Sample records for abnormal cholesterol biosynthesis

  1. A new cholesterol biosynthesis and absorption disorder associated with epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration.

    PubMed

    Korematsu, Seigo; Uchiyama, Shin-ichi; Honda, Akira; Izumi, Tatsuro

    2014-06-01

    Cholesterol is one of the main components of human cell membranes and constitutes an essential substance in the central nervous system, endocrine system, and its hormones, including sex hormones. A 19-year-old male patient presented with failure to thrive, psychomotor deterioration, intractable epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration. His serum level of cholesterol was low, ranging from 78.7 to 116.5 mg/dL. The serum concentrations of intermediates in the cholesterol biosynthesis pathway, such as 7-dehydrocholesterol, 8-dehydrocholesterol, desmosterol, lathosterol, and dihydrolanosterol, were not increased. In addition, the levels of the urinary cholesterol biosynthesis marker mevalonic acid, the serum cholesterol absorption markers, campesterol and sitosterol, and the serum cholesterol catabolism marker, 7α-hydroxycholesterol, were all low. A serum biomarker analysis indicated that the patient's basic abnormality differed from that of Smith-Lemli-Opitz syndrome and other known disorders of cholesterol metabolism. Therefore, this individual may have a new metabolic disorder with hypocholesterolemia because of decreased biosynthesis and absorption of cholesterol. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Polyisoprenoid epoxides stimulate the biosynthesis of coenzyme Q and inhibit cholesterol synthesis.

    PubMed

    Bentinger, Magnus; Tekle, Michael; Brismar, Kerstin; Chojnacki, Tadeusz; Swiezewska, Ewa; Dallner, Gustav

    2008-05-23

    In our search for compounds that up-regulate the biosynthesis of coenzyme Q (CoQ), we discovered that irradiation of CoQ with ultraviolet light results in the formation of a number of compounds that influence the synthesis of mevalonate pathway lipids by HepG2 cells. Among the compounds that potently stimulated CoQ synthesis while inhibiting cholesterol synthesis, derivatives of CoQ containing 1-4 epoxide moieties in their polyisoprenoid side chains were identified. Subsequently, chemical epoxidation of all-trans-polyprenols of different lengths revealed that the shorter farnesol and geranylgeraniol derivatives were without effect, whereas the longer derivatives of solanesol enhanced CoQ and markedly reduced cholesterol biosynthesis. In contrast, none of the modified trans-trans-poly-cis-polyprenols exerted noticeable effects. Tocotrienol epoxides were especially potent in our system; those with one epoxide moiety in the side-chain generally up-regulated CoQ biosynthesis by 200-300%, whereas those with two such moieties also decreased cholesterol synthesis by 50-90%. Prolonged treatment of HepG2 cells with tocotrienol epoxides for 26 days elevated their content of CoQ by 30%. In addition, the levels of mRNA encoding enzymes involved in CoQ biosynthesis were also elevated by the tocotrienol epoxides. The site of inhibition of cholesterol synthesis was shown to be oxidosqualene cyclase. In conclusion, epoxide derivatives of certain all-trans-polyisoprenoids cause pronounced stimulation of CoQ synthesis and, in some cases, simultaneous reduction of cholesterol biosynthesis by HepG2 cells.

  3. [Age and characteristics of cholesterol biosynthesis in rat liver under normal conditions and during atherogenic loading].

    PubMed

    Chaialo, P P

    1977-02-01

    Intraperitoneal injection of C14CH3COONa to normal rats aged 6--8 and 28--32 months revealed a slower dynamics of cholesterol biosynthesis in the liver of old rats at the maximum of the tracer incorporation was lower than in the young ones. Atherogenic diet (0.25 g of cholesterol per 100 g of animal weight for a period of 20 days) was accompanied by an increase in the total cholesterol content and depressio of its biosynthesis in the liver, more pronounced in the young rats. Continued cholesterol administration caused further depression of its biosynthesis, most pronounced (in this case) in the old animals.

  4. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol

    PubMed Central

    Wang, Helen H; Portincasa, Piero; de Bari, Ornella; Liu, Kristina J; Garruti, Gabriella; Neuschwander-Tetri, Brent A; Wang, David Q.-H

    2013-01-01

    Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors, and represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the US, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA) has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. Therefore, the development of novel, effective, and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide. PMID:23419155

  5. Plasma non-cholesterol sterols.

    PubMed

    Kuksis, A

    2001-11-23

    Increased levels of plasma sterols other than cholesterol can serve as markers for abnormalities in lipid metabolism associated with clinical disease. Premature atherosclerosis and xanthomatosis occur in two rare lipid storage diseases, Cerebrotendinous xanthomatosis (CTX) and sitosterolemia. In CTX, cholestanol is present in all tissues. In sitosterolemia, dietary campesterol and sitosterol accumulate in plasma and red blood cells. Plasma accumulation of oxo-sterols is associated with inhibition of bile acid synthesis and other abnormalities in plasma lipid metabolism. Inhibition of cholesterol biosynthesis is associated with plasma appearance of precursor sterols. The increases in non-cholesterol sterols, while highly significant, represent only minor changes in plasma sterols, which require capillary gas-liquid chromatography and MS for effective detection, identification and quantification.

  6. Abnormal cholesterol is associated with prefrontal white matter abnormalities among obese adults, a diffusion tensor imaging study

    PubMed Central

    Cohen, Jessica I.; Cazettes, Fanny; Convit, Antonio

    2011-01-01

    The brain is the most cholesterol-rich organ in the body. Although most of the cholesterol in the brain is produced endogenously, some studies suggest that systemic cholesterol may be able to enter the brain. We investigated whether abnormal cholesterol profiles correlated with diffusion-tensor-imaging-based estimates of white matter microstructural integrity of lean and overweight/obese (o/o) adults. Twenty-two lean and 39 obese adults underwent magnetic resonance imaging, kept a 3-day food diary, and had a standardized assessment of fasting blood lipids. The lean group ate less cholesterol rich food than o/o although both groups ate equivalent servings of food per day. Voxelwise correlational analyses controlling for age, diabetes, and white matter hyperintensities, resulted in two significant clusters of negative associations between abnormal cholesterol profile and fractional anisotropy, located in the left and right prefrontal lobes. When the groups were split, the lean subjects showed no associations, whereas the o/o group expanded the association to three significant clusters, still in the frontal lobes. These findings suggest that cholesterol profile abnormalities may explain some of the reductions in white matter microstructural integrity that are reported in obesity. PMID:22163070

  7. Lamin B receptor regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: implications for cholesterol biosynthesis in regulating myelopoiesis.

    PubMed

    Subramanian, Gayathri; Chaudhury, Pulkit; Malu, Krishnakumar; Fowler, Samantha; Manmode, Rahul; Gotur, Deepali; Zwerger, Monika; Ryan, David; Roberti, Rita; Gaines, Peter

    2012-01-01

    Lamin B receptor (LBR) is a bifunctional nuclear membrane protein with N-terminal lamin B and chromatin-binding domains plus a C-terminal sterol Δ(14) reductase domain. LBR expression increases during neutrophil differentiation, and deficient expression disrupts neutrophil nuclear lobulation characteristic of Pelger-Huët anomaly. Thus, LBR plays a critical role in regulating myeloid differentiation, but how the two functional domains of LBR support this role is currently unclear. We previously identified abnormal proliferation and deficient functional maturation of promyelocytes (erythroid, myeloid, and lymphoid [EML]-derived promyelocytes) derived from EML-ic/ic cells, a myeloid model of ichthyosis (ic) bone marrow that lacks Lbr expression. In this study, we provide new evidence that cholesterol biosynthesis is important to myeloid cell growth and is supported by the sterol reductase domain of Lbr. Cholesterol biosynthesis inhibitors caused growth inhibition of EML cells that increased in EML-derived promyelocytes, whereas cells lacking Lbr exhibited complete growth arrest at both stages. Lipid production increased during wild-type neutrophil maturation, but ic/ic cells exhibited deficient levels of lipid and cholesterol production. Ectopic expression of a full-length Lbr in EML-ic/ic cells rescued both nuclear lobulation and growth arrest in cholesterol starvation conditions. Lipid production also was rescued, and a deficient respiratory burst was corrected. Expression of just the C-terminal sterol reductase domain of Lbr in ic/ic cells also improved each of these phenotypes. Our data support the conclusion that the sterol Δ(14) reductase domain of LBR plays a critical role in cholesterol biosynthesis and that this process is essential to both myeloid cell growth and functional maturation.

  8. Phytosterol and cholesterol precursor levels indicate increased cholesterol excretion and biosynthesis in gallstone disease.

    PubMed

    Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco

    2012-05-01

    In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol

  9. Tripterygium regelii decreases the biosynthesis of triacylglycerol and cholesterol in HepG2 cells.

    PubMed

    Kang, Myung-Ji; Kwon, Eun-Bin; Yuk, Heung Joo; Ryu, Hyung Won; Kim, Soo-Yeon; Lee, Mi-Kyeong; Moon, Dong-Oh; Lee, Su Ui; Oh, Sei-Ryang; Lee, Hyun-Sun; Kim, Mun-Ock

    2017-12-01

    In the course of screening to find a plant material decreasing the activity of triacylglycerol and cholesterol, we identified Tripterygium regelii (TR). The methanol extract of TR leaves (TR-LM) was shown to reduce the intracellular lipid contents consisting of triacylglycerol (TG) and cholesterol in HepG2 cells. TR-LM also downregulated the mRNA and protein expression of the lipogenic genes such as SREBP-1 and its target enzymes. Consequently, TR-LM reduced the TG biosynthesis in HepG2 cells. In addition, TR-LM decreased SREBP2 and its target enzyme HMG-CoA reductase, which is involved in cholesterol synthesis. In this study, we evaluated that TR-LM attenuated cellular lipid contents through the suppression of de novo TG and cholesterol biosynthesis in HepG2 cells. All these taken together, TR-LM could be beneficial in regulating lipid metabolism and useful preventing the hyperlipidemia and its complications, in that liver is a crucial tissue for the secretion of serum lipids.

  10. Lamin B receptor (LBR) regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: Implications for cholesterol biosynthesis in regulating myelopoiesis

    PubMed Central

    Subramanian, Gayathri; Chaudhury, Pulkit; Malu, Krishnakumar; Fowler, Samantha; Manmode, Rahul; Gotur, Deepali; Zwerger, Monika; Ryan, David; Roberti, Rita; Gaines, Peter

    2011-01-01

    Lamin B receptor (LBR) is a bifunctional nuclear membrane protein with N-terminal lamin B and chromatin binding domains plus a C-terminal sterol Δ14 reductase domain. LBR expression increases during neutrophil differentiation and deficient expression disrupts neutrophil nuclear lobulation characteristic of Pelger-Huët anomaly. Thus LBR plays a critical role in regulating myeloid differentiation, but how the two functional domains of LBR support this role is currently unclear. We previously identified abnormal proliferation and deficient functional maturation of promyelocytes (EPRO cells) derived from EML-ic/ic cells, a myeloid model of ichthyosis (ic) bone marrow that lacks Lbr expression. Here we provide new evidence that cholesterol biosynthesis is important to myeloid cell growth and is supported by the sterol reductase domain of Lbr. Cholesterol biosynthesis inhibitors caused growth inhibition of EML cells that increased in EPRO cells, whereas cells lacking Lbr exhibited complete growth arrest at both stages. Lipid production increased during wild-type neutrophil maturation, but ic/ic cells exhibited deficient levels of lipid and cholesterol production. Ectopic expression of a full length Lbr in EML-ic/ic cells rescued both nuclear lobulation and growth arrest in cholesterol starvation conditions. Lipid production also was rescued, and a deficient respiratory burst was corrected. Expression of just the C-terminal sterol reductase domain of Lbr in ic/ic cells also improved each of these phenotypes. Our data support the conclusion that the sterol Δ14 reductase domain of LBR plays a critical role in cholesterol biosynthesis, and that this process is essential to both myeloid cell growth and functional maturation. PMID:22140257

  11. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP.

    PubMed

    Zhang, Li; Rajbhandari, Prashant; Priest, Christina; Sandhu, Jaspreet; Wu, Xiaohui; Temel, Ryan; Castrillo, Antonio; de Aguiar Vallim, Thomas Q; Sallam, Tamer; Tontonoz, Peter

    2017-10-25

    Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.

  12. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis.

    PubMed

    Tsushima, Hidetoshi; Tang, Yuning J; Puviindran, Vijitha; Hsu, Shu-Hsuan Claire; Nadesan, Puviindran; Yu, Chunying; Zhang, Hongyuan; Mirando, Anthony J; Hilton, Matthew J; Alman, Benjamin A

    2018-06-13

    During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here we investigated conditional deletion of Scap or Insig1 and Insig2 (inhibits or activates intracellular biosynthesis respectively). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, while mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, while deletion of Insig genes in chondrocytes caused a mild dwarfism and shorting of the hypertrophic zone. In-vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and this data supports pharmacologic modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies. © 2018. Published by The Company of Biologists Ltd.

  13. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  14. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis

    PubMed Central

    Omarova, Saida; Charvet, Casey D.; Reem, Rachel E.; Mast, Natalia; Zheng, Wenchao; Huang, Suber; Peachey, Neal S.; Pikuleva, Irina A.

    2012-01-01

    Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1–/– mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1–/– retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1–/– mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration. PMID:22820291

  15. Genomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis

    PubMed Central

    Takaki, Yoshihiro; Chikaraishi, Yoshito; Ikuta, Tetsuro; Ozawa, Genki; Yoshida, Takao; Ohkouchi, Naohiko; Fujikura, Katsunori

    2017-01-01

    Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analyses, it has been suggested that host Bathymodiolus mussels synthesize cholesterol using a sterol intermediate derived from the methanotrophic endosymbionts. To test this hypothesis, we sequenced the genome of the methanotrophic endosymbiont in Bathymodiolus platifrons. The genome sequence data demonstrated that the endosymbiont potentially generates up to 4,4-dimethyl-cholesta-8,14,24-trienol, a sterol intermediate in cholesterol biosynthesis, from methane. In addition, transcripts for a subset of the enzymes of the biosynthetic pathway to cholesterol downstream from a sterol intermediate derived from methanotroph endosymbionts were detected in our transcriptome data for B. platifrons. These findings suggest that this mussel can de novo synthesize cholesterol from methane in cooperation with the symbionts. By in situ hybridization analyses, we showed that genes associated with cholesterol biosynthesis from both host and endosymbionts were expressed exclusively in the gill epithelial bacteriocytes containing endosymbionts. Thus, cholesterol production is probably localized within these specialized cells of the gill. Considering that the host mussel cannot de novo synthesize cholesterol and depends largely on endosymbionts for nutrition, the capacity of endosymbionts to synthesize sterols may be important in establishing symbiont–host relationships in these chemosynthetic mussels. PMID:28453654

  16. Novel Transcriptional Activities of Vitamin E: Inhibition of Cholesterol Biosynthesis

    PubMed Central

    Valastyan, Scott; Thakur, Varsha; Johnson, Amy; Kumar, Karan; Manor, Danny

    2008-01-01

    Vitamin E is a dietary lipid that is essential for vertebrate health and fertility. The biological activity of vitamin E is thought to reflect its ability to quench oxygen- and carbon- based free radicals, and thus to protect the organism from oxidative damage. However, recent reports suggest that vitamin E may also display other biological activities. Here, to examine possible mechanisms that may underlie such non-classical activities of vitamin E, we investigated the possibility that it functions as a specific modulator of gene expression. We show that treatment of cultured hepatocytes with RRR-α-tocopherol alters the expression of multiple genes and that these effects are distinct from those elicited by another antioxidant. Genes modulated by vitamin E include those that encode key enzymes in the cholesterol biosynthetic pathway. Correspondingly, vitamin E caused a pronounced inhibition of de novo cholesterol biosynthesis. The transcriptional activities of vitamin E were mediated by attenuating the post-translational processing of the transcription factor SREBP-2 that, in turn, led to a decreased transcriptional activity of sterol responsive elements in the promoters of target genes. These observations indicate that vitamin E possesses novel transcriptional activities that affect fundamental biological processes. Cross talk between tocopherol levels and cholesterol status may be an important facet of the biological activities of vitamin E. PMID:18095660

  17. Cholesterol biosynthesis in normocholesterolemic patients after cholesterol removal by plasmapheresis.

    PubMed

    Feillet, C; Cristol, J P; Michel, F; Kanouni, T; Navarro, R; Navarro, M; Monnier, L; Descomps, B

    1997-01-01

    Plasmapheresis and low-density lipoprotein (LDL)-apheresis are recognized procedures for the treatment of hyperlipidemia resistant to diet and lipid-lowering drugs and provide information on cholesterol synthesis in hypercholesterolemic patients. However, cholesterol synthesis after acute cholesterol removal from plasma has never been investigated in normocholesterolemic patients. In this study, cholesterol synthesis was evaluated in three normocholesterolemic patients by determination of plasma lathosterol, lathosterol-to-cholesterol ratio, and plasma mevalonic acid. In a short-term kinetic study, samples were collected before and after plasmapheresis and every 6 hours during 24 hours. In the second part of the study, cholesterol synthesis was evaluated daily for 3 days. In normocholesterolemic patients, cholesterol returns to basal levels in 3 days. However, cholesterol removal did not result in a significant increase in lathosterol-to-cholesterol ratio or in plasma mevalonic acid, despite a slight increase in lathosterol. In contrast, when repeated plasma exchanges induced a dramatic hypocholesterolemia (< 1 mmol/liter), an acute but transient stimulation of cholesterol synthesis was observed (lathosterol/cholesterol ratio and MVA, respectively, increase from 8.2 to 22.3 and from 28 nmol/liter to 98 nmol/liter). This study shows that cholesterol synthesis is not stimulated by plasmapheresis in normocholesterolemic patients but is enhanced in dramatic hypocholesterolemic patients (< 1 mmol/liter).

  18. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    PubMed

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  19. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis

    PubMed Central

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B.

    2009-01-01

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5–E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1–independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis. PMID:19416849

  20. Pitfalls in the detection of cholesterol in Huntington's disease models.

    PubMed

    Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena

    2012-10-11

    Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington's disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it.

  1. Pitfalls in the detection of cholesterol in Huntington’s disease models

    PubMed Central

    Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena

    2012-01-01

    Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington’s disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it PMID:23145355

  2. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice

    PubMed Central

    Karanth, Santhosh; Tran, Vy My; Kuberan, Balagurunathan; Schlegel, Amnon

    2013-01-01

    SUMMARY Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte β-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr), despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs) and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr. PMID:24057001

  3. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  4. Critical time window of neuronal cholesterol synthesis during neurite outgrowth.

    PubMed

    Fünfschilling, Ursula; Jockusch, Wolf J; Sivakumar, Nandhini; Möbius, Wiebke; Corthals, Kristina; Li, Sai; Quintes, Susanne; Kim, Younghoon; Schaap, Iwan A T; Rhee, Jeong-Seop; Nave, Klaus-Armin; Saher, Gesine

    2012-05-30

    Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.

  5. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake

    PubMed Central

    Yang, Muhua; Liu, Weidong; Pellicane, Christina; Sahyoun, Christine; Joseph, Biny K.; Gallo-Ebert, Christina; Donigan, Melissa; Pandya, Devanshi; Giordano, Caroline; Bata, Adam; Nickels, Joseph T.

    2014-01-01

    Dysregulation of cholesterol homeostasis is associated with various metabolic diseases, including atherosclerosis and type 2 diabetes. The sterol response element binding protein (SREBP)-2 transcription factor induces the expression of genes involved in de novo cholesterol biosynthesis and low density lipoprotein (LDL) uptake, thus it plays a crucial role in maintaining cholesterol homeostasis. Here, we found that overexpressing microRNA (miR)-185 in HepG2 cells repressed SREBP-2 expression and protein level. miR-185-directed inhibition caused decreased SREBP-2-dependent gene expression, LDL uptake, and HMG-CoA reductase activity. In addition, we found that miR-185 expression was tightly regulated by SREBP-1c, through its binding to a single sterol response element in the miR-185 promoter. Moreover, we found that miR-185 expression levels were elevated in mice fed a high-fat diet, and this increase correlated with an increase in total cholesterol level and a decrease in SREBP-2 expression and protein. Finally, we found that individuals with high cholesterol had a 5-fold increase in serum miR-185 expression compared with control individuals. Thus, miR-185 controls cholesterol homeostasis through regulating SREBP-2 expression and activity. In turn, SREBP-1c regulates miR-185 expression through a complex cholesterol-responsive feedback loop. Thus, a novel axis regulating cholesterol homeostasis exists that exploits miR-185-dependent regulation of SREBP-2 and requires SREBP-1c for function. PMID:24296663

  6. How cells handle cholesterol.

    PubMed

    Simons, K; Ikonen, E

    2000-12-01

    Cholesterol plays an indispensable role in regulating the properties of cell membranes in mammalian cells. Recent advances suggest that cholesterol exerts many of its actions mainly by maintaining sphingolipid rafts in a functional state. How rafts contribute to cholesterol metabolism and transport in the cell is still an open issue. It has long been known that cellular cholesterol levels are precisely controlled by biosynthesis, efflux from cells, and influx of lipoprotein cholesterol into cells. The regulation of cholesterol homeostasis is now receiving a new focus, and this changed perspective may throw light on diseases caused by cholesterol excess, the prime example being atherosclerosis.

  7. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion

    PubMed Central

    Nguyen, Van T. M.; Barozzi, Iros; Faronato, Monica; Lombardo, Ylenia; Steel, Jennifer H.; Patel, Naina; Darbre, Philippa; Castellano, Leandro; Győrffy, Balázs; Woodley, Laura; Meira, Alba; Patten, Darren K.; Vircillo, Valentina; Periyasamy, Manikandan; Ali, Simak; Frige, Gianmaria; Minucci, Saverio; Coombes, R. Charles; Magnani, Luca

    2015-01-01

    Endocrine therapies target the activation of the oestrogen receptor alpha (ERα) via distinct mechanisms, but it is not clear whether breast cancer cells can adapt to treatment using drug-specific mechanisms. Here we demonstrate that resistance emerges via drug-specific epigenetic reprogramming. Resistant cells display a spectrum of phenotypical changes with invasive phenotypes evolving in lines resistant to the aromatase inhibitor (AI). Orthogonal genomics analysis of reprogrammed regulatory regions identifies individual drug-induced epigenetic states involving large topologically associating domains (TADs) and the activation of super-enhancers. AI-resistant cells activate endogenous cholesterol biosynthesis (CB) through stable epigenetic activation in vitro and in vivo. Mechanistically, CB sparks the constitutive activation of oestrogen receptors alpha (ERα) in AI-resistant cells, partly via the biosynthesis of 27-hydroxycholesterol. By targeting CB using statins, ERα binding is reduced and cell invasion is prevented. Epigenomic-led stratification can predict resistance to AI in a subset of ERα-positive patients. PMID:26610607

  8. Dichlorophenyl piperazines, including a recently-approved atypical antipsychotic, are potent inhibitors of DHCR7, the last enzyme in cholesterol biosynthesis.

    PubMed

    Genaro-Mattos, Thiago C; Tallman, Keri A; Allen, Luke B; Anderson, Allison; Mirnics, Karoly; Korade, Zeljka; Porter, Ned A

    2018-06-15

    While antipsychotic medications provide important relief from debilitating psychotic symptoms, they also have significant adverse side effects, which might have relevant impact on human health. Several research studies, including ours, have shown that commonly used antipsychotics such as haloperidol and aripiprazole affect cholesterol biosynthesis at the conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. This transformation is promoted by the enzyme DHCR7 and its inhibition causes increases in plasma and tissue levels of 7-DHC. The inhibition of this enzymatic step by mutations in the Dhcr7 gene leads to Smith-Lemli-Opitz syndrome, a devastating human condition that can be replicated in rats by small molecule inhibitors of DHCR7. The fact that two compounds, brexpiprazole and cariprazine, that were recently approved by the FDA have substructural elements in common with the DHCR7 inhibitor aripiprazole, prompted us to evaluate the effect of brexpiprazole and cariprazine on cholesterol biosynthesis. We report that cariprazine affects levels of 7-DHC and cholesterol in cell culture incubations at concentrations as low as 5 nM. Furthermore, a common metabolite of cariprazine and aripiprazole, 2,3-(dichlorophenyl) piperazine, inhibits DHCR7 activity at concentrations comparable to those of the potent teratogen AY9944. The cell culture experiments were corroborated in mice in studies showing that treatment with cariprazine elevated 7-DHC in brain and serum. The consequences of sterol inhibition by antipsychotics in the developing nervous system and the safety of their use during pregnancy remains to be established. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine.

    PubMed

    Rong, Shunxing; McDonald, Jeffrey G; Engelking, Luke J

    2017-10-01

    SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model ( Vil-BP2 -/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2 -/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2 -/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. 19q13.12 microdeletion syndrome fibroblasts display abnormal storage of cholesterol and sphingolipids in the endo-lysosomal system.

    PubMed

    Zhao, Kexin; van der Spoel, Aarnoud; Castiglioni, Claudia; Gale, Sarah; Fujiwara, Hideji; Ory, Daniel S; Ridgway, Neale D

    2018-06-01

    Microdeletions in 19q12q13.12 cause a rare and complex haploinsufficiency syndrome characterized by intellectual deficiency, developmental delays, and neurological movement disorders. Variability in the size and interval of the deletions makes it difficult to attribute the complex clinical phenotype of this syndrome to an underlying gene(s). As an alternate approach, we examined the biochemical and metabolic features of fibroblasts from an affected individual to derive clues as to the molecular basis for the syndrome. Immunofluorescence and electron microscopy of affected fibroblasts revealed an abnormal endo-lysosomal compartment that was characterized by rapid accumulation of lysosomotropic dyes, elevated LAMP1 and LAMP2 expression and vacuoles containing membrane whorls, common features of lysosomal lipid storage disorders. The late endosomes-lysosomes (LE/LY) of affected fibroblasts accumulated low-density lipoprotein cholesterol, and displayed reduced cholesterol esterification and increased de novo cholesterol synthesis, indicative of defective cholesterol transport to the endoplasmic reticulum. Affected fibroblasts also had increased ceramide and sphingolipid mass, altered glycosphingolipid species and accumulation of a fluorescent lactosylceramide probe in LE/LY. Autophagosomes also accumulated in affected fibroblasts because of decreased fusion with autolysosomes, a defect associated with other lysosomal storage diseases. Attempts to correct the cholesterol/sphingolipid storage defect in fibroblasts with cyclodextrin, sphingolipid synthesis inhibitors or by altering ion transport were unsuccessful. Our data show that 19q13.12 deletion fibroblasts have abnormal accumulation of cholesterol and sphingolipids in the endo-lysosomal system that compromises organelle function and could be an underlying cause of the clinical features of the syndrome. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice.

    PubMed

    Tsoi, Ho; Chu, Eagle S H; Zhang, Xiang; Sheng, Jianqiu; Nakatsu, Geicho; Ng, Siew C; Chan, Anthony W H; Chan, Francis K L; Sung, Joseph J Y; Yu, Jun

    2017-05-01

    Stool samples from patients with colorectal cancer (CRC) have a higher abundance of Peptostreptococcus anaerobius than stool from individuals without CRC, based on metagenome sequencing. We investigated whether P anaerobius contributes to colon tumor formation in mice and its possible mechanisms of carcinogenesis. We performed quantitative polymerase chain reaction analyses to measure P anaerobius in 112 stool samples and 255 colon biopsies from patients with CRC or advanced adenoma and from healthy individuals (controls) undergoing colonoscopy examination at hospitals in Hong Kong and Beijing. C57BL/6 mice were given broad-spectrum antibiotics, followed by a single dose of azoxymethane, to induce colon tumor formation. Three days later, mice were given P anaerobius or Esherichia coli MG1655 (control bacteria), via gavage, for 6 weeks. Some mice were also given the nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin. Intestine tissues were collected and analyzed histologically. The colon epithelial cell line NCM460 and colon cancer cell lines HT-29 and Caco-2 were exposed to P anaerobius or control bacteria; cells were analyzed by immunoblot, proliferation, and bacterial attachment analyses and compared in gene expression profiling studies. Gene expression was knocked down in these cell lines with small interfering RNAs. P anaerobius was significantly enriched in stool samples from patients with CRC and in biopsies from patients with colorectal adenoma or CRC compared with controls. Mice depleted of bacteria and exposed to azoxymethane and P anaerobius had a higher incidence of intestinal dysplasia (63%) compared with mice not given the bacteria (8.3%; P < .01). P anaerobius mainly colonized the colon compared with the rest of the intestine. Colon cells exposed to P anaerobius had significantly higher levels of proliferation than control cells. We found genes that regulate cholesterol biosynthesis, Toll-like receptor (TLR) signaling, and AMP

  12. Sterol intermediates of cholesterol biosynthesis inhibit hair growth and trigger an innate immune response in cicatricial alopecia.

    PubMed

    Panicker, Sreejith P; Ganguly, Taneeta; Consolo, Mary; Price, Vera; Mirmirani, Paradi; Honda, Kord; Karnik, Pratima

    2012-01-01

    Primary cicatricial alopecia (PCA) is a group of inflammatory hair disorders that cause scarring and permanent hair loss. Previous studies have implicated PPARγ, a transcription factor that integrates lipogenic and inflammatory signals, in the pathogenesis of PCA. However, it is unknown what triggers the inflammatory response in these disorders, whether the inflammation is a primary or secondary event in disease pathogenesis, and whether the inflammatory reaction reflects an autoimmune process. In this paper, we show that the cholesterol biosynthetic pathway is impaired in the skin and hair follicles of PCA patients. Treatment of hair follicle cells with BM15766, a cholesterol biosynthesis inhibitor, or 7-dehydrocholesterol (7-DHC), a sterol precursor, stimulates the expression of pro-inflammatory chemokine genes. Painting of mouse skin with 7-DHC or BM15766 inhibits hair growth, causes follicular plugging and induces the infiltration of inflammatory cells into the interfollicular dermis. Our results demonstrate that cholesterologenic changes within hair follicle cells trigger an innate immune response that is associated with the induction of toll-like receptor (TLR) and interferon (IFN) gene expression, and the recruitment of macrophages that surround the hair follicles and initiate their destruction. These findings reveal a previously unsuspected role for cholesterol precursors in PCA pathogenesis and identify a novel link between sterols and inflammation that may prove transformative in the diagnosis and treatment of these disorders.

  13. Evidence Coupling Increased Hexosamine Biosynthesis Pathway Activity to Membrane Cholesterol Toxicity and Cortical Filamentous Actin Derangement Contributing to Cellular Insulin Resistance†

    PubMed Central

    Bhonagiri, Padma; Pattar, Guruprasad R.; Habegger, Kirk M.; McCarthy, Alicia M.; Tackett, Lixuan

    2011-01-01

    Hyperinsulinemia is known to promote the progression/worsening of insulin resistance. Evidence reveals a hidden cost of hyperinsulinemia on plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure, components critical to the normal operation of the insulin-regulated glucose transport system. Here we delineated whether increased glucose flux through the hexosamine biosynthesis pathway (HBP) causes PIP2/F-actin dysregulation and subsequent insulin resistance. Increased glycosylation events were detected in 3T3-L1 adipocytes cultured under conditions closely resembling physiological hyperinsulinemia (5 nm insulin; 12 h) and in cells in which HBP activity was amplified by 2 mm glucosamine (GlcN). Both the physiological hyperinsulinemia and experimental GlcN challenge induced comparable losses of PIP2 and F-actin. In addition to protecting against the insulin-induced membrane/cytoskeletal abnormality and insulin-resistant state, exogenous PIP2 corrected the GlcN-induced insult on these parameters. Moreover, in accordance with HBP flux directly weakening PIP2/F-actin structure, pharmacological inhibition of the rate-limiting HBP enzyme [glutamine-fructose-6-phosphate amidotransferase (GFAT)] restored PIP2-regulated F-actin structure and insulin responsiveness. Conversely, overexpression of GFAT was associated with a loss of detectable PM PIP2 and insulin sensitivity. Even less invasive challenges with glucose, in the absence of insulin, also led to PIP2/F-actin dysregulation. Mechanistically we found that increased HBP activity increased PM cholesterol, the removal of which normalized PIP2/F-actin levels. Accordingly, these data suggest that glucose transporter-4 functionality, dependent on PIP2 and/or F-actin status, can be critically compromised by inappropriate HBP activity. Furthermore, these data are consistent with the PM cholesterol accrual/toxicity as a mechanistic basis of the HBP-induced defects in PIP2/F

  14. Cholesterol and Women's Health

    MedlinePlus

    ... having a high LDL cholesterol level lead to cardiovascular disease? • Besides abnormal cholesterol, what are other risk factors for cardiovascular disease? • What are some risk factors for cardiovascular disease ...

  15. Biosynthesis of steroidal alkaloids in Solanaceae plants: involvement of an aldehyde intermediate during C-26 amination.

    PubMed

    Ohyama, Kiyoshi; Okawa, Akiko; Moriuchi, Yuka; Fujimoto, Yoshinori

    2013-05-01

    The C-26 amino group of steroidal alkaloids, such as tomatine, is introduced during an early step of their biosynthesis from cholesterol. In the present study, the mechanism of C-26 amination was reinvestigated by administering stable isotope labeled compounds, such as (26,26,26,27,27,27-(2)H6)cholesterol during biosynthesis of tomatine, solanine and solasonine. The chemical compositions of tomatine and solanine so obtained were analyzed by LC-MS after administering the d6-cholesterol to a tomato seedling and a potato shoot, respectively. The resulting spectra indicated that two deuterium atoms were eliminated from C-26 of cholesterol during biosynthesis. Furthermore, administration of (6-(13)C(2)H3)mevalonate in combination with lovastatin to an eggplant seedling, followed by GC-MS analysis of solasodine after TMS derivatization established that two deuterium atoms were eliminated from C-26 of cholesterol during solasonine biosynthesis. These findings are in contrast to an earlier observation that one hydrogen atom was lost from C-26 during tomatidine biosynthesis, and suggest that C-26 nitrogen atom addition involves an aldehyde intermediate. Thus, it is proposed that the C-26 amination reaction that occurs during steroidal alkaloid biosynthesis proceeds by way of a transamination mechanism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A mathematical model of the mevalonate cholesterol biosynthesis pathway.

    PubMed

    Pool, Frances; Currie, Richard; Sweby, Peter K; Salazar, José Domingo; Tindall, Marcus J

    2018-04-14

    We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The fat and protein fractions of freshwater clam ( Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet.

    PubMed

    Chijimatsu, Takeshi; Umeki, Miki; Okuda, Yuji; Yamada, Koji; Oda, Hiroaki; Mochizuki, Satoshi

    2011-02-01

    We investigated whether the fat and protein fractions of freshwater clam (Corbicula fluminea) extract (FCE) could ameliorate hypercholesterolaemia in rats fed a high-cholesterol diet. We also explored the mechanism and the components that exert the hypocholesterolaemic effect of FCE. The doses of the fat and protein fractions were equivalent to those in 30 % FCE. The fat and protein fractions of FCE, two major components of FCE, significantly reduced the serum and hepatic cholesterol levels. The fat fraction more strongly reduced serum cholesterol levels than the same level of total FCE. The excretion of faecal neutral sterols increased in rats fed the total the FCE and the fat fraction of FCE. On the other hand, faecal bile acid levels were greater in rats fed the total FCE and the fat and protein fractions of FCE than in control animals. The hepatic gene expression of ATP-binding cassette transporter G5 and cholesterol 7α-hydroxylase was up-regulated by the administration of the total FCE and both the fat and protein fractions of FCE. These results showed that the fat and protein fractions of FCE had hypocholesterolaemic properties, and that these effects were greater with the fat fraction than with the protein fraction. The present study indicates that FCE exerts its hypocholesterolaemic effects through at least two different mechanisms, including enhanced excretion of neutral sterols and up-regulated biosynthesis of bile acids.

  18. Central Nervous System Demyelination and Remyelination is Independent from Systemic Cholesterol Level in Theiler's Murine Encephalomyelitis.

    PubMed

    Raddatz, Barbara B; Sun, Wenhui; Brogden, Graham; Sun, Yanyong; Kammeyer, Patricia; Kalkuhl, Arno; Colbatzky, Florian; Deschl, Ulrich; Naim, Hassan Y; Baumgärtner, Wolfgang; Ulrich, Reiner

    2016-01-01

    High dietary fat and/or cholesterol intake is a risk factor for multiple diseases and has been debated for multiple sclerosis. However, cholesterol biosynthesis is a key pathway during myelination and disturbances are described in demyelinating diseases. To address the possible interaction of dyslipidemia and demyelination, cholesterol biosynthesis gene expression, composition of the body's major lipid repositories and Paigen diet-induced, systemic hypercholesterolemia were examined in Theiler's murine encephalomyelitis (TME) using histology, immunohistochemistry, serum clinical chemistry, microarrays and high-performance thin layer chromatography. TME-virus (TMEV)-infected mice showed progressive loss of motor performance and demyelinating leukomyelitis. Gene expression associated with cholesterol biosynthesis was overall down-regulated in the spinal cord of TMEV-infected animals. Spinal cord levels of galactocerebroside and sphingomyelin were reduced on day 196 post TMEV infection. Paigen diet induced serum hypercholesterolemia and hepatic lipidosis. However, high dietary fat and cholesterol intake led to no significant differences in clinical course, inflammatory response, astrocytosis, and the amount of demyelination and remyelination in the spinal cord of TMEV-infected animals. The results suggest that down-regulation of cholesterol biosynthesis is a transcriptional marker for demyelination, quantitative loss of myelin-specific lipids, but not cholesterol occurs late in chronic demyelination, and serum hypercholesterolemia exhibited no significant effect on TMEV infection. © 2015 International Society of Neuropathology.

  19. Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) or Enhance (Squalestatin 1) Nonsterol Isoprenoid Levels in Primary Cultured Mouse and Rat Hepatocytes

    PubMed Central

    Rondini, Elizabeth A.; Duniec-Dmuchowski, Zofia; Cukovic, Daniela; Dombkowski, Alan A.

    2016-01-01

    Squalene synthase inhibitors (SSIs), such as squalestatin 1 (SQ1), reduce cholesterol biosynthesis but cause the accumulation of isoprenoids derived from farnesyl pyrophosphate (FPP), which can modulate the activity of nuclear receptors, including the constitutive androstane receptor (CAR), farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs). In comparison, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (e.g., pravastatin) inhibit production of both cholesterol and nonsterol isoprenoids. To characterize the effects of isoprenoids on hepatocellular physiology, microarrays were used to compare orthologous gene expression from primary cultured mouse and rat hepatocytes that were treated with either SQ1 or pravastatin. Compared with controls, 47 orthologs were affected by both inhibitors, 90 were affected only by SQ1, and 51 were unique to pravastatin treatment (P < 0.05, ≥1.5-fold change). When the effects of SQ1 and pravastatin were compared directly, 162 orthologs were found to be differentially coregulated between the two treatments. Genes involved in cholesterol and unsaturated fatty acid biosynthesis were up-regulated by both inhibitors, consistent with cholesterol depletion; however, the extent of induction was greater in rat than in mouse hepatocytes. SQ1 induced several orthologs associated with microsomal, peroxisomal, and mitochondrial fatty acid oxidation and repressed orthologs involved in cell cycle regulation. By comparison, pravastatin repressed the expression of orthologs involved in retinol and xenobiotic metabolism. Several of the metabolic genes altered by isoprenoids were inducible by a PPARα agonist, whereas cytochrome P450 isoform 2B was inducible by activators of CAR. Our findings indicate that SSIs uniquely influence cellular lipid metabolism and cell cycle regulation, probably due to FPP catabolism through the farnesol pathway. PMID:27225895

  20. Cholesterol: a novel regulatory role in myelin formation.

    PubMed

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  1. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity

    PubMed Central

    Pierrot, Nathalie; Tyteca, Donatienne; D'auria, Ludovic; Dewachter, Ilse; Gailly, Philippe; Hendrickx, Aurélie; Tasiaux, Bernadette; Haylani, Laetitia El; Muls, Nathalie; N'Kuli, Francisca; Laquerrière, Annie; Demoulin, Jean-Baptiste; Campion, Dominique; Brion, Jean-Pierre; Courtoy, Pierre J; Kienlen-Campard, Pascal; Octave, Jean-Noël

    2013-01-01

    Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity. PMID:23554170

  2. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease.

    PubMed

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-04-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.

  3. The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: A hypothesis paper

    PubMed Central

    Gillberg, Christopher; Fernell, Elisabeth; Kočovská, Eva; Minnis, Helen; Bourgeron, Thomas; Thompson, Lucy

    2017-01-01

    Based on evidence from the relevant research literature, we present a hypothesis that there may be a link between cholesterol, vitamin D, and steroid hormones which subsequently impacts on the development of at least some of the “autisms” [Coleman & Gillberg]. Our hypothesis, driven by the peer reviewed literature, posits that there may be links between cholesterol metabolism, which we will refer to as “steroid metabolism” and findings of steroid abnormalities of various kinds (cortisol, testosterone, estrogens, progesterone, vitamin D) in autism spectrum disorder (ASD). Further research investigating these potential links is warranted to further our understanding of the biological mechanisms underlying ASD. Autism Res 2017. © 2017 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. Autism Res 2017, 10: 1022–1044. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. PMID:28401679

  4. Plasma cholesterol-lowering and transient liver dysfunction in mice lacking squalene synthase in the liver[S

    PubMed Central

    Nagashima, Shuichi; Yagyu, Hiroaki; Tozawa, Ryuichi; Tazoe, Fumiko; Takahashi, Manabu; Kitamine, Tetsuya; Yamamuro, Daisuke; Sakai, Kent; Sekiya, Motohiro; Okazaki, Hiroaki; Osuga, Jun-ichi; Honda, Akira; Ishibashi, Shun

    2015-01-01

    Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality. PMID:25755092

  5. Is systems pharmacology ready to impact upon therapy development? A study on the cholesterol biosynthesis pathway

    PubMed Central

    Benson, Helen E; Sharman, Joanna L; Mpamhanga, Chido P; Parton, Andrew; Southan, Christopher; Harmar, Anthony J; Ghazal, Peter

    2017-01-01

    Background and Purpose An ever‐growing wealth of information on current drugs and their pharmacological effects is available from online databases. As our understanding of systems biology increases, we have the opportunity to predict, model and quantify how drug combinations can be introduced that outperform conventional single‐drug therapies. Here, we explore the feasibility of such systems pharmacology approaches with an analysis of the mevalonate branch of the cholesterol biosynthesis pathway. Experimental Approach Using open online resources, we assembled a computational model of the mevalonate pathway and compiled a set of inhibitors directed against targets in this pathway. We used computational optimization to identify combination and dose options that show not only maximal efficacy of inhibition on the cholesterol producing branch but also minimal impact on the geranylation branch, known to mediate the side effects of pharmaceutical treatment. Key Results We describe serious impediments to systems pharmacology studies arising from limitations in the data, incomplete coverage and inconsistent reporting. By curating a more complete dataset, we demonstrate the utility of computational optimization for identifying multi‐drug treatments with high efficacy and minimal off‐target effects. Conclusion and Implications We suggest solutions that facilitate systems pharmacology studies, based on the introduction of standards for data capture that increase the power of experimental data. We propose a systems pharmacology workflow for the refinement of data and the generation of future therapeutic hypotheses. PMID:28910500

  6. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    PubMed

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Bacterial Colonization of Host Cells in the Absence of Cholesterol

    PubMed Central

    Gilk, Stacey D.; Cockrell, Diane C.; Luterbach, Courtney; Hansen, Bryan; Knodler, Leigh A.; Ibarra, J. Antonio; Steele-Mortimer, Olivia; Heinzen, Robert A.

    2013-01-01

    Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. PMID:23358892

  8. Retinal and Nonocular Abnormalities in Cyp27a1−/−Cyp46a1−/− Mice with Dysfunctional Metabolism of Cholesterol

    PubMed Central

    Saadane, Aicha; Mast, Natalia; Charvet, Casey D.; Omarova, Saida; Zheng, Wenchao; Huang, Suber S.; Kern, Timothy S.; Peachey, Neal S.; Pikuleva, Irina A.

    2015-01-01

    Cholesterol elimination from nonhepatic cells involves metabolism to side-chain oxysterols, which serve as transport forms of cholesterol and bioactive molecules modulating a variety of cellular processes. Cholesterol metabolism is tissue specific, and its significance has not yet been established for the retina, where cytochromes P450 (CYP27A1 and CYP46A1) are the major cholesterol-metabolizing enzymes. We generated Cyp27a1−/−Cyp46a1−/− mice, which were lean and had normal serum cholesterol and glucose levels. These animals, however, had changes in the retinal vasculature, retina, and several nonocular organs (lungs, liver, and spleen). Changes in the retinal vasculature included structural abnormalities (retinal-choroidal anastomoses, arteriovenous shunts, increased permeability, dilation, nonperfusion, and capillary degeneration) and cholesterol deposition and oxidation in the vascular wall, which also exhibited increased adhesion of leukocytes and activation of the complement pathway. Changes in the retina included increased content of cholesterol and its metabolite, cholestanol, which were focally deposited at the apical and basal sides of the retinal pigment epithelium. Retinal macrophages of Cyp27a1−/−Cyp46a1−/− mice were activated, and oxidative stress was noted in their photoreceptor inner segments. Our findings demonstrate the importance of retinal cholesterol metabolism for maintenance of the normal retina, and suggest new targets for diseases affecting the retinal vasculature. PMID:25065682

  9. Adaptation of retrovirus producer cells to serum deprivation: Implications in lipid biosynthesis and vector production.

