total of 2 (2-3) clinic visits. We estimated that 87% of patients could have been managed solely in primary care; we did not identify distinguishing characteristics among this group. Most cases of chronic cough referred to secondary care could be managed with a simple and systematic approach, which is potentially transferrable to a community setting.

  5. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  6. [Delayed hemothorax due to blunt chest trauma].

    PubMed

    Saito, Gaku; Sakaizawa, Takao; Takasuna, Keiichiro; Eguchi, Takashi; Kobayashi, Nobutaka; Hyougotani, Akira; Hamanaka, Kazutoshi; Shiina, Takayuki; Kurai, Makoto; Kondo, Ryouichi; Yoshida, Kazuo; Amano, Jun

    2010-03-01

    We report 2 cases of delayed hemothorax due to blunt chest trauma. A 48-year-old man who fell down and got a blow at the right chest had a checkup with a 1st aid outpatient. By the X-rays at the time of the 1st examination, the hemothorax was not noted. The next day, He has been transported to our hospital for atypical absence. Hemothorax was suggested by computed tomography (CT) and chest drainage was enforced. A 79-year-old man got a blow at the anterior chest by traffic accident and had a checkup in the 1st hospital. The abnormality was not recognized in the chest CT at that time. For the left hemiparesis, he was transported to our hospital the next day. Hemothorax was suggested by CT and chest drainage was enforced.

  7. X-Ray Flare Characteristics in lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1997-01-01

    This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.

  8. X-Ray Flare Characteristics in Lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1997-01-01

    This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.

  9. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. X-ray technology is used to examine many parts of the ...

  10. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  11. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  12. Dental x-rays

    MedlinePlus

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  13. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  14. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  15. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  16. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  17. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  18. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  19. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  20. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  1. X-ray - skeleton

    MedlinePlus

    ... medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this page, ... ray views may be uncomfortable. If the whole skeleton is being imaged, the test usually takes 1 ...

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  3. X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus

    1997-01-01

    Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.

  4. Clocking femtosecond X rays.

    PubMed

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Rudati, J; Mills, D M; Fuoss, P H; Stephenson, G B; Kao, C C; Siddons, D P; Lowney, D P; Macphee, A G; Weinstein, D; Falcone, R W; Pahl, R; Als-Nielsen, J; Blome, C; Düsterer, S; Ischebeck, R; Schlarb, H; Schulte-Schrepping, H; Tschentscher, Th; Schneider, J; Hignette, O; Sette, F; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Caleman, C; Huldt, G; van der Spoel, D; Timneanu, N; Hajdu, J; Akre, R A; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Luening, K; Hastings, J B

    2005-03-25

    Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.

  5. Clinical predictors of chest radiographic abnormalities in young children hospitalized with bronchiolitis: a single center study

    PubMed Central

    Kim, Ga Ram; Na, Min Sun; Baek, Kyung Suk; Lee, Seung Jin; Lee, Kyung Suk; Jung, Young Ho; Jee, Hye Mi; Kwon, Tae Hee; Han, Man Yong

    2016-01-01

    Purpose Chest radiography is often performed on patients hospitalized with typical clinical manifestations of bronchiolitis. We aimed to determine the proportion of subjects with pathologic chest radiographic findings and the clinical predictors associated with pathologic chest radiographic findings in young children admitted with the typical presentation of bronchiolitis. Methods We obtained the following data at admission: sex, age, neonatal history, past history of hospitalization for respiratory illnesses, heart rate, respiratory rate, the presence of fever, total duration of fever, oxygen saturation, laboratory parameters (i.e., complete blood cell count, high-sensitivity C-reactive protein [hs-CRP], etc.), and chest radiography. Results The study comprised 279 young children. Of these, 26 had a chest radiograph revealing opacity (n=24) or atelectasis (n=2). Multivariate logistic regression analysis showed that after adjustment for confounding factors, the clinical predictors associated with pathologic chest radiographic findings in young children admitted with bronchiolitis were elevated hs-CRP level (>0.3 mg/dL) and past history of hospitalization for respiratory illnesses (all P<0.05). Conclusion The current study suggests that chest radiographs in young children with typical clinical manifestations of bronchiolitis have limited value. Nonetheless, young children with clinical factors such as high hs-CRP levels at admission or past history of hospitalization for respiratory illnesses may be more likely to have pathologic chest radiographic findings. PMID:28194212

  6. X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J. I.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1972-01-01

    The preliminary results from the Sco X-1 and Cyg X-1 obtained from the Apollo 15 X-ray detector data are presented along with preliminary results of the X-ray fluorescence spectrometric data of the lunar surface composition. The production of the characteristic X-rays following the interaction of solar X-rays with the lunar surface is described along with the X-ray spectrometer. Preliminary analyses of the astronomical X-ray observation and the X-ray fluorescence data are presented.

  7. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  8. Neck x-ray

    MedlinePlus

    ... look at cervical vertebrae. These are the 7 bones of the spine in the neck. ... A neck x-ray can detect: Bone joint that is out of position (dislocation) Breathing in a foreign object Broken bone (fracture) Disk problems (disks ...

  9. Abnormal distribution of pulmonary blood flow in aortic valve disease. Relation between pulmonary function and chest radiograph.

    PubMed

    Goodenday, L S; Simon, G; Craig, H; Dalby, L

    1970-05-01

    Wasted ventilatory volume (V(D)) and its ratio to tidal volume (V(D)/V(T)) were measured at rest and during exertion in 17 patients with aortic valve disease. We considered V(D)/V(T) to indicate abnormal ventilation: perfusion relations if it did not decrease on exertion, or if the exercising value was greater than 40 per cent. Plain chest radiographs were independently examined for evidence of diversion of pulmonary blood to the upper lobes. There was significant agreement (p<0.05) between radiographic and pulmonary function estimations of abnormality. This suggests that the raised pulmonary venous pressure associated with left ventricular failure creates an abnormal pattern of blood flow through the lung, which is responsible for causing inadequate perfusion with respect to ventilation.

  10. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  11. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  12. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  13. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  14. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your privacy. Information entered here ...

  15. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  16. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ...

  17. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  18. Encapsulating X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Bradley, James G.

    1987-01-01

    Vapor-deposited polymer shields crystals from environment while allowing X rays to pass. Polymer coating transparental to X rays applied to mercuric iodide detector in partial vacuum. Coating protects crystal from sublimation, chemical attack, and electrical degradation.

  19. X-Ray Exam: Hip

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip A A A What's in this ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  20. X-Ray Exam: Wrist

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist A A A What's in this ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  1. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in this ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  2. X-Ray Exam: Foot

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot A A A What's in this ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  3. X-Ray Exam: Finger

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A What's in ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that uses ...

  4. X-Ray Exam: Foot

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A What's in ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  5. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A What's in ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  6. X-Ray Exam: Pelvis

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A What's in ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that uses ...

  7. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  8. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  9. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  10. Unsupervised segmentation of lungs from chest radiographs

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2012-03-01

    This paper describes our preliminary investigations for deriving and characterizing coarse-level textural regions present in the lung field on chest radiographs using unsupervised grow-cut (UGC), a cellular automaton based unsupervised segmentation technique. The segmentation has been performed on a publicly available data set of chest radiographs. The algorithm is useful for this application because it automatically converges to a natural segmentation of the image from random seed points using low-level image features such as pixel intensity values and texture features. Our goal is to develop a portable screening system for early detection of lung diseases for use in remote areas in developing countries. This involves developing automated algorithms for screening x-rays as normal/abnormal with a high degree of sensitivity, and identifying lung disease patterns on chest x-rays. Automatically deriving and quantitatively characterizing abnormal regions present in the lung field is the first step toward this goal. Therefore, region-based features such as geometrical and pixel-value measurements were derived from the segmented lung fields. In the future, feature selection and classification will be performed to identify pathological conditions such as pulmonary tuberculosis on chest radiographs. Shape-based features will also be incorporated to account for occlusions of the lung field and by other anatomical structures such as the heart and diaphragm.

  11. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  12. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  13. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  14. [Characteristics of specifications of transportable inverter-type X-ray equipment].

    PubMed

    Yamamoto, Keiichi; Miyazaki, Shigeru; Asano, Hiroshi; Shinohara, Fuminori; Ishikawa, Mitsuo; Ide, Toshinori; Abe, Shinji; Negishi, Toru; Miyake, Hiroyuki; Imai, Yoshio; Okuaki, Tomoyuki

    2003-07-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met JIS standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment.

  15. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  16. British X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.

    1986-09-01

    The development of solar and cosmic X-ray studies in the UK, in particular the Skylark and Ariel programs, is discussed. The characteristics and capabilities of the X-ray emulsion detector developed to monitor the solar X-radiation in the Skylark program, and of the proportional counter spectrometer developed for solar X-ray measurements on the Ariel I satellite are described. The designs and functions of the pin-hole camera, the Bragg crystal spectrometer, and the X-ray spectroheliograph are exmained. The Skylark observations of cosmic X-ray sources and high-resolution solar spectra, and the Ariel 5 data on cosmic X-ray sources are presented. Consideration is given to the Ariel 6, the U.S. Einstein Observatory, Exosat, and ASTRO-C.

  17. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  18. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  19. X-Ray Polarization Imaging

    DTIC Science & Technology

    2006-07-01

    anatomic structures. Johns and Yaffe (2), building on the work of Alvarez and Macovski (3) and that of Lehmann et al (4), discuss a method for...sources of contrast related to both the wave and par- ticulate nature of x rays. References 1. Johns PC, Yaffe MJ. X-ray characterization of normal and...application to mammography. Med Phys 1985; 12:289–296. 3. Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys

  20. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  1. Chest radiographic manifestations of scrub typhus

    PubMed Central

    Abhilash, KPP; Mannam, PR; Rajendran, K; John, RA; Ramasami, P

    2016-01-01

    Background and Rationale: Respiratory system involvement in scrub typhus is seen in 20–72% of patients. In endemic areas, good understanding and familiarity with the various radiologic findings of scrub typhus are essential in identifying pulmonary complications. Materials and Methods: Patients admitted to a tertiary care center with scrub typhus between October 2012 and September 2013 and had a chest X ray done were included in the analysis. Details and radiographic findings were noted and factors associated with abnormal X-rays were analyzed. Results: The study cohort contained 398 patients. Common presenting complaints included fever (100%), generalized myalgia (83%), headache (65%), dyspnea (54%), cough (24.3%), and altered sensorium (14%). Almost half of the patients (49.4%) had normal chest radiographs. Common radiological pulmonary abnormalities included pleural effusion (14.6%), acute respiratory distress syndrome (14%), airspace opacity (10.5%), reticulonodular opacities (10.3%), peribronchial thickening (5.8%), and pulmonary edema (2%). Cardiomegaly was noted in 3.5% of patients. Breathlessness, presence of an eschar, platelet counts of <20,000 cells/cumm, and total serum bilirubin >2 mg/dL had the highest odds of having an abnormal chest radiograph. Patients with an abnormal chest X-ray had a higher requirement of noninvasive ventilation (odds ratio [OR]: 13.98; 95% confidence interval CI: 5.89–33.16), invasive ventilation (OR: 18.07; 95% CI: 6.42–50.88), inotropes (OR: 8.76; 95% CI: 4.35–17.62), higher involvement of other organ systems, longer duration of hospital stay (3.18 ± 3 vs. 7.27 ± 5.58 days; P < 0.001), and higher mortality (OR: 4.63; 95% CI: 1.54–13.85). Conclusion: Almost half of the patients with scrub typhus have abnormal chest radiographs. Chest radiography should be included as part of basic evaluation at presentation in patients with scrub typhus, especially in those with breathlessness, eschar, jaundice, and severe

  2. X-ray photonics: Bending X-rays with nanochannels

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele

    2016-02-01

    X-ray counterparts of visible light optical elements are notoriously difficult to realize because the refractive index of all materials is close to unity. It has now been demonstrated that curved waveguides fabricated on a silicon chip can channel and deflect X-ray beams by consecutive grazing reflections.

  3. X-ray microscopy of human malaria

    SciTech Connect

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  4. Motion based X-ray imaging modality.

    PubMed

    Szigeti, Krisztián; Máthé, Domokos; Osváth, Szabolcs

    2014-10-01

    A new X-ray imaging method (patent pending) was developed to visualize function-related motion information. We modify existing X-ray imaging methods to provide four images without increasing the necessary measurement time or radiation dose. The most important of these images is a new "kinetic" image that represents motions inside the object or living body. The motion-based contrast of the kinetic image can help visualize details that were not accessible before. The broad range of the movements and high sensitivity of the method are illustrated by imaging the mechanics of a working clock and the chest of a living African clawed frog (Xenopus laevis). The heart, valves, aorta, and lungs of the frog are clearly visualized in spite of the low soft tissue contrast of the animal. The new technology also reconstructs a "static" image similar to the existing conventional X-ray image. The static image shows practically the same information as the conventional image. The new technology presents two more images which show the point-wise errors of the static and kinetic images. This technique gives a better estimation of errors than present methods because it is based entirely on measured data. The new technology could be used in imaging cardiopulmonary movements, nondestructive testing, or port security screening.

  5. Pelvis x-ray

    MedlinePlus

    Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum joins the ilium bone) Ankylosing ...

  6. High performance x-ray anti-scatter grid

    DOEpatents

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  7. High performance x-ray anti-scatter grid

    DOEpatents

    Logan, Clinton M.

    1995-01-01

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  8. X-Ray Exam: Wrist

    MedlinePlus

    ... tissues and the ends of the forearm bones (radius and ulna) and eight small wrist bones (carpal bones). The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the image. Softer ...

  9. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  10. Dual x-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2011-04-01

    Dual x-ray absorptiometry is widely used in analyzing body composition and imaging. We discuss the physics of the method and exhibit its limitations and show it is related to the Compton and photoelectric contributions to the x-ray absorption coefficients of materials.

  11. Digital X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Dance, David R.

    The use of X-ray image receptors that produce a digital image is becoming increasingly important. Possible benefits include improved dynamic range and detective quantum efficiency, improved detectability for objects of low intrinsic contrast, and reduced radiation dose. The image can be available quickly. The display is separated from the image capture so that processing and contrast adjustment are possible before the image is viewed. The availability of a digital image means ready input into PACS and opens up the possibility of computer-aided detection and classification of abnormality. Possible drawbacks of digital systems include high cost, limited high contrast resolution and the fact that their clinical value is sometimes not proven in comparison with conventional, analogue techniques. The high contrast resolution attainable with such systems is discussed and the problem of sampling limitations and aliasing considered. The properties and limitations of digital systems using computed radiography, caesium iodide plus CCDs and active matrix arrays with either caesium iodide or selenium detectors are demonstrated. Examples are given of digital systems for mammography and general radiography and their performance is demonstrated in terms of clinical assessment and measurements of the modulation transfer function and detective quantum efficiency.

