Science.gov

Sample records for abnormal cholesterol metabolism

  1. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?

    SciTech Connect

    Kelley, R.I.; Roessler, E.; Muenke, M.

    1996-12-30

    The RAH/Smith-Lemli-Opitz syndrome (RAH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydrocholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3{beta}-hydroxy-steroid-{Delta}{sup 7}-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE), we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RAH/SLOS. The clinical and biochemical spectrum of these and other patients with RAH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RAH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possibly, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems. 37 refs., 1 fig.

  2. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Cutler, Roy G.; Kelly, Jeremiah; Storie, Kristin; Pedersen, Ward A.; Tammara, Anita; Hatanpaa, Kimmo; Troncoso, Juan C.; Mattson, Mark P.

    2004-02-01

    Alzheimer's disease (AD) is an age-related disorder characterized by deposition of amyloid -peptide (A) and degeneration of neurons in brain regions such as the hippocampus, resulting in progressive cognitive dysfunction. The pathogenesis of AD is tightly linked to A deposition and oxidative stress, but it remains unclear as to how these factors result in neuronal dysfunction and death. We report alterations in sphingolipid and cholesterol metabolism during normal brain aging and in the brains of AD patients that result in accumulation of long-chain ceramides and cholesterol. Membrane-associated oxidative stress occurs in association with the lipid alterations, and exposure of hippocampal neurons to A induces membrane oxidative stress and the accumulation of ceramide species and cholesterol. Treatment of neurons with -tocopherol or an inhibitor of sphingomyelin synthesis prevents accumulation of ceramides and cholesterol and protects them against death induced by A. Our findings suggest a sequence of events in the pathogenesis of AD in which A induces membrane-associated oxidative stress, resulting in perturbed ceramide and cholesterol metabolism which, in turn, triggers a neurodegenerative cascade that leads to clinical disease. amyloid | apoptosis | hippocampus | lipid peroxidation | sphingomyelin

  3. Decreased expression of ARV1 results in cholesterol retention in the endoplasmic reticulum and abnormal bile acid metabolism.

    PubMed

    Tong, Fumin; Billheimer, Jeffrey; Shechtman, Caryn F; Liu, Ying; Crooke, Roseann; Graham, Mark; Cohen, David E; Sturley, Stephen L; Rader, Daniel J

    2010-10-29

    Endoplasmic reticulum (ER) membrane cholesterol is maintained at an optimal concentration of ∼5 mol % by the net impact of sterol synthesis, modification, and export. Arv1p was first identified in the yeast Saccharomyces cerevisiae as a key component of this homeostasis due to its probable role in intracellular sterol transport. Mammalian ARV1, which can fully complement the yeast lesion, encodes a ubiquitously expressed, resident ER protein. Repeated dosing of specific antisense oligonucleotides to ARV1 produced a marked reduction of ARV1 transcripts in liver, adipose, and to a lesser extent, intestine. This resulted in marked hypercholesterolemia, elevated serum bile acids, and activation of the hepatic farnesoid X receptor (FXR) regulatory pathway. Knockdown of ARV1 in murine liver and HepG2 cells was associated with accumulation of cholesterol in the ER at the expense of the plasma membrane and suppression of sterol regulatory element-binding proteins and their targets. These studies indicate a critical role of mammalian Arv1p in sterol movement from the ER and in the ensuing regulation of hepatic cholesterol and bile acid metabolism.

  4. Decreased Expression of ARV1 Results in Cholesterol Retention in the Endoplasmic Reticulum and Abnormal Bile Acid Metabolism*

    PubMed Central

    Tong, Fumin; Billheimer, Jeffrey; Shechtman, Caryn F.; Liu, Ying; Crooke, Roseann; Graham, Mark; Cohen, David E.; Sturley, Stephen L.; Rader, Daniel J.

    2010-01-01

    Endoplasmic reticulum (ER) membrane cholesterol is maintained at an optimal concentration of ∼5 mol % by the net impact of sterol synthesis, modification, and export. Arv1p was first identified in the yeast Saccharomyces cerevisiae as a key component of this homeostasis due to its probable role in intracellular sterol transport. Mammalian ARV1, which can fully complement the yeast lesion, encodes a ubiquitously expressed, resident ER protein. Repeated dosing of specific antisense oligonucleotides to ARV1 produced a marked reduction of ARV1 transcripts in liver, adipose, and to a lesser extent, intestine. This resulted in marked hypercholesterolemia, elevated serum bile acids, and activation of the hepatic farnesoid X receptor (FXR) regulatory pathway. Knockdown of ARV1 in murine liver and HepG2 cells was associated with accumulation of cholesterol in the ER at the expense of the plasma membrane and suppression of sterol regulatory element-binding proteins and their targets. These studies indicate a critical role of mammalian Arv1p in sterol movement from the ER and in the ensuing regulation of hepatic cholesterol and bile acid metabolism. PMID:20663892

  5. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  6. Cholesterol Metabolism in CKD.

    PubMed

    Reiss, Allison B; Voloshyna, Iryna; De Leon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-12-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134

  7. Metabolic abnormalities: triglyceride and low-density lipoprotein.

    PubMed

    Krauss, Ronald M; Siri, Patty W

    2004-06-01

    Increased plasma triglyceride and reduced high-density lipoprotein cholesterol are key features of the metabolic syndrome. Although elevated low-density lipoprotein cholesterol is not an integral characteristic of this syndrome, there is commonly an increase in the proportion of small, dense low-density lipoprotein particles. Together, these abnormalities constitute the atherogenic dyslipidemia of the metabolic syndrome. This article reviews the pathophysiology of altered triglyceride and low-density lipoprotein metabolism in the metabolic syndrome, outlines the relationship of these lipoprotein abnormalities to increased risk of coronary heart disease,and highlights the application of this information to clinical practice. The role of reduced high-density lipoprotein in the metabolic syndrome is discussed elsewhere in this issue.

  8. Mitochondria, cholesterol and cancer cell metabolism.

    PubMed

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  9. Obesity, cholesterol metabolism, and breast cancer pathogenesis.

    PubMed

    McDonnell, Donald P; Park, Sunghee; Goulet, Matthew T; Jasper, Jeff; Wardell, Suzanne E; Chang, Ching-Yi; Norris, John D; Guyton, John R; Nelson, Erik R

    2014-09-15

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition, significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor in macrophages and possibly other cells, is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. Cancer Res; 74(18); 4976-82. ©2014 AACR. PMID:25060521

  10. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  11. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  12. Cholesterol Metabolism and Prostate Cancer Lethality.

    PubMed

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R

    2016-08-15

    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR.

  13. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  14. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis. PMID:22181072

  15. Altered cholesterol and fatty acid metabolism in Huntington disease.

    PubMed

    Block, Robert C; Dorsey, E Ray; Beck, Christopher A; Brenna, J Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.

  16. Inborn errors of metabolism: a cause of abnormal brain development.

    PubMed

    Nissenkorn, A; Michelson, M; Ben-Zeev, B; Lerman-Sagie, T

    2001-05-22

    Brain malformations are caused by a disruption in the sequence of normal development by various environmental or genetic factors. By modifying the intrauterine milieu, inborn errors of metabolism may cause brain dysgenesis. However, this association is typically described in single case reports. The authors review the relationship between brain dysgenesis and specific inborn errors of metabolism. Peroxisomal disorders and fatty acid oxidation defects can produce migration defects. Pyruvate dehydrogenase deficiency, nonketotic hyperglycinemia, and maternal phenylketonuria preferentially cause a dysgenetic corpus callosum. Abnormal metabolism of folic acid causes neural tube defects, whereas defects in cholesterol metabolism may produce holoprosencephaly. Various mechanisms have been proposed to explain abnormal brain development in inborn errors of metabolism: production of a toxic or energy-deficient intrauterine milieu, modification of the content and function of membranes, or disturbance of the normal expression of intrauterine genes responsible for morphogenesis. The recognition of a metabolic disorder as the cause of the brain malformation has implications for both the care of the patient and for genetic counseling to prevent recurrence in subsequent pregnancies. PMID:11383558

  17. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome.

    PubMed

    Lupattelli, G; De Vuono, S; Mannarino, E

    2011-09-01

    Investigating cholesterol metabolism, which derives from balancing cholesterol synthesis and absorption, opens new perspectives in the pathogenesis of dyslipidemias and the metabolic syndrome (MS). Cholesterol metabolism is studied by measuring plasma levels of campesterol, sitosterol and cholestanol, that is, plant sterols which are recognised as surrogate cholesterol-absorption markers and lathosterol or squalene, that is, cholesterol precursors, which are considered surrogate cholesterol-synthesis markers. This article presents current knowledge on cholesterol synthesis and absorption, as evaluated by means of cholesterol precursors and plant sterols, and discusses patterns of cholesterol balance in the main forms of primary hyperlipidaemia and MS. Understanding the mechanism(s) underlying these patterns of cholesterol synthesis and absorption will help to predict the response to hypolipidemic treatment, which can then be tailored to ensure the maximum clinical benefit for patients.

  18. microRNAs: a connection between cholesterol metabolism and neurodegeneration

    PubMed Central

    Goedeke, Leigh; Fernández-Hernando, Carlos

    2014-01-01

    Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer’s disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington’s disease and Parkinson’s disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer’s disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer’s disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer’s disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases. PMID:24907491

  19. MicroRNAs: a connection between cholesterol metabolism and neurodegeneration.

    PubMed

    Goedeke, Leigh; Fernández-Hernando, Carlos

    2014-12-01

    Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer's disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington's disease and Parkinson's disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer's disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer's disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer's disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases.

  20. The Metabolism of Cholestanol, Cholesterol, and Bile Acids in Cerebrotendinous Xanthomatosis

    PubMed Central

    Salen, Gerald; Grundy, Scott M.

    1973-01-01

    The metabolism of cholesterol and its 5-dihydro derivative, cholestanol, was investigated by means of sterol balance and isotope kinetic techniques in 3 subjects with cerebrotendinous xanthomatosis (CTX) and 11 other individuals. All subjects were hospitalized on a metabolic ward and were fed diets practically free of cholesterol and cholestanol. After the intravenous administration of [1,2-3H]cholestanol, the radioactive sterol was transported and esterified in plasma lipoproteins in an identical manner to cholesterol. In these short-term experiments, the specific activity-time curves of plasma cholestanol conformed to two-pool models in both the CTX and control groups. However, cholestanol plasma concentrations, total body miscible pools, and daily synthesis rates were two to five times greater in the CTX than control individuals. The short-term specific activity decay curves of plasma [4-14C]cholesterol also conformed to two-pool models in both groups. However, in the CTX subjects the decay was more rapid, and daily cholesterol synthesis was nearly double that of the control subjects. Plasma concentrations and the sizes of the rapidly turning over pool of exchangeable cholesterol were apparently small in the CTX subjects, and these measurements did not correlate with the large cholesterol deposits found in tendon and tuberous xanthomas. Despite active cholesterol synthesis, bile acid formation was subnormal in the CTX subjects. However, bile acid sequestration was accompanied by a rise in plasma cholestanol levels and greatly augmented fecal cholestanol outputs. In contrast, the administration of clofibrate lowered plasma cholesterol levels 50% and presumably reduced synthesis in the CTX subjects. Plasma cholesterol concentrations and fecal steroid excretion did not change significantly during this therapy. These findings indicate that the excessive tissue deposits of cholesterol and cholestanol that characterize CTX were associated with hyperactive neutral

  1. Abnormal Cholesterol Among Children and Adolescents in the United States, 2011-2014.

    PubMed

    Nguyen, Duong; Kit, Brian; Carroll, Margaret

    2015-12-01

    Cardiovascular disease (CVD) is a leading cause of death among adults in the United States. To improve the cardiovascular health of the U.S. population, clinical practice guidelines recommend screening children and adolescents for risk factors associated with CVD, including abnormal blood cholesterol levels. This report provides 2011-2014 estimates from the National Health and Nutrition Examination Survey (NHANES) on the prevalence of high total cholesterol, low high-density lipoprotein (HDL) cholesterol, and high non-HDL cholesterol among children and adolescents aged 6-19.

  2. Metabolism of low-density lipoprotein free cholesterol by human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Fielding, P.E.; Miida, Takashi; Fielding, C.J. )

    1991-09-03

    The metabolism of cholesterol derived from ({sup 3}H) cholesterol-labeled low-density lipoprotein (LDL) was determined in human blood plasma. LDL-derived free cholesterol first appeared in large {alpha}-migrating HDL (HDL{sub 2}) and was then transferred to small {alpha}-HDL (HDL{sub 3}) for esterification. The major part of such esters was retained within HDL of increasing size in the course of lecithin-cholesterol acyltransferase (LCAT) activity; the balance was recovered in LDL. Transfer of preformed cholesteryl esters within HDL contributed little to the labeled cholesteryl ester accumulating HDL{sub 2}. When cholesterol for esterification was derived instead from cell membranes, a significantly smaller proportion of this cholesteryl ester was subsequently recovered in LDL. These data suggest compartmentation of cholesteryl esters within plasma that have been formed from cell membrane or LDL free cholesterol, and the role for HDL{sub 2} as a relatively unreactive sink for LCAT-derived cholesteryl esters.

  3. Sugar-Sweetened Beverages and Prevalence of the Metabolically Abnormal Phenotype in the Framingham Heart Study

    PubMed Central

    Green, Angela K.; Jacques, Paul F.; Rogers, Gail; Fox, Caroline S.; Meigs, James B.; McKeown, Nicola M.

    2014-01-01

    Objective The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. Design and Methods The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the Framingham Heart Study Offspring (1998–2001) and Third Generation (2002–2005) cohorts. Adults were classified as normal weight, overweight or obese and, within these categories, metabolic health was defined based on five criteria – hypertension, elevated fasting glucose, elevated triglycerides, low HDL cholesterol, and insulin resistance. Individuals without metabolic abnormalities were considered metabolically healthy. Logistic regression was used to examine the associations between categories of SSB consumption and risk of metabolic health after stratification by BMI. Results Comparing the highest category of SSB consumers (median of 7 SSB per week) to the lowest category (non-consumers), odds ratios (95% confidence intervals) for metabolically abnormal phenotypes, compared to the metabolically normal, were 1.9 (1.1–3.4) among the obese, 2.0 (1.4–2.9) among the overweight, and 1.9 (1.4–2.6) among the normal weight individuals. Conclusions In this cross-sectional analysis, it is observed that, irrespective of weight status, consumers of SSB were more likely to display metabolic abnormalities compared to non-consumers in a dose-dependent manner. PMID:24550031

  4. Nuclear receptors and cholesterol metabolism in the intestine.

    PubMed

    Moschetta, Antonio

    2015-02-01

    Nuclear receptors are involved in many important function and mediate signaling by factors including hormones, vitamins and a number of endogenous ligands and xenobiotics, several of which are involved in lipid metabolism. This review focuses on the liver X receptor (LXR), which is an important regulator of whole-body cholesterol, fatty acid, and glucose homeostasis that binds to LXR response elements as a heterodimer with retinoid X receptors, and the farnesoid X receptor (FXR), which is a bile acid receptor involved in feedback inhibition of bile acid synthesis, and thus cholesterol catabolism. These nuclear receptors regulate gene programs that control intestinal and hepatic lipid homeostasis through their effects on cholesterol transport and catabolism.

  5. Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1

    PubMed Central

    DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-01-01

    ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065

  6. Hypertriglyceridemic Waist and Metabolic Abnormalities in Brazilian Schoolchildren

    PubMed Central

    Guilherme, Flávio Ricardo; Molena-Fernandes, Carlos Alexandre; Hintze, Luzia Jaeger; Fávero, Maria Teresa Martins; Cuman, Roberto Kenji Nakamura; Rinaldi, Wilson

    2014-01-01

    Objective To identify the prevalence of hypertriglyceridemic waist (HTW) phenotype and its association with metabolic abnormalities in schoolchildren. Methods A cross-sectional study, with a sample of 241 students aged 10 to 14 years from public schools (4 schools) and private (2 schools) from Paranavai town, in Parana State, Brazil. Anthropometric variables (weight, height, waist circumference) and levels of triglycerides, total cholesterol, HDL-C, non-HDL and LDL-C were analyzed. In statistical tests of Pearson partial correlation and multivariate logistic regression, considering p<0,05. Results The prevalence of HTW was 20,7% among schoolchildren, 14,1% in males and 6,6% among females with higher proportions aged 10–12 years old. Multivariate analysis indicated that the students who attended private schools were nearly three times more likely (95% CI: 1,2–5,6), to be diagnosed with HTW compared with those who attended public schools (p = 0,006), and LDL-C was the only metabolic variable positively associated with the outcome (p = 0,001), where the students categorized with elevated serum levels had odds 4,2 times (95% CI: 1,6–10,9) having the HTW compared to students in appropriate levels. Conclusion This study showed higher prevalence of hypertriglyceridemic waist phenotype in students when compared to prospective studies in Brazil and worldwide. It also showed that the only metabolic alteration associated with HTW phenotype was LDL-C (low density lipoprotein). PMID:25397885

  7. Effects of saturated and unsaturated fats given with and without dietary cholesterol on hepatic cholesterol synthesis and hepatic lipid metabolism.

    PubMed

    Bochenek, W; Rodgers, J B

    1978-01-27

    Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.

  8. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Holleran, Walter M.; Jiang, Yan J.; Schmuth, Matthias

    2010-01-01

    Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality “drives” pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO4) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO4 as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to β-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation. PMID:18245815

  9. Cholesterol, endocrine and metabolic disturbances in sporadic anovulatory women with regular menstruation

    PubMed Central

    Mumford, Sunni L.; Schisterman, Enrique F.; Siega-Riz, Anna Maria; Gaskins, Audrey J.; Steiner, Anne Z.; Daniels, Julie L.; Olshan, Andrew F.; Hediger, Mary L.; Hovey, Kathleen; Wactawski-Wende, Jean; Trevisan, Maurizio; Bloom, Michael S.

    2011-01-01

    BACKGROUND Sporadic anovulation among regularly menstruating women is not well understood. It is hypothesized that cholesterol abnormalities may lead to hormone imbalances and incident anovulation. The objective was to evaluate the association between lipoprotein cholesterol levels and endocrine and metabolic disturbances and incident anovulation among ovulatory and anovulatory women reporting regular menstruation. METHODS The BioCycle Study was a prospective cohort study conducted at the University at Buffalo from September 2005 to 2007, which followed 259 self-reported regularly menstruating women aged 18–44 years, for one or two complete menstrual cycles. Sporadic anovulation was assessed across two menstrual cycles. RESULTS Mean total and low-density lipoprotein cholesterol and triglycerides levels across the menstrual cycles were higher during anovulatory cycles (mean difference: 4.6 (P = 0.01), 3.0 (P = 0.06) and 6.4 (P = 0.0002) mg/dl, respectively, adjusted for age and BMI). When multiple total cholesterol (TC) measures prior to expected ovulation were considered, we observed a slight increased risk of anovulation associated with increased levels of TC (odds ratio per 5 mg/dl increase, 1.07; 95% confidence interval, 0.99, 1.16). Sporadic anovulation was associated with an increased LH:FSH ratio (P = 0.002), current acne (P = 0.02) and decreased sex hormone-binding globulin levels (P = 0.005). CONCLUSIONS These results do not support a strong association between lipoprotein cholesterol levels and sporadic anovulation. However, sporadic anovulation among regularly menstruating women is associated with endocrine disturbances which are typically observed in women with polycystic ovary syndrome. PMID:21115506

  10. Sitosterol and cholesterol metabolism in a patient with coexisting phytosterolemia and cholestanolemia

    SciTech Connect

    Lin, H.J.; Wang, C.; Salen, G.; Lam, K.C.; Chan, T.K.

    1983-02-01

    Sitosterol and cholesterol metabolism were studied in a patient with coexisting phytosterolemia and cholestanolemia, and in a control subject, both on similar diets containing about 170 mg cholesterol and 135 mg phytosterols per day. The turnover of 22,23-3H-sitosterol and 4-14C-cholesterol, given intravenously, were followed for up to 372 days. The specific activity-time curves for both sterols were resolved into two exponentials and fitted into a two-pool model. The half-lives of both exponential curves for sitosterol, in the patient, were abnormally long. Equilibration of the tracer between the two pools, in the patient, occurred at about 30 days as compared to 10-15 days in the control subject. The daily turnover of sitosterol in the patient was estimated to be 10 times greater than that in the control subject. The patient's total body exchangeable pool of sitosterol was 9.6 g or about 80 times the amount found in the control. The patient's plasma phytosterol levels fell by 25% when he went on a diet containing only 10 mg phytosterols per day. During this period the specific activity of his plasma sitosterol with respect to an equilibrated dose of 3H-labeled tracer remained constant; this was compatible with the absence of endogenous synthesis. Cholesterol turnover in the patient showed prolonged half-lives for both exponential curves and reduced fractional daily loss from the fast-exchanging pool. The patient's xanthoma sterols underwent 16% and 55% exchange with plasma sitosterol and cholesterol, respectively, on day 60, indicating the presence of a third exchangeable pool.

  11. Abnormal folate metabolism in foetuses affected by neural tube defects.

    PubMed

    Dunlevy, Louisa P E; Chitty, Lyn S; Burren, Katie A; Doudney, Kit; Stojilkovic-Mikic, Taita; Stanier, Philip; Scott, Rosemary; Copp, Andrew J; Greene, Nicholas D E

    2007-04-01

    Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs. PMID:17438019

  12. Lipid abnormalities in the metabolic syndrome.

    PubMed

    Brinton, Eliot A

    2003-02-01

    The metabolic syndrome is the constellation of adverse metabolic and clinical effects of insulin resistance. Its high and increasing prevalence and its profound impact on the major diseases of the western world require that clinicians consider its diagnosis and management on a routine basis. Recently published guidelines on its definition now make convenient and reliable diagnosis possible. Also, there is new and better understanding of the complex dyslipidemias and other risk factors strongly associated with the metabolic syndrome, which greatly increase the risk of clinical atherosclerotic events. Comprehensive clinical evaluation of these dyslipidemias and associated atherosclerosis risk factors can lead to their aggressive treatment, customized according to the circumstances of each patient. These steps are now more feasible and more clearly desirable than ever before. Statins alone greatly reduce atherosclerosis risk, but combination lipid therapy is often required for optimal dyslipidemia management and atheroprevention. PMID:12643148

  13. Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring.

    PubMed

    Lee, Kuan-I; Chiang, Chin-Wei; Lin, Hui-Ching; Zhao, Jin-Feng; Li, Cheng-Ta; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2016-05-01

    Long-term exposure to di-(2-ethylhexyl) phthalate (DEHP) is highly associated with carcinogenicity, fetotoxicity, psychological disorders and metabolic diseases, but the detrimental effects and mechanisms are not fully understood. We investigated the effect of exposing mouse mothers to DEHP, and the underlying mechanism, on blood pressure, obesity and cholesterol metabolism as well as psychological and learning behaviors in offspring. Tail-cuff plethysmography was used for blood pressure measurement; Western blot used was for phosphorylation and expression of protein; hematoxylin and eosin staining, Nissl staining and Golgi staining were used for histological examination. The serum levels of cholesterol, triglycerides and glucose were measured by blood biochemical analysis. Hepatic cholesterol and triglyceride levels were assessed by colorimetric assay kits. Offspring behaviors were evaluated by open-field activity, elevated plus maze, social preference test and Morris water maze. Maternal DEHP exposure deregulated the phosphorylation of endothelial nitric oxide synthase and upregulated angiotensin type 1 receptor in offspring, which led to increased blood pressure. It led to obesity in offspring by increasing the size of adipocytes in white adipose tissue and number of adipocytes in brown adipose tissue. It increased the serum level of cholesterol in offspring by decreasing the hepatic capacity for cholesterol clearance. The impaired social interaction ability induced by maternal DEHP exposure might be due to abnormal neuronal development. Collectively, our findings provide new evidence that maternal exposure to DEHP has a lasting effect on the physiological functions of the vascular system, adipose tissue and nerve system in offspring.

  14. The Mediterranean diet adoption improves metabolic, oxidative, and inflammatory abnormalities in Algerian metabolic syndrome patients.

    PubMed

    Bekkouche, L; Bouchenak, M; Malaisse, W J; Yahia, D Ait

    2014-04-01

    This study was aimed to explore the effects of Mediterranean diet (MD) adoption on insulin resistance, oxidative, and inflammatory status in metabolic syndrome (MS) patients. Eighty four patients with MS were randomly recruited in the medical centers of Oran, Algeria. Eighteen healthy participants were selected as a control group. Among these 84 patients, only 36 patients completed the nutritional advices for 3 months. Patients were instructed to follow a Mediterranean-style diet and received some other selected nutritional and physical activity instructions. Anthropometric measurements were performed and a questionnaire was used to assess dietary intake. Blood samples were drawn at baseline and after 3 months of nutritional intervention from all subjects. At baseline, the MS patients were obese and had altered anthropometric parameters, higher systolic and diastolic blood pressure, plasma lipids, glucose, insulin, HOMA-IR, HbA1c, urea, creatinine, uric acid, and lower albumin compared to healthy subjects. A decrease in plasma, erythrocyte, and platelet antioxidant enzymes, and a rise in lipid and protein oxidation, plasma CRP, and fibrinogen were noted in the MS patients. Moreover, they had an unbalanced dietary pattern when compared to Mediterranean recommendations. Patients following the Mediterranean-style diet had significantly reduced weight, BMI, waist circumference, waist/hip circumference ratio, decreased systolic and diastolic blood pressure, plasma glucose, insulin, HOMA-IR, HbA1c, cholesterol, triacylglycerols, CRP, urea, creatinine, creatinine clearance, lipid and protein oxidation, and higher plasma, erythrocyte, and platelet antioxidant enzymes. In conclusion, a lifestyle intervention based mainly on nutritional advices improves metabolic, oxidative, and inflammatory abnormalities of metabolic syndrome.

  15. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    PubMed

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI. PMID:849375

  16. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    PubMed

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI.

  17. Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies.

    PubMed Central

    Clarke, R.; Frost, C.; Collins, R.; Appleby, P.; Peto, R.

    1997-01-01

    OBJECTIVE: To determine the quantitative importance of dietary fatty acids and dietary cholesterol to blood concentrations of total, low density lipoprotein, and high density lipoprotein cholesterol. DESIGN: Meta-analysis of metabolic ward studies of solid food diets in healthy volunteers. SUBJECTS: 395 dietary experiments (median duration 1 month) among 129 groups of individuals. RESULTS: Isocaloric replacement of saturated fats by complex carbohydrates for 10% of dietary calories resulted in blood total cholesterol falling by 0.52 (SE 0.03) mmol/l and low density lipoprotein cholesterol falling by 0.36 (0.05) mmol/l. Isocaloric replacement of complex carbohydrates by polyunsaturated fats for 5% of dietary calories resulted in total cholesterol falling by a further 0.13 (0.02) mmol/l and low density lipoprotein cholesterol falling by 0.11 (0.02) mmol/l. Similar replacement of carbohydrates by monounsaturated fats produced no significant effect on total or low density lipoprotein cholesterol. Avoiding 200 mg/day dietary cholesterol further decreased blood total cholesterol by 0.13 (0.02) mmol/l and low density lipoprotein cholesterol by 0.10 (0.02) mmol/l. CONCLUSIONS: In typical British diets replacing 60% of saturated fats by other fats and avoiding 60% of dietary cholesterol would reduce blood total cholesterol by about 0.8 mmol/l (that is, by 10-15%), with four fifths of this reduction being in low density lipoprotein cholesterol. PMID:9006469

  18. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  19. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products. PMID:20387744

  20. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products.

  1. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications

    PubMed Central

    Nemes, Katriina; Åberg, Fredrik; Gylling, Helena; Isoniemi, Helena

    2016-01-01

    The aim of this review is to enlighten the critical roles that the liver plays in cholesterol metabolism. Liver transplantation can serve as gene therapy or a source of gene transmission in certain conditions that affect cholesterol metabolism, such as low-density-lipoprotein (LDL) receptor gene mutations that are associated with familial hypercholesterolemia. On the other hand, cholestatic liver disease often alters cholesterol metabolism. Cholestasis can lead to formation of lipoprotein X (Lp-X), which is frequently mistaken for LDL on routine clinical tests. In contrast to LDL, Lp-X is non-atherogenic, and failure to differentiate between the two can interfere with cardiovascular risk assessment, potentially leading to prescription of futile lipid-lowering therapy. Statins do not effectively lower Lp-X levels, and cholestasis may lead to accumulation of toxic levels of statins. Moreover, severe cholestasis results in poor micellar formation, which reduces cholesterol absorption, potentially impairing the cholesterol-lowering effect of ezetimibe. Apolipoprotein B-100 measurement can help distinguish between atherogenic and non-atherogenic hypercholesterolemia. Furthermore, routine serum cholesterol measurements alone cannot reflect cholesterol absorption and synthesis. Measurements of serum non-cholesterol sterol biomarkers - such as cholesterol precursor sterols, plant sterols, and cholestanol - may help with the comprehensive assessment of cholesterol metabolism. An adequate cholesterol supply is essential for liver-regenerative capacity. Low preoperative and perioperative serum cholesterol levels seem to predict mortality in liver cirrhosis and after liver transplantation. Thus, accurate lipid profile evaluation is highly important in liver disease and after liver transplantation. PMID:27574546

  2. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications.

    PubMed

    Nemes, Katriina; Åberg, Fredrik; Gylling, Helena; Isoniemi, Helena

    2016-08-01

    The aim of this review is to enlighten the critical roles that the liver plays in cholesterol metabolism. Liver transplantation can serve as gene therapy or a source of gene transmission in certain conditions that affect cholesterol metabolism, such as low-density-lipoprotein (LDL) receptor gene mutations that are associated with familial hypercholesterolemia. On the other hand, cholestatic liver disease often alters cholesterol metabolism. Cholestasis can lead to formation of lipoprotein X (Lp-X), which is frequently mistaken for LDL on routine clinical tests. In contrast to LDL, Lp-X is non-atherogenic, and failure to differentiate between the two can interfere with cardiovascular risk assessment, potentially leading to prescription of futile lipid-lowering therapy. Statins do not effectively lower Lp-X levels, and cholestasis may lead to accumulation of toxic levels of statins. Moreover, severe cholestasis results in poor micellar formation, which reduces cholesterol absorption, potentially impairing the cholesterol-lowering effect of ezetimibe. Apolipoprotein B-100 measurement can help distinguish between atherogenic and non-atherogenic hypercholesterolemia. Furthermore, routine serum cholesterol measurements alone cannot reflect cholesterol absorption and synthesis. Measurements of serum non-cholesterol sterol biomarkers - such as cholesterol precursor sterols, plant sterols, and cholestanol - may help with the comprehensive assessment of cholesterol metabolism. An adequate cholesterol supply is essential for liver-regenerative capacity. Low preoperative and perioperative serum cholesterol levels seem to predict mortality in liver cirrhosis and after liver transplantation. Thus, accurate lipid profile evaluation is highly important in liver disease and after liver transplantation. PMID:27574546

  3. TMEM55B is a Novel Regulator of Cellular Cholesterol Metabolism

    PubMed Central

    Medina, Marisa W.; Bauzon, Frederick; Naidoo, Devesh; Theusch, Elizabeth; Stevens, Kristen; Schilde, Jessica; Schubert, Christian; Mangravite, Lara M.; Rudel, Lawrence L.; Temel, Ryan E.; Runz, Heiko; Krauss, Ronald M.

    2014-01-01

    Objective Inter-individual variation in pathways impacting cellular cholesterol metabolism can influence levels of plasma cholesterol, a well-established risk factor for cardiovascular disease. Inherent variation among immortalized lymphoblastoid cell lines (LCLs) from different donors can be leveraged to discover novel genes that modulate cellular cholesterol metabolism. The objective of this study was to identify novel genes that regulate cholesterol metabolism by testing for evidence of correlated gene expression with cellular levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) mRNA, a marker for cellular cholesterol homeostasis, in a large panel of LCLs. Approach and Results Expression array profiling was performed on 480 LCLs established from participants of the Cholesterol and Pharmacogenetics statin clinical trial, and transcripts were tested for evidence of correlated expression with HMGCR as a marker of intracellular cholesterol homeostasis. Of these, transmembrane protein 55b (TMEM55B) showed the strongest correlation (r=0.29, p=4.0E-08) of all genes not previously implicated in cholesterol metabolism and was found to be sterol regulated. TMEM55B knock-down in human hepatoma cell lines promoted the decay rate of the low density lipoprotein receptor (LDLR), reduced cell surface LDLR protein, impaired LDL uptake, and reduced intracellular cholesterol. Conclusions Here we report identification of TMEM55B as a novel regulator of cellular cholesterol metabolism through the combination of gene expression profiling and functional studies. The findings highlight the value of an integrated genomic approach for identifying genes that influence cholesterol homeostasis. PMID:25035345

  4. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  5. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  6. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  7. A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth

    PubMed Central

    Lu, Ming; Hu, Xi-Han; Li, Qin; Xiong, Ying; Hu, Guang-Jing; Xu, Jia-Jia; Zhao, Xiao-Nan; Wei, Xi-Xiao; Chang, Catherine C.Y.; Liu, Yin-Kun; Nan, Fa-Jun; Li, Jia; Chang, Ta-Yuan; Song, Bao-Liang; Li, Bo-Liang

    2013-01-01

    The liver plays a central role in cholesterol homeostasis. It exclusively receives and metabolizes oxysterols, which are important metabolites of cholesterol and are more cytotoxic than free cholesterol, from all extrahepatic tissues. Hepatocellular carcinomas (HCCs) impair certain liver functions and cause pathological alterations in many processes including cholesterol metabolism. However, the link between an altered cholesterol metabolism and HCC development is unclear. Human ACAT2 is abundantly expressed in intestine and fetal liver. Our previous studies have shown that ACAT2 is induced in certain HCC tissues. Here, by investigating tissue samples from HCC patients and HCC cell lines, we report that a specific cholesterol metabolic pathway, involving induction of ACAT2 and esterification of excess oxysterols for secretion to avoid cytotoxicity, is established in a subset of HCCs for tumor growth. Inhibiting ACAT2 leads to the intracellular accumulation of unesterified oxysterols and suppresses the growth of both HCC cell lines and their xenograft tumors. Further mechanistic studies reveal that HCC-linked promoter hypomethylation is essential for the induction of ACAT2 gene expression. We postulate that specifically blocking this HCC-established cholesterol metabolic pathway may have potential therapeutic applications for HCC patients. PMID:24163426

  8. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study123

    PubMed Central

    Lin, Xiaobo; Lefevre, Michael; Spearie, Catherine Anderson; Most, Marlene M; Ma, Lina; Ostlund, Richard E

    2010-01-01

    Background: Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain. Objective: We evaluated the effects of 3 phytosterol intakes on whole-body cholesterol metabolism. Design: In this placebo-controlled, crossover feeding trial, 18 adults received a phytosterol-deficient diet (50 mg phytosterols/2000 kcal) plus beverages supplemented with 0, 400, or 2000 mg phytosterols/d for 4 wk each, in random order. All meals were prepared in a metabolic kitchen; breakfast and dinner on weekdays were eaten on site. Primary outcomes were fecal cholesterol excretion and intestinal cholesterol absorption measured with stable-isotope tracers and serum lipoprotein concentrations. Results: Phytosterol intakes (diet plus supplements) averaged 59, 459, and 2059 mg/d during the 3 diet periods. Relative to the 59-mg diet, the 459- and 2059-mg phytosterol intakes significantly (P < 0.01) increased total fecal cholesterol excretion (36 ± 6% and 74 ± 10%, respectively) and biliary cholesterol excretion (38 ± 7% and 77 ± 12%, respectively) and reduced percentage intestinal cholesterol absorption (−10 ± 1% and −25 ± 3%, respectively). Serum LDL cholesterol declined significantly only with the highest phytosterol dose (−8.9 ± 2.3%); a trend was observed with the 459-mg/d dose (−5.0 ± 2.1%; P = 0.077). Conclusions: Dietary phytosterols in moderate and high doses favorably alter whole-body cholesterol metabolism in a dose-dependent manner. A moderate phytosterol intake (459 mg/d) can be obtained in a healthy diet without supplementation. This trial was registered at clinicaltrials.gov as NCT00860054. PMID:19889819

  9. Cholesterol Hydroperoxides as Substrates for Cholesterol-Metabolizing Cytochromes P450 and Alternative Sources of 25-Hydroxycholesterol and other Oxysterols

    PubMed Central

    Mast, Natalia

    2015-01-01

    The interaction of primary autoxidation products of cholesterol, 25- and 20ξ-hydroperoxides, with the four principal cholesterol-metabolizing cytochrome P450 enzymes is reported. Addition of cholesterol 25-hydroperoxide to CYP27A1 and CYP11A1 induced well-defined spectral changes while generating 25-hydroxycholesterol as major product along with small amounts of triols. The 20ξ-hydroperoxides induced spectral shifts in CYP27A1 and CYP11A1, yet glycol metabolites were detected only with CYP11A1. CYP7A1 and CYP46A1 failed to give metabolites with any of the hydroperoxides. A P450 hydroperoxide-shunt reaction is proposed, where the hydroperoxides serve both as donor for reduced oxygen and as substrate. For the first time, CYP27A1 is shown to mediate the reduction of cholesterol 25-hydroperoxide to 25-hydroxycholesterol, a role of potential significance for cholesterol-rich tissues with high oxidative stress. CYP27A1 may participate in these tissues in removal of harmful autoxidation products, while providing a complementary source for 25-hydroxycholesterol, a modulator of immune cell function and mediator of viral cell entry. PMID:26230055

  10. Cardiovascular Disease Risk of Abdominal Obesity versus Metabolic Abnormalities

    PubMed Central

    Wildman, Rachel P.; McGinn, Aileen P.; Lin, Juan; Wang, Dan; Muntner, Paul; Cohen, Hillel W.; Reynolds, Kristi; Fonseca, Vivian; Sowers, MaryFran R.

    2011-01-01

    It remains unclear whether abdominal obesity increases cardiovascular disease (CVD) risk independent of the metabolic abnormalities which often accompany it. Therefore, the objective of the current study was to evaluate the independent effects of abdominal obesity versus metabolic syndrome and diabetes on the risk for incident coronary heart disease and stroke. The Framingham Offspring, Atherosclerosis Risk in Communities, and Cardiovascular Health studies were pooled to assess the independent effects of abdominal obesity (waist circumference >102 cm for men and >88 cm for women) versus metabolic syndrome (excluding the waist circumference criterion) and diabetes on risk for incident coronary heart disease and stroke in 20,298 men and women aged ≥45 years. The average follow-up was 8.3 (standard deviation 1.9) years. There were 1,766 CVD events. After adjustment for demographic factors, smoking, alcohol intake, number of metabolic syndrome components and diabetes, abdominal obesity was not significantly associated with an increased risk of CVD (hazard ratio [95% confidence interval] 1.09 [0.98, 1.20]). However, after adjustment for demographics, smoking, alcohol intake, and abdominal obesity, having 1–2 metabolic syndrome components, the metabolic syndrome, and diabetes were each associated with a significantly increased risk of CVD (2.12 [1.80, 2.50], 2.82 [1.92, 4.12] and 5.33 [3.37, 8.41], respectively). Although abdominal obesity is an important clinical tool for identification of individuals likely to possess metabolic abnormalities, these data suggest that the metabolic syndrome and diabetes are considerably more important prognostic indicators of CVD risk. PMID:20725064

  11. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma

    PubMed Central

    Guillaumond, Fabienne; Bidaut, Ghislain; Ouaissi, Mehdi; Servais, Stéphane; Gouirand, Victoire; Olivares, Orianne; Lac, Sophie; Borge, Laurence; Roques, Julie; Gayet, Odile; Pinault, Michelle; Guimaraes, Cyrille; Nigri, Jérémy; Loncle, Céline; Lavaut, Marie-Noëlle; Garcia, Stéphane; Tailleux, Anne; Staels, Bart; Calvo, Ezequiel; Tomasini, Richard; Iovanna, Juan Lucio; Vasseur, Sophie

    2015-01-01

    The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse. PMID:25675507

  12. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma.

    PubMed

    Guillaumond, Fabienne; Bidaut, Ghislain; Ouaissi, Mehdi; Servais, Stéphane; Gouirand, Victoire; Olivares, Orianne; Lac, Sophie; Borge, Laurence; Roques, Julie; Gayet, Odile; Pinault, Michelle; Guimaraes, Cyrille; Nigri, Jérémy; Loncle, Céline; Lavaut, Marie-Noëlle; Garcia, Stéphane; Tailleux, Anne; Staels, Bart; Calvo, Ezequiel; Tomasini, Richard; Iovanna, Juan Lucio; Vasseur, Sophie

    2015-02-24

    The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse. PMID:25675507

  13. Cholesteryl Ester Transfer Protein Expression Partially Attenuates the Adverse Effects of SR-BI Receptor Deficiency on Cholesterol Metabolism and Atherosclerosis*

    PubMed Central

    El Bouhassani, Majda; Gilibert, Sophie; Moreau, Martine; Saint-Charles, Flora; Tréguier, Morgan; Poti, Francesco; Chapman, M. John; Le Goff, Wilfried; Lesnik, Philippe; Huby, Thierry

    2011-01-01

    Scavenger receptor SR-BI significantly contributes to HDL cholesterol metabolism and atherogenesis in mice. However, the role of SR-BI may not be as pronounced in humans due to cholesteryl ester transfer protein (CETP) activity. To address the impact of CETP expression on the adverse effects associated with SR-BI deficiency, we cross-bred our SR-BI conditional knock-out mouse model with CETP transgenic mice. CETP almost completely restored the abnormal HDL-C distribution in SR-BI-deficient mice. However, it did not normalize the elevated plasma free to total cholesterol ratio characteristic of hepatic SR-BI deficiency. Red blood cell and platelet count abnormalities observed in mice liver deficient for SR-BI were partially restored by CETP, but the elevated erythrocyte cholesterol to phopholipid ratio remained unchanged. Complete deletion of SR-BI was associated with diminished adrenal cholesterol stores, whereas hepatic SR-BI deficiency resulted in a significant increase in adrenal gland cholesterol content. In both mouse models, CETP had no impact on adrenal cholesterol metabolism. In diet-induced atherosclerosis studies, hepatic SR-BI deficiency accelerated aortic lipid lesion formation in both CETP-expressing (4-fold) and non-CETP-expressing (8-fold) mice when compared with controls. Impaired macrophage to feces reverse cholesterol transport in mice deficient for SR-BI in liver, which was not corrected by CETP, most likely contributed by such an increase in atherosclerosis susceptibility. Finally, comparison of the atherosclerosis burden in SR-BI liver-deficient and fully deficient mice demonstrated that SR-BI exerted an atheroprotective activity in extra-hepatic tissues whether CETP was present or not. These findings support the contention that the SR-BI pathway contributes in unique ways to cholesterol metabolism and atherosclerosis susceptibility even in the presence of CETP. PMID:21454568

  14. Is cancer a disease of abnormal cellular metabolism?

    PubMed Central

    DeBerardinis, Ralph J.

    2009-01-01

    In the 1920s, Otto Warburg observed that tumor cells consume a large amount of glucose, much more than normal cells, and convert most of it to lactic acid. This phenomenon, now known as the ‘Warburg effect,’ is the foundation of one of the earliest general concepts of cancer: that a fundamental disturbance of cellular metabolic activity is at the root of tumor formation and growth. In the ensuing decades, as it became apparent that abnormalities in chromosomes and eventually individual genes caused cancer, the ‘metabolic’ model of cancer lost a good deal of its appeal, even as emerging technologies were exploiting the Warburg effect clinically to detect tumors in vivo. We now know that tumor suppressors and proto-oncogenes influence metabolism, and that mutations in these genes can promote a metabolic phenotype supporting cell growth and proliferation. Thus, these advances have unified aspects of the metabolic and genetic models of cancer, and have stimulated a renewed interest in the role of cellular metabolism in tumorigenesis. This review reappraises the notion that dysregulated cellular metabolism is a key feature of cancer, and discusses some metabolic issues that have escaped scrutiny over the years and now deserve closer attention. PMID:18941420

  15. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    SciTech Connect

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  16. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    PubMed Central

    Lee, Seong-Jong; Han, Jong-Min; Lee, Jin-Seok; Son, Chang-Gue; Im, Hwi-Jin; Jo, Hyun-Kyung; Yoo, Ho-Ryong; Kim, Yoon-Sik; Seol, In-Chan

    2015-01-01

    The medicinal plants Artemisia iwayomogi (A. iwayomogi) and Curcuma longa (C. longa) radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM). In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE) on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group) were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group) were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg) or curcumin (50 mg/kg). Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides), glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα). The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model. PMID:26508977

  17. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets.

    PubMed

    Zhang, Huijuan; Wang, Jing; Liu, Yingli; Gong, Lingxiao; Sun, Baoguo

    2016-06-15

    The hypolipidemic properties of defatted rice bran protein (DRBP), fresh rice bran protein (FRBP), DRBP hydrolysates (DRBPH), and FRBP hydrolysates (FRBPH) were determined in mice on high fat diets for four weeks. Very low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and the hepatic total cholesterol content were reduced while fecal total cholesterol and total bile acid (TBA) contents were increased in the FRBPH diet group. The expression levels of hepatic genes for cholesterol biosynthesis HMG-CoAR and SREBP-2 were lowest in the FRBPH diet group. The mRNA level of HMG-CoAR was significantly positively correlated with the hepatic TG content (r = 0.82, P < 0.05). The mRNA levels of genes related to bile acid biosynthesis and cholesterol efflux, CYP7A1, ABCA1, and PPARγ were up-regulated in all test groups. The results suggest that FRBPH regulates cholesterol metabolism in mice fed the high fat and cholesterol diet by increasing fecal steroid excretion and expression levels of genes related to bile acid synthesis and cholesterol efflux, and the down-regulation of the expression levels of genes related to cholesterol biosynthesis. PMID:27216972

  18. Inhibiting Monoacylglycerol Acyltransferase 1 Ameliorates Hepatic Metabolic Abnormalities but Not Inflammation and Injury in Mice*

    PubMed Central

    Soufi, Nisreen; Hall, Angela M.; Chen, Zhouji; Yoshino, Jun; Collier, Sara L.; Mathews, James C.; Brunt, Elizabeth M.; Albert, Carolyn J.; Graham, Mark J.; Ford, David A.; Finck, Brian N.

    2014-01-01

    Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury. PMID:25213859

  19. Inhibiting monoacylglycerol acyltransferase 1 ameliorates hepatic metabolic abnormalities but not inflammation and injury in mice.

    PubMed

    Soufi, Nisreen; Hall, Angela M; Chen, Zhouji; Yoshino, Jun; Collier, Sara L; Mathews, James C; Brunt, Elizabeth M; Albert, Carolyn J; Graham, Mark J; Ford, David A; Finck, Brian N

    2014-10-24

    Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.

  20. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  1. Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal.

    PubMed

    Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin

    2014-12-01

    This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.

  2. Association of periodontal status with liver abnormalities and metabolic syndrome.

    PubMed

    Ahmad, Aisyah; Furuta, Michiko; Shinagawa, Takashi; Takeuchi, Kenji; Takeshita, Toru; Shimazaki, Yoshihiro; Yamashita, Yoshihisa

    2015-01-01

    Although an association between periodontal status and liver abnormalities has been reported, it has not been described in relation to metabolic syndrome (MetS), which often coexists with non-alcoholic fatty liver disease. We examined the association of a combination of liver abnormality and MetS with periodontal condition in Japanese adults, based on the level of alcohol consumption. In 2008, 4,207 males aged 45.4 ± 8.9 years and 1,270 females aged 45.9 ± 9.7 years had annual workplace health check-ups at a company in Japan. Periodontal status was represented as periodontal pocket depth at the mesio-buccal and mid-buccal sites for all teeth. Alanine aminotransferase (ALT), and metabolic components were examined. Multiple linear regression analysis showed a significant association between deep pocket depth and the coexistence of elevated ALT and MetS in males with low alcohol consumption. Females showed no such relationship. In conclusion, the association between periodontal condition and the combination of elevated ALT and MetS was confirmed in males. That is, a clear association between liver abnormalities and periodontal condition was seen in male subjects with no or low alcohol consumption and MetS, providing new insights into the connection between liver function and periodontal health. PMID:26666857

  3. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    NASA Astrophysics Data System (ADS)

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-06-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  4. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis.

    PubMed

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F Peter; Rozman, Damjana

    2016-01-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network. PMID:27334049

  5. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    PubMed Central

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-01-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network. PMID:27334049

  6. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    PubMed

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P < 0.05 vs. vehicle). A significant 20% reduction in hepatic LDL receptor protein expression was also observed with empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. PMID:27207551

  7. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    PubMed

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P < 0.05 vs. vehicle). A significant 20% reduction in hepatic LDL receptor protein expression was also observed with empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion.

  8. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism

    PubMed Central

    Dubland, Joshua A.; Francis, Gordon A.

    2015-01-01

    Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression. PMID:25699256

  9. Effect of clofibrate on cholesterol metabolism in rats treated with polychlorinated biphenyls

    SciTech Connect

    Nakagawa, M.; Shimokawa, T.; Noguchi, A.; Ishihara, N.; Kojima, S.

    1986-02-01

    Serum and hepatic cholesterol content in rats treated with polychlorinated biphenyls (PCBs, KC-400) were increased compared to those of control rats. This increase of cholesterol content was reduced to control level by simultaneous administration of ethyl p-chlorophenoxyisobutyrate (CPIB). Also, when lecithin-cholesterol acyltransferase (LCAT) activity was expressed as the net cholesterol esterification, the acyltransferase activity in rats treated with PCBs was elevated, while the elevated acyltransferase activity was brought to control level by simultaneous administration of CPIB. On the other hand, the amount of bile of rats treated with CPIB, PCBs and PCBs-CPIB was increased, but free and total cholesterol content in bile of these treated rats was decreased to 40-60% of those of control rats. Moreover, cytochrome P-450 content in liver microsomes of rats treated with CPIB, PCBs and PCBs-CPIB was increased. At the same time, cholesterol-metabolizing activity in liver microsomes of rats treated with CPIB, PCBs and PCBs-CPIB also was elevated. Similar results were obtained for drug metabolizing (aniline hydroxylation and aminopyrine N-demethylation) activity. In addition, the amount of bile acids excreted from rats treated with CPIB, PCBs and PCBs-CPIB was increased compared to that of control rats. These results suggest that hypercholesterolemia induced by oral ingestion of PCBs is recovered by CPIB treatment and that this hypocholesterolemic effect of CPIB may be related partly to the elevation of hepatic mixed function oxidase activity for cholesterol catabolism.