    PubMed

    Rodrigues, A F; Amaral, A I; Veríssimo, V; Alves, P M; Coroadinha, A S

    2012-05-01

    The manufacture of enveloped virus, particularly retroviral (RV) and lentiviral (LV) vectors, faces the challenge of low titers that are aggravated under serum deprivation culture conditions. Also, the scarce knowledge on the biochemical pathways related with virus production is still limiting the design of rational strategies for improved production yields. This work describes the adaptation to serum deprivation of two human RV packaging cell lines, 293 FLEX and Te Fly and its effects on lipid biosynthetic pathways and infectious vector production. Total lipid content as well as cellular cholesterol were quantified and lipid biosynthesis was assessed by (13)C-NMR spectroscopy; changes in gene expression of lipid biosynthetic enzymes were also evaluated. The effects of adaptation to serum deprivation in lipid biosynthesis were cell line specific and directly correlated with infectious virus titers: 293 FLEX cells faced severe lipid starvation-up to 50% reduction in total lipid content-along with a 68-fold reduction in infectious vector titers; contrarily, Te Fly cells were able to maintain identical levels of total lipid content by rising de novo lipid biosynthesis, particularly for cholesterol-50-fold increase-with the consequent recovery of infectious vector productivities. Gene expression analysis of lipid biosynthetic enzymes further confirmed cholesterol production pathway to be prominently up-regulated under serum deprivation conditions for Te Fly cells, providing a genotype-phenotype validation for enhanced cholesterol synthesis. These results highlight lipid metabolism dynamics and the ability to activate lipid biosynthesis under serum deprivation as an important feature for high retroviral titers. Mechanisms underlying virus production and its relationship with lipid biosynthesis, with special focus on cholesterol, are discussed as potential targets for cellular metabolic engineering. Copyright © 2011 Wiley Periodicals, Inc.

  10. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  11. Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation.

    PubMed

    Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi

    2016-11-25

    Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation*

    PubMed Central

    Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi

    2016-01-01

    Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. PMID:27756839

  13. Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling

    PubMed Central

    Wasser, Catherine R; Ertunc, Mert; Liu, Xinran; Kavalali, Ege T

    2007-01-01

    Cholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-β-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking. These conditions revealed an augmentation in spontaneous neurotransmission detected electrically and an increase in spontaneous vesicle endocytosis judged by horseradish peroxidase uptake after cholesterol depletion by methyl-β-cyclodextrin. In contrast, responses evoked by action potentials and hypertonicity were severely impaired after the same treatments. The increase in spontaneous vesicle recycling and the decrease in evoked neurotransmission were reversible upon cholesterol addition. Cholesterol removal did not impact on the low level of evoked neurotransmission seen in the absence of synaptic vesicle SNARE protein synaptobrevin-2 whereas the increase in spontaneous fusion remained. These results suggest that synaptic cholesterol balances evoked and spontaneous neurotransmission by hindering spontaneous synaptic vesicle turnover and sustaining evoked exo-endocytosis. PMID:17170046

  14. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  15. Neuronal Dysfunction Associated with Cholesterol Deregulation

    PubMed Central

    Loganes, Claudia; Bilel, Sabrine; Celeghini, Claudio; Tommasini, Alberto

    2018-01-01

    Cholesterol metabolism is crucial for cells and, in particular, its biosynthesis in the central nervous system occurs in situ, and its deregulation involves morphological changes that cause functional variations and trigger programmed cell death. The pathogenesis of rare diseases, such as Mevalonate Kinase Deficiency or Smith–Lemli–Opitz Syndrome, arises due to enzymatic defects in the cholesterol metabolic pathways, resulting in a shortage of downstream products. The most severe clinical manifestations of these diseases appear as neurological defects. Expanding the knowledge of this biological mechanism will be useful for identifying potential targets and preventing neuronal damage. Several studies have demonstrated that deregulation of the cholesterol pathway induces mitochondrial dysfunction as the result of respiratory chain damage. We set out to determine whether mitochondrial damage may be prevented by using protective mitochondria-targeted compounds, such as MitoQ, in a neuronal cell line treated with a statin to induce a biochemical block of the cholesterol pathway. Evidence from the literature suggests that mitochondria play a crucial role in the apoptotic mechanism secondary to blocking the cholesterol pathway. Our study shows that MitoQ, administered as a preventive agent, could counteract the cell damage induced by statins in the early stages, but its protective role fades over time. PMID:29783748

  16. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  17. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  18. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  19. Cholesterol in islet dysfunction and type 2 diabetes

    PubMed Central

    Brunham, Liam R.; Kruit, Janine K.; Verchere, C. Bruce; Hayden, Michael R.

    2008-01-01

    Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic β cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D. PMID:18246189

  20. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells.

    PubMed

    Ma, Yi; Zhou, Yan; Zhu, Yin-Ci; Wang, Si-Qi; Ping, Ping; Chen, Xiang-Feng

    2018-02-01

    In recent years, autophagy was found to regulate lipid metabolism through a process termed lipophagy. Lipophagy modulates the degradation of cholesteryl esters to free cholesterol (FC), which is the substrate of testosterone biosynthesis. However, the role of lipophagy in testosterone production is unknown. To investigate this, primary rat Leydig cells and varicocele rat models were administered to inhibit or promote autophagy, and testosterone, lipid droplets (LDs), total cholesterol (TC), and FC were evaluated. The results demonstrated that inhibiting autophagy in primary rat Leydig cells reduced testosterone production. Further studies demonstrated that inhibiting autophagy increased the number and size of LDs and the level of TC, but decreased the level of FC. Furthermore, hypoxia promoted autophagy in Leydig cells. We found that short-term hypoxia stimulated testosterone secretion; however, the inhibition of autophagy abolished stimulated testosterone release. Hypoxia decreased the number and size of LDs in Leydig cells, but the changes could be largely rescued by blocking autophagy. In experimental varicocele rat models, the administration of autophagy inhibitors substantially reduced serum testosterone. These data demonstrate that autophagy contributes to testosterone biosynthesis at least partially through degrading intracellular LDs/TC. Our observations might reveal an autophagic regulatory mode regarding testosterone biosynthesis. Copyright © 2018 Endocrine Society.

  1. Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder.

    PubMed

    Etain, Bruno; Dumaine, Anne; Bellivier, Frank; Pagan, Cécile; Francelle, Laetitia; Goubran-Botros, Hany; Moreno, Sarah; Deshommes, Jasmine; Moustafa, Khaled; Le Dudal, Katia; Mathieu, Flavie; Henry, Chantal; Kahn, Jean-Pierre; Launay, Jean-Marie; Mühleisen, Thomas W; Cichon, Sven; Bourgeron, Thomas; Leboyer, Marion; Jamain, Stéphane

    2012-09-15

    Patients affected by bipolar disorder (BD) frequently report abnormalities in sleep/wake cycles. In addition, they showed abnormal oscillating melatonin secretion, a key regulator of circadian rhythms and sleep patterns. The acetylserotonin O-methyltransferase (ASMT) is a key enzyme of the melatonin biosynthesis and has recently been associated with psychiatric disorders such as autism spectrum disorders and depression. In this paper, we analysed rare and common variants of ASMT in patients with BD and unaffected control subjects and performed functional analysis of these variants by assaying the ASMT activity in their B-lymphoblastoid cell lines. We sequenced the coding and the regulatory regions of the gene in a discovery sample of 345 patients with BD and 220 controls. We performed an association study on this discovery sample using common variants located in the promoter region and showed that rs4446909 was significantly associated with BD (P= 0.01) and associated with a lower mRNA level (P< 10(-4)) and a lower enzymatic activity (P< 0.05) of ASMT. A replication study and a meta-analysis using 480 independent patients with BD and 672 controls confirmed the significant association between rs4446909 and BD (P= 0.002). These results correlate with the general lower ASMT enzymatic activity observed in patients with BD (P= 0.001) compared with controls. Finally, several deleterious ASMT mutations identified in patients were associated with low ASMT activity (P= 0.01). In this study, we determined how rare and common variations in ASMT might play a role in BD vulnerability and suggest a general role of melatonin as susceptibility factor for BD.

  2. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.

    PubMed

    Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha

    2017-06-30

    Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.

  3. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia.

    PubMed

    Seiki, Stephanie; Frishman, William H

    2009-01-01

    Hypercholesterolemia is a major risk factor for the development of atherosclerotic vascular diseases. The most popular agents for cholesterol reduction are the statin drugs, which are competitive inhibitors of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the primary rate-limiting enzyme in the hepatic biosynthesis of cholesterol. Although relatively safe and effective, the available statins can cause elevations in liver enzymes and myopathy. Squalene synthase is another enzyme that is downstream to HMG-CoA reductase in the cholesterol synthesis pathway and modulates the first committed step of hepatic cholesterol biosynthesis at the final branch point of the cholesterol biosynthetic pathway. Squalene epoxidase and oxidosqualene cyclase are other enzymes that act distally to squalene synthase. Pharmacologic inhibitors of these downstream enzymes have been developed, which may reduce low-density lipoprotein cholesterol and reduce the myopathy side effect seen with upstream inhibition of HMG-CoA. At this juncture, one squalene synthase inhibitor, lapaquistat (TAK-475) is in active clinical trials as a monotherapy, but there have been suggestions of increased hepatotoxicity with the drug.

  4. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  5. High plasma level of remnant-like particle cholesterol in the metabolic syndrome.

    PubMed

    Satoh, Akira; Adachi, Hisashi; Tsuruta, Makoto; Hirai, Yuji; Hiratsuka, Akiko; Enomoto, Mika; Furuki, Kumiko; Hino, Asuka; Takeuchi, Tomohiro; Imaizumi, Tsutomu

    2005-10-01

    The metabolic syndrome is associated with a high incidence of cardiovascular disease even when the abnormalities present in the syndrome are mild. The underlying mechanism of the metabolic syndrome has not been elucidated. We investigated whether a strong atherogenic lipoprotein, remnant-like particle (RLP) lipoprotein cholesterol, is elevated in the metabolic syndrome. We performed a health examination among the residents of a rural community in Japan. Complete datasets, including fasting RLP cholesterol levels, were obtained in 1,261 subjects (509 men and 752 women) without diabetes and who were not taking lipid-lowering drugs. The subjects' medical history, use of alcohol, and smoking habits were ascertained by a questionnaire. All of the components of the metabolic syndrome were significantly related to RLP cholesterol by univariate analysis. Total cholesterol and smoking habits were also positively associated with RLP cholesterol. The subjects with the metabolic syndrome showed only mild abnormalities of each component. When RLP cholesterol levels were stratified by the number of the components of the metabolic syndrome, there was a strong association between RLP cholesterol levels and the number of components (P < 0.001 and F = 72.7). RLP cholesterol levels are elevated in the metabolic syndrome, and this elevation may underlie the high incidence of cardiovascular disease in the metabolic syndrome.

  6. The Endoplasmic Reticulum Coat Protein II Transport Machinery Coordinates Cellular Lipid Secretion and Cholesterol Biosynthesis*

    PubMed Central

    Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.

    2014-01-01

    Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions. PMID:24338480

  7. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    PubMed

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  8. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  9. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  10. Detection of erythrocyte membrane structural abnormalities in lecithin: cholesterol acyltransferase deficiency using a spin label approach.

    PubMed

    Maraviglia, B; Herring, F G; Weeks, G; Godin, D V

    1979-01-01

    The membrane fluidity of erythrocytes from patients with Lecithin: cholesterol acyltransferase (LCAT) deficiency was studied by means of electron spin resonance. The temperature dependence of the separation of the outer extrema of the spectra of 2-(3-carboxy-propyl)-4,4-dimethyl, 2-tridecyl-3-oxazolidinyloxyl spin probe was monitored for normal, presumed carrier and clinically affected subjects. The temperature profile of controls was significantly different from that of the presumed carriers and the clinically affected individuals. The results show that the compositional abnormalities previously noted in erythrocyte membranes from patients with LCAT deficiency are associated with alterations in the physiocochemical state of the membrane. An investigation of the spectral lineshapes below 10 degrees C allowed a distinction to be made at the membrane level between clinically affected subjects and clinically normal heterozygous carriers. Alterations in the temperature dependence of elec-ron spin resonance parameters may provide a sensitive index of red cell membrane alterations in pathological states of generalized membrane involvement.

  11. Profiling and Imaging Ion Mobility-Mass Spectrometry Analysis of Cholesterol and 7-Dehydrocholesterol in Cells Via Sputtered Silver MALDI

    PubMed Central

    Xu, Libin; Kliman, Michal; Forsythe, Jay G.; Korade, Zeljka; Hmelo, Anthony B.; Porter, Ned A.; McLean, John A.

    2015-01-01

    Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver matrix-assisted laser desorption/ionization (MALDI)-ion mobility-MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO3 and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10–25 nm) provided the lowest limits-of-detection based on the silver coordinated [cholesterol+Ag]+ and [7-DHC+Ag]+ signals while minimizing dehydrogenation products ([M+Ag-2H]+). When analyzing human fibroblasts that were directly grown on poly-L-lysine-coated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for [7-DHC+107Ag]+) and 495 (specific for [cholesterol+109Ag]+) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro. PMID:25822928

  12. Profiling and Imaging Ion Mobility-Mass Spectrometry Analysis of Cholesterol and 7-Dehydrocholesterol in Cells Via Sputtered Silver MALDI

    NASA Astrophysics Data System (ADS)

    Xu, Libin; Kliman, Michal; Forsythe, Jay G.; Korade, Zeljka; Hmelo, Anthony B.; Porter, Ned A.; McLean, John A.

    2015-06-01

    Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver matrix-assisted laser desorption/ionization (MALDI)-ion mobility-MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO3 and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10-25 nm) provided the lowest limits-of-detection based on the silver coordinated [cholesterol + Ag]+ and [7-DHC + Ag]+ signals while minimizing dehydrogenation products ([M + Ag-2H]+). When analyzing human fibroblasts that were directly grown on poly-L-lysine-coated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for [7-DHC + 107Ag]+) and 495 (specific for [cholesterol + 109Ag]+) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro.

  13. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis

    PubMed Central

    Mercer, Jacob L.; Argus, Joseph P.; Crabtree, Donna M.; Keenan, Melissa M.; Wilks, Moses Q.; Chi, Jen-Tsan Ashley; Bensinger, Steven J.

    2015-01-01

    PICALM (Phosphatidyl Inositol Clathrin Assembly Lymphoid Myeloid protein) is a ubiquitously expressed protein that plays a role in clathrin-mediated endocytosis. PICALM also affects the internalization and trafficking of SNAREs and modulates macroautophagy. Chromosomal translocations that result in the fusion of PICALM to heterologous proteins cause leukemias, and genome-wide association studies have linked PICALM Single Nucleotide Polymorphisms (SNPs) to Alzheimer’s disease. To obtain insight into the biological role of PICALM, we performed gene expression studies of PICALM-deficient and PICALM-expressing cells. Pathway analysis demonstrated that PICALM expression influences the expression of genes that encode proteins involved in cholesterol biosynthesis and lipoprotein uptake. Gas Chromatography-Mass Spectrometry (GC-MS) studies indicated that loss of PICALM increases cellular cholesterol pool size. Isotopic labeling studies revealed that loss of PICALM alters increased net scavenging of cholesterol. Flow cytometry analyses confirmed that internalization of the LDL receptor is enhanced in PICALM-deficient cells as a result of higher levels of LDLR expression. These findings suggest that PICALM is required for cellular cholesterol homeostasis and point to a novel mechanism by which PICALM alterations may contribute to disease. PMID:26075887

  14. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.

    PubMed

    Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar

    2014-12-01

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. © 2014 Scandinavian Plant Physiology Society.

  15. The Regulation of Alfalfa Saponin Extract on Key Genes Involved in Hepatic Cholesterol Metabolism in Hyperlipidemic Rats

    PubMed Central

    Shi, Yinghua; Guo, Rui; Wang, Xianke; Yuan, Dedi; Zhang, Senhao; Wang, Jie; Yan, Xuebing; Wang, Chengzhang

    2014-01-01

    To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE) and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD) rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC) and total bile acids (TBA) levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1) The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group) (P<0.05). (2) Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05). TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05). (3) mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05), as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05). The activities of these enzymes also paralleled the observed changes in mRNA levels. (4) There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1) the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2) the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia. PMID

  16. Evidence That Chromium Modulates Cellular Cholesterol Homeostasis and ABCA1 Functionality Impaired By Hyperinsulinemia

    PubMed Central

    Sealls, Whitney; Penque, Brent A.; Elmendorf, Jeffrey S.

    2011-01-01

    Objective Trivalent chromium (Cr3+) is an essential micronutrient. Findings since the 1950s suggest that Cr3+ might benefit cholesterol homeostasis. Here we present mechanistic evidence in support of this role of Cr3+. Method and Results High-density lipoprotein cholesterol generation in 3T3-L1 adipocytes, rendered ineffective by hyperinsulinemia, known to accompany disorders of lipid metabolism was corrected by Cr3+. Mechanistically, Cr3+ reversed hyperinsulinemia-induced cellular cholesterol accrual and associated defects in cholesterol transporter ABCA1 trafficking and apolipoprotein A1-mediated cholesterol efflux. Moreover, direct activation of AMP-activated protein kinase (AMPK), known to be activated by Cr3+, and/or inhibition of hexosamine biosynthesis pathway (HBP) activity, known to be elevated by hyperinsulinemia, mimics Cr3+ action. Conclusion These findings suggest a mechanism of Cr3+ action that fits with long-standing claims of its role in cholesterol homeostasis. Furthermore, these data implicate a mechanistic basis for the coexistence of dyslipidemia with hyperinsulinemia. PMID:21311039

  17. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection.

    PubMed

    Semini, Geo; Paape, Daniel; Paterou, Athina; Schroeder, Juliane; Barrios-Llerena, Martin; Aebischer, Toni

    2017-08-01

    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Defective cholesterol metabolism in amyotrophic lateral sclerosis[S

    PubMed Central

    Abdel-Khalik, Jonas; Yutuc, Eylan; Crick, Peter J.; Gustafsson, Jan-Åke; Warner, Margaret; Roman, Gustavo; Talbot, Kevin; Gray, Elizabeth; Turner, Martin R.; Wang, Yuqin

    2017-01-01

    As neurons die, cholesterol is released in the central nervous system (CNS); hence, this sterol and its metabolites may represent a biomarker of neurodegeneration, including in amyotrophic lateral sclerosis (ALS), in which altered cholesterol levels have been linked to prognosis. More than 40 different sterols were quantified in serum and cerebrospinal fluid (CSF) from ALS patients and healthy controls. In CSF, the concentration of cholesterol was found to be elevated in ALS samples. When CSF metabolite levels were normalized to cholesterol, the cholesterol metabolite 3β,7α-dihydroxycholest-5-en-26-oic acid, along with its precursor 3β-hydroxycholest-5-en-26-oic acid and product 7α-hydroxy-3-oxocholest-4-en-26-oic acid, were reduced in concentration, whereas metabolites known to be imported from the circulation into the CNS were not found to differ in concentration between groups. Analysis of serum revealed that (25R)26-hydroxycholesterol, the immediate precursor of 3β-hydroxycholest-5-en-26-oic acid, was reduced in concentration in ALS patients compared with controls. We conclude that the acidic branch of bile acid biosynthesis, known to be operative in-part in the brain, is defective in ALS, leading to a failure of the CNS to remove excess cholesterol, which may be toxic to neuronal cells, compounded by a reduction in neuroprotective 3β,7α-dihydroxycholest-5-en-26-oic acid. PMID:27811233

  19. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain.

    PubMed

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G; Guizzetti, Marina

    2014-11-01

    Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  20. ApoB-100 secretion by HepG2 cells is regulated by the rate of triglyceride biosynthesis but not by intracellular lipid pools.

    PubMed

    Benoist, F; Grand-Perret, T

    1996-10-01

    Triglycerides (TGs), cholesteryl esters (CEs), cholesterol, and phosphatidylcholine have been independently proposed as playing regulatory roles in apoB-100 secretion; the results depended on the cellular model used. In this study, we reinvestigate the role of lipids in apoB-100 production in HepG2 cells and in particular, we clarify the respective roles of intracellular mass and the biosynthesis of lipids in the regulation of apoB-100 production. In a first set of experiments, the pool size of cholesterol, CEs, and TGs was modulated by a 3-day treatment with either lipid precursors or inhibitors of enzymes involved in lipid synthesis. We used simvastatin (a hydroxymethylglutaryl coenzyme A reductase inhibitor), 58-035 (an acyl coenzyme A cholesterol acyltransferase inhibitor), 5-tetradecyloxy-2-furancarboxylic acid (TOFA, an inhibitor of fatty acid synthesis), and oleic acid. The secretion rate of apoB-100 was not affected by the large modulation of lipid mass induced by these various pre-treatments. In a second set of experiments, the same lipid modulators were added during a 4-hour labeling period. Simvastatin and 58-035 inhibited cholesterol and CE synthesis without affecting apoB-100 secretion. By contrast, treatment of HepG2 cells with TOFA resulted in the inhibition of TG synthesis and apoB-100 secretion. This effect was highly specific for apoB-100 and was reversed by adding oleic acid, which stimulated both TG synthesis and apoB-100 secretion. Moreover, a combination of oleic acid and 58-035 inhibited CE biosynthesis and increased both TG synthesis and apoB-100 secretion. These results show that in HepG2 cells TG biosynthesis regulates apoB-100 secretion, whereas the rate of cholesterol or CE biosynthesis has no effect.

  1. Depletion of cellular cholesterol interferes with intracellular trafficking of liposome-encapsulated ovalbumin.

    PubMed

    Rao, Mangala; Peachman, Kristina K; Alving, Carl R; Rothwell, Stephen W

    2003-12-01

    Cholesterol is a major constituent of plasma cell membranes and influences the functions of proteins residing in the membrane. To assess the role of cholesterol in phagocytosis and intracellular trafficking of liposomal antigen, macrophages were treated with inhibitors of cholesterol biosynthesis for various time periods and levels of cholesterol depletion were assessed by thin layer chromatography. In control macrophages, cholesterol was present in the plasma membrane and in intracellular stores, as visualised by staining with the cholesterol-binding compound filipin, whereas macrophages treated with cholesterol inhibitors failed to stain with filipin. However, these macrophages were still capable of phagocytosis as evidenced by their internalisation of fluorescent-labelled bacteria and liposome-encapsulated Texas red labelled-ovalbumin, L(TR-OVA). While fluorescent ovalbumin (OVA) was consistently transported to the Golgi in macrophages incubated with L(TR-OVA), in cells treated with cholesterol inhibitors, OVA remained spread diffusely throughout the cytoplasm. Even though the mean fluorescence intensity of MHC class I molecules on cholesterol inhibitor-treated macrophages was equivalent to that of the control macrophages, the amount of MHC class I-liposomal OVA-peptide complex detected on the cell surface of cholesterol inhibitor-treated macrophages, was only 45.6 +/- 7.4% (n = 4, mean +/- SEM) of control levels after intracellular processing of L(OVA). We conclude that cholesterol depletion does not eliminate phagocytosis or MHC class I surface expression, but does affect the trafficking and consequently the MHC class I antigen-processing pathway.

  2. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  3. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  4. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    PubMed

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  5. Alterations in cholesterol and fatty acid biosynthesis in rat liver homogenates by aryloxy acids (Short Communication)

    PubMed Central

    Olson, Robert J.; Trumble, Thomas E.; Gamble, Wilbert

    1974-01-01

    2,4-Dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid inhibited the incorporation of [2-14C]mevalonate into cholesterol and non-saponifiable lipids. Both compounds inhibited the conversion of [1-14C]isopentenyl pyrophosphate into cholesterol and the synthesis of cholesterol and fatty acids from [2-14C]acetate. There was no inhibition of the conversion of [1-14C]mevalonate into CO2. At low concentrations (0.5mm) of the compounds there was a stimulation of acetate incorporation into fatty acids. PMID:4441387

  6. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?

    PubMed

    Gojkovic, Tamara; Vladimirov, Sandra; Spasojevic-Kalimanovska, Vesna; Zeljkovic, Aleksandra; Vekic, Jelena; Kalimanovska-Ostric, Dimitra; Djuricic, Ivana; Sobajic, Sladjana; Jelic-Ivanovic, Zorana

    2017-03-01

    Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization. The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis. In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05). The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.

  7. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    PubMed

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  8. Risk of Late-Onset Alzheimer's Disease by Plasma Cholesterol: Rational In Silico Drug Investigation of Pyrrole-Based HMG-CoA Reductase Inhibitors.

    PubMed

    Shahbazi, Sajad; Kaur, Jagdeep; Kuanar, Ananya; Kar, Dattatreya; Singh, Shikha; Sobti, Ranbir Chander

    Alzheimer's disease (AD), a worldwide renowned progressive neurodegenerative disorder, is the most common cause of dementia. There are several studies on the important role of cholesterol metabolism in AD pathogenesis, which indicated that the high concentrations of serum cholesterol increase the risk of AD. Biosynthesis of the plasma cholesterol and other isoprenoids is catalyzed by 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) through the conversion of HMG-CoA to mevalonic acid in mevalonate pathway. Normally, the high level of plasma cholesterol is downregulated by HGMCR inhibition as the result of degradation of LDL, but in abnormal conditions, for example, high blood glucose, the HMGCR over activated resulting in uncontrolled blood cholesterol. Selective HMGCR inhibitor drugs such as statins, which increase the catabolism of plasma LDL and reduce the plasma concentration of cholesterol, have been investigated as a possible treatment for AD. In the present study, we have identified the binding modes of 22 various derivatives of 3-sulfamoylpyrroles 16, prepared via a [3 + 2] cycloaddition of a münchnone with a sulfonamide-substituted alkyne, by using efficient biocomputational tools. Out of 22, 5 ligands, with code numbers 5b, 5c, 5d, 5i, and 5j, possessed most absorption, distribution, metabolism, and excretion (ADME) and toxicity profiles in acceptable ranges. Among ligands, 5j (sodium (3R,5R)-7-(3-(N,N-dimethylsulfamoyl)-5-(4-fluorophenyl)-2-isopropyl-4-phenyl-1H-pyrrol-1-yl)-3,5-dihydroxyheptanoate) could inhibit HMGCR enzyme in inhibitory binding site with affinity value -12.17 kcal/mol and binding energy -94.10 kcal/mol through 5 hydrogen bonds. It showed the best ADME and toxicity profiling and higher affinity values than other potent candidate and market drugs such as atorvastatin and rosuvastatin. Therefore, it is suggested for further in vivo investigation, the druggability of 5j and its cholesterol regulatory impact on AD.

  9. TSHB mRNA is linked to cholesterol metabolism in adipose tissue.

    PubMed

    Moreno-Navarrete, José María; Moreno, María; Ortega, Francisco; Xifra, Gemma; Hong, Shangyu; Asara, John M; Serrano, José C E; Jové, Mariona; Pissios, Pavlos; Blüher, Matthias; Ricart, Wifredo; Portero-Otin, Manuel; Fernández-Real, José Manuel

    2017-10-01

    Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-β ( TSHB ) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N -stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/β administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue. © FASEB.

  10. Effects of Simvastatin on Cholesterol Metabolism and Alzheimer Disease Biomarkers

    PubMed Central

    Serrano-Pozo, Alberto; Vega, Gloria L.; Lütjohann, Dieter; Locascio, Joseph J.; Tennis, Marsha K.; Deng, Amy; Atri, Alireza; Hyman, Bradley T.; Irizarry, Michael C.; Growdon, John H.

    2013-01-01

    Preclinical and epidemiologic studies suggest a protective effect of statins on Alzheimer disease (AD). Experimental evidence indicates that some statins can cross the blood-brain barrier, alter brain cholesterol metabolism, and may ultimately decrease the production of amyloid-β (Aβ) peptide. Despite these promising leads, clinical trials have yielded inconsistent results regarding the benefits of statin treatment in AD. Seeking to detect a biological signal of statins effect on AD, we conducted a 12-week open-label trial with simvastatin 40 mg/d and then 80 mg/d in 12 patients with AD or amnestic mild cognitive impairment and hypercholesterolemia. We quantified cholesterol precursors and metabolites and AD biomarkers of Aβ and tau in both plasma and cerebrospinal fluid at baseline and after the 12-week treatment period. We found a modest but significant inhibition of brain cholesterol biosynthesis after simvastatin treatment, as indexed by a decrease of cerebrospinal fluid lathosterol and plasma 24S-hydroxycholesterol. Despite this effect, there were no changes in AD biomarkers. Our findings indicate that simvastatin treatment can affect brain cholesterol metabolism within 12 weeks, but did not alter molecular indices of AD pathology during this short-term treatment. PMID:20473136

  11. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.

    PubMed

    Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M

    2015-11-01

    Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.

  12. Characterization of Cholesterol Homeostasis in Telomerase-immortalized Tangier Disease Fibroblasts Reveals Marked Phenotype Variability*

    PubMed Central

    Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael

    2013-01-01

    We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu548:Leu575-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2–3-fold and 3–5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans. PMID:24196952

  13. Characterization of cholesterol homeostasis in telomerase-immortalized Tangier disease fibroblasts reveals marked phenotype variability.

    PubMed

    Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael

    2013-12-27

    We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu(548):Leu(575)-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2-3-fold and 3-5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans.

  14. Roles of lignin biosynthesis and regulatory genes in plant development

    PubMed Central

    Yoon, Jinmi; Choi, Heebak

    2015-01-01

    Abstract Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non‐lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385

  15. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction.

    PubMed

    Saher, Gesine; Quintes, Susanne; Möbius, Wiebke; Wehr, Michael C; Krämer-Albers, Eva-Maria; Brügger, Britta; Nave, Klaus-Armin

    2009-05-13

    Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.

  16. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar)

    PubMed Central

    Leaver, Michael J; Villeneuve, Laure AN; Obach, Alex; Jensen, Linda; Bron, James E; Tocher, Douglas R; Taggart, John B

    2008-01-01

    Background There is an increasing drive to replace fish oil (FO) in finfish aquaculture diets with vegetable oils (VO), driven by the short supply of FO derived from wild fish stocks. However, little is known of the consequences for fish health after such substitution. The effect of dietary VO on hepatic gene expression, lipid composition and growth was determined in Atlantic salmon (Salmo salar), using a combination of cDNA microarray, lipid, and biochemical analysis. FO was replaced with VO, added to diets as rapeseed (RO), soybean (SO) or linseed (LO) oils. Results Dietary VO had no major effect on growth of the fish, but increased the whole fish protein contents and tended to decrease whole fish lipid content, thus increasing the protein:lipid ratio. Expression levels of genes of the highly unsaturated fatty acid (HUFA) and cholesterol biosynthetic pathways were increased in all vegetable oil diets as was SREBP2, a master transcriptional regulator of these pathways. Other genes whose expression was increased by feeding VO included those of NADPH generation, lipid transport, peroxisomal fatty acid oxidation, a marker of intracellular lipid accumulation, and protein and RNA processing. Consistent with these results, HUFA biosynthesis, hepatic β-oxidation activity and enzymic NADPH production were changed by VO, and there was a trend for increased hepatic lipid in LO and SO diets. Tissue cholesterol levels in VO fed fish were the same as animals fed FO, whereas fatty acid composition of the tissues largely reflected those of the diets and was marked by enrichment of 18 carbon fatty acids and reductions in 20 and 22 carbon HUFA. Conclusion This combined gene expression, compositional and metabolic study demonstrates that major lipid metabolic effects occur after replacing FO with VO in salmon diets. These effects are most likely mediated by SREBP2, which responds to reductions in dietary cholesterol. These changes are sufficient to maintain whole body cholesterol

  17. Recent insights into the Smith-Lemli-Opitz syndrome.

    PubMed

    Yu, H; Patel, S B

    2005-11-01

    Recent insights into the Smith-Lemli-Opitz syndrome. The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital anomaly/mental retardation disorder caused by an inborn error of post-squalene cholesterol biosynthesis. Deficient cholesterol synthesis in SLOS is caused by inherited mutations of 3beta-hydroxysterol-Delta7 reductase gene (DHCR7). DHCR7 deficiency impairs both cholesterol and desmosterol production, resulting in elevated 7DHC/8DHC levels, typically decreased cholesterol levels and, importantly, developmental dysmorphology. The discovery of SLOS has led to new questions regarding the role of the cholesterol biosynthesis pathway in human development. To date, a total of 121 different mutations have been identified in over 250 patients with SLOS who represent a continuum of clinical severity. Two genetic mouse models have been generated which recapitulate some of the developmental abnormalities of SLOS and have been useful in elucidating the pathogenesis. This mini review summarizes the recent insights into SLOS genetics, pathophysiology and potential therapeutic approaches for the treatment of SLOS.

  18. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  19. Reduced absorption and enhanced synthesis of cholesterol in patients with cystic fibrosis: a preliminary study of plasma sterols.

    PubMed

    Gelzo, Monica; Sica, Concetta; Elce, Ausilia; Dello Russo, Antonio; Iacotucci, Paola; Carnovale, Vincenzo; Raia, Valeria; Salvatore, Donatello; Corso, Gaetano; Castaldo, Giuseppe

    2016-09-01

    Low cholesterol is typically observed in the plasma of patients with cystic fibrosis (CF) contrasting with the subcellular accumulation of cholesterol demonstrated in CF cells and in mice models. However, the homeostasis of cholesterol has not been well investigated in patients with CF. We studied the plasma of 26 patients with CF and 33 unaffected controls campesterol and β-sitosterol as markers of intestinal absorption and lathosterol as a marker of de novo cholesterol biosynthesis by gas chromatography (GC-FID and GC-MS). Plasma campesterol and β-sitosterol results were significantly (p=0.01) lower while plasma lathosterol was significantly higher (p=0.001) in patients with CF as compared to control subjects. Plasma cholesterol results were significantly lower (p=0.01) in CF patients. Our data suggest that the impaired intestinal absorption of exogenous sterols in patients with CF stimulates the endogenous synthesis of cholesterol, but the levels of total cholesterol in plasma remain lower. This may be due to the CFTR dysfunction that reduces cholesterol blood excretion causing the accumulation of cholesterol in liver cells and in other tissues contributing to trigger CF chronic inflammation.

  20. Cholesterol modulates open probability and desensitization of NMDA receptors

    PubMed Central

    Korinek, Miloslav; Vyklicky, Vojtech; Borovska, Jirina; Lichnerova, Katarina; Kaniakova, Martina; Krausova, Barbora; Krusek, Jan; Balik, Ales; Smejkalova, Tereza; Horak, Martin; Vyklicky, Ladislav

    2015-01-01

    NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs. Key points NMDA receptors (NMDARs) are tetrameric cation channels permeable to calcium; they mediate excitatory synaptic transmission in the CNS and their excessive activation can lead to

  1. Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

    PubMed Central

    Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.

    2012-01-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329

  2. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes,more » is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.« less

  3. Relation of metabolic syndrome with endometrial pathologies in patients with abnormal uterine bleeding.

    PubMed

    Özdemir, Suna; Batmaz, Gonca; Ates, Seda; Celik, Cetin; Incesu, Feyzanur; Peru, Celalettin

    2015-01-01

    We aimed to investigate the association of metabolic syndrome and metabolic risk factors with endometrial hyperplasia and carcinoma among women with abnormal uterine bleeding (AUB). This study included 199 patients who had undergone endometrial curettage due to abnormal uterine bleeding. We divided the patients into two groups according to whether they had an abnormal (n = 53) or normal endometrium (n = 146). Waist circumference, blood pressure, fasting glucose and serum lipid levels were measured and statistically analyzed. The women in each group were matched with regard to mean age, gravidity, parity and menopausal status. We found increased prevalence of metabolic syndrome, diabetes, general and abdominal obesity, hypertension, elevated levels of glucose, total cholesterol and LDL-cholesterol and reduced levels of HDL-cholesterol among women with endometrial carcinoma and hyperplasia. These results were detected particularly in postmenopausal (>50 years) women compared to pre-menopausal cases (<50 years). All metabolic parameters were similar between hyperplasia and cancer groups. Metabolic syndrome and its components have been shown to have profound impacts on initiation and progession of endometrial pathology, particularly during post-menopausal period.

  4. Inhibition of cholesterol absorption and synthesis in rats by sesamin.

    PubMed

    Hirose, N; Inoue, T; Nishihara, K; Sugano, M; Akimoto, K; Shimizu, S; Yamada, H

    1991-04-01

    The effects of sesamin, a lignan from sesame oil, on various aspects of cholesterol metabolism were examined in rats maintained on various dietary regimens. When given at a dietary level of 0.5% for 4 weeks, sesamin reduced the concentration of serum and liver cholesterol significantly irrespective of the presence or absence of cholesterol in the diet, except for one experiment in which the purified diet free of cholesterol was given. On feeding sesamin, there was a decrease in lymphatic absorption of cholesterol accompanying an increase in fecal excretion of neutral, but not acidic, steroids, particularly when the cholesterol-enriched diet was given. Sesamin inhibited micellar solubility of cholesterol, but not bile acids, whereas it neither bound taurocholate nor affected the absorption of fatty acids. Only a marginal proportion (ca. 0.15%) of sesamin administered intragastrically was recovered in the lymph. There was a significant reduction in the activity of liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase after feeding sesamin, although the activity of hepatic cholesterol 7 alpha-hydroxylase, drug metabolizing enzymes, and alcohol dehydrogenase remained uninfluenced. Although the weight and phospholipid concentration of the liver increased unequivocally on feeding sesamin, the histological examination by microscopy showed no abnormality, and the activity of serum GOT and GPT remained unchanged. Since sesamin lowered both serum and liver cholesterol levels by inhibiting absorption and synthesis of cholesterol simultaneously, it deserves further study as a possible hypocholesterolemic agent of natural origin.

  5. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    PubMed

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Prevalence of Abnormal Lipid Profiles and the Relationship With the Development of Microalbuminuria in Adolescents With Type 1 Diabetes

    PubMed Central

    Marcovecchio, M. Loredana; Dalton, R. Neil; Prevost, A. Toby; Acerini, Carlo L.; Barrett, Timothy G.; Cooper, Jason D.; Edge, Julie; Neil, Andrew; Shield, Julian; Widmer, Barry; Todd, John A.; Dunger, David B.

    2009-01-01

    OBJECTIVE To explore the prevalence of lipid abnormalities and their relationship with albumin excretion and microalbuminuria in adolescents with type 1 diabetes. RESEARCH DESIGN AND METHODS The study population comprised 895 young subjects with type 1 diabetes (490 males); median age at the baseline assessment was 14.5 years (range 10–21.1), and median diabetes duration was 4.8 years (0.2–17). A total of 2,194 nonfasting blood samples were collected longitudinally for determination of total cholesterol, LDL cholesterol, HDL cholesterol, TG, and non-HDL cholesterol. Additional annually collected data on anthropometric parameters, A1C, and albumin-to-creatinine ratio (ACR) were available. RESULTS Total cholesterol, LDL cholesterol, HDL cholesterol, and non-HDL cholesterol were higher in females than in males (all P < 0.001). A significant proportion of subjects presented sustained lipid abnormalities during follow-up: total cholesterol >5.2 mmol/l (18.6%), non-HDL cholesterol >3.4 mmol/l (25.9%), TG >1.7 mmol/l (20.1%), and LDL cholesterol >3.4 mmol/l (9.6%). Age and duration were significantly related to all lipid parameters (P < 0.001); A1C was independently related to all parameters (P < 0.001) except HDL cholesterol, whereas BMI SD scores were related to all parameters (P < 0.05) except total cholesterol. Total cholesterol and non-HDL cholesterol were independently related to longitudinal changes in ACR (B coefficient ± SE): 0.03 ± 0.01/1 mmol/l, P = 0.009, and 0.32 ± 0.014/1 mmol/l, P = 0.02, respectively. Overall mean total cholesterol and non-HDL cholesterol were higher in microalbuminuria positive (n = 115) than in normoalbuminuric subjects (n = 780): total cholesterol 4.7 ± 1.2 vs. 4.5 ± 0.8 mmol/l (P = 0.04) and non-HDL cholesterol 3.2 ± 1.2 vs. 2.9 ± 0.8 mmol/l (P = 0.03). CONCLUSIONS In this longitudinal study of adolescents with type 1 diabetes, sustained lipid abnormalities were related to age, duration, BMI, and A1C. Furthermore, ACR was

  7. Fish oil replacement in current aquaculture feed: is cholesterol a hidden treasure for fish nutrition?

    PubMed

    Norambuena, Fernando; Lewis, Michael; Hamid, Noor Khalidah Abdul; Hermon, Karen; Donald, John A; Turchini, Giovanni M

    2013-01-01

    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol; H-Chol) or without (low cholesterol; L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid β-oxidation were recorded, whilst in L-Chol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid β-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid Δ-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations.

  8. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    PubMed Central

    Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen

    2008-01-01

    Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526

  9. Association between blood cholesterol level with periodontal status of coronary heart disease patients

    NASA Astrophysics Data System (ADS)

    Valensia, Rosy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is an abnormal narrowing of heart arteries associated with local accumulation of lipids, in the form of cholesterol and triglycerides. Periodontal disease is a chronic inflammatory that suggests link to the development of CHD. In periodontitis have been reported changes in lipid profile, include increased of cholesterol levels of blood. Objective: to analyse correlation between blood cholesterol level with periodontal status of CHD and non CHD subjects. Methods: Periodontal status and blood cholesterol level of 60 CHD and 40 non CHD subjects was measured. Result: Blood cholesterol level in CHD subjects differs from non CHD subjects (p=0.032). Blood cholesterol level correlates with pocket depth (p=0.003) and clinical attachment loss (CAL) (p=0.000) in CHD subjects. Blood cholesterol level correlates with pocket depth (p=0.010) in non CHD subjects. There is no significant correlation between blood cholesterol level and bleeding on probing (BOP) in CHD subjects. There is no significant correlation between blood cholesterol level with BOP and CAL in non CHD subjects. Conclusion: Blood cholesterol level in control group is higher than CHD patients. Blood cholesterol level positively associated with pocket depth (r=0.375) and CAL (r=0.450) in CHD patients. Blood cholesterol level is positively associated with pocket depth (r=0.404) in control group.

  10. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    PubMed Central

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  11. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar

    2015-01-01

    Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389

  12. A transcriptomic analysis of turmeric: Curcumin represses the expression of cholesterol biosynthetic genes and synergizes with simvastatin.

    PubMed

    Einbond, Linda Saxe; Manservisi, Fabiana; Wu, Hsan-Au; Balick, Michael; Antonetti, Victoria; Vornoli, Andrea; Menghetti, Ilaria; Belpoggi, Fiorella; Redenti, Stephen; Roter, Alan

    2018-06-01

    The spice turmeric (Curcuma longa L.) has a long history of use as an anti-inflammatory agent. The active component curcumin induces a variety of diverse biological effects and forms a series of degradation and metabolic products in vivo. Our hypothesis is that the field of toxicogenomics provides tools that can be used to characterize the mode of action and toxicity of turmeric components and to predict turmeric-drug interactions. Male Sprague-Dawley rats were treated for 4 days with turmeric root containing about 3% curcumin (comparable to what people consume in the fresh or dried root) or a fraction of turmeric enriched for curcumin (∼74%) and liver tissue collected for gene expression analysis. Two doses of each agent were added to the diet, corresponding to 540 and 2700 mg/kg body weight/day of turmeric. The transcriptomic effects of turmeric on rat liver tissue were examined using 3 programs, ToxFx Analysis Suite, in the context of a large drug database, Ingenuity Pathway and NextBio analyses. ToxFx analysis indicates that turmeric containing about 3% or 74% curcumin represses the expression of cholesterol biosynthetic genes. The dose of 400 mg/kg b.w./day curcumin induced the Drug Signature associated with hepatic inflammatory infiltrate. Ingenuity analysis confirmed that all 4 turmeric treatments had a significant effect on cholesterol biosynthesis, specifically the Cholesterol biosynthesis superpathway and Cholesterol biosynthesis 1 and 2. Among the top 10 up or downregulated genes, all 4 treatments downregulated PDK4; while 3 treatments downregulated ANGPTL4 or FASN. These findings suggest curcumin may enhance the anticancer effects of certain classes of statins, which we confirmed with biological assays. Given this enhancement, lower levels of statins may be required, and even be desirable. Our findings also warn of possible safety issues, such as potential inflammatory liver effects, for patients who ingest a combination of certain classes of

  13. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease.

    PubMed

    Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie

    2015-08-01

    Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The effect of cholesterol overload on mouse kidney and kidney-derived cells.