  12. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  13. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  14. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  15. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  16. X-ray monitoring optical elements

    SciTech Connect

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  17. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  18. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... radiologist (a doctor who is specially trained in reading and interpreting X-ray images). The radiologist will ...

  19. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... a radiologist (a doctor who's specially trained in reading and interpreting X-ray images). The radiologist will ...

  20. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  1. X-Ray Exam: Forearm

    MedlinePlus

    ... amount of radiation to take a picture of a person's forearm (including the wrist, radius, ulna, and elbow). During the examination, an X-ray machine sends a beam of radiation through the arm, and an ...

  2. Bone X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  3. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  4. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  5. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  6. CELESTIAL X-RAY SOURCES.

    DTIC Science & Technology

    sources, (4) the physical conditions in the pulsating x-ray source in the Crab Nebula , and (5) miscellaneous related topics. A bibliography of all work performed under the contract is given. (Author)

  7. X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The primary advantage of the X-ray computed tomography (XRCT) NDE method is that features are not superposed in the image, thereby rendering them easier to interpret than radiographic projection images. Industrial XRCT systems, unlike medical diagnostic systems, have no size and dosage constraints; they are accordingly used for systems from the scale of gas turbine blades, with hundreds-of-kV energies, to those of the scale of ICBMs, requiring MV-level X-ray energies.

  8. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  9. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  10. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  11. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  12. [Evaluation study of abnormal detectability with Thurstone and Scheffé (Nakaya) of paired comparison method using chest phantom].

    PubMed

    Mochizuki, Yasuo

    2014-01-01

    Monitors are increasingly being used as diagnostic imaging devices. In this study, using an all-purpose liquid-crystal display (LCD), the rate of detection of abnormalities was investigated using Thurstone's and Scheffé's (Nakaya) paired comparison methods. A chest phantom was prepared as a test sample with acryl and aluminum plates and intensities suggesting small adenocarcinomas. For the acquisition conditions for computed radiography, after setting the baseline at a dose at which the film density of the standard screen-film system at the same as those for the lung, costal bone, and mediastinum, 5 steps of 2-fold serial doses were then set: 1/4, 1/2, 1, 2, and 4. The test sample was observed by 10 students. On the Thurstone scale, detectability decreased with a decrease in the dose in the lung, costal bone, and mediastinum. When the significance of differences between the values at adjacent doses was investigated using the yardstick method, using Scheffé's method revealed a significant difference between the 4- and 2-fold doses and between the 1/2 and 1/4 doses in the pulmonary region. A significant difference was also noted between the baseline and 1/2 doses in the mediastinum. Changes in the order of the scale values may not occur in the intervals in which significant differences were noted using Scheffé's methods.

  13. Ultraluminous X-ray Sources.

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Sholukhova, O.; Abolmasov, P.

    2008-12-01

    We discuss a new type of X-ray sources discovered in galaxies -- ultraluminous X-ray sources (ULXs). They are of two order of magnitude brighter in X-rays than the brightest Galactic black holes. Two mod- els of ULXs are discussed: "intermediate mass" black holes, 100 - 10000 solar masses, with standard accretion disks, and "stellar mass" black holes with su- percritical accretion disks like that in the Galactic object SS 433. A study of gas nebulae surrounding these objects gives us a new important information on the central sources. The observed X-ray radiation of ULXs is not enough to power their nebulae. To understand both spectra and power of the nebulae one needs a powerful UV source. The ULXs must be such bright in UV range as they are in X-rays. Spectroscopy of gas filaments surrounding SS 433 proves that the intrinsic face-on luminosity of the supercritical accretion disk in the far UV region to be "sim; 10^40 erg/s. We expect that observations of ULXs with the WSO-UV Observatory, measurements their UV fluxes and spectral slopes solve the problem of ULXs between the two known models of these sources.

  14. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  15. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  16. X-rays surgical revolution.

    PubMed

    Toledo-Pereyra, Luis H

    2009-01-01

    Wilhelm Roentgen (1845-1923) created a surgical revolution with the discovery of the X-rays in late 1895 and the subsequent introduction of this technique for the management of surgical patients. No other physician or scientist had ever imagined such a powerful and worthwhile discovery. Other scientists paved the way for Roentgen to approach the use of these new X-rays for medical purposes. In this way, initially, and prior to Roentgen, Thompson, Hertz, and Lenard applied themselves to the early developments of this technology. They made good advances but never reached the clearly defined understanding brought about by Roentgen. The use of a Crookes tube, a barium platinocyanide screen, with fluorescent light and the generation of energy to propagate the cathode rays were the necessary elements for the conception of an X-ray picture. On November 8, 1895, Roentgen began his experiments on X-ray technology when he found that some kind of rays were being produced by the glass of the tube opposite to the cathode. The development of a photograph successfully completed this early imaging process. After six intense weeks of research, on December 22, he obtained a photograph of the hand of his wife, the first X-ray ever made. This would be a major contribution to the world of medicine and surgery.

  17. AN X-RAY STUDY OF THE ETHYLENE GLYCOLMONTMORILLONITE COMPLEX.

    DTIC Science & Technology

    SOILS, * MONTMORILLONITE , *GLYCOLS, *X RAY SPECTROSCOPY, X RAY SPECTRA, X RAY SPECTRA, X RAY SPECTRA, CLAY MINERALS, COMPLEX COMPOUNDS, FOURIER ANALYSIS, CRYSTAL STRUCTURE, THERMAL PROPERTIES, MATHEMATICAL MODELS.

  18. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  19. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been

  20. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  1. X-ray emission spectroscopy.

    PubMed

    Bergmann, Uwe; Glatzel, Pieter

    2009-01-01

    We describe the chemical information that can be obtained by means of hard X-ray emission spectroscopy (XES). XES is presented as a technique that is complementary to X-ray absorption spectroscopy (XAS) and that provides valuable information with respect to the electronic structure (local charge- and spin-density) as well as the ligand environment of a 3d transition metal. We address non-resonant and resonant XES and present results that were recorded on Mn model systems and the Mn(4)Ca-cluster in the oxygen evolving complex of photosystem II. A brief description of the instrumentation is given with an outlook toward future developments.

  2. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  3. Compact Flash X-Ray Units

    DTIC Science & Technology

    1995-07-01

    Flash x-ray units are used to diagnose pulsed power driven experiments on the Pegasus machine at Los Alamos. Several unique designs of Marx powered...employing an x-ray tube configuration which allows closely spaced x-ray emitting anodes. These units all emit a 10 ns FWHM x-ray pulse. Their Marx banks

  4. X-ray exposure sensor and controller

    NASA Technical Reports Server (NTRS)

    Berdahl, C. Martin (Inventor)

    1977-01-01

    An exposure controller for x-ray equipment is provided, which comprises a portable and accurate sensor which can be placed adjacent to and directly beneath the area of interest of an x-ray plate, and which measures the amount of exposure received by that area, and turns off the x-ray equipment when the exposure for the particular area of interest on the x-ray plate reaches the value which provides an optimal x-ray plate.

  5. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  6. Stellar x-ray flares

    NASA Astrophysics Data System (ADS)

    Haisch, B.; Uchida, Y.; Kosugi, T.; Hudson, H. S.

    1995-01-01

    What is the importance of stellar X-ray flares to astrophysics, or even more, to the world at large? In the case of the Sun, changes in solar activity at the two temporal extremes can have quite significant consequences. Longterm changes in solar activity, such as the Maunder Minimum, can apparently lead to non-negligible alterations of the earth's climate. The extreme short term changes are solar flares, the most energetic of which can cause communications disruptions, power outages and ionizing radiation levels amounting to medical X-ray dosages on long commercial flights and even potentially lethal exposures for unshielded astronauts. Why does the Sun exhibit such behaviour? Even if we had a detailed knowledge of the relevant physical processes on the Sun - which we may be on the way to having in hand as evidenced by these Proceedings- our understanding would remain incomplete in regard to fundamental causation so long as we could not say whether the Sun is, in this respect, unique among the stars. This current paper discusses the stellar x-ray flare detections and astronomical models (quasi-static cooling model and two-ribbon model) that are used to observe the x-ray emission.

  7. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  8. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  9. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  10. Rontgen's Discovery of X Rays

    ERIC Educational Resources Information Center

    Thumm, Walter

    1975-01-01

    Relates the story of Wilhelm Conrad Rontgen and presents one view of the extent to which the discovery of the x-ray was an accident. Reconstructs the sequence of events that led to the discovery and includes photographs of the lab where he worked and replicas of apparatus used. (GS)

  11. Compact x-ray source and panel

    SciTech Connect

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  12. Automatic Microcalcifications Pattern Recognition From X-Ray Mammographies

    NASA Astrophysics Data System (ADS)

    Magnin, Isabelle E.; El Alaoui, Mohsine; Bremond, Alain

    1989-10-01

    X-ray mammogram is the only breast cancer detection technique presently available with proven efficacy and nearly 50% of breast carcinomas demonstrate microcalcifications on mammograms. Moreover, it has been shown that clustered microcalcifications where the only sign of abnormality in about 36% of nonpalpable, clinically occult breast cancers.

  13. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    NASA Astrophysics Data System (ADS)

    Gherase, Mihai R.; Vargas, Andres Felipe

    2017-03-01

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  14. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  15. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  16. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  17. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  18. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  19. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  20. Cystic Fibrosis Chest X-Ray Findings: A Teaching Analog

    DTIC Science & Technology

    2008-07-01

    tram-track sign” has been used as a descriptive radiographic term. For example, there is “tram- tracking” of the optic nerve meninges that can...congenital, or secondary to severe infection, or secondary to an obstructive process. The most common infectious causes in adults are tuberculosis ...Mycobacterium (i.e. Tuberculosis ) MRSA TORCHES Fungal Infection Obstructive Foreign Body Aspiration Bronchial Stricture Airway Mass/Tumor

  1. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... examining physician along with the film. The report shall specify the name and qualifications of the person who took the film and the name and qualifications of the physician interpreting the film. If the physician interpreting the film is a Board-certified or Board-eligible radiologist or a certified “B”...

  2. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... examining physician along with the film. The report shall specify the name and qualifications of the person who took the film and the name and qualifications of the physician interpreting the film. If the physician interpreting the film is a Board-certified or Board-eligible radiologist or a certified “B”...

  3. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... examining physician along with the film. The report shall specify the name and qualifications of the person who took the film and the name and qualifications of the physician interpreting the film. If the physician interpreting the film is a Board-certified or Board-eligible radiologist or a certified “B”...

  4. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  5. Producing X-rays at the APS

    ScienceCinema

    None

    2016-07-12

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  6. Phase-sensitive X-ray imager

    SciTech Connect

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  7. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  8. Student X-Ray Fluorescence Experiments

    ERIC Educational Resources Information Center

    Fetzer, Homer D.; And Others

    1975-01-01

    Describes the experimental arrangement for x-ray analysis of samples which involves the following: the radioisotopic x-ray disk source; a student-built fluorescence chamber; the energy dispersive x-ray detector, linear amplifier and bias supply; and a multichannel pulse height analyzer. (GS)

  9. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  10. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... to 2-Year-Old X-Ray Exam: Cervical Spine KidsHealth > For Parents > X-Ray Exam: Cervical Spine A A A What's in this article? What ... Radiografía: columna cervical What It Is A cervical spine X-ray is a safe and painless test ...

  11. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  12. X-Ray Exam: Femur (Upper Leg)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Femur (Upper Leg) KidsHealth > For Parents > X-Ray Exam: Femur (Upper Leg) Print A A A ... español Radiografía: fémur What It Is A femur X-ray is a safe and painless test that uses ...

  13. X-Ray Exam: Neck (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Neck KidsHealth > For Parents > X-Ray Exam: Neck Print A A A What's in ... español Radiografía: cuello What It Is A neck X-ray is a safe and painless test that uses ...

  14. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... to 2-Year-Old X-Ray Exam: Cervical Spine KidsHealth > For Parents > X-Ray Exam: Cervical Spine Print A A A What's in this article? ... Radiografía: columna cervical What It Is A cervical spine X-ray is a safe and painless test ...

  15. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  16. X-ray optics: Diamond brilliance

    NASA Astrophysics Data System (ADS)

    Durbin, Stephen M.; Colella, Roberto

    2010-03-01

    Most materials either absorb or transmit X-rays. This is useful for imaging but makes it notoriously difficult to build mirrors for reflective X-ray optics. A demonstration of the high X-ray reflectivity of diamond could provide a timely solution to make the most of the next generation of free-electron lasers.

  17. X-ray examinations during pregnancy: National Natality Surveys, 1963 and 1980.

    PubMed Central

    Kaczmarek, R G; Moore, R M; Keppel, K G; Placek, P J

    1989-01-01

    Based on 1963 and 1980 National Natality Surveys, the rate of medical x-ray examinations during pregnancy per 100 mothers fell 34.2 percent. A decrease in chest x-ray examinations accounted for almost all of the decline in total x-ray examinations. The reductions were greater for older mothers and those who were not White. While the number of births fell from 4,071,000 in 1963 to 3,612,000 in 1980, the number of pelvimetry examinations actually increased by 45,000. PMID:2909188

  18. An 81-year-old man with an abnormal right-sided heart shadow on chest radiograph.

    PubMed

    Shah, Rahman; Khan, M Rehan; Fan, Tai-Hwang M; Ruff, Genina; Ramanathan, Kodangudi B

    2015-02-01

    An 81-year-old man presented with a 1-week history of dry cough. He also complained of mild dyspnea, wheezing, and low-grade fever. He denied hemoptysis, fever, rashes, or chest pain. The patient's medical history included coronary artery bypass surgery, hypertension, gastroesophageal reflux disease, and COPD. The patient was a retired welder and an ex-smoker.

  19. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  20. Mobile X-Ray Unit.

    DTIC Science & Technology

    1996-10-28

    anode 8 surrounded by a coaxial annulus of stainless steel mesh which 9 serves as the cathode, control electronics, and a plurality of 10 spark gap...34Siemens-tube" configuration. More 7 particularly, the X-ray tube 16 has a conical copper/tungsten 8 anode 28, and a stainless steel mesh punched to...160 and 162 each having a typical diameter of 14 2.75 inches. The conflat flanges 160 and 162 are mated to a 15 stainless steel tube 164 having a

  1. X-ray Spectroscopy of Cooling Cluster

    SciTech Connect

    Peterson, J.R.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  2. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  3. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  4. X-ray imaging for palaeontology.

    PubMed

    Hohenstein, P

    2004-05-01

    Few may be aware that X-ray imaging is used in palaeontology and has been used since as early as 1896. The X-raying, preparation and exposure of Hunsrück slate fossils are described. Hospital X-ray machines are used by the author in his work. An X-ray is vital to provide evidence that preparation of a slate is worthwhile as well as to facilitate preparation even if there is little external sign of what lies within. The beauty of the X-ray exposure is an added bonus.

  5. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  6. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  7. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    SciTech Connect

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  8. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  9. X-ray omni microscopy.