  10. Transcription Factor Hepatocyte Nuclear Factor-1β Regulates Renal Cholesterol Metabolism.

    PubMed

    Aboudehen, Karam; Kim, Min Soo; Mitsche, Matthew; Garland, Kristina; Anderson, Norma; Noureddine, Lama; Pontoglio, Marco; Patel, Vishal; Xie, Yang; DeBose-Boyd, Russell; Igarashi, Peter

    2016-08-01

    HNF-1β is a tissue-specific transcription factor that is expressed in the kidney and other epithelial organs. Humans with mutations in HNF-1β develop kidney cysts, and HNF-1β regulates the transcription of several cystic disease genes. However, the complete spectrum of HNF-1β-regulated genes and pathways is not known. Here, using chromatin immunoprecipitation/next generation sequencing and gene expression profiling, we identified 1545 protein-coding genes that are directly regulated by HNF-1β in murine kidney epithelial cells. Pathway analysis predicted that HNF-1β regulates cholesterol metabolism. Expression of dominant negative mutant HNF-1β or kidney-specific inactivation of HNF-1β decreased the expression of genes that are essential for cholesterol synthesis, including sterol regulatory element binding factor 2 (Srebf2) and 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr). HNF-1β mutant cells also expressed lower levels of cholesterol biosynthetic intermediates and had a lower rate of cholesterol synthesis than control cells. Additionally, depletion of cholesterol in the culture medium mitigated the inhibitory effects of mutant HNF-1β on the proteins encoded by Srebf2 and Hmgcr, and HNF-1β directly controlled the renal epithelial expression of proprotein convertase subtilisin-like kexin type 9, a key regulator of cholesterol uptake. These findings reveal a novel role of HNF-1β in a transcriptional network that regulates intrarenal cholesterol metabolism. PMID:26712526

  11. Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities

    PubMed Central

    Tan, Yong; Jia, Dongmei; Lin, Zhang; Guo, Baosheng; He, Bing; Lu, Cheng; Xiao, Cheng; Liu, Zhongdi; Zhao, Ning; Bian, Zhaoxiang; Zhang, Ge; Zhang, Weidong; Liu, Xinru; Lu, Aiping

    2016-01-01

    Determining sensitive biomarkers in the peripheral blood to identify interstitial lung abnormalities (ILAs) is essential for the simple early diagnosis of ILAs. This study aimed to determine serum metabolic biomarkers of ILAs and the corresponding pathogenesis. Three groups of subjects undergoing health screening, including healthy subjects, subjects with ILAs, and subjects who were healthy initially and with ILAs one year later (Healthy→ILAs), were recruited for this study. The metabolic profiles of all of the subjects’ serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolic characteristics of the ILAs subjects were discovered, and the corresponding biomarkers were predicted. The metabolomic data from the Healthy→ILAs subjects were collected for further verification. The results indicated that five serum metabolite alterations (up-regulated phosphatidylcholine, phosphatidic acid, betaine aldehyde and phosphatidylethanolamine, as well as down-regulated 1-acylglycerophosphocholine) were sensitive and reliable biomarkers for identifying ILAs. Perturbation of the corresponding biological pathways (RhoA signaling, mTOR/P70S6K signaling and phospholipase C signaling) might be at least partially responsible for the pathogenesis of ILAs. This study may provide a good template for determining the early diagnostic markers of subclinical disease status and for obtaining a better understanding of their pathogenesis. PMID:27438829

  12. Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro[S

    PubMed Central

    Canfrán-Duque, Alberto; Casado, María E.; Pastor, Óscar; Sánchez-Wandelmer, Jana; de la Peña, Gema; Lerma, Milagros; Mariscal, Paloma; Bracher, Franz; Lasunción, Miguel A.; Busto, Rebeca

    2013-01-01

    Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ7-reductase, Δ8,7-isomerase, and Δ14-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ24-reductase and Δ8,7-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia. PMID:23175778

  13. Role of UBIAD1 in Intracellular Cholesterol Metabolism and Vascular Cell Calcification.

    PubMed

    Liu, Sha; Guo, Wang; Han, Xue; Dai, Wendi; Diao, Zongli; Liu, Wenhu

    2016-01-01

    Vascular calcification is an important risk factor associated with mortality among patients with chronic kidney disease. Intracellular cholesterol metabolism is involved in the process of vascular cell calcification. In this study, we investigated the role of UbiA prenyltransferase domain containing 1 (UBIAD1) in intracellular cholesterol metabolism and vascular cell calcification, and identified its subcellular location. Primary human umbilical vein smooth muscle cells (HUVSMCs) were incubated with either growth medium (1.4 mmol/L Pi) or calcification medium (CM) (3.0 mmol/L Pi). Under treatment with CM, HUVSMCs were further incubated with exogenous cholesterol, or menaquinone-4, a product of UBIAD1. The plasmid and small interfering RNA were transfected in HUVSMCs to alter the expression of UBIAD1. Matrix calcium quantitation, alkaline phosphatase activity, intracellular cholesterol level and menaquinone-4 level were measured. The expression of several genes involved in cholesterol metabolism were analyzed. Using an anti-UBIAD1 antibody, an endoplasmic reticulum marker and a Golgi marker, the subcellular location of UBIAD1 in HUVSMCs was analyzed. CM increased matrix calcium, alkaline phosphatase activity and intracellular cholesterol level, and reduced UBIAD1 expression and menaquinone-4 level. Addition of cholesterol contributed to increased matrix calcification and alkaline phosphatase activity in a dose-dependent manner. Elevated expression of UBIAD1 or menaquinone-4 in HUVSMCs treated with CM significantly reduced intracellular cholesterol level, matrix calcification and alkaline phosphatase activity, but increased menaquinone-4 level. Elevated expression of UBIAD1 or menaquinone-4 reduced the gene expression of sterol regulatory element-binding protein-2, and increased gene expression of ATP binding cassette transporters A1, which are in charge of cholesterol synthesis and efflux. UBIAD1 co-localized with the endoplasmic reticulum marker and the Golgi

  14. Distinct metabolic and vascular effects of dietary triglycerides and cholesterol in atherosclerotic and diabetic mouse models.

    PubMed

    Laplante, Marc-André; Charbonneau, Alexandre; Avramoglu, Rita Kohen; Pelletier, Patricia; Fang, Xiangping; Bachelard, Hélène; Ylä-Herttuala, Seppo; Laakso, Markku; Després, Jean-Pierre; Deshaies, Yves; Sweeney, Gary; Mathieu, Patrick; Marette, André

    2013-09-01

    Cholesterol and triglyceride-rich Western diets are typically associated with an increased occurrence of type 2 diabetes and vascular diseases. This study aimed to assess the relative impact of dietary cholesterol and triglycerides on glucose tolerance, insulin sensitivity, atherosclerotic plaque formation, and endothelial function. C57BL6 wild-type (C57) mice were compared with atherosclerotic LDLr(-/-) ApoB(100/100) (LRKOB100) and atherosclerotic/diabetic IGF-II × LDLr(-/-) ApoB(100/100) (LRKOB100/IGF) mice. Each group was fed either a standard chow diet, a 0.2% cholesterol diet, a high-fat diet (HFD), or a high-fat 0.2% cholesterol diet for 6 mo. The triglyceride-rich HFD increased body weight, glucose intolerance, and insulin resistance but did not alter endothelial function or atherosclerotic plaque formation. Dietary cholesterol, however, increased plaque formation in LRKOB100 and LRKOB100/IGF animals and decreased endothelial function regardless of genotype. However, cholesterol was not associated with an increase of insulin resistance in LRKOB100 and LRKOB100/IGF mice and, unexpectedly, was even found to reduce the insulin-resistant effect of dietary triglycerides in these animals. Our data indicate that dietary triglycerides and cholesterol have distinct metabolic and vascular effects in obese atherogenic mouse models resulting in dissociation between the impairment of glucose homeostasis and the development of atherosclerosis.

  15. Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima

    PubMed Central

    Jarouliya, Urmila; Anish, Zacharia J.; Kumar, Pravin; Bisen, P.S.; Prasad, G.B.K.S.

    2012-01-01

    Background & objectives: Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats. Methods: Oral administration of 10 per cent fructose solution to Wistar rats (n=5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration. Results: Significant (P<0.001) reductions in blood glucose, lipid profile (triglycerides, cholesterol and LDL, VLDL) and liver function markers (SGPT and SGOT) were recorded along with elevated level of HDL-C at the end of 30 days therapy of 5 or 10 per cent S. maxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats. Interpretation & Conclusions: The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms. PMID:22561632

  16. Sudden infant death syndrome and abnormal metabolism of thiamin.

    PubMed

    Lonsdale, Derrick

    2015-12-01

    Although it has been generally accepted that moving the infant from the prone to the supine position has solved the problem of sudden infant death syndrome (SIDS), it has been hypothesized that this is an insufficient explanation and that a mixture of genetic risk, some form of stressful incident and marginal brain metabolism is proportionately required. It is suggested that each of these three variables, with dominance in one or more of them, act together in the common etiology. Much has been written about the association of thiamin and magnesium but the finding of extremely high concentrations of serum thiamin in SIDs victims has largely caused rejection of thiamin as being involved in the etiology. The publication of abnormal brainstem auditory evoked potentials strongly suggests that there are electrochemical changes in the brainstem affecting the mechanisms of automatic breathing and the control of cardiac rhythm. The brainstem, cerebellum and limbic system of the brain are known to be highly sensitive to thiamin deficiency (pseudo-hypoxia) and the pathophysiology is similar to a mild continued deprivation of oxygen. Little attention has been paid to the complex metabolism of thiamin. Dietary thiamin requires the cooperation of the SLC19 family of thiamin transporters for its absorption into cells and recent information has shown that transporter SNPs may be relatively common and can be expected to increase genetic risk. Thiamin must be phosphorylated to synthesize thiamin pyrophosphate (TPP), well established in its vital action in glucose metabolism. TPP is also a cofactor for the enzyme 2-hydroxyacyl-CoA lyase (HACL1) in the peroxisome, emphasizing its importance in alpha oxidation and plasmalogen synthesis in cell membrane physiology. The importance of thiamine triphosphate (TTP) in energy metabolism is still largely unknown. Thiamin metabolism has been implicated in hyperemesis gravidarum and iatrogenic Wernicke encephalopathy has been reported when the

  17. Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans.

    PubMed

    Wang, Yanwen; Jones, Peter J H; Woollett, Laura A; Buckley, Donna D; Yao, Lihang; Granholm, Norman A; Tolley, Elizabeth A; Heubi, James E

    2006-07-01

    Quantitative and qualitative differences in intralumenal bile acids may affect cholesterol absorption and metabolism. To test this hypothesis, 2 cross-over outpatient studies were conducted in adults with apo-A IV 1/1 or apo-E 3/3 genotypes. Study 1 included 11 subjects 24 to 37 years of age, taking 15 mg/kg/day chenodeoxycholic acid (CDCA) or no bile acid for 20 days while being fed a controlled diet. Study 2 included 9 adults 25 to 38 years of age, taking 15 mg/kg/day deoxycholic acid (DCA) or no bile acid, following the same experimental design and procedures as study 1. CDCA had no effect on plasma lipid concentrations, whereas DCA decreased (P < 0.05) plasma high-density lipoprotein (HDL)-cholesterol and tended to decrease (P = 0.15) low-density lipoprotein (LDL)-cholesterol. CDCA treatment enriched (P < 0.0001) bile with CDCA and increased cholesterol concentration in micelles, whereas meal-stimulated bile acid concentrations were decreased. DCA treatment enriched (P < 0.0001) bile with DCA and tended to increase intralumenal cholesterol solubilized in micelles (P = 0.06). No changes were found in cholesterol absorption, free cholesterol fractional synthetic rate (FSR), or 3-hydroxy-3 methylglutaryl (HMG) CoA reductase and LDL receptor messenger ribonucleic acid (mRNA) levels after CDCA treatment. DCA supplementation tended to decrease cholesterol absorption and reciprocally increase FSR and HMG CoA reductase and LDL receptor mRNA levels. Results of these 2 studies suggest that the solubilization of cholesterol in the intestinal micelles is not a rate-limiting step for its absorption.

  18. The Conserved Rieske Oxygenase DAF-36/Neverland Is a Novel Cholesterol-metabolizing Enzyme*

    PubMed Central

    Yoshiyama-Yanagawa, Takuji; Enya, Sora; Shimada-Niwa, Yuko; Yaguchi, Shunsuke; Haramoto, Yoshikazu; Matsuya, Takeshi; Shiomi, Kensuke; Sasakura, Yasunori; Takahashi, Shuji; Asashima, Makoto; Kataoka, Hiroshi; Niwa, Ryusuke

    2011-01-01

    Steroid hormones play essential roles in a wide variety of biological processes in multicellular organisms. The principal steroid hormones in nematodes and arthropods are dafachronic acids and ecdysteroids, respectively, both of which are synthesized from cholesterol as an indispensable precursor. The first critical catalytic step in the biosynthesis of these ecdysozoan steroids is the conversion of cholesterol to 7-dehydrocholesterol. However, the enzymes responsible for cholesterol 7,8-dehydrogenation remain unclear at the molecular level. Here we report that the Rieske oxygenase DAF-36/Neverland (Nvd) is a cholesterol 7,8-dehydrogenase. The daf-36/nvd genes are evolutionarily conserved, not only in nematodes and insects but also in deuterostome species that do not produce dafachronic acids or ecdysteroids, including the sea urchin Hemicentrotus pulcherrimus, the sea squirt Ciona intestinalis, the fish Danio rerio, and the frog Xenopus laevis. An in vitro enzymatic assay system reveals that all DAF-36/Nvd proteins cloned so far have the ability to convert cholesterol to 7-dehydrocholesterol. Moreover, the lethality of loss of nvd function in the fruit fly Drosophila melanogaster is rescued by the expression of daf-36/nvd genes from the nematode Caenorhabditis elegans, the insect Bombyx mori, or the vertebrates D. rerio and X. laevis. These data suggest that daf-36/nvd genes are functionally orthologous across the bilaterian phylogeny. We propose that the daf-36/nvd family of proteins is a novel conserved player in cholesterol metabolism across the animal phyla. PMID:21632547

  19. Sasa quelpaertensis leaf extract improves high fat diet-induced lipid abnormalities and regulation of lipid metabolism genes in rats.

    PubMed

    Kim, Jina; Kim, Yoo-Sun; Lee, Hyun Ah; Lim, Ji Ye; Kim, Mina; Kwon, Oran; Ko, Hee-Chul; Kim, Se-Jae; Shin, Jae-Ho; Kim, Yuri

    2014-05-01

    Sasa quelpaertensis is a bamboo leaf that is only grown on Jeju Island in South Korea. It is used as a bamboo tea that is consumed for therapeutic purposes, particularly for its anti-diabetic, diuretic, and anti-inflammatory effects. This study investigated the effect of S. quelpaertensis leaf extract (SQE) on high fat-induced lipid abnormalities and regulation of lipid metabolism-related gene expressions in rats. SQE supplementation significantly decreased the levels of plasma triglycerides, total cholesterol, and low-density lipoprotein cholesterol as well as the atherogenic index. SQE restored levels of plasma high-density lipoprotein cholesterol, which were lowered by a high fat diet. Plasma and cardiac resistin levels were also significantly decreased by SQE supplementation. In adipose tissue, mRNA levels of CAAT/enhancer-binding protein β (C/EBPβ) were suppressed in the SQE group. SQE supplementation decreased the accumulation of lipid droplets, inflammatory cell infiltrations, levels of triglycerides, and total lipids in the liver and effectively down-regulated expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FAS), and uncoupling protein 2 (UCP-2). These results suggest that SQE may be a potential treatment for high fat-related disorders by improving lipid profiles and modulating lipid metabolism.

  20. Redox metabolism abnormalities in autistic children associated with mitochondrial disease.

    PubMed

    Frye, R E; Delatorre, R; Taylor, H; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-06-18

    Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly

  1. Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely To Affect the Gut Microbiota Composition in Hamsters

    PubMed Central

    Martínez, Inés; Perdicaro, Diahann J.; Brown, Andrew W.; Hammons, Susan; Carden, Trevor J.; Carr, Timothy P.; Eskridge, Kent M.

    2013-01-01

    The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota. PMID:23124234

  2. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.

  3. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated. PMID:26306559

  4. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production

    PubMed Central

    Marques, Maria Angela M.; Berrêdo-Pinho, Marcia; Rosa, Thabatta L. S. A.; Pujari, Venugopal; Lemes, Robertha M. R.; Lery, Leticia M. S.; Silva, Carlos Adriano M.; Guimarães, Ana Carolina R.; Atella, Georgia C.; Wheat, William H.; Brennan, Patrick J.; Crick, Dean C.; Belisle, John T.

    2015-01-01

    ABSTRACT Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-14C]cholesterol or [26-14C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in

  5. [Therapeutic action of vitamin C on cholesterol metabolism].

    PubMed

    Fidanza, A; Floridi, S; Martinoli, L; Mastroiacovo, P; Servi, M; Di Virgilio, D; Ravallese, F

    1979-03-30

    As a part of the research work on the role played by Vitamin C on lipidic metabolism, the effects on man were considered that result from the administration of high vitamin C doses, chiefly with reference to the serum levels of colesterol, of total lipids and of triglycerides. Our research was conducted on male subjects of 65-90 years, who were administered 3 g/day of vitamin C for three weeks. Our findings show that the administration of high vitamin C doses causes a statistically significant decrease in colesterol, in total lipids and in triglycerides, in all the subjects under consideration. This takes place not only when colesterol, total lipids and triglycerides present normal serum levels, but also when such levels show an increase. Conversely, vitamin C significantly increases, with treatment, in all subjects treated, both in plasma and in leukocytes. PMID:550886

  6. [Therapeutic action of vitamin C on cholesterol metabolism].

    PubMed

    Fidanza, A; Floridi, S; Martinoli, L; Mastroiacovo, P; Servi, M; Di Virgilio, D; Ravallese, F

    1979-03-30

    As a part of the research work on the role played by Vitamin C on lipidic metabolism, the effects on man were considered that result from the administration of high vitamin C doses, chiefly with reference to the serum levels of colesterol, of total lipids and of triglycerides. Our research was conducted on male subjects of 65-90 years, who were administered 3 g/day of vitamin C for three weeks. Our findings show that the administration of high vitamin C doses causes a statistically significant decrease in colesterol, in total lipids and in triglycerides, in all the subjects under consideration. This takes place not only when colesterol, total lipids and triglycerides present normal serum levels, but also when such levels show an increase. Conversely, vitamin C significantly increases, with treatment, in all subjects treated, both in plasma and in leukocytes.

  7. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis.

    PubMed

    Sallam, Tamer; Jones, Marius C; Gilliland, Thomas; Zhang, Li; Wu, Xiaohui; Eskin, Ascia; Sandhu, Jaspreet; Casero, David; Vallim, Thomas Q de Aguiar; Hong, Cynthia; Katz, Melanie; Lee, Richard; Whitelegge, Julian; Tontonoz, Peter

    2016-06-01

    Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.

  8. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis.

    PubMed

    Sallam, Tamer; Jones, Marius C; Gilliland, Thomas; Zhang, Li; Wu, Xiaohui; Eskin, Ascia; Sandhu, Jaspreet; Casero, David; Vallim, Thomas Q de Aguiar; Hong, Cynthia; Katz, Melanie; Lee, Richard; Whitelegge, Julian; Tontonoz, Peter

    2016-06-01

    Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis. PMID:27251289

  9. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  10. Effect of plant sterol-enriched diets on plasma and egg yolk cholesterol concentrations and cholesterol metabolism in laying hens.

    PubMed

    Liu, X; Zhao, H L; Thiessen, S; House, J D; Jones, P J H

    2010-02-01

    Egg exists as a major dietary source of cholesterol in Western diets. In North America, laying hen diets are usually devoid of cholesterol when diets are formulated to exclude animal-based products. Hence, laying hens meet their physiological cholesterol requirement through de novo synthesis. Plant sterols exert a cholesterol-lowering effect in humans by interfering with intestinal sterol absorption. However, it is unknown whether plant sterol supplementation could be effective in reducing intestinal reabsorption of biliary cholesterol in laying hens, thus modulating whole body cholesterol in favor of lower plasma and yolk cholesterol content. The current study was designed to investigate the effect of diets enriched with 0, 0.5, 1, and 2% plant sterols on cholesterol absorption, synthesis, as well as plasma, liver, and egg yolk cholesterol concentrations in laying hens. After 8 wk of plant sterol intervention (first 2 wk were acclimatization), feed intake, BW, egg weight, egg yolk weight, egg production, Haugh units, liver mass, plasma, and hepatic cholesterol concentrations did not differ as a function of plant sterol supplementation. Egg cholesterol concentrations (mg/g) fluctuated during the 6-wk experimental period. At wk 6, a minor reduction in egg yolk cholesterol concentration (mg per g of yolk, P<0.05, vs. control) was observed in hens fed 1 and 2% cholesterol-enriched diets, respectively. However, such result failed to affect total egg cholesterol content. No statistical difference was observed across treatments over 6 wk. Neither cholesterol absorption rates nor synthesis differed as a function of treatment. Results suggested that overall cholesterol content in egg yolk was not affected by feeding hens plant sterol-enriched diets over 6 wk. PMID:20075279

  11. Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism.

    PubMed

    Hoekstra, Menno; Van Berkel, Theo-Jc; Van Eck, Miranda

    2010-12-21

    Scavenger receptor class B type I (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepatocytes, which identifies SR-BI as a multi-purpose player in lipid uptake from the blood circulation into hepatocytes in mice. In adrenocortical cells, SR-BI mediates the selective uptake of HDL-cholesteryl esters, which is efficiently coupled to the synthesis of glucocorticoids (i.e. corticosterone). SR-BI knockout mice suffer from adrenal glucocorticoid insufficiency, which suggests that functional SR-BI protein is necessary for optimal adrenal steroidogenesis in mice. SR-BI in macrophages plays a dual role in cholesterol metabolism as it is able to take up cholesterol associated with HDL and apoB-containing lipoproteins and can possibly facilitate cholesterol efflux to HDL. Absence of SR-BI is associated with thrombocytopenia and altered thrombosis susceptibility, which suggests a novel role for SR-BI in regulating platelet number and function in mice. Transgenic expression of cholesteryl ester transfer protein in humanized SR-BI knockout mice normalizes hepatic delivery of HDL-cholesteryl esters. However, other pathologies associated with SR-BI deficiency, i.e. increased atherosclerosis susceptibility, adrenal glucocorticoid insufficiency, and impaired platelet function are not normalized, which suggests an important role for SR-BI in cholesterol and steroid metabolism in man. In conclusion, generation of SR-BI knockout mice has significantly contributed to our knowledge of the physiological role of SR-BI. Studies using these mice have identified SR-BI as a

  12. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1.

    PubMed

    Mundy, Dorothy I; Lopez, Adam M; Posey, Kenneth S; Chuang, Jen-Chieh; Ramirez, Charina M; Scherer, Philipp E; Turley, Stephen D

    2014-07-01

    Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1(-/-)), and subsequently in Cav-1(-/-) mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) (Cav-1(-/-):Npc1(-/-)). In 50-day-old Cav-1(-/-) mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1(+/+) controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1(-/-):Npc1(-/-) mice (0.356±0.022) markedly exceeded that in their Cav-1(+/+):Npc1(+/+) controls (0.137±0.009), as well as in their Cav-1(-/-):Npc1(+/+) (0.191±0.013) and Cav-1(+/+):Npc1(-/-) (0.213±0.022) littermates. The corresponding lung total cholesterol contents (mg/organ) in mice of these genotypes were 6.74±0.17, 0.71±0.05, 0.96±0.05 and 3.12±0.43, respectively, with the extra cholesterol in the Cav-1(-/-):Npc1(-/-) and Cav-1(+/+):Npc1(-/-) mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1(-/-):Npc1(-/-) mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted.

  13. Effects of a Dietary Supplement with Barley Sprout Extract on Blood Cholesterol Metabolism.

    PubMed

    Byun, A Ri; Chun, Hyejin; Lee, Jin; Lee, Sang Wha; Lee, Hong Soo; Shim, Kyung Won

    2015-01-01

    Objective. Barley sprout (Hordeum vulgare L.) contains 4.97% fat, 52.6% polysaccharide, and 34.1% protein along with a variety of vitamins, minerals, and polyphenolic compounds. Hexacosanol is one such compound from the barley leaf that might improve cholesterol metabolism by decreasing cholesterol synthesis. Method. Therefore, this study was conducted to investigate the effects of barley sprout extract on serum lipid metabolism in healthy volunteers (n = 51). Subjects were randomly divided into two groups: one group consumed a single capsule of barley leaf extract daily (n = 25, 42.48 ± 13.58 years) and the other consumed placebo capsules (n = 26, 40.54 ± 11.1 years) for 12 weeks. Results. After 12 weeks, total cholesterol and low-density lipoprotein- (LDL-) cholesterol were not lower in the barley sprout extract group compared to the placebo group (p = 0.415 and p = 0.351, resp.) and no differences in clinical or laboratory findings were observed between both groups. Conclusion. Our study failed to show significant lipid-lowering effects of barley sprout extract, possibly due to dosage, duration of therapy, and small sample size. Despite our nonsignificant findings, barley sprout has a possibility as a functional health food; therefore future research is needed.

  14. Effects of novel bile salts on cholesterol metabolism in rats and guinea-pigs.

    PubMed

    Fears, R; Brown, R; Ferres, H; Grenier, F; Tyrrell, A W

    1990-11-01

    Novel bile salts (quaternary ammonium conjugates) inhibited cholic acid binding and transport in everted ileal sacs in vitro. The cationic piperazine conjugate of lithocholic acid (di-iodide salt, compound 8, BRL 39924A) appeared most active, inhibiting binding by 29% and transport by 59% in guinea-pig ileum (200 microM). BRL 39924A also inhibited taurocholate uptake into guinea-pig ileal sacs and cholate uptake into rat ileal sacs and was selected for further study in vivo. In hyperlipidaemic rats, BRL 39924A significantly raised cholesterol 7 alpha-hydroxylase activity and decreased hepatic accumulation of exogenous cholic acid. HDL cholesterol concentration in the serum increased and the level of VLDL plus LDL cholesterol decreased. In hyperlipidaemic guinea-pigs. BRL 39924A lowered serum total cholesterol and triglyceride levels. Although metabolic changes were less than those achieved with the bile acid sequestrant, cholestyramine, the doses of BRL 39924A used were much lower (100-500 mg/kg body wt). Selective inhibition of receptor mediated bile acid uptake may be associated with local side-effects but these novel bile salts are useful pharmacological tools to examine the effects of receptor blockade on lipoprotein metabolism. PMID:2242032

  15. Effects of a Dietary Supplement with Barley Sprout Extract on Blood Cholesterol Metabolism

    PubMed Central

    Byun, A Ri; Chun, Hyejin; Lee, Jin; Lee, Sang Wha; Lee, Hong Soo; Shim, Kyung Won

    2015-01-01

    Objective. Barley sprout (Hordeum vulgare L.) contains 4.97% fat, 52.6% polysaccharide, and 34.1% protein along with a variety of vitamins, minerals, and polyphenolic compounds. Hexacosanol is one such compound from the barley leaf that might improve cholesterol metabolism by decreasing cholesterol synthesis. Method. Therefore, this study was conducted to investigate the effects of barley sprout extract on serum lipid metabolism in healthy volunteers (n = 51). Subjects were randomly divided into two groups: one group consumed a single capsule of barley leaf extract daily (n = 25, 42.48 ± 13.58 years) and the other consumed placebo capsules (n = 26, 40.54 ± 11.1 years) for 12 weeks. Results. After 12 weeks, total cholesterol and low-density lipoprotein- (LDL-) cholesterol were not lower in the barley sprout extract group compared to the placebo group (p = 0.415 and p = 0.351, resp.) and no differences in clinical or laboratory findings were observed between both groups. Conclusion. Our study failed to show significant lipid-lowering effects of barley sprout extract, possibly due to dosage, duration of therapy, and small sample size. Despite our nonsignificant findings, barley sprout has a possibility as a functional health food; therefore future research is needed. PMID:26101533

  16. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. PMID:26783361

  17. SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer

    PubMed Central

    Gutierrez-Pajares, Jorge L.; Ben Hassen, Céline; Chevalier, Stéphan; Frank, Philippe G.

    2016-01-01

    Studies have demonstrated the significant role of cholesterol and lipoprotein metabolism in the progression of cancer. The SCARB1 gene encodes the scavenger receptor class B type I (SR-BI), which is an 82-kDa glycoprotein with two transmembrane domains separated by a large extracellular loop. SR-BI plays an important role in the regulation of cholesterol exchange between cells and high-density lipoproteins. Accordingly, hepatic SR-BI has been shown to play an essential role in the regulation of the reverse cholesterol transport pathway, which promotes the removal and excretion of excess body cholesterol. In the context of atherosclerosis, SR-BI has been implicated in the regulation of intracellular signaling, lipid accumulation, foam cell formation, and cellular apoptosis. Furthermore, since lipid metabolism is a relevant target for cancer treatment, recent studies have focused on examining the role of SR-BI in this pathology. While signaling pathways have initially been explored in non-tumoral cells, studies with cancer cells have now demonstrated SR-BI's function in tumor progression. In this review, we will discuss the role of SR-BI during tumor development and malignant progression. In addition, we will provide insights into the transcriptional and post-transcriptional regulation of the SCARB1 gene. Overall, studying the role of SR-BI in tumor development and progression should allow us to gain useful information for the development of new therapeutic strategies. PMID:27774064

  18. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition.

  19. [The contribution of Goldstein and Brown to the study of cholesterol metabolism].

    PubMed

    Cortés, Víctor; Vásquez, Tatiana; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2012-08-01

    In December 1985, the Nobel Prize of Medicine was awarded to Drs. Joseph L. Goldstein and Michael S. Brown for their fundamental scientific work on the regulation of cholesterol metabolism mediated by the low density lipoprotein receptor pathway. This article briefly reviews the academic and research accomplishments of Drs. Brown and Goldstein as a tribute to these physician-scientists for their well-deserved award and enormous contribution to biomedical science worldwide.

  20. Hypertension, abnormal cholesterol, and high body mass index among non-Hispanic Asian adults: United States, 2011-2012.

    PubMed

    Aoki, Yutaka; Yoon, Sung Sug; Chong, Yinong; Carroll, Margaret D

    2014-01-01

    not completely captured by BMI (10). This report builds on recently published estimates of hypertension, cholesterol, and obesity from NHANES 2011–2012 (3,6,11) by providing related estimates for Asian adults by select demographic characteristics. Hypertension, abnormal cholesterol levels, and elevated body weight are important risk factors for major chronic diseases, for which differences by race as well as ethnicity have been reported. The Asian population includes many ethnic groups, and the majority of non-Hispanic Asian adults in the United States are immigrants (12). Note that these estimates are for non-Hispanic Asian persons overall and may not reflect patterns for specific subgroups of Asian persons.

  1. Serum metabolic profiling of abnormal savda by liquid chromatography/mass spectrometry.

    PubMed

    Yin, Peiyuan; Mohemaiti, Patamu; Chen, Jing; Zhao, Xinjie; Lu, Xin; Yimiti, Adilijiang; Upur, Halmurat; Xu, Guowang

    2008-08-15

    Abnormal savda is a special symptom in Uigur medicine. The understanding of its metabolic origins is of great importance for the subsequent treatment. Here, a metabonomic study of this symptom was carried out using LC-MS based human serum metabolic profiling. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) was used for the classification and prediction of abnormal savda. Potential biomarkers from metabonomics were also identified for a metabolic understanding of abnormal savda. As a result, our OSC-PLS-DA model had a satisfactory ability for separation and prediction of abnormal savda. The potential biomarkers including bilirubin, bile acids, tryptophan, phenylalanine and lyso-phosphatidylcholines indicated that abnormal savda could be related to some abnormal metabolisms within the body, including energy metabolism, absorption of nutrition, metabolism of lecithin on cell membrane, etc. To the best of our knowledge, this is the first study of abnormal savda based on serum metabolic profiling. The LC/MS-based metabonomic platform could be a powerful tool for the classification of symptoms and for the development of this traditional medicine into an evidence-based one.

  2. Other aspects of bariatric surgery: liver steatosis, ferritin and cholesterol metabolism.

    PubMed

    Pontiroli, A E; Benetti, A; Folini, L; Merlotti, C; Frigè, F

    2013-03-01

    Bariatric surgery developed in the late 1970 to treat severe hyperlipidemias in overweight individuals, not necessarily obese. Several techniques have been developed, and the concept has come first of a surgery for morbid obesity, then of a cure for diabetes in morbid obesity. There are other aspects of bariatric surgery that deserve attention, beyond BMI and diabetes, such as hypertension, poor life expectancy, increased prevalence of cancer, congestive heart failure, social inadequacy. The aim of this presentation is to review some recent development in clinical research, in the fields of liver steatosis, ferritin metabolism, and cholesterol metabolism. Liver steatosis, also called fatty liver encompasses a graduation of diseases with different clinical relevance and prognosis. NAFLD correlates with atherosclerosis, insulin resistance and diabetes mellitus. There is now evidence that weight loss, obtained through diet or restrictive surgery, reduces the prevalence (and the severity) of NAFLD. An other issue is represented by serum ferritin concentrations, that are strongly associated with fibrosis, portal and lobular inflammation in NAFLD patients, especially in the presence of obesity. Body iron contributes to excess oxidative stress already at non iron overload concentrations. Moreover, serum ferritin is an important and independent predictor of the development of diabetes. Weight loss is accompanied by reduction of ferritin, more after restrictive than malabsorptive surgery. Metabolic changes are greater after malabsorptive or mixed surgery than after purely restrictive surgery, and this has been ascribed to a greater weight loss. Studies comparing the two kinds of surgery indicate that, for the same amount of weight loss, decrease of cholesterol is greater with the former than with the latter techniques, and this difference is mainly due to a greater reduction of intestinal absorption of cholesterol. In the choice of surgery for the single patient, among

  3. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. PMID:26627126

  4. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction.

  5. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism.

    PubMed

    Yang, Wei; Bai, Yibing; Xiong, Ying; Zhang, Jin; Chen, Shuokai; Zheng, Xiaojun; Meng, Xiangbo; Li, Lunyi; Wang, Jing; Xu, Chenguang; Yan, Chengsong; Wang, Lijuan; Chang, Catharine C Y; Chang, Ta-Yuan; Zhang, Ti; Zhou, Penghui; Song, Bao-Liang; Liu, Wanli; Sun, Shao-cong; Liu, Xiaolong; Li, Bo-liang; Xu, Chenqi

    2016-03-31

    CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy. PMID:26982734

  6. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism

    PubMed Central

    Yang, Wei; Bai, Yibing; Xiong, Ying; Zhang, Jin; Chen, Shuokai; Zheng, Xiaojun; Meng, Xiangbo; Li, Lunyi; Wang, Jing; Xu, Chenguang; Yan, Chengsong; Wang, Lijuan; Chang, Catharine C. Y.; Chang, Ta-Yuan; Zhang, Ti; Zhou, Penghui; Song, Bao-Liang; Liu, Wanli; Sun, Shao-cong; Liu, Xiaolong; Li, Bo-liang; Xu, Chenqi

    2016-01-01

    CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy. PMID:26982734

  7. Dietary Lipid and Cholesterol Induce Ovarian Dysfunction and Abnormal LH Response to Stimulation in Rabbits

    PubMed Central

    Dupont, Charlotte; Tarrade, Anne; Picone, Olivier; Larcher, Thibaut; Dahirel, Michèle; Poumerol, Elodie; Mandon-Pepin, Béatrice; Lévy, Rachel; Chavatte-Palmer, Pascale

    2013-01-01

    Background/Aim Excess of fat intake is dramatically increasing in women of childbearing age and results in numerous health complications, including reproductive disorders. Using rabbit does as a biomedical model, the aim of this study was to evaluate onset of puberty, endocrine responses to stimulation and ovarian follicular maturation in females fed a high fat high cholesterol diet (HH diet) from 10 weeks of age (i.e., 2 weeks before normal onset of puberty) or a control diet (C diet). Methodology/Principal Findings Three experiments were performed, each including 8 treated (HH group) and 8 control (C group) does. In experiment 1, the endocrine response to Gonadotropin releasing hormone (GnRH) was evaluated at 13, 18 and 22 weeks of age. In experiment 2, the follicular population was counted in ovaries of adult females (18 weeks of age). In experiment 3, the LH response to mating and steroid profiles throughout gestation were evaluated at 18 weeks of age. Fetal growth was monitored by ultrasound and offspring birth weight was recorded. Data showed a significantly higher Luteinizing hormone (LH) response after induction of ovulation at 13 weeks of age in the HH group. There was no difference at 18 weeks, but at 22 weeks, the LH response to GnRH was significantly reduced in the HH group. The number of atretic follicles was significantly increased and the number of antral follicles significantly reduced in HH does vs. controls. During gestation, the HH diet induced intra-uterine growth retardation (IUGR). Conclusion The HH diet administered from before puberty onwards affected onset of puberty, follicular growth, hormonal responses to breeding and GnRH stimulation in relation to age and lead to fetal IUGR. PMID:23690983

  8. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment.

    PubMed

    VanderVen, Brian C; Fahey, Ruth J; Lee, Wonsik; Liu, Yancheng; Abramovitch, Robert B; Memmott, Christine; Crowe, Adam M; Eltis, Lindsay D; Perola, Emanuele; Deininger, David D; Wang, Tiansheng; Locher, Christopher P; Russell, David G

    2015-02-01

    Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to support growth in macrophages. By conducting an extensive, unbiased chemical screen to identify small molecules that inhibit Mtb metabolism within macrophages, we identified a significant number of novel compounds that limit Mtb growth in macrophages and in medium containing cholesterol as the principle carbon source. Based on this observation, we developed a chemical-rescue strategy to identify compounds that target metabolic enzymes involved in cholesterol metabolism. This approach identified two compounds that inhibit the HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These chemical probes represent new classes of inhibitors with novel modes of action, and target metabolic pathways required to support growth of Mtb in its host cell. The screen also revealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol utilization. Mutants resistant to this class of compounds are defective in the bacterial adenylate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol utilization in Mtb, and are consistent with published reports indicating that propionate metabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent growth inhibition caused by this subset of compounds could be achieved by supplementing the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form of metabolic constraint induced by the presence of cholesterol.

  9. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients

    PubMed Central

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-01-01

    Background: Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. Objective: The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. Materials and Methods: In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI <25). Presence of insulin resistance and endocrine-metabolic abnormalities were compared between two groups. Collected data were analyzed with SPSS version 16.0 and p<0.05 was considered as statistically significant. Results: There was no significant difference in presence of insulin resistance (HOMA-IR >2.3) between two groups (p=0.357). Waist circumference (p<0.001), waist/hip ratio (p<0.001), systolic (p<0.001) and diastolic (p<0.001) blood pressures, fasting blood sugar (p=0.003) and insulin (p=0.011), HOMA-IR (p=0.004), total cholesterol (p=0.001) and triglyceride (p<0.001) were all significantly higher in obese PCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Conclusion: Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients. PMID:27351028

  10. Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models

    PubMed Central

    Bai, Jiefei; Zheng, Shuang; Jiang, Dongdong; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Cao, Yunshan; Hu, Yaomin

    2015-01-01

    Objective: Lipid metabolism disturbance can result in insulin resistance and glucose intolerance; however, the features of glucose metabolism are still elusive in different dyslipidemia. Our study intended to explore the characteristics and molecular mechanisms of glucose metabolism abnormal in hypercholesterolemia and hypertriglyceridemia models. Methods: Two mouse models were used in this study, one was lipoprotein lipase gene-deleted (LPL+/-) mice, and the other was high fat dietary (HFD) mice. Levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterin (HDL-c) and low-density lipoprotein-cholesterin (LDL-c) in serum were measured by full-automatic biochemical analyzer. Intraperitoneal glucose tolerance test (IPGTT) was performed to evaluate insulin sensitivity and β-cell function. Malondialdehyde (MDA) and total superoxide dismutase (T-SOD) levels in serum were measured by colorimetric determination. mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (Gpx1), nuclear factor erythroid 2-related factor 2 (Nrf2a) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) in liver, skeletal muscle, visceral fat and subcutaneous fat were measured by Real-Time PCR. Results: Compared with HFD mice, the levels of serum TG were significantly higher in LPL+/- mice, whereas the levels of TC, HDL-c, LDL-c were significantly lower. The plasma glucose levels were increased at each time point of intra-peritoneal glucose tolerance test (IPGTT) in both groups. Furthermore, the level of serum fasting insulin and homeostasis model assessment index-insulin resistance (HOMA-IR) increased with a decreased ISI in both groups. In addition, the plasma MDA of HFD group was higher than that of lipoprotein lipase-deficiency (LPL+/-) group, while the activity of T-SOD in HFD group was lower than that in LPL+/- group. Real-Time PCR revealed that the expressions of SOD1, CAT and Gpx1 in liver and

  11. Levels of adipocytokines and vitamin D in a biracial sample of young metabolically healthy obese and metabolically abnormal obese women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Adipocytokines and vitamin D (vitD) concentrations may contribute to cardiometabolic risk profiles in obese populations. The purpose was to determine if levels of adipocytokines and vitD differ between young metabolically healthy obese (MHO) and metabolically abnormal obese (MAO) black and ...

  12. NHANES III: influence of race on GFR thresholds and detection of metabolic abnormalities.

    PubMed

    Foley, Robert N; Wang, Changchun; Ishani, Areef; Collins, Allan J

    2007-09-01

    Whether the creatinine-based glomerular filtration rate (GFR) thresholds used to define chronic kidney disease (CKD) identify metabolic abnormalities similarly in minority and nonminority populations is unknown. We addressed this question among adult participants in the Third National Health and Nutrition Examination Survey (NHANES III) (n = 15,837). GFR was estimated from serum creatinine values and metabolic abnormalities were defined by 5th or 95th percentile values. After adjustment for age, demographic characteristics, and GFR, black participants were significantly more likely than white participants to have abnormal levels of systolic and diastolic blood pressure, hemoglobin, phosphorus, and uric acid. Hispanic subjects were significantly more likely to have abnormal levels of systolic blood pressure, hemoglobin, bicarbonate, and phosphorus. Among participants with GFR < 60 mL/min per 1.73 m(2), black participants were significantly more likely to have abnormal levels of systolic and diastolic blood pressure, hemoglobin, and uric acid; Hispanic subjects were significantly more likely to have abnormal systolic blood pressure levels. Metabolic abnormalities were more common in minority populations, and low GFR appeared to have a multiplicative effect. Defining CKD using a single GFR threshold may be disadvantageous for minority populations because metabolic abnormalities are present at higher levels of GFR.

  13. Metabolic Abnormalities Are Common among South American Hispanics Subjects with Normal Weight or Excess Body Weight: The CRONICAS Cohort Study

    PubMed Central

    Benziger, Catherine P.; Bernabé-Ortiz, Antonio; Gilman, Robert H.; Checkley, William; Smeeth, Liam; Málaga, Germán; Miranda, J. Jaime

    2015-01-01

    Objective We aimed to characterize metabolic status by body mass index (BMI) status. Methods The CRONICAS longitudinal study was performed in an age-and-sex stratified random sample of participants aged 35 years or older in four Peruvian settings: Lima (Peru’s capital, costal urban, highly urbanized), urban and rural Puno (both high-altitude), and Tumbes (costal semirural). Data from the baseline study, conducted in 2010, was used. Individuals were classified by BMI as normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), and obese (≥30 kg/m2), and as metabolically healthy (0–1 metabolic abnormality) or metabolically unhealthy (≥2 abnormalities). Abnormalities included individual components of the metabolic syndrome, high-sensitivity C-reactive protein, and insulin resistance. Results A total of 3088 (age 55.6±12.6 years, 51.3% females) had all measurements. Of these, 890 (28.8%), 1361 (44.1%) and 837 (27.1%) were normal weight, overweight and obese, respectively. Overall, 19.0% of normal weight in contrast to 54.9% of overweight and 77.7% of obese individuals had ≥3 risk factors (p<0.001). Among normal weight individuals, 43.1% were metabolically unhealthy, and age ≥65 years, female, and highest socioeconomic groups were more likely to have this pattern. In contrast, only 16.4% of overweight and 3.9% of obese individuals were metabolically healthy and, compared to Lima, the rural and urban sites in Puno were more likely to have a metabolically healthier profile. Conclusions Most Peruvians with overweight and obesity have additional risk factors for cardiovascular disease, as well as a majority of those with a healthy weight. Prevention programs aimed at individuals with a normal BMI, and those who are overweight and obese, are urgently needed, such as screening for elevated fasting cholesterol and glucose. PMID:26599322

  14. Apparent selective bile acid malabsorption as a consequence of ileal exclusion: effects on bile acid, cholesterol, and lipoprotein metabolism.

    PubMed Central

    Akerlund, J E; Björkhem, I; Angelin, B; Liljeqvist, L; Einarsson, K

    1994-01-01

    A new model has been developed to characterise the effect of a standardised ileal exclusion on bile acid, cholesterol, and lipoprotein metabolism in humans. Twelve patients treated by colectomy and ileostomy for ulcerative colitis were studied on two occasions: firstly with a conventional ileostomy and then three months afterwards with an ileal pouch operation with an ileoanal anastomosis and a protective loop ileostomy, excluding on average 95 cm of the distal ileum. The ileostomy contents were collected during 96 hours and the excretion of bile acids and cholesterol was determined using gas chromatography-mass spectrometry. Fasting blood and duodenal bile samples were collected on two consecutive days. After the exclusion of the distal ileum, both cholic and chenodeoxycholic acid excretion in the ileostomy effluent increased four to five times without any change in cholesterol excretion. Serum concentrations of lathosterol (a marker of cholesterol biosynthesis) and 7 alpha-hydroxycholesterol (a marker for bile acid biosynthesis) were increased several fold. Plasma concentrations of total VLDL triglycerides were also increased whereas the concentrations of total and LDL cholesterol, and apolipoprotein B were decreased. There were no changes in biliary lipid composition or cholesterol saturation of bile. The results show that the exclusion of about 95 cm of distal ileum causes malabsorption of bile acids but apparently not of cholesterol. The bile acid malabsorption leads to increased synthesis of both bile acids and cholesterol in the liver. It is suggested that bile acids can regulate cholesterol synthesis by a mechanism independent of the effect of bile acids on cholesterol absorption. The enhanced demand for cholesterol also leads to a decrease in plasma LDL cholesterol and apolipoprotein B concentrations. The malabsorption of bile acids did not affect biliary lipid composition or cholesterol saturations of VLDL triglycerides. PMID:7926917

  15. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels.

    PubMed

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  16. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    PubMed Central

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  17. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    PubMed Central

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V.; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V.; Zimmer, Andreas; Hoefler, Gerald; Hussain, M. Mahmood; Groen, Albert K.; Kratky, Dagmar

    2016-01-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  18. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism.

    PubMed

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V; Zimmer, Andreas; Hoefler, Gerald; Hussain, M Mahmood; Groen, Albert K; Kratky, Dagmar

    2016-09-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia.

  19. Hypertension, Abnormal Cholesterol, and High Body Mass Index among Non-Hispanic Asian Adults: United States, 2011-2012

    MedlinePlus

    ... high total cholesterol among non-Hispanic Asian adults did not differ by sex, age, education, or foreign- ... Figure 3 ). The prevalence of high total cholesterol did not differ significantly by sex, age, education, or ...

  20. In Ovo Injection of Betaine Affects Hepatic Cholesterol Metabolism through Epigenetic Gene Regulation in Newly Hatched Chicks

    PubMed Central

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations. PMID:25860502

  1. In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks.

    PubMed

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.

  2. Metabolic abnormalities in adult and geriatric major depression with and without comorbid dementia.

    PubMed

    Blank, Karen; Szarek, Bonnie L; Goethe, John W

    2010-06-01

    Metabolic abnormalities and metabolic syndrome (MetS) increasingly have been linked to depression. The authors studied examined inpatients 35 years and older with major depressive disorder (MDD) to determine the prevalence of component metabolic abnormalities and the full MetS with age, treatment, and comorbid dementia. Data analysis involved retrospective cross-sectional review from a nonprofit psychiatry inpatient service of all discharges 35 years and older with a diagnosis of MDD during a 3 year period (April 1, 2003 to March 31, 2006) (N=1718). Metabolic measures included waist circumference, lipid measurements, glucose, and hypertension diagnosis. Abnormal metabolic measures and MetS were highly prevalent in both young and old patients with MDD: one or more component was present in 87.6% of older (65-99 years old) and 79.9% of younger patients. Full MetS was present in 31.5% of older and 28.9% of younger patients (not significant, P=0.85). Metabolic abnormalities were not associated with atypical antipsychotics after controlling other variables. One-quarter (n=79, 24.9%) of older inpatients had a dementia co-diagnosis. Older patients with MDD and dementia had greater risk of elevated glucose while younger patients were more often hypertensive. Longitudinal studies are needed to determine the relationships of MDD with or without dementia with these highly prevalent abnormal metabolic measures and MetS.

  3. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1

    PubMed Central

    Mundy, Dorothy I.; Lopez, Adam M.; Posey, Kenneth S.; Chuang, Jen-Chieh; Ramirez, Charina M.; Scherer, Philipp E.; Turley, Stephen D.

    2014-01-01

    Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1−/−), and subsequently in Cav-1−/− mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) was also absent (Cav-1−/−:Npc1−/−). In 50-day-old Cav-1−/− mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1+/+ controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1−/−:Npc1−/− mice (0.356 ± 0.022) markedly exceeded that in their Cav-1+/+:Npc1+/+ controls (0.137 ± 0.009), as well as in their Cav-1−/−:Npc1+/+ (0.191 ± 0.013) and Cav-1+/+:Npc1−/− (0.213 ± 0.022) littermates. The corresponding lung total cholesterol content (mg/organ) in mice of these genotypes was 6.74 ± 0.17, 0.71 ± 0.05, 0.96 ± 0.05 and 3.12 ± 0.43, respectively, with the extra cholesterol in the Cav-1−/−:Npc1−/− and Cav-1+/+:Npc1−/− mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1−/−:Npc1−/− mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted. PMID:24747682

  4. Unrefined and refined black raspberry seed oils significantly lower triglycerides and moderately affect cholesterol metabolism in male Syrian hamsters.