    PubMed

    Honzumi, Shoko; Takeuchi, Miho; Kurihara, Mizuki; Fujiyoshi, Masachika; Uchida, Masashi; Watanabe, Kenta; Suzuki, Takaaki; Ishii, Itsuko

    2018-11-01

    Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (βVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman's capsule decreased and the expression level of megalin decreased. After βVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.

  16. Quantitative Proteomics Analysis of Inborn Errors of Cholesterol Synthesis

    PubMed Central

    Jiang, Xiao-Sheng; Backlund, Peter S.; Wassif, Christopher A.; Yergey, Alfred L.; Porter, Forbes D.

    2010-01-01

    Smith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol. Impaired SC5D activity leads to a similar deficiency of cholesterol but an accumulation of lathosterol. Although the genetic and biochemical causes underlying both syndromes are known, the pathophysiological processes leading to the developmental defects remain unclear. To study the pathophysiological mechanisms underlying SLOS and lathosterolosis neurological symptoms, we performed quantitative proteomics analysis of SLOS and lathosterolosis mouse brain tissue and identified multiple biological pathways affected in Dhcr7Δ3–5/Δ3–5 and Sc5d−/− E18.5 embryos. These include alterations in mevalonate metabolism, apoptosis, glycolysis, oxidative stress, protein biosynthesis, intracellular trafficking, and cytoskeleton. Comparison of proteome alterations in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− brain tissues helps elucidate whether perturbed protein expression was due to decreased cholesterol or a toxic effect of sterol precursors. Validation of the proteomics results confirmed increased expression of isoprenoid and cholesterol synthetic enzymes. This alteration of isoprenoid synthesis may underlie the altered posttranslational modification of Rab7, a small GTPase that is functionally dependent on prenylation with geranylgeranyl, that we identified and validated in this study. These data suggested that although cholesterol synthesis is impaired in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− embryonic brain tissues the synthesis of nonsterol isoprenoids may be increased and thus

  17. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  18. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    PubMed

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  19. Cholesterol

    MedlinePlus

    ... fried and processed foods. Eating these fats can raise your LDL (bad) cholesterol. Lack of physical activity, ... lowers HDL cholesterol, especially in women. It also raises your LDL cholesterol. Genetics may also cause people ...

  20. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.

  1. Metals and cholesterol: two sides of the same coin in Alzheimer’s disease pathology

    PubMed Central

    Wong, Bruce X.; Hung, Ya Hui; Bush, Ashley I.; Duce, James A.

    2014-01-01

    Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed. PMID:24860500

  2. The effect of β-sitosterol on the metabolism of cholesterol and lipids in rats on a diet containing coconut oil

    PubMed Central

    Gerson, T.; Shorland, F. B.; Dunckley, G. G.

    1965-01-01

    1. Intraperitoneal injection of β-sitosterol (5mg./rat/day for 25 days) into 1-year-old male Wistar rats fed on a low-fat diet supplemented with 10% of coconut oil resulted in a lowering of cholesterol and lipid concentrations in the tissues. 2. β-Sitosterol increased the rate of biosynthesis of cholesterol and lipids in the tissues, but to an even greater extent enhanced their oxidative degradation. 3. The present results are similar to those previously obtained on a low-fat diet, indicating that the presence of fat had no marked effect on the action of β-sitosterol. PMID:5891218

  3. [Non-linear canonical correlation analysis between anthropometric indicators and multiple metabolic abnormalities].

    PubMed

    Fu, Xiaoli; Liu, Li; Ping, Zhiguang; Li, Linlin

    2013-09-01

    To define the general correlation between anthropometric indicators and multiple metabolic abnormalities, and to put forward some particular suggestions for the prevention of multiple metabolic abnormalities. A random cluster sampling was carried out in one county of Henan Province. Questionnaire, physical examination and biochemical tests were admitted to the adult inhabitants. Non-linear canonical correlation analysis (NLCCA) was applied with OVERALS of SPSS 13.0. The coefficients of canonical correlation and multiple correlation were calculated. The plot of centroids labeled by variables showed the correlation among various indicators. In total, 2,914 objects were investigated. It included 1,134 (38.9%) males and 1,780 (61.1%) females (60.0%). The average age was (50.58 +/- 13.70) years old. The fitting result of NLCCA were as follows: the loss of 0.577 accounting for 28.8% of the total variation was relatively small, and indicated that the two sets of variables of this study, namely sets of biochemical indicators (including serum total cholesterol, total triglyceride, high-density lipoprotein cholesterol, low density lipoprotein cholesterol and fasting plasma glucose) and sets of others (including gender, BMI and waist circumference) were closely related and often changed synchronously. Multivariate correlation coefficient showed that internal indicators of the above two sets were closely related respectively and often showed the multiple anomalies of the same set. The diagram of the center of gravity of the association of various indicators showed that the symptoms of metabolic abnormalities increased with age. Women were more liable to have metabolic abnormalities. Overweight and obese people often suffer multiple metabolic disorders. Waist circumference was positively correlated with metabolic abnormalities. (1) Biochemical indicators and anthropometric often change in combination. (2) Much attention should be paid to older people especially middle-aged or

  4. Treatment and Prevention of Breast Cancer Using Multifunctional Inhibitors of Cholesterol Biosynthesis

    DTIC Science & Technology

    2015-08-01

    CJ 60 ca N w ~ 40 0 20 0 0.01 0.1 1 10 100 1000 10000 100000 [Antagonist, nM] Figure 3D.  Ator= Atorvastatin 0 20 40 60 80 100...receptor; ICI= ICI 182,780, an antagonist for  estrogen receptor; Ator,  Atorvastatin , a statin used for lowering cholesterol * 0 20 40 60 80 100 120 % L i...inhibitors with atorvastatin in human cancer cells. J Med Chem 55:4990–5002 23. Thoma R, Schulz-Gasch T, D’Arcy B et al (2004) Insight into steroid

  5. Predictors of electrocardiographic abnormalities in type 1 Diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy.

    PubMed

    O'Neal, Wesley T; Lee, Kristine E; Soliman, Elsayed Z; Klein, Ronald; Klein, Barbara E K

    2017-03-01

    To determine the incidence and determinants of developing abnormalities on the 12-lead electrocardiogram (ECG) in persons with type 1 diabetes. We evaluated the distribution of ECG abnormalities and risk factors for developing new abnormalities in 266 (mean age = 44 years ± 9.0; 50 % female) people with type 1 diabetes from the Wisconsin Epidemiologic Study of Diabetic Retinopathy. This analysis included participants with complete ECG data from study visit 5 (2000-2001) and follow-up ECGs from study visit 7 (2012-2014). ECG abnormalities were classified as major and minor according to Minnesota Code Classification. At baseline, 94 (35 %) participants had at least one ECG abnormality, including 13 major ECG abnormalities. At follow-up, 117 (44 %) participants developed at least one new ECG abnormality, including 35 new major ECG abnormalities. In a multivariable logistic regression model, older age (per 5-year increase: OR = 1.31, 95 % CI = 1.08, 1.60) was associated with the development of at least one new ECG abnormality, while serum HDL cholesterol (per 10-unit increase: OR = 0.98, 95 % CI = 0.96, 1.00) was protective against developing new ECG abnormalities. The development of new ECG abnormalities is common in type 1 diabetes. Older age and HDL cholesterol are independent risk factors for developing new ECG abnormalities. Further research is needed to determine whether routine ECG screening is indicated in people with type 1 diabetes to identify those with underlying subclinical coronary heart disease.

  6. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular risk in HIV-infected patients.

    PubMed

    Kotler, Donald P

    2008-09-01

    It has been demonstrated that patients on highly active antiretroviral therapy are at increased risk for developing metabolic abnormalities that include elevated levels of serum triglycerides and low-density lipoprotein cholesterol and reduced levels of high-density lipoprotein cholesterol. This dyslipidemia is similar to that seen in the metabolic syndrome, raising the concern that highly active antiretroviral therapy also potentially increases the risk for cardiovascular complications. This paper reviews the contribution of both HIV infection and the different components of highly active antiretroviral therapy to dyslipidemia and the role of these abnormalities toward increasing the risk of cardiovascular disease in HIV-infected patients; therapeutic strategies to manage these risks are also considered.

  7. Modulation by geraniol of gene expression involved in lipid metabolism leading to a reduction of serum-cholesterol and triglyceride levels.

    PubMed

    Galle, Marianela; Kladniew, Boris Rodenak; Castro, María Agustina; Villegas, Sandra Montero; Lacunza, Ezequiel; Polo, Mónica; de Bravo, Margarita García; Crespo, Rosana

    2015-07-15

    Geraniol (G) is a natural isoprenoid present in the essential oils of several aromatic plants, with various biochemical and pharmacologic properties. Nevertheless, the mechanisms of action of G on cellular metabolism are largely unknown. We propose that G could be a potential agent for the treatment of hyperlipidemia that could contribute to the prevention of cardiovascular disease. The aim of the present study was to advance our understanding of its mechanism of action on cholesterol and TG metabolism. NIH mice received supplemented diets containing 25, 50, and 75 mmol G/kg chow. After a 3-week treatment, serum total-cholesterol and triglyceride levels were measured by commercial kits and lipid biosynthesis determined by the [(14)C] acetate incorporated into fatty acids plus nonsaponifiable and total hepatic lipids of the mice. The activity of the mRNA encoding HMGCR-the rate-limiting step in cholesterol biosynthesis-along with the enzyme levels and catalysis were assessed by real-time RT-PCR, Western blotting, and HMG-CoA-conversion assays, respectively. In-silico analysis of several genes involved in lipid metabolism and regulated by G in cultured cells was also performed. Finally, the mRNA levels encoded by the genes for the low-density-lipoprotein receptor (LDLR), the sterol-regulatory-element-binding transcription factor (SREBF2), the very-low-density-lipoprotein receptor (VLDLR), and the acetyl-CoA carboxylase (ACACA) were determined by real-time RT-PCR. Plasma total-cholesterol and triglyceride levels plus hepatic fatty-acid, total-lipid, and nonsaponifiable-lipid biosynthesis were significantly reduced by feeding with G. Even though an up-regulation of the mRNA encoding HMGCR occurred in the G treated mouse livers, the protein levels and specific activity of the enzyme were both inhibited. G also enhanced the mRNAs encoding the LDL and VLDL receptors and reduced ACACA mRNA, without altering the transcription of the mRNA encoding the SREBF2. The following

  8. What's Cholesterol?

    MedlinePlus

    ... Safe Videos for Educators Search English Español What's Cholesterol? KidsHealth / For Kids / What's Cholesterol? What's in this ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  9. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice.

    PubMed

    Yu, Hongwei; Li, Man; Tint, G Stephen; Chen, Jianliang; Xu, Guorong; Patel, Shailendra B

    2007-04-04

    Targeted disruption of the murine 3beta-hydroxysterol-Delta7-reductase gene (Dhcr7), an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE) promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.

  10. Treatment and Prevention of Breast Cancer Using Multifunctional Inhibitors of Cholesterol Biosynthesis

    DTIC Science & Technology

    2014-06-01

    ICI=ICI 182,780, an anti‐estrogen (antagonist) C Figure 3D.  Ator= Atorvastatin 0 20 40 60 80 100 120 0.01 0.1 1 10 100 1000 10000 100000 % E 2 A c t...receptor; Ator,  Atorvastatin , a statin used for lowering cholesterol * 0 20 40 60 80 100 120 % L i v e c e l l s Figure 5. RO and other compounds...inhibitors with atorvastatin in human cancer cells. J Med Chem 55:4990–5002 23. Thoma R, Schulz-Gasch T, D’Arcy B et al (2004) Insight into steroid

  11. Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid.

    PubMed

    Martin, Laetitia B B; Romero, Paco; Fich, Eric A; Domozych, David S; Rose, Jocelyn K C

    2017-07-01

    The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks.

    PubMed

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.

  13. In Ovo Injection of Betaine Affects Hepatic Cholesterol Metabolism through Epigenetic Gene Regulation in Newly Hatched Chicks

    PubMed Central

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations. PMID:25860502

  14. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    PubMed Central

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  15. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways

    PubMed Central

    Mitsche, Matthew A; McDonald, Jeffrey G; Hobbs, Helen H; Cohen, Jonathan C

    2015-01-01

    Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K–R pathway. Rather, a hybrid pathway was identified that we call the modified K–R (MK–R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK–R pathway. Thus, relative use of the Bloch and MK–R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. DOI: http://dx.doi.org/10.7554/eLife.07999.001 PMID:26114596

  16. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine.

    PubMed

    Panasevich, M R; Meers, G M; Linden, M A; Booth, F W; Perfield, J W; Fritsche, K L; Wankhade, Umesh D; Chintapalli, Sree V; Shankar, K; Ibdah, J A; Rector, R S

    2018-01-01

    Pediatric obesity and nonalcoholic steatohepatitis (NASH) are on the rise in industrialized countries, yet our ability to mechanistically examine this relationship is limited by the lack of a suitable higher animal models. Here, we examined the effects of high-fat, high-fructose corn syrup, high-cholesterol Western-style diet (WD)-induced obesity on NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Juvenile female Ossabaw swine (5 wk old) were fed WD (43.0% fat; 17.8% high-fructose corn syrup; 2% cholesterol) or low-fat diet (CON/lean; 10.5% fat) for 16 wk ( n = 6 each) or 36 wk ( n = 4 each). WD-fed pigs developed obesity, dyslipidemia, and systemic insulin resistance compared with CON pigs. In addition, obese WD-fed pigs developed severe NASH, with hepatic steatosis, hepatocyte ballooning, inflammatory cell infiltration, and fibrosis after 16 wk, with further exacerbation of histological inflammation and fibrosis after 36 wk of WD feeding. WD feeding also resulted in robust cecal microbiota changes including increased relative abundances of families and genera in Proteobacteria ( P < 0.05) (i.e., Enterobacteriaceae, Succinivibrionaceae, and Succinivibrio) and LPS-containing Desulfovibrionaceae and Desulfovibrio and a greater ( P < 0.05) predicted microbial metabolic function for LPS biosynthesis, LPS biosynthesis proteins, and peptidoglycan synthesis compared with CON-fed pigs. Overall, juvenile Ossabaw swine fed a high-fat, high-fructose, high-cholesterol diet develop obesity and severe microbiota dysbiosis with a proinflammatory signature and a NASH phenotype directly relevant to the pediatric/adolescent and young adult population.

  18. What Is Cholesterol?

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cholesterol KidsHealth / For Teens / Cholesterol What's in this article? ... Cholesterol? Print en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  19. A Putative Histone Deacetylase Modulates the Biosynthesis of Pestalotiollide B and Conidiation in Pestalotiopsis microspora.

    PubMed

    Niu, Xueliang; Hao, Xiaoran; Hong, Zhangyong; Chen, Longfei; Yu, Xi; Zhu, Xudong

    2015-05-01

    Fungi of the genus Pestalotiopsis have drawn attention for their capability to produce an array of bioactive secondary metabolites that have potential for drug development. Here, we report the determination of a polyketide derivative compound, pestalotiollide B, in the culture of the saprophytic fungus Pestalotiopsis microspora NK17. Structural information acquired by analyses with a set of spectroscopic and chromatographic techniques suggests that pestalotiollide B has the same skeleton as the penicillide derivatives, dibenzodioxocinones, which are inhibitors of cholesterol ester transfer protein (CETP), and as purpactins A and C', inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Strain NK17 can make a fairly high yield of pestalotiollide B (i.e., up to 7.22 mg/l) in a constitutive manner in liquid culture. Moreover, we found that a putative histone deacetylase gene, designated as hid1, played a role in the biosynthesis of pestalotiollide B. In the hid1 null mutant, the yield of pestalotiollide B increased approximately 2-fold to 15.90 mg/l. In contrast, deletion of gene hid1 led to a dramatic decrease of conidia production of the fungus. These results suggest that hid1 is a modulator, concerting secondary metabolism and development such as conidiation in P. microspora. Our work may help with the investigation into the biosynthesis of pestalotiollide B and the development for new CETP and ACAT inhibitors.

  20. Cholesterol IQ Quiz

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Jul 5,2017 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  1. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis

    PubMed Central

    Li, Xiang; Rhee, David K.; Malhotra, Rajeev; Mayeur, Claire; Hurst, Liam A.; Ager, Emily; Shelton, Georgia; Kramer, Yael; McCulloh, David; Keefe, David; Bloch, Kenneth D.; Bloch, Donald B.; Peterson, Randall T.

    2015-01-01

    Iron homeostasis is tightly regulated by the membrane iron exporter ferroportin and its regulatory peptide hormone hepcidin. The hepcidin/ferroportin axis is considered a promising therapeutic target for the treatment of diseases of iron overload or deficiency. Here, we conducted a chemical screen in zebrafish to identify small molecules that decrease ferroportin protein levels. The chemical screen led to the identification of 3 steroid molecules, epitiostanol, progesterone, and mifepristone, which decrease ferroportin levels by increasing the biosynthesis of hepcidin. These hepcidin-inducing steroids (HISs) did not activate known hepcidin-inducing pathways, including the BMP and JAK/STAT3 pathways. Progesterone receptor membrane component-1 (PGRMC1) was required for HIS-dependent increases in hepcidin biosynthesis, as PGRMC1 depletion in cultured hepatoma cells and zebrafish blocked the ability of HISs to increase hepcidin mRNA levels. Neutralizing antibodies directed against PGRMC1 attenuated the ability of HISs to induce hepcidin gene expression. Inhibiting the kinases of the SRC family, which are downstream of PGRMC1, blocked the ability of HISs to increase hepcidin mRNA levels. Furthermore, HIS treatment increased hepcidin biosynthesis in mice and humans. Together, these data indicate that PGRMC1 regulates hepcidin gene expression through an evolutionarily conserved mechanism. These studies have identified drug candidates and potential therapeutic targets for the treatment of diseases of abnormal iron metabolism. PMID:26657863

  2. Association of Dyslipidemia and Glucose Abnormalities with Antiretroviral Treatment in a Cohort of HIV-infected Latin American Children

    PubMed Central

    Paganella, MP; Cohen, RA; Harris, DR; Kuchenbecker, RS; Sperhacke, RD; Kato, SK; Silva, CLO; Sturzbecher, FT; Oliveira, RHS; Pavía Ruz, N; Hazra, R

    2016-01-01

    Objective(s) To estimate the incidence of lipid and glucose abnormalities and assess their association with exposure to antiretroviral (ARV) regimens among perinatally HIV-infected Latin American children. Design Longitudinal cohort study. Methods Data were analyzed from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) International Site Development Initiative (NISDI) Pediatric Latin American Countries Epidemiologic Study (PLACES). The incidence of dyslipidemia (total cholesterol>200mg/dL, HDL<35mg/dL, LDL≥130mg/dL, triglycerides>110mg/dL [age<10 years] or >150mg/dL [≥10 years]) and fasting glucose abnormalities (homeostasis model assessment of insulin resistance >2.5 [Tanner Stage 1] or >4.0 [Tanner Stage>1]; impaired glucose: 110 to <126mg/dL; diabetes: ≥126 mg/dL) was estimated. Proportional hazards regression was used to evaluate the risk of abnormalities associated with ARV regimen, adjusted for covariates. Results There were 385 children eligible for analysis (mean age 6.6 years). Incident cholesterol abnormalities were reported in 18.1% of participants (95% confidence interval [CI] 14.1–22.8%), HDL and LDL cholesterol abnormalities in 19.6% (15.1–24.7%) and 15.0% (11.3–19.5%), respectively, and triglyceride abnormalities in 44.2% (37.7–50.8%). In multivariable analysis, ARV regimen was only associated with triglyceride abnormalities; participants receiving a protease inhibitor-containing (PI) regimen were 3.6 times as likely to experience a triglyceride abnormality as those receiving no ARVs (95% CI: 1.3–10.5; p=0.0167). The cumulative incidence of insulin resistance was 3.8% (1.8–7.1%); there were no incident cases of diabetes and only two of impaired fasting glucose. Conclusions Children receiving PI-containing regimens were at increased risk of developing triglyceride abnormalities. Continued monitoring of lipid levels in children receiving PI-containing regimens appears warranted. PMID:27570910

  3. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation

    PubMed Central

    Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan

    2012-01-01

    Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784

  4. Impact of Circulating Cholesterol Levels on Growth and Intratumoral Androgen Concentration of Prostate Tumors

    PubMed Central

    Pelton, Kristine; Freeman, Michael R.; Montgomery, R. Bruce

    2012-01-01

    Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of

  5. Cholesterol oversynthesis markers define familial combined hyperlipidemia versus other genetic hypercholesterolemias independently of body weight.

    PubMed

    Baila-Rueda, Lucía; Cenarro, Ana; Lamiquiz-Moneo, Itziar; Perez-Calahorra, Sofía; Bea, Ana M; Marco-Benedí, Victoria; Jarauta, Estíbaliz; Mateo-Gallego, Rocío; Civeira, Fernando

    2018-03-01

    Primary hypercholesterolemia of genetic origin, negative for mutations in LDLR, APOB, PCSK9 and APOE genes (non-FH GH), and familial combined hyperlipidemia (FCHL) are polygenic genetic diseases that occur with hypercholesterolemia, and both share a very high cardiovascular risk. In order to better characterize the metabolic abnormalities associated with these primary hypercholesterolemias, we used noncholesterol sterols, as markers of cholesterol metabolism, to determine their potential differences. Hepatic cholesterol synthesis markers (desmosterol and lanosterol) and intestinal cholesterol absorption markers (sitosterol and campesterol) were determined in non-FH GH (n=200), FCHL (n=100) and genetically defined heterozygous familial hypercholesterolemia subjects (FH) (n=100) and in normolipidemic controls (n=100). FCHL subjects had lower cholesterol absorption and higher cholesterol synthesis than non-FH GH, FH and controls (P<.001). When noncholesterol sterols were adjusted by body mass index (BMI), FCHL subjects had higher cholesterol synthesis than non-FG GH, FH and controls (P<.001). An increase in BMI was accompanied by increased cholesterol synthesis and decreased cholesterol absorption in non-FH GH, FH and controls. However, this association between BMI and cholesterol synthesis was not observed in FCHL. Non-high-density-lipoprotein cholesterol showed a positive correlation with cholesterol synthesis markers similar to that of BMI in non-FH GH, FH and normolipemic controls, but there was no correlation in FCHL. These results suggest that FCHL and non-FH GH have different mechanisms of production. Cholesterol synthesis and absorption are dependent of BMI in non-FH GH, but cholesterol synthesis is increased as a pathogenic mechanism in FCHL independently of age, gender, APOE and BMI. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [The real measurement of non-HDL-cholesterol: Atherogenic cholesterol].

    PubMed

    Millán, Jesús; Hernández-Mijares, Antonio; Ascaso, Juan F; Blasco, Mariano; Brea, Angel; Díaz, Ángel; González-Santos, Pedro; Mantilla, Teresa; Pedro-Botet, Juan; Pintó, Xavier

    Lowe density lipoproteins (LDL) are the causal agent of cardiovascular diseases. In practice, we identify LDL with cholesterol transported in LDL (cLDL). So, cLDL has become the major target for cardiovascular prevention. Howewer, we have progressive evidences about the role of triglycerides rich lipoproteins, particularly those very low density lipoprotein (VLDL) in promotion and progression of atherosclerosis, that leads cholesterol in VLDL and its remanents as a potential therapeutic target. This feature is particularly important and of a great magnitude, in patients with hypertiglyceridemia. We can to considere, that the non-HDL cholesterol -cLDL+cVLDL+c-remmants+Lp(a)- is the real measurement of atherogenic cholesterol. In addition, non-HDL-cholesterol do not show any variations between postprandial states. In fact, non-HDL-cholesterol should be an excellent marker of atherogenic cholesterol, and an major therapeutic target in patients with atherogenic dyslipidaemia. According with different clinical trials and with the epidemiological and mendelian studies, in patients with high cardiovascular risk, optimal level of cLDL will be under 70mg/dl, and under 100 ng/dl for non-HDL-cholesterol; and in high risk patients, 100mg/dl and 130mg/dl, respectively. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  7. LDL-C levels in older people: Cholesterol homeostasis and the free radical theory of ageing converge.

    PubMed

    Mc Auley, Mark T; Mooney, Kathleen M

    2017-07-01

    The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our

  8. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels

    PubMed Central

    Zhang, Kun; Song, Wei; Li, Dalin; Jin, Xing

    2017-01-01

    Hyperlipidemia is a major independent risk factor for atherosclerosis. Seeking natural compounds in medicinal plants capable of reducing blood fat and studying their mechanisms of action has been the focus of research in recent years. The aim of the present study was to analyze the mechanisms of apigenin in regulating cholesterol metabolism and protecting blood vessels, and to provide a theoretical basis for the clinical application of apigenin. The mouse model of hyperlipidemia was established to verify the efficacy of apigenin in improving hyperlipidemia and to observe the mechanism of action of apigenin in reducing cholesterol content. In vitro cell experiments were conducted to evaluate the role of apigenin in mediating reverse cholesterol transport. Additionally, H2O2-injured human umbilical venous endothelial cells (EA.hy926 cells) were used for further study on the roles of apigenin in resisting oxidization and protecting vascular endothelial cells. Apigenin significantly regulated blood fat, reduced animal weight, and reduced total cholesterol (P=0.024), triglyceride (P=0.031) and low-density lipoprotein cholesterol (P=0.014) in the serum of the high-fat diet mice. Apigenin improved the blood lipid metabolism of the hyper-lipidemia model mice. Body weight and serum cholesterol content increased abnormally (P=0.003) as a consequence of high-fat diet. Apigenin increased the activity of superoxide dismutase in EA.hy926 cells (P=0.043) and increased the amount of nitric oxide secreted by the cells (P=0.038). Apigenin also inhibited the proliferation of vascular smooth muscle cells in a dose-dependent manner (P=0.036). In conclusion, apigenin can regulate cholesterol metabolism in vivo and plays a role in reducing the level of blood fat by promoting cholesterol absorption and conversion, and accelerating reverse cholesterol transport. Apigenin also has a role in resisting oxidization and protecting blood vessels. PMID:28565758

  9. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels.

    PubMed

    Zhang, Kun; Song, Wei; Li, Dalin; Jin, Xing

    2017-05-01

    Hyperlipidemia is a major independent risk factor for atherosclerosis. Seeking natural compounds in medicinal plants capable of reducing blood fat and studying their mechanisms of action has been the focus of research in recent years. The aim of the present study was to analyze the mechanisms of apigenin in regulating cholesterol metabolism and protecting blood vessels, and to provide a theoretical basis for the clinical application of apigenin. The mouse model of hyperlipidemia was established to verify the efficacy of apigenin in improving hyperlipidemia and to observe the mechanism of action of apigenin in reducing cholesterol content. In vitro cell experiments were conducted to evaluate the role of apigenin in mediating reverse cholesterol transport. Additionally, H 2 O 2 -injured human umbilical venous endothelial cells (EA.hy926 cells) were used for further study on the roles of apigenin in resisting oxidization and protecting vascular endothelial cells. Apigenin significantly regulated blood fat, reduced animal weight, and reduced total cholesterol (P=0.024), triglyceride (P=0.031) and low-density lipoprotein cholesterol (P=0.014) in the serum of the high-fat diet mice. Apigenin improved the blood lipid metabolism of the hyper-lipidemia model mice. Body weight and serum cholesterol content increased abnormally (P=0.003) as a consequence of high-fat diet. Apigenin increased the activity of superoxide dismutase in EA.hy926 cells (P=0.043) and increased the amount of nitric oxide secreted by the cells (P=0.038). Apigenin also inhibited the proliferation of vascular smooth muscle cells in a dose-dependent manner (P=0.036). In conclusion, apigenin can regulate cholesterol metabolism in vivo and plays a role in reducing the level of blood fat by promoting cholesterol absorption and conversion, and accelerating reverse cholesterol transport. Apigenin also has a role in resisting oxidization and protecting blood vessels.

  10. Recovery of Serum Cholesterol Predicts Survival After Left Ventricular Assist Device Implantation

    PubMed Central

    Vest, Amanda R.; Kennel, Peter J.; Maldonado, Dawn; Young, James B.; Mountis, Maria M.; Naka, Yoshifumi; Colombo, Paolo C.; Mancini, Donna M.; Starling, Randall C.; Schulze, P. Christian

    2017-01-01

    Background Advanced systolic heart failure is associated with myocardial and systemic metabolic abnormalities, including low levels of total cholesterol and low-density lipoprotein. Low cholesterol and low-density lipoprotein have been associated with greater mortality in heart failure. Implantation of a left ventricular assist device (LVAD) reverses some of the metabolic derangements of advanced heart failure. Methods and Results A cohort was retrospectively assembled from 2 high-volume implantation centers, totaling 295 continuous-flow LVAD recipients with ≥2 cholesterol values available. The cohort was predominantly bridge-to-transplantation (67%), with median age of 59 years and 49% ischemic heart failure cause. Total cholesterol, low-density lipoprotein, high-density lipoprotein, and triglyceride levels all significantly increased after LVAD implantation (median values from implantation to 3 months post implantation 125–150 mg/dL, 67–85 mg/dL, 32–42 mg/dL, and 97–126 mg/dL, respectively). On Cox proportional hazards modeling, patients achieving recovery of total cholesterol levels, defined as a median or greater change from pre implantation to 3 months post-LVAD implantation, had significantly better unadjusted survival (hazard ratio, 0.445; 95% confidence interval, 0.212–0.932) and adjusted survival (hazard ratio, 0.241; 95% confidence interval, 0.092–0.628) than those without cholesterol recovery after LVAD implantation. The continuous variable of total cholesterol at 3 months post implantation and the cholesterol increase from pre implantation to 3 months were also both significantly associated with survival during LVAD support. Conclusions Initiation of continuous-flow LVAD support was associated with significant recovery of all 4 lipid variables. Patients with a greater increase in total cholesterol by 3 months post implantation had superior survival during LVAD support. PMID:27623768

  11. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.

    PubMed

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2018-02-01

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.

  12. Accumulation of cholesterol and increased demand for zinc in serum-deprived RPE cells

    PubMed Central

    Mishra, Sanghamitra; Peterson, Katherine; Yin, Lili; Berger, Alan; Fan, Jianguo

    2016-01-01

    Purpose Having observed that confluent ARPE-19 cells (derived from human RPE) survive well in high-glucose serum-free medium (SFM) without further feeding for several days, we investigated the expression profile of RPE cells under the same conditions. Methods Expression profiles were examined with microarray and quantitative PCR (qPCR) analyses, followed by western blot analysis of key regulated proteins. The effects of low-density lipoprotein (LDL) and zinc supplementation were examined with qPCR. Immunofluorescence was used to localize the LDL receptor and to examine LDL uptake. Cellular cholesterol levels were measured with filipin binding. Expression patterns in primary fetal RPE cells were compared using qPCR. Results Microarray analyses of gene expression in ARPE-19, confirmed with qPCR, showed upregulation of lipid and cholesterol biosynthesis pathways in SFM. At the protein level, the cholesterol synthesis control factor SRBEF2 was activated, and other key lipid synthesis proteins increased. Supplementation of SFM with LDL reversed the upregulation of lipid and cholesterol synthesis genes, but not of cholesterol transport genes. The LDL receptor relocated to the plasma membrane, and LDL uptake was activated by day 5–7 in SFM, suggesting increased demand for cholesterol. Confluent ARPE-19 cells in SFM accumulated intracellular cholesterol, compared with cells supplemented with serum, over 7 days. Over the same time course in SFM, the expression of metallothioneins decreased while the major zinc transporter was upregulated, consistent with a parallel increase in demand for zinc. Supplementation with zinc reversed expression changes for metallothionein genes, but not for other zinc-related genes. Similar patterns of regulation were also seen in primary fetal human RPE cells in SFM. Conclusions ARPE-19 cells respond to serum deprivation and starvation with upregulation of the lipid and cholesterol pathways, accumulation of intracellular cholesterol, and

  13. Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid1[OPEN

    PubMed Central

    2017-01-01

    The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced. PMID:28483881

  14. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells

    PubMed Central

    Augustin, Megan M.; Ruzicka, Dan R.; Shukla, Ashutosh K.; Augustin, Jörg M.; Starks, Courtney M.; O’Neil-Johnson, Mark; McKain, Michael R.; Evans, Bradley S.; Barrett, Matt D.; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K.; Edger, Patrick P.; Pires, J. Chris; Leebens-Mack, James H.; Mann, David A.; Kutchan, Toni M.

    2015-01-01

    Summary Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol. PMID:25939370

  15. Incidence of cholesterol in periapical biopsies among adolescent and elderly patients.

    PubMed

    Slutzky-Goldberg, Iris; Baev, Valery; Volkov, Alexander; Zini, Avi; Tsesis, Igor

    2013-12-01

    Cholesterol clefts are common histologic findings in periapical biopsies; they have a reported incidence in periapical periodontitis of up to 44%. Cholesterol crystals are also recognized in advanced atherosclerotic plaques in humans. Male sex, genetic abnormalities, and age have been associated with advanced atherosclerotic lesions. Among these nonmodifiable risk factors, age is the most dominant. The aim of the study was to evaluate if age is also linked to cholesterol deposition in periapical periodontitis. The database of biopsy reports obtained between 2006 and 2009 was searched for specimens diagnosed as radicular cysts or periapical granulomas. Only data relating to biopsies obtained from adolescent (13-21 years old) and elderly (over 60 years old) patients were selected. The biopsies were examined by a pathologist under a light microscope (Zeiss, Jena, Germany) at magnifications of 40×-200×. The available material was scanned for the presence of cholesterol clefts and foamy cells in radicular cysts and granulomas. A total of 41 specimens were collected in the adolescent group and 48 specimens in the elderly group over a 4-year period. A higher incidence of cholesterol was found in the elderly group compared with that in the adolescent group (odds ratio = 6.857). The highly significant incidence of cholesterol deposits in periapical biopsies among elderly patients may be a possible cause for the lack of repair. The mechanism for cholesterol accumulation is probably similar to the process leading to atherosclerosis and coronary artery disease. Statin administration may be advantageous for the treatment of persistent lesions. A clinician should be aware of the risk for persistent lesions after endodontic treatment in elderly patients. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet.

    PubMed

    Strekalova, Tatyana; Evans, Matthew; Costa-Nunes, Joao; Bachurin, Sergey; Yeritsyan, Naira; Couch, Yvonne; Steinbusch, Harry M W; Eleonore Köhler, S; Lesch, Klaus-Peter; Anthony, Daniel C

    2015-08-01

    An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin.

    PubMed

    Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad

    2017-11-06

    Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.

  18. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    PubMed

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  19. Cholesterol:phospholipid ratio is elevated in platelet plasma membrane in patients with hypertension.

    PubMed

    Benjamin, N; Robinson, B F; Graham, J G; Wilson, R B

    1990-06-01

    The cholesterol:phospholipid ratio was measured in platelet plasma membrane, red blood cell (RBC) membranes, low density lipoprotein (LDL) and whole plasma in patients with primary hypertension and in matched normal controls. The cholesterol:phospholipid ratio was raised in the platelet membrane from hypertensive patients compared with that from normal controls (0.65 +/- 0.03 vs 0.53 +/- 0.02: mean +/- SEM; P less than 0.01). The ratio observed in RBC membranes, LDL and whole blood was similar in the two groups. If this abnormality in the lipid composition of platelet plasma membrane is present in other cells it could account for some of the changes in cell membrane function that have been described in hypertension.

  20. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Wang, Yuan; Feng, Jinyan

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. Inmore » addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.« less

  1. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duane, W.C.; Bjoerkhem, I.H.; Hamilton, J.N.

    1988-05-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. In the present study, we have quantitated the relative importance of these two pathways in vivo by measuring production of (14C) acetone from (14C)-26-cholesterol. Four days after intraperitoneal injection of 20 to 40 muCi (14C)-26-cholesterol and 1 day after beginning a constant intravenous infusion of unlabeled acetone at 25 mumolesmore » per kg per min, 6 male and 2 female Sprague-Dawley rats underwent breath collections. Expired acetone was trapped and purified as the 2,4-dinitrophenylhydrazine derivative. 14CO2 was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied times the acetone infusion rate to calculate production of (14C)acetone. (14C) Acetone production averaged 1.7% of total release of 14C from (14C)-26-cholesterol, estimated by 14CO2 output. The method was validated by showing that (14C) acetone production from (14C)isopropanol averaged 111% of the (14C)isopropanol infusion rate. We conclude that, in the normal rat, the 25-hydroxylation pathway accounts for less than 2% of bile acid synthesis.« less

  2. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat.

    PubMed

    Duane, W C; Björkhem, I; Hamilton, J N; Mueller, S M

    1988-01-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. In the present study, we have quantitated the relative importance of these two pathways in vivo by measuring production of [14C] acetone from [14C]-26-cholesterol. Four days after intraperitoneal injection of 20 to 40 muCi [14C]-26-cholesterol and 1 day after beginning a constant intravenous infusion of unlabeled acetone at 25 mumoles per kg per min, 6 male and 2 female Sprague-Dawley rats underwent breath collections. Expired acetone was trapped and purified as the 2,4-dinitrophenylhydrazine derivative. 14CO2 was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied times the acetone infusion rate to calculate production of [14C]acetone. [14C] Acetone production averaged 1.7% of total release of 14C from [14C]-26-cholesterol, estimated by 14CO2 output. The method was validated by showing that [14C] acetone production from [14C]isopropanol averaged 111% of the [14C]isopropanol infusion rate. We conclude that, in the normal rat, the 25-hydroxylation pathway accounts for less than 2% of bile acid synthesis.

  3. The role of high-density lipoprotein cholesterol in risk for posttraumatic stress disorder: taking a nutritional approach toward universal prevention.

    PubMed

    Hamazaki, K; Nishi, D; Yonemoto, N; Noguchi, H; Kim, Y; Matsuoka, Y

    2014-09-01

    Several cross-sectional studies, but no prospective studies, have reported an association between an abnormal lipid profile and posttraumatic stress disorder (PTSD). We hypothesized that an abnormal lipid profile might predict risk for developing PTSD. In this prospective study, we analyzed data from 237 antidepressant-naïve severely injured patients who participated in the Tachikawa Cohort of Motor Vehicle Accident Study. High-density lipoprotein cholesterol (HDL-C) levels at baseline were significantly lower in patients with PTSD than those without PTSD at 6 months after motor vehicle accident (MVA) and were inversely associated with risk for PTSD. In contrast, triglycerides (TG) at baseline were significantly higher in patients with PTSD than in those without PTSD at 6 months post-MVA and were positively associated with risk for PTSD. There was no clear association between low-density lipoprotein cholesterol or total cholesterol and risk for PTSD. In conclusion, low HDL-C and high TG may be risk factors for PTSD. Determining lipid profiles might help identify those at risk for PTSD after experiencing trauma. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    USDA-ARS?s Scientific Manuscript database

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  5. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions

    PubMed Central

    2014-01-01

    Background The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. Methods We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas–liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. Results The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Conclusions Serum non-cholesterol sterols are valid markers of cholesterol absorption

  6. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    PubMed

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  7. Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol delta8-isomerase, a cholesterogenic enzyme with multiple functions.

    PubMed Central

    Bae, S; Seong, J; Paik, Y

    2001-01-01

    Sterol Delta(8)-isomerase (SI) (EC 5.3.3.5), also known as emopamil binding protein or sigma receptor, catalyses the conversion of the 8-ene isomer into the 7-ene isomer in the cholesterol biosynthetic pathway in mammals. Recently, mutations of SI have been found to be associated with Conradi-Hünermann syndrome in humans. To investigate the in vitro and in vivo modes of molecular regulation of SI and its role in cholesterol biosynthesis in mammals, we isolated a full-length cDNA encoding rat SI. The deduced amino-acid sequence of rat SI predicts a 230-residue protein (26737 Da) with 87% and 80% amino-acid identity to mouse and human counterparts. The rat SI gene was mapped to chromosome 12q1.2 using fluorescence in situ hybridization (FISH). The biological function of the cloned rat SI cDNA was verified by overexpressing recombinant Myc-SI in Saccharomyces cerevisiae. It showed a characteristic pattern of inhibition on exposure to trans-2-[4-(1,2-diphenylbuten-1-yl)phenoxy]-N,N-dimethylethylamine (tamoxifen; IC(50)=11.2 microM) and 3beta-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A; IC(50)=4.2 microM), two well known potent inhibitors of SI. Northern-blot analysis of 3-week-old rats compared with 2-year-old rats showed that SI mRNA expression in both age groups was restricted to liver, where a 70% reduction in mRNA levels was observed in 2-year-old rats. The FISH studies revealed ubiquitous expression of SI mRNA in rat hepatocytes. The in vitro studies showed that the SI mRNA was highly suppressed by 25-hydroxycholesterol in H4IIE cells. Treatment of H4IIE cells grown in medium supplemented with fetal bovine serum with tamoxifen for 24 h resulted in a dose-dependent induction of SI mRNA, with a concomitant suppression of sterol regulatory element binding protein-1 mRNA. Interestingly, this effect was not seen in emopamil-treated cells. The in vivo experiments also indicate that both mRNA expression and enzymic activity of SI in liver were induced approx. 3

  8. Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion

    PubMed Central

    Kleinfelter, Lara M.; Jangra, Rohit K.; Jae, Lucas T.; Herbert, Andrew S.; Mittler, Eva; Stiles, Katie M.; Wirchnianski, Ariel S.; Kielian, Margaret; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. PMID:26126854

  9. HDL: The "Good" Cholesterol

    MedlinePlus

    ... and LDL (bad) cholesterol: HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ... cholesterol from your body. LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ...

  10. LDL: The "Bad" Cholesterol

    MedlinePlus

    ... and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ... cholesterol in your arteries. HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ...

  11. Home-Use Tests - Cholesterol

    MedlinePlus

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  12. Biosynthesis of tellurium nanoparticles by Lactobacillus plantarum and the effect of nanoparticle-enriched probiotics on the lipid profiles of mice.

    PubMed

    Mirjani, Ruholah; Faramarzi, Mohammad Ali; Sharifzadeh, Mohammad; Setayesh, Neda; Khoshayand, Mohammad Reza; Shahverdi, Ahmad Reza

    2015-10-01

    Hypercholesterolemia is an important risk factor contributing to atherosclerosis and coronary heart disease. Lactic acid bacteria have attracted much attention regarding their promising effect on serum cholesterol levels. Tellurium (Te) is a rare element that has also gained considerable interest for its biological effects. There have been some recent in vivo reports on the reduction effect of Te on cholesterol content. In this study, Lactobacillus plantarum PTCC 1058 was employed for the intracellular biosynthesis of Te NPs. The UV-visible spectrum of purified NPs showed a peak at 214 nm related to the surface plasmon resonance of the Te NPs. Transmission electron microscopy showed that spherical nanoparticles without aggregation had the average size of 45.7 nm as determined by the laser scattering method. The energy dispersive X-ray pattern confirmed the presence of Te atoms without any impurities. A significant reduction was observed in group which received L. plantarum with or without Te NPs during propylthiouracil and cholesterol diet in compare with the control group which received just propylthiouracil and cholesterol. The levels of triglycerides also remarkably decrease (p<0.05) in mice given L. plantarum with intracellular Te NPs.

  13. Increasing cholesterol synthesis in 7-dehydrosterol reductase (DHCR7) deficient mouse models through gene transfer

    PubMed Central

    Matabosch, Xavier; Ying, Lee; Serra, Montserrat; Wassif, Christopher A.; Porter, Forbes D.; Shackleton, Cedric; Watson, Gordon

    2010-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is caused by deficiency in the terminal step of cholesterol biosynthesis: the conversion of 7-dehydrocholesterol (7DHC) to cholesterol (C), catalyzed by 7-dehydrocholesterol reductase (DHCR7). This disorder exhibits several phenotypic traits including dysmorphia and mental retardation with a broad range of severity. There are few proven treatment options. That most commonly used is a high cholesterol diet that seems to enhance the quality of life and improve behavioral characteristics of patients, although these positive effects are controversial. The goal of our study was to investigate the possibility of restoring DHCR7 activity by gene transfer. We constructed an adeno-associated virus (AAV) vector containing the DHCR7 gene. After we infused this vector into affected mice, the introduced DHCR7 gene could be identified in liver, mRNA was expressed and a functional enzyme was produced. Evidence of functionality came from the ability to partially normalize the serum ratio of 7DHC/C in treated animals, apparently by increasing cholesterol production with concomitant decrease in 7DHC precursor. By five weeks after treatment the mean ratio (for 7 animals) had fallen to 0.05 while the ratio for untreated littermate controls had risen to 0.14. This provides proof of principle that gene transfer can ameliorate the genetic defect causing SLOS and provides a new experimental tool for studying the pathogenesis of this disease. If effective in humans, it might also offer a possible alternative to exogenous cholesterol therapy. However, it would not offer a complete cure for the disorder as many of the negative implications of defective synthesis are already established during prenatal development. PMID:20800683

  14. Waist circumference, body mass index, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal liver function tests in the Taiwanese population.