    PubMed

    Paganin, D; Gureyev, T E; Mayo, S C; Stevenson, A W; Nesterets, Ya I; Wilkins, S W

    2004-06-01

    The science of wave-field phase retrieval and phase measurement is sufficiently mature to permit the routine reconstruction, over a given plane, of the complex wave-function associated with certain coherent forward-propagating scalar wave-fields. This reconstruction gives total knowledge of the information that has been encoded in the complex wave-field by passage through a sample of interest. Such total knowledge is powerful, because it permits the emulation in software of the subsequent action of an infinite variety of coherent imaging systems. Such 'virtual optics', in which software forms a natural extension of the 'hardware optics' in an imaging system, may be useful in contexts such as quantitative atom and X-ray imaging, in which optical elements such as beam-splitters and lenses can be realized in software rather than optical hardware. Here, we develop the requisite theory to describe such hybrid virtual-physical imaging systems, which we term 'omni optics' because of their infinite flexibility. We then give an experimental demonstration of these ideas by showing that a lensless X-ray point projection microscope can, when equipped with the appropriate software, emulate an infinite variety of optical imaging systems including those which yield interferograms, Zernike phase contrast, Schlieren imaging and diffraction-enhanced imaging.

  10. The Rosat x-ray sky

    NASA Astrophysics Data System (ADS)

    Voges, Wolfgang

    1995-01-01

    The ROSAT (Röntgensatellit) X-ray astronomy satellite has completed the first all-sky x-ray and XUV survey with imaging telescopes. About 60 000 new x-ray and 400 new XUV (1) sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source x-ray skymaps, the positional accuracy obtained for the x-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard x-rays as well as identifications from optical follow-up observations will be presented.

  11. Spectral slicing X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Shealy, D.; Chao, S.-H.

    1986-01-01

    Layered synthetic microstructure (LSM) X-ray optics is investigated as a system for coupling a conventional glancing incidence X-ray mirror to a high sensitivity X-ray detector. It is shown that, by the use of figured LSM optics, it is possible to magnify the X-ray image produced by the primary mirrors so as to maintain their high inherent spatial resolution. The results of theoretical and design analyses of several spectral slicing X-ray telescope systems that utilize LSM mirrors of hyperboloidal, spherical, ellipsoidal, and constant optical path aspheric configurations are presented. It is shown that the spherical LSM optics are the preferred configuration, yielding subarcsecond performance over the entire field. The Stanford/Marshall Space Flight Center Rocket X-ray Telescope, which will utilize normal incidence LSM optics to couple a Wolter-Schwarzschild primary mirror to high resolution detectors for solar X-ray/EUV studies, is discussed. Design diagrams are included.

  12. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  13. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  14. X-ray scattering signatures of β-thalassemia

    NASA Astrophysics Data System (ADS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  15. Controlling X-rays With Light

    SciTech Connect

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  16. Controlling x-rays with light.

    SciTech Connect

    Glover, T. E.; Hertlein, M. P.; Southworth, S. H.; Allison, T. K.; van Tilborg, J.; Kanter, E. P.; Krassig, B.; Varma, H. R.; Rude, B.; Santra, R.; Belkacem, A.; Young, L.; Chemical Sciences and Engineering Division; LBNL; Univ. of California at Berkley; Univ. of Chicago

    2010-01-01

    Ultrafast X-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largely unexplored area of ultrafast X-ray science is the use of light to control how X-rays interact with matter. To extend control concepts established for long-wavelength probes to the X-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here, an intense optical control pulse is observed to efficiently modulate photoelectric absorption for X-rays and to create an ultrafast transparency window. We demonstrate an application of X-ray transparency relevant to ultrafast X-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond X-ray pulse. The ability to control X-ray-matter interactions with light will create new opportunities for present and next-generation X-ray light sources.

  17. Controlling X-rays with light

    NASA Astrophysics Data System (ADS)

    Glover, T. E.; Hertlein, M. P.; Southworth, S. H.; Allison, T. K.; van Tilborg, J.; Kanter, E. P.; Krässig, B.; Varma, H. R.; Rude, B.; Santra, R.; Belkacem, A.; Young, L.

    2010-01-01

    Ultrafast X-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largely unexplored area of ultrafast X-ray science is the use of light to control how X-rays interact with matter. To extend control concepts established for long-wavelength probes to the X-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here, an intense optical control pulse is observed to efficiently modulate photoelectric absorption for X-rays and to create an ultrafast transparency window. We demonstrate an application of X-ray transparency relevant to ultrafast X-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond X-ray pulse. The ability to control X-ray-matter interactions with light will create new opportunities for present and next-generation X-ray light sources.

  18. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  19. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  20. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  1. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  2. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  3. Dose optimization in pediatric cardiac x-ray imaging

    SciTech Connect

    Gislason, Amber J.; Davies, Andrew G.; Cowen, Arnold R.

    2010-10-15

    Purpose: The aim of this research was to explore x-ray beam parameters with intent to optimize pediatric x-ray settings in the cardiac catheterization laboratory. This study examined the effects of peak x-ray tube voltage (kVp) and of copper (Cu) x-ray beam filtration independently on the image quality to dose balance for pediatric patient sizes. The impact of antiscatter grid removal on the image quality to dose balance was also investigated. Methods: Image sequences of polymethyl methacrylate phantoms approximating chest sizes typical of pediatric patients were captured using a modern flat-panel receptor based x-ray imaging system. Tin was used to simulate iodine-based contrast medium used in clinical procedures. Measurements of tin detail contrast and flat field image noise provided the contrast to noise ratio. Entrance surface dose (ESD) and effective dose (E) measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose, which evaluated the dose efficiency of the x-ray parameters investigated. The kVp, tube current (mA), and pulse duration were set manually by overriding the system's automatic dose control mechanisms. Images were captured with 0, 0.1, 0.25, 0.4, and 0.9 mm added Cu filtration, for 50, 55, 60, 65, and 70 kVp with the antiscatter grid in place, and then with it removed. Results: For a given phantom thickness, as the Cu filter thickness was increased, lower kVp was favored. Examining kVp alone, lower values were generally favored, more so for thinner phantoms. Considering ESD, the 8.5 cm phantom had the highest FOM at 50 kVp using 0.4 mm of Cu filtration. The 12 cm phantom had the highest FOM at 55 kVp using 0.9 mm Cu, and the 16 cm phantom had highest FOM at 55 kVp using 0.4 mm Cu. With regard to E, the 8.5 and 12 cm phantoms had the highest FOM at 50 kVp using 0.4 mm of Cu filtration, and the 16 cm phantom had the highest FOM at 50 kVp using 0.25 mm Cu. Antiscatter grid removal improved the FOM for a given set of x-ray

  4. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  5. The anomalous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Li, Xiangdong

    2002-03-01

    In the last few years it has been recognized that a group of X-ray pulsars have peculiar properties which set them apart from the majority of accreting pulars in X-ray binaries. They are called the Anomalous X-ray Pulsars (AXP). These objects are characterized by very soft X-ray spectra with low and steady X-ray fluxes, narrow-distributed spin periods, steady spin-down, no optical/infrared counterparts. Some of them may associate with supernova remnants. The nature of AXP remains mysterious. It has been suggested that AXP are accreting neutron stars, or solitary "magnetars", neutron stars with super strong magnetic fields (≍1010-1011T). In this paper we review the recent progress in the studies of AXP, and discuss the possible implications from comparison of AXP with other neutron stars, such as radio pulsars, radio quiet X-ray pulsar candidates and soft γ-ray repeaters.

  6. X-ray data booklet. Revision

    SciTech Connect

    Vaughan, D.

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  7. Lobster-Eye X-Ray Astronomy

    SciTech Connect

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2010-07-15

    We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

  8. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  9. UV observations of x ray binaries

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1990-01-01

    IUE (International Ultraviolet Explorer) has observed both high and low mass x ray binaries throughout its life. The UV spectra of high mass systems reveal the nature of the massive companion star and the effects of the x ray illumination of the stellar wind. In loss mass systems, the x ray illuminated disk or companion star dominates the UV light. System parameters and the characteristics of the accretion disk can be inferred.

  10. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  11. Topological X-Rays and MRIs

    ERIC Educational Resources Information Center

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  12. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  13. Negative affinity X-ray photocathodes

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Kellogg, E.; Murray, S.; Duckett, S.

    1974-01-01

    A new X-ray image intensifier is described. The device should eventually have a quantum efficiency which is an order of magnitude greater than that of presently available high spatial resolution X-ray detectors, such as microchannel plates. The new intesifier is based upon a GaAs crystal photocathode which is activated to achieve negative electron affinity. Details concerning the detector concept are discussed together with the theoretical relations involved, X-ray data, and optical data.

  14. The Overutilization of X-rays

    PubMed Central

    Lyon, W. K.

    1981-01-01

    Within 20 years of Roentgen's discovery of X-rays in 1895, it became apparent that large doses of radiation damaged human tissue.1 Yet the medical profession continues to contribute to the overutilization of X-rays, occasionally spending health care dollars to subject our patients to a health risk. This paper discusses the evidence to support the claim that X-rays are overutilized, and offers recommendations to rectify the situation. PMID:21289771

  15. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-09

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

  16. Ultrashort X-ray pulse science

    SciTech Connect

    Chin, Alan Hap

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  17. X-rays from the youngest stars

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  18. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  19. Bent crystal X-ray topography

    NASA Technical Reports Server (NTRS)

    Parker, D. L.

    1978-01-01

    A television X-ray topographic camera system was constructed. The system differs from the previous system in that it incorporates the X-ray TV imaging system and has a semi-automatic wafer loading system. Also the X-ray diffraction is in a vertical plane. This feature makes wafer loading easier and makes the system compatible with any commercial X-ray generating system. Topographs and results obtained from a study of the diffraction contrast variation with impurity concentration for both boron implanted and boron diffused silicon are included.

  20. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  1. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  2. X-rays from stellar flares

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1991-01-01

    A summary of X-ray observations of flares on dMe, active spectroscopic binaries and young stars is presented. Consideration is given to the energy associated with the X-ray emission and its relation to other components of the flare energy budget, the time behavior of the flaring plasma as seen by the X-ray emission, and comparisons of stellar flare parameters with solar compact and two ribbon flares. Flares are easily detected when the contrast in the emission from the flaring plasma relative to the stellar photosphere is large as in the X-ray, microwave, and UV regions of the spectrum.

  3. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  4. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  5. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

  6. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  7. Planetary X-rays: Relationship with solar X-rays and solar wind

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.

    Recently X-ray flares are observed from the low-latitude disk of giant planets Jupiter and Saturn in the energy range of 0.2-2 keV. These flares are found to occur in tandem with the occurrence of solar X-ray flare, when light travel time delay is accounted. These studies suggest that disk of outer planets Jupiter and Saturn acts as "diffuse mirror" for solar X-rays and that X-rays from these planets can be used to study flaring on the hemisphere of the Sun that in invisible to near-Earth space weather satellites. Also by proper modeling of the observed planetary X-rays the solar soft X-ray flux can be derived. X-ray flares are also observed on the Mars. On the other hand, X-rays from comets are produced mainly in charge exchange interaction between highly ionized heavy solar wind ions and cometary neutrals. Thus cometary X-rays provide a diagnostics of the solar wind properties. X-rays from Martian exosphere is also dominantly produced via charge exchange interaction between Martian corona and solar wind, providing proxy for solar wind. This paper provides a brief overview on the X-rays from some of the planets and comets and their connection with solar X-rays and solar wind, and how planetary X-rays can be used to study the Sun.

  8. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  9. X-rays from Saturn Pose Puzzles

    NASA Astrophysics Data System (ADS)

    2004-03-01

    The first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. "This indicates that Saturn's X-ray emission is due to the scattering of solar X-rays by Saturn's atmosphere," said Jan-Uwe Ness, of the University of Hamburg in Germany and lead author of a paper discussing the Saturn results in an upcoming issue of Astronomy & Astrophysics. "It's a puzzle, since the intensity of Saturn's X-rays requires that Saturn reflects X-rays fifty times more efficiently than the Moon." The observed 90 megawatts of X-ray power from Saturn's equatorial region is roughly consistent with previous observations of the X-radiation from Jupiter's equatorial region. This suggests that both giant, gaseous planets reflect solar X-rays at unexpectedly high rates. Further observations of Jupiter will be needed to test this possibility. The weak X-radiation from Saturn's south-polar region presents another puzzle (the north pole was blocked by Saturn's rings during this observation). Saturn's magnetic field, like that of Jupiter, is strongest near the poles. X-radiation from Jupiter is brightest at the poles because of auroral activity due to the enhanced interaction of high-energy particles from the Sun with its magnetic field. Since spectacular ultraviolet polar auroras have been observed to occur on Saturn, Ness and colleagues expected that Saturn's south pole might be bright in X-rays. It is not clear whether the auroral mechanism does not produce X-rays on Saturn, or for some reason concentrates

  10. [Report based on Fiscal 2010 Diagnostic X-ray Equipment Questionnaire Survey (conditions of X-ray units and similar equipment)].

    PubMed

    Sato, Nobuhiko; Saito, Hiroki; Miyazono, Tadafumi; Takahashi, Masaru; Negishi, Toru; Kato, Yoh; Abe, Shinji; Imai, Yoshio; Asano, Hiroshi

    2014-12-01

    On X-ray diagnostic technology, it is important to grasp a change of the X-ray high-voltage equipment and radiographic technique factors. The 1st questionnaire was performed in 1974, and it carried out after that every five years, and conducted 8th investigation. As a result, we requested 656 institutions and got a reply from 103 institutions. The response rate was 15.7%. For X-ray high-voltage equipment, the inverter-type device shifts to 83.6% from 73.4% of last time. X-ray high-voltage equipment will be shifted to inverter-type device the near future. For X-ray tube device, the target angle becomes more smaller than usual, and maximum anode heat content is increasing tendency. The spread of digital devices is being advanced, and especially the flat panel detector (FPD) increases in the devices. The spread of soft copy diagnoses is 73.8% for chest image diagnoses, and 49.5% for breast image diagnosis. For the device management, the ratio of institutions measured at purchase time was 91.2%. But, the ratio of institutions performed an invariability examination was 58.4%. It is required to grasp the performance of an X-ray equipment and peripheral equipment, and to perform accuracy control in order to obtain proper radiographic technique factors and imaging. In order to use it for the improvement in photography technology, we would like to continue to conduct this investigation periodically.