    PubMed

    Ash, Mark M; Wolford, Kate A; Carden, Trevor J; Hwang, Keum Taek; Carr, Timothy P

    2011-09-01

    Unrefined and refined black raspberry seed oils (RSOs) were examined for their lipid-modulating effects in male Syrian hamsters fed high-cholesterol (0.12% g/g), high-fat (9% g/g) diets. Hamsters fed the refined and the unrefined RSO diets had equivalently lower plasma total cholesterol and high-density lipoprotein (HDL) cholesterol in comparison with the atherogenic coconut oil diet. The unrefined RSO treatment group did not differ in liver total and esterified cholesterol from the coconut oil-fed control animals, but the refined RSO resulted in significantly elevated liver total and esterified cholesterol concentrations. The unrefined RSO diets significantly lowered plasma triglycerides (46%; P=.0126) in comparison with the coconut oil diet, whereas the refined RSO only tended to lower plasma triglyceride (29%; P=.1630). Liver triglyceride concentrations were lower in the unrefined (46%; P=.0002) and refined (36%; P=.0005) RSO-fed animals than the coconut oil group, with the unrefined RSO diet eliciting a lower concentration than the soybean oil diet. Both RSOs demonstrated a null or moderate effect on cholesterol metabolism despite enrichment in linoleic acid, significantly lowering HDL cholesterol but not non-HDL cholesterol. Dramatically, both RSOs significantly reduced hypertriglyceridemia, most likely due to enrichment in α-linolenic acid. As a terrestrial source of α-linolenic acid, black RSOs, both refined and unrefined, provide a promising alternative to fish oil supplementation in management of hypertriglyceridemia, as demonstrated in hamsters fed high levels of dietary triglyceride and cholesterol.

  5. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases.

    PubMed

    Moon, Ju-Yeun; Choi, Man Ho; Kim, Jayoung

    2016-10-01

    Cholesterol and sex steroid hormones including androgens and estrogens play a critical role in the development and progression of urological diseases such as prostate cancer. This disease remains the most commonly diagnosed malignant tumor in men and is the leading cause of death from different cancers. Attempts to understand the role of cholesterol and steroid metabolism in urological diseases have been ongoing for many years, but despite this, our mechanistic and translational understanding remains elusive. In order to further evaluate the problem, we have taken an interest in metabolomics; a discipline dedicated to the systematic study of biologically active metabolites in cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative measurement of cholesterol and sex steroid metabolites can be successfully achieved using hair of human and mouse models. The overall goal of this short review article is to introduce current metabolomic technologies for the quantitative biomarker assay development and also to provide new insight into understanding the underlying mechanisms that trigger the pathological condition. Furthermore, this review will place a particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular profiles and assess their clinical significance in various urological diseases. PMID:27580660

  6. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases

    PubMed Central

    Moon, Ju-Yeon

    2016-01-01

    Cholesterol and sex steroid hormones including androgens and estrogens play a critical role in the development and progression of urological diseases such as prostate cancer. This disease remains the most commonly diagnosed malignant tumor in men and is the leading cause of death from different cancers. Attempts to understand the role of cholesterol and steroid metabolism in urological diseases have been ongoing for many years, but despite this, our mechanistic and translational understanding remains elusive. In order to further evaluate the problem, we have taken an interest in metabolomics; a discipline dedicated to the systematic study of biologically active metabolites in cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative measurement of cholesterol and sex steroid metabolites can be successfully achieved using hair of human and mouse models. The overall goal of this short review article is to introduce current metabolomic technologies for the quantitative biomarker assay development and also to provide new insight into understanding the underlying mechanisms that trigger the pathological condition. Furthermore, this review will place a particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular profiles and assess their clinical significance in various urological diseases. PMID:27580660

  7. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the...

  8. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed. PMID:25724169

  9. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome.

    PubMed

    Buchovecky, Christie M; Turley, Stephen D; Brown, Hannah M; Kyle, Stephanie M; McDonald, Jeffrey G; Liu, Benny; Pieper, Andrew A; Huang, Wenhui; Katz, David M; Russell, David W; Shendure, Jay; Justice, Monica J

    2013-09-01

    Mutations in MECP2, encoding methyl CpG-binding protein 2, cause Rett syndrome, the most severe autism spectrum disorder. Re-expressing Mecp2 in symptomatic Mecp2-null mice markedly improves function and longevity, providing hope that therapeutic intervention is possible in humans. To identify pathways in disease pathology for therapeutic intervention, we carried out a dominant N-ethyl-N-nitrosourea (ENU) mutagenesis suppressor screen in Mecp2-null mice and isolated five suppressors that ameliorate the symptoms of Mecp2 loss. We show that a stop codon mutation in Sqle, encoding squalene epoxidase, a rate-limiting enzyme in cholesterol biosynthesis, underlies suppression in one line. Subsequently, we also show that lipid metabolism is perturbed in the brains and livers of Mecp2-null male mice. Consistently, statin drugs improve systemic perturbations of lipid metabolism, alleviate motor symptoms and confer increased longevity in Mecp2 mutant mice. Our genetic screen therefore points to cholesterol homeostasis as a potential target for the treatment of patients with Rett syndrome.

  10. Exogenous administration of chronic corticosterone affects hepatic cholesterol metabolism in broiler chickens showing long or short tonic immobility.

    PubMed

    Liu, Jie; Duan, Yujing; Hu, Yun; Sun, Lili; Wang, Song; Fu, Wenyan; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    Tonic immobility (TI) is an innate characteristic of animals related to fear or stress response. Animals can be classified into long TI (LTI) and short TI (STI) phenotypes based on TI test duration. In this study, effect of TI phenotype, chronic corticosterone administration (CORT), and their interaction on cholesterol metabolism in liver was evaluated in broilers. LTI broilers showed higher level of cholesterol in liver compared to STI chickens (p<0.05), and CORT significantly increased hepatic cholesterol content (p<0.01). Real-time PCR results showed that both TI and CORT potentially altered ABCA1 and CYP7A1 gene expressions (0.05cholesterol accumulation in broiler chickens mainly by enhancing cholesterol synthesis and uptake into liver. LTI chickens had higher amount of total cholesterol in liver, which might be associated with an increase of hepatic HMGCR protein expression. However, there is no interaction between TI and CORT on cholesterol metabolism in liver of broilers.

  11. Metabolic abnormalities in pituitary adenoma patients: a novel therapeutic target and prognostic factor

    PubMed Central

    Zheng, Xin; Li, Song; Zhang, Wei-hua; Yang, Hui

    2015-01-01

    Metabolic abnormalities are common in cancers, and targeting metabolism is emerging as a novel therapeutic approach to cancer management. Pituitary adenoma (PA) is a type of benign tumor. Impairment of tumor cells’ metabolism in PA seems not to be as apparent as that of other malignant tumor cells; however, aberrant hormone secretion is conspicuous in most PAs. Hormones have direct impacts on systemic metabolism, which in turn, may affect the progression of PA. Nowadays, conventional therapeutic strategies for PA do not include modalities of adjusting whole-body metabolism, which is most likely due to the current consideration of the aberrant whole-body metabolism of PA patients as a passive associated symptom and not involved in PA progression. Because systemic metabolic abnormalities are presented by 22.3%–52.5% PA patients and are closely correlated with disease progression and prognosis, we propose that assessment of metabolic status should be emphasized during the treatment of PA and that control of metabolic abnormalities should be added into the current therapies for PA. PMID:26347444

  12. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism

    PubMed Central

    Davis, Warren

    2015-01-01

    The ATP-binding cassette transporters are a large family (~ 48 genes divided into seven families A–G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC “A” subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer’s disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism. PMID:24201375

  13. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    PubMed

    Chen, Wei-Ming; Sheu, Wayne H-H; Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes. PMID:27139226

  14. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet

    PubMed Central

    2011-01-01

    Background The hypocholesterolemic effects of lactic acid bacteria (LAB) have now become an area of great interest and controversy for many scientists. In this study, we evaluated the effects of Lactobacillus plantarum 9-41-A and Lactobacillus fermentum M1-16 on body weight, lipid metabolism and intestinal microflora of rats fed a high-cholesterol diet. Methods Forty rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The LAB-treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum 9-41-A or Lactobacillus fermentum M1-16. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat pad weights, serum and liver cholesterol and lipid levels, and fecal cholesterol and bile acid concentrations were measured. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high-cholesterol diet but without LAB supplementation, serum total cholesterol, low-density lipoprotein cholesterol and triglycerides levels were significantly decreased in LAB-treated rats (p < 0.05), with no significant change in high-density lipoprotein cholesterol levels. Hepatic cholesterol and triglyceride levels and liver lipid deposition were significantly decreased in the LAB-treated groups (p < 0.05). Accordingly, both fecal cholesterol and bile acids levels were significantly increased after LAB administration (p < 0.05). Intestinal Lactobacillus and Bifidobacterium colonies were increased while Escherichia coli colonies were decreased in the LAB-treated groups. Fecal water content was higher in the LAB-treated groups. Compared with rats fed a high-cholesterol diet, administration of Lactobacillus plantarum 9-41-A resulted in decreases in the body weight gain, liver and fat pad weight, and adipocytes size (p < 0.05). Conclusions This study suggests that LAB supplementation has hypocholesterolemic effects in rats fed a high-cholesterol diet. The

  15. Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties.

    PubMed

    de Medina, Philippe; Paillasse, Michael R; Segala, Gregory; Voisin, Maud; Mhamdi, Loubna; Dalenc, Florence; Lacroix-Triki, Magali; Filleron, Thomas; Pont, Frederic; Saati, Talal Al; Morisseau, Christophe; Hammock, Bruce D; Silvente-Poirot, Sandrine; Poirot, Marc

    2013-01-01

    We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals.

  16. Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties

    PubMed Central

    de Medina, Philippe; Paillasse, Michael R.; Segala, Gregory; Voisin, Maud; Mhamdi, Loubna; Dalenc, Florence; Lacroix-Triki, Magali; Filleron, Thomas; Pont, Frederic; Saati, Talal Al; Morisseau, Christophe; Hammock, Bruce D.; Silvente-Poirot, Sandrine; Poirot, Marc

    2013-01-01

    We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals. PMID:23673625

  17. [Clinical evaluation for abnormalities of bone and mineral metabolism in ESKD].

    PubMed

    Yano, Shozo

    2016-09-01

    In patients with end-stage kidney disease(ESKD), bone disorders are characterized by cortical porosity and by abnormal turnover of bone metabolism:adynamic(low turnover)bone disease and high turnover bone due to various degrees of secondary hyperparathyroidism. Abnormalities of bone metabolism are generally assessed by interview, X-ray, bone mineral density(BMD), serum phosphorus, calcium, and parathyroid hormone levels, and bone metabolic markers. Recent clinical studies have demonstrated that high turnover bone representing elevated bone metabolic markers and low BMD are independent risks of bone fractures as well as mortality among this population. Treatment of bone disorders in ESKD patients should be aiming at the normalization of mineral metabolism and the maintenance and/or improvement of BMD. PMID:27561341

  18. Association of hypertension with coexistence of abnormal metabolism and inflammation and endothelial dysfunction.

    PubMed

    Zhang, Mingzhi; Wang, Guiyan; Wang, Aili; Tong, Weijun; Zhang, Yonghong

    2013-06-01

    To explore association of hypertension with coexistence of inflammation and endothelial dysfunction and abnormal metabolism, a community-based study was conducted among Mongolian people in China. Demographic characteristics and lifestyle risk factors were investigated, blood pressure, body weight and waist circumference were measured, fasting blood samples were obtained to measure blood lipids, fasting plasma glucose and the biomarkers of inflammation and endothelial dysfunction, C-reactive protein (CRP), soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin) and angiotensin II. Rates of abnormal metabolism, elevated CRP, elevated sICAM-1, elevated sE-selectin and elevated angiotensin II as well as coexistence of abnormal metabolism with the elevated biomarkers were all higher in hypertensives than these in normotensives (all p < 0.01). Compared with subjects with normal metabolism and without any elevated biomarker, multivariate adjusted odds ratio (95% confidence interval) of hypertension associated with abnormal metabolism, elevated CRP, elevated sICAM-1, elevated sE-selectin, elevated angiotensin II, coexistences of abnormal metabolism with elevated CRP, elevated sICAM-1,elevated sE-selectin and elevated angiotensin II were 2.209 (1.594-3.062), 2.820 (1.992-3.992), 2.370 (1.665-3.374), 1.893 (1.331-2.691), 2.545 (1.793-3.612), 2.990 (2.102-4.252), 2.551 (1.775-3.667), 2.223 (1.544-3.220), 3.135 (2.185-4.519), respectively. In conclusion, this study indicated that inflammation and endothelial dysfunction was associated with hypertension and abnormal metabolism, and individuals with co-existence of abnormal metabolism with inflammation and endothelial dysfunction had higher risk of prevalent hypertension among Mongolian population. This study suggests that further study on treatment for hypertension patients with coexistence of abnormal metabolism with inflammation and endothelial dysfunction should be conducted in the near

  19. Effect of a high intake of cheese on cholesterol and metabolic syndrome: results of a randomized trial

    PubMed Central

    Nilsen, Rita; Høstmark, Arne Torbjørn; Haug, Anna; Skeie, Siv

    2015-01-01

    Background Cheese is generally rich in saturated fat, which is associated with increased risk for cardiovascular diseases. Nevertheless, recent reports suggest that cheese may be antiatherogenic. Objective The goal of this study was to assess whether intake of two types of Norwegian cheese, with widely varying fat and calcium content, might influence factors of the metabolic syndrome and serum cholesterol levels differently. Design A total of 153 participants were randomized to one of three groups: Gamalost®, a traditional fat- and salt-free Norwegian cheese (50 g/day), Gouda-type cheese with 27% fat (80 g/day), and a control group with a limited cheese intake. Blood samples, anthropometric measurements, blood pressure, and questionnaires about lifestyle and diet were obtained at inclusion and end. Results At baseline, there were no differences between the groups in relevant baseline characteristics, mean age 43, 52.3% female. After 8 weeks’ intervention, there were no changes in any of the metabolic syndrome factors between the intervention groups compared with the control group. There were no increases in total- or LDL cholesterol in the cheese groups compared with the control. Stratified analysis showed that those in the Gouda group with metabolic syndrome at baseline had significant reductions in total cholesterol at the end of the trial compared with control (−0.70 mmol/L, p=0.013), and a significantly higher reduction in mean triglycerides. In the Gamalost group, those who had high total cholesterol at baseline had a significant reduction in total cholesterol compared with control (−0.40 mmol/L, p=0.035). Conclusions In conclusion, cholesterol levels did not increase after high intake of 27% fat Gouda-type cheese over 8 weeks’ intervention, and stratified analysis showed that participants with metabolic syndrome had reduced cholesterol at the end of the trial. PMID:26294049

  20. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk.

    PubMed

    Moutinho, Miguel; Nunes, Maria João; Correia, Jorge C; Gama, Maria João; Castro-Caldas, Margarida; Cedazo-Minguez, Angel; Rodrigues, Cecília M P; Björkhem, Ingemar; Ruas, Jorge L; Rodrigues, Elsa

    2016-01-01

    Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers. PMID:27491694

  1. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation

    PubMed Central

    Jansen, Jos C.; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A.W.; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G.; Rodenburg, Richard J.; Drenth, Joost P.H.; Huynen, Martijn A.; Wevers, Ron A.; Morava, Eva; Foulquier, François; Veltman, Joris A.; Lefeber, Dirk J.

    2016-01-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation. PMID:26833330

  2. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation.

    PubMed

    Jansen, Jos C; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A W; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G; Rodenburg, Richard J; Drenth, Joost P H; Huynen, Martijn A; Wevers, Ron A; Morava, Eva; Foulquier, François; Veltman, Joris A; Lefeber, Dirk J

    2016-02-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.

  3. 27-Hydroxycholesterol contributes to disruptive effects on learning and memory by modulating cholesterol metabolism in the rat brain.

    PubMed

    Zhang, D-D; Yu, H-L; Ma, W-W; Liu, Q-R; Han, J; Wang, H; Xiao, R

    2015-08-01

    Cholesterol metabolism is important for neuronal function in the central nervous system (CNS). The oxysterol 27-hydroxycholesterol (27-OHC) is a cholesterol metabolite that crosses the blood-brain barrier (BBB) and may be a useful substitutive marker for neurodegenerative diseases. However, the effects of 27-OHC on learning and memory and the underlying mechanisms are unclear. To determine this mechanism, we investigated learning and memory and cholesterol metabolism in rat brain following the injection of various doses of 27-OHC into the caudal vein. We found that 27-OHC increased cholesterol levels and upregulated the expression of liver X receptor-α (LXR-α) and adenosine triphosphate (ATP)-binding cassette transporter protein family member A1 (ABCA1). In addition, 27-OHC decreased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CR) and low-density lipoprotein receptor (LDLR) in rat brain tissues. These findings suggest that 27-OHC may negatively modulate cognitive effects and cholesterol metabolism in the brain.

  4. Activation of epithelial proliferation induced by Eimeria acervulina infection in the duodenum may be associated with cholesterol metabolism

    PubMed Central

    Sun, Lili; Dong, Haibo; Zhang, Zhenchao; Liu, Jie; Hu, Yun; Ni, Yingdong; Grossmann, Roland; Zhao, Ruqian

    2016-01-01

    Cell proliferation in the intestine is commonly occurred during infection and inflammation to replace damaged enterocytes, and cholesterol as an essential constituent of cell membrane, is required for cell proliferation and growth. Here we found that coccidium-challenged (CC) chickens showed severe damages in intestinal structure, a significant increase of cell proliferation, and an activation of genes expression involved in the innate immune response. Compared to control (CON), CC chickens showed a marked decrease of cholesterol (Tch) level in the circulating system, but a significant increase in local duodenum epithelium. Increase of LDLR protein combined with a significant decrease of CYP27A1 protein expression in duodenum epithelium may contribute to intestinal cholesterol accumulation in CC chickens. Moreover, we found miRNAs targeting to CYP27A1 gene participating in post-transcriptional regulation. Hence, these results provide a new insight for the intervention of epithelial proliferation and cholesterol metabolism in the gastrointestinal tracts. PMID:27050279

  5. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy

    SciTech Connect

    Cannon, R.O. 3d.; Dilsizian, V.; O'Gara, P.T.; Udelson, J.E.; Schenke, W.H.; Quyyumi, A.; Fananapazir, L.; Bonow, R.O. )

    1991-05-01

    Exercise-induced abnormalities during thallium-201 scintigraphy that normalize at rest frequently occur in patients with hypertrophic cardiomyopathy. However, it is not known whether these abnormalities are indicative of myocardial ischemia. Fifty patients with hypertrophic cardiomyopathy underwent exercise {sup 201}Tl scintigraphy and, during the same week, measurement of myocardial lactate metabolism and hemodynamics during pacing stress. Thirty-seven patients (74%) had one or more {sup 201}Tl abnormalities that completely normalized after 3 hours of rest; 26 had regional myocardial {sup 201}Tl defects, and 26 had apparent left ventricular cavity dilatation with exercise, with 15 having coexistence of these abnormal findings. Of the 37 patients with reversible {sup 201}Tl abnormalities, 27 (73%) had metabolic evidence of myocardial ischemia during rapid atrial pacing compared with four of 13 patients (31%) with normal {sup 201}Tl scans (p less than 0.01). Eleven patients had apparent cavity dilatation as their only {sup 201}Tl abnormality; their mean postpacing left ventricular end-diastolic pressure was significantly higher than that of the 13 patients with normal {sup 201}Tl studies (33 +/- 5 versus 21 +/- 10 mm Hg, p less than 0.001). There was no correlation between the angiographic presence of systolic septal or epicardial coronary arterial compression and the presence or distribution of {sup 201}Tl abnormalities. Patients with ischemic ST segment responses to exercise had an 80% prevalence rate of reversible {sup 201}Tl abnormalities and a 70% prevalence rate of pacing-induced ischemia. However, 69% of patients with nonischemic ST segment responses had reversible {sup 201}Tl abnormalities, and 55% had pacing-induced ischemia. Reversible {sup 201}Tl abnormalities during exercise stress are markers of myocardial ischemia in hypertrophic cardiomyopathy and most likely identify relatively underperfused myocardium.

  6. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study

    PubMed Central

    Annema, Wijtske; Dikkers, Arne; de Boer, Jan Freark; van Greevenbroek, Marleen M. J.; van der Kallen, Carla J. H.; Schalkwijk, Casper G.; Stehouwer, Coen D. A.; Dullaart, Robin P. F.; Tietge, Uwe J. F.

    2016-01-01

    Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) increase atherosclerotic cardiovascular disease risk. Cholesterol efflux capacity (CEC) is a key metric of the anti-atherosclerotic functionality of high-density lipoproteins (HDL). The present study aimed to delineate if T2DM and MetS cross-sectionally associate with altered CEC in a large high cardiometabolic risk population. CEC was determined from THP-1 macrophage foam cells towards apolipoprotein B-depleted plasma from 552 subjects of the CODAM cohort (288 controls, 126 impaired glucose metabolism [IGM], 138 T2DM). MetS was present in 297 participants. CEC was not different between different glucose tolerance categories but was lower in MetS (P < 0.001), at least partly attributable to lower HDL cholesterol (HDL-C) and apoA-I levels (P < 0.001 for each). Low grade inflammation was increased in IGM, T2DM and MetS as determined by a score comprising 8 different biomarkers (P < 0.05-< 0.001; n = 547). CEC inversely associated with low-grade inflammation taking account of HDL-C or apoA-I in MetS (P < 0.02), but not in subjects without MetS (interaction: P = 0.015). This study demonstrates that IGM and T2DM do not impact the HDL CEC function, while efflux is lower in MetS, partly dependent on plasma HDL-C levels. Enhanced low-grade inflammation in MetS may conceivably impair CEC even independent of HDL-C and apoA-I. PMID:27270665

  7. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets

    PubMed Central

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha

    2016-01-01

    BACKGROUND/OBJECTIVES Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. RESULTS Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  8. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets

    PubMed Central

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha

    2016-01-01

    BACKGROUND/OBJECTIVES Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. RESULTS Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. PMID:27698957

  9. Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism.

    PubMed

    Thomas, Suzanne T; VanderVen, Brian C; Sherman, David R; Russell, David G; Sampson, Nicole S

    2011-12-23

    Mycobacterium tuberculosis, the bacterium that causes tuberculosis, imports and metabolizes host cholesterol during infection. This ability is important in the chronic phase of infection. Here we investigate the role of the intracellular growth operon (igr), which has previously been identified as having a cholesterol-sensitive phenotype in vitro and which is important for intracellular growth of the mycobacteria. We have employed isotopically labeled low density lipoproteins containing either [1,7,15,22,26-(14)C]cholesterol or [1,7,15,22,26-(13)C]cholesterol and high resolution LC/MS as tools to profile the cholesterol-derived metabolome of an igr operon-disrupted mutant (Δigr) of M. tuberculosis. A partially metabolized cholesterol species accumulated in the Δigr knock-out strain that was absent in the complemented and parental wild-type strains. Structural elucidation by multidimensional 1H and 13C NMR spectroscopy revealed the accumulated metabolite to be methyl 1β-(2'-propanoate)-3aα-H-4α-(3'-propanoic acid)-7aβ-methylhexahydro-5-indanone. Heterologously expressed and purified FadE28-FadE29, an acyl-CoA dehydrogenase encoded by the igr operon, catalyzes the dehydrogenation of 2'-propanoyl-CoA ester side chains in substrates with structures analogous to the characterized metabolite. Based on the structure of the isolated metabolite, enzyme activity, and bioinformatic annotations, we assign the primary function of the igr operon to be degradation of the 2'-propanoate side chain. Therefore, the igr operon is necessary to completely metabolize the side chain of cholesterol metabolites. PMID:22045806

  10. A review on lecithin:cholesterol acyltransferase deficiency.

    PubMed

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  11. Abnormal Transmethylation/Transsulfuration Metabolism and DNA Hypomethylation among Parents of Children with Autism

    ERIC Educational Resources Information Center

    James, S. Jill; Melnyk, Stepan; Jernigan, Stefanie; Hubanks, Amanda; Rose, Shannon; Gaylor, David W.

    2008-01-01

    An integrated metabolic profile reflects the combined influence of genetic, epigenetic, and environmental factors that affect the candidate pathway of interest. Recent evidence suggests that some autistic children may have reduced detoxification capacity and may be under chronic oxidative stress. Based on reports of abnormal methionine and…

  12. The prevalence of hematologic and metabolic abnormalities during chronic kidney disease stages in different ethnic groups.

    PubMed

    Barbour, S J; Er, L; Djurdjev, O; Karim, M A; Levin, A

    2008-07-01

    We conducted an observational cross-sectional study to determine if the prevalence of hematologic and metabolic abnormalities in chronic kidney disease (CKD) varied in different ethnic groups. We used a CKD provincial database where a complete data set at the time of registration was available as well as an estimated glomerular filtration rate (eGFR), which showed using the abbreviated MDRD formula that the patients had CKD of stages 3-5. We included patients with self-reported race of Caucasian, Oriental Asian, or South Asian. Primary outcomes were the prevalence of at least one of the following: anemia, hypocalcemia, hyperphosphatemia, hyperparathyroidism, hypoalbuminemia, and three or more laboratory abnormalities. All definitions were consistent with K/DOQI guidelines. When compared with Caucasians, Oriental Asians and South Asians had a higher prevalence of many of the metabolic abnormalities during most stages of CKD and were more likely to have any abnormality at all levels of eGFR. The prevalence of three or more laboratory abnormalities was higher in Oriental Asians at all stages and in South Asians at some levels of eGFR. These results were unchanged or exaggerated when controlled for age, gender, diabetes, and a primary diagnosis of renal disease. Hence, it appears that South Asians and Oriental Asians have more laboratory abnormalities compared with Caucasians at most levels of eGFR.

  13. Metformin for Weight Gain and Metabolic Abnormalities Associated With Antipsychotic Treatment: Meta-Analysis of Randomized Placebo-Controlled Trials.

    PubMed

    Zheng, Wei; Li, Xian-Bin; Tang, Yi-Lang; Xiang, Ying-Qiang; Wang, Chuan-Yue; de Leon, Jose

    2015-10-01

    This meta-analysis examined the effectiveness and safety of metformin to prevent or treat weight gain and metabolic abnormalities associated with antipsychotic drugs. We systematically searched in both English- and Chinese-language databases for metformin randomized controlled clinical trials (RCTs) using placebo in patients taking antipsychotics. Twenty-one RCTs (11 published in English and 10 in Chinese) involving 1547 subjects (778 on metformin, 769 on placebo) were included in this meta-analysis. Metformin was significantly superior to placebo (standard mean differences, -0.69 to -0.51; P = 0.01-0.0001) in the primary outcome measures (body weight, body mass index, fasting glucose, fasting insulin, triglycerides, and total cholesterol). Metformin was significantly superior to placebo in some secondary outcome measures but not in others. Significantly higher frequencies of nausea/vomiting and diarrhea were found in the metformin group, but no differences were found in other adverse drug reactions. In the metformin group, the frequency of nausea/vomiting was 14%, and of diarrhea, 7%. Subgroup and sensitivity analyses demonstrated that primary outcomes were influenced by ethnicity, treatment style (intervention vs prevention), metformin dose, study duration, and mean age. Body weight standard mean difference was -0.91 (confidence interval [CI], -1.40 to -0.41) in 3 prevention RCTs in naive patients, -0.66 (CI, -1.02 to -0.30) in 5 intervention RCTs during the first year, and -0.50 (CI, -0.73 to -0.27) in 9 intervention RCTs in chronic patients. This meta-analysis suggests that adjunctive metformin is an effective, safe, and reasonable choice for antipsychotic-induced weight gain and metabolic abnormalities.

  14. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures.

    PubMed

    Seo, Hong Seog; Choi, Man Ho

    2015-09-01

    Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.

  15. Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice

    PubMed Central

    Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.

    2010-01-01

    Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312

  16. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  17. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  18. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  19. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  20. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    PubMed

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  1. Impact of Inhibiting Ileal Apical Versus Basolateral Bile acid Transport on Cholesterol Metabolism and Atherosclerosis in Mice

    PubMed Central

    Dawson, Paul A.

    2015-01-01

    Background Bile acid sequestrants have been used for many years to treat hypercholesterolemia by increasing hepatic conversion of cholesterol to bile acids, thereby inducing hepatic LDL receptor expression and clearance of apoB-containing particles. In order to further understand the underlying molecular mechanisms linking gut-liver signaling and cholesterol homeostasis, mouse models defective in ileal apical membrane bile acid transport (Asbt null) and ileal basolateral membrane bile acid transport (Ostα null) were studied under basal and hypercholesterolemic conditions. Key Messages Hepatic conversion of cholesterol to bile acids is the major pathway for cholesterol catabolism and a major mechanism for cholesterol elimination. Blocking ileal apical membrane bile acid transport (Asbt null mice) increases fecal bile acid excretion, hepatic Cyp7a1 expression and the relative proportion of taurocholate in the bile acid pool, but decreases ileal FGF15 expression, bile acid pool size, and hepatic cholesterol content. In contrast, blocking ileal basolateral membrane bile acid transport (Ostα null mice) increases ileal FGF15 expression, reduces hepatic Cyp7a1 expression, and increases the proportion of tauro-β-muricholic acid in the bile acid pool. In the hypercholesterolemic apoE null background, plasma cholesterol levels and measurements of atherosclerosis were reduced in Asbt/apoE null mice but not in Ostα/apoE null mice. Conclusions Blocking intestinal absorption of bile acids at the apical versus basolateral membrane differentially affects bile acid and cholesterol metabolism, including the development of hypercholesterolemia-associated atherosclerosis. The molecular mechanism likely involves altered regulation of ileal FGF15 expression. PMID:26045273

  2. [Lipoprotein metabolic characteristics in the liver and intestinal wall of rabbits after a single exposure to sunflower oil and cholesterol].

    PubMed

    Leskova, G F

    1982-04-01

    Lipoprotein metabolism in the rabbit liver and intestinal wall was studied by an alimentary action on the cholesterol blood content. The data obtained indicated that the diet including cholesterol intensifies the release of chylomicrons into the lymph of the intestinal lymphatic trunk. Single addition of sunflower-seed oil to the diet leads to the increased deposition of high, low and very low density lipoproteins in the intestinal wall. Upon adding cholesterol to the rabbit diet the retention of low and very low density lipids in the intestine is followed by the increased release of high density lipoproteins into the blood of the portal vein. Single addition of sunflower-seed oil stimulates the synthesis of high density lipoproteins by the rabbit liver.

  3. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed

    Pörn, M I; Slotte, J P

    1990-10-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin.

  4. Response of the Cholesterol Metabolism to a Negative Energy Balance in Dairy Cows Depends on the Lactational Stage

    PubMed Central

    Albrecht, Christiane; Bruckmaier, Rupert M.

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation. PMID:26034989

  5. Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells

    PubMed Central

    King, M A; Ganley, I G; Flemington, V

    2016-01-01

    Mutations to fibroblast growth factor receptor 3 (FGFR3) and phosphatase and tensin homologue (PTEN) signalling pathway components (for example, PTEN loss, PIK3CA, AKT1, TSC1/2) are common in bladder cancer, yet small-molecule inhibitors of these nodes (FGFR/PTENi) show only modest activity in preclinical models. As activation of autophagy is proposed to promote survival under FGFR/PTENi, we have investigated this relationship in a panel of 18 genetically diverse bladder cell lines. We found that autophagy inhibition does not sensitise bladder cell lines to FGFR/PTENi, but newly identify an autophagy-independent cell death synergy in FGFR3-mutant cell lines between mTOR (mammalian target of rapamycin) pathway inhibitors and chloroquine (CQ)—an anti-malarial drug used as a cancer therapy adjuvant in over 30 clinical trials. The mechanism of synergy is consistent with lysosomal cell death (LCD), including cathepsin-driven caspase activation, and correlates with suppression of cSREBP1 and cholesterol biosynthesis in sensitive cell lines. Remarkably, loss of viability can be rescued by saturating cellular membranes with cholesterol or recapitulated by statin-mediated inhibition, or small interfering RNA knockdown, of enzymes regulating cholesterol metabolism. Modulation of CQ-induced cell death by atorvastatin and cholesterol is reproduced across numerous cell lines, confirming a novel and fundamental role for cholesterol biosynthesis in regulating LCD. Thus, we have catalogued the molecular events underlying cell death induced by CQ in combination with an anticancer therapeutic. Moreover, by revealing a hitherto unknown aspect of lysosomal biology under stress, we propose that suppression of cholesterol metabolism in cancer cells should elicit synergy with CQ and define a novel approach to future cancer treatments. PMID:26853465

  6. Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage.

    PubMed

    Gross, Josef J; Kessler, Evelyne C; Albrecht, Christiane; Bruckmaier, Rupert M

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation. PMID:26034989

  7. Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells.

    PubMed

    King, M A; Ganley, I G; Flemington, V

    2016-08-25

    Mutations to fibroblast growth factor receptor 3 (FGFR3) and phosphatase and tensin homologue (PTEN) signalling pathway components (for example, PTEN loss, PIK3CA, AKT1, TSC1/2) are common in bladder cancer, yet small-molecule inhibitors of these nodes (FGFR/PTENi) show only modest activity in preclinical models. As activation of autophagy is proposed to promote survival under FGFR/PTENi, we have investigated this relationship in a panel of 18 genetically diverse bladder cell lines. We found that autophagy inhibition does not sensitise bladder cell lines to FGFR/PTENi, but newly identify an autophagy-independent cell death synergy in FGFR3-mutant cell lines between mTOR (mammalian target of rapamycin) pathway inhibitors and chloroquine (CQ)-an anti-malarial drug used as a cancer therapy adjuvant in over 30 clinical trials. The mechanism of synergy is consistent with lysosomal cell death (LCD), including cathepsin-driven caspase activation, and correlates with suppression of cSREBP1 and cholesterol biosynthesis in sensitive cell lines. Remarkably, loss of viability can be rescued by saturating cellular membranes with cholesterol or recapitulated by statin-mediated inhibition, or small interfering RNA knockdown, of enzymes regulating cholesterol metabolism. Modulation of CQ-induced cell death by atorvastatin and cholesterol is reproduced across numerous cell lines, confirming a novel and fundamental role for cholesterol biosynthesis in regulating LCD. Thus, we have catalogued the molecular events underlying cell death induced by CQ in combination with an anticancer therapeutic. Moreover, by revealing a hitherto unknown aspect of lysosomal biology under stress, we propose that suppression of cholesterol metabolism in cancer cells should elicit synergy with CQ and define a novel approach to future cancer treatments. PMID:26853465

  8. Pectin isolated from prickly pear (Opuntia SSP) modifies LDL metabolism in cholesterol-fed guinea pigs

    SciTech Connect

    Fernandez, M.L.; McNamara, D.J. )

    1990-02-26

    The effects of dietary pectin on plasma and hepatic cholesterol (CH) levels, plasma lipoprotein profiles, hepatic 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase activity, and low density lipoprotein (LDL) binding to hepatic membranes were investigated by feeding 1% pectin to guinea pigs on a high CH diet. Animals were fed either chow + 0.25% CH (HC diet) or the CH diet + 1% prickly pear pectin (HC-P diet) for 25 days. Plasma CH levels were decreased 26% by the HC-P with 33% decreases in LDL and KDL. LDL peak density shifted from 1.040 to 1.055 g/ml with pectin. Hepatic total, free and esterified CH levels were reduced 60, 40 and 85% respectively by the HC-P diet. In contrast, HMG-CoA reductase activity was unaffected. {sup 125}I-LDL binding to hepatic membranes was increased by intake of the HC-P diet compared to the HC diet. The affinity of the apo B/E receptor for LDL was not affected by dietary pectin while the receptor number was increased 1.5-fold in animals on the HC-P diet. These data suggest that the parameters of HC metabolism affected by dietary pectin are consistent with an increased demand on the hepatic CH pools which possibly results from increased fecal excretion of bile acids.

  9. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  10. Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters.

    PubMed

    Tong, Li-Tao; Zhong, Kui; Liu, Liya; Zhou, Xianrong; Qiu, Ju; Zhou, Sumei

    2015-02-15

    The aim of the present study is to investigate the hypocholesterolemic effects of dietary hull-less barley β-glucan (HBG) on cholesterol metabolism in hamsters which were fed a hypercholesterolemic diet. The hamsters were divided into 3 groups and fed experimental diets, containing 5‰ HBG or 5‰ oat β-glucan (OG), for 30days. The HBG, as well as OG, lowered the concentration of plasma LDL-cholesterol significantly. The excretion of total lipids and cholesterol in feces were increased in HBG and OG groups compared with the control group. The activity of 3-hydroxy-3-methyl glutaryl-coenzyme A (HMG-CoA) reductase in liver was reduced significantly in the HBG group compared with the control and OG groups. The activity of cholesterol 7-α hydroxylase (CYP7A1) in the liver, in the HBG and OG groups, was significantly increased compared with the control group. The concentrations of acetate, propionate and total short chain fatty acids (SCFAs) were not significantly different between the HBG and control groups. These results indicate that dietary HBG reduces the concentration of plasma LDL cholesterol by promoting the excretion of fecal lipids, and regulating the activities of HMG-CoA reductase and CYP7A1 in hypercholesterolemic hamsters.

  11. Effects of Porphyromonas gingivalis lipopolysaccharide on the expression of key genes involved in cholesterol metabolism in macrophages

    PubMed Central

    Liu, Fen; Wang, Yi; Xu, Jing; Liu, Fangqiang

    2016-01-01

    Introduction Cardiovascular diseases are positively correlated with periodontal disease. However, the molecular mechanisms linking atherosclerosis and periodontal infection are not clear. This study aimed to determine whether Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) altered the expression of genes regulating cholesterol metabolism in macrophages in the presence of low-density lipoprotein (LDL). Material and methods THP-1-derived macrophages were exposed to different concentrations (0.1, 1, 10 µg/ml) of LPS in the presence of 50 µg/ml native LDL. Macrophages were also incubated with 1 µg/ml LPS for varying times (0, 24, 48, or 72 h) in the presence of native LDL. Foam cell formation was determined by oil red O staining and cholesterol content quantification. CD36, lectin-like oxidized LDL receptor-1 (LOX-1), ATP-binding cassette G1 (ABCG1), and acetyl CoA acyltransferase 1 (ACAT1) expression levels were measured by western blot and qRT-PCR. Results Foam cell formation was induced in a time- and concentration-dependent manner as assessed by both morphological and biochemical criteria. Pg-LPS caused downregulation of CD36 and ABCG1 but upregulation of ACAT1, while LOX-1 expression was not affected (p = 0.137). Conclusions Pg-LPS appears to be an important link in the development of atherosclerosis by mechanisms targeting cholesterol homeostasis, namely, excess cholesterol ester formation via ACAT1 and reduced cellular cholesterol efflux via ABCG1.

  12. Development and partial metabolic characterization of a dietary cholesterol-resistant colony of rabbits

    SciTech Connect

    Overturf, M.L.; Smith, S.A.; Hewett-Emmett, D.; Loose-Mitchell, D.S.; Soma, M.R.; Gotto, A.M. Jr.; Morrisett, J.D. )

    1989-02-01

    A colony of New Zealand white rabbits has been developed which, when fed a cholesterol-supplemented diet, exhibit unusual resistance to hypercholesterolemia and atherosclerosis, disorders usually observed in normal cholesterol-fed rabbits. When resistant rabbits (RT) were fed a normal low cholesterol diet (ND), their plasma lipoprotein patterns were significantly different from those of normal rabbits (NR) fed the same diet. The low density lipoprotein cholesterol (LDL-c)/high density lipoprotein cholesterol (HDL-c) ratio and LDL-c/very low density lipoprotein cholesterol (VLDL-c) ratio were lower in the resistant rabbits. The hydrated density of HDL of the normal-responsive rabbits was greater than that of the resistant rabbits. LDL from resistant rabbits contained a lower proportion of esterified cholesterol and protein than LDL from normal rabbits. Peripheral mononuclear cells from resistant rabbits bound about 30% more {sup 125}I-labeled rabbit LDL than mononuclear cells from normal rabbits. These results demonstrate that the plasma cholesterol levels of these animals is at least partly under genetic control and that compositional differences exist between the major plasma lipoprotein classes of normal and resistant rabbits even during the ingestion of low-cholesterol diet. The results indicate that at least a part of the difference in the cholesterolemic responses between the two rabbit groups is due to an enhanced LDL uptake by the mononuclear cells, and presumably by other somatic cells of the resistant group.

  13. The correlation between response to oral cyclosporin therapy and systemic inflammation, metabolic abnormality in patients with psoriasis.

    PubMed

    Ohtsuka, Tsutomu

    2008-11-01

    Psoriasis is a disease presenting cutaneous, immunological and vascular abnormalities. Oral cyclosporin therapy has been shown to be effective for the disease. Clinical and laboratory findings affecting the response of oral cyclosporin therapy in patients with psoriasis were studied. Forty-seven patients with psoriasis (male:female = 27:20, age 56.7 + 12.6 years) were studied. The response to oral cyclosporin therapy was categorized as excellent, good, fair and poor according to decrease of PASI score and decrease of cyclosporin dose. Clinical and laboratory findings including cyclosporin trough level and high sensitivity-CRP were statistically analyzed. Nine patients showed excellent response, 17 good response, 19 fair response and 2 poor response. High sensitivity-CRP (0.11 +/- 0.02 mg/dl) in fair response patients to oral cyclosporin therapy was significantly lower than those in excellent response patients (0.42 +/- 0.21 mg/dl) (P < or = 0.05). Body mass index (23.4 +/- 0.6 kg/m(2)), HDL-cholesterol (57.1 +/- 3.6 mg/dl) and fasting plasma glucose (105 +/- 5 mg/dl) in fair response patients to oral cyclosporin therapy was significantly lower, higher and lower than those in excellent response patients (25.7 +/- 0.9 kg/m(2); 43.0 +/- 2.8, 140 +/- 20 mg/dl) (P < 0.05, P < 0.05, P < 0.05), respectively. No other clinical and laboratory findings showed statistical significance among excellent, good and fair response patients. These results showed the correlation between response of oral cyclosporin therapy and systemic inflammation, metabolic abnormality in patients with psoriasis.

  14. Effect of apolipoprotein E-free high density lipoproteins on cholesterol metabolism in cultured pig hepatocytes

    SciTech Connect

    Bachorik, P.S.; Virgil, D.G.; Kwiterovich, P.O. Jr.

    1987-10-05

    We studied cholesterol synthesis from (/sup 14/C)acetate, cholesterol esterification from (/sup 14/C)oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from /sup 125/I-labeled (/sup 3/H)cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.

  15. Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome

    PubMed Central

    Tavoosi, Zahra; Moradi-Sardareh, Hemen; Saidijam, Massoud; Yadegarazari, Reza; Borzuei, Shiva; Soltanian, Alireza; Goodarzi, Mohammad Taghi

    2015-01-01

    ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran) during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75%) compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P < 0.05). Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression. PMID:26788366

  16. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues.

    PubMed

    Xu, Cheng; Cai, Yu; Fan, Pengcheng; Bai, Bo; Chen, Jie; Deng, Han-Bing; Che, Chi-Ming; Xu, Aimin; Vanhoutte, Paul M; Wang, Yu

    2015-05-01

    Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.

  17. Fermentation of soy milk via Lactobacillus plantarum improves dysregulated lipid metabolism in rats on a high cholesterol diet.

    PubMed

    Kim, Yunhye; Yoon, Sun; Lee, Sun Bok; Han, Hye Won; Oh, Hayoun; Lee, Wu Joo; Lee, Seung-Min

    2014-01-01

    We aimed to investigate whether in vitro fermentation of soy with L. plantarum could promote its beneficial effects on lipids at the molecular and physiological levels. Rats were fed an AIN76A diet containing 50% sucrose (w/w) (CTRL), a modified AIN76A diet supplemented with 1% (w/w) cholesterol (CHOL), or a CHOL diet where 20% casein was replaced with soy milk (SOY) or fermented soy milk (FSOY). Dietary isoflavone profiles, serum lipids, hepatic and fecal cholesterol, and tissue gene expression were examined. The FSOY diet had more aglycones than did the SOY diet. Both the SOY and FSOY groups had lower hepatic cholesterol and serum triglyceride (TG) than did the CHOL group. Only FSOY reduced hepatic TG and serum free fatty acids and increased serum HDL-CHOL and fecal cholesterol. Compared to CHOL, FSOY lowered levels of the nuclear forms of SREBP-1c and SREBP-2 and expression of their target genes, including FAS, SCD1, LDLR, and HMGCR. On the other hand, FSOY elevated adipose expression levels of genes involved in TG-rich lipoprotein uptake (ApoE, VLDLR, and Lrp1), fatty acid oxidation (PPARα, CPT1α, LCAD, CYP4A1, UCP2, and UCP3), HDL-biogenesis (ABCA1, ApoA1, and LXRα), and adiponectin signaling (AdipoQ, AdipoR1, and AdipoR2), as well as levels of phosphorylated AMPK and ACC. SOY conferred a similar expression profile in both liver and adipose tissues but failed to reach statistical significance in many of the genes tested, unlike FSOY. Our data indicate that fermentation may be a way to enhance the beneficial effects of soy on lipid metabolism, in part via promoting a reduction of SREBP-dependent cholesterol and TG synthesis in the liver, and enhancing adiponectin signaling and PPARα-induced expression of genes involved in TG-rich lipoprotein clearance, fatty acid oxidation, and reverse cholesterol transport in adipose tissues.

  18. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice.

    PubMed

    Dikkers, Arne; Annema, Wijtske; de Boer, Jan Freark; Iqbal, Jahangir; Hussain, M Mahmood; Tietge, Uwe J F

    2014-05-01

    Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.

  19. Brain PET metabolic abnormalities in a case of varicella-zoster virus encephalitis.

    PubMed

    Coiffard, Benjamin; Guedj, Eric; Daumas, Aurélie; Leveque, Pierre; Villani, Patrick

    2014-09-01

    The role of brain 18F-FDG PET in the diagnostic evaluation of encephalitis has been recently suggested, especially in limbic encephalitis, but descriptions are mainly limited to small case reports. However, the evaluation of cerebral metabolism by 18F-FDG PET has never been described for varicella-zoster virus encephalitis. We report the first case of varicella-zoster virus encephalitis in which 18F-FDG PET revealed brain metabolic abnormalities. Brain metabolic PET imaging was analyzed by comparing the patient's brain 18F-FDG PET scans to that of 12 healthy subjects. Compared with healthy subjects, significant hypometabolism and hypermetabolism were found and evolved over time with treatment.

  20. Food Intake Does Not Differ between Obese Women Who Are Metabolically Healthy or Abnormal1234

    PubMed Central

    Kimokoti, Ruth W; Judd, Suzanne E; Shikany, James M; Newby, PK

    2014-01-01

    Background: Metabolically healthy obesity may confer lower risk of adverse health outcomes compared with abnormal obesity. Diet and race are postulated to influence the phenotype, but their roles and their interrelations on healthy obesity are unclear. Objective: We evaluated food intakes of metabolically healthy obese women in comparison to intakes of their metabolically healthy normal-weight and metabolically abnormal obese counterparts. Methods: This was a cross-sectional study in 6964 women of the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Participants were aged 45–98 y with a body mass index (BMI; kg/m2) ≥18.5 and free of cardiovascular diseases, diabetes, and cancer. Food intake was collected by using a food-frequency questionnaire. BMI phenotypes were defined by using metabolic syndrome (MetS) and homeostasis model assessment of insulin resistance (HOMA-IR) criteria. Mean differences in food intakes among BMI phenotypes were compared by using ANCOVA. Results: Approximately one-half of obese women (white: 45%; black: 55%) as defined by MetS criteria and approximately one-quarter of obese women (white: 28%; black: 24%) defined on the basis of HOMA-IR values were metabolically healthy. In age-adjusted analyses, healthy obesity and normal weight as defined by both criteria were associated with lower intakes of sugar-sweetened beverages compared with abnormal obesity among both white and black women (P < 0.05). HOMA-IR–defined healthy obesity and normal weight were also associated with higher fruit and low-fat dairy intakes compared with abnormal obesity in white women (P < 0.05). Results were attenuated and became nonsignificant in multivariable-adjusted models that additionally adjusted for BMI, marital status, residential region, education, annual income, alcohol intake, multivitamin use, cigarette smoking status, physical activity, television viewing, high-sensitivity C-reactive protein, menopausal status, hormone therapy

  1. Effect of dietary vegetable (water convolvulus) on cholesterol metabolism in rats.

    PubMed

    Chen, M L; Chia, D F; Run, J Q

    1984-03-01

    Male rats were fed diets containing 0.5% cholesterol with or without vegetable (water convolvulus) or neutral detergent fiber supplementation. After 2 weeks, rats were given [4-14C]cholesterol i.p. Feces were collected for 1 week. Three hours prior to necropsy, [3H]acetate was administered i.p. Samples of serum, liver, adipose tissue, muscle and brain were obtained for analysis. Concentrations of total lipids and cholesterol and synthesis and recovery of labeled steroids are reported. Results showed that the growth of animals and food utilization were not significantly affected by different dietary treatments. The notable effect of vegetable was that the elevated liver and serum cholesterol levels due to increased intake can be nearly offset by increasing the fecal excretion. The high rate of excretion of 14C-labeled steroids shown in vegetable-fed rats indicated that both decreased absorption and increased endogenous excretion occurred in these animals. The synthesis of total lipids as demonstrated by [3H]acetate incorporation was not affected appreciably by diet. In liver, however, cholesterol synthesis appeared to be lower in rats receiving cholesterol-supplemented diet, but higher in rats fed vegetable diets. The ratio of 3H:14C of liver cholesterol was significantly higher in rats fed the vegetable diet. In brain cholesterol we also found consistently high 3H:14C ratios, which were not affected by dietary intake. It appears that brain cholesterol level is maintained mainly by synthesis in situ and not by uptake from dietary or other sources. PMID:6321703

  2. Effects of rapeseed and soybean oil dietary supplementation on bovine fat metabolism, fatty acid composition and cholesterol levels in milk.

    PubMed

    Altenhofer, Christian; Spornraft, Melanie; Kienberger, Hermine; Rychlik, Michael; Herrmann, Julia; Meyer, Heinrich H D; Viturro, Enrique

    2014-02-01

    The main goal of this experiment was to study the effect of milk fat depression, induced by supplementing diet with plant oils, on the bovine fat metabolism, with special interest in cholesterol levels. For this purpose 39 cows were divided in three groups and fed different rations: a control group (C) without any oil supplementation and two groups with soybean oil (SO) or rapeseed oil (RO) added to the partial mixed ration (PMR). A decrease in milk fat percentage was observed in both oil feedings with a higher decrease of -1·14 % with SO than RO with -0·98 % compared with the physiological (-0·15 %) decline in the C group. There was no significant change in protein and lactose yield. The daily milk cholesterol yield was lower in both oil rations than in control ration, while the blood cholesterol level showed an opposite variation. The milk fatty acid pattern showed a highly significant decrease of over 10 % in the amount of saturated fatty acids (SFA) in both oil feedings and a highly significant increase in mono (MUFA) and poly (PUFA) unsaturated fatty acids, conjugated linoleic acids (CLA) included. The results of this experiment suggest that the feeding of oil supplements has a high impact on milk fat composition and its significance for human health, by decreasing fats with a potentially negative effect (SFA and cholesterol) while simultaneously increasing others with positive (MUFA, PUFA, CLA).