    PubMed

    Hsieh, Meng-Hsuan; Lin, Wen-Yi; Chien, Hsu-Han; Chien, Li-Ho; Huang, Chao-Kuan; Yang, Jeng-Fu; Chang, Ning-Chia; Huang, Chung-Feng; Wang, Chao-Ling; Chuang, Wan-Long; Yu, Ming-Lung; Dai, Chia-Yen; Ho, Chi-Kung

    2012-09-01

    Several studies have found that metabolic syndrome and uric acid level are related to abnormal liver function test results. The aim of this study was to explore the associations of risk factors [including blood pressure, blood sugar, total cholesterol, triglyceride, uric acid, waist circumference and body mass index (BMI) measurements] with abnormal liver function in the Taiwanese population.In total, 11,411 Taiwanese adults were enrolled in this study. Blood pressure was assessed according to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure criteria, fasting blood sugar level according to the Bureau of Health Promotion, Department of Health, R.O.C., criteria, total cholesterol and triglyceride levels according to the Third Report of the National Cholesterol Education Program Adult Treatment Panel III criteria, BMI according to the Asia-Pacific criteria, and waist circumference according to the Revised Diagnostic Criteria of Metabolic Syndrome in Taiwan. The prevalence of a past history of hypertension and diabetes mellitus was 17.7% and 6.5%, respectively, and the rates of abnormal measurements of blood pressure, BMI, waist circumference, fasting blood sugar, triglyceride, total cholesterol, uric acid (male/female), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were 76.2%, 67.6%, 40.0%, 28.6%, 30.6%, 57.3%, 37.9%/21.9%, 14.6% and 21.3%, respectively. Multivariate analysis showed that waist circumference, BMI, serum uric acid, blood sugar, and triglyceride levels were related to abnormal AST and ALT (p<0.05), but the odds ratio for waist circumference was larger than that for BMI. In conclusion, waist circumference, BMI, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal AST and ALT readings in Taiwanese adults. Waist circumference might be a better indicator of risk of abnormal liver function than BMI. Copyright © 2012

  15. Cholesterol Medicines

    MedlinePlus

    ... not enough, and you need to take cholesterol medicines. You should still continue with the lifestyle changes even though you are taking medicines. Who needs cholesterol medicines? Your health care provider ...

  16. Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells.

    PubMed

    Storti, Federica; Raphael, Gabriele; Griesser, Vera; Klee, Katrin; Drawnel, Faye; Willburger, Carolin; Scholz, Rebecca; Langmann, Thomas; von Eckardstein, Arnold; Fingerle, Jürgen; Grimm, Christian; Maugeais, Cyrille

    2017-12-01

    Genetic studies have linked age-related macular degeneration (AMD) to genes involved in high-density lipoprotein (HDL) metabolism, including ATP-binding cassette transporter A1 (ABCA1). The retinal pigment epithelium (RPE) handles large amounts of lipids, among others cholesterol, partially derived from internalized photoreceptor outer segments (OS) and lipids physiologically accumulate in the aging eye. To analyze the potential function of ABCA1 in the eye, we measured cholesterol efflux, the first step of HDL generation, in RPE cells. We show the expression of selected genes related to HDL metabolism in mouse and human eyecups as well as in ARPE-19 and human primary RPE cells. Immunofluorescence staining revealed localization of ABCA1 on both sides of polarized RPE cells. This was functionally confirmed by directional efflux to apolipoprotein AI (ApoA-I) of 3 H-labeled cholesterol given to the cells via serum or via OS. ABCA1 expression and activity was modulated using a liver-X-receptor (LXR) agonist and an ABCA1 neutralizing antibody, demonstrating that the efflux was ABCA1-dependent. We concluded that the ABCA1-mediated lipid efflux pathway, and hence HDL biosynthesis, is functional in RPE cells towards both the basal (choroidal) and apical (subretinal) space. Impaired activity of the pathway might cause age-related perturbations of lipid homeostasis in the outer retina and thus may contribute to disease development and/or progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. De novo steroid biosynthesis in human prostate cell lines and biopsies.

    PubMed

    Sakai, Monica; Martinez-Arguelles, Daniel B; Aprikian, Armen G; Magliocco, Anthony M; Papadopoulos, Vassilios

    2016-05-01

    Intratumoral androgen formation may be a factor in the development of prostate cancer (PCa), particularly castration-resistant prostate cancer (CRPC). To evaluate the ability of the human prostate to synthesize de novo steroids, we examined the expression of key enzymes and proteins involved in steroid biosynthesis and metabolism. Using TissueScan™ Cancer qPCR Arrays and quantitative RT-PCR, we performed comparative gene expression analyses between various prostate cell lines and biopsies, including normal, hyperplastic, cancerous, and androgen-deprived prostate cells lines, as well as normal, benign prostate hyperplasia (BPH), PCa, and CRPC human specimens. These studies were complemented with steroid biosynthesis studies in normal and BPH cells. Normal human prostate WPMY-1 and WPE1-NA22, benign prostate hyperplasia BPH-1, and cancer PC-3, LNCaP, and VCaP cell lines, as well as normal, BPH, PCa, and CRPC specimens, were used. Although all cell lines express mRNA encoding for hydroxymethylglutaryl-CoA reductase (HMGCR), the mitochondrial translocator protein TSPO and cholesterol side chain cleavage enzyme CYP11A1 were only observed in WPMY-1, BPH-1, and LNCaP cells. HSD3B1, HSD3B2, and CYP17A1 are involved in androgen formation and were not found in most cell lines. WPE1-NA22 and BPH-1 cells were unable to synthesize de novo steroids from mevalonate. Moreover, androgen-deprived cells did not have alterations in the expression of enzymes that could lead to de novo steroid formation. All prostate specimens expressed TSPO and CYP11A1. HSD3B1/2, CYP17A1, HSD17B5, and CYP19A1 mRNA expression was distinct to the profile observed in cells lines. The majority of BPH (90.9%) and PCa (83.1%) specimens contained CYP17A1, compared to control (normal) specimens (46.7%). BPH (82%), PCa (59%), normal (40%), and CRPC (34%) specimens expressed the four key enzymes that metabolize cholesterol to androgens. These studies question the use of prostate cell lines to study steroid

  18. Relationship of drinking water disinfectants to plasma cholesterol and thyroid hormone levels in experimental studies.

    PubMed Central

    Revis, N W; McCauley, P; Bull, R; Holdsworth, G

    1986-01-01

    The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 +/- 172 and 2049 +/- 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract. PMID:3456597

  19. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  20. VLDL Cholesterol

    MedlinePlus

    ... it into your bloodstream. The VLDL particles carry triglycerides, another type of fat, to your tissues. VLDL ... LDL carries cholesterol to your tissues instead of triglycerides. VLDL and LDL are "bad" cholesterols because they ...

  1. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    PubMed Central

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  2. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells.

    PubMed

    Hsu, Sanford P C; Kuo, John S; Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P; Chi, Kwan-Hwa

    2018-01-23

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo . Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.

  3. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells

    PubMed Central

    Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P.; Chi, Kwan-Hwa

    2018-01-01

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo. Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation. PMID:29467937

  4. Cholesterol Test

    MedlinePlus

    ... artery disease. Other names for a cholesterol test: Lipid profile, Lipid panel What is it used for? If you ... Clinic [Internet]. Mayo Foundation for Medical Education and Research; c1998-2017.Cholesterol Test: Overview; 2016 Jan 12 [ ...

  5. Secular trends in cholesterol lipoproteins and triglycerides and prevalence of dyslipidemias in an urban Indian population

    PubMed Central

    Gupta, Rajeev; Guptha, Soneil; Agrawal, Aachu; Kaul, Vijay; Gaur, Kiran; Gupta, Vijay P

    2008-01-01

    Background Coronary heart disease is increasing in urban Indian subjects and lipid abnormalities are important risk factors. To determine secular trends in prevalence of various lipid abnormalities we performed studies in an urban Indian population. Methods Successive epidemiological Jaipur Heart Watch (JHW) studies were performed in Western India in urban locations. The studies evaluated adults ≥ 20 years for multiple coronary risk factors using standardized methodology (JHW-1, 1993–94, n = 2212; JHW-2, 1999–2001, n = 1123; JHW-3, 2002–03, n = 458, and JHW-4 2004–2005, n = 1127). For the present analyses data of subjects 20–59 years (n = 4136, men 2341, women 1795) have been included. In successive studies, fasting measurements for cholesterol lipoproteins (total cholesterol, LDL cholesterol, HDL cholesterol) and triglycerides were performed in 193, 454, 179 and 252 men (n = 1078) and 83, 472, 195, 248 women (n = 998) respectively (total 2076). Age-group specific levels of various cholesterol lipoproteins, triglycerides and their ratios were determined. Prevalence of various dyslipidemias (total cholesterol ≥ 200 mg/dl, LDL cholesterol ≥ 130 mg/dl, non-HDL cholesterol ≥ 160 mg/dl, triglycerides ≥ 150 mg/dl, low HDL cholesterol <40 mg/dl, high cholesterol remnants ≥ 25 mg/dl, and high total:HDL cholesterol ratio ≥ 5.0, and ≥ 4.0 were also determined. Significance of secular trends in prevalence of dyslipidemias was determined using linear-curve estimation regression. Association of changing trends in prevalence of dyslipidemias with trends in educational status, obesity and truncal obesity (high waist:hip ratio) were determined using two-line regression analysis. Results Mean levels of various lipoproteins increased sharply from JHW-1 to JHW-2 and then gradually in JHW-3 and JHW-4. Age-adjusted mean values (mg/dl) in JHW-1, JHW-2, JHW-3 and JHW-4 studies respectively showed a significant increase in total cholesterol (174.9 ± 45, 196.0

  6. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  7. Effects of Rosuvastatin on the expression of the genes involved in cholesterol metabolism in rats: adaptive responses by extrahepatic tissues.

    PubMed

    Ahmadi, Yasin; Haghjoo, Amir Ghorbani; Dastmalchi, Siavoush; Nemati, Mahboob; Bargahi, Nasrin

    2018-06-30

    Statins mostly target the liver; therefore, increase in the synthesis of cholesterol by extra-hepatic tissues and then transferring this cholesterol to the liver can be regarded as adaptive responses by these tissues. In addition to cholesterol, these adaptive responses can increase isoprenoid units as the byproducts of the cholesterol biosynthesis pathway; isoprenoids play a key role in regulating cell signaling pathways and cancer development. Thus, there is a primary need for in vivo investigation of the effects of statins on the cholesterol metabolism in the extra-hepatic tissues. Eighteen male Sprague-Dawley rats were randomly divided into control (n = 9) and treatment (n = 9) groups. The treatment group was orally given 10 mg/kg/day of Rosuvastatin for 6 weeks. Then, serum lipid profile, expression levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), ABCA1, ABCG1 and ApoA1, and activity of HMGCR were measured in the liver, intestine and adipose tissues. Rosuvastatin significantly reduced total cholesterol and LDL-C. The expression levels of ABCA1, ABCG1, and ApoA1 in the liver and HMGCR in both liver and intestine were significantly increased in the Rosuvastatin treated-group. However, in the intestine, there were no significant differences in the expression levels of ABCA1 and ABCG1 between the study groups. Rosuvastatin had no effect on the adipose tissue. The HMGCR activity was significantly increased in the liver and intestine of the Rosuvastatin-treated group. In spite of the adipose tissue, the intestine efficiently responses to the reduced levels of cholesterol and increases its cholesterogenesis capacity. However, adipose tissue seems to play a small role in correcting cholesterol deficiency during the course of statin therapy. Copyright © 2018. Published by Elsevier B.V.

  8. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking.

    PubMed

    Schroeder, Friedhelm; Huang, Huan; McIntosh, Avery L; Atshaves, Barbara P; Martin, Gregory G; Kier, Ann B

    2010-01-01

    While the existence of membrane lateral microdomains has been known for over 30 years, interest in these structures accelerated in the past decade due to the discovery that cholesterol-rich microdomains serve important biological functions. It is increasingly appreciated that cholesterol-rich microdomains in the plasma membranes of eukaryotic cells represent an organizing nexus for multiple cellular proteins involved in transmembrane nutrient uptake (cholesterol, fatty acid, glucose, etc.), cell-signaling, immune recognition, pathogen entry, and many other roles. Despite these advances, however, relatively little is known regarding the organization of cholesterol itself in these plasma membrane microdomains. Although a variety of non-sterol markers indicate the presence of microdomains in the plasma membranes of living cells, none of these studies have demonstrated that cholesterol is enriched in these microdomains in living cells. Further, the role of cholesterol-rich membrane microdomains as targets for intracellular cholesterol trafficking proteins such as sterol carrier protein-2 (SCP-2) that facilitate cholesterol uptake and transcellular transport for targeting storage (cholesterol esters) or efflux is only beginning to be understood. Herein, we summarize the background as well as recent progress in this field that has advanced our understanding of these issues.

  9. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    PubMed

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases. © 2014 médecine/sciences – Inserm.

  10. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice

    PubMed Central

    Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang

    2017-01-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1. These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. PMID:28298519

  11. Normal Cognition and Behavior in a Smith-Lemli-Opitz Syndrome Patient Who Presented With Hirschsprung Disease

    PubMed Central

    Mueller, C.; Patel, S.; Irons, M.; Antshel, K.; Salen, G.; Tint, G.S.; Bay, C.

    2005-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder of cholesterol biosynthesis. It is caused by mutations in the gene encoding the enzyme 7-dehydrocholesterol Δ7-reductase (DHCR7), which catalyzes the final step in cholesterol biosynthesis, usually resulting in cholesterol deficiency. We report a 3.5-year-old girl who has cognition in the low average range and normal behavior, but in whom molecular studies identified two missense mutations in DHCR7: V326L and F284L. She was born at term following an uncomplicated pregnancy and delivery, and presented at 12 days of age with poor feeding, abdominal distention, and jaundice. Colonic biopsy was consistent with Hirschsprung disease. On physical examination she had mild ptosis, a long philtrum, mild micrognathia, a short, upturned nose, and subtle 2,3 syndactyly. Her 7-dehydrocholesterol (7-DHC) level was markedly elevated at 8.7 mg/dl (normal 0.10 ± 0.05), and her cholesterol level was normal at 61 mg/dl (normal for newborn period 50–80 mg/dl). Karyotype analysis was normal, 46,XX. Breast milk feeding was initiated and continued for 18 months. Cholesterol supplementation was implemented at 100 mg/kg/day at 3 months, which resulted in increased cholesterol levels and reduced dehydrocholesterol levels. Neuropsychological testing has shown functioning in the low average range, between the 14th and 18th centiles when compared to peers. This is markedly higher than most children with SLOS. She has no behavioral problems. MRI and MRS testing of the brain revealed no structural abnormalities. This is in contrast to a recently reported case by Prasad et al. [2002: Am J Med Genet 108:64–68] with a mild phenotype, behavioral problems, and abnormal MRI, who is compound heterozygote for both a null and missense mutation. Our case suggests that patients with severe feeding disorders with or without Hirschprung disease and postnatal onset microcephaly may warrant screening for SLOS. PMID:14556255

  12. Cholesterol, endocrine and metabolic disturbances in sporadic anovulatory women with regular menstruation

    PubMed Central

    Mumford, Sunni L.; Schisterman, Enrique F.; Siega-Riz, Anna Maria; Gaskins, Audrey J.; Steiner, Anne Z.; Daniels, Julie L.; Olshan, Andrew F.; Hediger, Mary L.; Hovey, Kathleen; Wactawski-Wende, Jean; Trevisan, Maurizio; Bloom, Michael S.

    2011-01-01

    BACKGROUND Sporadic anovulation among regularly menstruating women is not well understood. It is hypothesized that cholesterol abnormalities may lead to hormone imbalances and incident anovulation. The objective was to evaluate the association between lipoprotein cholesterol levels and endocrine and metabolic disturbances and incident anovulation among ovulatory and anovulatory women reporting regular menstruation. METHODS The BioCycle Study was a prospective cohort study conducted at the University at Buffalo from September 2005 to 2007, which followed 259 self-reported regularly menstruating women aged 18–44 years, for one or two complete menstrual cycles. Sporadic anovulation was assessed across two menstrual cycles. RESULTS Mean total and low-density lipoprotein cholesterol and triglycerides levels across the menstrual cycles were higher during anovulatory cycles (mean difference: 4.6 (P = 0.01), 3.0 (P = 0.06) and 6.4 (P = 0.0002) mg/dl, respectively, adjusted for age and BMI). When multiple total cholesterol (TC) measures prior to expected ovulation were considered, we observed a slight increased risk of anovulation associated with increased levels of TC (odds ratio per 5 mg/dl increase, 1.07; 95% confidence interval, 0.99, 1.16). Sporadic anovulation was associated with an increased LH:FSH ratio (P = 0.002), current acne (P = 0.02) and decreased sex hormone-binding globulin levels (P = 0.005). CONCLUSIONS These results do not support a strong association between lipoprotein cholesterol levels and sporadic anovulation. However, sporadic anovulation among regularly menstruating women is associated with endocrine disturbances which are typically observed in women with polycystic ovary syndrome. PMID:21115506

  13. Sterol balance and cholesterol absorption in inbred strains of rabbits hypo- or hyperresponsive to dietary cholesterol.

    PubMed

    Beynen, A C; Meijer, G W; Lemmens, A G; Glatz, J F; Versluis, A; Katan, M B; Van Zutphen, L F

    1989-06-01

    In 2 inbred strains of rabbits with high or low response of plasma cholesterol to dietary cholesterol, excretion of steroids in the feces and efficiency of cholesterol absorption were determined. Rates of whole-body cholesterol synthesis, measured as fecal excretion of bile acids and neutral steroids minus cholesterol intake, were similar in hypo- and hyperresponders fed a low-cholesterol (8 mumol/100 g) diet. Transfer of the rabbits to a high-cholesterol (182 mumol/100 g) diet caused an increase in fecal bile acid excretion in hypo- but not in hyperresponders. Dietary cholesterol did not affect neutral steroid excretion in either rabbit strain. Hyperresponders tended to accumulate more cholesterol in their body than did hyporesponders. After the rabbits were switched back from the high- to the low-cholesterol diet, rates of whole-body cholesterol synthesis were significantly higher in the hypo- than in the hyperresponders. With the use of the simultaneous oral administration of [3H]cholesterol and beta-[14C]sitosterol, hyperresponders were found to absorb significantly higher percentages of cholesterol than hyporesponders. It is concluded that the differences in stimulation of bile acid excretion after cholesterol feeding and the efficiency of cholesterol absorption are important determinants of the phenomenon of hypo- and hyperresponsiveness in the 2 inbred rabbit strains.

  14. Dietary Almonds Increase Serum HDL Cholesterol in Coronary Artery Disease Patients in a Randomized Controlled Trial.

    PubMed

    Jamshed, Humaira; Sultan, Fateh Ali Tipoo; Iqbal, Romaina; Gilani, Anwar Hassan

    2015-10-01

    More than one-half of coronary artery disease (CAD) patients have low HDL cholesterol despite having well-managed LDL cholesterol. Almond supplementation has not been shown to elevate circulating HDL cholesterol concentrations in clinical trials, perhaps because the baseline HDL cholesterol of trial subjects was not low. This clinical trial was designed to test the effect of almond supplementation on low HDL cholesterol in CAD patients. A total of 150 CAD patients (50 per group), with serum LDL cholesterol ≤100 mg/dL and HDL cholesterol ≤40 mg/dL in men and ≤50 mg/dL in women, were recruited from the Aga Khan University Hospital. After recording vital signs and completing a dietary and physical activity questionnaire, patients were randomly assigned to 1 of the following 3 groups: the no-intervention group (NI), the Pakistani almonds group (PA), and the American almonds group (AA). The respective almond varieties (10 g/d) were given to patients with instructions to soak them overnight, remove the skin, and eat them before breakfast. Blood samples for lipid profiling, body weight, and blood pressure were collected, and assessment of dietary patterns was done at baseline, week 6, and week 12. Almonds significantly increased HDL cholesterol. At weeks 6 and 12, HDL cholesterol was 12-14% and 14-16% higher, respectively, in the PA and AA than their respective baselines. In line with previous reports, serum concentrations of total cholesterol, triglycerides, LDL cholesterol, and VLDL cholesterol; total-to-HDL and LDL-to-HDL cholesterol ratios, and the atherogenic index were reduced in both the PA and AA at weeks 6 and 12 compared with baseline (P < 0.05). Effects on serum lipids did not differ between the 2 almond groups. Dietary patterns, body weight, and blood pressure did not change in any of the 3 groups during the trial. A low dose of almonds (10 g/d) consumed before breakfast can increase HDL cholesterol, in addition to improving other markers of abnormal

  15. Cholesterol - what to ask your doctor

    MedlinePlus

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  16. Common Misconceptions about Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Jan 29,2018 How much do you ... are some common misconceptions — and the truth. High cholesterol isn’t a concern for children. High cholesterol ...

  17. Modeling total cholesterol as predictor of mortality: the low-cholesterol paradox.

    PubMed

    Wesley, David; Cox, Hugh F

    2011-01-01

    Elevated total cholesterol is well-established as a risk factor for coronary artery disease and cardiovascular mortality. However, less attention is paid to the association between low cholesterol levels and mortality--the low cholesterol paradox. In this paper, restricted cubic splines (RCS) and complex survey methodology are used to show the low-cholesterol paradox is present in the laboratory, examination, and mortality follow-up data from the Third National Health and Nutrition Examination Survey (NHANES III). A series of Cox proportional hazard models, demonstrate that RCS are necessary to incorporate desired covariates while avoiding the use of categorical variables. Valid concerns regarding the accuracy of such predictive models are discussed. The one certain conclusion is that low cholesterol levels are markers for excess mortality, just as are high levels. Restricted cubic splines provide the necessary flexibility to demonstrate the U-shaped relationship between cholesterol and mortality without resorting to binning results. Cox PH models perform well at identifying associations between risk factors and outcomes of interest such as mortality. However, the predictions from such a model may not be as accurate as common statistics suggest and predictive models should be used with caution.

  18. [Impact of indirect factors on the growing prevalence of workers with abnormal findings in periodic general health examinations: a survey on the definition and detection of such abnormal workers by occupational health organizations].

    PubMed

    Hoshuyama, T; Takahashi, K; Fujishiro, K; Uchida, K; Okubo, T

    2000-05-01

    The prevalence of workers with abnormal findings in periodic general health examinations (PGHEx) has been growing recently in Japan and reached 41.2% in 1998. To clarify the indirect factors related to such an increase in workers with abnormal findings in the PGHEx, we carried out a questionnaire survey on the content of the statutory notification form of results of the PGHEx among a representative sample of 136 Occupational Health Organizations (OHOs). Questions on how those workers with abnormal findings were defined and detected and when the definition and the reference intervals for total cholesterol became available were included. Of the 107 OHOs which answered the questionnaire, 85 were included in the analyses because they actually calculated the number of workers with abnormal findings in each company and helped the employer fill out the notification form. The results revealed that there was no standardized definition of workers with abnormal findings in the PGHEx. Both reference intervals of items in the PGHEx and algorithm in detecting workers with abnormal findings in the PGHEx varied among the OHOs. When detecting the workers, 13 OHOs (15.3%) selected them taking into consideration medical background factors such as previous results of the PGHEx and current medical treatment. From the late 1980s to the early 1990s, many OHOs modified the definition of workers with abnormal findings, and have tended to reduce the upper limit of the reference interval for serum cholesterol. This is mainly due to amendment of the Industrial Safety and Health Law and a new recommendation for a reference interval/value proposed by the related scientific society. Although the prevalence of workers with abnormal findings in the PGHEx has continuously increased, it is not valid to compare the prevalence over the years because of modification in the definition of such workers. The prevalence of workers with abnormal findings in the PGHEx, which is one of the most important

  19. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.

    PubMed

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip

    2013-04-01

    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  20. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  1. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid.

    PubMed

    Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-05-01

    The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.

  2. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    PubMed Central

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-01-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704

  3. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    NASA Astrophysics Data System (ADS)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-08-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.

  4. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    PubMed

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  5. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.

    PubMed Central

    Keaney, J F; Gaziano, J M; Xu, A; Frei, B; Curran-Celentano, J; Shwaery, G T; Loscalzo, J; Vita, J A

    1993-01-01

    Recent evidence suggests that dietary therapy with lipid-soluble antioxidants may be beneficial for patients with atherosclerotic vascular disease but the potential mechanism(s) for these observations remain obscure. Abnormalities in endothelium-dependent control of vascular tone develop early in the course of atherosclerosis and may result from oxidative modification of low density lipoproteins. We examined the role of dietary antioxidants in preserving normal endothelial cell vasodilator function in cholesterol-fed rabbits with particular attention to possible effects on serum lipoproteins, low density lipoprotein oxidation, and atherogenesis. Male New Zealand White rabbits were fed diets containing no additive (controls), 1% cholesterol (cholesterol group), or 1% cholesterol chow supplemented with either beta-carotene (0.6 g/kg of chow) or alpha-tocopherol (1000 international units/kg of chow) for a 28-day period. After dietary therapy, thoracic aortae were harvested for assay of vascular function and for pathologic examination and tissue antioxidant levels. Compared to controls, acetylcholine- and A23187-mediated endothelium-dependent relaxations were significantly impaired in vessels from the cholesterol group (P < 0.001), whereas vessels from animals treated with beta-carotene or alpha-tocopherol demonstrated normal endothelium-dependent arterial relaxation. Preservation of endothelial function was associated with vascular incorporation of alpha-tocopherol and beta-carotene but was unrelated to plasma lipoprotein levels, smooth muscle cell function, or the extent of atherosclerosis. Increased low density lipoprotein resistance to ex vivo copper-mediated oxidation was observed only in the alpha-tocopherol group. Our results suggest that dietary antioxidants may benefit patients with atherosclerosis by preserving endothelial vasodilator function through a mechanism related to vascular tissue antioxidant content and not reflected by assay of low density

  6. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum.

    PubMed

    Lu, Nan; Roldan, Marissa; Dixon, Richard A

    2017-08-01

    Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops. Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals. The previous studies have suggested that PAs present in cotton are a major contributor to fiber color. However, the biosynthesis of PAs in cotton still remains to be elucidated. AtTT2 (transparent testa 2) is a MYB family transcription factor from Arabidopsis that initiates the biosynthesis of PAs by inducing the expression of multiple genes in the pathway. In this study, we isolated two R2R3-type MYB transcription factors from Gossypium hirsutum that are homologous to AtTT2. Expression analysis showed that both genes were expressed at different levels in various cotton tissues, including leaf, seed coat, and fiber. Protoplast transactivation assays revealed that these two GhMYBs were able to activate promoters of genes encoding enzymes in the PA biosynthesis pathway, namely anthocyanidin reductase and leucoanthocyanidin reductase. Complementation experiments showed that both of the GhMYBs were able to recover the transparent testa seed coat phenotype of the Arabidopsis tt2 mutant by restoring PA biosynthesis. Ectopic expression of either of the two GhMYBs in Medicago truncatula hairy roots increased the contents of anthocyanins and PAs compared to control lines expressing the GUS gene, and expression levels of MtDFR, MtLAR, and MtANR were also elevated in lines expressing GhMYBs. Together, these data provide new insights into engineering condensed tannins in cotton.

  7. Biosynthesis and biological action of pineal allopregnanolone

    PubMed Central

    Tsutsui, Kazuyoshi; Haraguchi, Shogo

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone. PMID:24834027

  8. RNA-sequencing and pathway analysis reveal alteration of hepatic steroid biosynthesis and retinol metabolism by tributyltin exposure in male rare minnow (Gobiocypris rarus).

    PubMed

    Zhang, Jiliang; Zhang, Chunnuan; Sun, Ping; Huang, Maoxian; Fan, Mingzhen; Liu, Min

    2017-07-01

    Tributyltin (TBT) is widely spread in aquatic ecosystems. Although adverse effects of TBT on reproduction and lipogenesis are observed in fishes, the underlying mechanisms, especially in livers, are still scarce and inconclusive. Thus, RNA-sequencing runs were performed on the hepatic libraries of adult male rare minnow (Gobiocypris rarus) after TBT exposure for 60d. After differentially expressed genes were identified, enrichment analysis and validation by quantitative real-time PCR were conducted. The results showed that TBT up-regulated the profile of hepatic genes in the steroid biosynthesis pathway and down-regulated the profile of hepatic genes in the retinol metabolism pathway. In the hepatic steroid biosynthesis pathway, TBT might induce biosynthesis of cholesterol, which could affect the bioavailability of steroid hormones. More important, 3beta-hydroxysteroid 3-dehydrogenase, a key enzyme in the biosynthesis of all active steroid hormones, was up-regulated by TBT exposure. In the hepatic retinol metabolism pathway, TBT impaired retinoic acid homeostasis which plays essential roles in both reproduction and lipogenesis. The results of two pathways offered new mechanisms underlying the toxicology of TBT and represented a starting point from which detailed mechanistic links should be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol

    PubMed Central

    Infante, Rodney Elwood; Radhakrishnan, Arun

    2017-01-01

    Cells employ regulated transport mechanisms to ensure that their plasma membranes (PMs) are optimally supplied with cholesterol derived from uptake of low-density lipoproteins (LDL) and synthesis. To date, all inhibitors of cholesterol transport block steps in lysosomes, limiting our understanding of post-lysosomal transport steps. Here, we establish the cholesterol-binding domain 4 of anthrolysin O (ALOD4) as a reversible inhibitor of cholesterol transport from PM to endoplasmic reticulum (ER). Using ALOD4, we: (1) deplete ER cholesterol without altering PM or overall cellular cholesterol levels; (2) demonstrate that LDL-derived cholesterol travels from lysosomes first to PM to meet cholesterol needs, and subsequently from PM to regulatory domains of ER to suppress activation of SREBPs, halting cholesterol uptake and synthesis; and (3) determine that continuous PM-to-ER cholesterol transport allows ER to constantly monitor PM cholesterol levels, and respond rapidly to small declines in cellular cholesterol by activating SREBPs, increasing cholesterol uptake and synthesis. DOI: http://dx.doi.org/10.7554/eLife.25466.001 PMID:28414269

  10. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption.

    PubMed

    Miettinen, T A; Gylling, H; Nissinen, M J

    2011-10-01

    To study the whole-body cholesterol metabolism in man, cholesterol synthesis and absorption need to be measured. Because of the complicated methods of the measurements, new approaches were developed including the analysis of serum non-cholesterol sterols. In current lipidologic papers and even in intervention studies, serum non-cholesterol sterols are frequently used as surrogate markers of cholesterol metabolism without any validation to the absolute metabolic variables. The present review compares serum non-cholesterol sterols with absolute measurements of cholesterol synthesis and absorption in published papers to find out whether the serum markers are valid indicators of cholesterol metabolism in various conditions. During statin treatment, during interventions of dietary fat, and in type 2 diabetes the relative and absolute variables of cholesterol synthesis and absorption were frequently but not constantly correlated with each other. In some occasions, especially in subjects with apolipoprotein E3/4 and E4/4 phenotypes, the relative metabolic markers were even more sensitive than the absolute ones to reflect changes in cholesterol metabolism during dietary interventions. Even in general population at very high absorption the homeostasis of cholesterol metabolism is disturbed damaging the validity of the serum markers. It is worth using several instead of only one precursor and absorption sterol marker for making conclusions of altered synthesis or absorption of cholesterol, and even then the presence of at least some absolute measurement is valuable. During consumption of plant sterol-enriched diets and in situations of interfered cholesterol homeostasis the relative markers do not adequately reflect cholesterol metabolism. Accordingly, the validity of the relative markers of cholesterol metabolism should not be considered as self-evident. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  12. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation

    PubMed Central

    Ríos, Glenda L.; Canizo, Jesica R.; Antollini, Silvia S.; Alberio, Ricardo H.

    2017-01-01

    Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD) did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane) and cholesteryl esters (stored in lipid droplets), revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs) among seasons and a dynamic organizational structure of cholesterol

  13. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    PubMed

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  14. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    PubMed

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  15. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin

    PubMed Central

    Chakrabarti, Rima S; Ingham, Sally A; Kozlitina, Julia; Gay, Austin; Cohen, Jonathan C; Radhakrishnan, Arun; Hobbs, Helen H

    2017-01-01

    Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI: http://dx.doi.org/10.7554/eLife.23355.001 PMID:28169829

  16. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development

    PubMed Central

    Hernandez, Jose A.; Gonzalez, Cesar G.

    2017-01-01

    There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh) signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf), but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms. PMID:28686747

  17. Glucagon-like peptide-1 contributes to increases ABCA1 expression by downregulating miR-758 to regulate cholesterol homeostasis.

    PubMed

    Yao, Yue; Li, Qiang; Gao, Ping; Wang, Wei; Chen, Lili; Zhang, Jinchao; Xu, Yi

    2018-03-04

    Abnormal regulation of lipid metabolism is associated with type 2 diabetes mellitus (T2DM). GLP-1 as a new treatment for T2DM, has unique effects in modulating cholesterol homeostasis. However, the mechanism of this effect is largely missing. The aim of this study was to determine the effects of GLP-1 on cholesterol-induced lipotoxicity in hepatocytes and examine the underlying mechanisms. The cell viability was determined, and caspase-3 was used to detect the effects of GLP-1 on cholesterol-induced apoptosis. The alterations of miR-758 and ATP-binding cassette transporter A1 (ABCA1) resulting from cholesterol incubation or GLP-1 were detected by qRT-PCR and Western blot assays. Overexpression of miR-758 abrogated the GLP-1-mediated ABCA1 expression, and conversely, down-regulation of miR-758 aggravated GLP-1's action and revealed significant promotion effects. BODIPY-Cholesterol efflux assay revealed that treatment with miR-758 inhibitor significantly enhanced ABCA1-dependent cholesterol efflux, resulting in reduced total cholesterol. Furthermore, Oil red O staining and cholesterol measurement were used to detect lipid accumulation. As a result, cholesterol significantly attenuated cell viability, promoted cell apoptosis, and facilitated lipid accumulation, and these effects were reversed by GLP-1. This study provides evidence that, in HepG2 cells, GLP-1 may affect cholesterol homeostasis by regulating the expression of miR-758 and ABCA1. These data can inform the development of biomarkers for miR-758, and potentially other drugs, on the key pathways of lipid metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Association between non-cholesterol sterol concentrations and Achilles tendon thickness in patients with genetic familial hypercholesterolemia.

    PubMed

    Baila-Rueda, Lucía; Lamiquiz-Moneo, Itziar; Jarauta, Estíbaliz; Mateo-Gallego, Rocío; Perez-Calahorra, Sofía; Marco-Benedí, Victoria; Bea, Ana M; Cenarro, Ana; Civeira, Fernando

    2018-01-15

    Familial hypercholesterolemia (FH) is a genetic disorder that result in abnormally high low-density lipoprotein cholesterol levels, markedly increased risk of coronary heart disease (CHD) and tendon xanthomas (TX). However, the clinical expression is highly variable. TX are present in other metabolic diseases that associate increased sterol concentration. If non-cholesterol sterols are involved in the development of TX in FH has not been analyzed. Clinical and biochemical characteristics, non-cholesterol sterols concentrations and Aquilles tendon thickness were determined in subjects with genetic FH with (n = 63) and without (n = 40) TX. Student-t test o Mann-Whitney test were used accordingly. Categorical variables were compared using a Chi square test. ANOVA and Kruskal-Wallis tests were performed to multiple independent variables comparison. Post hoc adjusted comparisons were performed with Bonferroni correction when applicable. Correlations of parameters in selected groups were calculated applying the non-parametric Spearman correlation procedure. To identify variables associated with Achilles tendon thickness changes, multiple linear regression were applied. Patients with TX presented higher concentrations of non-cholesterol sterols in plasma than patients without xanthomas (P = 0.006 and 0.034, respectively). Furthermore, there was a significant association between 5α-cholestanol, β-sitosterol, desmosterol, 24S-hydroxycholesterol and 27-hydroxycholesterol concentrations and Achilles tendon thickness (p = 0.002, 0.012, 0.020, 0.045 and 0.040, respectively). Our results indicate that non-cholesterol sterol concentrations are associated with the presence of TX. Since cholesterol and non-cholesterol sterols are present in the same lipoproteins, further studies would be needed to elucidate their potential role in the development of TX.

  19. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function

    PubMed Central

    Desai, Aditya J.; Dong, Maoqing; Harikumar, Kaleeckal G.

    2015-01-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. PMID:26138469

  20. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    PubMed

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-07-01

    Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is

  1. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism

    PubMed Central

    Kain, Vasundhara; Kapadia, Bandish; Misra, Parimal; Saxena, Uday

    2015-01-01

    Statins are a class of oral drugs that are widely used for treatment of hypercholesterolemia. Recent clinical data suggest that chronic use of these drugs increases the frequency of new onset diabetes. Studies to define the risks of statin-induced diabetes and its underlying mechanisms are clearly necessary. We explored the possible mechanism of statin induced insulin resistance using a well-established cell based model and simvastatin as a prototype statin. Our data show that simvastatin induces insulin resistance in a cholesterol biosynthesis inhibition independent fashion but does so by a fatty acid mediated effect on insulin signaling pathway. These data may help design strategies for prevention of statin induced insulin resistance and diabetes in patients with hypercholesterolemia. PMID:26345110

  2. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  3. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body.

    PubMed

    Yokoyama, S

    2000-12-15

    Most mammalian somatic cells are unable to catabolize cholesterol and therefore need to export it in order to maintain sterol homeostasis. This mechanism may also function to reduce excessively accumulated cholesterol, which would thereby contribute to prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) has been believed to play a main role in this reaction based on epidemiological evidence and in vitro experimental data. At least two independent mechanisms are identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from cell surface. Cholesterol molecules desorbed from cells can be trapped by various extracellular acceptors including various lipoproteins and albumin, and extracellular cholesterol esterification mainly on HDL may provide a driving force for the net removal of cell cholesterol by maintaining a cholesterol gradient between lipoprotein surface and cell membrane. The other is apolipoprotein-mediated process to generate new HDL by removing cellular phospholipid and cholesterol. The reaction is initiated by the interaction of lipid-free or lipid-poor helical apolipoproteins with cellular surface resulting in assembly of HDL particles with cellular phospholipid and incorporation of cellular cholesterol into the HDL being formed. Thus, HDL has dual functions as an active cholesterol acceptor in the diffusion-mediated pathway and as an apolipoprotein carrier for the HDL assembly reaction. The impairment of the apolipoprotein-mediated reaction was found in Tangier disease and other familial HDL deficiencies to strongly suggest that this is a main mechanism to produce plasma HDL. The causative mutations for this defect was identified in ATP binding cassette transporter protein A1, as a significant step for further understanding of the reaction and cholesterol homeostasis.

  4. Food Ingredients That Inhibit Cholesterol Absorption

    PubMed Central

    Jesch, Elliot D.; Carr, Timothy P.

    2017-01-01

    Cholesterol is a vital component of the human body. It stabilizes cell membranes and is the precursor of bile acids, vitamin D and steroid hormones. However, cholesterol accumulation in the bloodstream (hypercholesterolemia) can cause atherosclerotic plaques within artery walls, leading to heart attacks and strokes. The efficiency of cholesterol absorption in the small intestine is of great interest because human and animal studies have linked cholesterol absorption with plasma concentration of total and low density lipoprotein cholesterol. Cholesterol absorption is highly regulated and influenced by particular compounds in the food supply. Therefore, it is desirable to learn more about natural food components that inhibit cholesterol absorption so that food ingredients and dietary supplements can be developed for consumers who wish to manage their plasma cholesterol levels by non-pharmacological means. Food components thus far identified as inhibitors of cholesterol absorption include phytosterols, soluble fibers, phospholipids, and stearic acid. PMID:28702423

  5. [Metabolism of cholesterol and fatty acids in nephrotic syndrome and its regulation by sterol regulatory element binding proteins (SREBP's). Effect of soy protein consumption].

    PubMed

    Tovar, Armando; Manzano, Natalia; Torres, Nimbe

    2005-01-01

    Hyperlipidemia occurs during nephrotic syndrome (NS). It is known that cholesterol and fatty acid biosynthesis is controlled by the transcription factors sterol regulatory element binding proteins (SREBPs). Soy protein consumption reduces the concentration of these lipids, although its mechanism of action is not well known. The aim of the present study was to establish whether soy protein consumption reduces cholesterol and triglycerides levels by regulating of SREBPs. Male Wistar rats with experimental NS were studied for 64 days. The results showed that rats fed with soy protein had significantly lower plasma cholesterol and triglyceride concentrations as well as proteinuria than rats fed with casein diet. These decrements were associated with a decrease in the expression of SREBP-1 and fatty acid biosynthetic enzymes. In addition, Western blot analysis revealed that in nuclear extracts from hepatocytes of rats fed with soy protein, there was a lower concentration of SREBP-1 than in rats fed with casein. The results of this study indicate that consumption of a soy protein diet has beneficial effects on nephrotic syndrome.

  6. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans

    PubMed Central

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Ostlund, Richard E

    2017-01-01

    Objective Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers LDL cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly-mixing endogenous cholesterol pool into the stool. Approach and Results In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with LDL cholesterol 100–200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/day or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d7 in a lipid emulsion and dietary cholesterol with cholesterol-d5 and sitostanol-d4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30 ± 4.3% (SE, P < 0.0001) and LDL cholesterol 19.8 ± 1.9% (P = 0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6 ± 12.2% (P < 0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7 ± 14.3% (P < 0.0001) while plasma cholesterol turnover rose 26.2 ± 3.6% (P = 0.0096). Fecal bile acids were unchanged. Conclusions Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly-mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. PMID:28279967

  7. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1.

    PubMed

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C; Brown, Andrew J; Sandoval, Cecilia; Hallab, Jeannette C; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-03-14

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes.

  8. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    PubMed Central

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  9. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  10. High Cholesterol in Children and Teens

    MedlinePlus

    ... some cholesterol to work properly. But if your child or teen has high cholesterol (too much cholesterol ... other heart diseases. What causes high cholesterol in children and teens? Three main factors contribute to high ...

  11. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    PubMed

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  12. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  13. Biosynthesis of human myeloperoxidase.

    PubMed

    Nauseef, William M

    2018-03-15

    Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    PubMed

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  15. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans.

    PubMed

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Ostlund, Richard E

    2017-05-01

    Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers low-density lipoprotein cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly mixing endogenous cholesterol pool into the stool. In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with low-density lipoprotein cholesterol 100 to 200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/d or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 in a lipid emulsion and dietary cholesterol with cholesterol-d 5 and sitostanol-d 4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30±4.3% (SE, P <0.0001) and low-density lipoprotein cholesterol 19.8±1.9% ( P =0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6±12.2% ( P <0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7±14.3% ( P <0.0001), whereas plasma cholesterol turnover rose 26.2±3.6% ( P =0.0096). Fecal bile acids were unchanged. Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.

  16. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior

    USDA-ARS?s Scientific Manuscript database

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus, and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG), or low (LG) plasma...

  17. HDL cholesterol transport during inflammation.

    PubMed

    van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2007-04-01

    The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.

  18. High blood cholesterol levels

    MedlinePlus

    Cholesterol - high; Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... A cholesterol test is done to diagnose a lipid disorder. Different experts recommend different starting ages. Recommended ...

  19. δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders*

    PubMed Central

    Xu, Miao; Liu, Ke; Swaroop, Manju; Porter, Forbes D.; Sidhu, Rohini; Finkes, Sally; Ory, Daniel S.; Marugan, Juan J.; Xiao, Jingbo; Southall, Noel; Pavan, William J.; Davidson, Cristin; Walkley, Steven U.; Remaley, Alan T.; Baxa, Ulrich; Sun, Wei; McKew, John C.; Austin, Christopher P.; Zheng, Wei

    2012-01-01

    Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases. PMID:23035117

  20. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.

    PubMed

    Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J

    2015-09-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.

  1. Cholesterol content and methods for cholesterol determination in meat and poultry

    USDA-ARS?s Scientific Manuscript database

    Available data for cholesterol content of beef, pork, poultry, and processed meat products were reported. Although the cholesterol concentration in meat and poultry can be influenced by various factors, effects of animal species, muscle fiber type, and muscle fat content are focused on in this revi...

  2. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction.

    PubMed

    Li, Yong; Chen, Youliang; Li, Hua

    2017-01-01

    Response surface methodology was used to optimize ultrasound-assisted ethanol extraction (UAE) of cholesterol from cholesterol-β-cyclodextrin (C-β-CD) inclusion complex prepared from duck yolk oil. The best extraction conditions were solvent-solid ratio 10mL/g, ultrasonic power 251W, extraction temperature 56°C and sonication time 36min. Under these conditions, the highest cholesterol extraction yield and cholesterol content obtained 98.12±0.25% and 43.38±0.61mg/g inclusion complex, respectively. As compared with Reflux extraction and Soxhlet extraction, the UAE was more efficient and economical. To increase the purity of crude cholesterol extraction, silica gel column chromatography and crystallization were carried out. Finally, cholesterol was obtained at 95.1% purity, 71.7% recovery and 22.0% yield. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Protein biosynthesis in mitochondria.

    PubMed

    Kuzmenko, A V; Levitskii, S A; Vinogradova, E N; Atkinson, G C; Hauryliuk, V; Zenkin, N; Kamenski, P A

    2013-08-01

    Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.