  11. Determination of regional myocardial perfusion by x-ray fluorescence

    SciTech Connect

    Palmer, B.M.; McInerney, J.J. )

    1990-05-01

    Validation studies were performed to demonstrate the effectiveness of an x-ray induced fluorescence system in quantitating regional myocardial perfusion in vivo. In a series of 13 open-chested canines, x-ray induced fluorescence was used to simultaneously monitor iodine concentration transients which arose in the left ventricular lumen and in the myocardium after the intravenous injection of an iodinated flow tracer. Deconvolution of the recorded transients produced a transfer function from which the mean transit time for the tracer to travel between the left ventricular lumen and the myocardium was calculated. Measurements of regional myocardial perfusion (Q) made by radioactive microspheres were compared with the reciprocals of the mean transit times (MTT-1) and gave a linear correlation (n = 38): MTT-1 = 0.033 + 0.069 Q, r = 0.71. Comparison of the percent change in perfusion (dQ) relative to a control study for each dog with the percent change in the respective reciprocals of the mean transit times (dMTT-1) produced a linear correlation coefficient of r = 0.88 for the regression line dMTT-1 = 0.46 dQ - 10.7. The x-ray induced fluorescence system may provide a minimally invasive means for monitoring iodine concentration transients and determining relative, if not absolute, measures of regional myocardial perfusion.

  12. 20 CFR 410.428 - X-ray, biopsy, and autopsy evidence of pneumoconiosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to... Internationale Contra Cancer/Cincinnati (1968). A chest roentgenogram (X-ray) classified as Category Z under the... a lung resection), the report thereof will be considered in determining the existence...

  13. 20 CFR 410.428 - X-ray, biopsy, and autopsy evidence of pneumoconiosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to... Internationale Contra Cancer/Cincinnati (1968). A chest roentgenogram (X-ray) classified as Category Z under the... a lung resection), the report thereof will be considered in determining the existence...

  14. Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study.

    PubMed Central

    Klein, B E; Klein, R; Linton, K L; Franke, T

    1993-01-01

    The Beaver Dam Eye Study is a population-based study of common age-related eye diseases. During the standardized medical history, the 4926 subjects were asked whether they had ever had a chest x-ray, computerized axial tomography (CAT) scan of the head, other x-rays of the head, x-rays of the abdomen, or other diagnostic x-rays. The eye examination included photographs of the lenses of the eyes, which were subsequently graded according to protocol. Nuclear sclerosis and posterior subcapsular opacity were significantly associated with CAT scans. If these relationships are causal, it would highlight the importance of minimizing such exposure to the lens of the eye. PMID:8460743

  15. SMM X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  16. Hard X ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Lubin, P.

    1990-03-01

    This final report covers the work carried out under the LLNL Contract Number B063682, Subcontractor Regents University of California at Santa Barbara. The research carried out under this contract involves the construction of a telemetry, target acquisition and guidance system, and of a light-weight gondola to house an x ray spectrometer. This work is part of the design and construction of the balloon experiment, GRATIS, which will perform the first arcminute imaging of cosmic sources in the 30 to 200 keV energy band. Observations conducted with GRATIS are expected to provide data relevant to several key problems in high energy astrophysics including the physical processes responsible for the high energy tail observed in the soft gamma-ray spectra of clusters of galaxies and the origin of both the diffuse and point source components of the gamma-ray emission from the Galactic Center. This report discusses the scientific motivations for this experiment, presents several aspects of the design and construction of the hardware components, gives an overview of the stabilized platform, and demonstrates the expected performance and sensitivity.

  17. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  18. X-ray satellite (Rosat)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An overview of the current status of the ROSAT X-Ray satellite project is given. Areas discussed include an overview of problem areas, systems and mechanical subsystems, the electrical subsystem, power supply, data processing and transmission, the wide field camera, ground support equipment and the production scheduling. It is shown that the project is proceeding according to schedule, including the hardware production and costs. However, it is stated that estimated additional costs will exceed the plan. The previous schedule for production of the flight model will no longer be met. A modified milestone plan has been worked out with Dornier Systems. The current working schedule calls for a launch data of December 21, 1987; however, this does not take into account a 4-week buffer prior to transporting the flight model to the launch site. As of the date of this report, milestone M5 has been met. Previous problems with the gold vapor deposition on the flight model mirror due to contamination have been eliminated.

  19. Foil X-ray Mirrors

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.; Soong, Yang

    1996-09-01

    Nested thin foil reflectors have made possible light weight, inexpensive and fast grazing incidence X-ray mirrors for astronomical spectroscopy over a broad band. These mirrors were developed at Goddard for the US Shuttle program and were flown on NASA's shuttleborne Astro-l mission in December 1990. Presently, the Japan/US collaborative spectroscopic mission ASCA, nearing its third year of successful operation in earth orbit, carries, four such mirrors, weighing less than 40 kg and giving total effective areas of ˜ 1200 and 420 cm2 at l and 8 keV respectively. The ˜ 420 kg observatory is the best possible example of how conical foil mirrors opened areas of research that could not have been otherwise addressed with available resources. In this paper, we will briefly review the development and performance of our first generation foil mirrors. We will also describe progress toward improving their imaging capability to prime them for use in future instruments. Such a goal is highly desirable, if not necessary for this mirror technology to remain competitive for future applications.

  20. X ray lithography in Japan

    NASA Astrophysics Data System (ADS)

    Clemens, James T.; Hill, Robert W.; Cerrina, Franco; Fuller, Gene E.; Pease, R. F.

    1991-10-01

    Integrated circuits (semiconductors) are the key components of modern computers, communication systems, consumer electronics, and the new generations of smart machines and instruments. Japan's strong position and growing influence in the manufacture of semiconductors and systems based on them is well known and well documented. Microlithography is one the most critical elements of the semiconductor manufacturing process because it determines the minimum feature size and the functional capabilities of the semiconductor. Because it is used many times in the manufacturing sequence, the quality of the microlithography process (i.e., number of defects, control for feature size, etc.) is critical in determining the yield and cost of semiconductors and hence the competitiveness of the electronics industry. At present all volume semiconductor manufacturing is done with optical UV (ultraviolet) projection lithography, twenty-year-old photographic technology which has been and is still evolving. There are many issues that limit the technical capability and cost-effectiveness of UV lithography, and thus, alternate lithographic techniques are continuously being researched and developed. X-ray lithography, which was invented in the early 1970's, holds the promise of providing higher yields in manufacturing semiconductors by virtue of enhanced process latitude, process robustness, and resolution.

  1. Hard X-ray delays

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard A.

    1986-01-01

    High time resolution hard X-ray rates with good counting statistics over 5 energy intervals were obtained using a large area balloon-borne scintillation detector during the 27 June 1980 solar flare. The impulsive phase of the flare was comprised of a series of major bursts of several to several tens of seconds long. Superimposed on these longer bursts are numerous smaller approximately 0.5 to 1.0 second spikes. The time profiles for different energies were cross-correlated for the major bursts. The rapid burst decay rates and the simultaneous peaks below 120 keV both indicate a rapid electron energy loss process. Thus, the flux profiles reflect the electron acceleration/injection process. The fast rate data was obtained by a burst memory in 8 and 32 msec resolution over the entire main impulsive phase. These rates will be cross-correlated to look for short time delays and to find rapid fluctuations. However, a cursory examination shows that almost all fluctuations, down to the 5% level, were resolved with 256 msec bins.

  2. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    SciTech Connect

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-05-16

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed.

  3. Bone suppression technique for chest radiographs

    NASA Astrophysics Data System (ADS)

    Huo, Zhimin; Xu, Fan; Zhang, Jane; Zhao, Hui; Hobbs, Susan K.; Wandtke, John C.; Sykes, Anne-Marie; Paul, Narinder; Foos, David

    2014-03-01

    High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or "overshadowed" by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed. The rib suppression performance was evaluated on 491 images. On average, 83.06% (±6.59%) of the rib structures on a standard chest image were suppressed based on the comparison of computer-identified rib areas against hand-drawn rib areas, which is equivalent to about an average of one rib that is still visible on a rib-suppressed image based on a visual assessment. Reader studies were performed to evaluate reader performance in detecting lung nodules and pneumothoraces with and without a bone-suppression companion view. Results from reader studies indicated that the bone-suppression technology significantly improved radiologists' performance in the detection of CT-confirmed possible nodules and pneumothoraces on chest radiographs. The results also showed that radiologists were more confident in making diagnoses regarding the presence or absence of an abnormality after rib-suppressed companion views were presented

  4. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  5. A room-temperature X-ray-induced photochromic material for X-ray detection.

    PubMed

    Wang, Ming-Sheng; Yang, Chen; Wang, Guan-E; Xu, Gang; Lv, Xiang-Ying; Xu, Zhong-Ning; Lin, Rong-Guang; Cai, Li-Zhen; Guo, Guo-Cong

    2012-04-02

    A color change: X-ray-induced photochromic species are rare and can be used for detection of X-rays. A highly robust X-ray-sensitive material with the discrete structure of a metal-organic complex has been found to show both soft and hard X-ray-induced photochromism at room temperature. A new ligand-to-ligand electron-transfer mechanism was proposed to elucidate this photochromic phenomenon.

  6. The future in X-ray surveys

    NASA Astrophysics Data System (ADS)

    Hasinger, Günther

    2015-08-01

    I will chair this "Way Forward" discusson about the future in X-ray Surveys at the Focus Meeting #6Cosmological X-ray Surveys: probing the Hot and Energetic Cosmos. Participants will be R. Gilli,G. Pratt, G. Fabbiano, X. Barcons, T. Ohashi, F. Harrison.

  7. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  8. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  9. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  10. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2016-07-12

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  11. X-Ray Detection Visits the Classroom

    ERIC Educational Resources Information Center

    Peralta, Luis; Farinha, Ana; Pinto, Ana

    2008-01-01

    Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

  12. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  13. X-ray dynamical diffraction Fraunhofer holography.

    PubMed

    Balyan, Minas

    2013-09-01

    An X-ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X-ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.

  14. X-ray spectroscopy of magnetic CVs

    NASA Astrophysics Data System (ADS)

    Matt, Giorgio

    I discuss two topics in X-ray spectroscopy of magnetic CVs: reflection from the white dwarf surface, and opacity effects in the post shock plasma. I also briefly mention future observational perspectives, with particular emphasis on the Constellation X-ray mission.

  15. Course Manual for X-Ray Applications.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This publication is the third of three sequential course manuals for instructors in x-ray science and engineering. This course manual has been tested by introducing it into the Oregon State University curriculum. The publication is prepared for the purpose of improving the qualifications of x-ray users and to reduce the ionizing radiation exposure…

  16. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  17. X-Rays from Green Pea Analogs

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew

    2014-09-01

    X-rays may have contributed to the heating and reionization of the IGM in the early universe. High mass X-ray binaries (HMXB) within small, low-metallicity galaxies are expected to be the main source of X-rays at this time. Since studying these high-redshift galaxies is currently impossible, we turn to local analogs that have the same properties the galaxies in the early are expected to have. A number of recent studies have shown an enhanced number of HMXBs in nearby low metallicity galaxies. We propose to observe a sample of metal-deficient luminous compact galaxies (LCG) in order to determine if the X-ray luminosity is enhanced relative to SFR, thereby providing further evidence to the importance of X-rays in the early universe.

  18. X-ray diffraction: instrumentation and applications.

    PubMed

    Bunaciu, Andrei A; Udriştioiu, Elena Gabriela; Aboul-Enein, Hassan Y

    2015-01-01

    X-ray diffraction (XRD) is a powerful nondestructive technique for characterizing crystalline materials. It provides information on structures, phases, preferred crystal orientations (texture), and other structural parameters, such as average grain size, crystallinity, strain, and crystal defects. X-ray diffraction peaks are produced by constructive interference of a monochromatic beam of X-rays scattered at specific angles from each set of lattice planes in a sample. The peak intensities are determined by the distribution of atoms within the lattice. Consequently, the X-ray diffraction pattern is the fingerprint of periodic atomic arrangements in a given material. This review summarizes the scientific trends associated with the rapid development of the technique of X-ray diffraction over the past five years pertaining to the fields of pharmaceuticals, forensic science, geological applications, microelectronics, and glass manufacturing, as well as in corrosion analysis.

  19. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  20. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  1. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  2. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  3. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  4. Digital Dental X-ray Database for Caries Screening

    NASA Astrophysics Data System (ADS)

    Rad, Abdolvahab Ehsani; Rahim, Mohd Shafry Mohd; Rehman, Amjad; Saba, Tanzila

    2016-06-01

    Standard database is the essential requirement to compare the performance of image analysis techniques. Hence the main issue in dental image analysis is the lack of available image database which is provided in this paper. Periapical dental X-ray images which are suitable for any analysis and approved by many dental experts are collected. This type of dental radiograph imaging is common and inexpensive, which is normally used for dental disease diagnosis and abnormalities detection. Database contains 120 various Periapical X-ray images from top to bottom jaw. Dental digital database is constructed to provide the source for researchers to use and compare the image analysis techniques and improve or manipulate the performance of each technique.

  5. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  6. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  7. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  8. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  9. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  10. The X-ray binary, UW CMa

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1982-01-01

    The UW CMa is a close, eclipsing binary composed of an O7f primary with a stron wind and a less luminous O-type companion. It was found that UW CMa a variable X-ray source, whose X-ray variations are in phase with its optical light curve. Since both components of the binary system are O stars, accretion by a compact object is ruled out as a mechanism for generating X-rays. The UW CMa represents a new class of X-ray binaries, in which X-rays result from the collision of a wind from one star with the surface or wind of the other star. It is hypothesised that the impact of a wind against a star generates a shock wave about 0.25 stellar radii above the stellar surface, and material behind the shock front, heated to bout 10 million degrees, radiates the X-ray apparent X-ray variability is due to its location between the two stars, where it undergoes eclipses. The high temperature region maintains an ionization cavity in the wind, as detected with IUE. The ionization cavity is the source of depletion of absorbing ions in the wind between the two stars.

  11. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  12. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  13. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  14. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  15. X-ray in Zeta-Ori

    NASA Astrophysics Data System (ADS)

    López-García, M. A.; López-Santiago, J. L.; Albacete-Colombo, J. F.; De Castro, E.

    2013-05-01

    Nearby star-forming regions are ideal laboratories to study high-energy emission processes but they usually present high absorption what makes difficult to detect the stellar population inside the molecular complex. As young late-type stars show high X-ray emission and X-ray photons are little absorbed by interstellar material, X-ray dedicated surveys are an excellent tool to detect the low-mass stellar population in optically absorbed regions. In this work, we present a study of the star-forming region Zeta-Ori and its surroundings. We combine optical, infrared and X-ray data. Properties of the X-ray emiting plasma and infrared features of the young stellar objects detected in the XMM-Newton observation are determined. The southern part of the Orion B giant molecular cloud complex harbor other star forming regions, as NGC 2023 and NGC 2024, we use this regions to compare. We study the spectral energy distribution of X-ray sources. Combining these results with infrared, the X-ray sources are classified as class I, class II and class III objects. The X-ray spectrum and ligth curve of detected X-ray sources is analyzed to found flares. We use a extincion-independent index to select the stars with circumstellar disk, and study the relationship between the present of disk and the flare energy. The results are similar to others studies and we conclude that the coronal properties of class II and class III objects in this region do not differ significantly from each other and from stars of similar infrared class in the ONC.

  16. X-rays from Alpha Centauri

    NASA Technical Reports Server (NTRS)

    Nugent, J.; Garmire, G.