  3. Multiple genetic imaging study of the association between cholesterol metabolism and brain functional alterations in individuals with risk factors for Alzheimer's disease

    PubMed Central

    Bai, Feng; Yuan, Yonggui; Shi, Yongmei; Zhang, Zhijun

    2016-01-01

    Alzheimer's disease (AD) is a clinically and genetically heterogeneous neurodegenerative disease. Genes involved in cholesterol metabolism may play a role in the pathological changes of AD. However, the imaging genetics-based endophenotypes derived from polymorphisms in multiple functionally related genes are unclear in individuals with risk factors for AD. Forty-three amnestic mild cognitive impairment (aMCI) subjects and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) measurements of brain topological organization. Thirty-three previously suggested tagging single nucleotide polymorphisms (SNPs) from 12 candidate genes in the cholesterol metabolism pathway were further investigated. A cholesterol metabolism pathway gene-based imaging genetics approach was then utilized to investigate disease-related differences between the groups based on genotype-by-aMCI interactions. The cholesterol metabolism pathway genes exerted widespread effects on the cortico-subcortical-cerebellar spontaneous brain activity. Meanwhile, left lateralization of global brain connectivity was associated with cholesterol metabolism pathway genes. The APOE rs429358 variation significantly influenced the brain network characteristics, affecting the activation of nodes as well as the connectivity of edges in aMCI subjects. The cholesterol metabolism pathway gene-based imaging genetics approach may provide new opportunities to understand the mechanisms underlying AD and suggested that APOE rs429358 is a core genetic variation that is associated with disease-related differences in brain function. PMID:26985771

  4. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome

    PubMed Central

    Song, Guohua; Li, Min; Sang, Hui; Zhang, Liying; Li, Xiuhong; Yao, Shutong; Yu, Yang; Zong, Chuanlong; Xue, Yazhuo; Qin, Shucun

    2013-01-01

    We have found that hydrogen (dihydrogen; H2) has beneficial lipid-lowering effects in high-fat diet-fed Syrian golden hamsters. The objective of this study was to characterize the effects of H2-rich water (0.9–1.0 l/day) on the content, composition, and biological activities of serum lipoproteins on 20 patients with potential metabolic syndrome. Serum analysis showed that consumption of H2-rich water for 10 weeks resulted in decreased serum total-cholesterol (TC) and LDL-cholesterol (LDL-C) levels. Western blot analysis revealed a marked decrease of apolipoprotein (apo)B100 and apoE in serum. In addition, we found H2 significantly improved HDL functionality assessed in four independent ways, namely, i) protection against LDL oxidation, ii) inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to endothelial cells, iii) stimulation of cholesterol efflux from macrophage foam cells, and iv) protection of endothelial cells from TNF-α-induced apoptosis. Further, we found consumption of H2-rich water resulted in an increase in antioxidant enzyme superoxide dismutase and a decrease in thiobarbituric acid-reactive substances in whole serum and LDL. In conclusion, supplementation with H2-rich water seems to decrease serum LDL-C and apoB levels, improve dyslipidemia-injured HDL functions, and reduce oxidative stress, and it may have a beneficial role in prevention of potential metabolic syndrome. PMID:23610159

  5. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome.

    PubMed

    Song, Guohua; Li, Min; Sang, Hui; Zhang, Liying; Li, Xiuhong; Yao, Shutong; Yu, Yang; Zong, Chuanlong; Xue, Yazhuo; Qin, Shucun

    2013-07-01

    We have found that hydrogen (dihydrogen; H2) has beneficial lipid-lowering effects in high-fat diet-fed Syrian golden hamsters. The objective of this study was to characterize the effects of H2-rich water (0.9-1.0 l/day) on the content, composition, and biological activities of serum lipoproteins on 20 patients with potential metabolic syndrome. Serum analysis showed that consumption of H2-rich water for 10 weeks resulted in decreased serum total-cholesterol (TC) and LDL-cholesterol (LDL-C) levels. Western blot analysis revealed a marked decrease of apolipoprotein (apo)B100 and apoE in serum. In addition, we found H2 significantly improved HDL functionality assessed in four independent ways, namely, i) protection against LDL oxidation, ii) inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to endothelial cells, iii) stimulation of cholesterol efflux from macrophage foam cells, and iv) protection of endothelial cells from TNF-α-induced apoptosis. Further, we found consumption of H2-rich water resulted in an increase in antioxidant enzyme superoxide dismutase and a decrease in thiobarbituric acid-reactive substances in whole serum and LDL. In conclusion, supplementation with H2-rich water seems to decrease serum LDL-C and apoB levels, improve dyslipidemia-injured HDL functions, and reduce oxidative stress, and it may have a beneficial role in prevention of potential metabolic syndrome.

  6. Tandem mass spectrometry newborn screening for inborn errors of intermediary metabolism: abnormal profile interpretation.

    PubMed

    Fernández-Lainez, C; Aguilar-Lemus, J J; Vela-Amieva, M; Ibarra-González, I

    2012-01-01

    Expanded newborn screening for inherited metabolic disorders using tandem mass spectrometry was introduced in 1990's and is widely used around the world. In contrast to conventional screening methods, tandem mass spectrometry does not measure single analytes but identifies and quantifies metabolite profiles; one single blood spot analyzed provides information of about 60 metabolites including amino acids, acylcarnitines and related ratios that enable the diagnosis of approximately 50 different diseases. However, the interpretation of these profiles can become quite complex. The aim of this work is to present in an easy and practical manner a comprehensive compilation of information needed for tandem mass neonatal screening profile interpretation, and basic actions for immediate follow up of abnormal results, including the tests that are required for confirmatory purposes. Other conditions not attributable to metabolic disorders which can lead to an abnormal profile of these markers are also described as well as a series of general recommendations which would be useful for health professionals who are beginning newborn screening for inborn errors of intermediary metabolism using tandem mass spectrometry.

  7. Reproductive and metabolic abnormalities associated with bipolar disorder and its treatment.

    PubMed

    Kenna, Heather A; Jiang, Bowen; Rasgon, Natalie L

    2009-01-01

    Women with mood disorders, especially bipolar disorder (BD), have been shown to have high rates of reproductive and metabolic dysfunction. The available data on the functional, anatomic, and clinical neuroendocrine abnormalities in women with BD suggest a two-tiered relationship with mood pathology. First, many of the medications commonly used in the treatment of BD can have deleterious effects on blood levels of reproductive hormones and consequently on the hypothalamic-pituitary-gonadal (HPG) axis and reproductive function. Studies that have specifically addressed the association between psychotropic medications and menstrual abnormalities, polycystic ovary syndrome, and overall reproductive endocrine function in women with BD have found high rates of HPG irregularities in women with BD. Second, there is evidence of reproductive dysfunction in women with BD prior to treatment. In addition, many of the psychotropic medications used in the treatment of BD are associated with weight gain, insulin resistance, and dyslipidemia. These metabolic side effects further compound the neuroendocrine system dysregulation in women with BD. Current understanding of the reproductive and metabolic function in women with BD points to vulnerability, which in turn increases the risk of later-life cardiovascular disease and diabetes, among other morbidities, for women with BD.

  8. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    SciTech Connect

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  9. [Effect of a new low-cholesterol meat and vegetal product on correction of simulated lipid metabolism disorders in rats].

    PubMed

    Gorlov, I F; Slozhenkina, M I; Karpenko, E V; Giro, T M; Andreeva, S V

    2015-01-01

    The paper presents the biomedical evaluation of meat and cereal spread from low-cholesterol raw material with vegetable ingredients, recommended as a functional food. The experimental model with myocardial infarction like changes in hearts of the animals, accompanied by vascular changes similar to atherosclerotic changes in humans, as well as the modeling of the metabolic imbalance of lipids have been carried out by intramuscular injection of epinephrine and unbalanced feeding the animals with food rich in cholesterol, with a high content of carbohydrates and fats. Wistar rats were divided into 4 groups of 12 animals each. The rats in groups 1-3 were induced the cardio distress with intramuscular injection of epinephrine; group IV consisted of intact (healthy) animals. Dramatic changes in biochemical blood status that indicated heart disease have been observed within 2 days after the injection of epinephrine (0.2 ml per 1 kg of animal body weight) to the tested animals. During the experiment a sharp increase in activity of indicator enzymes of alanine aminotransferase (ALT) and aspartate aminotransferases (AST), with a predominance of AST over ALT, along with an increase in LDH activity have been observed. The 1.4-1.6 fold increase in blood serum creatinine has also been found. Later the animals in groups 1, 2, 3 with simulated cardio pathology were fed a ration with intervention of food rich in cholesterol, with a high content of carbohydrates and fats (50% of the diet) for a month for induction of lipid metabolism disorders. An increase in the concentration of cholesterol and triglycerides by 3 fold or more has been observed. In addition, an accumulation of sulfhydryl groups has been noted, as evidenced by increased rates of thymol. For further normalization of lipid metabolism, the animals in tested group I were fed the diet with intervention of spread, developed in accordance with GOST 12318-91 "Canned meat "Meat spread"; the rats of group 2 were fed with

  10. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism.

    PubMed

    Miyosawa, Katsutoshi; Watanabe, Yuichiro; Murakami, Kentaro; Murakami, Takeshi; Shibata, Haruki; Iwashita, Masaya; Yamazaki, Hiroyuki; Yamazaki, Koichi; Ohgiya, Tadaaki; Shibuya, Kimiyuki; Mizuno, Ken; Tanabe, Sohei; Singh, Sasha A; Aikawa, Masanori

    2015-07-15

    Despite significant reduction of cardiovascular events by statin treatment, substantial residual risk persists, driving emerging needs for the development of new therapies. We identified a novel cholesteryl ester transfer protein (CETP) inhibitor, K-312, that raises HDL and lowers LDL cholesterol levels in animals. K-312 also suppresses hepatocyte expression of proprotein convertase subtilisin/kexin 9 (PCSK9), a molecule that increases LDL cholesterol. We explored the underlying mechanism for the reduction of PCSK9 expression by K-312. K-312 inhibited in vitro human plasma CETP activity (IC50; 0.06 μM). Administration of K-312 to cholesterol-fed New Zealand White rabbits for 18 wk raised HDL cholesterol, decreased LDL cholesterol, and attenuated aortic atherosclerosis. Our search for additional beneficial characteristics of this compound revealed that K-312 decreases PCSK9 expression in human primary hepatocytes and in the human hepatoma cell line HepG2. siRNA silencing of CETP in HepG2 did not compromise the suppression of PCSK9 by K-312, suggesting a mechanism independent of CETP. In HepG2 cells, K-312 treatment decreased the active forms of sterol regulatory element-binding proteins (SREBP-1 and -2) that regulate promoter activity of PCSK9. Chromatin immunoprecipitation assays demonstrated that K-312 decreased the occupancy of SREBP-1 and SREBP-2 on the sterol regulatory element of the PCSK9 promoter. PCSK9 protein levels decreased by K-312 treatment in the circulating blood of cholesterol-fed rabbits, as determined by two independent mass spectrometry approaches, including the recently developed, highly sensitive parallel reaction monitoring method. New CETP inhibitor K-312 decreases LDL cholesterol and PCSK9 levels, serving as a new therapy for dyslipidemia and cardiovascular disease.

  11. Prevalence and predictors of metabolic abnormalities in Chinese women with PCOS: a cross- sectional study

    PubMed Central

    2014-01-01

    Background Polycystic ovary syndrome (PCOS) is a common condition estimated to affect 5.61% of Chinese women of reproductive age, but little is known about the prevalence and predictors in Chinese PCOS patients. This study aimed to determine the prevalence and predictors of the metabolic abnormalities in Chinese women with and without PCOS. Methods A large-scale national epidemiological investigation was conducted in reproductive age women (19 to 45 years) across China. 833 reproductive aged PCOS women, who participated in the healthcare screening, were recruited from ten provinces in China. Clinical history, ultrasonographic exam (ovarian follicle), hormonal and metabolic parameters were the main outcome measures. Results The prevalence of metabolic syndrome (MetS) as compared in PCOS and non-PCOS women from community were 18.2% vs 14.7%, and IR (insulin resistance) were 14.2% vs 9.3% (p < 0.001) respectively. After adjusting for age, the indicators (central obesity, hypertension, fasting insulin, SHBG, dyslipinaemia) for metabolic disturbances were significantly higher in PCOS than in non-PCOS groups. Using multivariate logistic regression, central obesity and FAI were risk factors, while SHBG was a protective factor on the occurrence of Mets and IR in PCOS women (OR: 1.132, 1.105 and 0.995). Conclusions The risk factors of the metabolic syndrome and insulin resistance were BMI and FAI for PCOS women, respectively. The decrease of SHBG level was also a risk factor for insulin resistance in both PCOS and metabolic disturbance. PMID:25223276

  12. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  13. The ATP-binding Cassette Transporter-2 (ABCA2) Regulates Cholesterol Homeostasis and Low-density Lipoprotein Receptor Metabolism in N2a Neuroblastoma Cells

    PubMed Central

    Davis, Warren

    2011-01-01

    The ATP-binding cassette transporter-2 (ABCA2) has been identified as a possible regulator of lipid metabolism. ABCA2 is most highly expressed in the brain but its effects on cholesterol homeostasis in neuronal-type cells have not been characterized. It is important to study the role of ABCA2 in regulating cholesterol homeostasis in neuronal-type cells because ABCA2 has been identified as a possible genetic risk factor for Alzheimer’s disease. In this study, the effects of ABCA2 expression on cholesterol homeostasis were examined in mouse N2a neuroblastoma cells. ABCA2 reduced total, free- and esterified cholesterol levels as well as membrane cholesterol but did not perturb cholesterol distribution in organelle or lipid raft compartments. ABCA2 did not modulate de novo cholesterol biosynthesis from acetate. Cholesterol trafficking to the plasma membrane was not affected by ABCA2 but efflux to the physiological acceptor ApoE3 and mobilization of plasma membrane cholesterol to the endoplasmic reticulum for esterification were reduced by ABCA2. ABCA2 reduced esterification of serum and low-density lipoprotein-derived cholesterol but not 25-hydroxycholesterol. ABCA2 decreased low-density lipoprotein receptor (LDLR) mRNA and protein levels and increased its turnover rate. The surface expression of LDLR as well as the uptake of fluroresecent DiI-LDL was also reduced by ABCA2. Reduction of endogenous ABCA2 expression by RNAi treatment of N2a cells and rat primary cortical neurons produced the opposite effects of over-expression of ABCA2, increasing LDLR protein levels. This report identifies ABCA2 as a key regulator of cholesterol homeostasis and LDLR metabolism in neuronal cells. PMID:21810484

  14. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney

    PubMed Central

    Pushpakumar, Sathnur; Kundu, Sourav; Narayanan, Nithya; Sen, Utpal

    2015-01-01

    Hyperhomocysteinemia (HHcy) is prevalent in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Emerging studies suggest that epigenetic mechanisms contribute to the development and progression of fibrosis in CKD. HHcy and its intermediates are known to alter the DNA methylation pattern, which is a critical regulator of epigenetic information. In this study, we hypothesized that HHcy causes renovascular remodeling by DNA hypermethylation, leading to glomerulosclerosis. We also evaluated whether the DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5-Aza) could modulate extracellular matrix (ECM) metabolism and reduce renovascular fibrosis. C57BL/6J (wild-type) and cystathionine-β-synthase (CBS+/−) mice, treated without or with 5-Aza (0.5 mg/kg body weight, i.p.), were used. CBS+/− mice showed high plasma Hcy levels, hypertension, and significant glomerular and arteriolar injury. 5-Aza treatment normalized blood pressure and reversed renal injury. CBS+/− mice showed global hypermethylation and up-regulation of DNA methyltransferase-1 and -3a. Methylation-specific PCR showed an imbalance between matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 and -2 and also increased collagen and galectin-3 expression. 5-Aza reduced abnormal DNA methylation and restored the MMP-9/TIMP-1, -2 balance. In conclusion, our data suggest that during HHcy, abnormal DNA methylation and an imbalance between MMP-9 and TIMP-1 and -2 lead to ECM remodeling and renal fibrosis.—Pushpakumar, S., Kundu, S., Narayanan, N., Sen, U. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney. PMID:26224753

  15. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  16. A diet-sensitive BAF60a-mediated pathway links hepatic bile acid metabolism to cholesterol absorption and atherosclerosis

    PubMed Central

    Meng, Zhuo-Xian; Wang, Lin; Chang, Lin; Sun, Jingxia; Bao, Jiangyin; Li, Yaqiang; Chen, Y. Eugene; Lin, Jiandie D.

    2015-01-01

    Summary Dietary nutrients interact with gene networks to orchestrate adaptive responses during metabolic stress. Here we identify Baf60a as a diet-sensitive subunit of the SWI/SNF chromatin-remodeling complexes in the mouse liver that links the consumption of fat- and cholesterol-rich diet to elevated plasma cholesterol levels. Baf60a expression was elevated in the liver following feeding with a western diet. Hepatocyte-specific inactivation of Baf60a reduced bile acid production and cholesterol absorption, and attenuated diet-induced hypercholesterolemia and atherosclerosis in mice. Baf60a stimulates expression of genes involved in bile acid synthesis, modification, and transport through a CAR/Baf60a feedforward regulatory loop. Baf60a is required for the recruitment of the SWI/SNF chromatin-remodeling complexes to facilitate an activating epigenetic switch on target genes. These studies elucidate a regulatory pathway that mediates the hyperlipidemic and atherogenic effects of western diet consumption. PMID:26586440

  17. Differences in X-Chromosome Transcriptional Activity and Cholesterol Metabolism between Placentae from Swine Breeds from Asian and Western Origins

    PubMed Central

    Bischoff, Steve R.; Tsai, Shengdar Q.; Hardison, Nicholas E.; Motsinger-Reif, Alison A.; Freking, Bradley A.; Nonneman, Dan J.; Rohrer, Gary A.; Piedrahita, Jorge A.

    2013-01-01

    To gain insight into differences in placental physiology between two swine breeds noted for their dissimilar reproductive performance, that is, the Chinese Meishan and white composite (WC), we examined gene expression profiles of placental tissues collected at 25, 45, 65, 85, and 105 days of gestation by microarrays. Using a linear mixed model, a total of 1,595 differentially expressed genes were identified between the two pig breeds using a false-discovery rate q-value ≤0.05. Among these genes, we identified breed-specific isoforms of XIST, a long non-coding RNA responsible X-chromosome dosage compensation in females. Additionally, we explored the interaction of placental gene expression and chromosomal location by DIGMAP and identified three Sus scrofa X chromosomal bands (Xq13, Xq21, Xp11) that represent transcriptionally active clusters that differ between Meishan and WC during placental development. Also, pathway analysis identified fundamental breed differences in placental cholesterol trafficking and its synthesis. Direct measurement of cholesterol confirmed that the cholesterol content was significantly higher in the Meishan versus WC placentae. Taken together, this work identifies key metabolic pathways that differ in the placentae of two swine breeds noted for differences in reproductive prolificacy. PMID:23383161

  18. Effects of increased dietary cholesterol with carbohydrate restriction on hepatic lipid metabolism in Guinea pigs.

    PubMed

    deOgburn, Ryan; Leite, Jose O; Ratliff, Joseph; Volek, Jeff S; McGrane, Mary M; Fernandez, Maria Luz

    2012-04-01

    Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation.

  19. Effects of Increased Dietary Cholesterol with Carbohydrate Restriction on Hepatic Lipid Metabolism in Guinea Pigs

    PubMed Central

    deOgburn, Ryan; Leite, Jose O; Ratliff, Joseph; Volek, Jeff S; McGrane, Mary M; Fernandez, Maria Luz

    2012-01-01

    Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation. PMID:22546916

  20. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice

    PubMed Central

    Chiazza, Fausto; Couturier-Maillard, Aurélie; Benetti, Elisa; Mastrocola, Raffaella; Nigro, Debora; Cutrin, Juan C; Serpe, Loredana; Aragno, Manuela; Fantozzi, Roberto; Ryffel, Bernard; Collino, Massimo

    2015-01-01

    Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic downregulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3−/− littermates were fed control diet or high-fat, high-fructose diet (HD). A subgroup of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg intraperitoneally [IP]). HD feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in profibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3−/− mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin (IL)-1β and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited nuclear factor (NF)-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing. PMID:26623925

  1. Fermentation of Soy Milk via Lactobacillus plantarum Improves Dysregulated Lipid Metabolism in Rats on a High Cholesterol Diet

    PubMed Central

    Han, Hye Won; Oh, Hayoun; Lee, Wu Joo; Lee, Seung-Min

    2014-01-01

    We aimed to investigate whether in vitro fermentation of soy with L. plantarum could promote its beneficial effects on lipids at the molecular and physiological levels. Rats were fed an AIN76A diet containing 50% sucrose (w/w) (CTRL), a modified AIN76A diet supplemented with 1% (w/w) cholesterol (CHOL), or a CHOL diet where 20% casein was replaced with soy milk (SOY) or fermented soy milk (FSOY). Dietary isoflavone profiles, serum lipids, hepatic and fecal cholesterol, and tissue gene expression were examined. The FSOY diet had more aglycones than did the SOY diet. Both the SOY and FSOY groups had lower hepatic cholesterol and serum triglyceride (TG) than did the CHOL group. Only FSOY reduced hepatic TG and serum free fatty acids and increased serum HDL-CHOL and fecal cholesterol. Compared to CHOL, FSOY lowered levels of the nuclear forms of SREBP-1c and SREBP-2 and expression of their target genes, including FAS, SCD1, LDLR, and HMGCR. On the other hand, FSOY elevated adipose expression levels of genes involved in TG-rich lipoprotein uptake (ApoE, VLDLR, and Lrp1), fatty acid oxidation (PPARα, CPT1α, LCAD, CYP4A1, UCP2, and UCP3), HDL-biogenesis (ABCA1, ApoA1, and LXRα), and adiponectin signaling (AdipoQ, AdipoR1, and AdipoR2), as well as levels of phosphorylated AMPK and ACC. SOY conferred a similar expression profile in both liver and adipose tissues but failed to reach statistical significance in many of the genes tested, unlike FSOY. Our data indicate that fermentation may be a way to enhance the beneficial effects of soy on lipid metabolism, in part via promoting a reduction of SREBP-dependent cholesterol and TG synthesis in the liver, and enhancing adiponectin signaling and PPARα-induced expression of genes involved in TG-rich lipoprotein clearance, fatty acid oxidation, and reverse cholesterol transport in adipose tissues. PMID:24520358

  2. Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis

    PubMed Central

    Zhu, Haizhong; Wang, Jian-Xin; Snieckus, Victor; Ly, Lan H.; Converse, Paul J.; Jacobs, William R.; Strynadka, Natalie; Eltis, Lindsay D.

    2009-01-01

    Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a ΔhsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Km = 14.4±0.5 µM−1 s−1), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the ΔhsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 Å revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design. PMID:19300498

  3. Metabolic abnormalities and hypoleptinemia in α-synuclein A53T mutant mice.

    PubMed

    Rothman, Sarah M; Griffioen, Kathleen J; Fishbein, Kenneth W; Spencer, Richard G; Makrogiannis, Sokratis; Cong, Wei-Na; Martin, Bronwen; Mattson, Mark P

    2014-05-01

    Parkinson's disease (PD) patients frequently display loss of body fat mass and increased energy expenditure, and several studies have outlined a relationship between these metabolic abnormalities and disease severity, yet energy metabolism is largely unstudied in mouse models of PD. Here we characterize metabolic and physiologic responses to a high calorie diet (HCD) in mice expressing in neurons a mutant form of human α-synuclein (A53T) that causes dominantly inherited familial forms of the disease. A53T (SNCA) and wild type (WT) littermate mice were placed on a HCD for 12 weeks and evaluated for weight gain, food intake, body fat, blood plasma leptin, hunger, glucose tolerance, and energy expenditure. Results were compared with both SNCA and WT mice on a control diet. Despite consuming similar amounts of food, WT mice gained up to 66% of their original body weight on a HCD, whereas SNCA mice gained only 17%. Further, after 12 weeks on a HCD, magnetic resonance imaging analysis revealed that WT mice had significantly greater total and visceral body fat compared with SNCA mice (p < 0.007). At the age of 24 weeks SNCA mice displayed significantly increased hunger compared with WT (p < 0.03). At the age of 36 weeks, SNCA mice displayed significant hypoleptinemia compared with WT, both on a normal diet and a HCD (p < 0.03). The HCD induced insulin insensitivity in WT, but not SNCA mice, as indicated by an oral glucose tolerance test. Finally, SNCA mice displayed greater energy expenditure compared with WT, as measured in a Comprehensive Laboratory Animal Monitoring System, after 12 weeks on a HCD. Thus, SNCA mice are resistant to HCD-induced obesity and insulin resistance and display reduced body fat, increased hunger, hypoleptinemia and increased energy expenditure. Our findings reveal a profile of metabolic dysfunction in a mouse model of PD that is similar to that of human PD patients, thus providing evidence that α-synuclein pathology is sufficient to drive such

  4. Effects of dietary vitamin D on calcium and magnesium levels in mice with abnormal calcium metabolism

    SciTech Connect

    Spurlock, B.G.; West, W.L.; Knight, E.M. )

    1991-03-11

    In previous studies vitamin D has been used to induce cardiac calcium overload in laboratory animals. Interrelationships between calcium and magnesium metabolism are also documented. The authors have investigated the effect of varying vitamin D in the diet on calcium and magnesium levels in plasma, kidney and heart of DBA mice which exhibit genetic abnormalities in cardiac calcium metabolism. Weanling DBA mice were maintained for 28 days on an AIN-76 diet containing either 1,000 I.U. of vitamin D{sub 3} per kg of diet (control); 4,000 I.U. of vitamin D{sub 3} per kg of diet; or no vitamin D. When compared to controls, supplemented animals showed significantly higher plasma magnesium, kidney calcium and kidney magnesium levels; animals receiving the vitamin D-deficient diet exhibited increases in cardiac calcium levels. The authors results support previous findings that vitamin D deficiency increases cardiac calcium uptake and suggest a possible role of vitamin D in magnesium metabolism.

  5. Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo.

    PubMed

    Gillard, Baiba K; Rodriguez, Perla J; Fields, David W; Raya, Joe L; Lagor, William R; Rosales, Corina; Courtney, Harry S; Gotto, Antonio M; Pownall, Henry J

    2016-03-01

    Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids. PMID:26709142

  6. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses.

    PubMed

    Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  7. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    PubMed Central

    Aho, Vilma; Ollila, Hanna M.; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J.; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S.A.; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M.; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T.; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  8. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism

    PubMed Central

    Yu, Chi-Yi; Theusch, Elizabeth; Lo, Kathleen; Mangravite, Lara M.; Naidoo, Devesh; Kutilova, Mariya; Medina, Marisa W.

    2014-01-01

    3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway and is inhibited by statins, a class of cholesterol-lowering drugs. Expression of an alternatively spliced HMGCR transcript lacking exon 13, HMGCR13(−), has been implicated in the variation of plasma LDL-cholesterol (LDL-C) and is the single most informative molecular marker of LDL-C response to statins. Given the physiological importance of this transcript, our goal was to identify molecules that regulate HMGCR alternative splicing. We recently reported gene expression changes in 480 lymphoblastoid cell lines (LCLs) after in vitro simvastatin treatment, and identified a number of statin-responsive genes involved in mRNA splicing. Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) was chosen for follow-up since rs3846662, an HMGCR SNP that regulates exon 13 skipping, was predicted to alter an HNRNPA1 binding motif. Here, we not only demonstrate that rs3846662 modulates HNRNPA1 binding, but also that sterol depletion of human hepatoma cell lines reduced HNRNPA1 mRNA levels, an effect that was reversed with sterol add-back. Overexpression of HNRNPA1 increased the ratio of HMGCR13(−) to total HMGCR transcripts by both directly increasing exon 13 skipping in an allele-related manner and specifically stabilizing the HMGCR13(−) transcript. Importantly, HNRNPA1 overexpression also diminished HMGCR enzyme activity, enhanced LDL-C uptake and increased cellular apolipoprotein B (APOB). rs1920045, an SNP associated with HNRNPA1 exon 8 alternative splicing, was also associated with smaller statin-induced reduction in total cholesterol from two independent clinical trials. These results suggest that HNRNPA1 plays a role in the variation of cardiovascular disease risk and statin response. PMID:24001602

  9. Quantitative Analysis of Metabolic Abnormality Associated with Brain Developmental Venous Anomalies

    PubMed Central

    Timerman, Dmitriy; Thum, Jasmine A

    2016-01-01

    Background and Purpose: Abnormal hypometabolism is common in the brain parenchyma surrounding developmental venous anomalies (DVAs), although the degree of DVA-associated hypometabolism (DVAAh) has not been quantitatively analyzed. In this study, we demonstrate a simple method for the measurement of DVAAh and test the hypothesis that DVAs are associated with a quantifiable decrement in metabolic activity. Materials and Methods: Measurements of DVAAh using ratios of standardized uptake values (SUVs) and comparison to a normal database were performed on a cohort of 25 patients (12 male, 13 female), 14 to 76 years old, with a total of 28 DVAs (20 with DVAAh, seven with isometabolic activity, and one with hypermetabolic activity). Results: Qualitative classification of none, mild, moderate, and severe DVAAh corresponded to quantitative measurements of DVAAh of 1 ± 3%, 12 ± 7%, 18 ± 6%, and 37 ± 6%, respectively. A statistically significant linear correlation between DVAAh and age was observed (P = 0.003), with a 3% reduction in metabolic activity per decade. A statistically significant linear correlation between DVAAh and DVA size was observed (P = 0.01), with a 4% reduction in metabolic activity per each 1 cm in the longest dimension. The SUVDVA-based measures of DVAAh correlated (P = 0.001) with measures derived from comparison with a standardized database. Conclusion: We present a simple method for the quantitative measurement of DVAAh using ratios of SUVs, and find that this quantitative analysis is consistent with a qualitative classification. We find that 54% (15 of 28) of DVAs are associated with a greater than 10% decrease in metabolic activity. PMID:27774365

  10. Metabolic Abnormalities, Cardiovascular Disease Risk Factors, and GFR Decline in Children with Chronic Kidney Disease

    PubMed Central

    Abraham, Alison G.; Jerry-Fluker, Judith; Schwartz, George J.; Benfield, Mark; Kaskel, Frederick; Wong, Craig; Mak, Robert H.; Moxey-Mims, Marva; Warady, Bradley A.

    2011-01-01

    Summary Background and objectives Metabolic abnormalities and cardiovascular disease (CVD) risk factors have rarely been systematically assessed in children with chronic kidney disease (CKD). We examined the prevalence of various CKD sequelae across the GFR spectrum. Design, setting, participants, & measurements Data were used from 586 children participating in the Chronic Kidney Disease in Children (CKiD) study (United States and Canada) with GFR measured by iohexol plasma disappearance. Laboratory values and CVD risk factors were compared across GFR categories and with an age-, gender-, and race-matched community sample. Results CKiD participants were 62% male, 66% Caucasian, 23% African American, and 15% Hispanic with a median age of 11 years and a median GFR of 44 ml/min per 1.73 m2. Compared with those with a GFR ≥ 50 ml/min per 1.73 m2, having a GFR < 30 ml/min per 1.73 m2 was associated with a three-fold higher risk of acidosis and growth failure and a four- to five-fold higher risk of anemia and elevated potassium and phosphate. Median GFR change was −4.3 ml/min per 1.73 m2 and −1.5 ml/min per 1.73 m2 per year in children with glomerular and nonglomerular diagnoses, respectively. Despite medication and access to nephrology care, uncontrolled systolic hypertension was present in 14%, and 16% had left ventricular hypertrophy. Children with CKD frequently were also shorter and had lower birth weight, on average, compared with norms. Conclusions Growth failure, metabolic abnormalities, and CVD risk factors are present at GFR >50 ml/min per 1.73 m2 in children with CKD and, despite therapy, increase in prevalence two- to four-fold with decreasing GFR. PMID:21841064

  11. Silencing diacylglycerol kinase-theta expression reduces steroid hormone biosynthesis and cholesterol metabolism in human adrenocortical cells.

    PubMed

    Cai, Kai; Lucki, Natasha C; Sewer, Marion B

    2014-04-01

    Diacylglycerol kinase theta (DGKθ) plays a pivotal role in regulating adrenocortical steroidogenesis by synthesizing the ligand for the nuclear receptor steroidogenic factor 1 (SF1). In response to activation of the cAMP signaling cascade nuclear DGK activity is rapidly increased, facilitating PA-mediated, SF1-dependent transcription of genes required for cortisol and dehydroepiandrosterone (DHEA) biosynthesis. Based on our previous work identifying DGKθ as the enzyme that produces the agonist for SF1, we generated a tetracycline-inducible H295R stable cell line to express a short hairpin RNA (shRNA) against DGKθ and characterized the effect of silencing DGKθ on adrenocortical gene expression. Genome-wide DNA microarray analysis revealed that silencing DGKθ expression alters the expression of multiple genes, including steroidogenic genes, nuclear receptors and genes involved in sphingolipid, phospholipid and cholesterol metabolism. Interestingly, the expression of sterol regulatory element binding proteins (SREBPs) was also suppressed. Consistent with the suppression of SREBPs, we observed a down-regulation of multiple SREBP target genes, including 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA red) and CYP51, concomitant with a decrease in cellular cholesterol. DGKθ knockdown cells exhibited a reduced capacity to metabolize PA, with a down-regulation of lipin and phospholipase D (PLD) isoforms. In contrast, suppression of DGKθ increased the expression of several genes in the sphingolipid metabolic pathway, including acid ceramidase (ASAH1) and sphingosine kinases (SPHK). In summary, these data demonstrate that DGKθ plays an important role in steroid hormone production in human adrenocortical cells.

  12. Metabolic Abnormalities in Lobar and Subcortical Brain Regions of Abstinent Polysubstance Users: Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Abé, Christoph; Mon, Anderson; Hoefer, Michael E.; Durazzo, Timothy C.; Pennington, David L.; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2013-01-01

    Aims: The aim of the study was to explore neurometabolic and associated cognitive characteristics of patients with polysubstance use (PSU) in comparison with patients with predominant alcohol use using proton magnetic resonance spectroscopy. Methods: Brain metabolite concentrations were examined in lobar and subcortical brain regions of three age-matched groups: 1-month-abstinent alcohol-dependent PSU, 1-month-abstinent individuals dependent on alcohol alone (ALC) and light drinking controls (CON). Neuropsychological testing assessed cognitive function. Results: While CON and ALC had similar metabolite levels, persistent metabolic abnormalities (primarily higher myo-inositol) were present in temporal gray matter, cerebellar vermis and lenticular nuclei of PSU. Moreover, lower cortical gray matter concentration of the neuronal marker N-acetylaspartate within PSU correlated with higher cocaine (but not alcohol) use quantities and with a reduced cognitive processing speed. Conclusions: These metabolite group differences reflect cellular/astroglial injury and/or dysfunction in alcohol-dependent PSU. Associations of other metabolite concentrations with neurocognitive performance suggest their functional relevance. The metabolic alterations in PSU may represent polydrug abuse biomarkers and/or potential targets for pharmacological and behavioral PSU-specific treatment. PMID:23797281

  13. Abnormal plasma monoamine metabolism in schizophrenia and its correlation with clinical responses to risperidone treatment.

    PubMed

    Cai, Hua-Lin; Fang, Ping-Fei; Li, Huan-De; Zhang, Xiang-Hui; Hu, Li; Yang, Wen; Ye, Hai-Sen

    2011-07-30

    Abnormalities in plasma monoamine metabolism reflect partly the illness of schizophrenia and sometimes the symptoms. Such studies have been repeatedly reported but have rarely taken both metabolites and parent amines or inter-amine activity ratios into account. In this study, the monoamines, their metabolites, turnovers and between-metabolite ratios in plasma were measured longitudinally in 32 schizophrenic patients treated with risperidone for 6 weeks, to examine possible biochemical alterations in schizophrenia, and to examine the association between treatment responses and psychopathology assessed according to the Positive and Negative Syndrome Scale (PANSS). The results showed lower level of plasma 3,4-dihydroxyphenylacetic acid (DOPAC) in relapsed versus first-episode schizophrenic patients, higher norepinephrine (NE) turnover rate (TR) in undifferentiated in comparison to paranoid schizophrenic patients and relatively higher metabolic activity of dopamine (DA) to serotonin (5-HT) in first-episode versus relapsed schizophrenic patients. Risperidone treatment induced a decrement of plasma DA levels and increments of plasma DOPAC and DA TR in the total group of schizophrenic patients. The turnover rate of 5-HT was was reduced in undifferentiated and relapsed subgroups of schizophrenic patients. The linkages between 5-HT TR, DA/NE relative activity and clinical symptomatology were also identified. These findings are consistent with an involvement of these systems in the pathogenesis of schizophrenia as well as in the responses to treatment, and the usefulness of certain biochemical indices as markers for subgrouping.

  14. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice.

    PubMed

    Subramanian, Savitha; Turner, Michael S; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Buckner, Jane H; O'Brien, Kevin; Getz, Godfrey S; Reardon, Catherine A; Chait, Alan

    2013-10-01

    Obesity is a chronic inflammatory state characterized by infiltration of adipose tissue by immune cell populations, including T lymphocytes. Natural killer T (NKT) cells, a specialized lymphocyte subset recognizing lipid antigens, can be pro- or anti-inflammatory. Their role in adipose inflammation continues to be inconclusive and contradictory. In obesity, the infiltration of tissues by invariant NKT (iNKT) cells is decreased. We therefore hypothesized that an excess iNKT cell complement might improve metabolic abnormalities in obesity. Vα14 transgenic (Vα14tg) mice, with increased iNKT cell numbers, on a LDL receptor-deficient (Ldlr(-/-)) background and control Ldlr(-/-) mice were placed on an obesogenic diet for 16 weeks. Vα14tg.Ldlr(-/-) mice gained 25% more weight and had increased adiposity than littermate controls. Transgenic mice also developed greater dyslipidemia, hyperinsulinemia, insulin resistance, and hepatic triglyceride accumulation. Increased macrophage Mac2 immunostaining and proinflammatory macrophage gene expression suggested worsened adipose inflammation. Concurrently, these mice had increased atherosclerotic lesion area and aortic inflammation. Thus, increasing the complement of iNKT cells surprisingly exacerbated the metabolic, inflammatory, and atherosclerotic features of obesity. These findings suggest that the reduction of iNKT cells normally observed in obesity may represent a physiological attempt to compensate for this inflammatory condition.

  15. TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism.

    PubMed

    Kim, Hyunsook; Yokoyama, Wallace; Davis, Paul Andrew

    2014-12-01

    Dietary changes could potentially reduce prostate cancer morbidity and mortality. Transgenic adenocarcinoma of the mouse prostate (TRAMP) prostate tumor responses to a 100 g of fat/kg diet (whole walnuts, walnut oil, and other oils; balanced for macronutrients, tocopherols [α-and γ]) for 18 weeks ad libitum were assessed. TRAMP mice (n=17 per group) were fed diets with 100 g fat from either whole walnuts (diet group WW), walnut-like fat (diet group WLF, oils blended to match walnut's fatty acid profile), or as walnut oil (diet group WO, pressed from the same walnuts as WW). Fasted plasma glucose was from tail vein blood, blood was obtained by cardiac puncture, and plasma stored frozen until analysis. Prostate (genitourinary intact [GUI]) was weighed and stored frozen at -80°C. Plasma triglyceride, lipoprotein cholesterol, plasma multianalyte levels (Myriad RBM Rat Metabolic MAP), prostate (GUI), tissue metabolites (Metabolon, Inc., Durham, NC, USA), and mRNA (by Illumina NGS) were determined. The prostate tumor size, plasma insulin-like growth factor-1 (IGF-1), high density lipoprotein, and total cholesterol all decreased significantly (P<.05) in both WW and WO compared to WLF. Both WW and WO versus WLF showed increased insulin sensitivity (Homeostasis Model Assessment [HOMA]), and tissue metabolomics found reduced glucose-6-phosphate, succinylcarnitine, and 4-hydroxybutyrate in these groups suggesting effects on cellular energy status. Tissue mRNA levels also showed changes suggestive of altered glucose metabolism with WW and WO diet groups having increased PCK1 and CIDEC mRNA expression, known for their roles in gluconeogenesis and increased insulin sensitivity, respectively. WW and WO group tissues also had increased MSMB mRNa a tumor suppressor and decreased COX-2 mRNA, both reported to inhibit prostate tumor growth. Walnuts reduced prostate tumor growth by affecting energy metabolism along with decreased plasma IGF-1 and cholesterol. These effects are

  16. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

    PubMed Central

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217. PMID:26798650

  17. Abnormalities in biomarkers of mineral and bone metabolism in kidney donors.

    PubMed

    Kasiske, Bertram L; Kumar, Rajiv; Kimmel, Paul L; Pesavento, Todd E; Kalil, Roberto S; Kraus, Edward S; Rabb, Hamid; Posselt, Andrew M; Anderson-Haag, Teresa L; Steffes, Michael W; Israni, Ajay K; Snyder, Jon J; Singh, Ravinder J; Weir, Matthew R

    2016-10-01

    Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long-term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (-7.0% and -5.0%) and serum phosphate concentrations (-6.4% and -2.3%). Serum 1,25-dihydroxyvitamin D3 concentrations were significantly lower (-17.1% and -12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%) and procollagen type I N-terminal propeptide (24.3% and 8.9%), were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long-term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors.

  18. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy.

    PubMed

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217.

  19. Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats.

    PubMed

    Visavadiya, Nishant P; Narasimhacharya, A V R L

    2009-06-01

    Hyperlipidemia/hypercholesteremia are major risk factors for atherosclerosis and cardiovascular diseases. Root of Asparagus racemosus (AR) is widely used in Ayurvedic system of medicine in India and is known for its steroidal saponin content. This study was designed to investigate the hypocholesteremic and antioxidant potential of AR root in both normo- and hypercholesteremic animals. Normal and hypercholesteremic male albino rats were administered with root powder of AR (5 and 10 g% dose levels) along with normal and hypercholesteremic diets, respectively, for a duration of 4 weeks. Plasma and hepatic lipid profiles, fecal sterol, bile acid excretion and hepatic antioxidant activity were assessed. Inclusion of AR root powder in diet, resulted in a dose-dependant reduction in plasma and hepatic lipid profiles, increased fecal excretion of cholesterol, neutral sterol and bile acid along with increases in hepatic HMG-CoA reductase activity and bile acid content in hypercholesteremic rats. Further, AR root also improved the hepatic antioxidant status (catalase, SOD and ascorbic acid levels). No significant changes in lipid and antioxidant profiles occurred in the normocholesteremic rats administered with AR root powder. AR root appeared to be useful as a dietary supplement that offers a protection against hyperlipidemia/hypercholesteremia in hypercholesteremic animals. The results of the present study indicate that the potent therapeutic phyto-components present in AR root i.e. phytosterols, saponins, polyphenols, flavonoids and ascorbic acid, could be responsible for increased bile acid production, elimination of excess cholesterol and elevation of hepatic antioxidant status in hypercholesteremic conditions. PMID:18955232

  20. Sex Differences in Associations Among Obesity, Metabolic Abnormalities, and Chronic Kidney Disease in Japanese Men and Women

    PubMed Central

    Sakurai, Masaru; Kobayashi, Junji; Takeda, Yasuo; Nagasawa, Shin-Ya; Yamakawa, Junichi; Moriya, Junji; Mabuchi, Hiroshi; Nakagawa, Hideaki

    2016-01-01

    Aims The present study aimed to investigate relationships among abdominal obesity, metabolic abnormalities, and the prevalence of chronic kidney disease (CKD) in relatively lean Japanese men and women. Participants and methods The participants included 8133 men and 15 934 women between 40 and 75 years of age recruited from the government health check-up center in Kanazawa City, Japan. The prevalence of abdominal obesity, high blood pressure, dyslipidemia, and high fasting plasma glucose levels were assessed according to the Japanese criteria for metabolic syndrome. The estimated glomerular filtration rate (eGFR) was calculated using the modified Modification of Diet in Renal Disease equation for the Japanese population, and participants with an eGFR <60 mL/min/1.73 m2 and/or proteinuria were diagnosed with CKD. Results Overall, 23% of males and 14% of females met criteria for CKD. Having more numerous complicated metabolic abnormalities was significantly associated with a higher odds ratio (OR) of CKD for men and women, irrespective of abdominal obesity. However, there was a sex difference in the OR of CKD for obese participants without metabolic abnormalities, such that abdominal obesity without metabolic abnormalities was significantly associated with a higher OR for men (multivariate-adjusted OR 1.63; 95% confidence interval [CI], 1.16–2.28) but not for women (OR 1.01; 95% CI, 0.71–1.44). Conclusions The present findings demonstrated that obesity without metabolic abnormalities was associated with a higher risk of CKD in men but not women in a relatively lean Japanese population. PMID:27087606

  1. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms.

    PubMed

    Zhang, Yiying; Guo, Kaiying; LeBlanc, Robert E; Loh, Daniella; Schwartz, Gary J; Yu, Yi-Hao

    2007-06-01

    Leucine, as an essential amino acid and activator of mTOR (mammalian target of rapamycin), promotes protein synthesis and suppresses protein catabolism. However, the effect of leucine on overall glucose and energy metabolism remains unclear, and whether leucine has beneficial effects as a long-term dietary supplement has not been examined. In the present study, we doubled dietary leucine intake via leucine-containing drinking water in mice with free excess to either a rodent chow or a high-fat diet (HFD). While it produced no major metabolic effects in chow-fed mice, increasing leucine intake resulted in up to 32% reduction of weight gain (P < 0.05) and a 25% decrease in adiposity (P < 0.01) in HFD-fed mice. The reduction of adiposity resulted from increased resting energy expenditure associated with increased expression of uncoupling protein 3 in brown and white adipose tissues and in skeletal muscle, while food intake was not decreased. Increasing leucine intake also prevented HFD-induced hyperglycemia, which was associated with improved insulin sensitivity, decreased plasma concentrations of glucagon and glucogenic amino acids, and downregulation of hepatic glucose-6-phosphatase. Additionally, plasma levels of total and LDL cholesterol were decreased by 27% (P < 0.001) and 53% (P < 0.001), respectively, in leucine supplemented HFD-fed mice compared with the control mice fed the same diet. The reduction in cholesterol levels was largely independent of leucine-induced changes in adiposity. In conclusion, increases in dietary leucine intake substantially decrease diet-induced obesity, hyperglycemia, and hypercholesterolemia in mice with ad libitum consumption of HFD likely via multiple mechanisms.

  2. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers

    PubMed Central

    Kächele, Martin; Hennige, Anita M.; Machann, Jürgen; Hieronimus, Anja; Lamprinou, Apostolia; Machicao, Fausto; Schick, Fritz; Fritsche, Andreas; Stefan, Norbert; Nürnberg, Bernd; Häring, Hans-Ulrich; Staiger, Harald

    2015-01-01

    via altered PIK3CG gene expression, determines plasma HDL-cholesterol concentrations. Since HDL2-, but not HDL3-, cholesterol is influenced by PIK3CG variants, PI3Kγ may play a role in HDL clearance rather than in HDL biogenesis. Even though the molecular pathways connecting PI3Kγ and HDL metabolism remain to be further elucidated, this finding could add a novel aspect to the pathophysiological role of PI3Kγ in atherogenesis. PMID:26658747

  3. In Vivo Effects of Free Form Astaxanthin Powder on Anti-Oxidation and Lipid Metabolism with High-Cholesterol Diet

    PubMed Central

    Chen, Yung-Yi; Lee, Pei-Chi; Wu, Yi-Long; Liu, Li-Yun

    2015-01-01

    Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP) and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol), 1.6FFAP (control+1.6% FFAP), 3.2FFAP (control+3.2% FFAP) and 8.0FFAP (control+8.0% FFAP), respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3) compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver) and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver). On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver), Vitamin C (2082.97±142.23 μg/g liver), Vitamin E (411.32±81.67 μg/g liver) contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver). Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food. PMID:26262684

  4. Studies of cholesterol and bile acid metabolism, and early atherogenesis in hamsters fed GT16-239, a novel bile acid sequestrant (BAS).

    PubMed

    Wilson, T A; Nicolosi, R J; Rogers, E J; Sacchiero, R; Goldberg, D J

    1998-10-01

    The purpose of this study was to compare the efficacy of GT16-239, an alkylated, cross-linked poly(allylamine) bile acid sequestrant with cholestyramine on cholesterol and bile acid metabolism, and early aortic atherosclerosis in hypercholesterolemic male F1B Golden Syrian hamsters. In this controlled study, 42 hamsters were divided into six groups and were fed a chow-based hypercholesterolemic diet supplemented with a 10% oil blend (55% coconut/45% corn), 0.1% cholesterol (w/w) (control) and either 0.9 or 1.2% cholestyramine or 0.2, 0.4 or 0.6% GT16-239 for 13 weeks. Laboratory analyses included evaluating plasma lipoprotein cholesterol and triglyceride concentrations, hepatic HMG-CoA reductase and 7 alpha-hydroxylase activities, fecal excretion of bile acids and neutral sterols, hepatic cholesterol concentrations, and early atherosclerosis (aortic fatty streak area). Relative to the control diet, the 0.6% GT16-239 versus the 1.2% cholestyramine significantly inhibited the elevation of plasma lipoprotein total cholesterol (TC) (-69% vs -40%), high density lipoprotein-cholesterol (HDL-C) (-49% vs -30%), and non-HDL-C (-81 vs -48%) concentrations; increased the activities of both HMG-CoA reductase (1492% vs 62%) and 7 alpha-hydroxylase (175% vs 86%); lowered the concentration of hepatic cholesteryl ester (-94% vs -59%); increased fecal cholesterol concentration (+28% vs -10%); and decreased aortic fatty streak area (-100% vs -86%). Unexpected findings of this comparison were increased fecal concentrations of cholic acid (533%) and chenodeoxycholic acid (400%) and the reduction in lithocholic acid (-50%) in the 0.6% GT16-239 compared to the 1.2% cholestyramine group. In summary, GT16-239 had a greater impact on cholesterol metabolism and early atherosclerosis in hypercholesterolemic hamsters than cholestyramine.

  5. Cardiorespiratory and metabolic responses to exercise in horses with various abnormalities of the upper respiratory tract.