  4. From Cholesterogenesis to Steroidogenesis: Role of Riboflavin and Flavoenzymes in the Biosynthesis of Vitamin D12

    PubMed Central

    Pinto, John T.; Cooper, Arthur J. L.

    2014-01-01

    Flavin-dependent monooxygenases and oxidoreductases are located at critical branch points in the biosynthesis and metabolism of cholesterol and vitamin D. These flavoproteins function as obligatory intermediates that accept 2 electrons from NAD(P)H with subsequent 1-electron transfers to a variety of cytochrome P450 (CYP) heme proteins within the mitochondria matrix (type I) and the (microsomal) endoplasmic reticulum (type II). The mode of electron transfer in these systems differs slightly in the number and form of the flavin prosthetic moiety. In the type I mitochondrial system, FAD-adrenodoxin reductase interfaces with adrenodoxin before electron transfer to CYP heme proteins. In the microsomal type II system, a diflavin (FAD/FMN)-dependent cytochrome P450 oxidoreductase [NAD(P)H-cytochrome P450 reductase (CPR)] donates electrons to a multitude of heme oxygenases. Both flavoenzyme complexes exhibit a commonality of function with all CYP enzymes and are crucial for maintaining a balance of cholesterol and vitamin D metabolites. Deficits in riboflavin availability, imbalances in the intracellular ratio of FAD to FMN, and mutations that affect flavin binding domains and/or interactions with client proteins result in marked structural alterations within the skeletal and central nervous systems similar to those of disorders (inborn errors) in the biosynthetic pathways that lead to cholesterol, steroid hormones, and vitamin D and their metabolites. Studies of riboflavin deficiency during embryonic development demonstrate congenital malformations similar to those associated with genetic alterations of the flavoenzymes in these pathways. Overall, a deeper understanding of the role of riboflavin in these pathways may prove essential to targeted therapeutic designs aimed at cholesterol and vitamin D metabolism. PMID:24618756

  5. Changes during hibernation in different phospholipid and free and esterified cholesterol serum levels in black bears

    USGS Publications Warehouse

    Chauhan, V.; Sheikh, A.; Chauhan, A.; Tsiouris, J.; Malik, M.; Vaughan, M.

    2002-01-01

    During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P < 0.05). The percentage increase during hibernation was more in free cholesterol (57%) than in esterified cholesterol (27%). Analysis of subclasses of serum phospholipids showed that choline containing phospholipids, i.e., sphingomyelin (SPG) (14%) and phosphatidylcholine (PC) (76%), are the major phospholipids in the serum of bear. The minor phospholipids included 8% of phosphatidylserine (PS) + phosphatidylinositol (PI), while phosphatidylethanolamine (PE) was only 2% of the total phospholipids. A comparison of phospholipid subclasses showed that PC, PS + PI and SPG were significantly increased, while PE was significantly decreased (P < 0.05) in the hibernating state as compared with the active state in black bears. These results suggest that the catabolism of phospholipids and cholesterol is decreased during hibernation in black bears, leading to their increased levels in the hibernating state as compared with the active state. In summary, our results indicate that serum cholesterol and phospholipid fractions (except PE) are increased during hibernation in bears. It is proposed that the increase of these lipids may be due to the altered metabolism of lipoproteins that are responsible for the clearance of the lipids. ?? 2002 E??ditions scientifiques et me??dicales Elsevier SAS and Socie??te?? franc??aise de biochimie et biologie mole??culaire. All rights reserved.

  6. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    PubMed Central

    2010-01-01

    Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content. PMID:20487541

  7. HDL (Good), LDL (Bad) Cholesterol and Triglycerides

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More HDL (Good), LDL (Bad) Cholesterol and Triglycerides Updated:May 3,2018 Cholesterol isn’ ... be measured by a blood test. LDL (Bad) Cholesterol LDL cholesterol is called “bad” cholesterol. Think of ...

  8. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.

    PubMed

    Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans

    2018-03-01

    Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents.

    PubMed

    Dumont, Julie; Huybrechts, Inge; Spinneker, Andre; Gottrand, Frédéric; Grammatikaki, Evangelia; Bevilacqua, Noemi; Vyncke, Krishna; Widhalm, Kurt; Kafatos, Anthony; Molnar, Denes; Labayen, Idoia; Gonzalez-Gross, Marcela; Amouyel, Philippe; Moreno, Luis A; Meirhaeghe, Aline; Dallongeville, Jean

    2011-07-01

    Two rate-limiting enzymes in PUFA biosynthesis, Δ5- and Δ6-desaturases, are encoded by the FADS1 and FADS2 genes, respectively. Genetic variants in the FADS1-FADS2 gene cluster are associated with changes in plasma concentrations of PUFA, HDL- and LDL-cholesterol, and TG. However, little is known about whether dietary PUFA intake modulates these associations, especially in adolescents. We assessed whether dietary linoleic acid (LA) or α-linolenic acid (ALA) modulate the association between the FADS1 rs174546 polymorphism and concentrations of PUFA, other lipids, and lipoproteins in adolescents. Dietary intakes of LA and ALA, FADS1 rs174546 genotypes, PUFA levels in serum phospholipids, and serum concentrations of TG, cholesterol, and lipoproteins were determined in 573 European adolescents from the HELENA study. The sample was stratified according to the median dietary LA (≤9.4 and >9.4 g/d) and ALA (≤1.4 and >1.4 g/d) intakes. The associations between FADS1 rs174546 and concentrations of PUFA, TG, cholesterol, and lipoproteins were not affected by dietary LA intake (all P-interaction > 0.05). Similarly, the association between the FADS1 rs174546 polymorphism and serum phospholipid concentrations of ALA or EPA was not modified by dietary ALA intake (all P-interaction > 0.05). In contrast, the rs174546 minor allele was associated with lower total cholesterol concentrations (P = 0.01 under the dominant model) and non-HDL-cholesterol concentrations (P = 0.02 under the dominant model) in the high-ALA-intake group but not in the low-ALA-intake group (P-interaction = 0.01). These results suggest that dietary ALA intake modulates the association between FADS1 rs174546 and serum total and non-HDL-cholesterol concentrations at a young age.

  10. High-density lipoprotein cholesterol subfractions and lecithin: cholesterol acyltransferase activity in collegiate soccer players.

    PubMed

    Imamura, H; Nagata, A; Oshikata, R; Yoshimura, Y; Miyamoto, N; Miyahara, K; Oda, K; Iide, K

    2013-05-01

    Many of the published data on the lipid profile of athletes is based on studies of endurance athletes. The data on soccer players are rare. The purpose of this study was to examine serum high-density lipoprotein cholesterol subfractions and lecithin:cholesterol acyltransferase activity in collegiate soccer players. 31 well-trained male collegiate soccer players were divided into 2 groups: 16 defenders and 15 offenders. They were compared with 16 sedentary controls. Dietary information was obtained with a food frequency questionnaire. The subjects were all non-smokers and were not taking any drug known to affect the lipid and lipoprotein metabolism. The offenders had significantly higher high-density lipoprotein cholesterol, high-density lipoprotein2 cholesterol, and apolipoprotein A-I than the defenders and controls, whereas the defenders had the significantly higher high-density lipoprotein2 cholesterol than the controls. Both groups of athletes had significantly higher lecithin:cholesterol acyltransferase activity than the controls. The results indicate that favorable lipid and lipoprotein profile could be obtained by vigorous soccer training. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    PubMed

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Serine biosynthesis and transport defects.

    PubMed

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells.

    PubMed

    Wüstner, Daniel; Lund, Frederik W; Röhrl, Clemens; Stangl, Herbert

    2016-01-01

    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences and collaborative efforts with Bob Bittman for studying diffusion in the plasma membrane (PM) and uptake of BChol in a quantitative manner. For that purpose, we used a variety of fluorescence approaches including fluorescence correlation spectroscopy and its imaging variants, fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we highlight the suitability of BChol for determining transport of lipoprotein-derived sterol using electron microscopy (EM) and show that this approach ideally complements fluorescence studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Cholesterol and related sterols autoxidation.

    PubMed

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  15. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux. Copyright © 2013. Published by Elsevier Ireland Ltd.

  16. α-Synuclein Regulates Neuronal Cholesterol Efflux.

    PubMed

    Hsiao, Jen-Hsiang T; Halliday, Glenda M; Kim, Woojin Scott

    2017-10-19

    α-Synuclein is a neuronal protein that is at the center of focus in understanding the etiology of a group of neurodegenerative diseases called α-synucleinopathies, which includes Parkinson's disease (PD). Despite much research, the exact physiological function of α-synuclein is still unclear. α-Synuclein has similar biophysical properties as apolipoproteins and other lipid-binding proteins and has a high affinity for cholesterol. These properties suggest a possible role for α-synuclein as a lipid acceptor mediating cholesterol efflux (the process of removing cholesterol out of cells). To test this concept, we "loaded" SK-N-SH neuronal cells with fluorescently-labelled cholesterol, applied exogenous α-synuclein, and measured the amount of cholesterol removed from the cells using a classic cholesterol efflux assay. We found that α-synuclein potently stimulated cholesterol efflux. We found that the process was dose and time dependent, and was saturable at 1.0 µg/mL of α-synuclein. It was also dependent on the transporter protein ABCA1 located on the plasma membrane. We reveal for the first time a novel role of α-synuclein that underscores its importance in neuronal cholesterol regulation, and identify novel therapeutic targets for controlling cellular cholesterol levels.

  17. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol.

    PubMed

    Kumar, G Aditya; Roy, Saptarshi; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2016-09-01

    Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    PubMed

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  19. Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle

    PubMed Central

    Cong, P.; Pricolo, V.; Biancani, P.

    2010-01-01

    The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a δ-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM. PMID:20558763

  20. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis

    PubMed Central

    Roepke, Torsten K.; King, Elizabeth C.; Reyna-Neyra, Andrea; Paroder, Monika; Purtell, Kerry; Koba, Wade; Fine, Eugene; Lerner, Daniel J.; Carrasco, Nancy; Abbott, Geoffrey W.

    2009-01-01

    Thyroid dysfunction affects 1–4% of the population worldwide, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that KCNQ1 and KCNE2 form a TSH-stimulated, constitutively-active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 impaired thyroid iodide accumulation up to 8-fold, impaired maternal milk ejection and halved milk T4 content, causing hypothyroidism, 50% reduced litter size, dwarfism, alopecia, goiter, and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by T3/T4 administration to pups, by supplementing dams with T4 pre- and postpartum, or by pre-weaning surrogacy with Kcne2+/+ dams; conversely these symptoms were elicited in Kcne2+/+ pups by surrogacy with Kcne2−/− dams. The data identify a critical thyrocyte K+ channel, provide a possible novel therapeutic avenue for thyroid disorders, and predict an endocrine component to some previously-identified KCNE2- and KCNQ1-linked human cardiac arrhythmias. PMID:19767733

  1. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    PubMed Central

    Stellaard, Frans

    2017-01-01

    The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath) as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1) The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2) The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3) The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded. PMID:28321334

  2. Regulation of cell wall biosynthesis.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  3. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly

  4. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    PubMed

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  5. Apolipoprotein E gene polymorphism and total serum cholesterol level in Iranian population.

    PubMed

    Bazzaz, J T; Nazari, M; Nazem, H; Amiri, P; Fakhrzadeh, H; Heshmat, R; Abbaszadeh, S; Amoli, M M

    2010-01-01

    Apolipoprotein E (APOE) is known as a major regulator of blood lipid levels in humans. A number of APOE gene allelic variants have been reported including E2, E3 and E4. Recent studies suggested a role for APOE in obesity and increased Body Mass Index (BMI) and plasma lipid levels in obese children. The aim of this study was to examine the association between APOE genetic variants and the BMI and lipid profile in an Iranian cohort. Samples were obtained from subjects who participated in a study based on the WHO-designed MONICA (multinational monitoring of trends and determinants in cardiovascular disease) study for coronary artery disease risk assessment in Zone 17 of Tehran. The study was approved by the local ethical committee. Informed consent was obtained from all subjects included in this study. Subjects (n=320) were recruited. The level of triglyceride (TG) and total serum cholesterol was tested for all subjects in this study. Genotyping for APOE was carried using polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP)technique. Levels of significance were determined using contingency tables by either Chi-square or Fisher exact analysis using the STATA (v8) software. The analysis of regression and significance of differences for level of cholesterol and TG was established by one-way analysis of variance followed by Dunnett post hoc multiple comparison tests using SPSS software Version 11.5. The frequency of allele E2 was significantly higher in patients with total serum cholesterol level <200 mg/dl (P 0.01 OR 2.1 95% CI 1.1-4.2). The association found in this study between allele E2 and lower total cholesterol level had been reported in previous studies. We have also observed that the frequency of genotype E2/E3 and E2/E4 was significantly higher in patients with normal total serum cholesterol level compared to patients with abnormal cholesterol (P=0.003 OR 2.4 95% CI; 1.3-4.6). Our data needs to be repeated in a larger population with

  6. A novel trigger for cholesterol-dependent smooth muscle contraction mediated by the sphingosylphosphorylcholine-Rho-kinase pathway in the rat basilar artery: a mechanistic role for lipid rafts.

    PubMed

    Shirao, Satoshi; Yoneda, Hiroshi; Shinoyama, Mizuya; Sugimoto, Kazutaka; Koizumi, Hiroyasu; Ishihara, Hideyuki; Oka, Fumiaki; Sadahiro, Hirokazu; Nomura, Sadahiro; Fujii, Masami; Tamechika, Masakatsu; Kagawa, Yoshiteru; Owada, Yuji; Suzuki, Michiyasu

    2015-05-01

    Hyperlipidemia is a risk factor for abnormal cerebrovascular events. Rafts are cholesterol-enriched membrane microdomains that influence signal transduction. We previously showed that Rho-kinase-mediated Ca(2+) sensitization of vascular smooth muscle (VSM) induced by sphingosylphosphorylcholine (SPC) has a pivotal role in cerebral vasospasm. The goals of the study were to show SPC-Rho-kinase-mediated VSM contraction in vivo and to link this effect to cholesterol and rafts. The SPC-induced VSM contraction measured using a cranial window model was reversed by Y-27632, a Rho-kinase inhibitor, in rats fed a control diet. The extent of SPC-induced contraction correlated with serum total cholesterol. Total cholesterol levels in the internal carotid artery (ICA) were significantly higher in rats fed a cholesterol diet compared with a control diet or a β-cyclodextrin diet, which depletes VSM cholesterol. Western blotting and real-time PCR revealed increases in flotillin-1, a raft marker, and flotillin-1 mRNA in the ICA in rats fed a cholesterol diet, but not in rats fed the β-cyclodextrin diet. Depletion of cholesterol decreased rafts in VSM cells, and prevention of an increase in cholesterol by β-cyclodextrin inhibited SPC-induced contraction in a cranial window model. These results indicate that cholesterol potentiates SPC-Rho-kinase-mediated contractions of importance in cerebral vasospasm and are compatible with a role for rafts in this process.

  7. Cholesterol effectively blocks entry of flavivirus.

    PubMed

    Lee, Chyan-Jang; Lin, Hui-Ru; Liao, Ching-Len; Lin, Yi-Ling

    2008-07-01

    Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2) are enveloped flaviviruses that enter cells through receptor-mediated endocytosis and low pH-triggered membrane fusion and then replicate in intracellular membrane structures. Lipid rafts, cholesterol-enriched lipid-ordered membrane domains, are platforms for a variety of cellular functions. In this study, we found that disruption of lipid raft formation by cholesterol depletion with methyl-beta-cyclodextrin or cholesterol chelation with filipin III reduces JEV and DEN-2 infection, mainly at the intracellular replication steps and, to a lesser extent, at viral entry. Using a membrane flotation assay, we found that several flaviviral nonstructural proteins are associated with detergent-resistant membrane structures, indicating that the replication complex of JEV and DEN-2 localizes to the membranes that possess the lipid raft property. Interestingly, we also found that addition of cholesterol readily blocks flaviviral infection, a result that contrasts with previous reports of other viruses, such as Sindbis virus, whose infectivity is enhanced by cholesterol. Cholesterol mainly affected the early step of the flavivirus life cycle, because the presence of cholesterol during viral adsorption greatly blocked JEV and DEN-2 infectivity. Flavirial entry, probably at fusion and RNA uncoating steps, was hindered by cholesterol. Our results thus suggest a stringent requirement for membrane components, especially with respect to the amount of cholesterol, in various steps of the flavivirus life cycle.

  8. Phospholipase A2-treated human high-density lipoprotein and cholesterol movements: exchange processes and lecithin: cholesterol acyltransferase reactivity.

    PubMed

    Chollet, F; Perret, B P; Chap, H; Douste-Blazy, L

    1986-02-12

    Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase

  9. Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors.

    PubMed

    Morel, Sophia; Leahy, Jade; Fournier, Maryse; Lamarche, Benoit; Garofalo, Carole; Grimard, Guy; Poulain, Floriane; Delvin, Edgard; Laverdière, Caroline; Krajinovic, Maja; Drouin, Simon; Sinnett, Daniel; Marcil, Valérie; Levy, Emile

    2017-05-01

    Survivors of acute lymphoblastic leukemia (ALL), the most common cancer in children, are at increased risk of developing late cardiometabolic conditions. However, the mechanisms are not fully understood. This study aimed to characterize the plasma lipid profile, Apo distribution, and lipoprotein composition of 80 childhood ALL survivors compared with 22 healthy controls. Our results show that, despite their young age, 50% of the ALL survivors displayed dyslipidemia, characterized by increased plasma triglyceride (TG) and LDL-cholesterol, as well as decreased HDL-cholesterol. ALL survivors exhibited lower plasma Apo A-I and higher Apo B-100 and C-II levels, along with elevated Apo C-II/C-III and B-100/A-I ratios. VLDL fractions of dyslipidemic ALL survivors contained more TG, free cholesterol, and phospholipid moieties, but less protein. Differences in Apo content were found between ALL survivors and controls for all lipoprotein fractions except HDL 3 HDL 2 , especially, showed reduced Apo A-I and raised Apo A-II, leading to a depressed Apo A-I/A-II ratio. Analysis of VLDL-Apo Cs disclosed a trend for higher Apo C-III 1 content in dyslipidemic ALL survivors. In conclusion, this thorough investigation demonstrates a high prevalence of dyslipidemia in ALL survivors, while highlighting significant abnormalities in their plasma lipid profile and lipoprotein composition. Special attention must, therefore, be paid to these subjects given the atherosclerotic potency of lipid and lipoprotein disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Ursodeoxycholic acid lowers bile lithogenicity by regulating SCP2 expression in rabbit cholesterol gallstone models

    PubMed Central

    Cui, Yunfeng; Li, Zhonglian; Zhao, Erpeng; Zhang, Ju; Cui, Naiqiang

    2012-01-01

    Aims: We designed this study to get insight into the disorder of lipid metabolism during cholesterol gallstone formation and evaluate the effect of ursodeoxycholic acid on the improvement of bile lithogenicity and on expression of lipid related genes. Methods: Rabbit cholesterol gallstone models were induced by high cholesterol diet. Bile, blood and liver tissues were obtained from rabbits after 0, 1, 2, 3, 4 and 5 weeks. Bile and blood lipids were measured enzymatically. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) and sterol carrier protein 2 (SCP2) mRNA expressions were detected by using quantitative real-time RT-PCR. Cholesterol saturation index (CSI) was calculated by using Carey table to represent the bile lithogenicity. Results: Rates of gallstone formation of the 4 and 5 week treatment groups were 100 %, but that of the ursodeoxycholic acid treatment group was only 33.3 %. Expression of HMGCR and SCP2 mRNA in the 4 week group was upregulated and that of CYP7A1 mRNA decreased as compared with the 0 week group. Ursodeoxycholic acid could significantly extend nucleation time of bile and lower CSI. Ursodeoxycholic acid could reduce the expression of SCP2, but couldn't influence expression of HMGCR and CYP7A1. Conclusions: Abnormal expression of HMGCR, CYP7A1 and SCP2 might lead to high lithogenicity of bile. Ursodeoxycholic acid could improve bile lipids and lower bile lithogenicity, thereby reducing the incidence of gallstones. So it might be a good preventive drug for cholesterol gallstones. PMID:27847447

  11. Steroidogenesis in plants--Biosynthesis and conversions of progesterone and other pregnane derivatives.

    PubMed

    Lindemann, Peter

    2015-11-01

    In plants androstanes, estranes, pregnanes and corticoids have been described. Sometimes 17β-estradiol, androsterone, testosterone or progesterone were summarized as sex hormones. These steroids influence plant development: cell divisions, root and shoot growth, embryo growth, flowering, pollen tube growth and callus proliferation. First reports on the effect of applicated substances and of their endogenous occurrence date from the early twenties of the last century. This caused later on doubts on the identity of the compounds. Best investigated is the effect of progesterone. Main steps of the progesterone biosynthetic pathway have been analyzed in Digitalis. Cholesterol-side-chain-cleavage, pregnenolone and progesterone formation as well as the stereospecific reduction of progesterone are described and the corresponding enzymes are presented. Biosynthesis of androstanes, estranes and corticoids is discussed. Possible progesterone receptors and physiological reactions on progesterone application are reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cholesterol orientation and tilt modulus in DMPC bilayers

    PubMed Central

    Khelashvili, George; Pabst, Georg; Harries, Daniel

    2010-01-01

    We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and Cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol tilt may be an important factor for inducing membrane ordering. In particular, we find that as cholesterol concentration increases (1%–40% cholesterol) the average cholesterol orientation changes in a manner strongly (anti)correlated with the variation in membrane thickness. Furthermore, cholesterol orientation is found to be determined by the aligning force exerted by other cholesterol molecules. To quantify this aligning field, we analyzed cholesterol orientation using, to our knowledge, the first estimates of the cholesterol tilt modulus χ from MD simulations. Our calculations suggest that the aligning field that determines χ is indeed strongly linked to sterol composition. This empirical parameter (χ) should therefore become a useful quantitative measure to describe cholesterol interaction with other lipids in bilayers, particularly in various coarse-grained force fields. PMID:20518573

  13. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  14. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation.

    PubMed

    Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G

    2013-02-15

    Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P < .01), with HDL-c inversely correlated with HIV RNA (ρ = -0.52; P < .01). Expression of genes involved in cholesterol uptake (LDLR, CD36), synthesis (HMGCR), and regulation (SREBP2, LXRA) was significantly lower in both ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.

  15. A Concise Synthesis of ent-Cholesterol

    PubMed Central

    Belani, Jitendra D.; Rychnovsky, Scott D.

    2009-01-01

    ent-Cholesterol was synthesized in 16 steps from commercially available (S)-citronellol. The overall yield for the synthesis was 2.0%. This route is amenable to gram scale preparation of ent-cholesterol. Isotopic incorporation near the end of the synthesis was achieved using labeled methyl iodide. This synthesis is the most practical to date, and it will make ent-cholesterol more readily available to use as a probe of the function and metabolism of cholesterol. PMID:18336043

  16. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content.

    PubMed

    Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A

    2018-05-01

    Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The influence of saponins on cell membrane cholesterol.

    PubMed

    Böttger, Stefan; Melzig, Matthias F

    2013-11-15

    We studied the influence of structurally different saponins on the cholesterol content of cellular membranes. Therefore a cell culture model using ECV-304 urinary bladder carcinoma cells was developed. To measure the cholesterol content we used radiolabeled (3)H-cholesterol which is chemically and physiologically identical to natural cholesterol. The cells were pre-incubated with (3)H-cholesterol and after a medium change, they were treated with saponins to assess a saponin-induced cholesterol liberation from the cell membrane. In another experiment the cells were pre-incubated with saponins and after a medium change, they were treated with (3)H-cholesterol to assess a saponin-induced inhibition of cholesterol uptake into the cell membrane. Furthermore, the membrane toxicity of all applied saponins was analyzed using extracellular LDH quantification and the general cytotoxicity was analyzed using a colorimetric MTT-assay and DNA quantification. Our results revealed a correlation between membrane toxicity and general cytotoxicity. We also compared the results from the experiments on the saponin-induced cholesterol liberation as well as the saponin-induced inhibition of cholesterol uptake with the membrane toxicity. A significant reduction in the cell membrane cholesterol content was noted for those saponins who showed membrane toxicity (IC50 <60 μM). These potent membrane toxic saponins either liberated (3)H-cholesterol from intact cell membranes or blocked the integration of supplemented (3)H-cholesterol into the cell membrane. Saponins with little influence on the cell membrane (IC50 >100 μM) insignificantly altered the cell membrane cholesterol content. The results suggested that the general cytotoxicity of saponins is mainly dependent on their membrane toxicity and that the membrane toxicity might be caused by the loss of cholesterol from the cell membrane. We also analyzed the influence of a significantly membrane toxic saponin on the cholesterol content of

  18. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  19. Unfolding story of inclusion-body myositis and myopathies: role of misfolded proteins, amyloid-beta, cholesterol, and aging.

    PubMed

    Askanas, Valerie; Engel, W King

    2003-03-01

    Sporadic inclusion-body myositis and hereditary inclusion-body myopathies are progressive muscle diseases leading to severe disability. We briefly summarize their clinical pictures and pathologic diagnostic criteria and discuss the latest advances in illuminating their pathogenic mechanism(s). We emphasize how different etiologies might lead to the strikingly similar pathology and possibly similar pathogenic cascade. On the basis of our research, several processes seem to be important in relation to the still speculative pathogenesis, including (a) increased transcription and accumulation of amyloid-beta precursor protein and accumulation of its proteolytic fragment amyloid-beta; (b) abnormal accumulation of components related to lipid metabolism, for example, cholesterol, accumulation of which is possibly owing to its abnormal trafficking; (c) oxidative stress; (d) accumulations of other Alzheimer's disease-related proteins; and (e) a milieu of muscle cellular aging in which these changes occur. We discuss a potentially very important role of unfolded and/or misfolded proteins as a possible mechanism in the formations of the inclusion bodies and other abnormalities.

  20. Patients' knowledge about fats and cholesterol in the Community Cholesterol Survey Project.

    PubMed

    Kelly, R B; Hazey, J A; McMahon, S H

    1992-09-01

    The Community Cholesterol Survey Project assessed attitudes, knowledge, and behaviors relating to cholesterol. Survey. Six outpatient primary care practice sites (two urban, two suburban, and two rural) in northeast Ohio. Four hundred seventy-seven site-, age-, and gender-stratified adult patients were enrolled from a total of 604 approached (79% recruitment). Self-administered questionnaire and structured dietitian interview. A knowledge score derived from responses to multiple-choice questions and a knowledge rating given by the study dietitian. Motivation and dietary health were similarly measured. Subjects did worse than random guessing for seven of 12 knowledge questions regarding label reading, fats, and cholesterol. In particular, the meaning of "hydrogenated" and the relative energy content of fats was poorly understood. Knowledge scores and ratings were significantly correlated (r = .52). Knowledge ratings were higher in those who were receiving a cholesterol-lowering diet or who had received other advice or treatment from their physician for high cholesterol level. By analysis of variance, knowledge measures were found to have significant independent positive associations with higher social status (P < .001) and living in a suburban area (P < .05). Motivation and dietary health demonstrated similar relationships to social status. To make use of patients' motivation for change, it will be essential to provide education at an effective level. Instruction in label reading or creation of more meaningful food labels may have the greatest impact. A particular challenge is the education of less advantaged patients to promote healthy nutrition practices.

  1. Propiconazole enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras famesylation

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic ...

  2. Altered Cholesterol and Fatty Acid Metabolism in Huntington Disease

    PubMed Central

    Block, Robert C.; Dorsey, E. Ray; Beck, Christopher A.; Brenna, J. Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease. PMID:20802793

  3. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  4. Methotrexate in Atherogenesis and Cholesterol Metabolism

    PubMed Central

    Coomes, Eric; Chan, Edwin S. L.; Reiss, Allison B.

    2011-01-01

    Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists. PMID:21490773

  5. Diphenyl diselenide decreases serum levels of total cholesterol and tissue oxidative stress in cholesterol-fed rabbits.

    PubMed

    de Bem, Andreza Fabro; Portella, Rafael de Lima; Colpo, Elisângela; Duarte, Marta Maria Medeiros Frescura; Frediane, Andressa; Taube, Paulo Sergio; Nogueira, Cristina Wayne; Farina, Marcelo; da Silva, Edson Luiz; Teixeira Rocha, João Batista

    2009-07-01

    Hypercholesterolaemia and oxidative stress are well-known risk factors in coronary artery diseases. Diphenyl diselenide is a synthetic organoselenium compound that has been shown to have in vitro and in vivo antioxidant properties. In this study, we investigated whether diphenyl diselenide could reduce the hypercholesterolaemia and diminish the tissue oxidative stress in cholesterol-fed rabbits. Twenty-four New Zealand white male rabbits were randomly divided into four groups. Each group was fed a different diet as follows: Control group--regular chow; Cholesterol group--1% cholesterol-enriched diet; diphenyl diselenide group--regular diet supplemented with 10 ppm diphenyl diselenide; and Chol/diphenyl diselenide group--the same cholesterol-rich supplemented with 10 ppm diphenyl diselenide. After 45 days of treatment, the rabbits were killed and the blood, liver, and brain were used for laboratory analysis. The results showed that the serum levels of total cholesterol were markedly increased in cholesterol-fed rabbits and the consumption of diphenyl diselenide decreased these levels approximately twofold in Chol/diphenyl diselenide rabbits (P < 0.05). The intake of diphenyl diselenide by hypercholesterolaemic rabbits diminished the serum and hepatic thiobarbituric acid reactive substances levels as well as the production of reactive oxygen species in the blood and brain (P < 0.05) when compared to the cholesterol group. In addition, diphenyl diselenide supplementation increased hepatic and cerebral delta-aminolevulinic dehydratase activity and hepatic non-protein thiol groups levels despite hypercholesterolaemia (P < 0.05). In summary, the results showed that diphenyl diselenide reduced the hypercholesterolaemia and the oxidative stress in cholesterol-fed rabbits.

  6. Cholesterol transfer at endosomal-organelle membrane contact sites.

    PubMed

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  7. Anti-TNFα therapy transiently improves high density lipoprotein cholesterol levels and microvascular endothelial function in patients with rheumatoid arthritis: a Pilot Study

    PubMed Central

    2012-01-01

    Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166

  8. 21 CFR 862.1175 - Cholesterol (total) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cholesterol (total) test system. 862.1175 Section... Systems § 862.1175 Cholesterol (total) test system. (a) Identification. A cholesterol (total) test system is a device intended to measure cholesterol in plasma and serum. Cholesterol measurements are used in...

  9. Transcriptional and posttranscriptional inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2 cell proliferation linked pathways.

    PubMed

    Crespo, Rosana; Montero Villegas, Sandra; Abba, Martín C; de Bravo, Margarita G; Polo, Mónica P

    2013-06-01

    Geraniol, present in the essential oils of many aromatic plants, has in vitro and in vivo antitumor activity against several cell lines. We investigated the effects of geraniol on lipid metabolic pathways involved in Hep-G2 cell proliferation and found that geraniol inhibits the mevalonate pathway, phosphatidylcholine biosynthesis, cell growth, and cell cycle progression (with an arrest occurring at the G0/G1 interphase) and increases apoptosis. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting step in cholesterol synthesis, was inhibited at the transcriptional and posttranscriptional levels, as assessed by real-time RT-PCR, Western blots, and [(14)C]HMG-CoA-conversion radioactivity assays. That geraniol decreased cholesterogenesis but increased the incorporation of [(14)C]acetate into other nonsaponifiable metabolites indicated the existence of a second control point between squalene and cholesterol involved in redirecting the flow of cholesterol-derived carbon toward other metabolites of the mevalonate pathway. That exogenous mevalonate failed to restore growth in geraniol-inhibited cells suggests that, in addition to the inhibition of HMGCR, other dose-dependent actions exist through which geraniol can impact the mevalonate pathway and consequently inhibit cell proliferation. These results suggest that geraniol, a nontoxic compound found in many fruits and herbs, exhibits notable potential as a natural agent for combatting cancer and (or) cardiovascular diseases.

  10. The prevalence of abnormal metabolic parameters in obese and overweight children.

    PubMed

    Salvatore, Deborah; Satnick, Ava; Abell, Rebecca; Messina, Catherine R; Chawla, Anupama

    2014-09-01

    This retrospective study aimed to determine the prevalence of abnormal metabolic parameters in obese children and its correlation to the degree of obesity determined by body mass index (BMI). In total, 101 children seen at the Pediatric Gastroenterology Obesity Clinic at Stony Brook Children's University Hospital were enrolled in the study. The degree of obesity was characterized according to the following formula: (patient's BMI/BMI at 95th percentile) × 100%, with class I obesity >100%-120%, class II obesity >120%-140%, and class III obesity >140%. A set of metabolic parameters was evaluated in these patients. Frequency distributions of all study variables were examined using the χ(2) test of independence. Mean differences among the obesity classes and continuous measures were examined using 1-way analysis of variance. Within our study population, we found that 80% of our obese children had a low high-density lipoprotein (HDL) cholesterol level, 58% had elevated fasting insulin levels, and 32% had an elevated alanine aminotransferase (ALT) level. Class II obese children had a 2-fold higher ALT value when compared with class I children (P = .036). Fasting insulin, ALT, HDL cholesterol, and triglyceride levels trended with class of obesity. Obese children in classes II and III are at higher risk for developing abnormal laboratory values. We recommend obese children be further classified to reflect the severity of the obesity since this has predictive significance for comorbidities. Obesity classes I, II, and III could help serve as a screening tool to help communicate risk assessment. © 2013 American Society for Parenteral and Enteral Nutrition.

  11. Cholesterol asymmetry in synaptic plasma membranes.

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  12. The pharmacoeconomic benefits of cholesterol reduction.

    PubMed

    Gonzalez, E R

    1998-02-01

    Recent studies show that cholesterol-lowering therapy can reduce morbidity and mortality in hypercholesterolemic patients without preexisting coronary heart disease (primary prevention) and with coronary heart disease (secondary prevention). The high cost of treatment per event prevented, especially for primary prevention, raises concerns about widespread use of cholesterol-lowering therapy. Does cholesterol reduction reduce utilization of healthcare resources, and can society afford to pay for reducing cholesterol in all patients with hypercholesterolemia, irrespective of risk factors? Is cost-effectiveness of therapy affected by differing cholesterol levels, age of the patients, the duration of therapy, or the presence of risk factors? Current pharmacoeconomic studies support the use of the statins for secondary prevention, and primary prevention in high-risk patients, and provide key information for policy decision making in the treatment of patients with hypercholesterolemia.

  13. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis.

    PubMed

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2017-11-20

    Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production. All of the efforts should lead to ultrahigh PHA accumulation, controllable PHA compositions and molecular weights, open and continuous PHA production with gravity separation processes, resulting in competitive PHA production cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. What Are High Blood Cholesterol and Triglycerides?

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction Cholesterol What Are High Blood Cholesterol and Triglycerides? Cholesterol travels to the body’s cells through the bloodstream by way of lipoproteins (LDL and ...

  15. Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp.

    PubMed

    Souza, Hugo A L; Mariutti, Lilian R B; Bragagnolo, Neura

    2017-05-01

    A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characteristics of human hypo- and hyperresponders to dietary cholesterol.

    PubMed

    Katan, M B; Beynen, A C

    1987-03-01

    The characteristics of people whose serum cholesterol level is unusually susceptible to consumption of cholesterol were investigated. Thirty-two volunteers from the general population of Wageningen, the Netherlands, each participated in three controlled dietary trials in 1982. A low-cholesterol diet was fed during the first half and a high-cholesterol diet during the second half of each trial, and the change (response) of serum cholesterol was measured. The responses in the three trials were averaged to give each subject's mean responsiveness. Fecal excretion of cholesterol and its metabolites were measured in the second trial, and body cholesterol synthesis was calculated. Responsiveness showed a positive correlation with serum high density lipoprotein2 (HDL2) cholesterol (r = 0.41, p less than 0.05) and with serum total cholesterol level on a high-cholesterol diet (r = 0.31, p = 0.09). A negative relation was found with habitual cholesterol consumption (r = -0.62, p less than 0.01), with body mass index (r = -0.50, p less than 0.01), and with the rate of endogenous cholesterol synthesis (r = -0.40, p less than 0.05), but not with the reaction of endogenous cholesterol synthesis rate to an increased intake of cholesterol. No relation was found with age, sex, total caloric needs, or the ratio of primary to secondary fecal steroids. Upon multiple regression analysis, only habitual cholesterol intake and serum total and HDL2 cholesterol levels contributed significantly to the explanation of variance in responsiveness. Thus, a low habitual cholesterol intake, a high serum HDL2 cholesterol level, or a low body weight do not make one less susceptible to dietary cholesterol-induced hypercholesterolemia.

  17. Regulation of Oil Biosynthesis in Algae

    DTIC Science & Technology

    2008-06-25

    for future engineering purposes 3. Biochemical analysis of diacylglycerol acyltransferases ( DGATs ). These are key enzymes of oil biosynthesis...catalyzing the assembly of triacylglycerol in many organisms. 5 Genes predicted to encode DGATs and their role in triacylglycerol biosynthesis were identified

  18. Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities

    PubMed Central

    Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593

  19. The effects of cholesterol on learning and memory.

    PubMed

    Schreurs, Bernard G

    2010-07-01

    Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.

  20. INTRACELLULAR CHOLESTEROL HOMEOSTASIS AND AMYLOID PRECURSOR PROTEIN PROCESSING

    PubMed Central

    Burns, Mark; Rebeck, G. William

    2010-01-01

    Many preclinical and clinical studies have implied a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). In this review we will discuss the movement of intracellular cholesterol and how normal distribution, transport, and export of cholesterol is vital for regulation of the AD related protein, Aβ. We focus on cholesterol distribution in the plasma membrane, transport through the endosomal/lysosomal system, control of cholesterol intracellular signaling at the endoplasmic reticulum and Golgi, the HMG-CoA reductase pathway and finally export of cholesterol from the cell. PMID:20304094

  1. Antibacterial Targets in Fatty Acid Biosynthesis

    PubMed Central

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  2. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis

    PubMed Central

    Xie, Meimin; Kotecha, Vijay R; Andrade, Jon David P; Fox, James G; Carey, Martin C

    2012-01-01

    Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation, we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P < 0.05) by LD but not slowed further by helicobacter infection (males, 9.4 ± 0.5 (uninfected), 9.6 ± 0.5 (infected) on LD compared with 12.5 ± 0.4 and 11.4 ± 0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed. PMID:22331417

  3. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; ...

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered L o phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the L o phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group ismore » in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  4. Cholesterol and Prostate Cancer

    PubMed Central

    Pelton, Kristine; Freeman, Michael R.; Solomon, Keith R.

    2012-01-01

    Summary Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations. PMID:22824430

  5. Serum cholesterol reduction by feeding a high-cholesterol diet containing a lower-molecular-weight polyphenol fraction from peanut skin.

    PubMed

    Tamura, Tomoko; Inoue, Naoko; Shimizu-Ibuka, Akiko; Tadaishi, Miki; Takita, Toshichika; Arai, Soichi; Mura, Kiyoshi

    2012-01-01

    Feeding a high-cholesterol diet with a water-soluble peanut skin polyphenol fraction to rats reduced their plasma cholesterol level, with an increase in fecal cholesterol excretion. The hypocholesterolemic effect was greater with the lower-molecular-weight rather than higher-molecular-weight polyphenol fraction. This effect was possibly due to some oligomeric polyphenols which reduced the solubility of dietary cholesterol in intestinal bile acid-emulsified micelles.

  6. Dietary cholesterol, heart disease risk and cognitive dissonance.

    PubMed

    McNamara, Donald J

    2014-05-01

    In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.

  7. Phytosterol glycosides reduce cholesterol absorption in humans

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  8. Cholesterol treatment guidelines update.

    PubMed

    Safeer, Richard S; Ugalat, Prabha S

    2002-03-01

    Hypercholesterolemia is one of the major contributors to atherosclerosis and coronary heart disease in our society. The National Cholesterol Education Program of the National Institutes of Health has created a set of guidelines that standardize the clinical assessment and management of hypercholesterolemia for practicing physicians and other professionals in the medical community. In May 2001, the National Cholesterol Education Program released its third set of guidelines, reflecting changes in cholesterol management since their previous report in 1993. In addition to modifying current strategies of risk assessment, the new guidelines stress the importance of an aggressive therapeutic approach in the management of hypercholesterolemia. The major risk factors that modify low-density lipoprotein goals include age, smoking status, hypertension, high-density lipoprotein levels, and family history. The concept of "CHD equivalent" is introduced-conditions requiring the same vigilance used in patients with coronary heart disease. Patients with diabetes and those with a 10-year cardiac event risk of 20 percent or greater are considered CHD equivalents. Once low-density lipoprotein cholesterol is at an accepted level, physicians are advised to address the metabolic syndrome and hypertriglyceridemia.

  9. Cholesterol Curves to Identify Population Norms by Age and Sex in Healthy Weight Children

    PubMed Central

    Skinner, Asheley Cockrell; Steiner, Michael J.; Chung, Arlene E.; Perrin, Eliana M.

    2012-01-01

    Objective Develop clinically applicable charts of lipid values illustrating fluctuations throughout childhood and by sex among healthy weight children. Methods The National Health and Nutrition Examination Survey (1999–2008) was used to estimate total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides by age and sex in healthy weight children age 3 to 17 years. Using LMS procedures, the authors created smoothed curves demonstrating population-based 50th percentile for age and the 75th and 95th percentiles. Results The curves were based on 7681 children meeting inclusion criteria. Total cholesterol, HDL, and LDL demonstrated peaks at approximately 8 to 12 years for boys. Similar peaks were evident for girls at slightly younger ages, approximately 7 to 11 years. Triglycerides showed peaks for girls, but values were similar across ages for boys. Conclusions The use of fixed lipid value cutoffs in established guidelines regardless of age or sex likely mislabels many children as abnormal. The authors’ charts may allow for a more nuanced interpretation based on population norms. PMID:22157422

  10. Exchanging partially hydrogenated fat for palmitic acid in the diet increases LDL-cholesterol and endogenous cholesterol synthesis in normocholesterolemic women.

    PubMed

    Sundram, Kalyana; French, Margaret A; Clandinin, M Thomas

    2003-08-01

    Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.

  11. Glycopeptide antibiotic biosynthesis.

    PubMed

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2more » activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of

  13. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  14. CHOLESTEROL REQUIREMENT OF PRIMARY DIPLOID HUMAN FIBROBLASTS

    PubMed Central

    Holmes, Richard; Helms, Judy; Mercer, Gretchen

    1969-01-01

    Primary cultures of fibroblast-like cells were obtained from skin and articular cartilage of human donors in the age bracket of 1 to 15 years. For growth these cultures required 1 mg/liter of cholesterol added to Medium A2 plus acetyl choline, Na pyruvate, and D-galactosamine HCl (APG) containing 10% lipoprotein-free human serum. Established cell lines did not require cholesterol for growth. Eagle's medium could be used in place of Medium A2 plus APG with the same results. Desmosterol could replace cholesterol but lansterol or 7 dehydrocholesterol could not. Other cholesterol precursors were tested and found to be inactive. With the proviso that cholesterol precursors entered the cell and had to be converted to cholesterol to function, it was concluded that the particular primaries studied lacked a functional enzyme system to reduce the double bond at carbon 7. PMID:5786984

  15. Malformation syndromes caused by disorders of cholesterol synthesis

    PubMed Central

    Porter, Forbes D.; Herman, Gail E.

    2011-01-01

    Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome. PMID:20929975

  16. Interaction of pathogens with host cholesterol metabolism.

    PubMed

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  17. Membrane Cholesterol Modulates Superwarfarin Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but notmore » warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.« less

  18. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH.

    PubMed

    Ioannou, George N; Van Rooyen, Derrick M; Savard, Christopher; Haigh, W Geoffrey; Yeh, Matthew M; Teoh, Narci C; Farrell, Geoffrey C

    2015-02-01

    Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥ 3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation.

  19. Status of non-HDL-cholesterol and LDL-cholesterol among subjects with and without metabolic syndrome.

    PubMed

    Khan, Sikandar Hayat; Asif, Naveed; Ijaz, Aamir; Manzoor, Syed Mohsin; Niazi, Najumusaquib Khan; Fazal, Nadeem

    2018-04-01

    To to compare non-high-density lipoprotein and low-density lipoprotein cholesterol among subjects with or without metabolic syndrome, glycation status and nephropathic changes. The comparative cross-sectional study was carried out from Dec 21, 2015, to Nov 15, 2016, at the department of pathology and medicine PNS HAFEEZ and department of chemical pathology and clinical endocrinology (AFIP), and comprised patients of either gender visiting the out-patient department for routine screening. They were evaluated for anthropometric indices, blood pressure and sampled for lipid profile, fasting plasma glucose, glycated haemoglobin, insulin, and urine albumin-to-creatinine ratio. Subjects were segregated based upon presence (Group1) or absence (Group2) of metabolic syndrome based upon criteria of National Cholesterol Education Programme and the International Diabetes Federation. Differences in high and low density lipoprotein cholesterols were calculated between the groups. Of the 229 subjects, 120(52.4%) were women and 109(47.6%) were men. Overall, there were 107(46.7%) subjects in Group 1, and 122(53.3%) in Group 2. Non-high-density lipoprotein cholesterol was significantly different between subjects with and without metabolic syndrome as per both the study criteria (p<0.05 each). . Non-high-density lipoprotein cholesterol levels were higher in subjects with metabolic syndrome.