    1978-01-01

    HEAO 1 observations of soft X-ray emission from a point source in the vicinity of Alpha Cen are reported. The source, designated H1437-61, is tentatively identified with Alpha Cen, and an X-ray luminosity comparable to that of the sun in an active state is estimated. A temperature of about 500,000 K and an emission integral of 5 x 10 to the 50th per cu cm are obtained. Coronal emission is suggested as the X-ray-producing mechanism.

  17. The Future of X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  18. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  19. Diffractive Imaging Using Partially Coherent X Rays

    SciTech Connect

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Vine, D. J.; Dilanian, R. A.; Flewett, S.; Nugent, K. A.; Peele, A. G.; Balaur, E.; McNulty, I.

    2009-12-11

    The measured spatial coherence characteristics of the illumination used in a diffractive imaging experiment are incorporated in an algorithm that reconstructs the complex transmission function of an object from experimental x-ray diffraction data using 1.4 keV x rays. Conventional coherent diffractive imaging, which assumes full spatial coherence, is a limiting case of our approach. Even in cases in which the deviation from full spatial coherence is small, we demonstrate a significant improvement in the quality of wave field reconstructions. Our formulation is applicable to x-ray and electron diffraction imaging techniques provided that the spatial coherence properties of the illumination are known or can be measured.

  20. X-ray phase-contrast methods

    SciTech Connect

    Lider, V. V. Kovalchuk, M. V.

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  1. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  5. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  6. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  7. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  8. X-ray ferromagnetic resonance spectroscopy

    SciTech Connect

    Boero, G.; Rusponi, S.; Bencok, P.; Popovic, R.S.; Brune, H.; Gambardella, P.

    2005-10-10

    We present a method to measure continuous-wave ferromagnetic resonance (FMR) spectra based on the core-level absorption of circularly polarized x rays. The technique is demonstrated by using a monochromatic x-ray beam incident on an yttrium-iron-garnet sample excited by a microwave field at 2.47 GHz. FMR spectra are obtained by monitoring the x-ray absorption intensity at the photon energy corresponding to the maximum of the magnetic circular dichroism effect at the iron L{sub 2,3} edges as a function of applied magnetic field. The x-ray FMR signal is shown to be energy dependent, which makes the technique element sensitive and opens up new possibilities to perform element-resolved FMR in magnetic alloys and multilayers.

  9. Description of x-ray equipment

    SciTech Connect

    Wagner, J.

    1987-12-09

    The radiographic trailer described in this report contains the x-ray equipment permitting its transportation to the place where radiographic analysis is to be performed. There the x-ray head is deposited on the ground by a winch and ramp and the trailer is moved away. While the trailer is in motion the water hoses and electrical cables connecting the x-ray head to the rest of the equipment are automatically unwinding from the respective drums and deposited on the ground. The maximum distance between the trailer and the x-ray head is 300 ft. After positioning the trailer, the control console is placed at the distance of up to 150 ft from it, while the control cable connecting the console to the trailer is unwinding from its cable drum. The main features of the basic assemblies inside the trailer are described in this document. Reference CAPE-3013

  10. X-Ray Exam: Scoliosis (For Parents)

    MedlinePlus

    ... image is recorded on a computer or special film. The scoliosis X-ray includes the thoracic spine ( ... for scoliosis during regular physical exams, and some schools also test for scoliosis. If scoliosis is suspected, ...

  11. X-ray holography in-flight

    NASA Astrophysics Data System (ADS)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Ekeberg, Tomas; Hantke, Max; Daurer, Benedikt; Nettelblad, Carl; Bielecki, Johan; Faigel, Guila; Hasse, Dirk; Morgan, Andrew; Mühlig, Kerstin; Seibert, Marvin; Chapman, Henry; Hajdu, Janos; Maia, Filipe; Moeller, Thomas; Bostedt, Christoph

    2016-05-01

    The advent of X-ray free-electron lasers, delivering ultra intense femtosecond X-ray flashes, opens the door for structure determination of single nanoparticles and biosamples with single shots. The first X-ray diffraction imaging experiments at LCLS delivered promising results on samples in the gas phase. However, the reconstruction of non-periodic structures is still challenging due to the loss of phase information. Meanwhile, X-ray holographic approaches allow for recording the phase directly into the diffraction image. In my talk, I will present the first successful proof-of-principle experiment for ``in-flight''-holography with free viruses. Our experiments pave the way for unique studies on levitating nanospecimen that are of central interest in several scientific communities including atmosphere research, chemistry, material sciences, and studies on matter under extreme conditions.

  12. X-Ray Exam: Femur (Upper Leg)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... a radiologist (a doctor who's specially trained in reading and interpreting X-ray images). The radiologist will ...

  13. X-Ray Exam: Scoliosis (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... by a radiologist (a doctor specially trained in reading and interpreting X-ray images). The radiologist will ...

  14. X-Ray Exam: Neck (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding ... a radiologist (a doctor who's specially trained in reading and interpreting X-ray images). The radiologist will ...

  15. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  16. The sensational discovery of X-rays

    NASA Astrophysics Data System (ADS)

    Maddox, John

    1995-05-01

    W. C. Röntgen discovered X-rays about this time a century ago. Within a few months, Becquerel was making the first observations of radioactivity. But the beginnings of the then new physics were not a tidy business.

  17. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  18. X-ray transmission microscope development

    NASA Astrophysics Data System (ADS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-08-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  19. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  20. X ray opacity in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Wise, Michael W.; Sarazin, Craig L.

    1993-01-01

    We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.

  1. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  2. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  3. Experimental X-Ray Ghost Imaging

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M.

    2016-09-01

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

  4. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  5. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  6. Why Do I Need X-Rays?

    MedlinePlus

    ... information you need from the Academy of General Dentistry Sunday, April 9, 2017 About | Contact InfoBites Quick ... Related Articles: X-Rays The Academy of General Dentistry (AGD) Sets the Record Straight on Dental X- ...

  7. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  8. X-ray induced optical reflectivity

    NASA Astrophysics Data System (ADS)

    Durbin, Stephen M.

    2012-12-01

    The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor (gallium arsenide, GaAs), and a metal (gold, Au), obtained with ˜100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  9. Dental x-ray diagnostic installation

    SciTech Connect

    Grassme, U.

    1985-02-19

    An exemplary embodiment comprises an exposure unit including an X-ray tube and a cassette holder rotatable about vertical axes and between which the head of the patient is disposed. A radiation detector is disposed at the cassette holder for supplying an electrical signal corresponding to the dose rate when it is struck by X-rays and being interconnected with an X-ray tube voltage controller and a dose rate regulator in such manner that the X-ray tube voltage is influenced by the output of the radiation detector to control the dose rate to a value producing an optimum film blackening. A function generator determining the speed of the exposure unit is provided in which a speed curve is stored given which the radiation dose influencing the film is approximately constant.

  10. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  11. Interlaced X-ray diffraction computed tomography.

    PubMed

    Vamvakeros, Antonios; Jacques, Simon D M; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J; Beale, Andrew M

    2016-04-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn-Na-W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy.

  12. The Importance of Esophageal and Gastric Diseases as Causes of Chest Pain

    PubMed Central

    Shin, Eun Jung; Kim, Nam Su; Lee, Young Ho; Nam, Eun Woo

    2015-01-01

    Purpose Pediatric chest pain is considered to be idiopathic or caused by benign diseases. This study was to find out how much upper gastrointestinal (UGI) diseases are major causes of chest pain in pediatric patients. Methods The records of 75 children (42 boys and 33 girls, aged 3-17 years old) who have presented with mainly chest pain from January 1995 to March 2015 were retrospectively reviewed. Chest X-ray and electrocardiography (ECG) were performed in all aptients. Further cardiologic and gastrointestinal (GI) evaluations were performed in indicated patients. Results Chest pain was most common in the children of 6 and 9 to 14 years old. Esopha-gogastric diseases were unexpectedly the most common direct causes of the chest pain, the next are idiopathic, cardiac diseases, chest trauma, respiratory disease, and psychosomatic disease. Even though 21 showed abnormal ECG findings and 7 showed abnormalities on echocardiography, cardiac diseases were determined to be the direct causes only in 9. UGI endoscopy was performed in 57 cases, and esophago-gastric diseases which thereafter were thought to be causative diseases were 48 cases. The mean age of the children with esophago-gastric diseases were different with marginal significance from that of the other children with chest pain not related with esophago-gastric diseases. All the 48 children diagnosed with treated with GI medicines based on the diagnosis, and 37 cases (77.1%) subsequently showed clinical improvement. Conclusion Diagnostic approaches to find out esophageal and gastric diseases in children with chest pain are important as well as cardiac and respiratory investigations. PMID:26770901

  13. Principles of X-ray Navigation

    SciTech Connect

    Hanson, John Eric; /SLAC

    2006-03-17

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a

  14. X-ray scattering from dense plasmas

    NASA Astrophysics Data System (ADS)

    McSherry, Declan Joseph

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The laser produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron thickness of Al, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, did not always agree broadly with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron thickness of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, were placed 4 mm from the sample foil. The soft x-rays were produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, that the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times.

  15. X-ray physics subpanel summary.

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Dennis, B. R.

    The X-ray subpanel of the P/OF Workshop provided the opportunity to get input from a broad-based scientific community, including SMM experimenters and data analysts, solar flare theorists, and ground-based observers, on scientific and technical trade-offs involved in the X-ray instrumentation. The basic objective was to review the strawman payload set up for the Pinhole/Occulter Facility in the light of scientific developments of the last five years.

  16. X-ray physics subpanel summary.

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Dennis, B. R.

    1986-04-01

    The X-ray subpanel of the P/OF Workshop provided the opportunity to get input from a broad-based scientific community, including SMM experimenters and data analysts, solar flare theorists, and ground-based observers, on scientific and technical trade-offs involved in the X-ray instrumentation. The basic objective was to review the strawman payload set up for the Pinhole/Occulter Facility in the light of scientific developments of the last five years.

  17. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  18. Spacecraft Navigation Using X-ray Pulsars

    DTIC Science & Technology

    2006-01-01

    make them attractive as potential natural naviga- tion beacons and why a practical implementation looks most feasible in the X-ray band. We then...describe the history of the X-ray navigation program at NRL up through our current Defense Advanced Research Proj- ects Agency (DARPA) program. Finally, we...that produce the powerful radiation beams. These pulsars then turn off and inhabit the “pulsar graveyard.” During their lives, these pulsars make very

  19. Galaxies in the X-ray Band

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2008-01-01

    This talk will provide a brief review of progress on X-ray emission from normal (non-AGN) galaxy populations, including important constraints on the evolution of accreting binary populations over important cosmological timescales. We will also look to the future, anticipating constraints from near-term imaging hard X-ray missions such as NuSTAR, Simbol-X and NeXT and then the longer-term prospects for studying galaxies with the Generation-X mission.

  20. Galaxies in the X-Ray Band

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2008-01-01

    This talk will provide a brief review of progress an X-ray emission from normal (non-AGN) galaxy populations, including important constraints on the evolution of accreting binary populations over important cosmological timescales. We will also look to the future, anticipating constraints from near-term imaging hard X-ray missions such as NuSTAR, Simbol-X and NeXT and then the longer-term prospects for studying galaxies with the Generation-X mission,

  1. Parametric X-rays at FAST

    SciTech Connect

    Sen, Tanaji

    2016-06-01

    We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.

  2. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  3. Hard x ray highlights of AR 5395

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Dennis, Brian R.

    1989-01-01

    Active Region 5395 produced an exceptional series of hard x ray bursts notable for their frequency, intensity, and impulsivity. Over the two weeks from March 6 to 19, 447 hard x ray flares were observed by the Hard X Ray Burst Spectrometer on Solar Maximum Mission (HXRBS/SMM), a rate of approx. 35 per day which exceeded the previous high by more than 50 percent. During one 5 day stretch, more than 250 flares were detected, also a new high. The three largest GOES X-flares were observed by HXRBS and had hard x ray rates over 100,000 s(exp -1) compared with only ten flares above 100,000(exp -1) during the previous nine years of the mission. An ongoing effort for the HXRBS group has been the correlated analysis of hard x ray data with flare data at other wavelengths with the most recent emphasis on those measurements with spatial information. During a series of bursts from AR 5395 at 1644 to 1648 UT on 12 March 1989, simultaneous observations were made by HXRBS and UVSP (Ultra Violet Spectrometer Polarimeter) on SMM, the two-element Owens Valley Radio Observatory (OVRO) interferometric array, and R. Canfield's H-alpha Echelle spectrograph at the National Solar Observatory at Sacramento Peak. The data show strong correlations in the hard x ray, microwave, and UV lightcurves. This event will be the subject of a combined analysis.

  4. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  5. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  6. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  7. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  8. X-ray Eyes on Tempel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: X-ray Eyes on Tempel

    This false-color image shows comet Tempel 1 as seen by Chandra X-ray Observatory on June 30, 2005, Universal Time. The comet was bright and condensed. The X-rays observed from comets are caused by an interaction between highly charged oxygen in the solar wind and neutral gases from the comet.

    The observatory detected X-rays with an energy of 0.3 to 1.0 kilo electron Volts. The bulk of the X-rays were between 0.5 and 0.7 kilo electron Volts.

    Chandra will observe the comet for 18 hours during and after the time when NASA's Deep Impact impactor probe collides with Tempel 1 at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4). The material ejected from the crater could cause the interaction region, and thus the X-ray emission, to move toward the Sun.

  9. The potential of X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Tamborra, F.

    2014-07-01

    Up-scattering of low-energy photons by Inverse Compton processes in a hot gas of electrons (i.e. Comptonization) is a common astrophysical mechanism particularly important in accreting systems like X-ray binaries (XRBs) and Active Galactic Nuclei (AGN). Polarization signals produced by scattering strongly depend on the optical thickness and geometry of the scattering medium as well as on the observer's viewing angle. The polarization degree and angle can be used to constrain, for example, the still unknown parameters which characterize the hot corona responsible for the production of X-ray radiation in AGN or the dominant mechanism responsible for the broadening of the Iron K-alpha emission line whose origin is still a matter of debate in the case of low mass X-ray binaries with a neutron star. Conducting accurate Monte Carlo simulations we show the potential of X-ray polarimetry, a new perspective of X-ray astronomy. The spectroscopic part of our results can already be exploited today in the light of XMM-Newton and Chandra data and is even more appealing in the perspective of data from NuStar and future X-ray missions.

  10. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  11. The X-ray imager on AXO

    NASA Astrophysics Data System (ADS)

    Budtz-Jørgensen, C.; Kuvvetli, I.; Westergaard, N. J.; Jonasson, P.; Reglero, V.; Eyles, C.

    2001-02-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated. Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active thunderstorm system. Additional objective is a detailed mapping of the auroral X-ray and optical emission. XRI comprises a coded mask and a 20×40 cm 2 CZT detector array covering an energy range from 5 to 200 keV.