    PubMed

    King, C M; Evans, D L; Rose, R J

    1994-05-01

    A standardised incremental exercise test was performed by 9 racehorses with idiopathic laryngeal hemiplegia (ILH), 1 horse with maxillary sinus cysts, 1 horse with epiglottic entrapment, 1 horse with a lesion on the vocal folds, and 1 horse with pharyngitis. Two of the horses with ILH were retested after laryngoplasty and ventriculectomy. The findings were compared with those from 20 normal racehorses. Heart rate, plasma lactate concentration, arterial blood gases, stride frequency, oxygen uptake (VO2) and carbon dioxide production were assessed during treadmill exercise on a +10% slope. The group of horses with ILH had significantly (P < 0.01) lower peak VO2 values (136 +/- 5 ml/kg/min) than did the normal group (154 +/- 3 ml/klg/min). These values represent mean +/- sem. Horses with ILH also had significantly higher (P < 0.05) arterial carbon dioxide tensions (PaCO2) at 10 m/s and lower speeds at a heart rate of 200 bpm (V200) than the normal group. The horse with maxillary sinus cysts had higher PaCO2 tension at 10 m/s than normal, and abnormal values for several cardiorespiratory and metabolic indices. Horses with vocal fold lesions, aryepiglottic entrapment and pharyngitis had arterial blood gas and cardiorespiratory indices that were similar to those of normal horses. One horse which underwent corrective surgery for ILH showed improvements in arterial blood gases and cardiorespiratory indices during exercise, while the other horse had values which were the same as, or worse than, values before surgery. We conclude that the measurement of arterial blood gases and cardiorespiratory indices during treadmill exercise is useful in determining the effect on exercise capacity of various upper airway abnormalities in racehorses.

  6. Combined Effects of Rosuvastatin and Exercise on Gene Expression of Key Molecules Involved in Cholesterol Metabolism in Ovariectomized Rats

    PubMed Central

    Ngo Sock, Emilienne Tudor; Mayer, Gaétan; Lavoie, Jean-Marc

    2016-01-01

    The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment. PMID:27442011

  7. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism.

    PubMed

    Gunawardane, Ruwanthi N; Fordstrom, Preston; Piper, Derek E; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-02-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouse(TM) platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  8. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism*

    PubMed Central

    Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-01-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  9. Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low fat contents.

    PubMed

    Nicolas-Francès, Valérie; Arnauld, Ségolène; Kaminski, Jacques; Ver Loren van Themaat, Emiel; Clémencet, Marie-Claude; Chamouton, Julie; Athias, Anne; Grober, Jacques; Gresti, Joseph; Degrace, Pascal; Lagrost, Laurent; Latruffe, Norbert; Mandard, Stéphane

    2014-03-01

    The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were

  10. Membrane cholesterol modulates galanin-GalR2 interaction.

    PubMed

    Pang, L; Graziano, M; Wang, S

    1999-09-14

    Rs with abnormal cholesterol metabolism.

  11. Effects of diets enriched in n-6 or n-3 fatty acids on cholesterol metabolism in older rats chronically fed a cholesterol-enriched diet.

    PubMed

    Fukushima, M; Ohhashi, T; Ohno, S; Saitoh, H; Sonoyama, K; Shimada, K; Sekikawa, M; Nakano, M

    2001-03-01

    Hypocholesterolemic effects in older animals after long-term feeding are unknown. Therefore, aged rats (24 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil [PEO; oleic acid + linoleic acid + alpha-linolenic acid; n-6/n-3, 0.3; polyunsaturated fatty acid/saturated fatty acid (P/S), 9.6], borage oil [oleic acid + linoleic acid + alpha-linolenic acid; n-6/n-3, 15.1; P/S, 5.3], evening primrose oil (EPO; linoleic acid + gamma-linolenic acid; P/S, 10.5), mixed oil (MIO; oleic acid + linoleic acid + gamma-linolenic acid + alpha-linolenic acid; n-6/n-3, 1.7; P/S, 6.7), or palm oil (PLO; palmitic acid + oleic acid + linoleic acid; n-6/n-3, 25.3; P/S, 0.2) with 0.5% cholesterol for 15 wk in this experiment. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO (n-6/n-3, 0.3) group was significantly higher than those of other groups in aged rats. The serum total cholesterol and very low density lipoprotein (VLDL) + intermediate density lipoprotein (IDL) + low density lipoprotein (LDL)-cholesterol concentrations of the PLO (25.3) group were consistently higher than those in the other groups. The serum high density lipoprotein cholesterol concentrations of the PEO (0.3) and EPO groups were significantly lower than in the other groups at the end of the 15-wk feeding period. The liver cholesterol concentration of the PLO (25.3) group was significantly higher than those of other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apolipoprotein (apo) B mRNA levels were not affected by the experimental conditions. The fecal neutral steroid excretion of the PLO (25.3) group tended to be low compared to the other groups. The results of this study demonstrate that both n-6 fatty acid and n-3 fatty acids such as gamma-linolenic acid and alpha-linolenic acid inhibit the increase of serum total cholesterol and VLDL + IDL

  12. Effects of diets enriched in n-6 or n-3 fatty acids on cholesterol metabolism in older rats chronically fed a cholesterol-enriched diet.

    PubMed

    Fukushima, M; Ohhashi, T; Ohno, S; Saitoh, H; Sonoyama, K; Shimada, K; Sekikawa, M; Nakano, M

    2001-03-01

    Hypocholesterolemic effects in older animals after long-term feeding are unknown. Therefore, aged rats (24 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil [PEO; oleic acid + linoleic acid + alpha-linolenic acid; n-6/n-3, 0.3; polyunsaturated fatty acid/saturated fatty acid (P/S), 9.6], borage oil [oleic acid + linoleic acid + alpha-linolenic acid; n-6/n-3, 15.1; P/S, 5.3], evening primrose oil (EPO; linoleic acid + gamma-linolenic acid; P/S, 10.5), mixed oil (MIO; oleic acid + linoleic acid + gamma-linolenic acid + alpha-linolenic acid; n-6/n-3, 1.7; P/S, 6.7), or palm oil (PLO; palmitic acid + oleic acid + linoleic acid; n-6/n-3, 25.3; P/S, 0.2) with 0.5% cholesterol for 15 wk in this experiment. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO (n-6/n-3, 0.3) group was significantly higher than those of other groups in aged rats. The serum total cholesterol and very low density lipoprotein (VLDL) + intermediate density lipoprotein (IDL) + low density lipoprotein (LDL)-cholesterol concentrations of the PLO (25.3) group were consistently higher than those in the other groups. The serum high density lipoprotein cholesterol concentrations of the PEO (0.3) and EPO groups were significantly lower than in the other groups at the end of the 15-wk feeding period. The liver cholesterol concentration of the PLO (25.3) group was significantly higher than those of other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apolipoprotein (apo) B mRNA levels were not affected by the experimental conditions. The fecal neutral steroid excretion of the PLO (25.3) group tended to be low compared to the other groups. The results of this study demonstrate that both n-6 fatty acid and n-3 fatty acids such as gamma-linolenic acid and alpha-linolenic acid inhibit the increase of serum total cholesterol and VLDL + IDL

  13. A case of abdominal pain with dyslipidemia: difficulties diagnosing cholesterol ester storage disease.

    PubMed

    Cameron, S J; Daimee, U; Block, R C

    2015-01-01

    Cholesterol ester storage disease is an exceptionally rare dyslipidemia with less than 150 cases reported in the medical literature. The diagnosis of Cholesterol Ester Storage Disease is often missed by virtue of the fact that the symptoms mimic both inborn metabolic defects and hepatic steatosis. Patients with Cholesterol Ester Storage Disease usually present with atypical complaints including abdominal pain from altered gut motility. Blood analysis typically reveals abnormal liver function tests with coincident dyslipidemia. We present a case of a young woman with Cholesterol Ester Storage Disease who was followed over two decades. We discuss issues common to her initial protracted diagnosis with management options over time.

  14. Identification of miR-148a as a novel regulator of cholesterol metabolism

    PubMed Central

    Goedeke, Leigh; Rotllan, Noemi; Canfrán-Duque, Alberto; Aranda, Juan F.; Ramírez, Cristina M.; Araldi, Elisa; Lin, Chin-Sheng; Anderson, Norma N.; Wagschal, Alexandre; de Cabo, Rafael; Horton, Jay D.; Lasunción, Miguel A.; Näär, Anders M.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL-cholesterol (LDL-C). While the transcriptional regulation of LDLR is well-characterized, the post-transcriptional mechanisms which govern LDLR expression are just beginning to emerge. Here, we developed a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen, we characterize miR-148a as a negative regulator of LDLR expression and activity, and define a novel SREBP1-mediated pathway by which miR-148a regulates LDL-C uptake. Importantly, inhibition of miR-148a increases hepatic LDLR expression and decreases plasma LDL-C in vivo. We also provide evidence that miR-148a regulates hepatic ABCA1 expression and circulating HDL-C levels. Collectively, these studies uncover miR-148a as an important regulator of hepatic LDL-C clearance through direct regulation of LDLR expression, and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate the elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease. PMID:26437365

  15. What's Cholesterol?

    MedlinePlus

    ... Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  16. Blood Lipid Distribution, Aortic Cholesterol Concentrations, and Selected Inflammatory and Bile Metabolism Markers in Syrian Hamsters Fed a Standard Breeding Diet

    PubMed Central

    Stephens, Amanda M; Sanders, Timothy H

    2015-01-01

    Hamsters are often used to determine the effects of various dietary ingredients on the development of cardiovascular disease (CVD). The study was conducted to obtain baseline data on CVD risk factors and mRNA expression of selected genes in hamsters fed a standard maintenance diet (STD) for 24 wk, beginning when animals were 7 wk old. Plasma triacylglycerol and aortic cholesteryl ester concentrations did not significantly change during the study. Total plasma cholesterol (75.9–127.9 mg/dL), LDL- (3.2–12.2 mg/dL), and HDL- (53.8–98.9 mg/dL) cholesterols increased over the 24wk study. Aortic total cholesterol increased from 9.72 to 12.20 μg/mg protein, whereas aortic cholesteryl ester, a measure of atherosclerosis development, was less than 0.18 μg/mg protein throughout the study. The expression of hepatic endothelin 1, peroxisome proliferator-activated receptor α , and hepatic cholesterol 7-α-hydroxylase mRNA did not change throughout the study, indicating that fatty acid β-oxidation and cholesterol metabolism remained consistent. The mRNA expression of ATP-binding cassette, subfamily B member 11 increased between wk 0 and 8 but then remained unchanged, suggesting increased requirements for cholesterol in early growth. These results indicate that the consumption of a STD does not increase atherosclerotic disease risk factors in golden Syrian hamsters through 31 wk of age. PMID:26224433

  17. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    PubMed Central

    Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  18. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    SciTech Connect

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T; Indelicato, D; Boop, F

    2014-06-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  19. Use of hierarchical models for meta-analysis: experience in the metabolic ward studies of diet and blood cholesterol.

    PubMed

    Frost, C; Clarke, R; Beacon, H

    1999-07-15

    Overviews that combine single effect estimates from published studies generally use a summary statistic approach where the effect of interest is first estimated within each study and then averaged across studies in an appropriately weighted manner. Combining multiple regression coefficients from publications is more problematic, particularly when there are differences in study design and inconsistent reporting of effect sizes and standard errors. This paper describes the use of a hierarchical model in such circumstances. Its use is illustrated in a meta-analysis of the metabolic ward studies that have investigated the effect of changes in intake of various dietary lipids on blood cholesterol. These studies all reported average blood cholesterol for groups of individuals who were studied on one or more diets. Thirty-one studies had randomized cross-over designs, 12 had matched parallel group designs, 12 had non-randomized Latin square designs and 16 had other uncontrolled designs. The hierarchical model allowed the different types of comparison (within-group between-diet, between matched group) that were made in the various studies to each contribute to the overall estimates in an appropriately weighted manner by distinguishing between-study variation, within-study between-matched-group variation and within-group between-diet variation. The hierarchical models do not require consistent specification of effect sizes and standard errors and hence have particular utility in combining results from published studies where the relationships between a dependent variable and two or more predictors have been investigated using heterogeneous methods of analysis.

  20. Low HDL cholesterol is associated with increased atherogenic lipoproteins and insulin resistance in women classified with metabolic syndrome

    PubMed Central

    Jones, Jennifer J; Ackerman, Daniela; Barona, Jacqueline; Calle, Mariana; Comperatore, Michael V; Kim, Jung-Eun; Andersen, Catherine; Leite, Jose O; Volek, Jeff S; McIntosh, Mark; Kalynych, Colleen; Najm, Wadie; Lerman, Robert H

    2010-01-01

    Both metabolic syndrome (MetS) and elevated LDL cholesterol (LDL-C) increase the risk for cardiovascular disease (CVD). We hypothesized that low HDL cholesterol (HDL-C) would further increase CVD risk in women having both conditions. To assess this, we recruited 89 women with MetS (25-72 y) and LDL-C ≥ 2.6 mmol/L. To determine whether plasma HDL-C concentrations were associated with dietary components, circulating atherogenic particles, and other risk factors for CVD, we divided the subjects into two groups: high HDL-C (H-HDL) (≥ 1.3 mmol/L, n = 32) and low HDL-C (L-HDL) (< 1.3 mmol/L, n = 57). Plasma lipids, insulin, adiponectin, apolipoproteins, oxidized LDL, Lipoprotein(a), and lipoprotein size and subfractions were measured, and 3-d dietary records were used to assess macronutrient intake. Women with L-HDL had higher sugar intake and glycemic load (P < 0.05), higher plasma insulin (P < 0.01), lower adiponectin (P < 0.05), and higher numbers of atherogenic lipoproteins such as large VLDL (P < 0.01) and small LDL (P < 0.001) than the H-HDL group. Women with L-HDL also had larger VLDL and both smaller LDL and HDL particle diameters (P < 0.001). HDL-C was positively correlated with LDL size (r = 0.691, P < 0.0001) and HDL size (r = 0.606, P < 0.001), and inversely correlated with VLDL size (r = -0.327, P < 0.01). We concluded that L-HDL could be used as a marker for increased numbers of circulating atherogenic lipoproteins as well as increased insulin resistance in women who are already at risk for CVD. PMID:21286407

  1. Low HDL cholesterol is associated with increased atherogenic lipoproteins and insulin resistance in women classified with metabolic syndrome.

    PubMed

    Fernandez, Maria Luz; Jones, Jennifer J; Ackerman, Daniela; Barona, Jacqueline; Calle, Mariana; Comperatore, Michael V; Kim, Jung-Eun; Andersen, Catherine; Leite, Jose O; Volek, Jeff S; McIntosh, Mark; Kalynych, Colleen; Najm, Wadie; Lerman, Robert H

    2010-12-01

    Both metabolic syndrome (MetS) and elevated LDL cholesterol (LDL-C) increase the risk for cardiovascular disease (CVD). We hypothesized that low HDL cholesterol (HDL-C) would further increase CVD risk in women having both conditions. To assess this, we recruited 89 women with MetS (25-72 y) and LDL-C ≥ 2.6 mmol/L. To determine whether plasma HDL-C concentrations were associated with dietary components, circulating atherogenic particles, and other risk factors for CVD, we divided the subjects into two groups: high HDL-C (H-HDL) (≥ 1.3 mmol/L, n = 32) and low HDL-C (L-HDL) (< 1.3 mmol/L, n = 57). Plasma lipids, insulin, adiponectin, apolipoproteins, oxidized LDL, Lipoprotein(a), and lipoprotein size and subfractions were measured, and 3-d dietary records were used to assess macronutrient intake. Women with L-HDL had higher sugar intake and glycemic load (P < 0.05), higher plasma insulin (P < 0.01), lower adiponectin (P < 0.05), and higher numbers of atherogenic lipoproteins such as large VLDL (P < 0.01) and small LDL (P < 0.001) than the H-HDL group. Women with L-HDL also had larger VLDL and both smaller LDL and HDL particle diameters (P < 0.001). HDL-C was positively correlated with LDL size (r = 0.691, P < 0.0001) and HDL size (r = 0.606, P < 0.001), and inversely correlated with VLDL size (r = -0.327, P < 0.01). We concluded that L-HDL could be used as a marker for increased numbers of circulating atherogenic lipoproteins as well as increased insulin resistance in women who are already at risk for CVD.

  2. Metabolic syndrome and prostate abnormalities in male subjects of infertile couples.

    PubMed

    Lotti, Francesco; Corona, Giovanni; Vignozzi, Linda; Rossi, Matteo; Maseroli, Elisa; Cipriani, Sarah; Gacci, Mauro; Forti, Gianni; Maggi, Mario

    2014-01-01

    No previous study has evaluated systematically the relationship between metabolic syndrome (MetS) and prostate-related symptoms and signs in young infertile men. We studied 171 (36.5 ± 8.3-years-old) males of infertile couples. MetS was defined based on the National Cholesterol Education Program Third Adult Treatment Panel. All men underwent hormonal (including total testosterone (TT) and insulin), seminal (including interleukin-8 (IL-8), seminal plasma IL-8 (sIL-8)), scrotal and transrectal ultrasound evaluations. Because we have previously assessed correlations between MetS and scrotal parameters in a larger cohort of infertile men, here, we focused on transrectal features. Prostate-related symptoms were assessed using the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) and the International Prostate Symptom Score (IPSS). Twenty-two subjects fulfilled MetS criteria. In an age-adjusted logistic ordinal model, insulin levels increased as a function of MetS components (Wald = 29.5, P < 0.0001) and showed an inverse correlation with TT (adjusted r = -0.359, P< 0.0001). No association between MetS and NIH-CPSI or IPSS scores was observed. In an age-, TT-, insulin-adjusted logistic ordinal model, an increase in number of MetS components correlated negatively with normal sperm morphology (Wald = 5.59, P< 0.02) and positively with sIL-8 levels (Wald = 4.32, P < 0.05), which is a marker of prostate inflammation, with prostate total and transitional zone volume assessed using ultrasound (Wald = 17.6 and 12.5, both P < 0.0001), with arterial peak systolic velocity (Wald = 9.57, P = 0.002), with texture nonhomogeneity (hazard ratio (HR) = 1.87 (1.05-3.33), P < 0.05), with calcification size (Wald = 3.11, P< 0.05), but not with parameters of seminal vesicle size or function. In conclusion, in males of infertile couples, MetS is positively associated with prostate enlargement, biochemical (sIL8) and ultrasound-derived signs of prostate inflammation

  3. Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism.

    PubMed

    Zanotti, Ilaria; Dall'Asta, Margherita; Mena, Pedro; Mele, Laura; Bruni, Renato; Ray, Sumantra; Del Rio, Daniele

    2015-01-01

    Collated observations from several epidemiological studies have demonstrated that dietary intake of (poly)phenols from nuts, coffee, cocoa, grapes, and berries may protect against the development of atherosclerosis. Whereas this beneficial activity has previously been linked mainly to antioxidant or anti-inflammatory properties, recently emerging data suggest mechanisms by which (poly)phenolic substances can modulate cellular lipid metabolism, thereby mitigating atherosclerotic plaque formation. In this review, both experimental studies and clinical trials investigating the atheroprotective effects of the most relevant dietary (poly)phenols are critically discussed. PMID:25367393

  4. Abnormal type I collagen metabolism by cultured fibroblasts in lethal perinatal osteogenesis imperfecta.

    PubMed

    Bateman, J F; Mascara, T; Chan, D; Cole, W G

    1984-01-01

    Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the 'slow' alpha (I)'- and alpha 2(I)'-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)'- and alpha 2(I)'-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)'-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)'- and alpha 2(I)'-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.

  5. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.

    PubMed

    Clinkenbeard, Erica L; Farrow, Emily G; Summers, Lelia J; Cass, Taryn A; Roberts, Jessica L; Bayt, Christine A; Lahm, Tim; Albrecht, Marjorie; Allen, Matthew R; Peacock, Munro; White, Kenneth E

    2014-02-01

    Fibroblast growth factor 23 (FGF23) gain of function mutations can lead to autosomal dominant hypophosphatemic rickets (ADHR) disease onset at birth, or delayed onset following puberty or pregnancy. We previously demonstrated that the combination of iron deficiency and a knock-in R176Q FGF23 mutation in mature mice induced FGF23 expression and hypophosphatemia that paralleled the late-onset ADHR phenotype. Because anemia in pregnancy and in premature infants is common, the goal of this study was to test whether iron deficiency alters phosphate handling in neonatal life. Wild-type (WT) and ADHR female breeder mice were provided control or iron-deficient diets during pregnancy and nursing. Iron-deficient breeders were also made iron replete. Iron-deficient WT and ADHR pups were hypophosphatemic, with ADHR pups having significantly lower serum phosphate (p < 0.01) and widened growth plates. Both genotypes increased bone FGF23 mRNA (>50 fold; p < 0.01). WT and ADHR pups receiving low iron had elevated intact serum FGF23; ADHR mice were affected to a greater degree (p < 0.01). Iron-deficient mice also showed increased Cyp24a1 and reduced Cyp27b1, and low serum 1,25-dihydroxyvitamin D (1,25D). Iron repletion normalized most abnormalities. Because iron deficiency can induce tissue hypoxia, oxygen deprivation was tested as a regulator of FGF23, and was shown to stimulate FGF23 mRNA in vitro and serum C-terminal FGF23 in normal rats in vivo. These studies demonstrate that FGF23 is modulated by iron status in young WT and ADHR mice and that hypoxia independently controls FGF23 expression in situations of normal iron. Therefore, disturbed iron and oxygen metabolism in neonatal life may have important effects on skeletal function and structure through FGF23 activity on phosphate regulation.

  6. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals

    PubMed Central

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  7. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals.

    PubMed

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  8. Interaction between two cholesterol metabolism genes influences memory: findings from the Wisconsin Registry for Alzheimer’s Prevention

    PubMed Central

    Engelman, Corinne D.; Koscik, Rebecca L.; Jonaitis, Erin M.; Okonkwo, Ozioma C.; Hermann, Bruce P.; La Rue, Asenath; Sager, Mark A.

    2013-01-01

    The strongest genetic factor for late-onset Alzheimer’s disease (AD) is APOE; nine additional susceptibility genes have recently been identified. The effect of these genes is often assumed to be additive and polygenic scores are formed as a summary measure of risk. However, interactions between these genes are likely to be important. We sought to examine the role of interactions between the nine recently identified AD susceptibility genes and APOE in cognitive function and decline in 1,153 participants from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of middle-aged adults enriched for a parental history of AD. Participants underwent extensive cognitive testing at baseline and up to two additional visits approximately 4 and 6 years later. The influence of the interaction between APOE and each of 14 single nucleotide polymorphisms (SNPs) in the nine recently identified genes on three cognitive factor scores (Verbal Learning and Memory, Working Memory, and Immediate Memory) was examined using linear mixed models adjusting for age, gender and ancestry. Interactions between the APOE ε4 allele and both of the genotyped ABCA7 SNPs, rs3764650 and rs3752246, were associated with all three cognitive factor scores (P-values ≤0.01). Both of these genes are in the cholesterol metabolism pathway leading to AD. This research supports the importance of considering non-additive effects of AD susceptibility genes. PMID:23669301

  9. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice

    PubMed Central

    Kim, Juyoung; Kim, Juhae

    2016-01-01

    BACKGROUND/OBJECTIVES Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. MATERIALS/METHODS Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. RESULTS Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. CONCLUSIONS Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring. PMID:27478544

  10. Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family.

    PubMed

    Wipperman, Matthew F; Yang, Meng; Thomas, Suzanne T; Sampson, Nicole S

    2013-10-01

    The ability of the pathogen Mycobacterium tuberculosis to metabolize steroids like cholesterol and the roles that these compounds play in the virulence and pathogenesis of this organism are increasingly evident. Here, we demonstrate through experiments and bioinformatic analysis the existence of an architecturally distinct subfamily of acyl coenzyme A (acyl-CoA) dehydrogenase (ACAD) enzymes that are α2β2 heterotetramers with two active sites. These enzymes are encoded by two adjacent ACAD (fadE) genes that are regulated by cholesterol. FadE26-FadE27 catalyzes the dehydrogenation of 3β-hydroxy-chol-5-en-24-oyl-CoA, an analog of the 5-carbon side chain cholesterol degradation intermediate. Genes encoding the α2β2 heterotetrameric ACAD structures are present in multiple regions of the M. tuberculosis genome, and subsets of these genes are regulated by four different transcriptional repressors or activators: KstR1 (also known as KstR), KstR2, Mce3R, and SigE. Homologous ACAD gene pairs are found in other Actinobacteria, as well as Proteobacteria. Their structures and genomic locations suggest that the α2β2 heterotetrameric structural motif has evolved to enable catalysis of dehydrogenation of steroid- or polycyclic-CoA substrates and that they function in four subpathways of cholesterol metabolism.

  11. Shrinking the FadE Proteome of Mycobacterium tuberculosis: Insights into Cholesterol Metabolism through Identification of an α2β2 Heterotetrameric Acyl Coenzyme A Dehydrogenase Family

    PubMed Central

    Wipperman, Matthew F.; Yang, Meng; Thomas, Suzanne T.

    2013-01-01

    The ability of the pathogen Mycobacterium tuberculosis to metabolize steroids like cholesterol and the roles that these compounds play in the virulence and pathogenesis of this organism are increasingly evident. Here, we demonstrate through experiments and bioinformatic analysis the existence of an architecturally distinct subfamily of acyl coenzyme A (acyl-CoA) dehydrogenase (ACAD) enzymes that are α2β2 heterotetramers with two active sites. These enzymes are encoded by two adjacent ACAD (fadE) genes that are regulated by cholesterol. FadE26-FadE27 catalyzes the dehydrogenation of 3β-hydroxy-chol-5-en-24-oyl-CoA, an analog of the 5-carbon side chain cholesterol degradation intermediate. Genes encoding the α2β2 heterotetrameric ACAD structures are present in multiple regions of the M. tuberculosis genome, and subsets of these genes are regulated by four different transcriptional repressors or activators: KstR1 (also known as KstR), KstR2, Mce3R, and SigE. Homologous ACAD gene pairs are found in other Actinobacteria, as well as Proteobacteria. Their structures and genomic locations suggest that the α2β2 heterotetrameric structural motif has evolved to enable catalysis of dehydrogenation of steroid- or polycyclic-CoA substrates and that they function in four subpathways of cholesterol metabolism. PMID:23836861

  12. Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    PubMed Central

    2010-01-01

    Background Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity. Methods This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m2) recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained. Results Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32]) and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86]) than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]). A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]). Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance. Conclusion A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that contribute to metabolic status

  13. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  14. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    PubMed

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S R Murthy; Joly, Erik; Ruderman, Neil B; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  15. Metabolic inflexibility of white and brown adipose tissues in abnormal fatty acid partitioning of type 2 diabetes.

    PubMed

    Grenier-Larouche, T; Labbé, S M; Noll, C; Richard, D; Carpentier, A C

    2012-12-01

    Type 2 diabetes (T2D) is characterized by a general dysregulation of postprandial energy substrate partitioning. Although classically described in regard to glucose metabolism, it is now evident that metabolic inflexibility of plasma lipid fluxes is also present in T2D. The organ that is most importantly involved in the latter metabolic defect is the white adipose tissue (WAT). Both catecholamine-induced nonesterified fatty acid mobilization and insulin-stimulated storage of meal fatty acids are impaired in many WAT depots of insulin-resistant individuals. Novel molecular imaging techniques now demonstrate that these defects are linked to increased dietary fatty acid fluxes toward lean organs and myocardial dysfunction in humans. Recent findings also demonstrate functional abnormalities of brown adipose tissues in T2D, thus suggesting that a generalized adipose tissue dysregulation of energy storage and dissipation may be at play in the development of lean tissue energy overload and lipotoxicity. PMID:27152152

  16. About Cholesterol

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  17. ACAT2 and human hepatic cholesterol metabolism: identification of important gender-related differences in normolipidemic, non-obese Chinese patients

    PubMed Central

    Parini, Paolo; Jiang, Zhao-Yan; Einarsson, Curt; Eggertsen, Gösta; Zhang, Sheng-Dao; Rudel, Lawrence L; Han, Tian-Quan; Eriksson, Mats

    2009-01-01

    Objective ACAT2 is a major cholesterol esterification enzyme specifically expressed in hepatocytes and may control the amount of hepatic free (unesterified) cholesterol available for secretion into bile or into HDL. This study aims to further elucidate physiologic roles of ACAT2 in human hepatic cholesterol metabolism. Methods and Results Liver biopsies from 40 normolipidemic, non-obese gallstone patients including some gallstone-free patients (female/male, 18/22) were collected and analyzed for microsomal ACAT2 activity, protein and mRNA expression. Plasma HDL-cholesterol (HDL-C) was significantly higher in females than in males, while triglycerides were significantly lower. ACAT2 activity in females was significantly lower than observed in males, regardless of the presence of gallstone disease. Moreover, the activity of ACAT2 correlated negatively with plasma levels of HDL-C (r=−0.57, P<0.05) and with Apo AI (r=−0.49, P<0.05). Conclusion This is the first description of a gender-related difference in hepatic ACAT2 activity in normolipidemic non-obese Chinese patients suggesting a possible role for ACAT2 in the regulation of cholesterol metabolism in humans. The negative correlation between ACAT2 activity and HDL-C or Apo AI may reflect this regulation. Since ACAT2 activity generally has been found to be pro-atherogenic in animal models, the observed sex-related difference may contribute to female protection from complications of coronary heart disease (CHD). PMID:19467657

  18. Non-high-density lipoprotein cholesterol changes in middle-aged obese men with and without metabolic syndrome during weight loss.

    PubMed

    Kim, Maengkyu; Tanaka, Kiyoji

    2014-11-01

    Non-high-density lipoprotein (non-HDL-C) is the best predictor of coronary artery disease and stroke. Studies have shown that weight loss decreases non-HDL-C levels. However, whether diet-induced weight loss in individuals with and without metabolic syndrome causes a reduction in non-HDL-C levels remains unclear. We investigated the effects of weight loss on non-HDL-C levels in 34 middle-aged obese men with and without metabolic syndrome classified using National Cholesterol Education Panel Adult Treatment Panel III criteria (metabolic syndrome, n = 17; non-metabolic syndrome, n = 17). We conducted a 12-week dietary intervention using a low-carbohydrate, -fat, and -protein diet to reduce body weight. A significant decrease in body weight and body mass index in both groups was observed. However, the non-HDL-C level after weight loss was significantly decreased in the metabolic syndrome group (151.9 ± 6.8 to 131.4 ± 6.2 mg/dL, P < 0.01) but not in the non-metabolic syndrome group (152.1 ± 8.2 to 141.2 ± 8.1 mg/dL, P > 0.05). Levels of apolipoprotein AII and B, but not AI, were similarly decreased in both groups (P > 0.05). Pearson correlation analysis showed that the change in non-HDL-C levels in the metabolic syndrome group was strongly associated with levels of total cholesterol, fasting insulin, and alanine and aspartate transaminase, as well as homeostatic model assessment index, diastolic blood pressure, and maximal oxygen uptake (P < 0.05). These results demonstrated that diet-induced weight loss without physical activity decreases non-HDL-C levels, an important factor associated with changes in cardiorespiratory fitness and insulin sensitivity, in obese individuals with metabolic syndrome.

  19. Red Blood Cells from Individuals with Abdominal Obesity or Metabolic Abnormalities Exhibit Less Deformability upon Entering a Constriction

    PubMed Central

    Zeng, Nancy F.; Mancuso, Jordan E.; Zivkovic, Angela M.; Smilowitz, Jennifer T.; Ristenpart, William D.

    2016-01-01

    Abdominal obesity and metabolic syndrome (MS) are multifactorial conditions associated with increased risk of cardiovascular disease and type II diabetes mellitus. Previous work has demonstrated that the hemorheological profile is altered in patients with abdominal obesity and MS, as evidenced for example by increased whole blood viscosity. To date, however, no studies have examined red blood cell (RBC) deformability of blood from individuals with obesity or metabolic abnormalities under typical physiological flow conditions. In this study, we pumped RBCs through a constriction in a microfluidic device and used high speed video to visualize and track the mechanical behavior of ~8,000 RBCs obtained from either healthy individuals (n = 5) or obese participants with metabolic abnormalities (OMA) (n = 4). We demonstrate that the OMA+ cells stretched on average about 25% less than the healthy controls. Furthermore, we examined the effects of ingesting a high-fat meal on RBC mechanical dynamics, and found that the postprandial period has only a weak effect on the stretching dynamics exhibited by OMA+ cells. The results suggest that chronic rigidification of RBCs plays a key role in the increased blood pressure and increased whole blood viscosity observed in OMA individuals and was independent of an acute response triggered by consumption of a high-fat meal. Trial Registration ClinicalTrials.gov NCT01803633 PMID:27258098

  20. Do high blood folate concentrations exacerbate metabolic abnormalities in people with low vitamin B-12 status?123

    PubMed Central

    Mills, James L; Carter, Tonia C; Scott, John M; Troendle, James F; Gibney, Eileen R; Shane, Barry; Kirke, Peadar N; Ueland, Per M; Brody, Lawrence C; Molloy, Anne M

    2011-01-01

    Background: In elderly individuals with low serum vitamin B-12, those who have high serum folate have been reported to have greater abnormalities in the following biomarkers for vitamin B-12 deficiency: low hemoglobin and elevated total homocysteine (tHcy) and methylmalonic acid (MMA). This suggests that folate exacerbates vitamin B-12–related metabolic abnormalities. Objective: We determined whether high serum folate in individuals with low serum vitamin B-12 increases the deleterious effects of low vitamin B-12 on biomarkers of vitamin B-12 cellular function. Design: In this cross-sectional study, 2507 university students provided data on medical history and exposure to folic acid and vitamin B-12 supplements. Blood was collected to measure serum and red blood cell folate (RCF), hemoglobin, plasma tHcy, and MMA, holotranscobalamin, and ferritin in serum. Results: In subjects with low vitamin B-12 concentrations (<148 pmol/L), those who had high folate concentrations (>30 nmol/L; group 1) did not show greater abnormalities in vitamin B-12 cellular function in any area than did those with lower folate concentrations (≤30 nmol/L; group 2). Group 1 had significantly higher holotranscobalamin and RCF, significantly lower tHcy, and nonsignificantly lower (P = 0.057) MMA concentrations than did group 2. The groups did not differ significantly in hemoglobin or ferritin. Compared with group 2, group 1 had significantly higher mean intakes of folic acid and vitamin B-12 from supplements and fortified food. Conclusions: In this young adult population, high folate concentrations did not exacerbate the biochemical abnormalities related to vitamin B-12 deficiency. These results provide reassurance that folic acid in fortified foods and supplements does not interfere with vitamin B-12 metabolism at the cellular level in a healthy population. PMID:21653798

  1. Contribution of Accelerated Degradation to Feedback Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Cholesterol Metabolism in the Liver.

    PubMed

    Hwang, Seonghwan; Hartman, Isamu Z; Calhoun, Leona N; Garland, Kristina; Young, Gennipher A; Mitsche, Matthew A; McDonald, Jeffrey; Xu, Fang; Engelking, Luke; DeBose-Boyd, Russell A

    2016-06-24

    Accumulation of sterols in endoplasmic reticulum membranes stimulates the ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which catalyzes a rate-limiting step in synthesis of cholesterol. This ubiquitination marks HMGCR for proteasome-mediated degradation and constitutes one of several mechanisms for feedback control of cholesterol synthesis. Mechanisms for sterol-accelerated ubiquitination and degradation of HMGCR have been elucidated through the study of cultured mammalian cells. However, the extent to which these reactions modulate HMGCR and contribute to control of cholesterol metabolism in whole animals is unknown. Here, we examine transgenic mice expressing in the liver the membrane domain of HMGCR (HMGCR (TM1-8)), a region necessary and sufficient for sterol-accelerated degradation, and knock-in mice in which endogenous HMGCR harbors mutations that prevent sterol-induced ubiquitination. Characterization of transgenic mice revealed that HMGCR (TM1-8) is appropriately regulated in the liver of mice fed a high cholesterol diet or chow diet supplemented with the HMGCR inhibitor lovastatin. Ubiquitination-resistant HMGCR protein accumulates in the liver and other tissues disproportionately to its mRNA, indicating that sterol-accelerated degradation significantly contributes to feedback regulation of HMGCR in vivo Results of these studies demonstrate that HMGCR is subjected to sterol-accelerated degradation in the liver through mechanisms similar to those established in cultured cells. Moreover, these studies designate sterol-accelerated degradation of HMGCR as a potential therapeutic target for prevention of atherosclerosis and associated cardiovascular disease. PMID:27129778

  2. Prenatal ethanol exposure induces the osteoarthritis-like phenotype in female adult offspring rats with a post-weaning high-fat diet and its intrauterine programming mechanisms of cholesterol metabolism.

    PubMed

    Ni, Qubo; Wang, Linlong; Wu, Yunpeng; Shen, Lang; Qin, Jun; Liu, Yansong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-10-14

    Osteoarthritis (OA) development is associated with hypercholesterolemia in adults. Our previous study demonstrated that offspring with intrauterine growth retardation (IUGR) due to prenatal ethanol exposure (PEE) had a high risk of developing hypercholesterolemia and metabolic syndrome when fed a post-weaning high-fat diet (HFD). In this study, we examined the changes in articular chondrocytes of IUGR offspring induced by PEE and explored its intrauterine programming mechanisms related to cholesterol metabolism. Using the PEE/IUGR model, serum and tibias from female fetuses and adult female offspring fed a post-weaning HFD were collected and examined for cholesterol metabolism and histology. The results showed that PEE adult offspring manifested significant catch-up growth. Their serum total cholesterol (TCH) and low-density lipoprotein-cholesterol increased and high-density lipoprotein-cholesterol decreased; the osteoarthritis-like phenotype and an increased TCH content were observed in articular cartilage; and the expression of insulin-like growth factor1 (IGF1) and cholesterol efflux pathway, including ATP-binding-cassette transporter A1 and liver X receptor, was reduced. The expression of IGF1 and cholesterol efflux pathway was also lower in the PEE fetuses. This study showed PEE could induce an enhanced susceptibility to HFD-induced OA in adult female IUGR offspring. The underlying mechanism related to cholesterol accumulation in cartilage mediated by intrauterine programming.

  3. Prenatal ethanol exposure induces the osteoarthritis-like phenotype in female adult offspring rats with a post-weaning high-fat diet and its intrauterine programming mechanisms of cholesterol metabolism.

    PubMed

    Ni, Qubo; Wang, Linlong; Wu, Yunpeng; Shen, Lang; Qin, Jun; Liu, Yansong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-10-14

    Osteoarthritis (OA) development is associated with hypercholesterolemia in adults. Our previous study demonstrated that offspring with intrauterine growth retardation (IUGR) due to prenatal ethanol exposure (PEE) had a high risk of developing hypercholesterolemia and metabolic syndrome when fed a post-weaning high-fat diet (HFD). In this study, we examined the changes in articular chondrocytes of IUGR offspring induced by PEE and explored its intrauterine programming mechanisms related to cholesterol metabolism. Using the PEE/IUGR model, serum and tibias from female fetuses and adult female offspring fed a post-weaning HFD were collected and examined for cholesterol metabolism and histology. The results showed that PEE adult offspring manifested significant catch-up growth. Their serum total cholesterol (TCH) and low-density lipoprotein-cholesterol increased and high-density lipoprotein-cholesterol decreased; the osteoarthritis-like phenotype and an increased TCH content were observed in articular cartilage; and the expression of insulin-like growth factor1 (IGF1) and cholesterol efflux pathway, including ATP-binding-cassette transporter A1 and liver X receptor, was reduced. The expression of IGF1 and cholesterol efflux pathway was also lower in the PEE fetuses. This study showed PEE could induce an enhanced susceptibility to HFD-induced OA in adult female IUGR offspring. The underlying mechanism related to cholesterol accumulation in cartilage mediated by intrauterine programming. PMID:26220516

  4. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  5. Maternal Betaine Supplementation throughout Gestation and Lactation Modifies Hepatic Cholesterol Metabolic Genes in Weaning Piglets via AMPK/LXR-Mediated Pathway and Histone Modification

    PubMed Central

    Cai, Demin; Yuan, Mengjie; Liu, Haoyu; Pan, Shifeng; Ma, Wenqiang; Hong, Jian; Zhao, Ruqian

    2016-01-01

    Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets. This was associated with the significantly elevated serum betaine and methionine levels and hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) content. Concurrently, the hepatic nuclear transcription factor liver X receptor LXR was downregulated along with activated signal protein AMP-activated protein kinase (AMPK). Moreover, a chromatin immunoprecipitation assay showed lower LXR binding on CYP7a1 gene promoter and more enriched activation histone marker H3K4me3 on LDLR and SR-BI promoters. These results suggest that gestational and lactational betaine supplementation modulates hepatic gene expression involved in cholesterol metabolism via an AMPK/LXR pathway and histone modification in the weaning offspring. PMID:27763549

  6. Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism.

    PubMed

    Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Goffredo, Bianca Maria; Rizzo, Cristiano; Dionisi-Vici, Carlo

    2016-03-01

    Oxysterols are intermediates of cholesterol metabolism and are generated from cholesterol via either enzymatic or nonenzymatic pathways under oxidative stress conditions. Cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC) have been proposed as new biomarkers for the diagnosis of Niemann-Pick type C (NP-C) disease, representing an alternative tool to the invasive and time-consuming method of fibroblast filipin test. To test the efficacy of plasma oxysterol determination for the diagnosis of NP-C, we systematically screened oxysterol levels in patients affected by different inherited disorders related with cholesterol metabolism, which included Niemann-Pick type B (NP-B) disease, lysosomal acid lipase (LAL) deficiency, Smith-Lemli-Opitz syndrome (SLOS), congenital familial hypercholesterolemia (FH), and sitosterolemia (SITO). As expected, NP-C patients showed significant increase of both C-triol and 7-KC. Strong increase of both oxysterols was observed in NP-B and less pronounced in LAL deficiency. In SLOS, only 7-KC was markedly increased, whereas in both FH and in SITO, oxysterol concentrations were normal. Interestingly, in NP-C alone, we observed that plasma oxysterols correlate negatively with patient's age and positively with serum total bilirubin, suggesting the potential relationship between oxysterol levels and hepatic disease status. Our results indicate that oxysterols are reliable and sensitive biomarkers of NP-C.

  7. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver

    PubMed Central

    Fusakio, Michael E.; Willy, Jeffrey A.; Wang, Yongping; Mirek, Emily T.; Al Baghdadi, Rana J. T.; Adams, Christopher M.; Anthony, Tracy G.; Wek, Ronald C.

    2016-01-01

    Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins—PERK (PEK/EIF2AK3), IRE1, and ATF6—is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera. PMID:26960794

  8. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease.

    PubMed

    Ding, Jingzhong; Reynolds, Lindsay M; Zeller, Tanja; Müller, Christian; Lohman, Kurt; Nicklas, Barbara J; Kritchevsky, Stephen B; Huang, Zhiqing; de la Fuente, Alberto; Soranzo, Nicola; Settlage, Robert E; Chuang, Chia-Chi; Howard, Timothy; Xu, Ning; Goodarzi, Mark O; Chen, Y-D Ida; Rotter, Jerome I; Siscovick, David S; Parks, John S; Murphy, Susan; Jacobs, David R; Post, Wendy; Tracy, Russell P; Wild, Philipp S; Blankenberg, Stefan; Hoeschele, Ina; Herrington, David; McCall, Charles E; Liu, Yongmei

    2015-10-01

    Obesity is linked to type 2 diabetes (T2D) and cardiovascular diseases; however, the underlying molecular mechanisms remain unclear. We aimed to identify obesity-associated molecular features that may contribute to obesity-related diseases. Using circulating monocytes from 1,264 Multi-Ethnic Study of Atherosclerosis (MESA) participants, we quantified the transcriptome and epigenome. We discovered that alterations in a network of coexpressed cholesterol metabolism genes are a signature feature of obesity and inflammatory stress. This network included 11 BMI-associated genes related to sterol uptake (↑LDLR, ↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, CYP51A1, SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile expected to increase intracellular cholesterol. Importantly, these alterations were associated with T2D and coronary artery calcium (CAC), independent from cardiometabolic factors, including serum lipid profiles. This network mediated the associations between obesity and T2D/CAC. Several genes in the network harbored C-phosphorus-G dinucleotides (e.g., ABCG1/cg06500161), which overlapped Encyclopedia of DNA Elements (ENCODE)-annotated regulatory regions and had methylation profiles that mediated the associations between BMI/inflammation and expression of their cognate genes. Taken together with several lines of previous experimental evidence, these data suggest that alterations of the cholesterol metabolism gene network represent a molecular link between obesity/inflammation and T2D/CAC.

  9. Abnormal vitamin K metabolism in the presence of normal clotting factor activity in factory workers exposed to 4-hydroxycoumarins.

    PubMed

    Park, B K; Choonara, I A; Haynes, B P; Breckenridge, A M; Malia, R G; Preston, F E

    1986-03-01

    The case histories of two patients exposed to the novel anticoagulants brodifacoum and difenacoum are reported. Abnormal vitamin K1 metabolism, as indicated by elevated vitamin K1 2,3-epoxide plasma concentrations after i.v. administration of vitamin K1, could be detected for more than 18 months after exposure to the anticoagulants. There was a marked prolongation of prothrombin time (greater than 50 s) in both cases, at the time of exposure. However, subsequent haematological investigations (prothrombin time and vitamin K-dependent clotting factor activity) have been shown to be normal in both cases for at least 18 months. These cases confirm the long-acting nature of brodifacoum and difenacoum and present an apparent dissociation between the effect of coumarin anticoagulants on vitamin K1 metabolism and clotting factor activity. PMID:3964529

  10. Abnormal vitamin K metabolism in the presence of normal clotting factor activity in factory workers exposed to 4-hydroxycoumarins.

    PubMed Central

    Park, B K; Choonara, I A; Haynes, B P; Breckenridge, A M; Malia, R G; Preston, F E

    1986-01-01

    The case histories of two patients exposed to the novel anticoagulants brodifacoum and difenacoum are reported. Abnormal vitamin K1 metabolism, as indicated by elevated vitamin K1 2,3-epoxide plasma concentrations after i.v. administration of vitamin K1, could be detected for more than 18 months after exposure to the anticoagulants. There was a marked prolongation of prothrombin time (greater than 50 s) in both cases, at the time of exposure. However, subsequent haematological investigations (prothrombin time and vitamin K-dependent clotting factor activity) have been shown to be normal in both cases for at least 18 months. These cases confirm the long-acting nature of brodifacoum and difenacoum and present an apparent dissociation between the effect of coumarin anticoagulants on vitamin K1 metabolism and clotting factor activity. PMID:3964529

  11. Dietary antioxidants: Do they have a role to play in the ongoing fight against abnormal glucose metabolism?

    PubMed

    Avignon, Antoine; Hokayem, Marie; Bisbal, Catherine; Lambert, Karen

    2012-07-01

    Overfeeding, an increased intake of saturated fatty acids, and sugary foods are key dietary changes that have occurred in recent decades in addition to the emergence of the obesity epidemic. In addition to an increase in energy storage as fat, these dietary changes are accompanied by an increase in mitochondrial macronutrient oxidation, leading to an excessive free radical production and, hence, oxidative stress. The latter has long been considered a central mechanism linking nutrient overload, insulin resistance, the metabolic syndrome, and diabetes. However, food, through fruit and vegetable consumption, also can be a great source of antioxidants that protect the body against oxidative damage and insulin resistance and thus help cope with the metabolic backlash of the energy-dense Westernized diet. Experimental data are in favor of the beneficial role conveyed by antioxidants in glucose metabolism, but clinical data in humans remain controversial. This review therefore aimed to sort out any underlying discrepancies and provide an overall clear view of the role of antioxidants in the ongoing fight against abnormal glucose metabolism.

  12. Hypocholesterolemic effect of physically refined rice bran oil: studies of cholesterol metabolism and early atherosclerosis in hypercholesterolemic hamsters.

    PubMed

    Ausman, Lynne M; Rong, Ni; Nicolosi, Robert J

    2005-09-01

    Physically refined rice bran oil containing 2-4% nontriglyceride components as compared to other vegetable oils appears to be associated with lipid lowering and antiinflammatory properties in several rodent, primate and human models. These experiments were designed to investigate possible mechanisms for the hypocholesterolemic effect of the physically refined rice bran oil and to examine its effect on aortic fatty streak formation. In the first experiment, 30 hamsters were fed, for 8 weeks, chow-based diets plus 0.03% added cholesterol and 5% (wt/wt) coconut, canola, or physically refined rice bran oil (COCO, CANOLA or PRBO animal groups, respectively). Both plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly reduced in PRBO but not in CANOLA relative to COCO. PRBO also showed a significant 15-17% reduction in cholesterol absorption and significant 30% increase in neutral sterol (NS) excretion with no effect on bile acid (BA) excretion. Both CANOLA and PRBO showed a significant 300-500% increase in intestinal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and significant (>25%) decrease in hepatic HMG-CoA reductase activities with respect to COCO. In a second experiment, 36 hamsters were fed chow-based diets with 0.05% added cholesterol, 10% coconut oil and 4% additional COCO, CANOLA or PRBO. Relative to COCO and CANOLA, plasma TC and LDL-C were significantly reduced in PRBO. Early atherosclerosis (fatty streak formation) was significantly reduced (48%) only in PRBO, relative to the other two. These results suggest that the lipid lowering found in PRBO is associated with decreased cholesterol absorption, but not hepatic cholesterol synthesis, and that the decrease in fatty streak formation with this oil may be associated with its nontriglyceride components not present in the other two diets.

  13. Endocrine dysfunction in anorexia nervosa and bulimia: comparison with abnormalities in other psychiatric disorders and disturbances due to metabolic factors.

    PubMed

    Hudson, J I; Hudson, M S

    1984-01-01

    The eating disorders of anorexia nervosa and bulimia are associated with marked disturbances in endocrine function. Studies of the hypothalamic-pituitary-adrenal,-thyroid, and -ovarian axes are reviewed, in order to ascertain whether and to what extent alteration in endocrine response is the consequence of abnormal eating, or whether the endocrine abnormalities are primary. Many, if not all, of the disturbances which have been documented can be accounted for the metabolic consequences of disturbed eating behavior, including especially the effects of weight loss. However, it is possible that primary hypothalamic dysfunction may account for or contribute to the following abnormalities: hypercortisolism, blunted TSH response to TRH, and hypogonadism. Given the possibility that primary hypothalamic disturbances are present, the specificity of these disturbances with respect to eating disorders as opposed to other psychiatric disorders, is investigated. It is concluded that, with the possible exception of alterations in the hypothalamic-pituitary-ovarian axis, such disturbances appear not to be specific to eating disorders; rather, they are also present in other psychiatric disorders. In particular, the data reviewed are consistent with the hypothesis that the eating disorders have psychobiological features in common with major affective disorder.