  20. Cholesterol homeostasis: How do cells sense sterol excess?

    PubMed

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. High cholesterol level is essential for myelin membrane growth.

    PubMed

    Saher, Gesine; Brügger, Britta; Lappe-Siefke, Corinna; Möbius, Wiebke; Tozawa, Ryu-ichi; Wehr, Michael C; Wieland, Felix; Ishibashi, Shun; Nave, Klaus-Armin

    2005-04-01

    Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.

  2. Non-high-density lipoprotein cholesterol vs low-density lipoprotein cholesterol as a risk factor for ischemic stroke: a result from the Kailuan study.

    PubMed

    Wu, Jianwei; Chen, Shengyun; Liu, Liping; Gao, Xiang; Zhou, Yong; Wang, Chunxue; Zhang, Qian; Wang, Anxin; Hussain, Mohammed; Sun, Baoying; Wu, Shouling; Zhao, Xingquan

    2013-06-01

    To compare the predictive value of serum low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol levels for ischemic stroke in the Chinese population. We performed a four-year cohort study of 95 778 men and women, aged 18-98 years, selected from the Kailuan study (2006-2007). Baseline LDL cholesterol levels were estimated using direct test method. Total cholesterol levels were estimated using endpoint test method. The predictive values of LDL cholesterol and non-HDL cholesterol for ischemic stroke were compared. During the follow-up period, there were 1153 incident cases of ischemic stroke. The hazard ratio (HR) for ischemic stroke in the top quintile of LDL cholesterol was the highest among five quintiles (HR: 1·25; 95% confidence interval (CI), 1·01-1·53). The HR in the top quintile of non-HDL cholesterol for ischemic stroke was also the highest among five quintiles (HR: 1·53; 95% CI, 1·24-1·88). Analysis of trends showed a significant positive relationship between ischemic stroke incidence and serum LDL cholesterol level, and non-HDL cholesterol level, respectively (both P < 0·05). The area under the curve of LDL cholesterol and non-HDL cholesterol for ischemic stroke was 0·51 and 0·56, respectively (P < 0·05 for the difference). Serum Non-HDL cholesterol level is a stronger predictor for the risk of ischemic stroke than serum LDL cholesterol level in the Chinese population.

  3. Nonlinear Associations between Plasma Cholesterol Levels and Neuropsychological Function

    PubMed Central

    Wendell, Carrington R.; Zonderman, Alan B.; Katzel, Leslie I.; Rosenberger, William F.; Plamadeala, Victoria V.; Hosey, Megan M.; Waldstein, Shari R.

    2016-01-01

    Objective Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Method Participants were 190 older adults (53% men, ages 54–83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed/dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as <70 vs. 70+) as an effect modifier. Results A significant quadratic effect of total cholesterol2 × age was identified for Logical Memory II (b=−.0013, p=.039), such that the 70+ group performed best at high and low levels of total cholesterol than at mid-range total cholesterol (U-shaped), and the <70 group performed worse at high and low levels of total cholesterol than at mid-range total cholesterol (inverted U-shape). Similarly, significant U- and J-shaped effects of LDL cholesterol2 × age were identified for Visual Reproduction II (b=−.0020, p=.026) and log of Trails B (b=.0001, p=.044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Conclusions Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. PMID:27280580

  4. Nonlinear associations between plasma cholesterol levels and neuropsychological function.

    PubMed

    Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R

    2016-11-01

    Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as <70 vs. 70+) as an effect modifier. A significant quadratic effect of Total Cholesterol² × Age was identified for Logical Memory II ( b = -.0013, p = .039), such that the 70+ group performed best at high and low levels of total cholesterol than at midrange total cholesterol (U-shaped) and the <70 group performed worse at high and low levels of total cholesterol than at midrange total cholesterol (inverted U shape). Similarly, significant U- and J-shaped effects of LDL Cholesterol² × Age were identified for Visual Reproduction II ( b = -.0020, p = .026) and log of the Trail Making Test, Part B (b = .0001, p = .044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Quantitation of cholesterol incorporation into extruded lipid bilayers.

    PubMed

    Ibarguren, Maitane; Alonso, Alicia; Tenchov, Boris G; Goñi, Felix M

    2010-09-01

    Cholesterol incorporation into lipid bilayers, in the form of multilamellar vesicles or extruded large unilamellar vesicles, has been quantitated. To this aim, the cholesterol contents of bilayers prepared from phospholipid:cholesterol mixtures 33-75 mol% cholesterol have been measured and compared with the original mixture before lipid hydration. There is a great diversity of cases, but under most conditions the actual cholesterol proportion present in the extruded bilayers is much lower than predicted. A quantitative analysis of the vesicles is thus required before any experimental study is undertaken. 2010 Elsevier B.V. All rights reserved.

  6. Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal.

    PubMed

    Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin

    2014-12-01

    This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.

  7. How to Lower Cholesterol: MedlinePlus Health Topic

    MedlinePlus

    ... a non-statin cholesterol-lowering treatment option. ... Medicines Heart Diseases High Cholesterol in Children and Teens How to Lower Cholesterol with Diet Quitting Smoking Statins Weight Control National Institutes of ...

  8. Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes.

    PubMed

    Rakers, Lena; Grill, David; Matos, Anna L L; Wulff, Stephanie; Wang, Da; Börgel, Jonas; Körsgen, Martin; Arlinghaus, Heinrich F; Galla, Hans-Joachim; Gerke, Volker; Glorius, Frank

    2018-05-01

    Cholesterol is an essential component of most biological membranes and serves important functions in controlling membrane integrity, organization, and signaling. However, probes to follow the dynamic distribution of cholesterol in live cells are scarce and so far show only limited applicability. Herein, we addressed this problem by synthesizing and characterizing a class of versatile and clickable cholesterol-based imidazolium salts. We show that these cholesterol analogs faithfully mimic the biophysical properties of natural cholesterol in phospholipid mono- and bilayers, and that they integrate into the plasma membrane of cultured and primary human cells. The membrane-incorporated cholesterol analogs can be specifically labeled by click chemistry and visualized in live-cell imaging experiments that show a distribution and behavior comparable with that of endogenous membrane cholesterol. These results indicate that the cholesterol analogs can be used to reveal the dynamic distribution of cholesterol in live cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Survival of adult neurons lacking cholesterol synthesis in vivo

    PubMed Central

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-01

    Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system. PMID:17199885

  10. Survival of adult neurons lacking cholesterol synthesis in vivo.

    PubMed

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  11. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  12. 6-Gingerol Regulates Hepatic Cholesterol Metabolism by Up-regulation of LDLR and Cholesterol Efflux-Related Genes in HepG2 Cells.

    PubMed

    Li, Xiao; Guo, Jingting; Liang, Ning; Jiang, Xinwei; Song, Yuan; Ou, Shiyi; Hu, Yunfeng; Jiao, Rui; Bai, Weibin

    2018-01-01

    Gingerols, the pungent ingredients in ginger, are reported to possess a cholesterol-lowering activity. However, the underlying mechanism remains unclear. The present study was to investigate how 6-gingerol (6-GN), the most abundant gingerol in fresh ginger, regulates hepatic cholesterol metabolism. HepG2 cells were incubated with various concentrations of 6-GN ranging from 50 to 200 μM for 24 h. Results showed that both cellular total cholesterol and free cholesterol decreased in a dose-dependent manner. Besides, 6-GN ranging from 100 to 200 μM increased the LDLR protein and uptake of fluorescent-labeled LDL. Moreover, the mRNA and protein expressions of cholesterol metabolism-related genes were also examined. It was found that 6-GN regulated cholesterol metabolism via up-regulation of LDLR through activation of SREBP2 as well as up-regulation of cholesterol efflux-related genes LXRα and ABCA1.

  13. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    USDA-ARS?s Scientific Manuscript database

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  14. Cholesterol: the debate should be terminated.

    PubMed

    Nathan, David G

    2017-07-01

    Here, I offer personal perspectives on cholesterol homeostasis that reflect my belief that certain aspects of the debate have been overstated.-Nathan, D. G. Cholesterol: the debate should be terminated. © FASEB.

  15. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH

    PubMed Central

    Ioannou, George N.; Van Rooyen, Derrick M.; Savard, Christopher; Haigh, W. Geoffrey; Yeh, Matthew M.; Teoh, Narci C.; Farrell, Geoffrey C.

    2015-01-01

    Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation. PMID:25520429

  16. Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol.

    PubMed

    Xiao, Changting; Dash, Satya; Morgantini, Cecilia; Hegele, Robert A; Lewis, Gary F

    2016-07-01

    Notwithstanding the effectiveness of lowering LDL cholesterol, residual CVD risk remains in high-risk populations, including patients with diabetes, likely contributed to by non-LDL lipid abnormalities. In this Perspectives in Diabetes article, we emphasize that changing demographics and lifestyles over the past few decades have resulted in an epidemic of the "atherogenic dyslipidemia complex," the main features of which include hypertriglyceridemia, low HDL cholesterol levels, qualitative changes in LDL particles, accumulation of remnant lipoproteins, and postprandial hyperlipidemia. We briefly review the underlying pathophysiology of this form of dyslipidemia, in particular its association with insulin resistance, obesity, and type 2 diabetes, and the marked atherogenicity of this condition. We explain the failure of existing classes of therapeutic agents such as fibrates, niacin, and cholesteryl ester transfer protein inhibitors that are known to modify components of the atherogenic dyslipidemia complex. Finally, we discuss targeted repurposing of existing therapies and review promising new therapeutic strategies to modify the atherogenic dyslipidemia complex. We postulate that targeting the central abnormality of the atherogenic dyslipidemia complex, the elevation of triglyceride-rich lipoprotein particles, represents a new frontier in CVD prevention and is likely to prove the most effective strategy in correcting most aspects of the atherogenic dyslipidemia complex, thereby preventing CVD events. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  18. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Zhang, Hong; Qin, Liqiang; Zhai, Chengkai

    2013-02-15

    Wild rice (WR) is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD) is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF) diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC) diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  19. Impact of cholesterol on voids in phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo

    2004-12-01

    Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.

  20. (-)-Menthol biosynthesis and molecular genetics

    NASA Astrophysics Data System (ADS)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  1. Impact of a public cholesterol screening program.

    PubMed

    Fischer, P M; Guinan, K H; Burke, J J; Karp, W B; Richards, J W

    1990-12-01

    The National Cholesterol Education Program (NCEP) has endorsed physician case finding as the primary method to detect individuals with elevated cholesterol levels. Despite this recommendation, promotional and for-profit public screening programs have flourished. We surveyed participants of a mall-based cholesterol screening program 1 year after their screening. Sixty-four percent of those screened had not previously known their cholesterol levels. Those who were newly screened were less likely to benefit from this testing than the general public, since they were older (mean age, 55.3 years), more likely to be female (67.4%), and nonsmokers (88%). Screenees had excellent recall of their cholesterol level (mean absolute reporting error, 0.24 mmol/L [9 mg/dL]) and a good understanding of cholesterol as a coronary heart disease risk. Those with elevated cholesterol levels reported high distress from screening but no reduction in overall psychosocial well-being and an actual decrease in absenteeism. Only 53.7% of all who were advised to seek follow-up because of an elevated screening value had done so within the year following the screening program. However, of those with values greater than 6.2 mmol/L (240 mg/dL), 68% had sought follow-up. Many of those who participate in public screening programs have been previously tested, fall into low-benefit groups, or fail to comply with recommended follow-up. We therefore conclude that cholesterol screening programs of the type now commonly offered are unlikely to contribute greatly to the national efforts to further reduce coronary heart disease.

  2. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    PubMed Central

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  3. Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring.

    PubMed

    Lee, Kuan-I; Chiang, Chin-Wei; Lin, Hui-Ching; Zhao, Jin-Feng; Li, Cheng-Ta; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2016-05-01

    Long-term exposure to di-(2-ethylhexyl) phthalate (DEHP) is highly associated with carcinogenicity, fetotoxicity, psychological disorders and metabolic diseases, but the detrimental effects and mechanisms are not fully understood. We investigated the effect of exposing mouse mothers to DEHP, and the underlying mechanism, on blood pressure, obesity and cholesterol metabolism as well as psychological and learning behaviors in offspring. Tail-cuff plethysmography was used for blood pressure measurement; Western blot used was for phosphorylation and expression of protein; hematoxylin and eosin staining, Nissl staining and Golgi staining were used for histological examination. The serum levels of cholesterol, triglycerides and glucose were measured by blood biochemical analysis. Hepatic cholesterol and triglyceride levels were assessed by colorimetric assay kits. Offspring behaviors were evaluated by open-field activity, elevated plus maze, social preference test and Morris water maze. Maternal DEHP exposure deregulated the phosphorylation of endothelial nitric oxide synthase and upregulated angiotensin type 1 receptor in offspring, which led to increased blood pressure. It led to obesity in offspring by increasing the size of adipocytes in white adipose tissue and number of adipocytes in brown adipose tissue. It increased the serum level of cholesterol in offspring by decreasing the hepatic capacity for cholesterol clearance. The impaired social interaction ability induced by maternal DEHP exposure might be due to abnormal neuronal development. Collectively, our findings provide new evidence that maternal exposure to DEHP has a lasting effect on the physiological functions of the vascular system, adipose tissue and nerve system in offspring.

  4. Targets for Current Pharmacological Therapy in Cholesterol Gallstone Disease

    PubMed Central

    Di Ciaula, Agostino; Wang, David Q.-H.; Wang, Helen H.; Bonfrate, Leonilde; Portincasa, Piero

    2010-01-01

    Summary Gallstone disease is a frequent condition throughout the world and cholesterol stones are the most frequent form in western countries. Current standard treatment of symptomatic gallstone subjects remains laparoscopic cholecystectomy. The selection of patients amenable for non-surgical, medical therapy is of key importance: a careful analysis should consider the natural history of the disease and the overall costs of therapy. Only patients with mild symptoms and small, uncalcified cholesterol gallstones in a functioning gallbladder with a patent cystic duct will be considered for oral litholysis by the hydrophilic ursodeoxycholic acid (UDCA) hopefully leading to cholesterol desaturation of bile and progressive stone dissolution. Recent studies have raised the possibility that cholesterol-lowering agents which inhibit hepatic cholesterol synthesis (statins) or intestinal cholesterol absorption (ezetimibe), or drugs acting on specific nuclear receptors involved in cholesterol and bile acid homeostasis may offer, alone or in combination, additional medical therapeutic tools for treating cholesterol gallstones. Recent perspectives on medical treatment of cholesterol gallstone disease will be discussed in this chapter. PMID:20478485

  5. Dietary Phospholipids and Intestinal Cholesterol Absorption

    PubMed Central

    Cohn, Jeffrey S.; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W. S.; Tandy, Sally

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit. PMID:22254012

  6. The cholesterol-lowering effect of coconut flakes in humans with moderately raised serum cholesterol.

    PubMed

    Trinidad, Trinidad P; Loyola, Anacleta S; Mallillin, Aida C; Valdez, Divinagracia H; Askali, Faridah C; Castillo, Joan C; Resaba, Rosario L; Masa, Dina B

    2004-01-01

    This study investigated the effect of coconut flakes on serum cholesterol levels of humans with moderately raised serum cholesterol in 21 subjects. The serum total cholesterol of subjects differed and ranged from 259 to 283 mg/dL. The study was conducted in a double-blind randomized crossover design on a 14-week period, consisting of four 2-week experimental periods, with each experimental period separated by a 2-week washout period. The test foods were as follows: corn flakes as the control food, oat bran flakes as the reference food, and corn flakes with 15% and 25% dietary fiber from coconut flakes (made from coconut flour production). Results showed a significant percent reduction in serum total and low-density lipoprotein (LDL) cholesterol (in mg/dL) for all test foods, except for corn flakes, as follows: oat bran flakes, 8.4 +/- 1.4 and 8.8 +/- 6.0, respectively; 15% coconut flakes, 6.9 +/- 1.1 and 11.0 +/- 4.0, respectively; and 25% coconut flakes, 10.8 +/- 1.3 and 9.2 +/- 5.4, respectively. Serum triglycerides were significantly reduced for all test foods: corn flakes, 14.5 +/- 6.3%; oat bran flakes, 22.7 +/- 2.9%; 15% coconut flakes, 19.3 +/- 5.7%; and 25% coconut flakes, 21.8 +/- 6.0%. Only 60% of the subjects were considered for serum triglycerides reduction (serum triglycerides >170 mg/dL). In conclusion, both 15% and 25% coconut flakes reduced serum total and LDL cholesterol and serum triglycerides of humans with moderately raised serum cholesterol levels. Coconut flour is a good source of both soluble and insoluble dietary fiber, and both types of fiber may have significant role in the reduction of the above lipid biomarker. To our knowledge, this is the first study conducted to show a relationship between dietary fiber from a coconut by-product and a lipid biomarker. Results from this study serves as a good basis in the development of coconut flakes/flour as a functional food, justifying the increased production of coconut and coconut by-products.

  7. Regulation of Oil Biosynthesis in Algae

    DTIC Science & Technology

    2011-03-14

    transportation fuels can potentially be addressed by exploring oil (triacylglycerol) biosynthesis in microalgae . Many microalgae , including Chlamydomonas...biosynthesis in microalgae have not been studied at the molecular level. Chlamydomonas is being used as a microalgal model to identify genes and regulatory...of this phenomenon will shed light on the physiological significance of oil production in microalgae . A first paper describing this interesting

  8. Cholesterol, Cholesterol-Lowering Medication Use, and Breast Cancer Outcome in the BIG 1-98 Study.

    PubMed

    Borgquist, Signe; Giobbie-Hurder, Anita; Ahern, Thomas P; Garber, Judy E; Colleoni, Marco; Láng, István; Debled, Marc; Ejlertsen, Bent; von Moos, Roger; Smith, Ian; Coates, Alan S; Goldhirsch, Aron; Rabaglio, Manuela; Price, Karen N; Gelber, Richard D; Regan, Meredith M; Thürlimann, Beat

    2017-04-10

    Purpose Cholesterol-lowering medication (CLM) has been reported to have a role in preventing breast cancer recurrence. CLM may attenuate signaling through the estrogen receptor by reducing levels of the estrogenic cholesterol metabolite 27-hydroxycholesterol. The impact of endocrine treatment on cholesterol levels and hypercholesterolemia per se may counteract the intended effect of aromatase inhibitors. Patients and Methods The Breast International Group (BIG) conducted a randomized, phase III, double-blind trial, BIG 1-98, which enrolled 8,010 postmenopausal women with early-stage, hormone receptor-positive invasive breast cancer from 1998 to 2003. Systemic levels of total cholesterol and use of CLM were measured at study entry and every 6 months up to 5.5 years. Cumulative incidence functions were used to describe the initiation of CLM in the presence of competing risks. Marginal structural Cox proportional hazards modeling investigated the relationships between initiation of CLM during endocrine therapy and outcome. Three time-to-event end points were considered: disease-free-survival, breast cancer-free interval, and distant recurrence-free interval. Results Cholesterol levels were reduced during tamoxifen therapy. Of 789 patients who initiated CLM during endocrine therapy, the majority came from the letrozole monotherapy arm (n = 318), followed by sequential tamoxifen-letrozole (n = 189), letrozole-tamoxifen (n = 176), and tamoxifen monotherapy (n = 106). Initiation of CLM during endocrine therapy was related to improved disease-free-survival (hazard ratio [HR], 0.79; 95% CI, 0.66 to 0.95; P = .01), breast cancer-free interval (HR, 0.76; 95% CI, 0.60 to 0.97; P = .02), and distant recurrence-free interval (HR, 0.74; 95% CI, 0.56 to 0.97; P = .03). Conclusion Cholesterol-lowering medication during adjuvant endocrine therapy may have a role in preventing breast cancer recurrence in hormone receptor-positive early-stage breast cancer. We recommend that these

  9. Total cholesterol and neuropsychiatric symptoms in Alzheimer's disease: the impact of total cholesterol level and gender.

    PubMed

    Hall, James R; Wiechmann, April R; Johnson, Leigh A; Edwards, Melissa; Barber, Robert C; Cunningham, Rebecca; Singh, Meharvan; O'Bryant, Sid E

    2014-01-01

    Neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) are a major factor in nursing home placement and a primary cause of stress for caregivers. Elevated cholesterol has been linked to psychiatric disorders and has been shown to be a risk factor for AD and to impact disease progression. The present study investigated the relationship between cholesterol and NPS in AD. Data on cholesterol and NPS from 220 individuals (144 females, 76 males) with mild-to-moderate AD from the Texas Alzheimer's Research and Care Consortium (TARCC) cohort were analyzed. The total number of NPS and symptoms of hyperactivity, psychosis, affect and apathy were evaluated. Groups based on total cholesterol (TC; ≥200 vs. <200 mg/dl) were compared with regard to NPS. The impact of gender was also assessed. Individuals with high TC had lower MMSE scores as well as significantly more NPS and more symptoms of psychosis. When stratified by gender, males with high TC had significantly more NPS than females with high TC or than males or females with low TC. The role of elevated cholesterol in the occurrence of NPS in AD appears to be gender and symptom specific. A cross-validation of these findings will have implications for possible treatment interventions, especially for males with high TC.

  10. Alcohol consumption stimulates early steps in reverse cholesterol transport.

    PubMed

    van der Gaag, M S; van Tol, A; Vermunt, S H; Scheek, L M; Schaafsma, G; Hendriks, H F

    2001-12-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathway: cellular cholesterol efflux and plasma cholesterol esterification. Eleven healthy middle-aged men consumed four glasses (40 g of alcohol) of red wine, beer, spirits (Dutch gin), or carbonated mineral water (control) daily with evening dinner, for 3 weeks, according to a 4 x 4 Latin square design. After 3 weeks of alcohol consumption the plasma ex vivo cholesterol efflux capacity, measured with Fu5AH cells, was raised by 6.2% (P < 0.0001) and did not differ between the alcoholic beverages. Plasma cholesterol esterification was increased by 10.8% after alcohol (P = 0.008). Changes were statistically significant after beer and spirits, but not after red wine consumption (P = 0.16). HDL lipids changed after alcohol consumption; HDL total cholesterol, HDL cholesteryl ester, HDL free cholesterol, HDL phospholipids and plasma apolipoprotein A-I all increased (P < 0.01). In conclusion, alcohol consumption stimulates cellular cholesterol efflux and its esterification in plasma. These effects were mostly independent of the kind of alcoholic beverage

  11. Serum cholesterol acceptor capacity in intrauterine growth restricted fetuses.

    PubMed

    Pecks, Ulrich; Rath, Werner; Bauerschlag, Dirk O; Maass, Nicolai; Orlikowsky, Thorsten; Mohaupt, Markus G; Escher, Geneviève

    2017-10-26

    Intrauterine growth restriction (IUGR) is an independent risk factor for the development of cardiovascular diseases later in life. The mechanisms whereby slowed intrauterine growth confers vascular risk are not clearly established. In general, a disturbed cholesterol efflux has been linked to atherosclerosis. The capacity of serum to accept cholesterol has been repeatedly evaluated in clinical studies by the use of macrophage-based cholesterol efflux assays and, if disturbed, precedes atherosclerotic diseases years before the clinical diagnosis. We now hypothesized that circulating cholesterol acceptors in IUGR sera specifically interfere with cholesterol transport mechanisms leading to diminished cholesterol efflux. RAW264.7 cells were used to determine efflux of [3H]-cholesterol in response to [umbilical cord serum (IUGR), n=20; controls (CTRL), n=20]. Cholesterol efflux was lower in IUGR as compared to controls [controls: mean 7.7% fractional [3H]-cholesterol efflux, standard deviation (SD)=0.98; IUGR: mean 6.3%, SD=0.79; P<0.0001]. Values strongly correlated to HDL (ρ=0.655, P<0.0001) and apoE (ρ=0.510, P=0.0008), and mildly to apoA1 (ρ=0.3926, P=0.0122) concentrations. Reduced cholesterol efflux in IUGR could account for the enhanced risk of developing cardiovascular diseases later in life.

  12. Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic

    PubMed Central

    Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A.

    2017-01-01

    ABSTRACT Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. PMID:28246364

  13. Lipoproteins, cholesterol homeostasis and cardiac health.

    PubMed

    Daniels, Tyler F; Killinger, Karen M; Michal, Jennifer J; Wright, Raymond W; Jiang, Zhihua

    2009-06-29

    Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  14. Cholesterol Metabolism in CKD

    PubMed Central

    Reiss, Allison B.; Voloshyna, Iryna; DeLeon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-01-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely impacts lipid balance. Dyslipidemia in CKD is characterized by elevated triglycerides and high density lipoprotein that is both decreased and dysfunctional. This dysfunctional high density lipoprotein becomes pro-inflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglycerides result primarily from defective clearance. The weak association between low density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and pre-clinical evidence of the impact of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134

  15. Reusable and Mediator-Free Cholesterol Biosensor Based on Cholesterol Oxidase Immobilized onto TGA-SAM Modified Smart Bio-Chips

    PubMed Central

    Rahman, Mohammed M.

    2014-01-01

    A reusable and mediator-free cholesterol biosensor based on cholesterol oxidase (ChOx) was fabricated based on self-assembled monolayer (SAM) of thioglycolic acid (TGA) (covalent enzyme immobilization by dropping method) using bio-chips. Cholesterol was detected with modified bio-chip (Gold/Thioglycolic-acid/Cholesterol-oxidase i.e., Au/TGA/ChOx) by reliable cyclic voltammetric (CV) technique at room conditions. The Au/TGA/ChOx modified bio-chip sensor demonstrates good linearity (1.0 nM to 1.0 mM; R = 0.9935), low-detection limit (∼0.42 nM, SNR∼3), and higher sensitivity (∼74.3 µAµM−1cm−2), lowest-small sample volume (50.0 μL), good stability, and reproducibility. To the best of our knowledge, this is the first statement with a very high sensitivity, low-detection limit, and low-sample volumes are required for cholesterol biosensor using Au/TGA/ChOx-chips assembly. The result of this facile approach was investigated for the biomedical applications for real samples at room conditions with significant assembly (Au/TGA/ChOx) towards the development of selected cholesterol biosensors, which can offer analytical access to a large group of enzymes for wide range of biomedical applications in health-care fields. PMID:24949733

  16. Lipidomics Biomarkers of Diet-Induced Hyperlipidemia and Its Treatment with Poria cocos.

    PubMed

    Miao, Hua; Zhao, Yu-Hui; Vaziri, Nosratola D; Tang, Dan-Dan; Chen, Hua; Chen, Han; Khazaeli, Mahyar; Tarbiat-Boldaji, Mehrdokht; Hatami, Leili; Zhao, Ying-Yong

    2016-02-03

    Hyperlipidemia is a major cause of atherosclerotic cardiovascular disease. Poria cocos (PC) is a medicinal product widely used in Asia. This study was undertaken to define the alterations of lipid metabolites in rats fed a high-fat diet to induce hyperlipidemia and to explore efficacy and mechanism of action of PC in the treatment of diet-induced hyperlipidemia. Plasma samples were then analyzed using UPLC-HDMS. The untreated rats fed a high-fat diet exhibited significant elevation of plasma triglyceride and total and low-density lipoprotein (LDL) cholesterol concentrations. This was associated with marked changes in plasma concentrations of seven fatty acids (palmitic acid, hexadecenoic acid, hexanoylcarnitine, tetracosahexaenoic acid, cervonoyl ethanolamide, 3-hydroxytetradecanoic acid, and 5,6-DHET) and five sterols [cholesterol ester (18:2), cholesterol, hydroxytestosterone, 19-hydroxydeoxycorticosterone, and cholic acid]. These changes represented disorders of biosynthesis and metabolism of the primary bile acids, steroids, and fatty acids and mitochondrial fatty acid elongation pathways in diet-induced hyperlipidemia. Treatment with PC resulted in significant improvements of hyperlipidemia and the associated abnormalities of the lipid metabolites.

  17. Effect of honey on serum cholesterol and lipid values.

    PubMed

    Münstedt, Karsten; Hoffmann, Sven; Hauenschild, Annette; Bülte, Michael; von Georgi, Richard; Hackethal, Andreas

    2009-06-01

    Small studies have suggested that honey benefits patients with high cholesterol concentrations. The present study aimed to confirm this finding in a larger group of subjects. Sixty volunteers with high cholesterol, stratified according to gender and hydroxymethylglutaryl-coenzyme A reductase inhibitor (statin) treatment (yes/no), were randomized to receive 75 g of honey solution or a honey-comparable sugar solution once daily over a period of 14 days. Baseline measurements, including body mass index (BMI) and lipid profile, were obtained, and subjects also completed dietary questionnaires and the Inventory for the Assessment of Negative Bodily Affect-Trait form (INKA-h) questionnaire. Measurements were repeated 2 weeks later. BMI and high-density lipoprotein (HDL) cholesterol values were significantly correlated (r = -0.487; P < .001) as were BMI and a lower ratio of low-density lipoprotein (LDL) cholesterol to HDL cholesterol (r = 0.420; P < .001), meaning that subjects with a high BMI had a lower HDL cholesterol value. INKA-h scores and LDL cholesterol values were also significantly correlated (r = 0.273, P = .042). Neither solution influenced significantly cholesterol or triglyceride values in the total group; in women, however, the LDL cholesterol value increased in the sugar solution subgroup but not in the women taking honey. Although ingesting honey did not reduce LDL cholesterol values in general, women may benefit from substituting honey for sugar in their diet. Reducing the BMI lowers the LDL cholesterol value, and psychological interventions also seem important and merit further investigation.

  18. Biosynthesis of coenzyme Q in eukaryotes.

    PubMed

    Kawamukai, Makoto

    2016-01-01

    Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.

  19. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    PubMed

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of cholesterol trafficking with fluorescent probes

    PubMed Central

    Maxfield, Frederick R.; Wüstner, Daniel

    2013-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport processes are not well understood. Fluorescence microscopy is a valuable tool for studying intracellular transport processes, but this method can be challenging for lipid molecules because addition of a fluorophore may alter the properties of the molecule greatly. We discuss the use of fluorescent molecules that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly. PMID:22325611

  1. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  2. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum

    PubMed Central

    Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-01-01

    ABSTRACT For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI. Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA. These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum. IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty

  3. Update on the National Cholesterol Education Program Adult Treatment Panel III guidelines: getting to goal.

    PubMed

    McKenney, James M

    2003-09-01

    Considerable data on the pathophysiology, epidemiology, and treatment of dyslipidemia-induced coronary heart disease (CHD) have accumulated in recent years. These data have been assessed and incorporated into the guidelines of the National Cholesterol Education Program Expert Panel on the Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel [ATP] III). A major focus of the new guidelines is the assessment of the near-term (i.e., 10-yr) risk of experiencing a CHD event and matching the intensity of treatment to this risk. Patients with diabetes and those with a greater than 20% 10-year risk of experiencing a CHD event have been elevated to the risk level of CHD equivalent. The ATP III guidelines also modify several lipid and lipoprotein classifications. A low-density lipoprotein cholesterol (LDL) level below 100 mg/dl is now considered optimum for all individuals. In addition, high-density lipoprotein cholesterol (HDL) and triglyceride cutoff points have been modified to reflect more accurately the risk associated with abnormalities in these lipoproteins. As with the previous guidelines, the primary target of therapy remains LDL. Therapeutic lifestyle changes consisting of diet, weight reduction, and increased physical activity should be included in all treatment regimens. Based on their potent LDL-lowering properties and their proven ability to decrease mortality in a variety of patient populations, statins are generally the first choice for pharmacologic therapy. A secondary target of therapy includes non-HDL goals for patients with high triglyceride levels and the metabolic syndrome, which is characterized by abdominal obesity, elevated triglyceride levels, low HDL levels, and insulin resistance. Management of these secondary targets includes weight reduction and increased physical activity, and treatment of the lipid and nonlipid risk factors. Overall, ATP III represents an aggressive approach to treating dyslipidemia

  4. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  5. Triterpenoid biosynthesis in Euphorbia lathyris latex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed.more » The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.« less

  6. Computational investigation of cholesterol binding sites on mitochondrial VDAC.

    PubMed

    Weiser, Brian P; Salari, Reza; Eckenhoff, Roderic G; Brannigan, Grace

    2014-08-21

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20-30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel.

  7. [Effects of vitamin C administration on cholesterol gallstone formation].

    PubMed

    del Pozo, Reginald; Muñoz, Mirna; Dumas, Andrés; Tapia, Claudio; Muñoz, Katia; Fuentes, Felipe; Maldonado, Mafalda; Jüngst, Dieter

    2014-01-01

    Biliary cholesterol is transported by vesicles and micelles. Cholesterol microcrystals are derived from thermodynamically unstable vesicles. In experimental animals vitamin C deficiency leads to a super-saturation of biliary cholesterol and to the formation of gallstones. To search for a possible relationship between serum levels of vitamin C and the formation of cholesterol gallstones in patients with cholelithiasis. Thirteen patients with cholelithiasis and a programmed surgical intervention were treated with 2 g/day of vitamin C per os for two weeks before surgery. Forty nine patients subjected to a cholecystectomy not supplemented with vitamin C were studied as controls. Plasma concentrations of vitamin C and lipid profiles were measured. The cholesterol saturation index, crystallization time, cholesterol and phospholipid content in vesicles and micelles, separated by gel filtration chromatography, were studied in bile samples obtained from the gallbladder. Vitamin C supplementation did not change significantly plasma lipids and bile lipid concentrations. However, in supplemented patients, significant reductions in vesicular cholesterol content (6.5 ± 4.8% compared to 17.9 ± 14.0% in the control group; p < 0.05) and vesicular cholesterol/phospholipid ratio (0.71 ± 0.53 compared to 1.36 ± 1.15 in controls; p < 0.05), were observed. Vitamin C administration may modify bile cholesterol crystallization process, the first step in cholesterol gallstone formation.

  8. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities.

    PubMed

    Akinci, Baris; Koseoglu, Fatos Dilan; Onay, Huseyin; Yavuz, Sevgi; Altay, Canan; Simsir, Ilgin Yildirim; Ozisik, Secil; Demir, Leyla; Korkut, Meltem; Yilmaz, Nusret; Ozen, Samim; Akinci, Gulcin; Atik, Tahir; Calan, Mehmet; Secil, Mustafa; Comlekci, Abdurrahman; Demir, Tevfik

    2015-09-01

    Acquired partial lipodystrophy (APL) is a rare disorder characterized by progressive selective fat loss. In previous studies, metabolic abnormalities were reported to be relatively rare in APL, whilst they were quite common in other types of lipodystrophy syndromes. In this nationwide cohort study, we evaluated 21 Turkish patients with APL who were enrolled in a prospective follow-up protocol. Subjects were investigated for metabolic abnormalities. Fat distribution was assessed by whole body MRI. Hepatic steatosis was evaluated by ultrasound, MRI and MR spectroscopy. Patients with diabetes underwent a mix meal stimulated C-peptide/insulin test to investigate pancreatic beta cell functions. Leptin and adiponectin levels were measured. Fifteen individuals (71.4%) had at least one metabolic abnormality. Six patients (28.6%) had diabetes, 12 (57.1%) hypertrigylceridemia, 10 (47.6%) low HDL cholesterol, and 11 (52.4%) hepatic steatosis. Steatohepatitis was further confirmed in 2 patients with liver biopsy. Anti-GAD was negative in all APL patients with diabetes. APL patients with diabetes had lower leptin and adiponectin levels compared to patients with type 2 diabetes and healthy controls. However, contrary to what we observed in patients with congenital generalized lipodystrophy (CGL), we did not detect consistently very low leptin levels in APL patients. The mix meal test suggested that APL patients with diabetes had a significant amount of functional pancreatic beta cells, and their diabetes was apparently associated with insulin resistance. Our results show that APL is associated with increased risk for developing metabolic abnormalities. We suggest that close long-term follow-up is required to identify and manage metabolic abnormalities in APL. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis.

    PubMed

    Stefely, Jonathan A; Pagliarini, David J

    2017-10-01

    Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid produced across all domains of life that functions in electron transport and oxidative phosphorylation and whose deficiency causes human diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent progress toward filling these knowledge gaps through both traditional biochemistry and cutting-edge 'omics' approaches. To help fill the remaining gaps, we present questions framed by the recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of numerous human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Tieqiang; Guo Jun; Li Hui

    2006-03-24

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopymore » demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis.« less

  11. Role of chirality in peptide-induced formation of cholesterol-rich domains

    PubMed Central

    2005-01-01

    The chiral specificity of the interactions of peptides that induce the formation of cholesterol-rich domains has not been extensively investigated. Both the peptide and most lipids are chiral, so there is a possibility that interactions between peptide and lipid could require chiral recognition. On the other hand, in our models with small peptides, the extent of folding of the peptide to form a specific binding pocket is limited. We have determined that replacing cholesterol with its enantiomer, ent-cholesterol, alters the modulation of lipid organization by peptides. The phase-transition properties of SOPC (1-stearoyl-2-oleoylphosphatidylcholine):cholesterol [in a 6:4 ratio with 0.2 mol% PtdIns(4,5)P2] are not significantly altered when ent-cholesterol replaces cholesterol. However, in the presence of 10 mol% of a 19-amino-acid, N-terminally myristoylated fragment (myristoyl-GGKLSKKKKGYNVNDEKAK-amide) of the protein NAP-22 (neuronal axonal membrane protein), the lipid mixture containing cholesterol undergoes separation into cholesterol-rich and cholesterol-depleted domains. This does not occur when ent-cholesterol replaces cholesterol. In another example, when N-acetyl-Leu-Trp-Tyr-Ile-Lys-amide (N-acetyl-LWYIK-amide) is added to SOPC:cholesterol (7:3 ratio), there is a marked increase in the transition enthalpy of the phospholipid, indicating separation of a cholesterol-depleted domain of SOPC. This phenomenon completely disappears when ent-cholesterol replaces cholesterol. The all-D-isomer of N-acetyl-LWYIK-amide also induces the formation of cholesterol-rich domains with natural cholesterol, but does so to a lesser extent with ent-cholesterol. Thus specific peptide chirality is not required for interaction with cholesterol-containing membranes. However, a specific chirality of membrane lipids is required for peptide-induced formation of cholesterol-rich domains. PMID:15929726

  12. Novel gene-by-environment interactions: APOB and NPC1L1 variants affect the relationship between dietary and total plasma cholesterol[S

    PubMed Central

    Kim, Daniel S.; Burt, Amber A.; Ranchalis, Jane E.; Jarvik, Ella R.; Rosenthal, Elisabeth A.; Hatsukami, Thomas S.; Furlong, Clement E.; Jarvik, Gail P.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death in developed countries. Plasma cholesterol level is a key risk factor in CVD pathogenesis. Genetic and dietary variation both influence plasma cholesterol; however, little is known about dietary interactions with genetic variants influencing the absorption and transport of dietary cholesterol. We sought to determine whether gut expressed variants predicting plasma cholesterol differentially affected the relationship between dietary and plasma cholesterol levels in 1,128 subjects (772/356 in the discovery/replication cohorts, respectively). Four single nucleotide polymorphisms (SNPs) within three genes (APOB, CETP, and NPC1L1) were significantly associated with plasma cholesterol in the discovery cohort. These were subsequently evaluated for gene-by-environment (GxE) interactions with dietary cholesterol for the prediction of plasma cholesterol, with significant findings tested for replication. Novel GxE interactions were identified and replicated for two variants: rs1042034, an APOB Ser4338Asn missense SNP and rs2072183 (in males only), a synonymous NPC1L1 SNP in linkage disequilibrium with SNPs 5′ of NPC1L1. This study identifies the presence of novel GxE and gender interactions implying that differential gut absorption is the basis for the variant associations with plasma cholesterol. These GxE interactions may account for part of the “missing heritability” not accounted for by genetic associations. PMID:23482652

  13. Reasons for the upsetting cholesterol level during the community investigation from residents, physicians, and social aspects: the China Cholesterol Education Program (CCEP).

    PubMed

    Xie, Jiang; Guan, Fei; Wang, Jia-Hong; Hu, Da-Yi

    2011-10-01

    The community medical center is the first barrier for lipid control. We aimed to survey the residents' cholesterol condition in the community, and pursue the reasons for the upsetting results from various aspects. Residents and physicians were recruited from four community centers. Residents completed questionnaires and a physical examination as well as biochemical analysis. Physicians were also asked to complete a questionnaire, some of which were about basic knowledge of lipids. About 37.0% male and 48.1% female had elevated cholesterol levels. Residents' blood pressure (BP), fasting glucose (FG), body mass index (BMI), and waist circumference (WC) were positively associated with their low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Framingham risk scoring (FRS) was strongly related to cholesterol (P < 0.001 for LDL-C and TC). Residents' higher education grade was positively related to a normal cholesterol condition (P < 0.001), while personal income was negatively related to it. Rural residents had higher percent of population with normal cholesterol level (normal cholesterol rate) than their city counterpart (P < 0.001). Although physicians with college education had a much higher lipid knowledge level themselves, the physicians' factors had almost no relationship with the residents' cholesterol levels. Management of hypercholesterolemia should be an important component of health strategy in Beijing. Education is imperative for residents as well as for physicians.

  14. Cholesterol, APOE genotype, and Alzheimer disease

    PubMed Central

    Hall, K.; Murrell, J.; Ogunniyi, A.; Deeg, M.; Baiyewu, O.; Gao, S.; Gureje, O.; Dickens, J.; Evans, R.; Smith-Gamble, V.; Unverzagt, F.W.; Shen, J.; Hendrie, H.

    2010-01-01

    Objective To examine the relationship between cholesterol and other lipids, APOE genotype, and risk of Alzheimer disease (AD) in a population-based study of elderly Yoruba living in Ibadan, Nigeria. Methods Blood samples and clinical data were collected from Yoruba study participants aged 70 years and older (N = 1,075) as part of the Indianapolis-Ibadan Dementia Project, a longitudinal epidemiologic study of AD. Cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride levels were measured in fasting blood samples. DNA was extracted and APOE was genotyped. Diagnoses of AD were made by consensus using National Institute of Neurologic Disorders/Stroke-Alzheimer's Disease and Related Disorders Association criteria. Results Logistic regression models showed interaction after adjusting for age and gender between APOE-ε4 genotype and biomarkers in the risk of AD cholesterol*genotype (p = 0.022), LDL*genotype (p = 0.018), and triglyceride*genotype (p = 0.036). Increasing levels of cholesterol and LDL were associated with increased risk of AD in individuals without the APOE-ε4 allele, but not in those with APOE-ε4. There was no significant association between levels of triglycerides and AD risk in those without APOE-ε4. Conclusions There was a significant interaction between cholesterol, APOE-ε4, and the risk of Alzheimer disease (AD) in the Yoruba, a population that has lower cholesterol levels and lower incidence rates of AD compared to African Americans. APOE status needs to be considered when assessing the relationship between lipid levels and AD risk in population studies. PMID:16434658

  15. Cholesterol and myelin biogenesis.

    PubMed

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  16. Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux.

    PubMed

    Leventhal, A R; Chen, W; Tall, A R; Tabas, I

    2001-11-30

    Cholesterol efflux from macrophage foam cells, a key step in reverse cholesterol transport, requires trafficking of cholesterol from intracellular sites to the plasma membrane. Sphingomyelin is a cholesterol-binding molecule that transiently exists with cholesterol in endosomes and lysosomes but is rapidly hydrolyzed by lysosomal sphingomyelinase (L-SMase), a product of the acid sphingomyelinase (ASM) gene. We therefore hypothesized that sphingomyelin hydrolysis by L-SMase enables cholesterol efflux by preventing cholesterol sequestration by sphingomyelin. Macrophages from wild-type and ASM knockout mice were incubated with [(3)H]cholesteryl ester-labeled acetyl-LDL and then exposed to apolipoprotein A-I or high density lipoprotein. In both cases, [(3)H]cholesterol efflux was decreased substantially in the ASM knockout macrophages. Similar results were shown for ASM knockout macrophages labeled long-term with [(3)H]cholesterol added directly to medium, but not for those labeled for a short period, suggesting defective efflux from intracellular stores but not from the plasma membrane. Cholesterol trafficking to acyl-coenzyme A:cholesterol acyltransferase (ACAT) was also defective in ASM knockout macrophages. Using filipin to probe cholesterol in macrophages incubated with acetyl-LDL, we found there was modest staining in the plasma membrane of wild-type macrophages but bright, perinuclear fluorescence in ASM knockout macrophages. Last, when wild-type macrophages were incubated with excess sphingomyelin to "saturate" L-SMase, [(3)H]cholesterol efflux was decreased. Thus, sphingomyelin accumulation due to L-SMase deficiency leads to defective cholesterol trafficking and efflux, which we propose is due to sequestration of cholesterol by sphingomyelin and possibly other mechanisms. This model may explain the low plasma high density lipoprotein found in ASM-deficient humans and may implicate L-SMase deficiency and/or sphingomyelin enrichment of lipoproteins as novel

  17. Association of cholesterol, LDL, HDL, cholesterol/ HDL and triglyceride with all-cause mortality in life insurance applicants.