  12. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  13. Einstein observations of extended galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Seward, F. D.

    1979-01-01

    Features of the X-ray pictures taken aboard the space observatory are presented. Imaging proportional counter pictures in three broad X-ray energy ranges were obtained. The X-ray spectrum of supernova remnants is described.

  14. An introduction to X-ray astronomy data analysis.

    NASA Astrophysics Data System (ADS)

    Morini, M.

    The following sections are included: * INTRODUCTION * X-RAY COSMIC SOURCES * X-RAY ASTRONOMY DETECTORS * CHARACTERISTIC FEATURES OF X-RAY ASTRONOMY DATA * ENERGY SPECTRA ANALYSIS * TIME VARIABILITY ANALYSIS * IMAGE ANALYSIS * References

  15. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  16. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  17. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  18. X-ray imaging with compound refractive lens and microfocus x-ray tube

    NASA Astrophysics Data System (ADS)

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-08-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a source. Magnified images of gold mesh with 5 microns bars were obtained. Theoretical limits of CRL and experimental results are discussed.

  19. Development of x-ray laminography under an x-ray microscopic condition

    SciTech Connect

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  20. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  1. Implications of cost-effectiveness analysis of medical technology. background paper number 5. four common x-ray procedures: problems and prospects for economic evaluation

    SciTech Connect

    Wagner, J.L.; Krieger, M.J.

    1982-04-01

    This paper is about the economic evaluation of diagnostic procedures. The issue of economic evaluation is explored in the context of four common diagnostic X-ray procedures: the chest X-ray, the skull X-ray, the barium enema study, and the excretory urogram. The paper is divided into two parts. The first part summarizes the different evaluative models underlying studies of the four diagnostic X-ray procedures and to lay out the strengths and weaknesses of each method. The second part contains four separate chapters summarizing what is known about the utilization, costs, risks, and benefits of each procedure, with particular emphasis on the evaluative methods employed.

  2. Outcome for adult contacts of smear-positive pulmonary tuberculosis in the absence of X-ray follow-up: 2000-03.

    PubMed

    Ormerod, L P; Green, R M; Broadfield, E

    2004-06-01

    The effects of the policy change in X-ray follow-up of adult tuberculin-positive close contacts of sputum microscopy positive pulmonary tuberculosis made by the Joint Tuberculosis Committee of the British Thoracic Society in 2000 were monitored prospectively from late 2000 until the end of 2003. No cases in contacts that could have been detected by interval X-rays at three and 12 months were found. The data, on 291 cases, support the abandonment of X-ray follow-up in favour of an 'inform and advise' strategy after an initial normal chest X-ray in this category of tuberculosis contact.

  3. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays.

  4. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    SciTech Connect

    Noda, Daiji; Tokuoka, Atsushi; Katori, Megumi; Minamiyama, Yasuto; Yamashita, Kenji; Nishida, Satoshi; Hattori, Tadashi

    2012-07-31

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  5. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  6. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  7. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  8. X-ray radiation and the risk of multiple sclerosis: Do the site and dose of exposure matter?

    PubMed Central

    Motamed, Mohammad Reza; Fereshtehnejad, Seyed-Mohammad; Abbasi, Maryam; Sanei, Mastaneh; Abbaslou, Mina; Meysami, Somayeh

    2014-01-01

    Background: The sporadic cases of radiation-activated multiple sclerosis (MS) has been previously described, with a few studies focused on the relationship between radiation and the risk of MS. The aim of our study was to evaluate the association between history of X-ray radiation and MS. Methods: This case-control study was conducted on 150 individuals including 65 MS patients and 85 age- and sex-matched healthy controls enrolled using non-probability convenient sampling. Any history of previous Xray radiation consisted of job-related X-ray exposure, radiotherapy, radiographic evaluations including chest Xray, lumbosacral X-ray, skull X-ray, paranasal sinuses (PNS) X-ray, gastrointestinal (GI) series, foot X-ray and brain CT scanning were recorded and compared between two groups. Statistical analysis was performed using independent t test, Chi square and receiver operating characteristics (ROC) curve methods through SPSS software. Results: History of both diagnostic [OR=3.06 (95% CI: 1.32-7.06)] and therapeutic [OR=7.54 (95% CI: 1.5935.76) X-ray radiations were significantly higher among MS group. Mean number of skull X-rays [0.4 (SD=0.6) vs. 0.1 (SD=0.3), p=0.004] and brain CT scanning [0.9 (SD=0.8) vs. 0.5 (SD=0.7), p=0.005] was higher in MS group as well as mean of the cumulative X-ray radiation dosage [1.84 (SD=1.70) mSv vs. 1.11 (SD=1.54) mSv; p=0.008]. Conclusion: Our study was one of the first to show higher history of X-ray radiation in patients with MS compared to healthy controls. A possible association was also found between the dose and the site exposed to X-ray radiation and risk of developing MS PMID:25695003

  9. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  10. Globular cluster X-ray sources

    NASA Astrophysics Data System (ADS)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  11. Visualization of x-ray backscatter data

    SciTech Connect

    Greenawald, E.C.; Ham, Y.S.; Poranski, C.F. Jr.

    1993-12-31

    Of the several processes which occur when x-rays interact with matter, Compton scattering is dominant in the range of energies commonly used in industrial radiography. The Compton interaction between an x-ray photon and a free or outer shell electron causes the electron to recoil and the photon to be propagated in a new direction with a reduced energy. Regardless of the incident beam energy, some photons are always scattered in the backwards direction. The potential for determining material properties by the detection of x-ray backscatter has been recognized for years. Although work in this area has been eclipsed by the rapid development of computerized tomography (CT), a variety of industrial backscatter imaging techniques and applications have been demonstrated. Backscatter inspection is unique among x-ray methods in its applicability with access to only one side of the object. The authors are currently developing the application of x-ray backscatter tomography (XBT) to the inspection of steel-reinforced rubber sonar domes on US Navy vessels. In this paper, the authors discuss the visualization methods they use to interpret the XBT data. They present images which illustrate the capability of XBT as applied to sonar domes and a variety of other materials and objects. They also demonstrate and discuss the use of several data visualization software products.

  12. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  13. Oscillations During Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290Hz) has, been claimed.

  14. Ultrafast X-Ray Coherent Control

    SciTech Connect

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.

  15. Polarisation modulation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  16. Coding Strategies for X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Holmgren, Andrew

    This work focuses on the construction and application of coded apertures to compressive X-ray tomography. Coded apertures can be made in a number of ways, each method having an impact on system background and signal contrast. Methods of constructing coded apertures for structuring X-ray illumination and scatter are compared and analyzed. Apertures can create structured X-ray bundles that investigate specific sets of object voxels. The tailored bundles of rays form a code (or pattern) and are later estimated through computational inversion. Structured illumination can be used to subsample object voxels and make inversion feasible for low dose computed tomography (CT) systems, or it can be used to reduce background in limited angle CT systems. On the detection side, coded apertures modulate X-ray scatter signals to determine the position and radiance of scatter points. By forming object dependent projections in measurement space, coded apertures multiplex modulated scatter signals onto a detector. The multiplexed signals can be inverted with knowledge of the code pattern and system geometry. This work shows two systems capable of determining object position and type in a 2D plane, by illuminating objects with an X-ray `fan beam,' using coded apertures and compressive measurements. Scatter tomography can help identify materials in security and medicine that may be ambiguous with transmission tomography alone.

  17. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  18. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  19. X-Ray Surveyor Mission Concept

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica

    2015-10-01

    An initial concept study for the X-ray Surveyor mission was carried-out by the Advanced Concept Office at Marshall Space Flight Center (MSFC), with a strawman payload and related requirements that were provided by an Informal Mission Concept Team, comprised of MSFC and Smithsonian Astrophysics Observatory (SAO) scientists plus a diverse cross-section of the X-ray community. The study included a detailed assessment of the requirements, a preliminary design, a mission analysis, and a preliminary cost estimate. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades, such as Con-X, AXSIO and IXO, and in most areas, points to mission requirements no more stringent than those of Chandra.

  20. Radiographic X-Ray Pulse Jitter

    SciTech Connect

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  1. X-ray lasing - The diagnostics

    SciTech Connect

    Not Available

    1985-11-01

    High-sensitivity time-resolving x-ray spectrometers were developed for the Novette x-ray laser experiments to distinguish and characterize those x-rays produced by laser activity amidst all the other background radiation. In the microchannel-plate grazing-incidence spectrometer (MCPIGS) x-rays are dispersed according to wavelength by a concave grating into a curved microchannel plate, and the amplified image is mapped flat for photographic recording. Target radiation is detected between 12.5 and 27 nm with 250 ps temporal resolution, high spectral resolution (lambda/Delta lambda = 1800), and a line-radiation detection threshold of 6 x 10 to the -7th J/sr. The transmission-grating streak spectrometer (TGSS) produces an image of the x-ray laser output (with an ellipsoidal mirror) that is separated horizontally into its constituent wavelengths (with a transmission grating) and resolved vertically in time (with a streak caemra). The TGSS has a time resolution of about 40 ps, a spectral resolution of about 0.1 nm, and a collection solid angle of about 1.2 x 10 to the -4th sr.

  2. Imaging of x rays for magnetospheric investigations

    SciTech Connect

    Imhof, W.L.; Voss, H.D.; Datlowe, D.W. . Space Sciences Lab.)

    1994-02-01

    X-ray imagers can provide large-scale maps of bremsstrahlung x rays produced by electron precipitation into the atmosphere. Complete day and night coverage is obtained and the electron energy spectra at each position in space can be derived from the measured x-ray energy spectra. Early x-ray imagers were limited in field of view and to one map for each pass over the emitting regions. The Magnetospheric Atmospheric X-ray Imaging Experiment, launched on a TIROS satellite, makes time-space mappings by scanning a 16-pixel pinhole camera. The data distinguish intensity variations of a fixed auroral feature from motion of a steadily radiating feature. However, the spatial deconvolution is complex and features stay in the field of view for only [approximately]10 min. These problems will be resolved by a high-altitude ([approximately]9 R[sub e]) imaging spectrometer PIXIE on the ISTP/GGS Polar Satellite to be launched in 1994. PIXIE's position-sensitive proportional counter will continuously image the entire auroral zone for periods of hours.

  3. Imaging of x rays for magnetospheric investigations

    NASA Astrophysics Data System (ADS)

    Imhof, William L.; Voss, Henry D.; Datlowe, Dayton W.

    1994-02-01

    X-ray imagers can provide large-scale maps of bremsstrahlung x rays produced by electron precipitation into the atmosphere. Complete day and night coverage is obtained and the electron energy spectra at each position in space can be derived from the measured x-ray energy spectra. Early x-ray imagers were limited in field of view and to one map for each pass over the emitting regions. The Magnetospheric Atmospheric X-ray Imaging Experiment, launched on a TIROS satellite, makes time-space mappings by scanning a 16-pixel pinhole camera. The data distinguish intensity variations of a fixed auroral feature from motion of a steadily radiating feature. However, the spatial deconvolution is complex and features stay in the field of view for only approximately 10 min. These problems will be resolved by a high- altitude (approximately 9 Re) imaging spectrometer PIXIE on the ISTP/GGS Polar Satellite to be launched in 1994. PIXIE's position-sensitive proportional counter will continuously image the entire auroral zone for periods of hours.

  4. X-ray Pinhole Camera Measurements

    SciTech Connect

    Nelson, D. S.; Berninger, M. J.; Flores, P. A.; Good, D. E.; Henderson, D. J.; Hogge, K. W.; Huber, S. R.; Lutz, S. S.; Mitchell, S. E.; Howe, R. A.; Mitton, C. V.; Molina, I.; Bozman, D. R.; Cordova, S. R.; Mitchell, D. R.; Oliver, B. V.; Ormond, E. C.

    2013-07-01

    The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

  5. The Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The Chandra X-ray Observatory, the third of NASA's four Great Observatories and its flagship mission for X-ray astronomy, was launched by NASA's Space Shuttle Columbia on July 23, 1999. The first X-ray sources were observed on August 12, 1999. The brightest of these sources named Leon X-1 in honor of Chandra's Telescope Scientist who played the leading role in establishing the key to Chandra's great advance in angular resolution. Over the past years, the Observatory's ability to provide sub-arc second X-ray images and high resolution spectra has established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the high-energy regions of the universe, observing X-ray sources with fluxes ranging over more than 10 orders of magnitude. The longevity of Chandra also provides a long observing baseline enabling temporal studies over time-scales of years. I will discuss how the Observatory works, the current operational status, and scientific highlights covering a variety of objects from stars with nearby planets that impact the stellar activity to the deepest Chandra surveys.

  6. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  7. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  8. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  9. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  10. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  11. Reference dose levels for patients undergoing common diagnostic X-ray examinations in Irish hospitals.

    PubMed

    Johnston, D A; Brennan, P C

    2000-04-01

    Wide variations in patient dose for the same type of X-ray examination have been evident from various international dose surveys. Reference dose levels provide a framework to reduce this variability and aid in the optimization of radiation protection. The aim of this study was to establish, for the first time, a baseline for national reference dose levels in Ireland for four of the most common X-ray examinations: chest, abdomen, pelvis and lumbar spine. Measurements of entrance surface dose using thermoluminescent dosemeters (TLDs) for these four X-ray examinations were performed on 10 patients in each of 16 randomly selected hospitals. This represented 42% of Irish hospitals applicable to this study. Results have shown wide variation of mean hospital doses, from a factor of 3 for an anteroposterior lumbar spine to a factor of 23 for the chest X-ray. The difference between maximum and minimum individual patient dose values varied up to a factor of 75. Reasons for these dose variations were complex but, in general, low tube potential, high mAs and low filtration were associated with high-dose hospitals. This study also demonstrated lower reference dose levels of up to 40% when compared with those established by the UK and the Commission of the European Communities for four out of six projections. Only the chest X-ray exhibited a similar reference level to those established elsewhere. This emphasizes the importance of each country establishing its own reference dose levels that are appropriate to their own radiographic techniques and practices in order to optimize patient protection.

  12. Design, analysis and testing of x-ray tube for next generation x-ray machines

    NASA Astrophysics Data System (ADS)

    Sanganal, Santoshakumar; Rao Ratnala, Srinivas; Shivakumar Gouda, P. S.

    2016-09-01

    A conceptual design of x-ray metal tube frame assembly is done to establish the technical feasibility and characterize the performance of a base design of x-ray metal tube frame assembly to meet the experimental critical to qualities (CTQ's) of x-ray tube at 72 kW for 20 seconds. Experimental test configuration with linear variable differential transformers (LVDT's) & thermo-couples is set to study the thermal prediction of x-ray tube with model results. Graphs of temperature versus time and deflection versus time shows curve shape magnitudes within 5% and 1%. A thermal - structural analysis is considered in analyzing the thermal - structural behavior in x-ray metal tube by considering worst protocol as 3.2 kW in steady state condition and 14.4 kW in transient state condition for 30 seconds. This analysis is done by doing a conceptual design of x-ray metal tube frame assembly with major modifications in frame and electron collector based on thermal - structural results. 3D modelling of x-ray metal tube frame assembly is done in Creo parametric 2.0 CAD software and analysis is done in ANSYS 16.1 simulation software. FEA results of conceptual design are in good agreement with CTQ's results of x-ray tube at 72 kW for 20 seconds.