  14. Association of neural tube defects in children of mothers with MTHFR 677TT genotype and abnormal carbohydrate metabolism risk: a case-control study.

    PubMed

    Cadenas-Benitez, N M; Yanes-Sosa, F; Gonzalez-Meneses, A; Cerrillos, L; Acosta, D; Praena-Fernandez, J M; Neth, O; Gomez de Terreros, I; Ybot-González, P

    2014-03-26

    Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTD) in humans and animal models. However, the relationship between these two factors in the development of NTDs remains unclear. Data from mothers of children with spina bifida seen at the Unidad de Espina Bífida del Hospital Infantil Virgen del Rocío (case group) were compared to mothers of healthy children with no NTD (control group) who were randomly selected from patients seen at the outpatient ward in the same hospital. There were 25 individuals in the case group and 41 in the control group. Analysis of genotypes for the methylenetetrahydrofolate reductase (MTHFR) 677CT polymorphism in women with or without risk factors for abnormal carbohydrate metabolism revealed that mothers who were homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism were more likely to have offspring with spina bifida and high levels of homocysteine, compared to the control group. The increased incidence of NTDs in mothers homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism stresses the need for careful metabolic screening in pregnant women, and, if necessary, determination of the MTHFR 677CT genotype in those mothers at risk of developing abnormal carbohydrate metabolism.

  15. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice

    PubMed Central

    Jones, Ryan D.; Lopez, Adam M.; Tong, Ernest Y.; Posey, Kenneth S.; Chuang, Jen-Chieh; Repa, Joyce J.; Turley, Stephen D.

    2014-01-01

    Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1−/−mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1−/− mice fed chenodeoxycholic acid (CDCA) at a level of 0.06 % (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA)(>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1−/− and matching Cyp7a1+/+ mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18 days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1−/− mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1+/+ controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition. PMID:25447797

  16. The prevalence of carotid plaque with different stability and its association with metabolic syndrome in China: The Asymptomatic Polyvascular Abnormalities Community study.

    PubMed

    Wang, Anxin; Wu, Lingyun; Liu, Xiaoxue; Su, Zhaoping; Luo, Yanxia; Chen, Shuohua; Li, Haibin; Liu, Xiangtong; Tao, Lixin; Guo, Jin; Zhang, Feng; Cao, Yibin; Zhao, Xingquan; Wu, Shouling; Guo, Xiuhua

    2016-08-01

    Few studies have investigated the prevalence of carotid plaque with different stability in Chinese. As is well known, carotid atherosclerosis is tightly associated with metabolic syndrome (MetS); however, the data about the association between the presence of carotid plaque with different stability and MetS was limited. The aim of our study was to investigate the prevalence of carotid plaque with different stability and its potential association with MetS in general Chinese population.The Asymptomatic Polyvascular Abnormalities Community study is a community-based study to investigate the epidemiology of asymptomatic polyvascular abnormalities in Chinese adults. A total of 5393 participants were finally eligible and included in this study. The carotid plaque and its stability were assessed using ultrasonography. The MetS was defined using the criteria from US National Cholesterol Education Program-Adult Treatment Panel III. Data were analyzed with multivariate logistic regression models.Of the 5393 subjects, 1397 (25.9%) participants had stable carotid plaque, 1518 (28.1%) had unstable carotid plaque in participants, and 1456 (27.0%) had a MetS. MetS was, respectively, significantly associated with the prevalence of carotid plaque (odds ratio [OR]: 1.25; 95% confidence interval [CI]: 1.07, 1.47), stable carotid plaque (OR: 1.23; 95% CI: 1.02,1.48), and unstable carotid plaque (OR: 1.27; 95% CI: 1.03,1.56) after adjusting for age, gender, level of education, income, smoking, drinking, physical activity, body mass index, low-density lipoprotein, and high-sensitivity C-reactive protein. With the number of MetS components, the prevalence of carotid plaque, stable carotid plaque, and unstable carotid plaque significantly increased (P for trend <0.0001), respectively.In summary, the prevalence of carotid plaque was 54.1%, stable carotid plaque was 25.9%, and unstable carotid plaque was 28.1%. Our study revealed that the prevalence of carotid plaque, stable carotid plaque

  17. New compounds able to control hepatic cholesterol metabolism: Is it possible to avoid statin treatment in aged people?

    PubMed Central

    Trapani, Laura; Segatto, Marco; Pallottini, Valentina

    2013-01-01

    Aging is characterized by the loss of homeostasis that leads to changes in the biochemical composition of tissues, reduced ability to respond adaptively to environmental stimuli, and increased susceptibility and vulnerability to diseases including coronary artery diseases, carotid artery disease and brain vessel disease. Hypercholesterolemia is one of the primary risk factors for these pathologies, whose incidence is highly related to aging. Almost 25% of men and 42% of women older than 65 years have a serum total cholesterol level greater than 240 mg/dL. The mechanisms behind this age-related increase in plasma cholesterol are still incompletely understood, thus, the control of plasma cholesterol content in aged people is more challenging than in adults. In this review the different pharmacological approaches to reduce plasma cholesterol levels, particularly in aged people, will be discussed. In brief, current therapies are mostly based on the prescription of statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) that are pretty effective but that exert several side effects. More attention should be given to potential drug interactions, potential age-related changes in drug pharmacokinetics, adverse effects such as myopathy and competing risks when statins are prescribed to old patients. In combination or in alternative to statin therapy, other agents might be required to reduce low density lipoprotein (LDL) cholesterol levels. Among the available drugs, the most commonly prescribed are those addressed to reduce cholesterol absorption, to modulate lipoprotein lipase activity and bile acid sequestrants: even these pharmacological interventions are not exempt from side effects. The use of antioxidants or organoselenium compounds and the discovery of new proteins able to modulate exclusively LDL receptor recycling such as Proprotein convertase subtilisin kexin 9 and SEC24 offer new pharmacological approaches to selectively reduce the main causes of

  18. Discordance of Low-Density Lipoprotein and High-Density Lipoprotein Cholesterol Particle Versus Cholesterol Concentration for the Prediction of Cardiovascular Disease in Patients With Metabolic Syndrome and Diabetes Mellitus (from the Multi-Ethnic Study of Atherosclerosis [MESA]).

    PubMed

    Tehrani, David M; Zhao, Yanglu; Blaha, Michael J; Mora, Samia; Mackey, Rachel H; Michos, Erin D; Budoff, Matthew J; Cromwell, William; Otvos, James D; Rosenblit, Paul D; Wong, Nathan D

    2016-06-15

    A stronger association for low-density lipoprotein particle (LDL-P) and high-density lipoprotein particle (HDL-P) versus cholesterol concentrations (LDL-C and HDL-C) in predicting coronary heart disease (CHD) has been noted. We evaluate the role of these factors and extent of particle-cholesterol discordance in those with diabetes mellitus (DM) and metabolic syndrome (MetS) for event prediction. In the Multi-Ethnic Study of Atherosclerosis, we examined discordance of LDL and HDL (defined as a subject's difference between baseline particle and cholesterol percentiles), LDL-C, LDL-P, HDL-C, and HDL-P in relation to incident CHD and cardiovascular disease (CVD) events in subjects with DM, MetS (without DM), or neither condition using Cox regression. Of the 6,417 subjects with 10-year follow-up, those with MetS (n = 1,596) and DM (n = 838) had significantly greater LDL and HDL discordance compared with those without these conditions. In discordance models, only LDL discordance (per SD) within the MetS group was positively associated with CHD events (adjusted hazard ratio [HR] = 1.22, 95% confidence interval [CI] 1.01 to 1.48, p <0.05). In models with individual particle/cholesterol variables (per SD), within the DM group, HDL-P was inversely (HR 0.71, 95% CI 0.52 to 0.96, p <0.05) and LDL-C positively (HR 1.47, 95% CI 1.07 to 2.03, p <0.05) associated with CHD. In those with MetS, only LDL-P was positively associated with CHD (HR 1.34, 95% CI 1.00 to 1.78, p <0.05). Similar findings were also seen for CVD. LDL discordance and higher LDL-P in MetS, and higher LDL-C and lower HDL-P in DM, predict CHD and CVD, supporting a potential role for examining lipoprotein particles and discordances in those with MetS and DM.

  19. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  20. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  1. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  2. Excess cholesterol induces mouse egg activation and may cause female infertility

    PubMed Central

    Yesilaltay, Ayce; Dokshin, Gregoriy A.; Busso, Dolores; Wang, Li; Galiani, Dalia; Chavarria, Tony; Vasile, Eliza; Quilaqueo, Linda; Orellana, Juan Andrés; Walzer, Dalia; Shalgi, Ruth; Dekel, Nava; Albertini, David F.; Rigotti, Attilio; Page, David C.; Krieger, Monty

    2014-01-01

    The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-β-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology. PMID:25368174

  3. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    PubMed

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment.

  4. Metals and cholesterol: two sides of the same coin in Alzheimer’s disease pathology

    PubMed Central

    Wong, Bruce X.; Hung, Ya Hui; Bush, Ashley I.; Duce, James A.

    2014-01-01

    Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed. PMID:24860500

  5. Effects of ellagic acid-rich extract of pomegranates peel on regulation of cholesterol metabolism and its molecular mechanism in hamsters.

    PubMed

    Liu, Run; Li, Jianke; Cheng, Yujiang; Huo, Tianbo; Xue, Jiayi; Liu, Yingli; Liu, Jianshu; Chen, Xiping

    2015-03-01

    The study investigated the effect of pomegranates ellagic acid (PEA) on blood cholesterol and investigated its effects on LXR/RXR/PPAR-ABCA1 nuclear receptors-signaling pathways of cholesterol metabolism on molecular level in hamsters. In this experiment, hamsters were randomly divided into two groups: the first group (NG, n = 9) was always fed the normal diet, whereas the other group (HFG, n = 45) was fed a high fat diet during the first 4 weeks and then fed the normal diet for the last 4 weeks. In HFG, which was divided into five groups (n = 9) during the last 4 weeks, three groups were treated with PEA at 44 mg per kg bw, 88 mg per kg bw and 177 mg per kg bw, one group was treated with simvastatin at 1.77 mg per kg bw, and one was given sterile double-distilled water. The data validated that PEA dose-dependently decreased plasma total cholesterol and triglyceride level accompanied by a greater excretion of fecal bile acid. The result of RT-PCR revealed that PEA up-regulated liver X receptor (LXRα), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ (PPARγ) and their downstream gene ATP-binding cassette transporter A1 (ABCA1), with no effect on retinoid X receptor (RXRα). PEA promoted cholesterol removal by enhancing fecal bile acid and up-regulation of the two pathways, LXR/PPAR-ABCA1. Moreover, PEA was stronger than simvastatin in some aspects. PMID:25579987

  6. Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr -/- mice versus hamsters.

    PubMed

    Gardès, Christophe; Chaput, Evelyne; Staempfli, Andreas; Blum, Denise; Richter, Hans; Benson, G Martin

    2013-05-01

    Modulating bile acid synthesis has long been considered a good strategy by which to improve cholesterol homeostasis in humans. The farnesoid X receptor (FXR), the key regulator of bile acid synthesis, was, therefore, identified as an interesting target for drug discovery. We compared the effect of four, structurally unrelated, synthetic FXR agonists in two fat-fed rodent species and observed that the three most potent and selective agonists decreased plasma cholesterol in LDL receptor-deficient (Ldlr (-/-)) mice, but none did so in hamsters. Detailed investigation revealed increases in the expression of small heterodimer partner (Shp) in their livers and of intestinal fibroblast growth factor 15 or 19 (Fgf15/19) in mice only. Cyp7a1 expression and fecal bile acid (BA) excretion were strongly reduced in mice and hamsters by all four FXR agonists, whereas bile acid pool sizes were reduced in both species by all but the X-Ceptor compound in hamsters. In Ldlr (-/-) mice, the predominant bile acid changed from cholate to the more hydrophilic β-muricholate due to a strong repression of Cyp8b1 and increase in Cyp3a11 expression. However, FXR agonists caused only minor changes in the expression of Cyp8b1 and in bile acid profiles in hamsters. In summary, FXR agonist-induced decreases in bile acid pool size and lipophilicity and in cholesterol absorption and synthesis could explain the decreased plasma cholesterol in Ldlr (-/-) mice. In hamsters, FXR agonists reduced bile acid pool size to a smaller extent with minor changes in bile acid profile and reductions in sterol absorption, and consequently, plasma cholesterol was unchanged.

  7. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  8. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage

    PubMed Central

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats’ articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway. PMID:26639318

  9. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage.

    PubMed

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-12-07

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats' articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway.

  10. Prevalence of the metabolic syndrome in patients with hypertension treated in general practice in Spain: an assessment of blood pressure and low-density lipoprotein cholesterol control and accuracy of diagnosis.

    PubMed

    Barrios, Vivencio; Escobar, Carlos; Calderón, Alberto; Llisterri, José L; Alegría, Eduardo; Muñiz, Javier; Matalí, Arantxa

    2007-01-01

    This study was designed to evaluate whether primary care physicians in Spain accurately diagnose the metabolic syndrome in hypertensive patients, to define the profile and management of these patients in clinical practice, and to ascertain the level of blood pressure and low-density lipoprotein cholesterol control. Data were analyzed from a cross-sectional survey involving 12,954 patients with hypertension (Prevención Cardiovascular en España en Atención Primaria: Intervención Sobre el Colesterol en Hipertensión [PRESCOT] study), wherein 52% of the cohort fulfilled the National Cholesterol Education Program-Adult Treatment Panel criteria for the metabolic syndrome. The majority of patients (54.6%) had 3 risk factors, 32.4% had 4, and 13% had 5 risk factors. Physician diagnosis of the metabolic syndrome was poor, with 43.7% of physicians missing the diagnosis and 12.9% wrongly diagnosing the metabolic syndrome. Blood pressure and low-density lipoprotein cholesterol control rates were very low, with only 4.7% of metabolic syndrome patients achieving control for both blood pressure and low-density lipoprotein cholesterol vs 13.5% for non-metabolic syndrome patients (P<.0001). These findings demonstrate that the metabolic syndrome is common in patients with hypertension and that it is generally poorly diagnosed and treated by primary care physicians. PMID:17684454

  11. Prevalence of the metabolic syndrome in patients with hypertension treated in general practice in Spain: an assessment of blood pressure and low-density lipoprotein cholesterol control and accuracy of diagnosis.

    PubMed

    Barrios, Vivencio; Escobar, Carlos; Calderón, Alberto; Llisterri, José L; Alegría, Eduardo; Muñiz, Javier; Matalí, Arantxa

    2007-01-01

    This study was designed to evaluate whether primary care physicians in Spain accurately diagnose the metabolic syndrome in hypertensive patients, to define the profile and management of these patients in clinical practice, and to ascertain the level of blood pressure and low-density lipoprotein cholesterol control. Data were analyzed from a cross-sectional survey involving 12,954 patients with hypertension (Prevención Cardiovascular en España en Atención Primaria: Intervención Sobre el Colesterol en Hipertensión [PRESCOT] study), wherein 52% of the cohort fulfilled the National Cholesterol Education Program-Adult Treatment Panel criteria for the metabolic syndrome. The majority of patients (54.6%) had 3 risk factors, 32.4% had 4, and 13% had 5 risk factors. Physician diagnosis of the metabolic syndrome was poor, with 43.7% of physicians missing the diagnosis and 12.9% wrongly diagnosing the metabolic syndrome. Blood pressure and low-density lipoprotein cholesterol control rates were very low, with only 4.7% of metabolic syndrome patients achieving control for both blood pressure and low-density lipoprotein cholesterol vs 13.5% for non-metabolic syndrome patients (P<.0001). These findings demonstrate that the metabolic syndrome is common in patients with hypertension and that it is generally poorly diagnosed and treated by primary care physicians.

  12. Late Antiretroviral Therapy (ART) Initiation Is Associated with Long-Term Persistence of Systemic Inflammation and Metabolic Abnormalities

    PubMed Central

    Ghislain, Mathilde; Bastard, Jean-Philippe; Meyer, Laurence; Capeau, Jacqueline; Fellahi, Soraya; Gérard, Laurence; May, Thierry; Simon, Anne; Vigouroux, Corinne; Goujard, Cécile

    2015-01-01

    Objectives HIV-induced immunodeficiency is associated with metabolic abnormalities and systemic inflammation. We investigated the effect of antiretroviral therapy (ART) on restoration of insulin sensitivity, markers of immune activation and inflammation. Methods Immunological, metabolic and inflammatory status was assessed at antiretroviral therapy initiation and three years later in 208 patients from the ANRS-COPANA cohort. Patients were compared according to their pre-ART CD4+ cell count (group 1: ≤ 200/mm3, n = 66 vs. group 2: > 200/mm3, n = 142). Results Median CD4+ cell count increased in both groups after 3 years of successful ART but remained significantly lower in group 1 than in group 2 (404 vs 572 cells/mm3). Triglyceride and insulin levels were higher or tended to be higher in group 1 than in group 2 at ART initiation (median: 1.32 vs 0.97 mmol/l, p = 0.04 and 7.6 vs 6.8 IU, p = 0.09, respectively) and remained higher after three years of ART (1.42 vs 1.16 mmol/L, p = 0.0009 and 8.9 vs 7.2 IU, p = 0.01). After adjustment for individual characteristics and antiretroviral therapy regimens (protease inhibitor (PI), zidovudine), insulin levels remained significantly higher in patients with low baseline CD4+ cell count. Baseline IL-6, sCD14 and sTNFR2 levels were higher in group 1 than in group 2. Most biomarkers of immune activation/inflammation declined during ART, but IL-6 and hsCRP levels remained higher in patients with low baseline CD4+ cell count than in the other patients (median are respectively 1.4 vs 1.1 pg/ml, p = 0.03 and 2.1 vs 1.3 mg/ml, p = 0.07). Conclusion After three years of successful ART, low pretreatment CD4+ T cell count remained associated with elevated insulin, triglyceride, IL-6 and hsCRP levels. These persistent metabolic and inflammatory abnormalities could contribute to an increased risk of cardiovascular and metabolic disease. PMID:26636578

  13. Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington's Disease Patients.

    PubMed

    Naseri, Nima N; Bonica, Joseph; Xu, Hui; Park, Larry C; Arjomand, Jamshid; Chen, Zhengming; Gibson, Gary E

    2016-01-01

    Metabolic dysfunction is well-documented in Huntington's disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD. PMID:27611087

  14. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    PubMed Central

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  15. Diabetes mellitus type 2 and abnormal glucose metabolism in the setting of human immunodeficiency virus.

    PubMed

    Hadigan, Colleen; Kattakuzhy, Sarah

    2014-09-01

    As the modern era of combination antiretroviral therapy has increased life expectancy for individuals infected with the human immunodeficiency virus (HIV), type 2 diabetes mellitus and disorders of glucose metabolism have emerged as an important issue in the care of this population. Multiple mechanisms, both specific and nonspecific to HIV, underlie a significant prevalence. Although best-practice diagnostic testing remains unclear, the risks associated with diabetes in the setting of HIV are well characterized, ranging from organ-specific damage to socioeconomic decline. As population-specific treatment data are limited, current guidelines serve as a basis for ongoing management.

  16. Abnormal metabolic pattern associated with cognitive impairment in Parkinson's disease: a validation study.

    PubMed

    Meles, Sanne K; Tang, Chris C; Teune, Laura K; Dierckx, Rudi A; Dhawan, Vijay; Mattis, Paul J; Leenders, Klaus L; Eidelberg, David

    2015-09-01

    Cognitive deficits in Parkinson's disease (PD) have been associated with a specific metabolic covariance pattern. Although the expression of this PD cognition-related pattern (PDCP) correlates with neuropsychological performance, it is not known whether the PDCP topography is reproducible across PD populations. We therefore sought to identify a PDCP topography in a new sample comprised of 19 Dutch PD subjects. Network analysis of metabolic scans from these individuals revealed a significant PDCP that resembled the original network topography. Expression values for the new PDCP correlated (P=0.001) with executive dysfunction on the Frontal Assessment Battery (FAB). Subject scores for the new PDCP correlated (P<0.001) with corresponding values for the original pattern, which also correlated (P<0.005) with FAB scores in this patient group. For further validation, subject scores for the new PDCP were computed in an independent group of 86 American PD patients. In this cohort, subject scores for the new and original PDCP topographies were closely correlated (P<0.001); significant correlations between pattern expression and cognitive performance (P<0.05) were observed for both PDCP topographies. These findings suggest that the PDCP is a replicable imaging marker of PD cognitive dysfunction. PMID:26058693

  17. An approach to quantifying abnormalities in energy expenditure and lean mass in metabolic disease

    PubMed Central

    Watson, L P E; Raymond-Barker, P; Moran, C; Schoenmakers, N; Mitchell, C; Bluck, L; Chatterjee, V K; Savage, D B; Murgatroyd, P R

    2014-01-01

    Background/objectives: The objective of this study was to develop approaches to expressing resting energy expenditure (REE) and lean body mass (LM) phenotypes of metabolic disorders in terms of Z-scores relative to their predicted healthy values. Subjects/methods: Body composition and REE were measured in 135 healthy participants. Prediction equations for LM and REE were obtained from linear regression and the range of normality by the standard deviation of residuals. Application is demonstrated in patients from three metabolic disorder groups (lipodystrophy, n=7; thyrotoxicosis, n=16; and resistance to thyroid hormone (RTH), n=46) in which altered REE and/or LM were characterised by departure from the predicted healthy values, expressed as a Z-score. Results: REE (kJ/min)=−0.010 × age (years)+0.016 × FM (kg)+0.054 × fat-free mass (kg)+1.736 (R2=0.732, RSD=0.36 kJ/min). LM (kg)=5.30 × bone mineral content (kg)+10.66 × height2 (m)+6.40 (male). LM (kg)=0.20 × fat (kg)+14.08 × height2 (m)−2.93 (female). (male R2=0.55, RSD=3.90 kg; female R2=0.59, RSD=3.85 kg). We found average Z-scores for REE and LM of 1.77 kJ/min and −0.17 kg in the RTH group, 5.82 kJ/min and −1.23 kg in the thyrotoxic group and 2.97 kJ/min and 4.20 kg in the LD group. Conclusion: This approach enables comparison of data from individuals with metabolic disorders with those of healthy individuals, describing their departure from the healthy mean by a Z-score. PMID:24281313

  18. Metabolic abnormalities associated with weight loss during chemoirradiation of head-and-neck cancer

    SciTech Connect

    Lin, Alexander; Jabbari, Siavash; Worden, Francis P.; Chepeha, Douglas B.; Teknos, Theodoros N.; Nyquist, Gurston G.; Tsien, Christina; Schipper, Matthew J.; Urba, Susan . E-mail: eisbruch@umich.edu

    2005-12-01

    Purpose: Weight loss caused by acute mucositis and dysphagia is common during concurrent chemoirradiation (chemo-RT) of head-and-neck (HN) cancer. The metabolic consequences of weight loss during chemo-RT were investigated. Patients and Methods: Ninety-six patients with locally advanced HN cancer were treated from 1995 to 2001 on protocols that consisted of 1 to 2 cycles of induction cisplatin/5-fluorouracil followed by irradiation (70 Gy over 7 weeks) concurrent with cisplatin (100 mg/m{sup 2} every 3 weeks). Body weights and metabolic evaluations were obtained before and during induction chemotherapy and chemo-RT. Greatest percent changes in weight and in the laboratory values were calculated for each phase of therapy. Results: During induction chemotherapy, significant changes were found in BUN, BUN:creatinine ratio, HCO{sub 3}, Mg, and albumin, but not in creatinine, Na, K, or weight. During chemo-RT, significant additional changes were observed in all parameters measured, including increases in BUN, creatinine, BUN: creatinine ratio, and HCO{sub 3} and decreases in Mg, albumin, Na, K, and weight. The magnitude of most of these changes was significantly greater during chemo-RT than during induction chemotherapy. During chemo-RT, 35% of the patients had more than 10% body weight loss and 6 patients had an increase in creatinine of more than 100%, including 5 patients with Grade 2 nephrotoxicity, all of whom had weight loss 10% or more. Significant correlations were found between weight loss and creatinine (p < 0.0001) or BUN (p = 0.0002) rises, but not with BUN:creatinine ratio or other metabolic changes. Age, gender, tobacco history, hypertension, and diabetes mellitus were not significant predictors of nephrotoxicity. Conclusions: Weight loss during cisplatin-containing chemo-RT was found to be associated with reduced kidney function. These findings do not establish cause-effect relationships; however, they highlight the importance of intensive supportive

  19. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder.

    PubMed

    Yuksel, C; Du, F; Ravichandran, C; Goldbach, J R; Thida, T; Lin, P; Dora, B; Gelda, J; O'Connor, L; Sehovic, S; Gruber, S; Ongur, D; Cohen, B M

    2015-09-01

    Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.

  20. Abnormal Collagen Metabolism in Cultured Skin Fibroblasts from Patients with Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    Rodemann, H. Peter; Bayreuther, Klaus

    1984-08-01

    Total collagen synthesis is decreased by about 29% (P < 0.01) in skin fibroblasts established in vitro from male patients with Duchenne muscular dystrophy (DMD) as compared with that in normal male skin fibroblasts in vitro. The reduction in collagen synthesis is associated with an approximately 2-fold increase in collagen degradation in DMD fibroblasts. Correlated to these alterations in the metabolism of collagen, DMD fibroblasts express a significantly higher hydroxyproline/proline ratio (DMD: 1.36-1.45; P < 0.01) than do normal fibroblasts (controls: 0.86-0.89). The increased hydroxylation of proline residues of collagen (composed of type I and type III) could be the cause for the enhanced degradation of collagen in DMD fibroblasts.

  1. Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice.

    PubMed

    Makarova, Elena N; Chepeleva, Elena V; Panchenko, Polina E; Bazhan, Nadezhda M

    2013-12-01

    Maternal obesity increases the risk of obesity in offspring, and obesity is accompanied by an increase in blood leptin levels. The "yellow" mutation at the mouse agouti locus (A(y)) increases blood leptin levels in C57BL preobese pregnant mice without affecting other metabolic characteristics. We investigated the influence of the A(y) mutation or leptin injection at the end of pregnancy in C57BL mice on metabolic phenotypes and the susceptibility to diet-induced obesity (DIO) in offspring. In both C57BL-A(y) and leptin-treated mice, the maternal effect was more pronounced in male offspring. Compared with males born to control mothers, males born to A(y) mothers displayed equal food intake (FI) but decreased body weight (BW) gain after weaning, equal glucose tolerance, and enhanced FI-to-BW ratios on the standard diet but the same FI and BW on the high-fat diet. Males born to A(y) mothers were less responsive to the anorectic effect of exogenous leptin and less resistant to fasting (were not hyperphagic and gained less weight during refeeding after food deprivation) compared with males born to control mothers. However, all progeny displayed equal hypothalamic expression of Agouti gene-related protein (AgRP), neuropeptide Y (NPY), and proopiomelanocortin (POMC) and equal plasma leptin and glucose levels after food deprivation. Leptin injections in C57BL mice on day 17 of pregnancy decreased BW in both male and female offspring but inhibited FI and DIO only in male offspring. Our results show that hyperleptinemia during pregnancy has sex-specific long-term effects on energy balance regulation in progeny and does not predispose offspring to developing obesity.

  2. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes.

    PubMed

    Bartáková, Vendula; Pleskačová, Anna; Kuricová, Katarína; Pácal, Lukáš; Dvořáková, Veronika; Bělobrádková, Jana; Tomandlová, Marie; Tomandl, Josef; Kaňková, Kateřina

    2016-08-01

    While the pathogenic role of dicarbonyl stress and accelerated formation of advanced glycation end products (AGEs) to glucose intolerance and to the development of diabetic complications is well established, little is known about these processes in gestational diabetes mellitus (GDM), a condition pathogenically quite similar to type 2 diabetes. The aims of the present study were (i) to determine plasma thiamine and erythrocyte thiamine diphosphate (TDP) and transketolase (TKT) activity in pregnant women with and without GDM, (ii) to assess relationships between thiamine metabolism parameters and selected clinical, biochemical and anthropometric characteristics and, finally, (iii) to analyse relationship between variability in the genes involved in the regulation of transmembrane thiamine transport (i.e. SLC19A2 and SLC19A3) and relevant parameters of thiamine metabolism. We found significantly lower plasma BMI adjusted thiamine in women with GDM (P = 0.002, Mann-Whitney) while levels of erythrocyte TDP (an active TKT cofactor) in mid-trimester were significantly higher in GDM compared to controls (P = 0.04, Mann-Whitney). However, mid-gestational TKT activity - reflecting pentose phosphate pathway activity - did not differ between the two groups (P > 0.05, Mann-Whitney). Furthermore, we ascertained significant associations of postpartum TKT activity with SNPs SLC19A2 rs6656822 and SLC19A3 rs7567984 (P = 0.03 and P = 0.007, resp., Kruskal-Wallis). Our findings of increased thiamine delivery to the cells without concomitant increase of TKT activity in women with GDM therefore indicate possible pathogenic role of thiamine mishandling in GDM. Further studies are needed to determine its contribution to maternal and/or neonatal morbidity.

  3. Nanostructure-Initiator Mass Spectrometry (NIMS) Imaging of Brain Cholesterol Metabolites in Smith-Lemli-Opitz Syndrome

    PubMed Central

    Patti, Gary J.; Shriver, Leah P.; Wassif, Christopher A.; Woo, Hin-Koon; Uritboonthai, Wilasinee; Apon, Jon; Manchester, Marianne; Porter, Forbes D.; Siuzdak, Gary

    2010-01-01

    Cholesterol is an essential component of cellular membranes that is required for normal lipid organization and cell signaling. While the mechanisms associated with maintaining cholesterol homeostasis in the plasma and peripheral tissues have been well studied, the role and regulation of cholesterol biosynthesis in normal brain function and development have proven much more challenging to investigate. Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol synthesis characterized by mutations of DHCR7 (7-dehydrocholesterol reductase) that impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol and lead to neurocognitive deficits, including cerebellar hypoplasia and austism behaviors. Here we have used a novel mass spectrometry-based imaging technique called cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for the in situ detection of intact cholesterol molecules from biological tissues. We provide the first images of brain sterol localization in a mouse model for SLOS (Dhcr7−/−). In SLOS mice, there is a striking localization of both 7DHC and residual cholesterol in the abnormally developing cerebellum and brainstem. In contrast, the distribution of cholesterol in 1-day old healthy pups was diffuse throughout the cerebrum and comparable to that of adult mice. This study represents the first application of NIMS to localize perturbations in metabolism within pathological tissues and demonstrates that abnormal cholesterol biosynthesis may be particularly important for the development of these brain regions. PMID:20670678

  4. Human pedigree-based quantitative-trait-locus mapping: localization of two genes influencing HDL-cholesterol metabolism.

    PubMed

    Almasy, L; Hixson, J E; Rainwater, D L; Cole, S; Williams, J T; Mahaney, M C; VandeBerg, J L; Stern, M P; MacCluer, J W; Blangero, J

    1999-06-01

    Common disorders with genetic susceptibilities involve the action of multiple genes interacting with each other and with environmental factors, making it difficult to localize the specific genetic loci responsible. An important route to the disentangling of this complex inheritance is through the study of normal physiological variation in quantitative risk factors that may underlie liability to disease. We present an analysis of HDL-cholesterol (HDL-C), which is inversely correlated with risk of heart disease. A variety of HDL subphenotypes were analyzed, including HDL particle-size classes and the concentrations and proportions of esterified and unesterified HDL-C. Results of a complete genomic screen in large, randomly ascertained pedigrees implicated two loci, one on chromosome 8 and the other on chromosome 15, that influence a component of HDL-C-namely, unesterified HDL2a-C. Multivariate analyses of multiple HDL phenotypes and simultaneous multilocus analysis of the quantitative-trait loci identified permit further characterization of the genetic effects on HDL-C. These analyses suggest that the action of the chromosome 8 locus is specific to unesterified cholesterol levels, whereas the chromosome 15 locus appears to influence both HDL-C concentration and distribution of cholesterol among HDL particle sizes.

  5. Evaluation of tributyltin toxicity in Chinese rare minnow larvae by abnormal behavior, energy metabolism and endoplasmic reticulum stress.

    PubMed

    Li, Zhi-Hua; Li, Ping

    2015-02-01

    Tributyltin (TBT) is a ubiquitous contaminant in aquatic environment, but the detailed mechanisms underlying the toxicity of TBT have not been fully understood. In this study, the effects of TBT on behavior, energy metabolism and endoplasmic reticulum (ER) stress were investigated by using Chinese rare minnow larvae. Fish larvae were exposed at sublethal concentrations of TBT (100, 400 and 800 ng/L) for 7 days. Compared with the control, energy metabolic parameters (RNA/DNA ratio, Na(+)-K(+)-ATPase) were significantly inhibited in fish exposed at highest concentration (800 ng/L), as well as abnormal behaviors observed. Moreover, we found that the PERK (PKR-like ER kinase)-eIF2α (eukaryotic translation initiation factor 2α) pathway, as the main branch was activated by TBT exposure in fish larvae. In short, TBT-induced physiological, biochemical and molecular responses in fish larvae were reflected in parameters measured in this study, which suggest that these biomarkers could be used as potential indicators for monitoring organotin compounds present in aquatic environment.

  6. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    SciTech Connect

    Brunetti, A.; Berg, G.; Di Chiro, G.; Cohen, R.M.; Yarchoan, R.; Pizzo, P.A.; Broder, S.; Eddy, J.; Fulham, M.J.; Finn, R.D.

    1989-05-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using (/sup 18/F)fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment.

  7. Anacetrapib and dalcetrapib differentially alters HDL metabolism and macrophage-to-feces reverse cholesterol transport at similar levels of CETP inhibition in hamsters.

    PubMed

    Briand, François; Thieblemont, Quentin; Muzotte, Elodie; Burr, Noémie; Urbain, Isabelle; Sulpice, Thierry; Johns, Douglas G

    2014-10-01

    Cholesteryl ester transfer protein (CETP) inhibitors dalcetrapib and anacetrapib differentially alter LDL- and HDL-cholesterol levels, which might be related to the potency of each drug to inhibit CETP activity. We evaluated the effects of both drugs at similar levels of CETP inhibition on macrophage-to-feces reverse cholesterol transport (RCT) in hamsters. In normolipidemic hamsters, both anacetrapib 30 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~60%. After injection of 3H-cholesteryl oleate labeled HDL, anacetrapib and dalcetrapib reduced HDL-cholesteryl esters fractional catabolic rate (FCR) by 30% and 26% (both P<0.001 vs. vehicle) respectively, but only dalcetrapib increased HDL-derived 3H-tracer fecal excretion by 30% (P<0.05 vs. vehicle). After 3H-cholesterol labeled macrophage intraperitoneal injection, anacetrapib stimulated 3H-tracer appearance in HDL, but both drugs did not promote macrophage-derived 3H-tracer fecal excretion. In dyslipidemic hamsters, both anacetrapib 1 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~65% and reduced HDL-cholesteryl ester FCR by 36% (both P<0.001 vs. vehicle), but only anacetrapib increased HDL-derived 3H-tracer fecal excretion significantly by 39%. After 3H-cholesterol labeled macrophage injection, only anacetrapib 1 mg/kg QD stimulated macrophage-derived 3H-tracer appearance in HDL. These effects remained weaker than those observed with anacetrapib 60 mg/kg QD, which induced a maximal inhibition of CETP and stimulation of macrophage-derived 3H-tracer fecal excretion. In contrast, dalcetrapib 200 mg/kg BID reduced macrophage-derived 3H-tracer fecal excretion by 23% (P<0.05 vs. vehicle). In conclusion, anacetrapib and dalcetrapib differentially alter HDL metabolism and RCT in hamsters. A stronger inhibition of CETP may be required to promote macrophage-to-feces reverse cholesterol transport in dyslipidemic hamsters.

  8. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    PubMed Central

    Jiao, Jun; Han, Shu-Fen; Zhang, Wei; Xu, Jia-Ying; Tong, Xing; Yin, Xue-Bin; Yuan, Lin-Xi; Qin, Li-Qiang

    2016-01-01

    Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of

  9. Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man.

    PubMed Central

    Curto, R; Voit, E O; Cascante, M

    1998-01-01

    A modelling approach is used to analyse diseases associated with purine metabolism in man. The specific focus is on deficiencies in two enzymes, hypoxanthine:guanine phosphoribosyltransferase and adenylosuccinate lyase. These deficiencies can lead to a number of symptoms, including neurological dysfunctions and mental retardation. Although the biochemical mechanisms of dysfunctions associated with adenylosuccinate lyase deficiency are not completely understood, there is at least general agreement in the literature about possible causes. Simulations with our model confirm that accumulation of the two substrates of the enzyme can lead to significant biochemical imbalance. In hypoxanthine:guanine phosphoribosyltransferase deficiency the biochemical mechanisms associated with neurological dysfunctions are less clear. Model analyses support some old hypotheses but also suggest new indicators for possible causes of neurological dysfunctions associated with this deficiency. Hypoxanthine:guanine phosphoribosyltransferase deficiency is known to cause hyperuricaemia and gout. We compare the relative importance of this deficiency with other known causes of gout in humans. The analysis suggests that defects in the excretion of uric acid are more consequential than defects in uric acid synthesis such as hypoxanthine:guanine phosphoribosyltransferase deficiency. PMID:9445373

  10. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-ι.

    PubMed

    Sajan, Mini P; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C Ronald; Fields, Alan P; Braun, Ursula; Leitges, Michael; Farese, Robert V

    2012-04-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PB1-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that

  11. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins.

  12. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  13. Abnormal insulin metabolism by specific organs from rats with spontaneous hypertension

    SciTech Connect

    Mondon, C.E.; Reaven, G.M.; Azhar, S.; Lee, C.M.; Rabkin, R. )

    1989-10-01

    Spontaneously hypertensive rats (SHR) have been shown to be both insulin resistant and hyperinsulinemic after oral glucose administration or infusion of exogenous insulin during an insulin suppression test. To determine if this hyperinsulinemia may be due to decreased removal of insulin, the metabolic clearance (k) of insulin was measured in isolated perfused liver, kidney, and hindlimb skeletal muscle from SHR and Wistar-Kyoto (WKY) control rats. The data indicate that the k for insulin removal by liver was similar in SHR and WKY rats, averaging 287 +/- 18 and 271 +/- 10 microliters.min-1.g-1 liver, respectively. In contrast, the k for insulin removal by hindlimbs from SHR was decreased 37% (P less than 0.001) compared with WKY rats (8.6 +/- 0.5 vs. 13.7 +/- 0.7 microliters.min-1.g-1 muscle), and this decrease was not accompanied by decreased binding of insulin to its receptor in plantaris muscle. Although the removal of insulin by glomerular filtration was similar in SHR and WKY rats (653 +/- 64 microliters/min vs. 665 +/- 90 microliters.min-1.kidney-1), total insulin removal by kidney was significantly lower (P less than 0.05) in SHR (710 +/- 78 microliters/min) compared with WKY rats (962 +/- 67 microliters/min), due to decreased peritubular clearance of insulin in SHR (56 +/- 73 vs. 297 +/- 59 microliters/min, P less than 0.05). These findings suggest that the decreased clearance of insulin in SHR rats was possibly not due to impaired hepatic removal of insulin but rather to decreased removal by skeletal muscle and kidneys.

  14. ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis[S

    PubMed Central

    Jakulj, Lily; Vissers, Maud N.; Tanck, Michael W. T.; Hutten, Barbara A.; Stellaard, Frans; Kastelein, John J. P.; Dallinga-Thie, Geesje M.

    2010-01-01

    Genetic variation at the ABCG5/G8 locus has been associated with markers of cholesterol homeostasis. As data originate from small-scale studies, we performed a meta-analysis to study these associations in a large dataset. We first investigated associations between five common ABCG5/G8 polymorphisms (p.Q604E, p.D19H, p.Y54C, p.T400K, and p.A632V) and plasma sterol levels in 245 hypercholesterolaemic individuals. No significant associations were found. Subsequently, our data were pooled into a meta-analysis that comprised 3,364 subjects from 16 studies (weighted mean age, 46.7 ± 10.5 years; BMI, 23.9 ± 3.5 kg/m2). Presence of the minor 632V allele correlated with reduced LDL-C concentrations (n = 367) compared with homozygosity for the 632A variant [n = 614; −0.11 mmol/l (95% CI, range: −0.20 to −0.02 mmol/l); P = 0.01]. The remaining polymorphisms were not associated with plasma lipid levels. Carriers of the 19H allele exhibited lower campesterol/TC (n = 83; P < 0.001), sitosterol/TC (P < 0.00001), and cholestanol/TC (P < 0.00001), and increased lathosterol/TC ratios (P = 0.001) compared with homozygous 19D allele carriers (n = 591). The ABCG8 632V variant was associated with a clinically irrelevant LDL-C reduction, whereas the 19H allele correlated with decreased cholesterol absorption and increased synthesis without affecting the lipid profile. Hence, associations between frequently studied missense ABCG5/G8 polymorphisms and markers of cholesterol homeostasis are modest at best. PMID:20581104

  15. Cholesterol, inflammasomes, and atherogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  16. R6/2 Huntington’s disease Mice Develop Early and Progressive Abnormal Brain Metabolism and Seizures

    PubMed Central

    Cepeda-Prado, E; Popp, S; Khan, U; Stefanov, D; Rodriguez, J; Menalled, L; Dow-Edwards, D; Small, SA; Moreno, H

    2012-01-01

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several HD mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional magnetic resonance imaging (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI-signals (relative cerebral blood volumes-rCBV) and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions- thus identifying a mechanism accounting for the abnormal fMRI findings. [14C] deoxyglucose (2DG) maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice, and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models. PMID:22573668

  17. Influence of dietary sugar on cholesterol and bile acid metabolism in the rat: Marked reduction of hepatic Abcg5/8 expression following sucrose ingestion.

    PubMed

    Apro, Johanna; Beckman, Lena; Angelin, Bo; Rudling, Mats

    2015-06-12

    Previous studies have indicated that dietary intake of sugar may lower bile acid production, and may promote cholesterol gallstone formation in humans. We studied the influence of dietary sucrose on cholesterol and bile acid metabolism in the rat. In two different experiments, rats received high-sucrose diets. In the first, 60% of the weight of standard rat chow was replaced with sucrose (high-sucrose diet). In the second, rats received a diet either containing 65% sucrose (controlled high-sucrose diet) or 65% complex carbohydrates, in order to keep other dietary components constant. Bile acid synthesis, evaluated by measurements of the serum marker 7-alpha-hydroxy-4-cholesten-3-one (C4) and of the hepatic mRNA expression of Cyp7a1, was markedly reduced by the high-sucrose diet, but not by the controlled high-sucrose diet. Both diets strongly reduced the hepatic - but not the intestinal - mRNA levels of Abcg5 and Abcg8. The differential patterns of regulation of bile acid synthesis induced by the two sucrose-enriched diets indicate that it is not sugar per se in the high-sucrose diet that reduces bile acid synthesis, but rather the reduced content of fiber or fat. In contrast, the marked reduction of hepatic Abcg5/8 observed is an effect of the high sugar content of the diets.

  18. Prevalence of Metabolic Syndrome among Korean Adolescents According to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation

    PubMed Central

    Kim, Seonho; So, Wi-Young

    2016-01-01

    In both adults and children, metabolic syndrome (MetS) has been attributed to risk factors for type 2 diabetes and cardiovascular disease such as insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This descriptive study aimed to compare the prevalence of MetS and diagnostic components according to the National Cholesterol Education Program, Adult Treatment Panel III (NCEP-ATP III) and International Diabetes Federation (IDF) in 2330 Korean adolescents (10–18 years), using data from the 2010–2012 Korea National Health and Nutrition Examination Survey-V. The NCEP-ATP III and IDF were used to diagnose MetS and yielded prevalence rates of 5.7% and 2.1%, respectively, with no sex-related differences. The most frequent MetS diagnostic components according to the NCEP-ATP III and IDF criteria were high triglyceride levels (21.2%) and low high-density lipoprotein cholesterol levels (13.6%), respectively; approximately 50.1% and 33.1% of adolescents had at least one MetS diagnostic component according to the respective criteria. Both overweight/obese male and female adolescents exhibited significantly increased prevalence rates of MetS and related diagnostic components, compared to normal-weight adolescents. In conclusion, the prevalence rates of MetS and diagnostic components differ according to the NCEP-ATP III and IDF criteria. Henceforth, efforts are needed to establish diagnostic criteria for Korean adolescents. PMID:27706073

  19. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice

    PubMed Central

    Jadhav, Kavita S.; Williamson, David L.; Rideout, Todd C.

    2013-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel biomarker of LDL clearance and a therapeutic target of cardiovascular disease. We examined the effects of aerobic exercise training in modulating PCSK9 abundance and hepatic sterol regulation in high-fat-fed C57BL/6 mice. Mice (n = 8) were assigned to a low-fat (LF), high-fat (HF), or an HF with exercise (HF + EX) group for 8 weeks. The HF + EX group was progressively trained 5 days/week on a motorized treadmill. The HF + EX group was protected against body weight (BW) gain and diet-induced dyslipidemia compared with the HF group. The HF + EX group demonstrated an increase in hepatic PCSK9 mRNA (1.9-fold of HF control, P < 0.05) and a reduction in plasma PCSK9 (14%) compared with the HF group. Compared with HF mice, HF + EX mice demonstrated reduced hepatic cholesterol (14%) and increased (P < 0.05) nuclear SREBP2 protein (1.8-fold of HF group) and LDLr mRNA (1.4-fold of HF group). Plasma PCSK9 concentrations correlated positively with plasma non-HDL-C (P = 0.01, r = 0.84). Results suggest that treadmill exercise reduces non-HDL cholesterol and differentially modulates hepatic and blood PCSK9 abundance in HF-fed C57BL/6 mice. PMID:23862065

  20. Application of recent definitions of the metabolic syndrome to survey data from the National Cholesterol Education Program Evaluation Project Utilizing Novel E-Technology (NEPTUNE II).

    PubMed

    Deedwania, Prakash C; Maki, Kevin C; Dicklin, Mary R; Stone, Neil J; Ballantyne, Christie M; Davidson, Michael H

    2006-01-01

    This was a post hoc analysis of data collected in the National Cholesterol Education Program (NCEP) Evaluation Project Utilizing Novel E-Technology II (NEPTUNE II) survey conducted in 2003. Among 4885 dyslipidemic patients receiving lipid management in the United States, estimates of the prevalence of the metabolic syndrome according to the 2001 NCEP Third Adult Treatment Panel (ATP III), the 2005 American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement, and the 2005 International Diabetes Federation definitions were 55%, 62%, and 63%, respectively. Metabolic syndrome prevalence among patients with coronary heart disease and risk equivalents was 69%, 74%, and 74%, according to these respective definitions. Notably, in the coronary heart disease and risk equivalents category, the prevalence was similar to that of the multiple risk factor category when patients with diabetes mellitus were excluded from the analysis (46% by ATP III). The metabolic syndrome is common in patients receiving lipid-lowering therapy in an office-based setting. Three recent definitions resulted in similar estimates of its prevalence.

  1. A meta-analysis of cardio-metabolic abnormalities in drug naïve, first-episode and multi-episode patients with schizophrenia versus general population controls

    PubMed Central

    Vancampfort, Davy; Wampers, Martien; Mitchell, Alex J; Correll, Christoph U; De Herdt, Amber; Probst, Michel; De Hert, Marc

    2013-01-01

    A meta-analysis was conducted to explore the risk for cardio-metabolic abnormalities in drug naïve, first-episode and multi-episode patients with schizophrenia and age- and gender- or cohort-matched general population controls. Our literature search generated 203 relevant studies, of which 136 were included. The final dataset comprised 185,606 unique patients with schizophrenia, and 28 studies provided data for age- and gender-matched or cohort-matched general population controls (n=3,898,739). We found that multi-episode patients with schizophrenia were at increased risk for abdominal obesity (OR=4.43; CI=2.52-7.82; p<0.001), hypertension (OR=1.36; CI=1.21-1.53; p<0.001), low high-density lipoprotein cholesterol (OR=2.35; CI=1.78-3.10; p<0.001), hypertriglyceridemia (OR=2.73; CI=1.95-3.83; p<0.001), metabolic syndrome (OR=2.35; CI=1.68-3.29; p<0.001), and diabetes (OR=1.99; CI=1.55-2.54; p<0.001), compared to controls. Multi-episode patients with schizophrenia were also at increased risk, compared to first-episode (p<0.001) and drug-naïve (p<0.001) patients, for the above abnormalities, with the exception of hypertension and diabetes. Our data provide further evidence supporting WPA recommendations on screening, follow-up, health education and lifestyle changes in people with schizophrenia. PMID:24096790

  2. A water-alcohol extract of Citrus grandis whole fruits has beneficial metabolic effects in the obese Zucker rats fed with high fat/high cholesterol diet.

    PubMed

    Raasmaja, Atso; Lecklin, Anne; Li, Xiang Ming; Zou, Jianqiang; Zhu, Guo-Guang; Laakso, Into; Hiltunen, Raimo

    2013-06-01

    Epidemiological studies suggest that citrus fruits and compounds such as flavonoids, limonoids and pectins have health promoting effects. Our aim was to study the effects of Citrus grandis (L.) Osbeck var. tomentosa hort. fruit extract on the energy metabolism. A whole fruit powder from dry water and alcohol extracts of C. grandis containing 19% naringin flavonoid was prepared. The effects of the citrus extract were followed in the obese Zucker rats fed with the HFD. The circulatory levels of GLP-1 decreased significantly by the extract in comparison to the HFD group, whereas the decreased ghrelin levels were reversed. The levels of PYY were decreased in all HFD groups. The leptin amounts decreased but not significantly whereas insulin and amylin were unchanged. The cholesterol and glucose levels were somewhat but not systematically improved in the HFD fed rats. Further studies are needed to identify the active compounds and their mechanisms.

  3. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage.

  4. An in-silico model of lipoprotein metabolism and kinetics for the evaluation of targets and biomarkers in the reverse cholesterol transport pathway.

    PubMed

    Lu, James; Hübner, Katrin; Nanjee, M Nazeem; Brinton, Eliot A; Mazer, Norman A

    2014-03-01

    High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the

  5. An in-silico model of lipoprotein metabolism and kinetics for the evaluation of targets and biomarkers in the reverse cholesterol transport pathway.