    PubMed

    Fulks, Michael; Stout, Robert L; Dolan, Vera F

    2009-01-01

    Determine the relationship between various lipid tests and all-cause mortality in life insurance applicants stratified by age and sex. By use of the Social Security Death Master File, mortality was determined in 1,488,572 life insurance applicants from whom blood samples were submitted to Clinical Reference Laboratory. There were 41,020 deaths observed in this healthy adult population during a median follow-up of 12 years (range 10 to 14 years). Results were stratified by 4 age-sex subpopulations: females, ages 20 to 59 or 60+; and males, ages 20 to 59 or 60+. Those with serum albumin < 3.6 mg/dL or fructosamine > or = 2.1 mmol/L were excluded. The middle 50% of lipid values specific to each of these 4 age-sex subpopulations was used as the reference band. The mortality rates in bands representing other percentiles of lipid values were compared with the mortality rate in the reference band within each age-sex subpopulation. In contrast to some published findings from general populations, lipid test results are only moderately predictive of all-cause mortality risk in a life insurance applicant population and that risk is dependent on age and sex. At ages below 60, HDL values are associated with a "J" shaped mortality curve and at ages 60+, total cholesterol is associated with a "U" shaped curve. The total cholesterol/HDL ratio may serve as a useful single measure to predict mortality risk, but only if stratified by age and sex, and only if high HDL values at younger ages and lower total cholesterol values at ages 60+ are recognized as being associated with increased risk as well. Using LDL or non-HDL cholesterol instead of total cholesterol does not improve mortality risk discrimination; neither does using total cholesterol or triglyceride values in addition to the total cholesterol/HDL ratio. The total cholesterol/HDL ratio is the best single measure of all-cause mortality risk among the various lipid tests but is useful only if viewed on an age- and sex

  18. Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview.

    PubMed

    Wang, Da-Zhi; Zhang, Shu-Fei; Zhang, Yong; Lin, Lin

    2016-03-01

    Paralytic shellfish toxins (PSTs) are a group of water soluble neurotoxic alkaloids produced by two different kingdoms of life, prokaryotic cyanobacteria and eukaryotic dinoflagellates. Owing to the wide distribution of these organisms, these toxic secondary metabolites account for paralytic shellfish poisonings around the world. On the other hand, their specific binding to voltage-gated sodium channels makes these toxins potentially useful in pharmacological and toxicological applications. Much effort has been devoted to the biosynthetic mechanism of PSTs, and gene clusters encoding 26 proteins involved in PST biosynthesis have been unveiled in several cyanobacterial species. Functional analysis of toxin genes indicates that PST biosynthesis in cyanobacteria is a complex process including biosynthesis, regulation, modification and export. However, less is known about the toxin biosynthesis in dinoflagellates owing to our poor understanding of the massive genome and unique chromosomal characteristics [1]. So far, few genes involved in PST biosynthesis have been identified from dinoflagellates. Moreover, the proteins involved in PST production are far from being totally explored. Thus, the origin and evolution of PST biosynthesis in these two kingdoms are still controversial. In this review, we summarize the recent progress on the characterization of genes and proteins involved in PST biosynthesis in cyanobacteria and dinoflagellates, and discuss the standing evolutionary hypotheses concerning the origin of toxin biosynthesis as well as future perspectives in PST biosynthesis. Paralytic shellfish toxins (PSTs) are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells and result in paralytic shellfish poisonings (PSPs) around the world. Two different kingdoms of life, cyanobacteria and dinoflagellates are able to produce PSTs. However, in contrast with cyanobacteria, our understanding of PST biosynthesis in

  19. Solanesol Biosynthesis in Plants.

    PubMed

    Yan, Ning; Liu, Yanhua; Zhang, Hongbo; Du, Yongmei; Liu, Xinmin; Zhang, Zhongfeng

    2017-03-23

    Solanesol is a non-cyclic terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants. Solanesol plays an important role in the interactions between plants and environmental factors such as pathogen infections and moderate-to-high temperatures. Additionally, it is a key intermediate for the pharmaceutical synthesis of ubiquinone-based drugs such as coenzyme Q10 and vitamin K2, and anti-cancer agent synergizers such as N-solanesyl-N,N'-bis(3,4-dimethoxybenzyl) ethylenediamine (SDB). In plants, solanesol is formed by the 2- C -methyl-d-erythritol 4-phosphate (MEP) pathway within plastids. Solanesol's biosynthetic pathway involves the generation of C5 precursors, followed by the generation of direct precursors, and then the biosynthesis and modification of terpenoids; the first two stages of this pathway are well understood. Based on the current understanding of solanesol biosynthesis, we here review the key enzymes involved, including 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), isopentenyl diphosphate isomerase (IPI), geranyl geranyl diphosphate synthase (GGPPS), and solanesyl diphosphate synthase (SPS), as well as their biological functions. Notably, studies on microbial heterologous expression and overexpression of key enzymatic genes in tobacco solanesol biosynthesis are of significant importance for medical uses of tobacco.

  20. Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC

    PubMed Central

    2015-01-01

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20–30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel. PMID:25080204

  1. Plasma cholesterol reduction by defatted soy ontjom (fermented with Neurospora intermedia) in rats fed a cholesterol-free diet.

    PubMed

    Matsuo, M

    2000-02-01

    To popularize defatted soy ontjom (DSB-ontjom, soy product fermented with Neurospora intermedia) as a new food, I examined the plasma cholesterol-reducing effects of DSB-ontjom and DSB in rats fed cholesterol-free diets and compared the efficiencies of these effects. DSB-ontjom greatly reduced the plasma cholesterol level and increased fecal steroid excretion as compared to DSB. DSB-ontjom was rich in pepsin-resistant protein having a high bile acid binding capacity and was abundant in isoflavone-aglycones, especially daizein. The dietary fiber (DF) of DSB-ontjom stimulated the production of short-chain fatty acids (SCFAs) by intestinal microflora. The effect of DSB-ontjom on plasma cholesterol reduction was attributed to the collaborative effects of pepsin-resistant-protein, isoflavone-aglycones and SCFA-producing DF in DSB-ontjom.

  2. Cholesterol in the retina: the best is yet to come

    PubMed Central

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  3. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels

    PubMed Central

    Kim, Mi Kyung; Cho, Sang Woon

    2012-01-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores. PMID:22586505

  4. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels.

    PubMed

    Kim, Mi Kyung; Cho, Sang Woon; Park, Yoo Kyoung

    2012-04-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores.

  5. Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV.

    PubMed

    Steinmetz, A; Utermann, G

    1985-02-25

    Human plasma apoproteins (apo) A-I and A-IV both activate the enzyme lecithin:cholesterol acyltransferase (EC 2.3.1.43). Lecithin:cholesterol acyltransferase activity was measured by the conversion of [4-14C] cholesterol to [4-14C]cholesteryl ester using artificial phospholipid/cholesterol/[4-14C]cholesterol/apoprotein substrates. The substrate was prepared by the addition of apoprotein to a sonicated aqueous dispersion of phospholipid/cholesterol/[4-14C]cholesterol. The activation of lecithin:cholesterol acyltransferase by apo-A-I and -A-IV differed, depending upon the nature of the hydrocarbon chains of the sn-L-alpha-phosphatidylcholine acyl donor. Apo-A-I was a more potent activator than apo-A-IV with egg yolk lecithin, L-alpha-dioleoylphosphatidylcholine, and L-alpha-phosphatidylcholine substituted with one saturated and one unsaturated fatty acid regardless of the substitution position. When L-alpha-phosphatidylcholine esterified with two saturated fatty acids was used as acyl donor, apo-A-IV was more active than apo-A-I in stimulating the lecithin:cholesterol acyltransferase reaction. Complexes of phosphatidylcholines substituted with two saturated fatty acids served as substrate for lecithin:cholesterol acyltransferase even in the absence of any activator protein. Essentially the same results were obtained when substrate complexes (phospholipid-cholesterol-[4-14C]cholesterol-apoprotein) were prepared by a detergent dialysis procedure. Apo-A-IV-L-alpha-dimyristoylphosphatidylcholine complexes thus prepared were shown to be homogeneous particles by column chromatography and density gradient ultracentrifugation. It is concluded that apo-A-IV is able to facilitate the lecithin:cholesterol acyltransferase reaction in vitro.

  6. Predicting the Binding Mode of 2-Hydroxypropyl-β-cyclodextrin to Cholesterol by Means of the MD Simulation and the 3D-RISM-KH Theory.

    PubMed

    Hayashino, Yuji; Sugita, Masatake; Arima, Hidetoshi; Irie, Tetsumi; Kikuchi, Takeshi; Hirata, Fumio

    2018-03-19

    It has been found that a cyclodextrin derivative, 2-hydroxypropyl-β-cyclodextrin (HPβCD), has reasonable therapeutic effect on Niemann-Pick disease type C, which is caused by abnormal accumulation of unesterified cholesterol and glycolipids in the lysosomes and shortage of esterified cholesterol in other cellular compartments. We study the binding affinity and mode of HPβCD with cholesterol to elucidate the possible mechanism of HPβCD for removing cholesterol from the lysosomes. The dominant binding mode of HPβCD with cholesterol is found based on the molecular dynamics simulation and a statistical mechanics theory of liquids, or the three-dimensional reference interaction site model theory with Kovalenko-Hirata closure relation. We examine the two types of complexes between HPβCD and cholesterol, namely, one-to-one (1:1) and two-to-one (2:1). It is predicted that the 1:1 complex makes two or three types of stable binding mode in solution, in which the βCD ring tends to be located at the edge of the steroid skeleton. For the 2:1 complex, there are four different types of the complex conceivable, depending on the orientation between the two HPβCDs: head-to-head (HH), head-to-tail (HT), tail-to-head (TH), and tail-to-tail (TT). The HT and HH cyclodextrin dimers show higher affinity to cholesterol compared to the other dimers and to all the binding modes of 1:1 complexes. The physical reason why the HT and HH dimers have higher affinity compared to the other complexes is discussed based on the consistency with the 1:1 complex. On the one hand, in case of the HT and HH dimers, the position of each CD in the dimer along the cholesterol chain comes right on or close to one of the positions where a single CD makes a stable complex. On the other hand, one of the CD molecules is located on unstable region along the cholesterol chain, for the case of TH and TT dimers.

  7. Niacin for cholesterol

    MedlinePlus

    ... cholesterol. Research now suggests that niacin does not add to the benefit of a statin alone for reducing the risk of cardiovascular events, including heart attacks and stroke. In addition, niacin ...

  8. Lipid and liver abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes.

    PubMed

    Calanna, S; Scicali, R; Di Pino, A; Knop, F K; Piro, S; Rabuazzo, A M; Purrello, F

    2014-06-01

    We aimed to investigate lipid abnormalities and liver steatosis in patients with HbA1c-defined prediabetes and type 2 diabetes compared to individuals with HbA1c-defined normoglycaemia. Ninety-one subjects with prediabetes according to HbA1c, i.e. from 5.7 to 6.4% (39-46 mmol/mol), 50 newly diagnosed patients with HbA1c-defined type 2 diabetes (HbA1c ≥6.5% [≥48 mmol/mol]), and 67 controls with HbA1c lower than 5.7% (<39 mmol/mol), were studied. Fasting blood samples for lipid profiles, fatty liver index (FLI), bioimpedance analysis, ultrasound scan of the liver, and BARD (body mass index, aspartate aminotransferase/alanine aminotransferase ratio, diabetes) score for evaluation of liver fibrosis, were performed in all subjects. In comparison to controls, subjects with prediabetes were characterised by: lower apolipoprotein AI and HDL cholesterol levels, higher blood pressure, triglycerides levels and apolipoprotein B/apolipoprotein AI ratio, higher FLI, increased prevalence of and more severe hepatic steatosis, similar BARD score, and higher total body fat mass. In comparison to subjects with diabetes, subjects with prediabetes exhibited: similar blood pressure and apolipoprotein B/apolipoprotein AI ratio, similar FLI, reduced prevalence of and less severe hepatic steatosis, lower BARD score, increased percent fat and lower total body muscle mass. In comparison to controls, subjects with diabetes showed: lower apolipoprotein AI and HDL cholesterol levels, higher blood pressure and triglycerides levels, higher FLI, increased prevalence of and more severe hepatic steatosis, higher BARD score, and higher total body muscle mass. Moreover, HbA1c was correlated with BMI, HOMA-IR, triglycerides, HDL cholesterol, AST, and ALT. Subjects with HbA1c-defined prediabetes and type 2 diabetes, respectively, are characterised by abnormalities in lipid profile and liver steatosis, thus exhibiting a severe risk profile for cardiovascular and liver diseases. Copyright © 2014

  9. A New Model of Reverse Cholesterol Transport: EnTICEing Strategies to Stimulate Intestinal Cholesterol Excretion

    PubMed Central

    Temel, Ryan E.; Brown, J. Mark

    2015-01-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention. PMID:25930707

  10. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    PubMed

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  11. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.

    PubMed

    Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M; Gautier, Emmanuel L; Westerterp, Marit; Bittman, Robert; Tall, Alan R; Chen, Shu-Hsia; Thomas, Michael J; Kreisel, Daniel; Swartz, Melody A; Sorci-Thomas, Mary G; Randolph, Gwendalyn J

    2013-04-01

    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin--1 surgical and the other genetic--to quantitatively track RCT following injection of [3H]-cholesterol-loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti-VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis.

  12. Sericin improves heart and liver mitochondrial architecture in hypercholesterolaemic rats and maintains pancreatic and adrenal cell biosynthesis.

    PubMed

    Ampawong, Sumate; Isarangkul, Duangnate; Aramwit, Pornanong

    2017-09-15

    Hypercholesterolaemia is well known to be associated with mitochondrial dysfunction, subsequently leading to multiple organ failure. Similar to other natural products, sericin is a candidate for adjunctive therapy in hyperlipidaemic conditions. However, the cholesterol-lowering mechanisms of sericin are multifactorial and controversial. Here, a high-cholesterol-fed rat model with or without sericin treatment was established using a dosage of 1000mg/kg/day for 30 days. Blood lipid profiles, oxidative stress markers (superoxide dismutase, SOD; malondialdehyde, MDA; nuclear factor erythroid 2-related factor, Nrf-2), dysmorphic mitochondria in relation to fission (dynamin-related protein-1; Drp-1) and fusion (guanosine triphosphatase mutated in dominant optic atrophy; OPA-1) markers and biosynthetic markers (aquaporin, AQP-1; tubulin-4β, Tb4B) in the pancreas and adrenal gland were evaluated. The results showed that sericin reduced blood cholesterol and increased high-density lipoprotein (HDL) by acting against oxidative stress. Hypocholesterolaemic and antioxidant conditions further preserved heart and liver mitochondrial architecture; however, this protection was not exhibited in the kidney, where a high level of renal mitophagy, indicating by LC-3 up-regulation, was presented. The steps of ultrastructural alteration of mitochondria from degenerative changes to necrosis were also demonstrated. Sericin also conserved AQP-1 and Tb4B levels in the exocrine pancreatic acinar cells and zona glomerulosa cells, which were positively correlated with serum lipase, HDL, antioxidative markers and mitochondrial integrity. The present study revealed that sericin not only has antioxidant capacity but also balances pancreatic and adrenal cell biosynthesis, especially lipase activity, which may have played an important role in improving lipid dysregulation in the hypercholesterolaemic rat model, leading to the reduction of dysmorphic mitochondria, particularly in the heart and

  13. Comparative effects of hawthorn (Crataegus pinnatifida Bunge) pectin and pectin hydrolyzates on the cholesterol homeostasis of hamsters fed high-cholesterol diets.

    PubMed

    Zhu, Ru-Gang; Sun, Yan-Di; Li, Tuo-Ping; Chen, Gang; Peng, Xue; Duan, Wen-Bin; Zheng, Zheng-Zheng; Shi, Shu-Lei; Xu, Jing-Guo; Liu, Yan-Hua; Jin, Xiao-Yi

    2015-08-05

    This study aims to compare the effects of feeding haw pectin (HP), haw pectin hydrolyzates (HPH), and haw pectin pentasaccharide (HPPS) on the cholesterol metabolism of hypercholesterolemic hamsters induced by high-cholesterol diets. The animals were fed a standard diet (SD), high-cholesterol diet (HCD), or HCD plus HP, HPH, or HPPS at a dose of 300mg/kg body weight for 4weeks. Results showed that HPPS was more effective than HP and HPH in decreasing the body weight gain (by 38.2%), liver weight (by 16.4%), and plasma and hepatic total cholesterol (TC; by 23.6% and 27.3%, respectively) of hamsters. In addition, the bile acid levels in the feces were significantly higher by 39.8% and 132.8% in the HPH and HPPS groups than in the HCD group. Such changes were not noted in the HP group. However, the HP group had higher cholesterol excretion capacities than the HPH and HPPS groups by inhibiting cholesterol absorption in the diet, with a 21.7% increase in TC excretion and a 31.1% decrease in TC absorption. Thus, HPPS could be a promising anti-atherogenic dietary ingredient for the development of functional food to improve cholesterol metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Impact of oxLDL on Cholesterol-Rich Membrane Rafts

    PubMed Central

    Levitan, Irena; Shentu, Tzu-Pin

    2011-01-01

    Numerous studies have demonstrated that cholesterol-rich membrane rafts play critical roles in multiple cellular functions. However, the impact of the lipoproteins on the structure, integrity and cholesterol composition of these domains is not well understood. This paper focuses on oxidized low-density lipoproteins (oxLDLs) that are strongly implicated in the development of the cardiovascular disease and whose impact on membrane cholesterol and on membrane rafts has been highly controversial. More specifically, we discuss three major criteria for the impact of oxLDL on membrane rafts: distribution of different membrane raft markers, changes in membrane cholesterol composition, and changes in lipid packing of different membrane domains. We also propose a model to reconcile the controversy regarding the relationship between oxLDL, membrane cholesterol, and the integrity of cholesterol-rich membrane domains. PMID:21490811

  15. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice.

    PubMed

    Iwadate, Reiko; Satoh, Yoko; Watanabe, Yukino; Kawai, Hiroshi; Kudo, Naomi; Kawashima, Yoichi; Mashino, Tadahiko; Mitsumoto, Atsushi

    2012-07-01

    It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T(b)) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T(b) or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T(b) rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg(-1)·day(-1)) or glucose (9 g·kg(-1)·day(-1)) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.

  16. Possible Domain Formation In PE/PC Bilayers Containing High Cholesterol

    NASA Astrophysics Data System (ADS)

    Hein, Matthew; Hussain, Fazle; Huang, Juyang

    2015-03-01

    Cholesterol is a significant component of animal cell membranes, and its presence has the effects of not only adding rigidity to the lipid bilayer, but also leading to the formation of lipid domains. Two other lipids of interest are phosphatidylethanolamine (PE), which constitutes about 45 percent of the phospholipids found in human nervous tissues, and phosphatidylcholine (PC), which is found in every cell of the human body. The maximum solubility of cholesterol is the highest mole fraction of cholesterol that the lipid bilayer can retain, at which point cholesterol begins to precipitate out to form cholesterol monohydrate crystals. We have measured the maximum solubility of cholesterol in mixtures of 16:0-18:1PE and 16:0-18:1PC using a new light scattering technique, which utilizes the anisotropic nature of light scattering by cholesterol crystals. This new method is highly accurate and reproducible. Our results show that the maximum solubility of cholesterol increases linearly as a function of the molar ratio POPC/(POPE+POPC), which suggests possible domain formation in mixtures of PE and PC containing maximum amount of cholesterol.

  17. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal

    2018-02-01

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.

  18. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease.

    PubMed

    Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-02-13

    Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.

  19. High Blood Cholesterol

    MedlinePlus

    ... high blood cholesterol: Chronic kidney disease Diabetes HIV Hypothyroidism Overweight and obesity Polycystic ovary syndrome Inflammatory diseases ... your thyroid hormone levels can help rule out hypothyroidism as a cause of high blood levels of ...

  20. Cholesterol Level: Can It Be Too Low?

    MedlinePlus

    ... total cholesterol level has been associated with some health problems. Doctors are still trying to find out more about the connection between low cholesterol and health risks. There is no consensus on how to ...

  1. Cholesterol granuloma of the petrous apex: CT diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  2. Red blood cells play a role in reverse cholesterol transport.

    PubMed

    Hung, Kimberly T; Berisha, Stela Z; Ritchey, Brian M; Santore, Jennifer; Smith, Jonathan D

    2012-06-01

    Reverse cholesterol transport (RCT) involves the removal of cholesterol from peripheral tissue for excretion in the feces. Here, we determined whether red blood cells (RBCs) can contribute to RCT. We performed a series of studies in apolipoprotein AI-deficient mice where the high-density lipoprotein-mediated pathway of RCT is greatly diminished. RBCs carried a higher fraction of whole blood cholesterol than plasma in apolipoprotein AI-deficient mice, and as least as much of the labeled cholesterol derived from injected foam cells appeared in RBCs compared with plasma. To determine whether RBCs mediate RCT to the fecal compartment, we measured RCT in anemic and control apolipoprotein AI-deficient mice and found that anemia decreased RCT to the feces by over 35% after correcting for fecal mass. Transfusion of [(3)H]cholesterol-labeled RBCs led to robust delivery of the labeled cholesterol to the feces in apolipoprotein AI-deficient hosts. In wild-type mice, the majority of the blood cholesterol mass, as well as [(3)H]cholesterol derived from the injected foam cells, was found in plasma, and anemia did not significantly alter RCT to the feces after correction for fecal mass. The RBC cholesterol pool is dynamic and facilitates RCT of peripheral cholesterol to the feces, particularly in the low high-density lipoprotein state.

  3. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDs<5%) with minimal interference from the coexisting electroactive compounds such as ascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.

  4. All about Cholesterol

    MedlinePlus

    ... more information. J If you smoke or use e-cigarettes, quit. J Lose weight if needed. Eating healthy, ... lower LDL cholesterol. They also help lower your risk for a heart attack or stroke. Adults with ...

  5. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    PubMed Central

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  6. Interaction between statin use and saturated fat intake in relation to cognitive test performance

    USDA-ARS?s Scientific Manuscript database

    Strokes, microvascular disease, and Alzheimer’s disease adversely affect cognitive function in older people. High circulating cholesterol levels and amyloid-beta peptide deposition contribute to these conditions. Statins lower serum cholesterol by interfering with cholesterol biosynthesis, and they ...

  7. Blood Cholesterol Measurement in Clinical Laboratories in the United States. Current Status. A Report from the Laboratory Standardization Panel of the National Cholesterol Education Program.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    Precise and accurate cholesterol measurements are required to identify and treat individuals with high blood cholesterol levels. However, the current state of reliability of blood cholesterol measurements suggests that considerable inaccuracy in cholesterol testing exists. This report describes the Laboratory Standardization Panel findings on the…

  8. Biochemical characterization of cholesterol-reducing Eubacterium.

    PubMed

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-12-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addition to plasmenylethanolamine, five other lipids which contain an alkenyl ether residue supported growth of Eubacterium strain 403 in a lecithin-cholesterol base medium. Of six steroids tested, cholesterol, cholest-4-en-3-one, cholest-4-en-3 beta-ol (allocholesterol), and androst-5-en-3 beta-ol-17-one supported growth of Eubacterium strain 403. All four steroids were reduced to the 3 beta-ol, 5 beta-H products. The delta 5 steroids cholest-5-en-3 alpha-ol (epicholesterol) and 22,23-bisnor-5-cholenic acid-3-beta-ol were not reduced and did not support growth of the Eubacterium strain.

  9. Cholesterol and Statins

    MedlinePlus

    ... es th se en d In the intestines, fat, carbohydrates and proteins are broken down. These nutrients are ... as the primary treatment. Eating a low-saturated-fat, low-cholesterol diet should help lower your LDL (bad ...

  10. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study.

    PubMed

    Green, Angela K; Jacques, Paul F; Rogers, Gail; Fox, Caroline S; Meigs, James B; McKeown, Nicola M

    2014-05-01

    The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the Framingham Heart Study Offspring (1998-2001) and Third Generation (2002-2005) cohorts. Adults were classified as normal weight, overweight or obese and, within these categories, metabolic health was defined based on five criteria-hypertension, elevated fasting glucose, elevated triglycerides, low HDL cholesterol, and insulin resistance. Individuals without metabolic abnormalities were considered metabolically healthy. Logistic regression was used to examine the associations between categories of SSB consumption and risk of metabolic health after stratification by BMI. Comparing the highest category of SSB consumers (median of 7 SSB per week) to the lowest category (non-consumers), odds ratios (95% confidence intervals) for metabolically abnormal phenotypes, compared to the metabolically normal, were 1.9 (1.1-3.4) among the obese, 2.0 (1.4-2.9) among the overweight, and 1.9 (1.4-2.6) among the normal weight individuals. In this cross-sectional analysis, it is observed that, irrespective of weight status, consumers of SSB were more likely to display metabolic abnormalities compared to non-consumers in a dose-dependent manner. Copyright © 2014 The Obesity Society.

  11. Opioid doses required for pain management in lung cancer patients with different cholesterol levels: negative correlation between opioid doses and cholesterol levels.

    PubMed

    Huang, Zhenhua; Liang, Lining; Li, Lingyu; Xu, Miao; Li, Xiang; Sun, Hao; He, Songwei; Lin, Lilong; Zhang, Yixin; Song, Yancheng; Yang, Man; Luo, Yuling; Loh, Horace H; Law, Ping-Yee; Zheng, Dayong; Zheng, Hui

    2016-03-08

    Pain management has been considered as significant contributor to broad quality-of-life improvement for cancer patients. Modulating serum cholesterol levels affects analgesia abilities of opioids, important pain killer for cancer patients, in mice system. Thus the correlation between opioids usages and cholesterol levels were investigated in human patients with lung cancer. Medical records of 282 patients were selected with following criteria, 1) signed inform consent, 2) full medical records on total serum cholesterol levels and opioid administration, 3) opioid-naïve, 4) not received/receiving cancer-related or cholesterol lowering treatment, 5) pain level at level 5-8. The patients were divided into different groups basing on their gender and cholesterol levels. Since different opioids, morphine, oxycodone, and fentanyl, were all administrated at fixed low dose initially and increased gradually only if pain was not controlled, the percentages of patients in each group who did not respond to the initial doses of opioids and required higher doses for pain management were determined and compared. Patients with relative low cholesterol levels have larger percentage (11 out of 28 in female and 31 out of 71 in male) to not respond to the initial dose of opioids than those with high cholesterol levels (0 out of 258 in female and 8 out of 74 in male). Similar differences were obtained when patients with different opioids were analyzed separately. After converting the doses of different opioids to equivalent doses of oxycodone, significant correlation between opioid usages and cholesterol levels was also observed. Therefore, more attention should be taken to those cancer patients with low cholesterol levels because they may require higher doses of opioids as pain killer.

  12. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile

    PubMed Central

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-01-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[3H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [3H]cholesterol from HDL-[3H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2−/− mice. Increased flux of HDL-[3H]CE to biliary FC was noted with FABP1 overexpression and in SCP2−/− mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[3H]CE to biliary FC or bile acids in FABP1−/− mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  14. Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions.

    PubMed

    Huang, Juyang

    2002-08-01

    Experimental evidences have indicated that cholesterol may adapt highly regular lateral distributions (i.e., superlattices) in a phospholipid bilayer. We investigated the formations of superlattices at cholesterol mole fraction of 0.154, 0.25, 0.40, and 0.5 using Monte Carlo simulation. We found that in general, conventional pairwise-additive interactions cannot produce superlattices. Instead, a multibody (nonpairwise) interaction is required. Cholesterol superlattice formation reveals that although the overall interaction between cholesterol and phospholipids is favorable, it contains two large opposing components: an interaction favoring cholesterol-phospholipid mixing and an unfavorable acyl chain multibody interaction that increases nonlinearly with the number of cholesterol contacts. The magnitudes of interactions are in the order of kT. The physical origins of these interactions can be explained by our umbrella model. They most likely come from the requirement for polar phospholipid headgroups to cover the nonpolar cholesterol to avoid the exposure of cholesterol to water and from the sharp decreasing of acyl chain conformation entropy due to cholesterol contact. This study together with our previous work demonstrate that the driving force of cholesterol-phospholipid mixing is a hydrophobic interaction, and multibody interactions dominate others over a wide range of cholesterol concentration.

  15. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    PubMed

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: <25; n = 14) and overweight or obese (≥25; n = 34) participants by using linear mixed models. Results: The almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P < 0.05). No diet effects were observed in the overweight or obese group. Conclusions: Substituting almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable

  16. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  17. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood…

  18. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.

    PubMed

    Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip

    2017-01-01

    The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg -1  day -1 , 50 mg kg -1  day -1 , and 200 mg kg -1  day -1 ) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.

  20. Biosynthesis and function of chondroitin sulfate.

    PubMed

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    PubMed

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  2. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease.

    PubMed

    Yeganeh, Behzad; Wiechec, Emilia; Ande, Sudharsana R; Sharma, Pawan; Moghadam, Adel Rezaei; Post, Martin; Freed, Darren H; Hashemi, Mohammad; Shojaei, Shahla; Zeki, Amir A; Ghavami, Saeid

    2014-07-01

    The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    PubMed

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  4. Abnormal accumulation and recycling of glycoproteins visualized in Niemann–Pick type C cells using the chemical reporter strategy

    PubMed Central

    Mbua, Ngalle Eric; Flanagan-Steet, Heather; Johnson, Steven; Wolfert, Margreet A.; Boons, Geert-Jan; Steet, Richard

    2013-01-01

    Niemann–Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins. PMID:23733943

  5. Pathogen ‘Roid Rage: Cholesterol Utilization by Mycobacterium tuberculosis

    PubMed Central

    Wipperman, Matthew F.; Sampson, Nicole S.; Thomas, Suzanne, T.

    2014-01-01

    The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism, and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism. PMID:24611808

  6. Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.

    PubMed

    Kovanen, P T

    1987-02-01

    The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.

  7. CHOBIMALT: A Cholesterol-Based Detergent†

    PubMed Central

    Howell, Stanley C.; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M.; Sanders, Charles R.

    2010-01-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins, but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3–4μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210 ± 30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1. PMID:20919740

  8. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  9. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  10. Cholesterol in brain disease: sometimes determinant and frequently implicated

    PubMed Central

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  11. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain.

    PubMed

    Berghoff, Stefan A; Gerndt, Nina; Winchenbach, Jan; Stumpf, Sina K; Hosang, Leon; Odoardi, Francesca; Ruhwedel, Torben; Böhler, Carolin; Barrette, Benoit; Stassart, Ruth; Liebetanz, David; Dibaj, Payam; Möbius, Wiebke; Edgar, Julia M; Saher, Gesine

    2017-01-24

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes.

  12. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain

    PubMed Central

    Berghoff, Stefan A.; Gerndt, Nina; Winchenbach, Jan; Stumpf, Sina K.; Hosang, Leon; Odoardi, Francesca; Ruhwedel, Torben; Böhler, Carolin; Barrette, Benoit; Stassart, Ruth; Liebetanz, David; Dibaj, Payam; Möbius, Wiebke; Edgar, Julia M.; Saher, Gesine

    2017-01-01

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes. PMID:28117328

  13. Flavonoids: biosynthesis, biological functions, and biotechnological applications

    PubMed Central

    Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula

    2012-01-01

    Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891

  14. The Complex Interplay Between Cholesterol and Prostate Malignancy

    PubMed Central

    Solomon, Keith R.; Freeman, Michael R.

    2011-01-01

    Research into the topic of the role of cholesterol and prostate disease has been ongoing for many years, however our mechanistic and translational understanding is still poor. Recent evidence indicates that cholesterol lowering drugs reduce the risk of aggressive prostate cancer, however the studies in this area, performed over many years, reflect much controversy and uncertainty. Here we explore the entire literature on the relationship between circulating cholesterol and prostate cancer, with consideration and criticism of the older as well as the newer studies. We consider why low cholesterol is associated with both increased and decreased risk of advanced prostate cancer, and explain why both observations are probably correct. We discuss the conflicting results of randomized placebo-controlled trials of statin drugs vs. observational studies and demonstrate that a predominance of pravastatin in the randomized trials paints a distorted view of statin effects. Lastly, we discuss new data suggesting that a critical aspect of the role of cholesterol in prostate cancer progression is through its role in intratumoral steroidogenesis. With these points addressed, the data strongly point to hypercholesterolemia as a risk factor for prostate cancer progression and suggest clinical opportunities for the use of cholesterol lowering therapies to alter disease course. PMID:21798387

  15. A snapshot of the hepatic transcriptome: ad libitum alcohol intake suppresses expression of cholesterol synthesis genes in alcohol-preferring (P) rats.

    PubMed

    Klein, Jonathon D; Sherrill, Jeremy B; Morello, Gabriella M; San Miguel, Phillip J; Ding, Zhenming; Liangpunsakul, Suthat; Liang, Tiebing; Muir, William M; Lumeng, Lawrence; Lossie, Amy C

    2014-01-01

    Research is uncovering the genetic and biochemical effects of consuming large quantities of alcohol. One prime example is the J- or U-shaped relationship between the levels of alcohol consumption and the risk of atherosclerotic cardiovascular disease. Moderate alcohol consumption in humans (about 30 g ethanol/d) is associated with reduced risk of coronary heart disease, while abstinence and heavier alcohol intake is linked to increased risk. However, the hepatic consequences of moderate alcohol drinking are largely unknown. Previous data from alcohol-preferring (P) rats showed that chronic consumption does not produce significant hepatic steatosis in this well-established model. Therefore, free-choice alcohol drinking in P rats may mimic low risk or nonhazardous drinking in humans, and chronic exposure in P animals can illuminate the molecular underpinnings of free-choice drinking in the liver. To address this gap, we captured the global, steady-state liver transcriptome following a 23 week free-choice, moderate alcohol consumption regimen (∼ 7.43 g ethanol/kg/day) in inbred alcohol-preferring (iP10a) rats. Chronic consumption led to down-regulation of nine genes in the cholesterol biosynthesis pathway, including HMG-CoA reductase, the rate-limiting step for cholesterol synthesis. These findings corroborate our phenotypic analyses, which indicate that this paradigm produced animals whose hepatic triglyceride levels, cholesterol levels and liver histology were indistinguishable from controls. These findings explain, at least in part, the J- or U-shaped relationship between cardiovascular risk and alcohol intake, and provide outstanding candidates for future studies aimed at understanding the mechanisms that underlie the salutary cardiovascular benefits of chronic low risk and nonhazardous alcohol intake.

  16. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5

    PubMed Central

    Kim, Sara; Hwang, Geonhee; Lee, Seulgi; Zhu, Jia-Ying; Paik, Inyup; Nguyen, Thom Thi; Kim, Jungmook; Oh, Eunkyoo

    2017-01-01

    Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module. PMID:29104579

  17. A Cholesterol-Sensitive Regulator of the Androgen Receptor

    DTIC Science & Technology

    2010-07-01

    Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves as a metabolic precursor to other...bioactive sterols , such as nuclear receptor ligands, and also has a major role in plasma membrane structure. Cholesterol and long- chain...cholesterol synthesis (these drugs are generically termed ‘statins’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although

  18. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    PubMed

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  19. Influence of the membrane environment on cholesterol transfer.

    PubMed

    Breidigan, Jeffrey Michael; Krzyzanowski, Natalie; Liu, Yangmingyue; Porcar, Lionel; Perez-Salas, Ursula

    2017-12-01

    Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Xiuhua; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    GPI-Anchored proteins (GPI-APs) can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  1. Modeling of Mechanical Stress Exerted by Cholesterol Crystallization on Atherosclerotic Plaques.

    PubMed

    Luo, Yuemei; Cui, Dongyao; Yu, Xiaojun; Chen, Si; Liu, Xinyu; Tang, Hongying; Wang, Xianghong; Liu, Linbo

    2016-01-01

    Plaque rupture is the critical cause of cardiovascular thrombosis, but the detailed mechanisms are not fully understood. Recent studies have found abundant cholesterol crystals in ruptured plaques, and it has been proposed that the rapid expansion of cholesterol crystals in a limited space during crystallization may contribute to plaque rupture. To evaluate the effect of cholesterol crystal growth on atherosclerotic plaques, we modeled the expansion of cholesterol crystals during the crystallization process in the necrotic core and estimated the stress on the thin cap with different arrangements of cholesterol crystals. We developed a two-dimensional finite element method model of atherosclerotic plaques containing expanding cholesterol crystals and investigated the effect of the magnitude and distribution of crystallization on the peak circumferential stress born by the cap. Using micro-optical coherence tomography (μOCT), we extracted the cross-sectional geometric information of cholesterol crystals in human atherosclerotic aorta tissue ex vivo and applied the information to the model. The results demonstrate that (1) the peak circumference stress is proportionally dependent on the cholesterol crystal growth; (2) cholesterol crystals at the cap shoulder impose the highest peak circumference stress; and (3) spatial distributions of cholesterol crystals have a significant impact on the peak circumference stress: evenly distributed cholesterol crystals exert less peak circumferential stress on the cap than concentrated crystals.

  2. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    PubMed

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effect of cholesterol deposition on bacterial adhesion to contact lenses.

    PubMed

    Babaei Omali, Negar; Zhu, Hua; Zhao, Zhenjun; Ozkan, Jerome; Xu, Banglao; Borazjani, Roya; Willcox, Mark D P

    2011-08-01

    To examine the effect of cholesterol on the adhesion of bacteria to silicone hydrogel contact lenses. Contact lenses, collected from subjects wearing Acuvue Oasys or PureVision lenses, were extracted in chloroform:methanol (1:1, v/v) and amount of cholesterol was estimated by thin-layer chromatography. Unworn lenses were soaked in cholesterol, and the numbers of Pseudomonas aeruginosa strains or Staphylococcus aureus strains that adhered to the lenses were measured. Cholesterol was tested for effects on bacterial growth by incubating bacteria in medium containing cholesterol. From ex vivo PureVision lenses, 3.4 ± 0.3 μg/lens cholesterol was recovered, and from Acuvue Oasys lenses, 2.4 ± 0.2 to 1.0 ± 0.1 μg/lens cholesterol was extracted. Cholesterol did not alter the total or viable adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). However, worn PureVision lenses reduced the numbers of viable cells of P. aeruginosa (5.8 ± 0.4 log units) compared with unworn lenses (6.4 ± 0.2 log units, p = 0.001). Similarly, there were fewer numbers of S. aureus 031 adherent to worn PureVision (3.05 ± 0.8 log units) compared with unworn PureVision (4.6 ± 0.3 log units, p = 0.0001). Worn Acuvue Oasys lenses did not affect bacterial adhesion. Cholesterol showed no effect on the growth of any test strain. Although cholesterol has been shown to adsorb to contact lenses during wear, this lipid does not appear to modulate bacterial adhesion to a lens surface.

  4. Cholesterol as a Causative Factor in Alzheimer Disease: A Debatable Hypothesis

    PubMed Central

    Wood, W. Gibson; Li, Ling; Müller, Walter E.; Eckert, Gunter P.

    2014-01-01

    High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Aβ) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only APP and Aβ. The purpose of this review, therefore, is to examine the above-mentioned issues and discuss the pros and cons of the cholesterol-AD hypothesis, and the involvement of other lipids in the mevalonate pathway, such as isoprenoids and oxysterols, in AD. PMID:24329875

  5. Cellulose biosynthesis: current views and evolving concepts.

    PubMed

    Saxena, Inder M; Brown, R Malcolm

    2005-07-01

    To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. * Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. * With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back.

  6. Biosynthesis of fibronectin by rabbit aorta.

    PubMed

    Takasaki, I; Chobanian, A V; Brecher, P

    1991-09-15

    The in vitro interactions between vascular cells and fibronectin have been shown to influence phenotypic expression of both cultured endothelial and smooth muscle cells. To more effectively assess the potential functional role of fibronectin in vivo in modulating vascular phenotypes, we have established methodology for studying fibronectin biosynthesis in the rabbit aorta using aortic rings that are morphologically and functionally intact and metabolically active. Aortic rings were incubated with 35S-labeled methionine in a supplemented physiological salt solution. The tissue was fractionated, and quantitative immunoprecipitation was performed using a polyclonal antibody directed against human plasma fibronectin. Newly synthesized fibronectin was most abundant in the fraction solubilized using 4% sodium dodecyl sulfate and in the incubation medium. In all fractions studied, fibronectin was present predominantly as a dimer with no detectable aggregates of fibronectin. Pulse-chase experiments showed that a substantial amount of newly synthesized fibronectin was found in the 4% sodium dodecyl sulfate extract after only 1 h, suggesting that fibronectin was rapidly incorporated into the extracellular matrix. The more soluble forms of newly synthesized fibronectin appeared to be the precursors for secreted fibronectin, and no precursor-product relationship between soluble and insoluble fibronectin was found. Dissection of aortic rings following incubation with labeled methionine showed that newly synthesized fibronectin was uniformally distributed in both intima-media and media-adventitia segments. Endothelial cell denudation caused only a 20% decrease of fibronectin biosynthesis concomitant with similar changes in total protein biosynthesis, consistent with the medial smooth muscle cell as the major source of newly synthesized fibronectin. Biosynthesis of fibronectin was increased following a 24-h preincubation of the aortic rings, and concomitant increases in steady

  7. Stroke secondary to multiple spontaneous cholesterol emboli.

    PubMed

    Pascual, M; Baumgartner, J M; Bounameaux, H

    1991-01-01

    We describe one male, 49-year-old diabetic patient in whom regressive stroke with aphasia and right-sided hemiparesia was related to multiple small emboli in the left paraventricular cortex. Simultaneous presence of several cholesterol emboli in the left eye ground and detection of an atheromatous plaque at the homolateral carotid bifurcation let assume that the cerebral emboli originated from that plaque and also consisted of cholesterol crystals. The patient was discharged on low-dose aspirin (100 mg/day) after neurologic improvement. Follow-up at one year revealed clinical stability, recurrence of the cholesterol emboli at the eye ground examination and no change of the carotid plaque. Cholesterol embolization with renal failure, hypertension and peripheral arterial occlusions causing skin ulcerations is classical in case of atheromatous aortic disease but stroke has rarely been reported in this syndrome. However, more frequent use of invasive procedures (arteriography, transluminal angioplasty, vascular surgery) or thrombolytic treatment might increase its incidence in the near future.

  8. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease

    PubMed Central

    2010-01-01

    Background The search for sickle cell disease (SCD) prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C) in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis. Methods We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records. Results Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P < 0.001), hematocrit (P < 0.001) and total cholesterol (P < 0.001) and a negative significant association with reticulocytes (P = 0.046), leukocytes (P = 0.015), monocytes (P = 0.004) and platelets (P = 0.005), bilirubins [total bilirubin (P < 0.001), direct bilirubin (P < 0.001) and indirect bilirubin (P < 0.001], iron (P < 0.001), aminotransferases [aspartate aminotransferase (P = 0.004), alanine aminotransferase (P = 0.035)], lactate dehydrogenase (P < 0.001), urea (P = 0.030), alpha 1-antitrypsin (P < 0.001), very low-density lipoprotein cholesterol (P = 0.003), triglycerides (P = 0.005) and hemoglobin S (P = 0.002). Low high-density lipoprotein cholesterol concentration was associated with the history of cardiac abnormalities (P = 0.025), pneumonia (P = 0.033) and blood transfusion use (P = 0.025). Lipids and inflammatory markers were associated with the presence of cholelithiasis. Conclusions We hypothesize that some SCD patients can have a specific dyslipidemic

  9. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    PubMed

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Effect of medicinal plants on the crystallization of cholesterol

    NASA Astrophysics Data System (ADS)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  11. Biosynthesis of enediyne antitumor antibiotics.

    PubMed

    Van Lanen, Steven G; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027.

  12. Paleoproterozoic sterol biosynthesis and the rise of oxygen

    NASA Astrophysics Data System (ADS)

    Gold, David A.; Caron, Abigail; Fournier, Gregory P.; Summons, Roger E.