  13. Characteristic X-ray Generator Utilizing Angle Dependence of Bremsstrahlung X-ray Distribution

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Sato, Shigehiro; Takayama, Kazuyoshi; Onagawa, Jun

    2006-04-01

    This generator consists of the following components: a constant high-voltage power supply, a filament power supply, a turbomolecular pump, and an X-ray tube. The X-ray tube is a demountable diode which is connected to the turbomolecular pump and consists of the following major devices: a molybdenum rod target, a tungsten hairpin cathode (filament), a focusing (Wehnelt) electrode, a polyethylene terephthalate X-ray window 0.25 mm in thickness, and a stainless-steel tube body. In the X-ray tube, the positive high voltage is applied to the anode (target) electrode, and the cathode is connected to the tube body (ground potential). In this experiment, the tube voltage applied was from 22 to 36 kV, and the tube current was regulated to within 100 μA by the filament temperature. The exposure time is controlled in order to obtain optimum X-ray intensity. The electron beams from the cathode are converged to the target by the focusing electrode, and clean K-series characteristic X-rays are produced through the focusing electrode without using a filter. The X-ray intensity was 26.6 μGy/s at 1.0 m from the X-ray source with a tube voltage of 30 kV and a tube current of 100 μA, and quasi-monochromatic radiography was performed using a computed radiography system.

  14. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  15. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  16. Two-Photon X-Ray Diffraction.

    PubMed

    Stöhr, J

    2017-01-13

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a "source," consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focussed beyond the diffraction limit. The case of cloned x-ray biphotons is compared to and distinguished from the much studied case of entangled optical biphotons.

  17. Explorer Program: X-ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This booklet describes the X-ray Timing Explorer (XTE), one in a series of Explorer missions administered by the National Aeronautics and Space Administration's (NASA) Office of Space Science and managed by the NASA Goddard Space Flight Center (GSFC). The X-ray astronomy observatory is scheduled for launch into low-Earth orbit by Delta 2 expendable launch vehicle in late summer of 1995. The mission is expected to operate for at least 2 years and will carry out in-depth timing and spectral studies of the X-ray sources in the 2 to 200 kilo-electron Volt (keV) range. XTE is intended to study the temporal and broad-band spectral phenomena associated with stellar and galactic systems containing compact objects, including neutron stars, white dwarfs, and black holes.

  18. Instrumentation for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Austin, Robert A.; Decher, Rudolf

    1994-01-01

    Less than five decades ago, the first X-ray observations of the sky were made using simple devices such as film and geiger counters with crude collimators. These instruments were carried aloft by sounding rockets and made observations lasting only a few minutes at most. Today, orbiting observatories, utilizing high-resolution charged coupled devices (CCD's) at the focus of arc sec optics, have lifetimes measured in years. To maintain the pace of discovery in X-ray astronomy, detectors must continue to evolve into devices of ever increasing sensitivity and sophistication. Further progress depends upon a host of technologies: grazing incidence optics, proportional counters, semiconductors, calorimeters, etc. In this article we present a brief qualitative overview of these technologies and of the principles behind them, as well as some examples of how they are employed in scientific missions for X-ray observations at energies up to 100 keV.

  19. Combined microstructure x-ray optics

    SciTech Connect

    Barbee, T.W. Jr.

    1989-02-01

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  20. Apollo galactic X-ray astronomy observations

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Schmadebeck, R.; Gorenstein, P.; Bjorkholm, P.

    1971-01-01

    The galactic X-ray observations are a detailed study of the temporal behavior of pulsating X-ray sources. NASA's first X-ray astronomy satellite Uhuru (Explorer 42) has recently discovered fast time variability of pulsations in the output from several sources. The variability occurs on a time scale of minutes, seconds, or less, implying that the emitting regions are very small in size, much smaller than the sun, although they are emitting about a thousand times more power. Fast time variability may provide the clue that is needed to understand the mechanisms which drive pulsating sources. The Apollo observations record the emission from several objects continuously for a period of about an hour. The spacecraft can be pointed at the source for the entire time. On the other hand, Uhuru can observe only for about a minute or two per sighting. Consequently, Apollo has the capability for determining whether periodicities exist in the 10-1000 second range.

  1. X-ray atlas of rheumatic diseases

    SciTech Connect

    Dihlmann, W.

    1986-01-01

    This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

  2. Digital Speckle X-Ray Flash Photography

    NASA Astrophysics Data System (ADS)

    Grantham, S. G.; Proud, W. G.

    2002-07-01

    The new technique of digital speckle X-ray flash photography (DSXFP), which has been successfully applied to polyester and cement specimens, is being further developed and used to study materials in ballistic situations in a way not previously possible. The technique involves seeding the specimen with a lead layer and then taking flash X-ray images before and during an impact event. Digital cross-correlation can then be used to make measurements of the internal displacements occurring throughout the specimen. Using a stereoscopic geometry the out of plane displacements can also be determined and a full 3-dimensional displacement map constructed. In this paper these two powerful and complementary techniques of flash X-rays and DSXFP are used to study the ballistic response of a borosilicate sample to produce information that other techniques are unable to provide.

  3. Contact x-ray microscopy using Asterix

    NASA Astrophysics Data System (ADS)

    Conti, Aldo; Batani, Dimitri; Botto, Cesare; Masini, Alessandra; Bernardinello, A.; Bortolotto, Fulvia; Moret, M.; Poletti, G.; Piccoli, S.; Cotelli, F.; Lora Lamia Donin, C.; Stead, Anthony D.; Marranca, A.; Eidmann, Klaus; Flora, Francesco; Palladino, Libero; Reale, Lucia

    1997-10-01

    The use of a high energy laser source for soft x-ray contact microscopy is discussed. Several different targets were used and their emission spectra compared. The x-ray emission, inside and outside the Water Window, was characterized in detail by means of many diagnostics, including pin hole and streak cameras. Up to 12 samples holders per shot were exposed thanks to the large x-ray flux and the geometry of the interaction chamber. Images of several biological samples were obtained, including Chlamydomonas and Crethidia green algae, fish and boar sperms and Saccharomyces Cerevisiae yeast cells. A 50 nm resolution was reached on the images of boar sperm. Original information concerning the density of inner structures of Crethidia green algae were obtained.

  4. X-Ray Variability in M87

    NASA Technical Reports Server (NTRS)

    Harris, Daniel E.; Biretta, J. A.; Junor, W.

    2000-01-01

    We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGB nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

  5. Two-Photon X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Stöhr, J.

    2017-01-01

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a "source," consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focussed beyond the diffraction limit. The case of cloned x-ray biphotons is compared to and distinguished from the much studied case of entangled optical biphotons.

  6. Fabrication of imaging X-ray optics

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Joki, E. G.; Brookover, W. J.

    1987-01-01

    The design, fabrication, and performance of optics for X-ray astronomy and laboratory applications are described and illustrated with diagrams, drawings, graphs, photographs, and sample images. Particular attention is given to the Wolter I telescope developed for spectroscopic observation of 8-30-A cosmic X-ray sources from a rocketborne X-ray Objective Grating Spectrometer; this instrument employs three nested paraboloid-hyperboloid mirrors of 5083 Al alloy, figured by diamond turning and covered with a thin coating of acrylic lacquer prior to deposition of a 40-nm-thick layer of Sn. In calibration tests at NASA Marshall, the FWHM of the line-spread function at 1.33 nm was found to be 240 microns, corresponding to 21 arcsec. Also presented are the results of reflectivity measurements on C and W multilayers sputtered on Si and fusion glass substrates.

  7. X-Ray Detector Simulations - Oral Presentation

    SciTech Connect

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they must first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.

  8. The Integrated X-Ray Spectrum of Galactic Populations of Luminous Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, R.; Becker, C. M.; Fabbiano, G.

    1996-01-01

    We compute the composite X-ray spectrum of a population of unresolved SSS's in a spiral galaxy such as our own or M31. The sources are meant to represent the total underlying population corresponding to all sources which have bolometric luminosities in the range of 10(exp 37) - 10(exp 38) ergs/s and kT on the order of tens of eV. These include close-binary supersoft sources, symbiotic novae, and planetary nebulae, for example. In order to determine whether the associated X-ray signal would be detectable, we also 'seed' the galaxy with other types of X-ray sources, specifically low-mass X-ray binaries (LMXB's) and high-mass X-ray binaries (HMXB's). We find that the total spectrum due to SSS's, LMXB's, and HMXB's exhibits a soft peak which owes its presence to the SSS population. Preliminary indications are that this soft peak may be observable.

  9. X-Rays from Hybrid Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2005-01-01

    The late-type giants and supergiants of the ``hybrid chromosphere'' class display signatures of cool (T<~2×104 K) winds together with hot emission lines from species like C IV (T~105 K). A survey of such stars by Reimers et al. using ROSAT reported numerous X-ray detections (T~106 K), strengthening the (then heretical) idea that hot coronae and cool winds can coexist in luminous giants. However, several of the candidate sources were offset from the predicted stellar coordinates, calling into question the identifications. In an effort to secure better knowledge of the X-ray luminosities of the hybrids, the ROSAT fields from the Reimers et al. survey were reexamined, exploiting the USNO-A2.0 astrometric catalog to register the pointings to a few arcseconds accuracy. On the basis of positional mismatches, at least two of the previously reported detections of key hybrid stars-γ Dra (K5 III) and β Aqr (G0 Ib)-must be rejected. The new X-ray upper limits for these stars, combined with the remaining candidate detections (and nondetections) from the original survey, place the hybrids into the same ``X-ray deficient'' category as the ``noncoronal'' red giants like Arcturus (α Boo: K1.5 III) and Aldebaran (α Tau: K5 III). A few of the hybrid X-ray sources are exceptional, however. The archetype α TrA (K2 II-III), in particular, is securely detected in terms of positional coincidence, but its anomalous, contradictory coronal properties suggest that an unseen companion-a young hyperactive G dwarf-might dominate the X-ray emission.

  10. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  11. Beyond Chandra - the X-ray Surveyor

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Gaskin, Jessica A.; Tananbaum, Harvey; Vhiklinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the high energy universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing most, if not all, areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission now named the X-ray Surveyor. This concept study starts with a baseline payload consisting of a high resolution X-ray telescope and an instrument set which may include an X-ray calorimeter, a wide-field imager and a dispersive grating spectrometer and readout. The telescope would consist of highly nested thin shells, for which a number of technical approaches are currently under development, including adjustable X-ray optics, differential deposition, and modern polishing techniques applied to a variety of substrates. In many areas, the mission requirements would be no more stringent than those of Chandra, and the study takes advantage of similar studies for other large area missions carried out over the past two decades. Initial assessments indicate that such an X-ray mission is scientifically compelling, technically feasible, and worthy of a high prioritization by the next American National Academy of Sciences Decadal Survey for Astronomy and Astrophysics.

  12. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  13. Low Energy X-Ray Diagnostics - 1981.

    DTIC Science & Technology

    1981-01-01

    RESOLUTION TEST CHART NATIONAl RJRAL AU M ’IAN[I)ARDS I ,* A Focusing, Filtering, and Scattering of V. Rehn Soft X-Rays by Mirrors 162 Synthetic... Mirrors Synthetic Multilayers as Bragg Diffractors for J.H. Underwood and T.W. Barbee, Jr. 170 X-Rays and Extreme Ultraviolet: Calculations of...Stradling, T.W. Barbee, Interference Mirrors to Investigate Energy Jr., B.L. Henke, E.M. Campbell Transport in Laser Plasma Applications and W.C. Mead

  14. Soft x-ray holographic microscopy

    SciTech Connect

    Stickler, Daniel; Froemter, Robert; Stillrich, Holger; Menk, Christian; Oepen, Hans Peter; Tieg, Carsten; Streit-Nierobisch, Simone; Sprung, Michael; Gutt, Christian; Stadler, Lorenz-M.; Leupold, Olaf; Gruebel, Gerhard

    2010-01-25

    We present a new x-ray microscopy technique based on Fourier transform holography (FTH), where the sample is separate from the optics part of the setup. The sample can be shifted with respect to the holography optics, thus large-scale or randomly distributed objects become accessible. As this extends FTH into a true microscopy technique, we call it x-ray holographic microscopy (XHM). FTH allows nanoscale imaging without the need for nanometer-size beams. Simple Fourier transform yields an unambiguous image reconstruction. We demonstrate XHM by studying the magnetic domain evolution of a Co/Pt multilayer film as function of locally varied iron overlayer thickness.

  15. Tantalum/Copper X-Ray Targets

    NASA Technical Reports Server (NTRS)

    Waters, William J.; Edmonds, Brian

    1993-01-01

    Lewis Research Center developed unique solution to subsidiary problem of fabrication of x-ray target. Plasma spraying enabled fabrication of lightweight, high-performance targets. Power settings, atmosphere-control settings, rate of deposition, and other spraying parameters developed. Thin coats of tantalum successfully deposited on copper targets. Targets performed successfully in tests and satisfied all criteria expressed in terms of critical parameters. Significantly reduces projected costs of fabrication of targets and contributes to development of improved, long-lived, lightweight x-ray system.

  16. X-ray spectrum of Kepler's SNR

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; White, N. E.

    1980-01-01

    Observations made with the solid state spectrometer aboard the Einstein Observatory confirm Kepler's SNR as an X-ray source with an intensity between 1-3 KeV of 7.2 x 10 to the-11th power ergs/sq cm-s. The X-ray spectrum is similar to those of Cas A and Tycho, with strong line emission from the helium-like species of Si, S, and Ar. Direct comparisons to Tycho's SNR suggest a distance of Kepler's SNR of greater than or equal to 5 kpc.

  17. X-Ray Transition Energies Database

    National Institute of Standards and Technology Data Gateway

    SRD 128 X-Ray Transition Energies Database (Web, free access)   This X-ray transition table provides the energies and wavelengths for the K and L transitions connecting energy levels having principal quantum numbers n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100, fermium. There are two unique features of this data base: (1) a serious attempt to have all experimental values on a scale consistent with the International System of measurement (the SI) and (2) inclusion of accurate theoretical estimates for all transitions.

  18. Crystals for astronomical X-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Burek, A.

    1976-01-01

    Crystal spectrometric properties and the factors that affect their measurement are discussed. Theoretical and experimental results on KAP are summarized and theoretical results based on the dynamical theory of X-ray diffraction are given for the acid phthalates as well as for the commonly used planes of ADP, PET and EDDT. Anomalous dispersion is found to be important for understanding the details of crystal Bragg reflection properties at long X-ray wavelengths and some important effects are pointed out. The theory of anomalous dispersion is applied to explain the anomalous reflectivity exhibited by KAP at 23.3 A.