    PubMed

    Lu, James; Hübner, Katrin; Nanjee, M Nazeem; Brinton, Eliot A; Mazer, Norman A

    2014-03-01

    High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the

  6. Metabolic differentiation and classification of abnormal Savda Munziq's pharmacodynamic role on rat models with different diseases by nuclear magnetic resonance-based metabonomics

    PubMed Central

    Mamtimin, Batur; Xia, Guo; Mijit, Mahmut; Hizbulla, Mawlanjan; Kurbantay, Nazuk; You, Li; Upur, Halmurat

    2015-01-01

    Background: Abnormal Savda Munziq (ASMq) is a traditional Uyghur herbal preparation used as a therapy for abnormal Savda-related diseases. In this study, we investigate ASMq's dynamic effects on abnormal Savda rat models under different disease conditions. Materials and Methods: Abnormal Savda rat models with hepatocellular carcinoma (HCC), type 2 diabetes mellitus (T2DM), and asthma dosed of ASMq. Serum samples of each animal tested by nuclear magnetic resonance spectroscopy and analyzed by orthogonal projection to latent structure with discriminant analysis. Results: Compared with healthy controls, HCC rats had higher concentrations of amino acids, fat-related metabolites, lactate, myoinositol, and citrate, but lower concentrations of α-glucose, β-glucose, and glutamine. Following ASMq treatment, the serum acetone very low-density lipoprotein (VLDL), LDL, unsaturated lipids, acetylcysteine, and pyruvate concentration decreased, but α-glucose, β-glucose, and glutamine concentration increased (P < 0.05). T2DM rats had higher concentrations of α- and β-glucose, but lower concentrations of isoleucine, leucine, valine, glutamine, glycoprotein, lactate, tyrosine, creatine, alanine, carnitine, and phenylalanine. After ASMq treated T2DM groups showed reduced α- and β-glucose and increased creatine levels (P < 0.05). Asthma rats had higher acetate, carnitine, formate, and phenylalanine levels, but lower concentrations of glutamine, glycoprotein, lactate, VLDL, LDL, and unsaturated lipids. ASMq treatment showed increased glutamine and reduced carnitine, glycoprotein, formate, and phenylalanine levels (P < 0.05). Conclusion: Low immune function, decreased oxidative defense, liver function abnormalities, amino acid deficiencies, and energy metabolism disorders are common characteristics of abnormal Savda-related diseases. ASMq may improve the abnormal metabolism and immune function of rat models with different diseases combined abnormal Savda. PMID:26600713

  7. p.Pro4Arg mutation in LMNA gene: a new atypical progeria phenotype without metabolism abnormalities.

    PubMed

    Guo, Hong; Luo, Na; Hao, Fei; Bai, Yun

    2014-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a typical presenile disorder, with mutation in the LMNA gene. Besides HGPS, mutations in LMNA gene have also been reported in atypical progeroid syndrome (APS). The objective of the study was to investigate the phenotype and molecular basis of APS in a Chinese family. LMNA gene mutations were also reviewed to identify the phenotypic and pathogenic differences among APS. Two siblings in a non-consanguineous Chinese family with atypical progeria were reported. The clinical features were observed, including presenile manifestations such as bird-like facial appearance, generalized lipodystrophy involving the extremities and mottled hyperpigmentation on the trunk and extremities. A heterozygous mutation c.11C>G (p.Pro4Arg) of the LMNA gene was detected in the two patients. 28 different variants of the LMNA gene have been reported in APS families, spreading over almost all the 12 exons of the LMNA gene with some hot-spot regions. This is the first detailed description of an APS family without metabolism abnormalities. APS patients share most of the clinical features, but there may be some distinct features in different ethnic groups.

  8. Lipid metabolism abnormalities in alcohol-treated rabbits: a morphometric and haematologic study comparing high and low alcohol doses

    PubMed Central

    Ikemura, Satoshi; Yamamoto, Takuaki; Motomura, Goro; Iwasaki, Kenyu; Yamaguchi, Ryosuke; Zhao, Garida; Iwamoto, Yukihide

    2011-01-01

    The pathogenesis of alcohol-induced osteonecrosis remains unclear. The purpose of the present study was to evaluate the morphological changes in bone marrow fat cells and the changes in the serum lipid levels in alcohol-treated rabbits. Fifteen rabbits were randomly assigned into three groups: Four rabbits intragastrically received low-dose alcohol (LDA) (15 ml/kg per day) containing 15% ethanol for 4 weeks, five rabbits received high-dose alcohol (HDA) (30 ml/kg per day) for 4 weeks and six rabbits received physiologic saline for 4 weeks as a control group. Six weeks after the initial alcohol administration, all rabbits were sacrificed. The mean size of the bone marrow fat cells in rabbits treated with HDA was significantly larger than that in the control group (P = 0.0001). Haematologically, the levels of triglycerides and free fatty acids in the rabbits treated with both low-dose and HDA were significantly higher than those in the control group (P = 0.001 for both comparisons). The results of this study are that there are lipid metabolism abnormalities, both morphologically and haematologically, after alcohol administration. Also these findings were more apparent in rabbits treated with HDA than those treated with LDA. PMID:21645143

  9. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by 1H-NMR-based metabonomics

    PubMed Central

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-01-01

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC. PMID:27075403

  10. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    PubMed Central

    Vázquez, Mary Carmen; Rigotti, Attilio; Zanlungo, Silvana

    2012-01-01

    Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition. PMID:22132343

  11. The effect of essential oils of dietary wormwood (Artemisia princeps), with and without added vitamin E, on oxidative stress and some genes involved in cholesterol metabolism.

    PubMed

    Chung, Mi Ja; Kang, Ah-Young; Park, Sung-Ok; Park, Kuen-Woo; Jun, Hee-Jin; Lee, Sung-Joon

    2007-08-01

    Wormwood (Artemisia princeps) due to the abundance of antioxidant in its essential oils (EO), has been used as a traditional drug and health food in Korea. Oxidative stress plays an important role in the etiology of atherosclerosis thus antioxidative chemicals improves hepatic lipid metabolism partly by reducing oxysterol formation. The antioxidant activity was assessed using two methods, human low-density lipoprotein (LDL) oxidation and the anti-DPPH free radical assays. It was found that the antioxidant activity of EO with vitamin E higher than EO alone. To study mechanisms accounting for the antiatherosclerotic properties of this wormwood EO, we examined the expression of key genes in cholesterol metabolism such as the LDL receptor, the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and sterol regulatory element binding proteins. The induction was increased up to twofold at 0.05 mg/mL of EO treatment in HepG2 cells for 24h. When EO (0.2 mg/mL) was co-incubated with vitamin E, interestingly, the LDL receptor was dramatically induced by 5-6-folds. HMG-CoA reductase did not change. However, treatment with the higher concentration resulted in cytotoxicity. Our data suggest that wormwood EO with vitamin E may be anti-atherogenic due to their inhibition of LDL oxidation and upregulation of the LDL receptor.

  12. Investigation of gene expressions related to cholesterol metabolism in rats fed diets enriched in n-6 or n-3 fatty acid with a cholesterol after long-term feeding using quantitative-competitive RT-PCR analysis.

    PubMed

    Fukushima, M; Shimada, K; Ohashi, E; Saitoh, H; Sonoyama, K; Sekikawa, M; Nakano, M

    2001-06-01

    We have developed a method to quantitate hepatic apolipoprotein (apo) B, LDL receptor, 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA reductase) and cholesterol 7alpha-hydroxylase mRNA expression in rats fed a cholesterol-enriched diet after long-term feeding using competitive RT-RCR. Rats (8 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil (PEO, oleic acid+linoleic acid+alpha-linolenic acid), borage oil (BRO, oleic acid+linoleic acid+gamma-linolenic acid), evening primrose oil (EPO, linoleic acid+gamma-linolenic acid), mixed oil (MIO, oleic acid+linoleic acid+gamma-linolenic acid+alpha-linolenic acid), or palm oil (PLO, palmitic acid+oleic acid+linoleic acid) with 0.5% cholesterol for 15 wk. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO and PLO groups was significantly higher than other groups. The serum total cholesterol and very low density lipoprotein (VLDL)+intermediate density lipoprotein (IDL)+low density lipoprotein (LDL)-cholesterol concentrations were consistently higher in PLO group than in the other groups. The serum high density lipoprotein cholesterol concentration was significantly lower in the PEO group than in the other groups. The liver cholesterol concentration group was significantly higher in the PEO than in the other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apo B, HMG-CoA reductase and cholesterol 7alpha-hydroxylase mRNA levels were not affected by the experimental conditions. However, hepatic cholesterol 7alpha-hydroxylase mRNA level in the PEO and MIO groups tended to be higher than in the other groups. The fecal cholesterol extraction was significantly higher in the MIO and PLO groups than in the PEO and EPO groups and the total bile acid extraction was significantly higher in the PEO and MIO groups than in the PLO group. The results of this study

  13. Investigation of gene expressions related to cholesterol metabolism in rats fed diets enriched in n-6 or n-3 fatty acid with a cholesterol after long-term feeding using quantitative-competitive RT-PCR analysis.

    PubMed

    Fukushima, M; Shimada, K; Ohashi, E; Saitoh, H; Sonoyama, K; Sekikawa, M; Nakano, M

    2001-06-01

    We have developed a method to quantitate hepatic apolipoprotein (apo) B, LDL receptor, 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA reductase) and cholesterol 7alpha-hydroxylase mRNA expression in rats fed a cholesterol-enriched diet after long-term feeding using competitive RT-RCR. Rats (8 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil (PEO, oleic acid+linoleic acid+alpha-linolenic acid), borage oil (BRO, oleic acid+linoleic acid+gamma-linolenic acid), evening primrose oil (EPO, linoleic acid+gamma-linolenic acid), mixed oil (MIO, oleic acid+linoleic acid+gamma-linolenic acid+alpha-linolenic acid), or palm oil (PLO, palmitic acid+oleic acid+linoleic acid) with 0.5% cholesterol for 15 wk. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO and PLO groups was significantly higher than other groups. The serum total cholesterol and very low density lipoprotein (VLDL)+intermediate density lipoprotein (IDL)+low density lipoprotein (LDL)-cholesterol concentrations were consistently higher in PLO group than in the other groups. The serum high density lipoprotein cholesterol concentration was significantly lower in the PEO group than in the other groups. The liver cholesterol concentration group was significantly higher in the PEO than in the other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apo B, HMG-CoA reductase and cholesterol 7alpha-hydroxylase mRNA levels were not affected by the experimental conditions. However, hepatic cholesterol 7alpha-hydroxylase mRNA level in the PEO and MIO groups tended to be higher than in the other groups. The fecal cholesterol extraction was significantly higher in the MIO and PLO groups than in the PEO and EPO groups and the total bile acid extraction was significantly higher in the PEO and MIO groups than in the PLO group. The results of this study

  14. Prevalence of Lipodystrophy and Metabolic Abnormalities in HIV-infected African Children after 3 Years on First-line Antiretroviral Therapy

    PubMed Central

    Bwakura-Dangarembizi, Mutsawashe; Szubert, Alexander J.; Prendergast, Andrew J.; Gomo, Zvenyika A.; Thomason, Margaret J.; Musarurwa, Cuthbert; Mugyenyi, Peter; Nahirya, Patricia; Kekitiinwa, Adeodata; Gibb, Diana M.; Walker, Ann S.; Nathoo, Kusum

    2015-01-01

    Background: Most pediatric lipodystrophy data come from high-income/middle-income countries, but most HIV-infected children live in sub-Saharan Africa, where lipodystrophy studies have predominantly investigated stavudine-based regimens. Methods: Three years after antiretroviral therapy (ART) initiation, body circumferences and skinfold thicknesses were measured (n = 590), and fasted lipid profile assayed (n = 325), in children from 2 ARROW trial centres in Uganda/Zimbabwe. Analyses compared randomization to long-term versus short-term versus no zidovudine from ART initiation [unadjusted; latter 2 groups receiving abacavir+lamivudine+non-nucleoside-reverse-transciptase-inhibitor (nNRTI) long-term], and nonrandomized (confounder-adjusted) receipt of nevirapine versus efavirenz. Results: Body circumferences and skinfold thicknesses were similar regardless of zidovudine exposure (P > 0.1), except for subscapular and supra-iliac skinfolds-for-age which were greater with long-term zidovudine (0.006 < P < 0.047). Circumferences/skinfolds were also similar with efavirenz and nevirapine (adjusted P > 0.09; 0.02 < P < 0.03 for waist/waist-hip-ratio). Total and high-density lipoprotein (HDL)-cholesterol, HDL/triglyceride-ratio (P < 0.0001) and triglycerides (P = 0.01) were lower with long-term zidovudine. Low-density lipoprotein (LDL)-cholesterol was higher with efavirenz than nevirapine (P < 0.001). Most lipids remained within normal ranges (75% cholesterol, 85% LDL and 100% triglycerides) but more on long-term zidovudine (3 NRTI) had abnormal HDL-cholesterol (88% vs. 40% short/no-zidovudine, P < 0.0001). Only 8/579(1.4%) children had clinical fat wasting (5 grade 1; 3 grade 2); 2(0.3%) had grade 1 fat accumulation. Conclusions: Long-term zidovudine-based ART is associated with similar body circumferences and skinfold thicknesses to abacavir-based ART, with low rates of lipid abnormalities and clinical lipodystrophy, providing reassurance where national programs now

  15. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-05-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day{sup -1}) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day{sup -1}. DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression.

  16. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  17. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  18. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage.

    PubMed

    Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard; Ikonen, Elina; Potma, Eric O

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  19. Dietary combination of sucrose and linoleic acid causes skeletal muscle metabolic abnormalities in Zucker fatty rats through specific modification of fatty acid composition

    PubMed Central

    Ohminami, Hirokazu; Amo, Kikuko; Taketani, Yutaka; Sato, Kazusa; Fukaya, Makiko; Uebanso, Takashi; Arai, Hidekazu; Koganei, Megumi; Sasaki, Hajime; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2014-01-01

    A dietary combination of sucrose and linoleic acid strongly contributes to the development of metabolic disorders in Zucker fatty rats. However, the underlying mechanisms of the metabolic disorders are poorly understood. We hypothesized that the metabolic disorders were triggered at a stage earlier than the 8 weeks we had previously reported. In this study, we investigated early molecular events induced by the sucrose and linoleic acid diet in Zucker fatty rats by comparison with other combinations of carbohydrate (sucrose or palatinose) and fat (linoleic acid or oleic acid). Skeletal muscle arachidonic acid levels were significantly increased in the sucrose and linoleic acid group compared to the other dietary groups at 4 weeks, while there were no obvious differences in the metabolic phenotype between the groups. Expression of genes related to arachidonic acid synthesis was induced in skeletal muscle but not in liver and adipose tissue in sucrose and linoleic acid group rats. In addition, the sucrose and linoleic acid group exhibited a rapid induction in endoplasmic reticulum stress and abnormal lipid metabolism in skeletal muscle. We concluded that the dietary combination of sucrose and linoleic acid primarily induces metabolic disorders in skeletal muscle through increases in arachidonic acid and endoplasmic reticulum stress, in advance of systemic metabolic disorders. PMID:25147427

  20. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  1. Association of metabolic and genetic factors with cholesterol esterification rate in HDL plasma and atherogenic index of plasma in a 40 years old Slovak population.

    PubMed

    Rašlová, K; Dobiášová, M; Hubáček, J A; Bencová, D; Siváková, D; Danková, Z; Franeková, J; Jabor, A; Gašparovič, J; Vohnout, B

    2011-01-01

    We assessed association between novel biomarkers of cardiovascular disease and conventional factors in 40 years old subjects (208 men and 266 women) from the general population of Slovakia. FER(HDL) (cholesterol esterification rate in HDL plasma), AIP--Atherogenic Index of Plasma [Log(TG/HDL-C)] as markers of lipoprotein particle size, and CILP2, FTO and MLXIPL polymorphisms, were examined in relation to biomarkers and conventional risk factors. Univariate analyses confirmed correlation between AIP, FER(HDL) and the most of measured parameters. Relations between AIP and CILP2, FTO and MLXIPL were not significant. However, CILP2 was significantly related to FER(HDL) in both genders. In multivariate analysis BMI was the strongest correlate of AIP levels. In multivariate model variability of FER(HDL) was best explained by AIP (R(2) = 0.55) in both genders with still significant effect of CILP2 SNP in men. In a model where AIP was omitted, TG levels explained 43 % of the FER(HDL) variability in men, while in women HDL-C was the major determinant (42 %). In conclusions, FER(HDL) and AIP related to the known markers of cardiovascular risk provide means to express their subtle interactions by one number. Our novel finding of association between CILP2 polymorphism and FER(HDL) supports its role in lipid metabolism.

  2. Approach to the Patient with Extremely Low HDL-Cholesterol

    PubMed Central

    deGoma, Emil M.

    2012-01-01

    Patients with extremely low high-density lipoprotein-cholesterol (HDL-C) pose distinct challenges to clinical diagnosis and management. Confirmation of HDL-C levels below 20 mg/dl in the absence of severe hypertriglyceridemia should be followed by evaluation for secondary causes, such as androgen use, malignancy, and primary monogenic disorders, namely, apolipoprotein A-I mutations, Tangier disease, and lecithin-cholesterol acyltransferase deficiency. Global cardiovascular risk assessment is a critical component of comprehensive evaluation, although the association between extremely low HDL-C levels and atherosclerosis remains unclear. Therapeutic interventions address reversible causes of low HDL-C, multiorgan abnormalities that may accompany primary disorders and cardiovascular risk modification when appropriate. Uncommon encounters with patients exhibiting extremely low HDL-C provide an opportunity to directly observe the role of HDL metabolism in atherosclerosis and beyond the vascular system. PMID:23043194

  3. Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

    PubMed

    Wu, Jian; Kakoola, Dorothy N; Lenchik, Nataliya I; Desiderio, Dominic M; Marshall, Dana R; Gerling, Ivan C

    2012-01-01

    Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse--a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (~90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes.

  4. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption, and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol.

    PubMed

    Chan, Jeannie; Kushwaha, Rampratap S; Vandeberg, Jane F; Vandeberg, John L

    2008-12-01

    Partially inbred lines of laboratory opossums differ in plasma low-density lipoprotein cholesterol concentration and cholesterol absorption on a high-cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high-cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/(kg d) and treated 6 high- and 6 low-responding opossums with this dose (with equal numbers of controls) for 3 weeks while the opossums consumed a high-cholesterol and low-fat diet. Plasma and low-density lipoprotein cholesterol concentrations decreased significantly (P < .05) in treated but not in untreated high-responding opossums. Plasma cholesterol concentrations increased slightly (P < .05) in untreated low responders but not in treated low responders. The percentage of cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P < .01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P < .05) higher than those in low responders with or without treatment (P < .001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P < .05) lower than those in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Because ezetimibe's target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated

  5. Burden and Socio-Behavioral Correlates of Uncontrolled Abnormal Glucose Metabolism in an Urban Population of India

    PubMed Central

    Mahapatra, Tanmay; Chakraborty, Kaushik; Mahapatra, Sanchita; Mahapatra, Umakanta; Pandey, Naren; Thomson, Peter L.; Musk, Arthur W.; Mitra, Ramendra N.

    2016-01-01

    Background Progressive burden of diabetes mellitus is a major concern in India. Data on the predictors of poor glycemic control among diabetics are scanty. A population-based cross-sectional study nested in an urban cohort was thus conducted in West Bengal, India to determine the burden and correlates of total and uncontrolled abnormalities in glucose metabolism (AGM) in a representative population. Methods From 9046 adult cohort-members, 269 randomly selected consenting subjects (non-response = 7.24%) were interviewed, examined [blood pressure (BP), anthropometry], tested for fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1C). Those having pre-diagnosed diabetes or FPG ≥126 or HbA1c≥6.5 were defined as diabetic. Among non-diabetics, subjects with FPG (mg/dl) = 100–125 or HbA1C(%) = 5.7–6.4 were defined as pre-diabetic. Pre-diagnosed cases with current FPG ≥126 were defined as uncontrolled AGM. Descriptive and regression analyses were conducted using SAS-9.3.2. Results Among participants, 28.62% [95% Confidence Interval (95%CI) = 23.19–34.06)] were overweight [body mass index(BMI) = (25–29.99)kg/meter2], 7.81% (4.58–11.03) were obese(BMI≥30kg/meter2), 20.82% (15.93–25.70) were current smokers, 12.64% (8.64–16.64) were current alcohol-drinkers and 46.32% of responders (39.16–53.47) had family history of diabetes. 17.84% (13.24–22.45) had stage-I [140≤average systolic BP (AvSBP in mm of mercury)<160 or 90≤average diastolic BP (AvDBP)<100] and 12.64% (8.64–16.64) had stage-II (AvSBP≥160 or AvDBP≥160) hypertension. Based on FPG and HbA1c, 10.41% (6.74–14.08) were diabetic and 27.88% (22.49–33.27) were pre-diabetic. Overall prevalence of diabetes was 15.61% (11.25–19.98). Among pre-diagnosed cases, 46.43% (26.74–66.12) had uncontrolled AGM. With one year increase in age [Odds Ratio(OR) = 1.05(1.03–1.07)], retired subjects [OR = 9.14(1.72–48.66)], overweight[OR = 2.78(1.37–5.64)], ex-drinkers [OR = 4

  6. Women and Cholesterol

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  7. Cholesterol IQ Quiz

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  8. Prevalence of Metabolic Syndrome among Malaysians using the International Diabetes Federation, National Cholesterol Education Program and Modified World Health Organization Definitions.

    PubMed

    Bee, Ying Tan; Haresh, Kumar Kantilal; Rajibans, Singh

    2008-03-01

    The World Health Organization (WHO), National Cholesterol Education Program Adults Treatment Panel III (NCEP ATP III) and International Diabetes Federation (IDF) have proposed different criteria to diagnose metabolic syndrome (MetS). However, there is no single definition to accurately diagnose MetS. The objective of this study is to estimate the prevalence of MetS using WHO, NCEP ATP III and IDF in the Malaysian community, and to determine the concordance between these definitions for MetS. 109 men and women aged > 30 years participated in the study, and the prevalence of MetS was determined according to the three definitions. Weight, height, body mass index (BMI), waist-hip circumference, blood pressure, blood lipid profile and plasma fasting glucose were measured. In order to determine the concordance between IDF and the other two definitions, the kappa index (κ-test) was used. The prevalence of MetS (95% confidence interval) was 22.9% (22.8-23.1) by IDF definition, 16.5% (16.3-16.9) by NCEP ATP III definition and 6.4% (6.2-6.6) by modified WHO definition. The sensitivity and specificity of IDF against NCEP ATP III were 88.9% and 90.1% respectively, IDF against WHO definition were 85.7% and 81.4%. The κ statistics for the agreement of the IDF definition was 68.3 ± 0.1 with the NCEP ATP III, and 30.5 ± 0.1 with the modified WHO definition. The prevalence of the MetS among respondents using the IDF definition was highest, followed by NCEP ATP III, and finally modified WHO definition. There was a good concordance between the IDF and NCEP ATP III definitions, and a low concordance between IDF and modified WHO definitions. PMID:22691765

  9. Effects of apolipoprotein A5 haplotypes on the ratio of triglyceride to high-density lipoprotein cholesterol and the risk for metabolic syndrome in Koreans

    PubMed Central

    2014-01-01

    Background Single-nucleotide polymorphisms (SNPs) around the apolipoprotein A5 gene (APOA5) have pleiotropic effects on the levels of triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C). APOA5 SNPs have also been associated with metabolic syndrome (MS). Here, we constructed haplotypes with SNPs spanning APOA5 and ZNF259, which are approximately 1.3 kb apart, to perform association analyses with the risk for MS and the levels of TG and HDL-C in terms of a TG:HDL-C ratio. Methods The effects of three constructed haplotypes (TAA, CGG, and CGA, in the order of rs662799, rs651821, and rs6589566) on the TG:HDL-C ratio and MS were estimated using multiple regression analyses in 2,949 Koreans and in each gender separately (1,082 men and 1,867 women). Results The haplotypes, CGG and CGA, were associated with the TG:HDL-C ratio and the risk of MS development in both genders. That is, the minor alleles of the rs662799 and rs651821 in APOA5, irrespective of which allele was present at rs6589566, had the marked effects. Interestingly, a C–G–A haplotype at these three SNPs had the most marked effects on the TG:HDL-C ratio and the risk of MS development in women. Conclusions We have identified the novel APOA5-ZNF259 haplotype manifesting sex-dependent effects on elevation of the TG:HDL-C ratio as well as the increased risk for MS. PMID:24618354

  10. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover.

    PubMed

    Jefcoate, Colin R; Lee, Jinwoo; Cherradi, Nadia; Takemori, Hiroshi; Duan, Haichuan

    2011-04-10

    The steroidogenic acute regulatory (StAR) protein is generated in rodents from 1.6 kb and 3.5 kb mRNA formed by alternative polyadenylation. The zinc finger protein, TIS11B (also Znf36L1), is elevated by cAMP in adrenal cells in parallel with StAR mRNA. TIS11b selectively destabilizes the 3.5 kb mRNA through AU-rich sequences at the end of the 3'UTR. siRNA suppression shows that TIS11b surprisingly increases StAR protein and cholesterol metabolism. StAR transcription is directly activated by PKA phosphorylation. cAMP responsive element binding (CREB) protein 1 phosphorylation is a key step leading to recruitment of the co-activator, CREB binding protein (CBP). A second protein, CREB regulated transcription coactivator (TORC/CRTC), enhances this recruitment, but is inhibited by salt inducible kinase (SIK). Basal StAR transcription is constrained through this phosphorylation of TORC. PKA provides an alternative stimulation by phosphorylating SIK, which prevents TORC inactivation. PKA stimulation of StAR nuclear transcripts substantially precedes TORC recruitment to the StAR promoter, which may, therefore, mediate a later step in mRNA production. Inhibition of SIK by staurosporine elevates StAR transcription and TORC recruitment to maximum levels, but without CREB phosphorylation. TORC suppression by SIK evidently limits basal StAR transcription. Staurosporine and cAMP stimulate synergistically. SIK targets the phosphatase, PP2a (activation), and Type 2 histone de-acetylases (inhibition), which may each contribute to suppression. Staurosporine stimulation through SIK inhibition is repeated in cAMP stimulation of many steroidogenic genes regulated by steroidogenic factor 1 (SF-1) and CREB. TIS11b and SIK may combine to attenuate StAR expression when hormonal stimuli decline.

  11. A Dose-Response Study of the Effects of Dietary Cholesterol on Fasting and Postprandial Lipid and Lipoprotein Metabolism in Healthy Young Men

    PubMed Central

    Ginsberg, Henry N.; Karmally, Wahida; Siddiqui, Maliha; Holleran, Steve; Tall, Alan R.; Rumsey, Steven C.; Deckelbaum, Richard J.; Blaner, William S.; Ramakrishnan, Rajasekhar

    2012-01-01

    Despite many previous studies, controversy remains concerning the effects of dietary cholesterol on plasma cholesterol concentrations. In addition, the focus of previous studies has been fasting lipid and lipoprotein concentrations; there are no published studies with postprandial measurements. We studied the effects of four levels of dietary cholesterol intake on fasting lipid, lipoprotein, and apoprotein levels, as well as postprandial lipid levels, in a group of young, healthy men who were otherwise eating a low-fat, American Heart Association step 1 diet. Twenty young, healthy men completed a randomized, four-way crossover design study to test the effects of an American Heart Association step 1 diet containing 0, 1, 2, or 4 eggs per day. Dietary cholesterol ranged from 128 to 858 mg cholesterol per day. Each diet was eaten for 8 weeks, with a break between diets. Three fasting blood samples were obtained at the end of each diet period. In addition, blood samples were obtained just before and 2, 4, and 6 hours after ingestion of a standard lunch containing the various amounts of egg cholesterol. We also obtained blood 4 and 8 hours after the subjects ingested a standard, high-fat formula. Fasting plasma total cholesterol concentrations increased by 1.47 mg/dL (0.038 mmol/L) for every 100 mg dietary cholesterol added to the diet (P <.001). Low-density lipoprotein (LDL) cholesterol increased in parallel. Responsiveness varied but appeared to be normally distributed. Fasting plasma apoprotein B concentrations increased approximately 10% between the 0- and 4-egg diets and were correlated with changes in total and LDL cholesterol concentrations. Although there was a trend toward a greater response in men with an apoprotein E4 allele, this was not statistically significant. Fasting plasma cholesteryl ester transfer protein levels were higher only on the 4-egg diet, and changes in cholesteryl ester transfer protein levels between the 0- and 4-egg diets correlated with

  12. Prevalence of Sleep Abnormalities and Their Association with Metabolic Syndrome among Asian Indians: Chennai Urban Rural Epidemiology Study (CURES – 67)

    PubMed Central

    Roopa, Mahadevan; Deepa, Mohan; Indulekha, Karunakaran; Mohan, Viswanathan

    2010-01-01

    Objective To estimate the prevalence of sleep abnormalities and their association with glucose intolerance and metabolic syndrome (MS) in the normal-weight urban South Indian population. Methods This population-based, cross-sectional study was carried out in 358 subjects aged 20–76 years randomly selected from the Chennai Urban Rural Epidemiology Study in South India. A validated questionnaire assessing various sleep abnormalities (snoring, daytime sleepiness, lack of refreshing sleep, and number of hours of sleep) was administered. All subjects underwent an oral glucose tolerance test, and anthropometric biochemical measurements were obtained to assess cardiometabolic risk factors including glucose intolerance. Diabetes risk was assessed using a previously validated Indian Diabetes Risk Score (IDRS). Results The overall prevalence of snoring and daytime sleepiness was 40% and 59%, respectively. Snorers were more male, older, smokers, and had higher levels of cardiometabolic risk factors. Subjects with daytime sleepiness had higher body mass index (BMI) and abdominal obesity. Both snoring (50.9% vs 30.2%, p < 0.001) and daytime sleepiness (68% vs 49.7%, p < 0.001) were more prevalent among subjects with impaired glucose metabolism compared to those with normal glucose metabolism. Both sleep measures were associated with higher diabetes risk scores, as assessed by the IDRS (snoring: trend χ2, 11.14, p = 0.001; daytime sleepiness: trend χ2, 5.12, p = 0.024). Metabolic syndrome was significantly associated with snoring even after adjusting for age, sex, family history of diabetes, physical activity, smoking, and alcohol. Conclusion The prevalence of snoring and daytime sleepiness is high among urban South Indians and these two sleep measures are associated with glucose intolerance, MS, and higher diabetes risk scores. PMID:21129351

  13. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    SciTech Connect

    Bag, Swarnendu; Banerjee, Deb Ranjan; Basak, Amit; Das, Amit Kumar; Pal, Mousumi; Banerjee, Rita; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  14. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome.

    PubMed

    Blassberg, Robert; Macrae, James I; Briscoe, James; Jacob, John

    2016-02-15

    Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.

  15. Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome

    PubMed Central

    Blassberg, Robert; Macrae, James I.; Briscoe, James; Jacob, John

    2016-01-01

    Smith–Lemli–Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium. PMID:26685159

  16. Cilostazol Inhibits Accumulation of Triglyceride in Aorta and Platelet Aggregation in Cholesterol-Fed Rabbits

    PubMed Central

    Ito, Hideki; Uehara, Kenji; Matsumoto, Yutaka; Hashimoto, Ayako; Nagano, Chifumi; Niimi, Manabu; Miyakoda, Goro; Nagano, Keisuke

    2012-01-01

    Cilostazol is clinically used for the treatment of ischemic symptoms in patients with chronic peripheral arterial obstruction and for the secondary prevention of brain infarction. Recently, it has been reported that cilostazol has preventive effects on atherogenesis and decreased serum triglyceride in rodent models. There are, however, few reports on the evaluation of cilostazol using atherosclerotic rabbits, which have similar lipid metabolism to humans, and are used for investigating the lipid content in aorta and platelet aggregation under conditions of hyperlipidemia. Therefore, we evaluated the effect of cilostazol on the atherosclerosis and platelet aggregation in rabbits fed a normal diet or a cholesterol-containing diet supplemented with or without cilostazol. We evaluated the effects of cilostazol on the atherogenesis by measuring serum and aortic lipid content, and the lesion area after a 10-week treatment and the effect on platelet aggregation after 1- and 10-week treatment. From the lipid analyses, cilostazol significantly reduced the total cholesterol, triglyceride and phospholipids in serum, and moreover, the triglyceride content in the atherosclerotic aorta. Cilostazol significantly reduced the intimal atherosclerotic area. Platelet aggregation was enhanced in cholesterol-fed rabbits. Cilostazol significantly inhibited the platelet aggregation in rabbits fed both a normal diet and a high cholesterol diet. Cilostazol showed anti-atherosclerotic and anti-platelet effects in cholesterol-fed rabbits possibly due to the improvement of lipid metabolism and the attenuation of platelet activation. The results suggest that cilostazol is useful for prevention and treatment of atherothrombotic diseases with the lipid abnormalities. PMID:22761774

  17. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease.

    PubMed

    Simopoulos, Artemis P

    2013-08-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  18. Dietary cholesterol and the plasma lipids and lipoproteins in the Tarahumara Indians: a people habituated to a low cholesterol diet after weaning.

    PubMed

    McMurry, M P; Connor, W E; Cerqueira, M T

    1982-04-01

    Eight Tarahumara Indian men participated in a metabolic study to measure the responsiveness of their plasma cholesterol levels to dietary cholesterol. They were fed isocaloric cholesterol-free and high cholesterol diets containing 20% fat, 15% protein, and 65% carbohydrate calories. On admission to the study, the Tarahumaras had a low mean plasma cholesterol concentration (120 mg/dl), reflecting their habitual low cholesterol diet. After 3 wk of a cholesterol-free diet their cholesterol levels were 113 mg/dl. The men were then fed a high cholesterol diet (1000 mg/day) which increased the mean total plasma cholesterol to 147 mg/dl (p less than 0.01) and also increased the low-density lipoprotein cholesterol concentration. Tarahumaras, habituated to a low cholesterol diet after weaning, had the typical hypercholesterolemic response to a high cholesterol diet that has been previously observed in subjects whose lifelong diet was high in cholesterol content.

  19. Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease.

    PubMed

    Vergouts, Maxime; Marinangeli, Claudia; Ingelbrecht, Caroline; Genard, Geraldine; Schakman, Olivier; Sternotte, Anthony; Calas, André-Guilhem; Hermans, Emmanuel

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5'-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1(G93A). Using an automated gait analysis system (CatWalk), we here show that hSOD1(G93A) mice and age-matched mice lacking the neuronal and skeletal muscle predominant α2 catalytic subunit of AMPK showed an altered gait, clearly different from wild type control mice. Double mutant mice lacking AMPK α2 and carrying hSOD1(G93A) showed the same early gait abnormalities as hSOD1(G93A) mice over an age span of 8 to 16 weeks. Taken together, these data support the concept that altered AMPK function and associated bioenergetic abnormalities could constitute an important component in the early pathogenesis of ALS. Therapeutic interventions acting on metabolic pathways could prove beneficial on early locomotor deficits, which are sensitively detectable in rodent models using the CatWalk system. PMID:26152932

  20. Anesthetic management of a patient with sustained severe metabolic alkalosis and electrolyte abnormalities caused by ingestion of baking soda.

    PubMed

    Soliz, Jose; Lim, Jeffrey; Zheng, Gang

    2014-01-01

    The use of alternative medicine is prevalent worldwide. However, its effect on intraoperative anesthetic care is underreported. We report the anesthetic management of a patient who underwent an extensive head and neck cancer surgery and presented with a severe intraoperative metabolic alkalosis from the long term ingestion of baking soda and other herbal remedies. PMID:25180100

  1. Anesthetic management of a patient with sustained severe metabolic alkalosis and electrolyte abnormalities caused by ingestion of baking soda.

    PubMed

    Soliz, Jose; Lim, Jeffrey; Zheng, Gang

    2014-01-01

    The use of alternative medicine is prevalent worldwide. However, its effect on intraoperative anesthetic care is underreported. We report the anesthetic management of a patient who underwent an extensive head and neck cancer surgery and presented with a severe intraoperative metabolic alkalosis from the long term ingestion of baking soda and other herbal remedies.

  2. Anesthetic Management of a Patient with Sustained Severe Metabolic Alkalosis and Electrolyte Abnormalities Caused by Ingestion of Baking Soda

    PubMed Central

    Lim, Jeffrey

    2014-01-01

    The use of alternative medicine is prevalent worldwide. However, its effect on intraoperative anesthetic care is underreported. We report the anesthetic management of a patient who underwent an extensive head and neck cancer surgery and presented with a severe intraoperative metabolic alkalosis from the long term ingestion of baking soda and other herbal remedies. PMID:25180100

  3. Prevalence and determinants of metabolic syndrome: a cross-sectional survey of general medical outpatient clinics using National Cholesterol Education Program-Adult Treatment Panel III criteria in Botswana

    PubMed Central

    Omech, Bernard; Tshikuka, Jose-Gaby; Mwita, Julius C; Tsima, Billy; Nkomazana, Oathokwa; Amone-P’Olak, Kennedy

    2016-01-01

    Background Low- and middle-income countries, including Botswana, are facing rising prevalence of obesity and obesity-related cardiometabolic complications. Very little information is known about clustering of cardiovascular risk factors in the outpatient setting during routine visits. We aimed to assess the prevalence and identify the determinants of metabolic syndrome among the general outpatients’ attendances in Botswana. Methods A cross-sectional study was conducted from August to October 2014 involving outpatients aged ≥20 years without diagnosis of diabetes mellitus. A precoded questionnaire was used to collect data on participants’ sociodemographics, risk factors, and anthropometric indices. Fasting blood samples were drawn and analyzed for glucose and lipid profile. Metabolic syndrome was assessed using National Cholesterol Education Program-Adult Treatment Panel III criteria. Results In total, 291 participants were analyzed, of whom 216 (74.2%) were females. The mean age of the total population was 50.1 (±11) years. The overall prevalence of metabolic syndrome was 27.1% (n=79), with no significant difference between the sexes (female =29.6%, males =20%, P=0.11). A triad of central obesity, low high-density lipoprotein-cholesterol, and elevated blood pressure constituted the largest proportion (38 [13.1%]) of cases of metabolic syndrome, followed by a combination of low high-density lipoprotein, elevated triglycerides, central obesity, and elevated blood pressure, with 17 (5.8%) cases. Independent determinants of metabolic syndrome were antihypertensive use and increased waist circumference. Conclusion Metabolic syndrome is highly prevalent in the general medical outpatients clinics. Proactive approaches are needed to screen and manage cases targeting its most important predictors.

  4. Prevalence and determinants of metabolic syndrome: a cross-sectional survey of general medical outpatient clinics using National Cholesterol Education Program-Adult Treatment Panel III criteria in Botswana

    PubMed Central

    Omech, Bernard; Tshikuka, Jose-Gaby; Mwita, Julius C; Tsima, Billy; Nkomazana, Oathokwa; Amone-P’Olak, Kennedy

    2016-01-01

    Background Low- and middle-income countries, including Botswana, are facing rising prevalence of obesity and obesity-related cardiometabolic complications. Very little information is known about clustering of cardiovascular risk factors in the outpatient setting during routine visits. We aimed to assess the prevalence and identify the determinants of metabolic syndrome among the general outpatients’ attendances in Botswana. Methods A cross-sectional study was conducted from August to October 2014 involving outpatients aged ≥20 years without diagnosis of diabetes mellitus. A precoded questionnaire was used to collect data on participants’ sociodemographics, risk factors, and anthropometric indices. Fasting blood samples were drawn and analyzed for glucose and lipid profile. Metabolic syndrome was assessed using National Cholesterol Education Program-Adult Treatment Panel III criteria. Results In total, 291 participants were analyzed, of whom 216 (74.2%) were females. The mean age of the total population was 50.1 (±11) years. The overall prevalence of metabolic syndrome was 27.1% (n=79), with no significant difference between the sexes (female =29.6%, males =20%, P=0.11). A triad of central obesity, low high-density lipoprotein-cholesterol, and elevated blood pressure constituted the largest proportion (38 [13.1%]) of cases of metabolic syndrome, followed by a combination of low high-density lipoprotein, elevated triglycerides, central obesity, and elevated blood pressure, with 17 (5.8%) cases. Independent determinants of metabolic syndrome were antihypertensive use and increased waist circumference. Conclusion Metabolic syndrome is highly prevalent in the general medical outpatients clinics. Proactive approaches are needed to screen and manage cases targeting its most important predictors. PMID:27616893

  5. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm

    2014-12-01

    On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.

  6. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries.

    PubMed

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-01

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts. PMID:26758245

  7. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries

    PubMed Central

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-01

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts. PMID:26758245

  8. Abnormalities of Thyroid Hormone Metabolism during Systemic Illness: The Low T3 Syndrome in Different Clinical Settings

    PubMed Central

    Zantut-Wittmann, Denise Engelbrecht

    2016-01-01

    Thyroid hormone abnormalities are common in critically ill patients. For over three decades, a mild form of these abnormalities has been described in patients with several diseases under outpatient care. These alterations in thyroid hormone economy are a part of the nonthyroidal illness and keep an important relationship with prognosis in most cases. The main feature of this syndrome is a fall in free triiodothyronine (T3) levels with normal thyrotropin (TSH). Free thyroxin (T4) and reverse T3 levels vary according to the underlying disease. The importance of recognizing this condition in such patients is evident to physicians practicing in a variety of specialties, especially general medicine, to avoid misdiagnosing the much more common primary thyroid dysfunctions and indicating treatments that are often not beneficial. This review focuses on the most common chronic diseases already known to present with alterations in serum thyroid hormone levels. A short review of the common pathophysiology of the nonthyroidal illness is followed by the clinical and laboratorial presentation in each condition. Finally, a clinical case vignette and a brief summary on the evidence about treatment of the nonthyroidal illness and on the future research topics to be addressed are presented. PMID:27803712

  9. HDL abnormalities in nephrotic syndrome and chronic kidney disease.

    PubMed

    Vaziri, Nosratola D

    2016-01-01

    Normal HDL activity confers cardiovascular and overall protection by mediating reverse cholesterol transport and through its potent anti-inflammatory, antioxidant, and antithrombotic functions. Serum lipid profile, as well as various aspects of HDL metabolism, structure, and function can be profoundly altered in patients with nephrotic range proteinuria or chronic kidney disease (CKD). These abnormalities can, in turn, contribute to the progression of cardiovascular complications and various other comorbidities, such as foam cell formation, atherosclerosis, and/or glomerulosclerosis, in affected patients. The presence and severity of proteinuria and renal insufficiency, as well as dietary and drug regimens, pre-existing genetic disorders of lipid metabolism, and renal replacement therapies (including haemodialysis, peritoneal dialysis, and renal transplantation) determine the natural history of lipid disorders in patients with kidney disease. Despite the adverse effects associated with dysregulated reverse cholesterol transport and advances in our understanding of the underlying mechanisms, safe and effective therapeutic interventions are currently lacking. This Review provides an overview of HDL metabolism under normal conditions, and discusses the features, mechanisms, and consequences of HDL abnormalities in patients with nephrotic syndrome or advanced CKD. PMID:26568191

  10. Adiposity and Insufficient MVPA Predict Cardiometabolic Abnormalities in Adults

    PubMed Central

    Peterson, Mark D.; Snih, Soham Al; Stoddard, Jonathan; McClain, James; Lee, IMin

    2014-01-01

    Objectives To compare the extent to which different combinations of objectively measured sedentary behavior (SB) and physical activity contribute to cardiometabolic health. Design and Methods A population representative sample of 5,268 individuals, aged 20-85 years, was included from the combined 2003-2006 NHANES datasets. Activity categories were created on the combined basis of objectively measured SB and moderate-to-vigorous physical activity (MVPA) tertiles. Cardiometabolic abnormalities included elevated blood pressure, levels of triglycerides, fasting plasma glucose, C-reactive protein, homeostasis model assessment (HOMA) of insulin resistance value, and low HDL-cholesterol level. BMI, and DXA-derived percent body fat (% BF) and android adiposity were also compared across groups. Predictors for a metabolically abnormal phenotype (≥3 cardiometabolic abnormalities, or insulin resistance) were determined. Results Adults with the least SB and greatest MVPA exhibited the healthiest cardiometabolic profiles, whereas adults with the greatest SB and lowest MVPA were older and had elevated risk. Time spent in SB was not a predictor of the metabolically abnormal phenotype when MVPA was accounted for. Adults with the highest MVPA across SB tertiles did not differ markedly in prevalence of obesity, adiposity, and/or serum cardiometabolic risk factors; however, less MVPA was associated with substantial elevations of obesity and cardiometabolic risk. Android adiposity (per kilogram) was independently associated with the metabolically abnormal phenotype in both men (OR: 2.36 [95% CI, 1.76-3.17], p<0.001) and women (OR: 2.00 [95% CI, 1.63-2.45], p<0.001). Among women, greater SB, and less lifestyle moderate activity and MVPA were each independently associated with the metabolically abnormal phenotype, whereas only less MVPA was associated with it in men. Conclusions MVPA is a strong predictor of cardiometabolic health among adults, independent of time spent in SB. PMID

  11. All about Cholesterol

    MedlinePlus

    ... are several kinds of fats in your blood. • LDL cholesterol is sometimes called “bad” cholesterol. It can narrow ... medicine to manage blood fats. They help lower LDL cholesterol. They also help lower your risk for a ...

  12. Metabolism of ( sup 14 C)cholesterol to C-20 isomeric ( sup 14 C)pregn-5-ene-3,20-diols in the tobacco hornworm, Manduca sexta

    SciTech Connect

    Lozano, R.; Thompson, M.J.; Svoboda, J.A.; Lusby, W.R.; Wilzer, K.R. Jr. )

    1989-03-01

    After injection into male and female fifth-instar larvae of Manduca sexta, ({sup 14}C)cholesterol was converted to C21 steroids, ({sup 14}C)pregn-5-ene-3 beta,20-diols. These metabolites were isolated from 8-day-old pupae and were identified by TLC, HPLC, and GC-MS as the C-20 isomers of pregnene-3 beta,20-diol. They also were isolated from male and female meconium fluid (of 16-day-old pupae) following injection of ({sup 14}C)cholesterol into 14-day-old pupae.

  13. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  14. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  15. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease.

    PubMed

    Villain, Nicolas; Fouquet, Marine; Baron, Jean-Claude; Mézenge, Florence; Landeau, Brigitte; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2010-11-01

    Hippocampal atrophy, posterior cingulate and frontal glucose hypometabolism, and white-matter tract disruption are well described early macroscopic events in Alzheimer's disease. The relationships between these three types of alterations have been documented in previous studies, but their chronology still remains to be established. The present study used multi-modal fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging longitudinal data to address this question in patients with amnestic mild cognitive impairment. We found unidirectional, specific sequential relationships between: (i) baseline hippocampal atrophy and both cingulum bundle (r = 0.70; P = 3 × 10⁻³) and uncinate fasciculus (r = 0.75; P = 7 × 10⁻⁴) rate of atrophy; (ii) baseline cingulum bundle atrophy and rate of decline of posterior (r = 0.72; P = 2 × 10⁻³); and anterior (r = 0.74; P = 1 × 10⁻³) cingulate metabolism; and (iii) baseline uncinate white matter atrophy and subgenual metabolism rate of change (r = 0.65; P = 6 × 10⁻³). Baseline local grey matter atrophy was not found to contribute to hypometabolism progression within the posterior and anterior cingulate as well as subgenual cortices. These findings suggest that hippocampal atrophy progressively leads to disruption of the cingulum bundle and uncinate fasciculus, which in turn leads to glucose hypometabolism of the cingulate and subgenual cortices, respectively. This study reinforces the relevance of remote mechanisms above local interactions to account for the pattern of metabolic brain alteration observed in amnestic mild cognitive impairment, and provides new avenues to assess the sequence of events in complex diseases characterized by multiple manifestations.

  16. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    PubMed

    Zumbrennen-Bullough, Kimberly B; Becker, Lore; Garrett, Lillian; Hölter, Sabine M; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J; Leibold, Elizabeth A

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  17. Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington’s Disease Patients

    PubMed Central

    Naseri, Nima N.; Bonica, Joseph; Xu, Hui; Park, Larry C.; Arjomand, Jamshid; Chen, Zhengming; Gibson, Gary E.

    2016-01-01

    Metabolic dysfunction is well-documented in Huntington’s disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD. PMID:27611087

  18. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus. PMID:26800576

  19. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus.

  20. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme.

    PubMed

    Hashimoto, Naohiro; Matsumoto, Ikiru; Takahashi, Hiromasa; Ashikawa, Hitomi; Nakamura, Hiroyuki; Murayama, Toshihiko

    2016-11-01

    Sphingolipids such as sphingomyelin and glycosphingolipids (GSLs) derived from glucosylceramide (GlcCer), in addition to cholesterol, accumulate in cells/neurons in Niemann-Pick disease type C (NPC). The activities of acid sphingomyelinase and lysosomal glucocerebrosidase (GCase), which degrade sphingomyelin and GlcCer, respectively, are down-regulated in NPC cells, however, changes in GlcCer synthase activity have not yet been elucidated. We herein demonstrated for the first time that GlcCer synthase activity for the fluorescent ceramide, 4-nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide) increased in intact NPC1((-/-)) cells and cell lysates without affecting the protein levels. In NBD-ceramide-labeled NPC1((-/-)) cells, NBD-fluorescence preferentially accumulated in the Golgi complex and vesicular specks in the cytoplasm 40 and 150 min, respectively, after labeling, while a treatment for 48 h with the GlcCer synthase inhibitors, N-butyldeoxynojirimycin (NB-DNJ) and 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, accelerated the appearance of vesicular specks emitting NBD-fluorescence within 40 min. The treatment of NPC1((-/-)) cells with NB-DNJ for 48 h additionally increased the levels of cholesterol, but not those of sphingomyelin. Increases in the activity of GlcCer synthase and formation of vesicular specks emitting NBD-fluorescence in NPC1((-/-)) cells were dependent on cholesterol. LacCer taken up by endocytosis, which accumulated in the Golgi complex in normal cells, accumulated in vesicular specks after 10 and 40 min in NPC1((-/-)) cells, and this response was not accelerated by the NB-DNJ treatment, but was restored by the depletion of cholesterol. The cellular roles for enhanced GlcCer synthesis and increased levels of cholesterol in the trafficking of NBD-ceramide metabolites in NPC1((-/-)) cells have been discussed.