    2017-03-01

    Natural products preserved in the geological record can function as ‘molecular fossils’, providing insight into organisms and physiologies that existed in the deep past. One important group of molecular fossils is the steroidal hydrocarbons (steranes), which are the diagenetic remains of sterol lipids. Complex sterols with modified side chains are unique to eukaryotes, although simpler sterols can also be synthesized by a few bacteria. Sterol biosynthesis is an oxygen-intensive process; thus, the presence of complex steranes in ancient rocks not only signals the presence of eukaryotes, but also aerobic metabolic processes. In 1999, steranes were reported in 2.7 billion year (Gyr)-old rocks from the Pilbara Craton in Australia, suggesting a long delay between photosynthetic oxygen production and its accumulation in the atmosphere (also known as the Great Oxidation Event) 2.45-2.32 Gyr ago. However, the recent reappraisal and rejection of these steranes as contaminants pushes the oldest reported steranes forward to around 1.64 Gyr ago (ref. 6). Here we use a molecular clock approach to improve constraints on the evolution of sterol biosynthesis. We infer that stem eukaryotes shared functionally modern sterol biosynthesis genes with bacteria via horizontal gene transfer. Comparing multiple molecular clock analyses, we find that the maximum marginal probability for the divergence time of bacterial and eukaryal sterol biosynthesis genes is around 2.31 Gyr ago, concurrent with the most recent geochemical evidence for the Great Oxidation Event. Our results therefore indicate that simple sterol biosynthesis existed well before the diversification of living eukaryotes, substantially predating the oldest detected sterane biomarkers (approximately 1.64 Gyr ago), and furthermore, that the evolutionary history of sterol biosynthesis is tied to the first widespread availability of molecular oxygen in the ocean-atmosphere system.

  13. Paleoproterozoic sterol biosynthesis and the rise of oxygen.

    PubMed

    Gold, David A; Caron, Abigail; Fournier, Gregory P; Summons, Roger E

    2017-03-16

    Natural products preserved in the geological record can function as 'molecular fossils', providing insight into organisms and physiologies that existed in the deep past. One important group of molecular fossils is the steroidal hydrocarbons (steranes), which are the diagenetic remains of sterol lipids. Complex sterols with modified side chains are unique to eukaryotes, although simpler sterols can also be synthesized by a few bacteria. Sterol biosynthesis is an oxygen-intensive process; thus, the presence of complex steranes in ancient rocks not only signals the presence of eukaryotes, but also aerobic metabolic processes. In 1999, steranes were reported in 2.7 billion year (Gyr)-old rocks from the Pilbara Craton in Australia, suggesting a long delay between photosynthetic oxygen production and its accumulation in the atmosphere (also known as the Great Oxidation Event) 2.45-2.32 Gyr ago. However, the recent reappraisal and rejection of these steranes as contaminants pushes the oldest reported steranes forward to around 1.64 Gyr ago (ref. 6). Here we use a molecular clock approach to improve constraints on the evolution of sterol biosynthesis. We infer that stem eukaryotes shared functionally modern sterol biosynthesis genes with bacteria via horizontal gene transfer. Comparing multiple molecular clock analyses, we find that the maximum marginal probability for the divergence time of bacterial and eukaryal sterol biosynthesis genes is around 2.31 Gyr ago, concurrent with the most recent geochemical evidence for the Great Oxidation Event. Our results therefore indicate that simple sterol biosynthesis existed well before the diversification of living eukaryotes, substantially predating the oldest detected sterane biomarkers (approximately 1.64 Gyr ago), and furthermore, that the evolutionary history of sterol biosynthesis is tied to the first widespread availability of molecular oxygen in the ocean-atmosphere system.

  14. Persistent lipid abnormalities in statin-treated patients with diabetes mellitus in Europe and Canada: results of the Dyslipidaemia International Study.

    PubMed

    Leiter, L A; Lundman, P; da Silva, P M; Drexel, H; Jünger, C; Gitt, A K

    2011-11-01

    To assess the prevalence of persistent lipid abnormalities in statin-treated patients with diabetes with and without the metabolic syndrome. This was a cross-sectional study of 22,063 statin-treated outpatients consecutively recruited by clinicians in Canada and 11 European countries. Patient cardiovascular risk factors, risk level, lipid measurements and lipid-modifying medication regimens were recorded. Of the 20,129 subjects who had documented diabetes and/or metabolic syndrome status, 41% had diabetes (of whom 86.8% also had the metabolic syndrome). Of those with diabetes, 48.1% were not at total cholesterol target compared with 58% of those without diabetes. Amongst those with diabetes, 41.6 and 41.3% of those with and without the metabolic syndrome, respectively, were not at their LDL cholesterol goal relative to 54.2% of those with metabolic syndrome and without diabetes, and 52% of those with neither condition. Twenty per cent of people with diabetes but without the metabolic syndrome were not at the optimal HDL cholesterol level compared with 9% of those with neither condition. Of people with diabetes and the metabolic syndrome, 49.9% were not at optimal triglyceride level relative to 13.5% of people with neither diabetes nor the metabolic syndrome. Simvastatin was the most commonly prescribed statin (>45%) and the most common statin potency was 20-40 mg/day (simvastatin equivalent). Approximately 14% of patients were taking ezetimibe alone or in combination with a statin. Despite evidence supporting the benefits of lipid modification and international guideline recommendations, statin-treated patients with diabetes had a high prevalence of persistent lipid abnormalities. There is frequently room to optimize therapy through statin dose up-titration and/or addition of other lipid-modifying therapies. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  15. Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans.

    PubMed

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Dávila-Román, Victor G; Ostlund, Richard E

    2017-12-01

    Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d 5 and the nonabsorbable stool marker sitostanol-d 4 . Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol ( r =-0.426; P <0.0001), total cholesterol ( r =-0.472; P ≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool ( r =-0.343; P =0.0012) and was positively correlated with percent cholesterol absorption ( r =+0.279; P =0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant ( P =0.0008). Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate

  16. Effect of different fat-enriched meats on non-cholesterol sterols and oxysterols as markers of cholesterol metabolism: Results of a randomized and cross-over clinical trial.

    PubMed

    Baila-Rueda, L; Mateo-Gallego, R; Pérez-Calahorra, S; Lamiquiz-Moneo, I; de Castro-Orós, I; Cenarro, A; Civeira, F

    2015-09-01

    Different kinds of fatty acids can affect the synthesis, absorption, and elimination of cholesterol. This study was carried out to assess the associations of cholesterol metabolism with the intake of two meats with different fatty acid composition in healthy volunteers. The study group was composed of 20 subjects (12 males and eight females; age, 34.4 ± 11.6 years; body mass index (BMI), 23.5 ± 2.3 kg/m(2); low-density lipoprotein (LDL) cholesterol, 2.97 ± 0.55 mmol/l; high-density lipoprotein (HDL) cholesterol, 1.61 ± 0.31 mmol/l; triglycerides (TG), 1.06 ± 0.41 mmol/l) who completed a 30-day randomized and cross-over study to compare the cholesterol metabolism effect of 250 g of low-fat lamb versus 250 g of high-fat lamb per day in their usual diet. Cholesterol absorption, synthesis, and elimination were estimated from the serum non-cholesterol sterol and oxysterol concentrations analyzed by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No changes in weight, plasma lipids, or physical activity were observed across the study. Cholesterol intestinal absorption was decreased with both diets. Cholesterol synthesis and elimination decreased during the low-fat lamb dietary intervention (ρ = 0.048 and ρ = 0.005, respectively). Acute changes in the diet fat content modify the synthesis, absorption, and biliary elimination of cholesterol. These changes were observed even in the absence of total and LDL cholesterol changes in plasma. ClinicalTrials.gov PRS, NCT02259153. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Lipid Abnormalities in Type 2 Diabetes Mellitus Patients with Overt Nephropathy

    PubMed Central

    Viswanathan, Vijay

    2017-01-01

    Background Diabetic nephropathy is a major complication of diabetes and an established risk factor for cardiovascular events. Lipid abnormalities occur in patients with diabetic nephropathy, which further increase their risk for cardiovascular events. We compared the degree of dyslipidemia among type 2 diabetes mellitus (T2DM) subjects with and without nephropathy and analyzed the factors associated with nephropathy among them. Methods In this retrospective study, T2DM patients with overt nephropathy were enrolled in the study group (n=89) and without nephropathy were enrolled in the control group (n=92). Both groups were matched for age and duration of diabetes. Data on total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), urea and creatinine were collected from the case sheets. TG/HDL-C ratio, a surrogate marker for small, dense, LDL particles (sdLDL) and estimated glomerular filtration rate (eGFR) were calculated using equations. Multivariate analysis was done to determine the factors associated with eGFR. Results Dyslipidemia was present among 56.52% of control subjects and 75.28% of nephropathy subjects (P=0.012). The percentage of subjects with atherogenic dyslipidemia (high TG+low HDL-C+sdLDL) was 14.13 among controls and 14.61 among nephropathy subjects. Though serum creatinine was not significantly different, mean eGFR value was significantly lower among nephropathy patients (P=0.002). Upon multivariate analysis, it was found that TC (P=0.007) and HDL-C (P=0.06) were associated with eGFR among our study subjects. Conclusion Our results show that dyslipidemia was highly prevalent among subjects with nephropathy. Regular screening for dyslipidemia may be beneficial in controlling the risk for adverse events among diabetic nephropathy patients. PMID:28447439

  18. [Screening and optimization of cholesterol conversion strain].

    PubMed

    Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong

    2014-10-04

    Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.

  19. Tympanomastoid cholesterol granulomas: Immunohistochemical evaluation of angiogenesis.

    PubMed

    Iannella, Giannicola; Di Gioia, Cira; Carletti, Raffaella; Magliulo, Giuseppe

    2017-08-01

    This study investigates the immunohistochemical expression of vascular endothelial growth factor (VEGF) and CD34 in patients treated for middle ear and mastoid cholesterol granulomas to evaluate the angiogenesis and vascularization of this type of lesion. A correlation between the immunohistochemical data and the radiological and intraoperative evidence of temporal bone marrow invasion and blood source connection was performed to validate this hypothesis. Retrospective study. Immunohistochemical expression of VEGF and CD34 in a group of 16 patients surgically treated for cholesterol granuloma was examined. Middle ear cholesteatomas with normal middle ear mucosa and external auditory canal skin were used as the control groups. The radiological and intraoperative features of cholesterol granulomas were also examined. In endothelial cells, there was an increased expression of angiogenetic growth factor receptors in all the cholesterol granulomas in this study. The quantitative analysis of VEGF showed a mean value of 37.5, whereas the CD34 quantitative analysis gave a mean value of 6.8. Seven patients presented radiological or intraoperative evidence of bone marrow invasion, hematopoietic potentialities, or blood source connections that might support the bleeding theory. In all of these cases there was computed tomography or intraoperative evidence of bone erosion of the middle ear and/or temporal bone structures. The mean values of VEGF and CD34 were 41.1 and 7.7, respectively. High values of VEGF and CD34 are present in patients with cholesterol granulomas. Upregulation of VEGF and CD34 is indicative of a remarkable angiogenesis and a widespread vascular concentration in cholesterol granulomas. 3b. Laryngoscope, 127:E283-E290, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization.

    PubMed

    Alger, Heather M; Brown, J Mark; Sawyer, Janet K; Kelley, Kathryn L; Shah, Ramesh; Wilson, Martha D; Willingham, Mark C; Rudel, Lawrence L

    2010-05-07

    Acyl-CoA:cholesterol O-acyl transferase 2 (ACAT2) promotes cholesterol absorption by the intestine and the secretion of cholesteryl ester-enriched very low density lipoproteins by the liver. Paradoxically, mice lacking ACAT2 also exhibit mild hypertriglyceridemia. The present study addresses the unexpected role of ACAT2 in regulation of hepatic triglyceride (TG) metabolism. Mouse models of either complete genetic deficiency or pharmacological inhibition of ACAT2 were fed low fat diets containing various amounts of cholesterol to induce hepatic steatosis. Mice genetically lacking ACAT2 in both the intestine and the liver were dramatically protected against hepatic neutral lipid (TG and cholesteryl ester) accumulation, with the greatest differences occurring in situations where dietary cholesterol was elevated. Further studies demonstrated that liver-specific depletion of ACAT2 with antisense oligonucleotides prevents dietary cholesterol-associated hepatic steatosis both in an inbred mouse model of non-alcoholic fatty liver disease (SJL/J) and in a humanized hyperlipidemic mouse model (LDLr(-/-), apoB(100/100)). All mouse models of diminished ACAT2 function showed lowered hepatic triglyceride concentrations and higher plasma triglycerides secondary to increased hepatic secretion of TG into nascent very low density lipoproteins. This work demonstrates that inhibition of hepatic ACAT2 can prevent dietary cholesterol-driven hepatic steatosis in mice. These data provide the first evidence to suggest that ACAT2-specific inhibitors may hold unexpected therapeutic potential to treat both atherosclerosis and non-alcoholic fatty liver disease.

  1. Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies.

    PubMed Central

    Clarke, R.; Frost, C.; Collins, R.; Appleby, P.; Peto, R.

    1997-01-01

    OBJECTIVE: To determine the quantitative importance of dietary fatty acids and dietary cholesterol to blood concentrations of total, low density lipoprotein, and high density lipoprotein cholesterol. DESIGN: Meta-analysis of metabolic ward studies of solid food diets in healthy volunteers. SUBJECTS: 395 dietary experiments (median duration 1 month) among 129 groups of individuals. RESULTS: Isocaloric replacement of saturated fats by complex carbohydrates for 10% of dietary calories resulted in blood total cholesterol falling by 0.52 (SE 0.03) mmol/l and low density lipoprotein cholesterol falling by 0.36 (0.05) mmol/l. Isocaloric replacement of complex carbohydrates by polyunsaturated fats for 5% of dietary calories resulted in total cholesterol falling by a further 0.13 (0.02) mmol/l and low density lipoprotein cholesterol falling by 0.11 (0.02) mmol/l. Similar replacement of carbohydrates by monounsaturated fats produced no significant effect on total or low density lipoprotein cholesterol. Avoiding 200 mg/day dietary cholesterol further decreased blood total cholesterol by 0.13 (0.02) mmol/l and low density lipoprotein cholesterol by 0.10 (0.02) mmol/l. CONCLUSIONS: In typical British diets replacing 60% of saturated fats by other fats and avoiding 60% of dietary cholesterol would reduce blood total cholesterol by about 0.8 mmol/l (that is, by 10-15%), with four fifths of this reduction being in low density lipoprotein cholesterol. PMID:9006469

  2. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis[S

    PubMed Central

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.

    2016-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992

  3. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    PubMed

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (P<0.05). Similarly, hamsters fed the OCC and COC diets reduced their plasma nonHDL cholesterol levels by 47% and 57%, respectively (P<0.05), compared to hamsters fed the HCD after 2 weeks of dietary treatment. Although hamsters fed the OCC (-26%) and COC (-32%) had significantly lower plasma HDL levels compared to HCD, (P<0.05), the plasma nonHDL/HDL cholesterol ratio was significantly lower (P<0.05) compared to the HCD for the OCC-fed (-27%) and the COC-fed (-38%) hamsters, respectively. Compared to the HCD group, aortic esterified cholesterol was 20% and 53% lower for the OCC and COC groups, respectively, with the latter reaching statistical significance, P<0.05. In conclusion, the hamsters fed the structured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  4. Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat.

    PubMed

    Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho

    2015-01-01

    This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p<0.05). Serum HDL cholesterol level tended to increase and hepatic total cholesterol level decreased and were comparable to the CON group (p>0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p<0.05). Serum and hepatic total cholesterol level, kidney, and body fat weights decreased, and were compared to the CON group (p>0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

  5. Malnutrition-Inflammation Modifies the Relationship of Cholesterol with Cardiovascular Disease

    PubMed Central

    Astor, Brad C.; Greene, Tom; Erlinger, Thomas; Kusek, John W.; Lipkowitz, Michael; Lewis, Julia A.; Randall, Otelio S.; Hebert, Lee; Wright, Jackson T; Kendrick, Cynthia A.; Gassman, Jennifer; Bakris, George; Kopple, Joel D.; Appel, Lawrence J.

    2010-01-01

    In moderate and severe CKD, the association of cholesterol with subsequent cardiovascular disease (CVD) is weak. We examined whether malnutrition or inflammation (M-I) modifies the risk relationship between cholesterol levels and CVD events in African Americans with hypertensive CKD and a GFR between 20 and 65 ml/min per 1.73 m2. We stratified 990 participants by the presence or absence of M-I, defined as body mass index <23 kg/m2 or C-reactive protein >10 mg/L at baseline. The primary composite outcome included cardiovascular death or first hospitalization for coronary artery disease, stroke, or congestive heart failure occurring during a median follow-up of 77 months. Baseline total cholesterol (212 ± 48 versus 212 ± 44 mg/dl) and overall incidence of the primary CVD outcome (19 versus 21%) were similar in participants with (n = 304) and without (n = 686) M-I. In adjusted analyses, the CVD composite outcome exhibited a significantly stronger relationship with total cholesterol for participants without M-I than for participants with M-I at baseline (P < 0.02). In the non–M-I group, the cholesterol-adjusted hazard ratio (HR) for CVD increased progressively across cholesterol levels: HR = 1.19 [95% CI; 0.77, 1.84] and 2.18 [1.43, 3.33] in participants with cholesterol 200 to 239 and ≥240 mg/dl, respectively (reference: cholesterol <200). In the M-I group, the corresponding HRs did not vary significantly by cholesterol level. In conclusion, the presence of M-I modifies the risk relationship between cholesterol level and CVD in African Americans with hypertensive CKD. PMID:20864686

  6. Strategies for increasing house staff management of cholesterol with inpatients.

    PubMed

    Boekeloo, B O; Becker, D M; Levine, D M; Belitsos, P C; Pearson, T A

    1990-01-01

    This study tested the effectiveness of two conceptually different chart audit-based approaches to modifying physicians' clinical practices to conform with quality-assurance standards. The objective was to increase intern utilization of cholesterol management opportunities in the inpatient setting. Using a clinical trial study design, 29 internal medicine interns were randomly assigned to four intervention groups identified by the intervention they received: control, reminder checklists (checklists), patient-specific feedback (feedback), or both interventions (combined). Over a nine-month period, intern management of high blood cholesterol levels in internal medicine inpatients (n = 459) was monitored by postdischarge chart audit. During both a baseline and subsequent intervention period, interns documented significantly more cholesterol management for inpatients with coronary artery disease (CAD) than without CAD. During baseline, 27.3%, 24.3%, 21.7%, 12.4%, 5.4%, and 2.7% of all inpatient charts had intern documentation concerning a low-fat hospital diet, cholesterol history, screening blood cholesterol level assessment, follow-up lipid profile, nutritionist consult, and preventive cardiology consult, respectively. The feedback intervention significantly increased overall intern-documented cholesterol management among inpatients with CAD. The checklists significantly decreased overall intern-documented cholesterol management. Feedback appears to be an effective approach to increasing intern cholesterol management in inpatients.

  7. Work, sleep, and cholesterol levels of U.S. long-haul truck drivers

    PubMed Central

    LEMKE, Michael K.; APOSTOLOPOULOS, Yorghos; HEGE, Adam; WIDEMAN, Laurie; SÖNMEZ, Sevil

    2016-01-01

    Long-haul truck drivers in the United States experience elevated cardiovascular health risks, possibly due to hypercholesterolemia. The current study has two objectives: 1) to generate a cholesterol profile for U.S. long-haul truck drivers; and 2) to determine the influence of work organization characteristics and sleep quality and duration on cholesterol levels of long-haul truck drivers. Survey and biometric data were collected from 262 long-haul truck drivers. Descriptive analyses were performed for demographic, work organization, sleep, and cholesterol measures. Linear regression and ordinal logistic regression analyses were conducted to examine for possible predictive relationships between demographic, work organization, and sleep variables, and cholesterol outcomes. The majority (66.4%) of drivers had a low HDL (<40 mg/dL), and nearly 42% of drivers had a high-risk total cholesterol to HDL cholesterol ratio. Sleep quality was associated with HDL, LDL, and total cholesterol, and daily work hours were associated with LDL cholesterol. Workday sleep duration was associated with non-HDL cholesterol, and driving experience and sleep quality were associated with cholesterol ratio. Long-haul truck drivers have a high risk cholesterol profile, and sleep quality and work organization factors may induce these cholesterol outcomes. Targeted worksite health promotion programs are needed to curb these atherosclerotic risks. PMID:28049935

  8. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study.

    PubMed

    Karmakar, Sanat; Raghunathan, V A

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15 mol % at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5 degrees C).

  9. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    PubMed

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; van Dijk, Jeroen P; Kok, Esther J; Frazzon, Jeverson

    2016-02-03

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate the relationship between total glycoalkaloid (TGA) content and the expression of GAME, SGT1, and SGT3 genes in potato tubers. TGA content was measured by HPLC-MS, and reverse transcription quantitative polymerase chain reactions were performed to determine the relative expression of GAME, SGT1, and SGT3 genes. We searched for cis-elements of the transcription start site using the PlantPAN database. There was a relationship between TGA content and the relative expression of GAME, SGT1, and SGT3 genes in potato tubers. Putative promoter regions showed the presence of several cis-elements related to biotic and abiotic stresses and light. These findings provide an important step toward understanding TGA regulation and variation in potato tubers.

  10. Cholesterol testing and results

    MedlinePlus

    ... profile results; Hyperlipidemia-results; Lipid disorder test results; Heart disease - cholesterol results ... at an earlier age if you have: Diabetes Heart disease Stroke High blood pressure A strong family history ...

  11. Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents.

    PubMed

    Ward, Natalie; Sahebkar, Amirhossein; Banach, Maciej; Watts, Gerald

    2017-12-01

    Reduction in circulating cholesterol is an important step in lowering cardiovascular risk. Although statins are the most frequently prescribed cholesterol-lowering medication, there remains a significant portion of patients who require alternative treatment options. Nutraceuticals are increasingly popular as cholesterol-lowering agents. Despite the lack of long-term trials evaluating their use on cardiovascular endpoints and mortality, several studies have demonstrated their potential cholesterol-lowering effects. The purpose of this review is to provide an update on the role of nutraceuticals as cholesterol-lowering agents. The present review will focus on individual nutraceutical compounds, which have shown modest cholesterol-lowering abilities, as well as combination nutraceuticals, which may offer potential additive and/or synergistic effects. Berberine, red yeast rice, and plant sterols have moderate potential as cholesterol-lowering agents. Combination nutraceuticals, including the proprietary formulation, Armolipid Plus, appear to confer additional benefit on plasma lipid profiles, even when taken with statins and other agents. Although robust, long-term clinical trials to examine the effects of nutraceuticals on clinical outcomes are still required, their cholesterol-lowering ability, together with their reported tolerance and safety, offer a pragmatic option for lowering plasma cholesterol levels.

  12. Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil.

    PubMed

    Morais, Sofia; Pratoomyot, Jarunan; Torstensen, Bente E; Taggart, John B; Guy, Derrick R; Bell, J Gordon; Tocher, Douglas R

    2011-11-01

    The present study investigates the effects of genotype on responses to alternative feeds in Atlantic salmon. Microarray analysis of the liver transcriptome of two family groups, lean or fat, fed a diet containing either a fish oil (FO) or a vegetable oil (VO) blend indicated that pathways of cholesterol and lipoprotein metabolism might be differentially affected by the diet depending on the genetic background of the fish, and this was further investigated by real-time quantitative PCR, plasma and lipoprotein biochemical analysis. Results indicate a reduction in VLDL and LDL levels, with no changes in HDL, when FO is replaced by VO in the lean family group, whereas in fat fish fed FO, levels of apoB-containing lipoproteins were low and comparable with those fed VO in both family groups. Significantly lower levels of plasma TAG and LDL-TAG were measured in the fat group that was independent of diet, whereas plasma cholesterol was significantly higher in fish fed the FO diet in both groups. Hepatic expression of genes involved in cholesterol homeostasis, β-oxidation and lipoprotein metabolism showed relatively subtle changes. A significantly lower expression of genes considered anti-atherogenic in mammals (ATP-binding cassette transporter A1, apoAI, scavenger receptor class B type 1, lipoprotein lipase (LPL)b (TC67836) and LPLc (TC84899)) was found in lean fish, compared with fat fish, when fed VO. Furthermore, the lean family group appeared to show a greater response to diet composition in the cholesterol biosynthesis pathway, mediated by sterol-responsive element-binding protein 2. Finally, the presence of three different transcripts for LPL, with differential patterns of nutritional regulation, was demonstrated.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 humanmore » skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  14. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat / high-cholesterol diet and low-dose streptozotocin.

    PubMed

    He, Liang; Hao, Lili; Fu, Xin; Huang, Mingshu; Li, Rui

    2015-04-11

    Hyperlipidemia is thought to be a major risk factor for the progression of renal diseases in diabetes. Recent studies have shown that lipid profiles are commonly abnormal early on type 2 diabetes mellitus (T2DM) with diabetic nephropathy. However, the early effects of triglyceride and cholesterol abnormalities on renal injury in type 1 diabetes mellitus (T1DM) are not fully understood and require reliable animal models for exploration of the underlying mechanisms. Hamster models are important tools for studying lipid metabolism because of their similarity to humans in terms of lipid utilization and high susceptibility to dietary cholesterol and fat. Twenty-four male Golden Syrian hamsters (100-110 g) were rendered diabetes by intraperitoneal injections of streptozotocin (STZ) on consecutive 3 days at dose of 30 mg/kg, Ten days after STZ injections, hamsters with a plasma Glu concentration more than 12 mmol/L were selected as insulin deficient ones and divided into four groups (D-C, D-HF, D-HC, and D-HFHC), and fed with commercially available standard rodent chow, high-fat diet, high-cholesterol diet, high-fat and cholesterol diet respectively, for a period of four weeks. After an induction phase, a stable model of renal injury was established with the aspects of early T1DM kidney disease, These aspects were severe hypertriglyceridemia, hypercholesterolemia, proteinuria with mesangial matrix accumulation, upgraded creatinine clearance, significant cholesterol and triglyceride deposition, and increasing glomerular surface area, thickness of basement membrane and mesangial expansion. The mRNA levels of sterol regulatory element binding protein-1c, transforming growth factors-β, plasminogen activator inhibitor-1, tumor necrosis factor-α and interleukin-6 in the D-HFHC group were significantly up-regulated compared with control groups. This study presents a novel, non-transgenic, non-surgical method for induction of renal injury in hamsters, which is an important

  15. A Statistical Study of Serum Cholesterol Level by Gender and Race.

    PubMed

    Tharu, Bhikhari Prasad; Tsokos, Chris P

    2017-07-25

    Cholesterol level (CL) is growing concerned as health issue in human health since it is considered one of the causes in heart diseases. A study of cholesterol level can provide insight about its nature and characteristics. A cross-sectional study. National Health and Nutrition Examination Survey (NHANS) II was conducted on a probability sample of approximately 28,000 persons in the USA and cholesterol level is obtained from laboratory results. Samples were selected so that certain population groups thought to be at high risk of malnutrition. Study included 11,864 persons for CL cases with 9,602 males and 2,262 females with races: whites, blacks, and others. Non-parametric statistical tests and goodness of fit test have been used to identify probability distributions. The study concludes that the cholesterol level exhibits significant racial and gender differences in terms of probability distributions. The study has concluded that white people are relatively higher at risk than black people to have risk line and high risk cholesterol. The study clearly indicates that black males normally have higher cholesterol. Females have lower variation in cholesterol than males. There exists gender and racial discrepancies in cholesterol which has been identified as lognormal and gamma probability distributions. White individuals seem to be at a higher risk of having high risk cholesterol level than blacks. Females tend to have higher variation in cholesterol level than males.

  16. Common structural features of cholesterol binding sites in crystallized soluble proteins

    PubMed Central

    Bukiya, Anna N.; Dopico, Alejandro M.

    2017-01-01

    Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol’s hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid’s C21 and C26 constitute the “hot spots” most often seen for steroid-protein hydrophobic interactions; v) common “cold spots” are C8–C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. PMID:28420706

  17. Chirality and protein biosynthesis.

    PubMed

    Banik, Sindrila Dutta; Nandi, Nilashis

    2013-01-01

    Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.

  18. The structural biology of phenazine biosynthesis

    PubMed Central

    Blankenfeldt, Wulf; Parsons, James F.

    2014-01-01

    The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis. PMID:25215885

  19. The expanding universe of alkaloid biosynthesis.

    PubMed

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  20. Blockade of oestrogen biosynthesis in peripubertal boys: effects on lipid metabolism, insulin sensitivity, and body composition.

    PubMed

    Hero, Matti; Ankarberg-Lindgren, Carina; Taskinen, Marja-Riitta; Dunkel, Leo

    2006-09-01

    In males, the pubertal increase in sex hormone production has been associated with proatherogenic changes in lipid and carbohydrate metabolism. Aromatase inhibitors, a novel treatment modality for some growth disorders, may significantly influence these risk factors for cardiovascular disease by suppressing oestrogen biosynthesis and stimulating gonadal androgen production. In the current study, we explored the effects of aromatase inhibition on lipid metabolism, insulin sensitivity, body composition and serum adiponectin in peripubertal boys. Prospective, double-blind, randomised, placebo-controlled clinical study. Thirty-one boys, aged 9.0-14.5 years, with idiopathic short stature were treated with the aromatase inhibitor letrozole (2.5 mg/day) or placebo for 2 years. During the treatment, the concentrations of sex hormones, IGF-I, lipids, lipoproteins and adiponectin were followed-up. The percentage of fat mass (FM) was assessed by skinfold measurements and insulin resistance by homeostasis model assessment (HOMA) index. In pubertal boys, who received letrozole, high-density lipoprotein cholesterol (HDL-C) decreased by 0.47 mmol/l (P<0.01) during the study. Simultaneously, their percentage of FM decreased from 17.0 to 10.5 (P<0.001), in an inverse relationship with serum testosterone. The concentrations of low-density lipoprotein cholesterol, triglycerides and HOMA index remained at pretreatment level in both groups. Serum adiponectin decreased similarly in letrozole- and placebo-treated pubertal boys (2.9 and 3.3 mg/l respectively). In males, aromatase inhibition reduces HDL-C and decreases relative FM after the start of puberty. The treatment does not adversely affect insulin sensitivity in lean subjects.

  1. Cellulose Biosynthesis: Current Views and Evolving Concepts

    PubMed Central

    SAXENA, INDER M.; BROWN, R. MALCOLM

    2005-01-01

    • Aims To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. • Scope Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. • Conclusions With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back. PMID:15894551

  2. Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet.

    PubMed

    Engel, Sara; Tholstrup, Tine

    2015-08-01

    Butter is known to have a cholesterol-raising effect and, therefore, has often been included as a negative control in dietary studies, whereas the effect of moderate butter intake has not been elucidated to our knowledge. We compared the effects of moderate butter intake, moderate olive oil intake, and a habitual diet on blood lipids, high-sensitivity C-reactive protein (hsCRP), glucose, and insulin. The study was a controlled, double-blinded, randomized 2 × 5-wk crossover dietary intervention study with a 14-d run-in period during which subjects consumed their habitual diets. The study included 47 healthy men and women (mean ± SD total cholesterol: 5.22 ± 0.90 mmol/L) who substituted a part of their habitual diets with 4.5% of energy from butter or refined olive oil. Study subjects were 70% women with a mean age and body mass index (in kg/m²) of 40.4 y and 23.5, respectively. Butter intake increased total cholesterol and LDL cholesterol more than did olive oil intake (P < 0.05) and the run-in period (P < 0.005 and P < 0.05, respectively) and increased HDL cholesterol compared with the run-in period (P < 0.05). No difference in effects was observed for triacylglycerol, hsCRP, insulin, and glucose concentrations. The intake of saturated fatty acids was significantly higher in the butter period than in the olive oil and run-in periods (P < 0.0001). Moderate intake of butter resulted in increases in total cholesterol and LDL cholesterol compared with the effects of olive oil intake and a habitual diet (run-in period). Furthermore, moderate butter intake was also followed by an increase in HDL cholesterol compared with the habitual diet. We conclude that hypercholesterolemic people should keep their consumption of butter to a minimum, whereas moderate butter intake may be considered part of the diet in the normocholesterolemic population. © 2015 American Society for Nutrition.

  3. The Canadian experience: why Canada decided against an upper limit for cholesterol.

    PubMed

    McDonald, Bruce E

    2004-12-01

    Canada, like the United States, held a "consensus conference on cholesterol" in 1988. Although the final report of the consensus panel recommended that total dietary fat not exceed 30 percent and saturated fat not exceed 10 percent of total energy intake, it did not specify an upper limit for dietary cholesterol. Similarly, the 1990, Health Canada publication "Nutrition Recommendations: The Report of the Scientific Review Committee" specified upper limits for total and saturated fat in the diet but did not specify an upper limit for cholesterol. Canada's Guidelines for Healthy Eating, a companion publication from Health Canada, suggested that Canadians "choose low-fat dairy products, lean meats, and foods prepared with little or no fat" while enjoying "a variety of foods." Many factors contributed to this position but a primary element was the belief that total dietary fat and saturated fat were primary dietary determinants of serum total and low-density lipoprotein (LDL) cholesterol levels, not dietary cholesterol. Hence, Canadian health authorities focused on reducing saturated fat and trans fats in the Canadian diet to help lower blood cholesterol levels rather than focusing on limiting dietary cholesterol. In an effort to allay consumer concern with the premise that blood cholesterol level is linked to dietary cholesterol, organizations such as the Canadian Egg Marketing Agency (CEMA) reminded health professionals, including registered dietitians, family physicians and nutrition educators, of the extensive data showing that there is little relationship between dietary cholesterol intake and cardiovascular mortality. In addition, it was pointed out that for most healthy individuals, endogenous synthesis of cholesterol by the liver adjusts to the level of dietary cholesterol intake. Educating health professionals about the relatively weak association between dietary cholesterol and the relatively strong association between serum cholesterol and saturated fat and

  4. The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease.

    PubMed

    Jung, Ji-Hye; Kim, Hyun-Sook

    2013-10-01

    Non-alcoholic fatty liver disease (NAFLD) is defined as excess of fat in the liver. We investigated the effects of black soybean on the cholesterol metabolism and insulin resistance of mice fed high cholesterol/fat diets. Mice were randomly allocated into four groups that were fed different diets: the normal cholesterol/fat diet; high cholesterol/fat diets (HCD); and HCD with 1%, and 4% black soybean powder (1B-HCD, and 4B-HCD). Liver total cholesterol and triglyceride concentrations were significantly lower in the black soybean-supplemented groups than that in the HCD group. PCR revealed significantly lower hepatic SREBP2 and HMG-CoA reductase mRNA levels of black soybean-supplemented mice. Real-time PCR revealed significantly higher hepatic ABCA1 mRNA level of black soybean-supplemented mice, which may increase cholesterol efflux. Liver bile acids concentration was significantly high in the 4B-HCD group. Black soybean stimulated secretion of adiponectin, activation of pAMPK, and eliminated free fatty acids in the liver. Black soybean supplementation decreased MDA and nitrate level. The activities of SOD, catalase, and GPx were restored by black soybean supplementation. Our data strongly indicate that black soybean influences the balance between oxidative and antioxidative stress. We suggest that black soybean improves cholesterol metabolism, insulin resistance, and alleviates oxidative damage in NAFLD. Published by Elsevier Ltd.

  5. Role of Tomato Lipoxygenase D in Wound-Induced Jasmonate Biosynthesis and Plant Immunity to Insect Herbivores

    PubMed Central

    Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  6. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    PubMed

    Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  7. Polymer sorbent with the properties of an artificial cholesterol receptor

    NASA Astrophysics Data System (ADS)

    Polyakova, I. V.; Ezhova, N. M.; Osipenko, A. A.; Pisarev, O. A.

    2015-02-01

    A cholesterol-imprinted polymer sorbent and the corresponding reticular control copolymer were synthesized from hydroxyethyl methacrylate and ethyleneglycol dimethacrylate. The sorption isotherms of cholesterol were analyzed using the generalized Langmuir and Freundlich equations. In the case of the imprinted reticular polymer, cholesterol sorption occurred on the energetically homogeneous binding centers, forming one monolayer, while the nonspecific sorption of cholesterol on the control copolymer occurred with energetically nonhomogeneous binding of the sorbate and depended on the physicochemical conditions of sorption.

  8. Association between cholesterol plasma levels and craving among heroin users.

    PubMed

    Lin, Shih-Hsien; Yang, Yen Kuang; Lee, Sheng-Yu; Hsieh, Pei Chun; Chen, Po See; Lu, Ru-Band; Chen, Kao Chin

    2012-12-01

    Lipids may play some roles in the central nervous system functions that are associated with drug addiction. To date, cholesterol is known to influence relapse of cocaine use. However, the relationship between cholesterol and heroin craving is unclear. This study examined the concurrent association between cholesterol and craving. The serum lipid levels of 70 heroin users who were undergoing or had undergone a methadone maintenance therapy were measured. Their craving and demographic data were assessed. Total cholesterol and low-density lipoprotein cholesterol are negatively associated with craving before (r = -0.33, P < 0.01, and r = -0.36, P < 0.01, respectively) and after controlling for the effects of potential confounders (β = -0.38, P < 0.01, and β = -0.42, P < 0.01, respectively). Cholesterol could be associated with the cognitive aspect of craving and may be a potential marker to predict risk of drug relapse.

  9. Cholesterol Depletion Disorganizes Oocyte Membrane Rafts Altering Mouse Fertilization

    PubMed Central

    Buschiazzo, Jorgelina; Ialy-Radio, Come; Auer, Jana; Wolf, Jean-Philippe; Serres, Catherine

    2013-01-01

    Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1) a decrease of the fertilization rate and index; and (2) a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol. PMID:23638166

  10. Regulation of neuronal APL-1 expression by cholesterol starvation.

    PubMed

    Wiese, Mary; Antebi, Adam; Zheng, Hui

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE) gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1), and lrp-1 (lipoprotein receptor-related protein 1), suggesting a potential interaction between apl-1 and cholesterol metabolism. Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  11. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis.

    PubMed

    Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C

    2011-10-01

    Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  13. Effects of different fibre sources and fat addition on cholesterol and cholesterol-related lipids in blood serum, bile and body tissues of growing pigs.

    PubMed

    Kreuzer, M; Hanneken, H; Wittmann, M; Gerdemann, M M; Machmuller, A

    2002-04-01

    Knowledge is limited on the efficacy of hindgut-fermentable dietary fibre to reduce blood, bile and body tissue cholesterol levels. In three experiments with growing pigs the effects of different kinds and levels of bacterially fermentable fibre (BFS) on cholesterol metabolism were examined. Various diets calculated to have similar contents of metabolizable energy were supplied for complete fattening periods. In the first experiment, a stepwise increase from 12 to 20% BFS was performed by supplementing diets with fermentable fibre from sugar beet pulp (modelling hemicelluloses and pectin). Beet pulp, rye bran (modelling cellulose) and citrus pulp (pectin) were offered either independently or in a mixture in the second experiment. These diets were opposed to rations characterized in carbohydrate type by starch either mostly non-resistant (cassava) or partly resistant (maize) to small intestinal digestion. The third experiment was planned to explore the interactions of BFS from citrus pulp with fat either through additional coconut oil/palm kernel oil blend or full-fat soybeans. In all experiments the increase of the BFS content was associated with a constant (cellulose) or decreasing (hemicelluloses, pectin) dietary proportion of non-digestible fibre. In experiment 1 an inverse dose-response relationship between BFS content and cholesterol in blood serum and adipose tissue as well as bile acid concentration in bile was noted while muscle cholesterol did not respond. In experiment 2 the ingredients characterized by cellulose and hemicelluloses/pectin reduced cholesterol-related traits relative to the low-BFS-high-starch controls whereas, except in adipose tissue cholesterol content, the pectinous ingredient had the opposite effect. However, the changes in serum cholesterol mainly affected HDL and not LDL cholesterol. Adipose tissue cholesterol also was slightly lower with partly resistant starch compared to non-resistant starch in the diet. Experiment 3 showed that

  14. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Koo, Sung I. (Inventor); Noh, Sang K. (Inventor); Hua, Duy H. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  15. Biosynthesis and molecular genetics of polyketides in marine dinoflagellates.

    PubMed

    Kellmann, Ralf; Stüken, Anke; Orr, Russell J S; Svendsen, Helene M; Jakobsen, Kjetill S

    2010-03-31

    Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided.

  16. Biosynthesis and Molecular Genetics of Polyketides in Marine Dinoflagellates

    PubMed Central

    Kellmann, Ralf; Stüken, Anke; Orr, Russell J. S.; Svendsen, Helene M.; Jakobsen, Kjetill S.

    2010-01-01

    Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided. PMID:20479965

  17. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    PubMed Central

    Garin, Intza; Edghill, Emma L.; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M.; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M.; Godbole, Koumudi; Hussain, Khalid; O’Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M.; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E.; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W.; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; de Nanclares, Guiomar Perez; Hattersley, Andrew T.

    2010-01-01

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. PMID:20133622

  18. A Rice Bran Oil Diet Improves Lipid Abnormalities and Suppress Hyperinsulinemic Responses in Rats with Streptozotocin/Nicotinamide-Induced Type 2 Diabetes

    PubMed Central

    Chou, Tsui-Wei; Ma, Chien-Ya; Cheng, Hsing-Hsien; Chen, Ya-Yen; Lai, Ming-Hoang

    2009-01-01

    The aim of this study was to determine the effects of rice bran oil (RBO) on lipid metabolism and insulin resistance in rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM). Rats were divided into two groups: the control group (15% soybean oil, contains 0 g γ-oryzanol and 0 g γ-tocotrienol/150 g oil for 5 weeks) and the RBO group (15% RBO, contains 5.25 g γ-oryzanol and 0.9 g γ-tocotrienol/150 g oil for 5 weeks). Compared with the control group, the RBO group had a lower plasma nonesterified fatty acid concentration, ratio of total to high-density-lipoprotein cholesterol, hepatic cholesterol concentration, and area under the curve for insulin. The RBO group had a higher high-density-lipoprotein cholesterol concentration and greater excretion of fecal neutral sterols and bile acid than did the control group. RBO may improve lipid abnormalities, reduce the atherogenic index, and suppress the hyperinsulinemic response in rats with streptozotocin/nicotinamide-induced T2DM. In addition, RBO can lead to increased fecal neutral sterol and bile acid excretion. PMID:19590704

  19. Cholesterol-lowering effects of modified animal fats in postmenopausal women.

    PubMed

    Labat, J B; Martini, M C; Carr, T P; Elhard, B M; Olson, B A; Bergmann, S D; Slavin, J L; Hayes, K C; Hassel, C A

    1997-12-01

    In an attempt to improve the nutritional value of animal fats (including milkfat and lard), two technological approaches (i.e., cholesterol removal by steam distillation and linoleic acid enrichment by addition of safflower oil) were tested for cholesterolemic effects in a cohort of 29 older women (age 68 +/- 7 years). Test fat sources were incorporated into crackers, cookies, cheese, ice cream, whipped topping, sour cream, baking shortening, and table spreads. Subjects were permanent residents of a convent where meals were prepared in a centralized kitchen, allowing test fats to be provided in daily food menu items. The foods containing test fats were introduced into three sequential dietary treatment periods, each lasting 4 weeks, in the following order: cholesterol-reduced animal fat (CRAF): fatty-acid modified, cholesterol-reduced animal fat (FAMCRAF); and-unaltered animal fat (AF). Subjects were offered menu items cafeteria style and encouraged to make food selections consistent with their habitual diets, which were recorded daily. Fasted blood lipid profiles determined at the end of each treatment period showed that FAMCRAF reduced mean plasma total cholesterol, LDL cholesterol, and apolipoprotein B concentrations relative to AF (p < 0.05). Mean HDL cholesterol concentrations were not influenced by diet. Relative to native products, animal fats modified by cholesterol removal and linoleic acid enrichment reduced plasma total and LDL cholesterol concentrations in a predictable manner similar to that based on studies of men.

  20. Functional Magnetic Nanoparticles for Highly Efficient Cholesterol Removal.

    PubMed

    Sun, Jun; Xu, Bin; Mu, Yaoyao; Ma, Haile; Qu, Wenjuan

    2018-01-01

    In this study, magnetic nanoparticles functionalized with carboxylated β-cyclodextrin (CM-β-CD; referred to Fe 3 O 4 @CM-β-CD) were synthesized and used for the efficient removal of cholesterol from milk and egg yolk via host-guest interactions. The results of Fourier-transform infrared, X-ray photoelectron spectroscopy, and thermogravimetric analysis indicated that the CM-β-CD was successfully conjugated to the surface of Fe 3 O 4 , and the amount of CM-β-CD attached on Fe 3 O 4 @CM-β-CD was determined to be 9.164%. The X-ray diffraction and transmission electron microscopy data revealed that the process of CM-β-CD coating did not result in a phase change of the Fe 3 O 4 , and the Fe 3 O 4 @CM-β-CD nanoparticles were determined to have an average size of about 15 nm. The results of isotherm adsorption and kinetic properties indicated that CM-β-CD functionalization increased the cholesterol removal efficiency, and the characteristics of cholesterol adsorption on Fe 3 O 4 @CM-β-CD were fitted well with the Langmuir adsorption model and Lagergren pseudo-1st-order kinetic models. Furthermore, compared with the Fe 3 O 4 nanoparticles, the functionalized Fe 3 O 4 @CM-β-CD nanoparticles exhibited greater cholesterol removal efficiency, and saponification of the milk and egg yolk was found to be beneficial for the cholesterol removal; using the Fe 3 O 4 @CM-β-CD nanoparticles, 98.8% and 94.6% of the cholesterol was extracted in 1 h from saponified milk and egg yolk, respectively, and the Fe 3 O 4 @CM-β-CD nanoparticles still displayed efficient cholesterol removal after 6 reuses. © 2017 Institute of Food Technologists®.