  19. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  20. X-ray-induced water vaporization

    SciTech Connect

    Weon, B. M.; Lee, J. S.; Je, J. H.; Fezzaa, K.

    2011-09-15

    We present quantitative evidence for x-ray-induced water vaporization: water is vaporized at a rate of 5.5 pL/s with the 1-A-wavelength x-ray irradiation of {approx}0.1 photons per A{sup 2}; moreover, water vapor is reversibly condensed during pauses in irradiation. This result fundamentally suggests that photoionization induces vaporization. This phenomenon is attributed to surface-tension reduction by ionization and would be universally important in radiological and electrohydrodynamic situations.

  1. Picosecond x-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  2. X-Ray Microdiffraction at Megabar Pressures

    NASA Astrophysics Data System (ADS)

    Mao, H.

    2003-12-01

    High-pressure x-ray diffraction (XRD) provides unique, important sources of structural information of minerals in the Earth's deep interior, but encounters major limitations. The restriction to forward diffraction geometry (2θ less than 90° ) severely limits the accuracy. With the 50-5 μ m size x-ray beam typically used to probe samples at 30-200 GPa, the number of crystals covered by the x-ray beam is often too few for good polycrystalline XRD, but too numerous for single-crystal XRD. Single-crystal XRD method with monochromatic x-ray source and 2-d detector works satisfactorily for crystal size larger than 20 μ m, but when the crystal is significantly less than 5 μ m, the sample signals are often overwhelmed by the background. Energy dispersive XRD with polychromatic x-radiation has been used successfully to determine unit-cell parameters of smaller single crystals, but the intensity information is unusable for structural refinement because this method requires rotation of the small crystal relative to the small x-ray beam. Recent integration of panoramic diamond anvil cell1 (PDAC) with synchrotron x-ray microdiffraction2 (XRMD) method has finally overcome these limitations and can potentially revolutionize the high-pressure XRD field. This XRMD method focuses polychromatic x-radiation to submicrometer size to resolve very small single crystals, and collects Laue spots with a 2-d CCD detector. The PDAC allows complete forward, 90° , and back scatterings, while the background signal is minimized by directing the incident x-ray beam through single-crystal diamonds (i.e., avoiding the beryllium seats and gasket). The incident beam can be changed to monochromatic, tuned through the full energy (wavelength) range, and focused to the identical submicrometer spot for d-spacing determination of each Laue spot. All polychromatic Laue spots are collected simultaneously from the same x-ray sampled volume, thus reliable for structure determination. The development

  3. Hard X-ray Laue monochromator

    NASA Astrophysics Data System (ADS)

    Kocharyan, V. R.; Gogolev, A. S.; Kiziridi, A. A.; Batranin, A. V.; Muradyan, T. R.

    2016-06-01

    Experimental studies of X-ray diffraction from reflecting atomic planes (10¯11) of X-cut quartz single crystal in Laue geometry influenced by the temperature gradient were carried out. It is shown that by using the temperature gradient it is possible to reflect a hard X- ray beam with photon energy near the 100 keV with high efficiency. It has been experimentally proved that the intensity of the reflected beam can be increased by more than order depending on the value of the temperature gradient.

  4. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  5. Cosmic X-ray background and solitars.

    NASA Astrophysics Data System (ADS)

    Chiu, H.-Y.

    In this paper the authors has examined the observational consequences of a class of new astronomical objects proposed by Friedberg, Lee and Pang, called solitars which are degenerate vacuum states embedded with particles. A study is made to include finite temperature effect and pair creation. Quark is believed to be the only species that can exist in the interior of solitars. Massive quark solitars are primarily X-ray emitters and may account for the large unexplained thermal component of the cosmic X-ray background.

  6. European X-ray observatory satellite (Exosat)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Initially planned to be launched on the Ariane L6, the 510 kilogram European X-Ray Observatory Satellite (EXOSAT) is to be placed into orbit from Space Launch Complex 2 West by NASA's Delta 3914 launch vehicle. Objectives of the mission are to study the precise position, structure, and temporal and spectral characteristics of known X-ray sources as well as search for new sources. The spacecraft is described as well as its payload, principal subsystems, and the stages of the Delta 3914. The flight sequence of events, land launch operations are discussed. The ESA management structure for EXOSAT, the NASA/industry team, and contractors are listed.

  7. Radiobiological studies using gamma and x rays.

    SciTech Connect

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  8. Super Rover's X-Ray Vision

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Located on the arm of the Mars Exploration Rover Spirit, the alpha particle X-ray spectrometer uses alpha particles and X-rays to determine the chemical make up of martian rocks and soils. This type of information helps scientists understand how the planet's crust was weathered and formed. Mars Exploration Rover team members used this palm-sized instrument on a small patch of martian soil just after Spirit rolled off the Columbia Memorial Station. They found that although the soil was very similar to what they had seen previously on Mars, the instrument's improved sensitivity allowed them to see new elements and subtle differences not detected before.

  9. Tokamak Spectroscopy for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.

    2000-01-01

    This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.

  10. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  11. Diffraction enhanced x-ray imaging

    SciTech Connect

    Thomlinson, W.; Zhong, Z.; Chapman, D.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography.

  12. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  13. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  14. Total external reflection of X-rays from solid surfaces

    NASA Astrophysics Data System (ADS)

    Stozharov, V. M.

    2017-01-01

    The reflection of X-rays from solid surfaces is comprehensively studied using the measurements of patterns of total external reflection and X-ray diffraction with the aid of a parabolic mirror. Principles for theoretical processing of X-ray patterns are developed. An inverse dependence of the refractive index of X-ray radiation on the interplanar distances in crystallites is obtained.

  15. Potential Characteristics and Applications of X-Ray Lasers,

    DTIC Science & Technology

    1982-01-01

    X - ray lasers derives from their potential uses. Both radiation physics and materials ...laboratory sources of X - rays , from radioactive materials and X - ray tubes, through storage rings, to plasmas and eventually X - ray lasers, have unique and... ray laser research; (ii) radiation physics; (iii) natrrial_ analysis ; and (iv) materials modification. These categories, whilst broad and

  16. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  17. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  18. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  19. Neonatal magnification radiography using standard-focus x-ray tubes

    SciTech Connect

    Nikesch, W.; Kuntzler, C.M.; Cushing, F.R.

    1983-10-01

    Radiographic examination of the chests of premature newborn infants is complicated by the small size and poor object contrast of the structures to be evaluated. Magnification radiography can improve image quality significantly in this situation. Unfortunately, high-quality magnification radiography requires dedicated microfocus equipment that is not available in most neonatal intensive care units. The use of standard-focus x-ray tubes (up to 1 mm focal spot size) for moderate magnification radiography (1.5 times) by using the anode side of the x-ray field of the standard mobile x-ray unit is proposed. In addition to the cost advantage of using existing standard mobile x-ray equipment, the high tube current allows for short exposure times and long target-film distances. This reduces most motion unsharpness and allows for a large air gap that results in improved image contrast. Although focal spot size at the anode side of the field is smaller in only one dimension, the magnification radiographs are superior to those obtained using the central part of the x-ray beam and superior to standard contact radiographs using the same equipment. Improvement in image quality is due primarily to decreased noise and improved contrast in the magnified image.

  20. X-ray focal spot locating apparatus and method

    DOEpatents

    Gilbert, Hubert W.

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  1. Oil Wearmetal Analysis by X-Ray (OWAX).

    DTIC Science & Technology

    1982-05-01

    radioisotopes and x-ray tubes. 4 X-RAY FLUORESCENCE TECHNIQUE X-Ray Source X-Ray Detector ( Radioisotope or X-ray Tube (Proportional Counter or Solid State...for short analysis times (500 seconds or less), the low sensitivity fcr bulk analyses, and the difficulties in filtering large quantities if oil combine...rapid, temporary deployment of aircraft, as it will provide immediate analysis of wearmetal trends with no special operator training or extensive

  2. Deep learning with non-medical training used for chest pathology identification

    NASA Astrophysics Data System (ADS)

    Bar, Yaniv; Diamant, Idit; Wolf, Lior; Greenspan, Hayit

    2015-03-01

    In this work, we examine the strength of deep learning approaches for pathology detection in chest radiograph data. Convolutional neural networks (CNN) deep architecture classification approaches have gained popularity due to their ability to learn mid and high level image representations. We explore the ability of a CNN to identify different types of pathologies in chest x-ray images. Moreover, since very large training sets are generally not available in the medical domain, we explore the feasibility of using a deep learning approach based on non-medical learning. We tested our algorithm on a dataset of 93 images. We use a CNN that was trained with ImageNet, a well-known large scale nonmedical image database. The best performance was achieved using a combination of features extracted from the CNN and a set of low-level features. We obtained an area under curve (AUC) of 0.93 for Right Pleural Effusion detection, 0.89 for Enlarged heart detection and 0.79 for classification between healthy and abnormal chest x-ray, where all pathologies are combined into one large class. This is a first-of-its-kind experiment that shows that deep learning with large scale non-medical image databases may be sufficient for general medical image recognition tasks.

  3. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  4. Soft x-ray laser microscope

    SciTech Connect

    Suckewer, P.I.

    1990-10-01

    The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

  5. Femtosecond X-ray protein nanocrystallography

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; White, Thomas A.; Aquila, Andrew; Schulz, Joachim; DePonte, Daniel P.; Martin, Andrew V.; Coppola, Nicola; Liang, Mengning; Caleman, Carl; Gumprecht, Lars; Stern, Stephan; Nass, Karol; Fromme, Petra; Hunter, Mark S.; Grotjohann, Ingo; Fromme, Raimund; Kirian, Richard A.; Weierstall, Uwe; Doak, R. Bruce; Schmidt, Kevin E.; Wang, Xiaoyu; Spence, John C. H.; Schlichting, Ilme; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Strüder, Lothar; Ullrich, Joachim; Krasniqi, Faton; Lomb, Lukas; Shoeman, Robert L.; Bott, Mario; Barends, Thomas R. M.; Kuhnel, Kai-Uwe; Schroter, Claus-Dieter; Hartmann, Robert; Holl, Peter; Reich, Christian; Soltau, Heike; Kimmel, Nils; Weidenspointner, Georg; Pietschner, Daniel; Hauser, Günter; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Andritschke, Robert; Boutet, Sébastien; Krzywinski, Jacek; Bostedt, Christoph; Messerschmidt, Marc; Bozek, John D.; Williams, Garth J.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Gorke, Hubert; Hau-Riege, Stefan P.; Frank, Matthias; Maia, Filipe R. N. C.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Holton, James M.; Marchesini, Stefano; Neutze, Richard; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Barthelmess, Miriam; Bajt, Saša; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  6. Mycological Applications of X-Ray Microanalysis

    PubMed Central

    Thibaut, M.; Ansel, M.

    1973-01-01

    In Aspergillus fumigatus, X-ray microanalysis applied in wavelength dispersive spectroscopy enabled us to detect the presence of calcium, potassium, sulfur, phosphorus, and magnesium; and in A. niger we detected the presence of calcium, potassium, chloride, sulfur, phosphorus, sodium, and magnesium. These various elements were identified by their K α lines. Images PMID:4584802

  7. A European X-ray astrophysics mission

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.

    1981-01-01

    Five instruments (Bragg Spectrometer, Large Area Proportional and Scintillation Counter Detectors, Wide Field X-ray Cameras and a Gamma-Ray Burst Monitor) are discussed and estimates of their performance are given. Their scientific aims are summarized and sample observing programmes are discussed.

  8. Femtosecond X-ray protein nanocrystallography.

    PubMed

    Chapman, Henry N; Fromme, Petra; Barty, Anton; White, Thomas A; Kirian, Richard A; Aquila, Andrew; Hunter, Mark S; Schulz, Joachim; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Maia, Filipe R N C; Martin, Andrew V; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D; Hau-Riege, Stefan P; Frank, Matthias; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Williams, Garth J; Hajdu, Janos; Timneanu, Nicusor; Seibert, M Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M; Barends, Thomas R M; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C H

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  9. X-ray emission from red quasars

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1985-01-01

    A dozen red quasars were observed with the Einstein Observatory in order to determine their X-ray properties. The observations show that for all these sources, the infrared-optical continuum is so steep that when extrapolated to higher frequencies, it passes orders of magnitude below the measured X-ray flux. The X-ray emission is better correlated with the radio than with the infrared flux, suggesting a connection between the two. By applying the synchrotron-self-Compton model to the data, it is found that the infrared-optical region has a size of 0.01 pc or more and a magnetic field more than 0.1 G, values considerably different than are found in the radio region. Unlike other quasars, the ionizing continuum is dominated by the X-ray emission. The peculiar line ratios seen in these objects can be understood with a photoionization model, provided that the photon to gas density ratio (ionization parameter) is an order of magnitude less than in typical quasars.

  10. Massively parallel X-ray holography

    SciTech Connect

    Spence, John C.H; Marchesini, Stefano; Boutet, Sebastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Sasa; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, MAlcolm R.; Shaevitz, Joshua W; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-08-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography1,2,3 as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array4 placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter

  11. Multiple wavelength X-ray monochromators

    DOEpatents

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  12. Multiple wavelength X-ray monochromators

    DOEpatents

    Steinmeyer, Peter A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  13. Reconstructing misaligned x-ray CT data

    SciTech Connect

    Divin, C. J.

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  14. X-ray spectroscopy of manganese clusters

    SciTech Connect

    Grush, M.M. |

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  15. AR 1121 Unleases X-ray Flare

    NASA Video Gallery

    Increasingly active sunspot 1121 has unleashed one of the brightest x-ray solar flares in years, an M5.4-class eruption at 15:36 UT on Nov. 6th. This close-up video shows the detail of the flare an...

  16. X-ray generation using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-01

    Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.

  17. X-Ray Diffraction Analysis Program

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.; Naidu, S. V. N.; Houska, C. R.

    1986-01-01

    SOPAD separates overlapping peaks and analyzes derivatives of X-ray diffraction data. SOPAD helps analyst get most information out of available diffraction data. SOPAD uses Marquardt-type nonlinear regression routine to refine initial estimates of individual peak positions, intensities, shapes, and half-widths.

  18. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2016-07-12

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  19. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  20. Femtosecond X-ray protein nanocrystallography

    PubMed Central

    Chapman, Henry N.; Fromme, Petra; Barty, Anton; White, Thomas A.; Kirian, Richard A.; Aquila, Andrew; Hunter, Mark S.; Schulz, Joachim; DePonte, Daniel P.; Weierstall, Uwe; Doak, R. Bruce; Maia, Filipe R. N. C.; Martin, Andrew V.; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L.; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J.; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D.; Hau-Riege, Stefan P.; Frank, Matthias; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Williams, Garth J.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E.; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M.; Barends, Thomas R. M.; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C. H.

    2012-01-01

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1-3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage. PMID:21293373