  1. Abnormalities in myo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietary myo-inositol supplementation.

    PubMed

    Croze, Marine L; Géloën, Alain; Soulage, Christophe O

    2015-06-28

    We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model. PMID:25990651

  2. A community-based survey for different abnormal glucose metabolism among pregnant women in a random household study (SAUDI-DM)

    PubMed Central

    Al-Rubeaan, Khalid; Al-Manaa, Hamad A; Khoja, Tawfik A; Youssef, Amira M; Al-Sharqawi, Ahmad H; Siddiqui, Khalid; Ahmad, Najlaa A

    2014-01-01

    Objective To assess the prevalence and risk factors of gestational diabetes mellitus (GDM) in a population known to have a high prevalence of abnormal glucose metabolism. Methods A household random population-based cross-sectional study of 13 627 women in the childbearing age, who were subjected to fasting plasma glucose if they were not known to have been diagnosed before with any type of diabetes. GDM cases were diagnosed using the International Association of Diabetes and Pregnancy Study Group (IAPSG) criteria. Results The overall GDM prevalence was 36.6%, categorised into 32.4% new cases and 4.2% known cases. Another 3.6% had preconception type 1 or 2 diabetes. GDM cases were older and had a significantly higher body mass index, in addition to a higher rate of macrocosmic baby and history of GDM. Monthly income, educational level, living in urban areas and smoking were not found to be significantly different between normal and GDM cases. The most important and significant risk factors for GDM were history of GDM, macrosomic baby, obesity and age >30 years. However, hypertension, low high-density lipoprotein, family history of diabetes and increased triglycerides did not show any significant effect on GDM prevalence in this cohort. Conclusions This society is facing a real burden of abnormal glucose metabolism during pregnancy, where almost half of the pregnant women are subjected to maternal and neonatal complications. Early screening of pregnant women, especially those at a high risk for GDM, is mandatory to identify and manage those cases. PMID:25138813

  3. Abnormalities in myo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietary myo-inositol supplementation.

    PubMed

    Croze, Marine L; Géloën, Alain; Soulage, Christophe O

    2015-06-28

    We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model.

  4. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis

    NASA Astrophysics Data System (ADS)

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-09-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency.

  5. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis

    PubMed Central

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-01-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency. PMID:27600335

  6. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis.

    PubMed

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-01-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency. PMID:27600335

  7. [Abnormal expression of genes that regulate retinoid metabolism and signaling in non-small-cell lung cancer].

    PubMed

    Kuznetsova, E S; Zinovieva, O L; Oparina, N Yu; Prokofjeva, M M; Spirin, P V; Favorskaya, I A; Zborovskaya, I B; Lisitsyn, N A; Prassolov, V S; Mashkova, T D

    2016-01-01

    Retinoids are signaling molecules that control a wide variety of cellular processes and possess antitumor activity. This work presents a comprehensive description of changes in the expression of 23 genes that regulate retinoid metabolism and signaling in non-small-cell lung cancer tumors compared to adjacent normal tissues obtained using RT-PCR. Even at early stages of malignant transformation, a significant decrease in ADH1B, ADH3, RDHL, and RALDH1 mRNA levels was observed in 82, 79, 73, and 64% of tumor specimens, respectively, and a considerable increase in AKR1B10 mRNA content was observed in 80% of tumors. Dramatic changes in the levels of these mRNAs can impair the synthesis of all-trans retinoic acid, a key natural regulatory retinoid. Apart from that, it was found that mRNA levels of nuclear retinoid receptor genes RXRγ, RARα, RXRα, and gene RDH11 were significantly decreased in 80, 67, 57, and 66% of tumor specimens, respectively. Thus, neoplastic transformation of lung tissue cells is accompanied with deregulated expression of key genes of retinoid metabolism and function.

  8. Pigs fed cholesterol neonatally have increased cerebrum cholesterol as young adults.

    PubMed

    Boleman, S L; Graf, T L; Mersmann, H J; Su, D R; Krook, L P; Savell, J W; Park, Y W; Pond, W G

    1998-12-01

    Sixty-eight female neonatal pigs selected for seven (Experiment 1) or eight (Experiment 2) generations for high (HG) or low (LG) plasma cholesterol were used to test the hypothesis that neonatal dietary cholesterol fed during the first 4 or 8 wk of postnatal life increases the cholesterol content of the cerebrum in young adulthood following free access to a high-fat (15%), high-cholesterol (0.5%) diet from 8 to 20 or 24 wk of age. Pigs were removed from their dams at 1 d of age and given free access to a sow-milk replacer diet containing 9.5% coconut fat and 0 or 0.5 % cholesterol. All pigs (except four HG and four LG pigs in Experiment 2, which were deprived of cholesterol throughout the study) were fed the high-fat, high-cholesterol diet from 8 wk to termination at 20 or 24 wk of age. Cerebrum weight and cholesterol concentration were higher in pigs fed cholesterol neonatally than in those deprived of cholesterol neonatally in both experiments, but weight and cholesterol concentration were unaffected by genetic line. Cholesterol concentrations in longissimus and semitendinosus muscles and in subcutaneous fat were unaffected by diet or genetic line. We conclude that dietary cholesterol deprivation during the first 4 to 8 wk of life in piglets is associated with lower cholesterol concentration and total content in the young adult cerebrum than in pigs supplemented with cholesterol in early life. These data support previous observations and suggest the possibility of a metabolic need for neonatal dietary cholesterol in normal brain development. PMID:9868199

  9. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis

    PubMed Central

    Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M

    2016-01-01

    Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet–fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders. PMID:26501192

  10. Metabolic abnormalities and polymorphisms of the vitamin D receptor (VDR) and ZNF365 genes in children with urolithiasis.

    PubMed

    Medina-Escobedo, Martha; González-Herrera, Lizbeth; Villanueva-Jorge, Salha; Martín-Soberanis, Gloria

    2014-10-01

    Composition of urinary stones in children from Yucatán, México, is calcium and uric acid. Polymorphisms in VDR and ZNF365 genes have been associated to calcium and uric acid lithiasis, respectively. We evaluated the association of polymorphisms TaqI and FokI of VDR gene and Ala62Thr of ZNF365 gene with the metabolic disorders (MD) in children with urolithiasis (UL). We included 109 children with UL. Creatinine, calcium, phosphorus, magnesium, uric acid, oxalates and citrates were measured in fresh urine. Urinary indices were calculated for determining the MD. VDR and ZNF365 polymorphisms were determined by PCR-RFLP. Genotype frequencies were compared with the frequency of MD and with the averages of excretion of the analytes, using the statistical package STATA 11.0. The most frequent MD were hypocitraturia (35.8 %) and hyperuricosuria (22.9 %). The comparison of genotype frequencies with the frequency of MD did not show significant differences (p > 0.05). The comparison of the urinary excretion averages of analytes with respect to the genotype showed that GG homozygotes have higher concentrations of uric acid and citrate than AG heterozygotes (p = 0.03), and that fF heterozygotes have lower concentrations of citrate (p = 0.009). Hypocitraturia and hyperuricosuria were the most common metabolic disorders. The frequency of MD is not associated with polymorphisms. However, in children with urolithiasis of Yucatan, GG homozygotes excrete higher concentrations of uric acid and citrates, and fF heterozygotes have lower concentrations of citrates.

  11. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities

    PubMed Central

    Gonzalez-Quintela, A; Alende, R; Gude, F; Campos, J; Rey, J; Meijide, L M; Fernandez-Merino, C; Vidal, C

    2008-01-01

    The present study investigated serum immunoglobulin (Ig) concentrations in relation to demographic factors, common habits (alcohol consumption and smoking) and metabolic abnormalities in an adult population-based survey including 460 individuals. Serum levels of interleukin (IL)-6, a marker of inflammation, were also determined. After adjusting for confounders, male sex was associated positively with IgA levels and negatively with IgM levels. Age was associated positively with IgA and IgG levels. Smoking was associated negatively with IgG levels. Heavy drinking was associated positively with IgA levels. Metabolic abnormalities (obesity and metabolic syndrome) were associated positively with IgA levels. Abdominal obesity and hypertriglyceridaemia were the components of metabolic syndrome associated most strongly with serum IgA. Heavy drinkers with metabolic syndrome showed particularly high serum IgA levels. Serum IL-6 levels were correlated positively with IgA and IgG concentrations. It is concluded that sex, age, alcohol consumption, smoking and common metabolic abnormalities should be taken into account when interpreting serum levels of IgA, IgG and IgM. PMID:18005364

  12. Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid.

    PubMed

    Walters, James W; Anderson, Jennifer L; Bittman, Robert; Pack, Michael; Farber, Steven A

    2012-07-27

    The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of a BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid re-localization of NPC1L1 to the intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology.

  13. Visualization of lipid metabolism in the larval zebrafish intestine reveals a relationship between NPC1L1 mediated cholesterol uptake and dietary fatty acids

    PubMed Central

    Walters, James W.; Anderson, Jennifer L.; Bittman, Robert; Pack, Michael; Farber, Steven A.

    2012-01-01

    SUMMARY The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid relocalization of NPC1L1 to intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology. PMID:22749558

  14. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    PubMed

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.

  15. Coenzyme Q10 supplementation improves metabolic parameters, liver function and mitochondrial respiration in rats with high doses of atorvastatin and a cholesterol-rich diet

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the actions of coenzyme Q10 (CoQ10) on rats with a cholesterol-rich diet (HD) and high doses of atorvastatin (ATV, 0.2, 0.56 or 1.42 mg/day). Methods Two experiments were done, the first one without coenzyme Q10 supplementation. On the second experiment all groups received coenzyme Q10 0.57 mg/day as supplement. After a 6-week treatment animals were sacrificed, blood and liver were analyzed and liver mitochondria were isolated and its oxygen consumption was evaluated in state 3 (phosphorylating state) and state 4 (resting state) in order to calculate the respiratory control (RC). Results HD increased serum and hepatic cholesterol levels in rats with or without CoQ10. ATV reduced these values but CoQ10 improved even more serum and liver cholesterol. Triacylglycerols (TAG) were also lower in blood and liver of rats with ATV + CoQ10. HDL-C decreased in HD rats. Treatment with ATV maintained HDL-C levels. However, these values were lower in HD + CoQ10 compared to control diet (CD) + CoQ10. RC was lessened in liver mitochondria of HD. The administration of ATV increased RC. All groups supplemented with CoQ10 showed an increment in RC. In conclusion, the combined administration of ATV and CoQ10 improved biochemical parameters, liver function and mitochondrial respiration in hypercholesterolemic rats. Conclusions Our results suggest a potential beneficial effect of CoQ10 supplementation in hypercholesterolemic rats that also receive atorvastatin. This beneficial effect of CoQ10 must be combined with statin treatment in patient with high levels of cholesterol. PMID:24460631

  16. Metabolism of cholesteryl palmitate by rat brain in vitro; formation of cholesterol epoxides and cholestane-3beta,5alpha,6beta-triol.

    PubMed

    Martin, C M; Nicholas, H J

    1973-11-01

    Incubation of [4-(14)C]cholesteryl palmitate with the 12,000 g supernatant fraction of adult rat brain fortified with an NADPH-generating system and beta-mercaptoethylamine resulted in formation (2-5%) of more polar metabolites characterized as a mixture of cholesterol-5,6-epoxides. Under extended incubation conditions, cholestane-3beta-5alpha-6beta-triol was isolated as the major end product of the incubations. Free [4-(14)C]cholesterol incubated under similar conditions was not oxidized, whereas oxidation of [4-(14)C]cholesteryl palmitate appeared to be dependent upon hydrolysis of the ester by the rat brain microsomal subcellular fraction. Elimination of the NADPH-generating system or the addition of EDTA to the incubation mixture inhibited epoxide formation, suggesting that the products are derived from an NADPH-dependent enzymatic lipoperoxidation mechanism. The in vitro conversion of [4-(14)C]cholesterol-5alpha,6alpha-epoxide to cholestane-3beta,5alpha,6beta-triol was also demonstrated in rat brain subcellular fractions in the absence of added cofactors.

  17. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes

    PubMed Central

    Morris, Jodie L.; Bridson, Tahnee L.; Alim, Md Abdul; Rush, Catherine M.; Rudd, Donna M.; Govan, Brenda L.; Ketheesan, Natkunam

    2016-01-01

    ABSTRACT The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  18. Abnormal folate metabolism and genetic polymorphism of the folate pathway in a child with Down syndrome and neural tube defect.

    PubMed

    Al-Gazali, L I; Padmanabhan, R; Melnyk, S; Yi, P; Pogribny, I P; Pogribna, M; Bakir, M; Hamid, Z A; Abdulrazzaq, Y; Dawodu, A; James, S J

    2001-10-01

    The association of neural tube defects (NTDs) with Down syndrome (trisomy 21) and altered folate metabolism in both mother and affected offspring provide a unique opportunity for insight into the etiologic role of folate deficiency in these congenital anomalies. We describe here the case of a male child with trisomy 21, cervical meningomyelocele, agenesis of corpus callosum, hydrocephaly, cerebellar herniation into the foramen magnum, and shallow posterior cranial fossa. Molecular analysis of the methylenetetrahydrofolate (MTHFR) gene revealed homozygosity for the mutant 677C-->T polymorphism in both the mother and child. The plasma homocysteine of the mother was highly elevated at 25.0 micromol/L and was associated with a low methionine level of 22.1 micromol/L. Her S-adenosylhomocysteine (SAH) level was three times that of reference normal women, resulting in a markedly reduced ratio of S-adenosylmethionine (SAM) to SAH and significant DNA hypomethylation in lymphocytes. The child had low plasma levels of both homocysteine and methionine and a reduced SAM/SAH ratio that was also associated with lymphocyte DNA hypomethylation. In addition, the child had a five-fold increase in cystathionine level relative to normal children, consistent with over-expression of the cystathionine beta synthase gene present on chromosome 21. We suggest that altered folate status plus homozygous mutation in the MTHFR gene in the mother could promote chromosomal instability and meiotic non-disjunction resulting in trisomy 21. Altered folate status and homozygous TT mutation in the MTHFR gene in both mother and child would be expected to increase the risk of neural tube defects. The presence of both trisomy 21 and postclosure NTD in the same child supports the need for an extended periconceptional period of maternal folate supplementation to achieve greater preventive effects for both NTD and trisomy 21. PMID:11568918

  19. Abnormal Cognition, Sleep, EEG and Brain Metabolism in a Novel Knock-In Alzheimer Mouse, PLB1

    PubMed Central

    Platt, Bettina; Drever, Benjamin; Koss, David; Stoppelkamp, Sandra; Jyoti, Amar; Plano, Andrea; Utan, Aneli; Merrick, Georgina; Ryan, Duncan; Melis, Valeria; Wan, Hong; Mingarelli, Marco; Porcu, Emanuele; Scrocchi, Louise; Welch, Andy; Riedel, Gernot

    2011-01-01

    Late-stage neuropathological hallmarks of Alzheimer's disease (AD) are β-amyloid (βA) and hyperphosphorylated tau peptides, aggregated into plaques and tangles, respectively. Corresponding phenotypes have been mimicked in existing transgenic mice, however, the translational value of aggressive over-expression has recently been questioned. As controlled gene expression may offer animal models with better predictive validity, we set out to design a transgenic mouse model that circumvents complications arising from pronuclear injection and massive over-expression, by targeted insertion of human mutated amyloid and tau transgenes, under the forebrain- and neurone-specific CaMKIIα promoter, termed PLB1Double. Crossing with an existing presenilin 1 line resulted in PLB1Triple mice. PLB1Triple mice presented with stable gene expression and age-related pathology of intra-neuronal amyloid and hyperphosphorylated tau in hippocampus and cortex from 6 months onwards. At this early stage, pre-clinical 18FDG PET/CT imaging revealed cortical hypometabolism with increased metabolic activity in basal forebrain and ventral midbrain. Quantitative EEG analyses yielded heightened delta power during wakefulness and REM sleep, and time in wakefulness was already reliably enhanced at 6 months of age. These anomalies were paralleled by impairments in long-term and short-term hippocampal plasticity and preceded cognitive deficits in recognition memory, spatial learning, and sleep fragmentation all emerging at ∼12 months. These data suggest that prodromal AD phenotypes can be successfully modelled in transgenic mice devoid of fibrillary plaque or tangle development. PLB1Triple mice progress from a mild (MCI-like) state to a more comprehensive AD-relevant phenotype, which are accessible using translational tools such as wireless EEG and microPET/CT. PMID:22096518

  20. Changes during hibernation in different phospholipid and free and esterified cholesterol serum levels in black bears

    USGS Publications Warehouse

    Chauhan, V.; Sheikh, A.; Chauhan, A.; Tsiouris, J.; Malik, M.; Vaughan, M.

    2002-01-01

    During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P < 0.05). The percentage increase during hibernation was more in free cholesterol (57%) than in esterified cholesterol (27%). Analysis of subclasses of serum phospholipids showed that choline containing phospholipids, i.e., sphingomyelin (SPG) (14%) and phosphatidylcholine (PC) (76%), are the major phospholipids in the serum of bear. The minor phospholipids included 8% of phosphatidylserine (PS) + phosphatidylinositol (PI), while phosphatidylethanolamine (PE) was only 2% of the total phospholipids. A comparison of phospholipid subclasses showed that PC, PS + PI and SPG were significantly increased, while PE was significantly decreased (P < 0.05) in the hibernating state as compared with the active state in black bears. These results suggest that the catabolism of phospholipids and cholesterol is decreased during hibernation in black bears, leading to their increased levels in the hibernating state as compared with the active state. In summary, our results indicate that serum cholesterol and phospholipid fractions (except PE) are increased during hibernation in bears. It is proposed that the increase of these lipids may be due to the altered metabolism of lipoproteins that are responsible for the clearance of the lipids. ?? 2002 E??ditions scientifiques et me??dicales Elsevier SAS and Socie??te?? franc??aise de biochimie et biologie mole??culaire. All rights reserved.

  1. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    PubMed

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.

  2. The absorption of cholesterol and the sterol balance in the Tarahumara Indians of Mexico fed cholesterol-free and high cholesterol diets.

    PubMed

    McMurry, M P; Connor, W E; Lin, D S; Cerqueira, M T; Connor, S L

    1985-06-01

    The Tarahumara Indians of Mexico are habituated to a very low cholesterol, low fat diet and have lifelong low plasma cholesterol concentrations. To study cholesterol metabolism in these unusual people, 8 Tarahumara men were fed sequentially a cholesterol-free diet and then a diet containing 900 mg cholesterol under controlled conditions. The intestinal absorption of cholesterol, fecal steroid excretion and sterol balance were determined. During the high cholesterol diet period, the plasma cholesterol level increased from 113 +/- 8 mg/dl to 147 +/- 11 mg/dl (means +/- SD). Cholesterol biosynthesis decreased from 14.0 +/- 0.7 to 7.1 +/- 1.0 mg/kg/day (means +/- SE). The intestinal absorption of cholesterol was 27.7 +/- 6.7% (means +/- SE) during both dietary periods. Compared to other cultures, Tarahumaras had a reduced ability to absorb dietary cholesterol and higher total sterol turnover primarily because of an increased bile acid output. The total sterol disposition over three weeks of the high cholesterol diet accounted for all the absorbed dietary cholesterol.

  3. High incidence of cholesterol gallstone disease in type 1 Gaucher disease: characterizing the biliary phenotype of type 1 Gaucher disease

    PubMed Central

    Taddei, Tamar H.; Dziura, James; Chen, Shu; Yang, Ruhua; Hyogo, Hideyuki; Sullards, Cameron; Cohen, David E.; Pastores, Gregory

    2010-01-01

    Background In Gaucher disease (GD), lysosomal glucocerebrosidase deficiency results in glucosylceramide accumulation in macrophage lysosomes. Hepatocytes do not accumulate glucosylceramide due in part to biliary secretion. Although gallstones (GS) occur in type 1 Gaucher disease (GD1), the chemical nature of stones, their association with metabolic parameters, and whether bile composition is altered are not understood. We assessed the prevalence of GS, their chemical composition, biliary lipids, and associated metabolic factors. Methods The study cohort comprised 417 patients comprehensively evaluated for GD1 severity. Ascertainment of GS, fasting lipoprotein profile, and bile lipid analyses were performed. Results The prevalence of GS in GD1 was 32%. Compared with men, the prevalence of GS was higher in women, increasing from 4.2% and 11.8% at age 20–29 years to 71% and 60% at age >70 years, respectively. Patients with GS were more likely to be asplenic (p<0.0001), older (p<0.0001), have higher low-density lipoprotein (LDL) cholesterol (p=0.002), and more severe GD1 disease compared with those without GS. On multiple logistic regression analysis, factors associated with GS were age (p<0.001), female sex (p=0.03), and splenectomy (p=0.005). Compared with the general population, prevalence of GS was ~5-fold higher. Bile lipid analyses revealed cholesterol stones in five patients and pigment stones in one. Bile lipid composition was abnormal and contained glucosylceramide. Conclusions Our results point to a metabolic syndrome in GD1 consisting of a propensity to cholesterol GS, low high-density lipoprotein (HDL) cholesterol, LDL cholesterol, and body mass index (BMI) associated with abnormal biliary lipid secretion. PMID:20354791

  4. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    PubMed

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  5. Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex.

    PubMed

    Kolisnyk, Benjamin; Al-Onaizi, Mohammed A; Hirata, Pedro H F; Guzman, Monica S; Nikolova, Simona; Barbash, Shahar; Soreq, Hermona; Bartha, Robert; Prado, Marco A M; Prado, Vania F

    2013-09-11

    One of the key brain regions in cognitive processing and executive function is the prefrontal cortex (PFC), which receives cholinergic input from basal forebrain cholinergic neurons. We evaluated the contribution of synaptically released acetylcholine (ACh) to executive function by genetically targeting the vesicular acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was assessed using a pairwise visual discrimination paradigm and the 5-choice serial reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to learn, but were impaired in reversal learning, suggesting that these mice present cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in the 5-CSRT. Although their performance was indistinguishable from that of control mice during low attentional demand, increased attentional demand revealed striking deficits in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's disease, significantly improved the performance of control mice, but not of VAChT-deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed altered levels of two neurochemical markers of neuronal function, taurine and lactate, suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice displayed a drastic reduction in the splicing factor heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was previously demonstrated in Alzheimer's disease. Consequently, several key hnRNPA2/B1 target transcripts involved in neuronal function present changes in alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme involved in lactate metabolism. We propose that VAChT-targeted mice can be used to model and to dissect the neurochemical basis of executive abnormalities. PMID:24027290

  6. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes

    PubMed Central

    Biessels, G. J.; de Valk, H.; Algra, A.; Rutten, G. E. H. M.; van der Grond, J.; Kappelle, L. J.

    2007-01-01

    Aims/hypothesis The determinants of cerebral complications of type 2 diabetes are unclear. The present study aimed to identify metabolic and vascular factors that are associated with impaired cognitive performance and abnormalities on brain MRI in patients with type 2 diabetes. Methods The study included 122 patients and 56 controls. Neuropsychological test scores were divided into five cognitive domains and expressed as standardised z values. Brain MRI scans were rated for white matter lesions (WML), cortical and subcortical atrophy, and infarcts. Data on glucose metabolism, vascular risk factors and micro- and macrovascular disease were collected. Results Patients with type 2 diabetes had more cortical (p < 0.001) and subcortical (p < 0.01) atrophy and deep WML (p = 0.02) than the control group and their cognitive performance was worse. In multivariate regression analyses within the type 2 diabetes group, hypertension (p < 0.05) and a history of vascular events (p < 0.01) were associated with worse cognitive performance, while statin use was associated (p < 0.05) with better performance. Retinopathy and brain infarcts on MRI were associated with more severe cortical atrophy (both p < 0.01) and statin use with less atrophy (p < 0.05). Insulin level and brain infarcts were associated with more severe WML and statin use with less severe WML (all p < 0.05). Conclusions/interpretation Type 2 diabetes is associated with modest impairments in cognition, as well as atrophy and vascular lesions on MRI. This ‘diabetic encephalopathy’ is a multifactorial condition, for which atherosclerotic (macroangiopathic) vascular disease is an important determinant. Chronic hyperglycaemia, hyperinsulinaemia and hypertension may play additional roles. Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0792-z) contains details of the Utrecht Diabetic Encephalopathy Study Group, which are available to

  7. [Studies on stroke-prone spontaneously hypertensive rats (SHRSP) fed a high-fat and high-cholesterol diet--effects of salt intake on serum lipoprotein and apolipoprotein metabolism].

    PubMed

    Ogawa, H; Nishikawa, T; Fukushima, S; Sasagawa, S

    1989-10-01

    Recently, food intake in Japan has been characterized by an increase in fat intake, especially animal-fat intake and the maintenance of excess salt (sodium chloride) intake. It is generally accepted that the increase in fat intake is closely related to atherosclerosis, and excess salt intake is a high risk factor for the development of hypertension and cerebrovascular lesions. So far, in almost all reports, the increase in fat intake and excess salt intake have been studied independently, and there have been few reports on the combined effects of these two factors. Taking the above things into consideration, it would seem to be very interesting to investigate the effect of excess salt intake on lipid metabolism. In this paper, we studied the effects of excess salt intake on lipoprotein and apolipoprotein metabolisms, using stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Kyo: Wistar rats (WKY) as model animals. The results obtained were as follows: A significant increase in the concentration of serum total cholesterol (TC) was observed in SHRSP and WKY, when the rats were given a regular diet (CE-2, Clea Japan Inc.) and 1% sodium chloride solution (1% NaCl) as drinking water for 4 weeks. This was accompanied by a tendency toward increases in the concentrations of serum apolipoproteins in both strains. These results suggest that excess salt intake could accelerate the production of serum total lipoproteins in SHRSP and WKY, when the rats are fed a regular diet. Next, 1% NaCl and a high-fat and high-cholesterol diet (HFC diet) were simultaneously given to SHRSP and WKY for 6 weeks. The effects of simultaneous administration on lipoprotein and apolipoprotein metabolisms were compared with those of HFC feeding. One percent NaCl did not markedly affect hypercholesterolemia in WKY, while it induced more marked hypercholesterolemia in SHRSP that was associated with extreme elevations of serum TC and the atherogenic index (A.I.). This deleterious

  8. The Effects of Rhodobacter capsulatus KCTC-2583 on Cholesterol Metabolism, Egg Production and Quality Parameters during the Late Laying Periods in Hens.

    PubMed

    Lokhande, Anushka; Ingale, S L; Lee, S H; Kim, J S; Lohakare, J D; Chae, B J; Kwon, I K

    2013-06-01

    An experiment was conducted to investigate the effects of dietary supplementation of Rhodobacter capsulatus KCTC-2583 on egg-yolk and serum cholesterol, egg production and quality parameters during the late laying periods in hens. A total of 160 Hy-Line Brown layers (54 wk-old) were randomly allotted to 4 treatment groups on the basis of laying performance. Each treatment had 4 replicates with 10 birds each (40 birds per treatment). Two hens were confined individually with cage size 35×35×40 cm and each 10 birds (5 cages) shared a common feed trough between them forming one experimental unit. Dietary treatments were; basal diet supplemented with 0 (control), 0.05, 0.10 and 0.15% R. capsulatus KCTC-2583. Experimental diets were fed in meal form for 56 d. Dietary supplementation of increasing levels of R. capsulatus KCTC-2583 reduced (linear, p<0.05) egg-yolk cholesterol and triglycerides (d 28, 42 and 56) concentrations. Also, serum cholesterol and triglycerides (d 21, 42 and 56) concentrations were linearly reduced (p<0.05) with increasing dietary R. capsulatus KCTC-2583. Laying hens fed a diet supplemented with increasing levels of R. capsulatus KCTC-2583 had increased (linear; p<0.05) overall egg production, egg weight, egg mass and feed efficiency. However, dietary treatments had no effect (linear or quadratic; p>0.05) on feed intake of laying hens. At d 28 and 56, breaking strength and yolk colour of eggs were linearly improved (p<0.05) in laying hens fed dietary increasing levels of R. capsulatus KCTC-2583. Dietary treatment had no effects (linear or quadratic; p>0.05) on albumin height, shell thickness and shell weight at any period of experiment. These results indicate that dietary supplementation of R. capsulatus KCTC-2583 has the potential to improve the laying hen performance and lead to the development of low cholesterol eggs during late laying period in Hy-Line Brown hens. PMID:25049857

  9. The Effects of Rhodobacter capsulatus KCTC-2583 on Cholesterol Metabolism, Egg Production and Quality Parameters during the Late Laying Periods in Hens.

    PubMed

    Lokhande, Anushka; Ingale, S L; Lee, S H; Kim, J S; Lohakare, J D; Chae, B J; Kwon, I K

    2013-06-01

    An experiment was conducted to investigate the effects of dietary supplementation of Rhodobacter capsulatus KCTC-2583 on egg-yolk and serum cholesterol, egg production and quality parameters during the late laying periods in hens. A total of 160 Hy-Line Brown layers (54 wk-old) were randomly allotted to 4 treatment groups on the basis of laying performance. Each treatment had 4 replicates with 10 birds each (40 birds per treatment). Two hens were confined individually with cage size 35×35×40 cm and each 10 birds (5 cages) shared a common feed trough between them forming one experimental unit. Dietary treatments were; basal diet supplemented with 0 (control), 0.05, 0.10 and 0.15% R. capsulatus KCTC-2583. Experimental diets were fed in meal form for 56 d. Dietary supplementation of increasing levels of R. capsulatus KCTC-2583 reduced (linear, p<0.05) egg-yolk cholesterol and triglycerides (d 28, 42 and 56) concentrations. Also, serum cholesterol and triglycerides (d 21, 42 and 56) concentrations were linearly reduced (p<0.05) with increasing dietary R. capsulatus KCTC-2583. Laying hens fed a diet supplemented with increasing levels of R. capsulatus KCTC-2583 had increased (linear; p<0.05) overall egg production, egg weight, egg mass and feed efficiency. However, dietary treatments had no effect (linear or quadratic; p>0.05) on feed intake of laying hens. At d 28 and 56, breaking strength and yolk colour of eggs were linearly improved (p<0.05) in laying hens fed dietary increasing levels of R. capsulatus KCTC-2583. Dietary treatment had no effects (linear or quadratic; p>0.05) on albumin height, shell thickness and shell weight at any period of experiment. These results indicate that dietary supplementation of R. capsulatus KCTC-2583 has the potential to improve the laying hen performance and lead to the development of low cholesterol eggs during late laying period in Hy-Line Brown hens.

  10. The intestine as a regulator of cholesterol homeostasis in diabetes.

    PubMed

    Tomkin, Gerald H

    2008-09-01

    The chylomicron influences very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) composition but itself is atherogenic. Thus abnormalities of chylomicron production are of interest particularly in conditions such as diabetes which confer major cardiovascular risk. Intestinal function is abnormal in diabetes and is a major cause of the dyslipidaemia found in this condition. Studies have suggested that cholesterol absorption is decreased in diabetes and cholesterol synthesis increased. Molecular mechanisms involved in insulin resistance in the intestine and its effect on cholesterol homeostasis in diabetes are described. Abnormalities in triglyceride synthesis and alterations genes regulating cholesterol absorption and intestinal synthesis are discussed. In particular, increase in apolipoprotein B48 synthesis has been demonstrated in animal models of diabetes and insulin resistance. Intestinal mRNA expression of Niemann Pick C1-like 1, protein is increased in both experimental and human diabetes suggesting that an increase in cholesterol transportation does occur. mRNA expression of the ATP binding cassette proteins (ABC) G5 and G8, two proteins working in tandem to excrete cholesterol have been shown to be decreased suggesting increased delivery of cholesterol for absorption. Expression of microsomal triglyceride transfer protein, which assembles the chylomicron particle, is increased in diabetes leading to increase in both number and cholesterol content. In conclusion, diabetes is associated with considerable dysfunction of the intestine leading to abnormal chylomicron composition which may play a major part in the premature development of atherosclerosis.

  11. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution. Images Figure 1 Figure 2 PMID:7755574

  12. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed

    Pörn, M I; Slotte, J P

    1995-05-15

    for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution.

  13. Niacin and cholesterol: role in cardiovascular disease (review).

    PubMed

    Ganji, Shobha H; Kamanna, Vaijinath S; Kashyap, Moti L

    2003-06-01

    Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.

  14. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.

  15. Tau pathology induces intraneuronal cholesterol accumulation.

    PubMed

    Glöckner, Frauke; Ohm, Thomas G

    2014-09-01

    Epidemiologic and experimental data suggest the involvement of cholesterol metabolism in the development and progression of Alzheimer disease and Niemann-Pick type C disease, but not of frontotemporal dementias. In these 3 neurodegenerative diseases, however, protein tau hyperphosphorylation and aggregation into neurofibrillary tangles are observed. To elucidate the relationship between cholesterol and tau, we compared sterol levels of neurons burdened with neurofibrillary tangles with those of their unaffected neighbors using semiquantitative filipin fluorescence microscopy in mice expressing P301L mutant human tau (a well-described model of FTDP-17) and in P301L transgenic mice lacking apolipoprotein E (the major cholesterol transporter in the brain). Cellular unesterified cholesterol was higher in neurons affected by tau pathology irrespective of apolipoprotein E deficiency. This argues for an impact of tau pathology on cellular cholesterol homeostasis. We suggest that there is a bidirectional mode of action: Disturbances in cellular cholesterol metabolism may promote tau pathology, but tau pathology may also alter neuronal cholesterol homeostasis; once it is established, a vicious cycle may promote neurofibrillary tangle formation.

  16. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  17. Cytotoxic effects of oxysterols produced during ozonolysis of cholesterol in murine GT1-7 hypothalamic neurons.

    PubMed

    Sathishkumar, K; Murthy, Subramanyam N; Uppu, Rao M

    2007-01-01

    Ozone present in the photochemical smog or generated at the inflammatory sites is known to oxidize cholesterol and its 3-acyl esters. The oxidation results in the formation of multiple "ozone-specific" oxysterols, some of which are known to cause abnormalities in the metabolism of cholesterol and exert cytotoxicity. The ozone-specific oxysterols have been shown to favor the formation of atherosclerotic plaques and amyloid fibrils involving pro-oxidant processes. In the present communication, cultured murine GT1-7 hypothalamic neurons were studied in the context of cholesterol metabolism, formation of reactive oxygen species, intracellular Ca2 + levels and cytotoxicity using two most commonly occurring cholesterol ozonolysis products, 3beta- hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco) and 5beta, 6beta-epoxy-cholesterol (ChEpo). It was found that ChSeco elicited cytotoxicity at lower concentration (IC50 = 21 +/- 2.4 microM) than did ChEpo (IC50 = 43 +/- 3.7 microM). When tested at their IC50 concentrations in GT1-7 cells, both ChSeco and ChEpo resulted in the generation of ROS, the magnitude of which was comparable. N-acetyl-l-cysteine and Trolox attenuated the cytotoxic effects of ChSeco and ChEpo. The intracellular Ca2 + levels were not altered by either ChSeco or ChEpo. Methyl-beta-cyclodextrins, which cause depletion of cellular cholesterol, prevented ChSeco- but not ChEpo-induced cytotoxicity. The cell death caused by ChEpo, but not ChSeco, was prevented by exogenous cholesterol. Although oxidative stress plays a significant role, the results of the present study indicate differences in the pathways of cell death induced by ChSeco and ChEpo in murine GT1-7 hypothalamic neurons. PMID:17164181

  18. Effects of metabolic and myocardial microcirculatory abnormalities on the pathogenesis of cardiac autonomic neuropathy in type 2 diabetes mellitus: A prospective study in Japanese patients*

    PubMed Central

    Komori, Hiromi

    2005-01-01

    Background: In diabetic patients, cardiac autonomic neuropathy is an important factor affecting prognosis. Whether this condition in diabetic patients is caused directly by neurovisceral metabolic disorder and/or indirectly by micro circulation remains to be clarified. Objective: The aim of this study was to determine whether cardiac sympathetic nerve dysfunction can be detected using adenosine triphosphate (ATP) testing, while also investigating the effects of metabolic and/or myocardial microcirculatory abnormalities on the pathogenesis of cardiac autonomic nerve dysfunction in patients with type 2 diabetes mellitus (DM-2) in Japan. Methods: This prospective study was performed at the Division of Diabetology Department of Internal Medicine, Toho University, Ohashi Hospital, Tokyo, Japan. Patients aged ≥ 18 years with DM-2 with no abnormalities on electrocardiography (ECG) or echocardiography were enrolled. An ATP thallium (Tl)-201 myocardial scintigraphy test (ATP test) and iodine (I)-123 metaiodobenzylguanidine (MIBG) scintigraphy were performed. ATP was administered by continuous IV infusion over 6 minutes at 0.16 mg/kg · min. Five minutes after the ATP infusion was started, T1-201 111 MBq IV was administered. Single-photon emission computed tomography (SPECT) imaging was begun immediately after the end of ATP infusion and was completed 3 hours after stress to show washout from stress to rest. I-123 MIBG 111 MBq IV was administered. A planar image from the front side and a SPECT image (early phase) was obtained 15 to 30 minutes later. After 3 hours, a planar image from the front side and a SPECT image (late phase) were obtained to show washout from stress to rest. The mean TI washout rate (ATP-WR) and heart-to-mediastinum (H/M) ratio in the late-phase scintigraphic images and the washout rate of MIBG (MIBG-WR) in the left ventricle was determined. The correlations of these measurements with the mean values of glycosylated hemoglobin (HbA1c) and fasting

  19. Broccoli ( Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters.

    PubMed

    Rodríguez-Cantú, Laura N; Gutiérrez-Uribe, Janet A; Arriola-Vucovich, Jennifer; Díaz-De La Garza, Rocio I; Fahey, Jed W; Serna-Saldivar, Sergio O

    2011-02-23

    This study investigated the effects of broccoli sprouts (BS) on sterol and lipid homeostasis in Syrian hamsters with dietary-induced hypercholesterolemia. Treatments included freeze-dried BS containing 2 or 20 μmol of glucoraphanine (BSX, BS10X), glucoraphanine-rich BS extract (GRE), sulforaphane-rich BS extract (SFE), and simvastatin. Each experimental diet was offered to eight animals (male and female) for 7 weeks. Hepatic cholesterol was reduced by BS10X and SFE treatments in all animals. This correlated with a down-regulation of gene expression of sterol regulatory element-binding proteins (SREBP-1 and -2) and fatty acid synthase (FAS) caused by GRE and SFE diets. BS10X caused changes in gene expression in a gender-specific manner; additionally, it increased coprostanol excretion in females. With the same concentration of glucoraphanin, consumption of broccoli sprouts (BS10X) had more marked effects on cholesterol homeostasis than GRE; this finding reinforces the importance of the matrix effects on the bioactivity of functional ingredients.

  20. Cholesterol testing and results

    MedlinePlus

    ... VLDL cholesterol) Lipoproteins are made of fat and protein. They carry cholesterol, triglycerides, and other fats, called ... Pencina MJ, Navar-Boggan AM, D'Agostino RB Sr, Williams K, Neely B, Sniderman AD, Peterson ED. ...

  1. Lecithin:Cholesterol Acyltransferase Deficiency Protects against Cholesterol-induced Hepatic Endoplasmic Reticulum Stress in Mice*

    PubMed Central

    Hager, Lauren; Li, Lixin; Pun, Henry; Liu, Lu; Hossain, Mohammad A.; Maguire, Graham F.; Naples, Mark; Baker, Chris; Magomedova, Lilia; Tam, Jonathan; Adeli, Khosrow; Cummins, Carolyn L.; Connelly, Philip W.; Ng, Dominic S.

    2012-01-01

    We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr−/−xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr−/−xLcat−/− mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr−/−xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr−/−xLcat−/− mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr−/−xLcat−/− mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr−/−xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr−/−xLcat−/− mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance. PMID:22500017

  2. Regulation of biliary cholesterol secretion. Functional relationship between the canalicular and sinusoidal cholesterol secretory pathways in the rat.

    PubMed Central

    Nervi, F; Marinović, I; Rigotti, A; Ulloa, N

    1988-01-01

    The functional interrelationship between biliary cholesterol secretion, sinusoidal lipoprotein cholesterol secretion and bile salt synthesis was studied in the rat. Diosgenin, fructose, and colestipol in the diet were used to, respectively, influence biliary cholesterol output, VLDL production and bile salt synthesis. In the acute bile fistula rat, biliary cholesterol output was 700% increased by diosgenin and 50% decreased by fructose. In the rats fed both diosgenin and fructose, biliary cholesterol secretion was increased only by approximately 200%, whereas biliary bile salts and phospholipid outputs were unchanged. In the isolated perfused liver, VLDL-cholesterol output was 50% reduced by diosgenin alone, but was unchanged following feeding of diosgenin plus fructose. However, the livers of rats fed diosgenin plus fructose exhibited a 700% increase in VLDL-triglyceride production and a 200% increase in VLDL-cholesterol output. A significant reciprocal relationship between VLDL-cholesterol secretion and the coupling ratio of cholesterol to bile salts in bile was observed. Colestipol added to the diet maintained both sinusoidal and biliary cholesterol outputs within the normal range. In the chronic bile fistula rat, colestipol increased bile salt synthesis by 100% while diosgenin and fructose diets had no effect. Similarly, the addition of fructose to the colestipol diet did not decrease bile salt synthesis. These data suggest a reciprocal relationship between biliary cholesterol secretion and hepatic secretion of cholesterol as VLDL particles. The free cholesterol pool used for bile salt synthesis seems functionally unrelated to the pool from which VLDL-cholesterol and biliary cholesterol originate. These findings support the idea that metabolic compartmentalization of hepatic cholesterol is a major determinant of the quantity of cholesterol available for recruitment by the bile salt-dependent biliary cholesterol secretory mechanism. PMID:3198756

  3. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  4. Antibodies to cholesterol.

    PubMed Central

    Swartz, G M; Gentry, M K; Amende, L M; Blanchette-Mackie, E J; Alving, C R

    1988-01-01

    Cholesterol-dependent complement activation has been proposed as a factor that might influence the pathogenesis of atherosclerosis. Although antibodies to cholesterol conjugates have been reported, cholesterol is widely regarded as a poorly immunogenic substance. Monoclonal IgM complement-fixing antibodies to cholesterol were obtained in the present study after immunizing mice with liposomes containing high amounts of cholesterol (71 mol % relative to phosphatidylcholine) and lipid A as an adjuvant. Clones were selected for the ability of secreted antibodies to react with liposomes containing 71% cholesterol but not with liposomes containing 43% cholesterol. The antibodies also reacted with crystalline cholesterol in a solid-phase enzyme-linked immunosorbent assay. Binding of monoclonal antibodies to the surface of crystalline cholesterol was demonstrated by electron microscopy by utilizing a second antibody (anti-IgM) labeled with colloidal gold. The immunization period required to induce monoclonal antibodies was very short (3 days) and a high fraction of the hybrid cells (at least 70%) were secreting detectable antibodies to cholesterol. The results demonstrate that cholesterol can be a highly immunogenic molecule and that complement-fixing antibodies to cholesterol can be readily obtained. Images PMID:3162316

  5. Avoiding Christmas cholesterol.

    PubMed

    1991-12-01

    Judging from your response to our September feature on cholesterol testing providing dietary advice has become of paramount importance to OHNs. The Flora Project for Heart Disease Prevention offers information on the risk factors of high cholesterol and has become a major noninstitutional authority on coronary heart disease. With Yuletide in sight The Flora Project offers advice on a cholesterol-clear Christmas.

  6. Abnormal parathyroid hormone stimulation of 25-hydroxyvitamin D-1 alpha-hydroxylase activity in the hypophosphatemic mouse. Evidence for a generalized defect of vitamin D metabolism.

    PubMed Central

    Nesbitt, T; Drezner, M K; Lobaugh, B

    1986-01-01

    Abnormal regulation of vitamin D metabolism is a feature of X-linked hypophosphatemic rickets in man and of the murine homologue of the disease in the hypophosphatemic (Hyp)-mouse. We previously reported that mutant mice have abnormally low renal 25-hydroxyvitamin D-1 alpha-hydroxylase (1 alpha-hydroxylase) activity for the prevailing degree of hypophosphatemia. To further characterize this defect, we examined whether Hyp-mouse renal 1 alpha-hydroxylase activity responds normally to other stimulatory and inhibitory controls of enzyme function. We studied stimulation by parathyroid hormone (PTH) using: (a) a calcium-deficient (0.02% Ca) diet to raise endogenous PTH; or (b) 24-h continuous infusion of 0.25 IU/h bovine PTH via osmotic minipump. In both cases enzyme activity of identically treated normal mice increased to greater levels than those attained by Hyp-mice. The relative inability of PTH to stimulate 1 alpha-hydroxylase activity is not a function of the hypophosphatemia in the Hyp-mouse since PTH-infused, phosphate-depleted normal mice sustained a level of enzyme activity greater than that of normal and Hyp-mice. In further studies we investigated inhibition of enzyme activity by using: (a) a calcium-loaded (1.2% Ca) diet to suppress endogenous PTH; or (b) 24-h continuous infusion of 0.2 ng/h 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). The 1 alpha-hydroxylase activity of normal and Hyp-mice was significantly reduced to similar absolute levels following maintenance on the calcium-loaded diet. Further, infusion of 1,25(OH)2D3 caused a comparable reduction of 1 alpha-hydroxylase activity in normal, Hyp-, and phosphate-depleted normal mice. These observations indicate that the inhibitory control of 1 alpha-hydroxylase by reduced levels of PTH or increased 1,25(OH)2D3 concentrations is intact in the mutants. However, the inability of PTH and hypophosphatemia to stimulate enzyme activity in a manner analogous to that in normal and phosphate-depleted mice indicates

  7. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  8. Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol.

    PubMed

    Benn, Tyler; Kim, Bohkyung; Park, Young-Ki; Yang, Yue; Pham, Tho X; Ku, Chai Siah; Farruggia, Callie; Harness, Ellen; Smyth, Joan A; Lee, Ji-Young

    2015-06-14

    Obesity is associated with an increased risk of metabolic abnormalities, such as hyperlipidaemia and hyperglycaemia. We investigated whether polyphenol-rich blackcurrant extract (BCE) can prevent high fat/high cholesterol (HF/HC) diet-induced metabolic disturbances in mice. Male C57BL/6J mice were fed a modified AIN-93M diet containing HF/HC (16% fat, 0·25% cholesterol, w/w) or the same diet supplemented with 0·1% BCE (w/w) for 12 weeks. There were no differences in total body weight and liver weight between groups. Plasma total cholesterol (TC) and glucose levels were significantly lower in BCE group than in controls, while plasma TAG levels were not significantly different. There was a decreasing trend in hepatic TAG levels, and histological evaluation of steatosis grade was markedly lower in the livers of mice fed BCE. Although the mRNA levels of major regulators of hepatic cholesterol metabolism, i.e. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) and LDL receptor (LDLR), were not significantly altered by BCE supplementation, protein expression of mature sterol-regulatory element-binding protein and LDLR was significantly increased with no change in HMGR protein. The expression of proprotein convertase subtilisin/kexin type 9 that facilitates LDLR protein degradation, as well as one of its transcriptional regulators, i.e. hepatocyte nuclear factor 4α, was significantly decreased in the livers of mice fed BCE. Taken together, BCE supplementation decreased plasma TC and glucose, and inhibited liver steatosis, suggesting that this berry may be consumed to prevent metabolic dysfunctions induced by diets high in fat and cholesterol.

  9. LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins

    PubMed Central

    Hirsch-Reinshagen, Veronica; Donkin, James; Stukas, Sophie; Chan, Jennifer; Wilkinson, Anna; Fan, Jianjia; Parks, John S.; Kuivenhoven, Jan Albert; Lütjohann, Dieter; Pritchard, Haydn; Wellington, Cheryl L.

    2009-01-01

    Lipid trafficking in the brain is essential for the maintenance and repair of neuronal membranes, especially after neurotoxic insults. However, brain lipid metabolism is not completely understood. In plasma, LCAT catalyses the esterification of free cholesterol on circulating lipoproteins, a key step in the maturation of HDL. Brain lipoproteins are apolipoprotein E (apoE)-containing, HDL-like particles secreted initially as lipid-poor discs by glial cells. LCAT is synthesized within the brain, suggesting that it may play a key role in the maturation of these lipoproteins. Here we demonstrate that astrocytes are the primary producers of brain LCAT. This LCAT esterifies free cholesterol on nascent apoE-containing lipopoproteins secreted from glia. ApoE is the major LCAT activator in glia-conditioned media (GCM), and both the cholesterol transporter ABCA1 and apoE are required to generate glial LCAT substrate particles. LCAT deficiency leads to the appearance of abnormal ∼8 nm particles in GCM, and exogenous LCAT restores the lipoprotein particle distribution to the wild-type (WT) pattern. In vivo, complete LCAT deficiency results in a dramatic increase in apoE-HDL and reduced apolipoprotein A-I (apoA-I)-HDL in murine cerebrospinal fluid (CSF). These data show that brain LCAT esterifies cholesterol on glial-derived apoE-lipoproteins, and influences CSF apoE and apoA-I levels. PMID:19065001

  10. 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs.

    PubMed

    West, Kristy L; Ramjiganesh, Tripurasundari; Roy, Suheeta; Keller, Bradley T; Fernandez, Maria Luz

    2002-10-01

    Male Hartley guinea pigs (10/group) were assigned either to a control diet (no drug treatment) or to diets containing 0.4, 2.2, or 7.3 mg/day of an ileal apical sodium-codependent bile acid transporter (ASBT) inhibitor, 1-[4-[4[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2] octane methanesulfonate (SC-435). Based on food consumption, guinea pigs received 0, 0.8, 3.7, or 13.4 mg/kg/day of the ASBT inhibitor. The amount of cholesterol in the four diets was maintained at 0.17%, equivalent to 1200 mg/day in the human situation. Guinea pigs treated with 13.4 mg/kg/day SC-435 had 41% lower total cholesterol and 44% lower low-density lipoprotein (LDL)-cholesterol concentrations compared with control (P < 0.01), whereas no significant differences were observed with either of the lower doses of SC-435. Hepatic cholesterol esters were significantly reduced by 43, 56, and 70% in guinea pigs fed 0.8, 3.7, and 13.4 mg/kg/day of the ASBT inhibitor, respectively (P < 0.01). In addition, the highest dose of the inhibitor resulted in a 42% increase in the number of very low-density lipoprotein (VLDL) triacylglycerol molecules and a larger VLDL diameter compared with controls (P < 0.05). Acyl-CoA cholesterol/acyltransferase activity was 30% lower with the highest dose treatment, whereas cholesterol 7alpha-hydroxylase, the regulatory enzyme of bile acid synthesis, was 30% higher with the highest ASBT inhibitor dose (P < 0.05). Furthermore, bile acid excretion increased 2-fold with the highest dose of SC-435 compared with the control group (P < 0.05). These results suggest that the reduction in total and LDL-cholesterol concentrations by the ASBT inhibitor is a result of alterations in hepatic cholesterol metabolism due to modifications in the enterohepatic circulation of bile acids.

  11. Lysophosphatidylinositol Signalling and Metabolic Diseases.

    PubMed

    Arifin, Syamsul A; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  12. Lysophosphatidylinositol Signalling and Metabolic Diseases

    PubMed Central

    Arifin, Syamsul A.; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  13. Cholesterol suppresses antimicrobial effect of statins

    PubMed Central

    Haeri, Mohammad Reza; White, Kenneth; Qharebeglou, Mohammad; Ansar, Malek Moein

    2015-01-01

    Objective(s): Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism